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Abstract
Large time behavior of solutions to abstract differential equations

is studied. The corresponding evolution problem is:

u̇ = A(t)u + F (t, u) + b(t), t ≥ 0; u(0) = u0. (∗)

Here u̇ := du
dt , u = u(t) ∈ H, t ∈ R+ := [0,∞), A(t) is a linear

dissipative operator: Re(A(t)u, u) ≤ −γ(t)(u, u), γ(t) ≥ 0, F (t, u) is
a nonlinear operator, ‖F (t, u)‖ ≤ c0‖u‖p, p > 1, c0, p are constants,
‖b(t)‖ ≤ β(t), β(t) ≥ 0 is a continuous function.

Sufficient conditions are given for the solution u(t) to problem (*)
to exist for all t ≥ 0, to be bounded uniformly on R+, and a bound
on ‖u(t)‖ is given. This bound implies the relation limt→∞ ‖u(t)‖ = 0
under suitable conditions on γ(t) and β(t).

The basic technical tool in this work is the following nonlinear
inequality:

ġ(t) ≤ −γ(t)g(t) + α(t, g(t)) + β(t), t ≥ 0; g(0) = g0,

which holds on any interval [0, T ) on which g(t) ≥ 0 exists and has
bounded derivative from the right, ġ(t) := lims→+0

g(t+s)−g(t)
s . It is

assumed that γ(t), and β(t) are nonnegative continuous functions of t
defined on R+ := [0,∞), the function α(t, g) is defined for all t ∈ R+,
locally Lipschitz with respect to g uniformly with respect to t on any
compact subsets [0, T ], T < ∞, and non-decreasing with respect to g.
If there exists a function µ(t) > 0, µ(t) ∈ C1(R+), such that

α

(
t,

1
µ(t)

)
+ β(t) ≤ 1

µ(t)

(
γ(t)− µ̇(t)

µ(t)

)
, ∀t ≥ 0; µ(0)g(0) ≤ 1,

then g(t) exists on all of R+, that is T = ∞, and the following estimate
holds:

0 ≤ g(t) ≤ 1
µ(t)

, ∀t ≥ 0.

If µ(0)g(0) < 1, then 0 ≤ g(t) < 1
µ(t) , ∀t ≥ 0.
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