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   A self-excited nonlinear dynamical system is one that, in the absence of external modulated forcing, will 

undergo bounded periodic limit-cycle oscillations beyond a stability threshold of an equilibrium state. 

Thermally driven limit-cycle oscillations have been shown to occur in mechanical systems that span 

multiple spatial scales. A large scale example is a space structure which absorbs solar radiation that can 

either increase or decrease as the structure bends towards or away from the incoming radiation. This consists 

of a feedback loop that can change the equilibrium configuration or can lead to self-excited bending 

vibrations. Additional examples include limit-cycle oscillations of a five cm long aluminum coated glass 

cantilever [1], and recently, various nano-resonators in the shape of disks, domes, paddles and wires [2]. The 

advantages of self-excited nano-electro-mechanical-systems include a dramatic improvement of the quality 

factor via parametric amplification, stability enhancement through the use of feedback, and incorporation of 

a single optical configuration for both drive and motion sensing. To date, these systems have been modeled 

by single-degree-of-freedom resonators coupled to a lumped-mass thermal description. However, while their 

analysis qualitatively reveals the onset of limit cycle oscillations, the analytically determined thresholds 

differ from measurements by a factor of two [2]. Furthermore, these systems have been shown 

experimentally to exhibit complex vibrations that alternate between several continuous vibration modes 

which cannot be explained by lumped-mass models [1]. 

 

   Thus, in order to resolve the spatio-temporal complexity of the thermo-visco-elastic system response 

near primary, secondary and multiple internal resonances, we formulate an initial-boundary-value problem 

that consistently includes both nonlinear viscoelastic and thermal fields [3]. We determine the coupled 

thermo-elastic field basis functions and construct a low-order nonlinear multi-mode dynamical system for 

the experimental conditions (Fig. 1) defined by Hane in 1996 [1]. 
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Figure 1: Definition sketch of the laser irradiation initial-boundary-value problem. 

 

The resulting dynamical system truncated to cubic order, consistently incorporates the coupled thermo-

visco-elastic equations [3] with the geometric stiffness and gyroscopic nonlinearities of a micro-cantilever 

developed for finite amplitude dynamics in atomic force microscopy [4]. The influence of the laser is 

embedded within the thermal field equation as the time-averaged absorption of a standing wave captured 

within a bi-material (the cantilever) and the mirror, creating a Fabri-Pero interferometer. Stability analysis of 

the thermo-elastic dynamical system equilibrium configuration reveals existence of a complex bifurcation 

structure (Fig. 2) which includes coexisting bi-stable solutions between snaddle-node pairs, and flutter 

thresholds that correspond to saddle-node and Hopf bifurcations, respectively. 

 

 
 

Figure 2: Bifurcation diagram of equilibrium as a function of input power (solid-stable, dashed-unstable). 
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  A numerical analysis of system response exhibits free vibration decay (Fig. 3 left) below the Hopf 

threshold in region I of Figure 2, self-excited vibrations (Fig. 3 center) for the low power input documented 

by [1] in region II of Figure 2, and possible irregular chaotic jumps (Fig. 3 right) between coexisting bi-

stable solutions in region V of Figure 2. 

 

  
Figure 3: Cantilever tip time-series response: free decay (left) below the first Hopf threshold, periodic limit-

cycle motion above the first Hopf threshold (center), and non-stationary response above the first bi-stable 

transition (right). 

 

Investigation of system periodicity via sampling of the non-dimensional displacement (X) and temperature 

(Z) response intersection with the zero velocity plane (Y=0), yields a bifurcation diagram of Poincare' points 

for various values of input power (Fig. 4 left). The bifurcation structure reveals a period-doubling 

mechanism (M~15) which culminates with a strange attractor (M~15.5) which is then destroyed via a 

reverse bifurcation (M~16).  

 

 
Figure 4: A bifurcation diagram (left) depicting the displacement Poincare' points (Xp) for increasing laser 

intensity (M) spanning regions VII to XVI in Figure 2. A three dimensional chaotic state-space (upper right) 

and fractal Poincare' map projection (lower right) for a selected intensity in region XVI of Figure 2 

(M=24.4). 

 

An example chaotic strange attractor (M=24.4) is depicted (Fig. 4 upper right) via its three dimensional 

state-space [Z(X,Y)] and (Fig. 4 lower right) Poincare' map projection [Z(X)] which exhibits a distinct 

fractal behavior that includes both stretch and fold properties. 

 

This numerical investigation enables a quantitative description of a complex multiple-mode bifurcation 

structure that includes coexisting equilibrium solutions, self-excited periodic oscillations, quasiperiodic 

solutions due to a 3:1 internal resonance between the third and second modes, and chaotic structural 

response of the thermo-visco-elastic dynamical system that is subject to laser irradiation.  
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