Stability of solutions to some evolution problems

A.G. Ramm

Department of Mathematics Kansas State University, Manhattan, KS 66506-2602, USA ramm@math.ksu.edu

Abstract

Large time behavior of solutions to abstract differential equations is studied. The corresponding evolution problem is:

$$\dot{u} = A(t)u + F(t, u) + b(t), \quad t \ge 0; \quad u(0) = u_0.$$
 (*)

Here $\dot{u} := \frac{du}{dt}$, $u = u(t) \in H$, $t \in \mathbb{R}_+ := [0, \infty)$, A(t) is a linear dissipative operator: $\operatorname{Re}(A(t)u, u) \leq -\gamma(t)(u, u)$, $\gamma(t) \geq 0$, F(t, u) is a nonlinear operator, $||F(t, u)|| \leq c_0 ||u||^p$, p > 1, c_0, p are constants, $||b(t)|| \leq \beta(t)$, $\beta(t) \geq 0$ is a continuous function.

Sufficient conditions are given for the solution u(t) to problem (*) to exist for all $t \ge 0$, to be bounded uniformly on \mathbb{R}_+ , and a bound on ||u(t)|| is given. This bound implies the relation $\lim_{t\to\infty} ||u(t)|| = 0$ under suitable conditions on $\gamma(t)$ and $\beta(t)$.

The basic technical tool in this work is the following nonlinear inequality:

$$\dot{g}(t) \le -\gamma(t)g(t) + \alpha(t,g(t)) + \beta(t), \ t \ge 0; \ g(0) = g_0,$$

which holds on any interval [0,T) on which $g(t) \ge 0$ exists and has bounded derivative from the right, $\dot{g}(t) := \lim_{s \to +0} \frac{g(t+s)-g(t)}{s}$. It is assumed that $\gamma(t)$, and $\beta(t)$ are nonnegative continuous functions of tdefined on $\mathbb{R}_+ := [0,\infty)$, the function $\alpha(t,g)$ is defined for all $t \in \mathbb{R}_+$, locally Lipschitz with respect to g uniformly with respect to t on any compact subsets $[0,T], T < \infty$, and non-decreasing with respect to g. If there exists a function $\mu(t) > 0, \ \mu(t) \in C^1(\mathbb{R}_+)$, such that

$$\alpha\left(t,\frac{1}{\mu(t)}\right) + \beta(t) \le \frac{1}{\mu(t)}\left(\gamma(t) - \frac{\dot{\mu}(t)}{\mu(t)}\right), \quad \forall t \ge 0; \quad \mu(0)g(0) \le 1,$$

then g(t) exists on all of \mathbb{R}_+ , that is $T = \infty$, and the following estimate holds:

$$0 \le g(t) \le \frac{1}{\mu(t)}, \quad \forall t \ge 0.$$

$$\mu(0)g(0) < 1, \text{ then } 0 \le g(t) < \frac{1}{\mu(t)}, \quad \forall t \ge 0.$$

If

MSC: 26D10;34G20; 37L05;44J05; 47J35; 70K20;

PACS: 02.30Tb.

Key words: Dissipative dynamical systems; Lyapunov stability; evolution problems; nonlinear inequality; differential equations.

References.

[1] A. G. Ramm, Dynamical systems method for solving operator equations, Elsevier, Amsterdam, 2007.

[2] A. G. Ramm, Stationary regimes in passive nonlinear networks, in the book "*Nonlinear Electromagnetics*", Editor P. Uslenghi, Acad. Press, New York, 1980, pp. 263-302.

[3] A. G. Ramm, Theory and applications of some new classes of integral equations, Springer-Verlag, New York, 1980.

[4] N. S. Hoang and A. G. Ramm, A nonlinear inequality and applications, Nonlinear Analysis: Theory, Methods and Appl., 71, (2009), 2744-2752.

[5] N.S. Hoang and A. G. Ramm, DSM of Newton-type for solving operator equations F(u) = f with minimal smoothness assumptions on F, *International Journ. Comp.Sci. and Math.* (IJCSM), 3, N1/2, (2010), 3-55.

[6] A. G. Ramm, A nonlinear inequality and evolution problems, Journ. of Ineq. and Special Functions (JIASF), 1, N1, (2010),1-9.

[7] A. G. Ramm, Asymptotic stability of solutions to abstract differential equations, Journ. of Abstract Diff. Equations and Appl. (JADEA), 1, N1, (2010), 27-34.