Stability of solutions to some evolution problems

A.G. Ramm
Department of Mathematics
Kansas State University, Manhattan, KS 66506-2602, USA
ramm@math.ksu.edu

Abstract

Large time behavior of solutions to abstract differential equations is studied. The corresponding evolution problem is:

\[\dot{u} = A(t)u + F(t, u) + b(t), \quad t \geq 0; \quad u(0) = u_0. \quad (\ast) \]

Here \(\dot{u} := \frac{du}{dt} \), \(u = u(t) \in H, \quad t \in \mathbb{R}_+ := [0, \infty) \), \(A(t) \) is a linear dissipative operator: \(\text{Re}(A(t)u, u) \leq -\gamma(t)(u, u) \), \(\gamma(t) \geq 0 \), \(F(t, u) \) is a nonlinear operator, \(\|F(t, u)\| \leq c_0\|u\|^p, \quad p > 1, \quad c_0, p \) are constants, \(\|b(t)\| \leq \beta(t), \quad \beta(t) \geq 0 \) is a continuous function.

Sufficient conditions are given for the solution \(u(t) \) to problem \((\ast) \) to exist for all \(t \geq 0 \), to be bounded uniformly on \(\mathbb{R}_+ \), and a bound on \(\|u(t)\| \) is given. This bound implies the relation \(\lim_{t \to \infty} \|u(t)\| = 0 \) under suitable conditions on \(\gamma(t) \) and \(\beta(t) \).

The basic technical tool in this work is the following nonlinear inequality:

\[\dot{g}(t) \leq -\gamma(t)g(t) + \alpha(t, g(t)) + \beta(t), \quad t \geq 0; \quad g(0) = g_0, \]

which holds on any interval \([0, T]\) on which \(g(t) \geq 0 \) exists and has bounded derivative from the right, \(\dot{g}(t) := \lim_{s \to +0} g(t+s) - g(t) \). It is assumed that \(\gamma(t) \), and \(\beta(t) \) are nonnegative continuous functions of \(t \) defined on \(\mathbb{R}_+ := [0, \infty) \), the function \(\alpha(t, g) \) is defined for all \(t \in \mathbb{R}_+ \), locally Lipschitz with respect to \(g \) uniformly with respect to \(t \) on any compact subsets \([0, T]\), \(T < \infty \), and non-decreasing with respect to \(g \).

If there exists a function \(\mu(t) > 0, \mu(t) \in C^1(\mathbb{R}_+), \) such that

\[\alpha(t, \frac{1}{\mu(t)}) + \beta(t) \leq \frac{1}{\mu(t)} \left(\gamma(t) - \frac{\dot{\mu}(t)}{\mu(t)} \right), \quad \forall t \geq 0; \quad \mu(0)g(0) \leq 1, \]

then \(g(t) \) exists on all of \(\mathbb{R}_+ \), that is \(T = \infty \), and the following estimate holds:

\[0 \leq g(t) \leq \frac{1}{\mu(t)}, \quad \forall t \geq 0. \]

If \(\mu(0)g(0) < 1 \), then \(0 \leq g(t) < \frac{1}{\mu(t)}, \quad \forall t \geq 0. \)
References.

