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Abstract: In the biological systems the fractal structure of space in which cells 

interact and differentiate is essential for their self-organization and emergence of the 

hierarchical network of multiple cross-interacting cells, sensitive to external and internal 

conditions. Hence, the biological phenomena take place in the space whose dimensions 

are not represented onlyby integer numbers (1,2,3 etc.) of Euclidean space. In particular 

malignant tumors and neuronal cells grow in a space with noninteger fractal dimension. 

Since, cellular systems grow not only in space but also in time, an idea has been 

developed that the growth curves representing neuronal differentiation or malignant 

tumor progression can be successfully fitted by the temporal fractal function y(t), which 

describes the time-evolution of the system, characterized by the temporal fractal 

dimension bt and scaling factor at. One may prove that in the case of biological systems 

whose growth is described by the Gompertz function, the temporal fractal dimension and 

scaling factor are time-dependent functions bt(t) and at(t), which permit calculation their 

values at an arbitrary moment of time or their mean values at an arbitrary time-interval. 

The model proposed has been applied to determine the temporal fractal dimension of the 

tumor growth and synapse formation as qualitatively these processes are described by the 

same Gompertz function. The results obtained permit formulation of two interesting 

rules: 

(i) each system of interacting cells within a growing system possesses its own, local 

intrasystemic fractal time, which differs from the linear (bt=1) scalar time of the 

extrasystemic observer; 

(ii) fractal structure of space-time in which biological growth occurs, is lost during 

progression. 

It will be proved that the fractal function y(t) is a special case solution of the quantal 

annihilation operator for the space-like, minimum-uncertainty coherent states of the time-

dependent Kratzer-Fues oscillator. Such states propagate along the well defined time 

trajectory being coherent in space.Hence, the biological growth in the space-time with 

temporal fractal dimension is predicted to be coherent in space. 
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1. Introduction 

 
The morphometric computer-aided image analysis reveals that growth of 

biological systems occurs in the space-time with the spatial fractal dimension 

(also called Haussdorff dimension) defined by  
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Here, n(ε) is the minimum number of hypercubes of dimension ε required to 

completely cover the biological, physical or mathematical object under 

consideration. The fractal dimension can be defined also by the self-similar 

power low scaling function  

                                            
0               )( >= xxaxy sb

s                                                           
in which y(x) denotes the number of self-similar objects in the sphere or circle 

of a radius x;  bs and as stand for the spatial fractal dimension and the scaling 

factor, respectively. In the case of biological systems the fractal structure of 

space in which cells interact and differentiate is essential for their self-

organization and emergence of the hierarchical network of multiple cross-

interacting cells, sensitive to external and internal conditions. Hence, the 

biological phenomena take place in the space whose dimensions are not 

represented only by integer numbers (1,2,3 etc.) of Euclidean space. In 

particular tumors and synapses grow in a space with non-integer fractal 

dimension. Cellular systems grow not only in space but also in time. Recently, 

an idea has been developed that the curves  describing the growth of biological 

systems can be successfully fitted by the temporal counterpart of the space 

fractal function [1,2] 

( )                     0tb

ty t a t t= >
 

in which y(t) characterizes the time-evolution of the system, bt is its temporal 

fractal dimension whereas at - a scaling factor. The main idea of the work is 

mapping the Gompertz function of growth [3] 
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widely applied to fit the demographic, biological and medical data, onto the 

fractal function y(t). In this way we obtain the the-time dependent expressions 

bt(t) and at(t), which permit calculation their values at an arbitrary moment of 

time or their mean values at an arbitrary time-interval. In the Gompertz function 

G0 stands for the initial mass, volume, diameter or number of proliferating cells, 

a is retardation constant whereas b denotes the initial growth or regression rate 

constant.  

   

2. The model 
 

To find the explicit form of bt(t) and at(t) the relation  
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and its first derivative  

                                                

( )1
1

at

t

b
e

b at a
t tb a t be e

−−− −=
                                          

are taken into consideration. The first of them satisfies the proper boundary 

conditions for t→0 for G0=1 (one cell). Combining the above equations, we 

arrive at the analytical expressions 
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which define the temporal fractal function describing the growth of 

Gompertzian systems 
( )

( ) ( ) tb t

ty t a t t=  

By plotting one may easily prove that function y(t) is indistinguishable from the 

Gompertz function G(t), hence the mapping procedure is successful.   

 

3. The results 

 

The synapse formation can be characterized by the Gompertz growth curve 

obtained by the fitting the experimental data obtained by Jones-Villeneuve et al. 

[4]. The fit provided the following parameters: a=0.0739(89) [day], 

b=0.3395(378) [day] for constrained G0=1 evaluated with the nonlinear 

regression coefficient R=0.9737. In the next step the parameters a and b have 

been used to calculate the time-dependent fractal dimension bt(t) and scaling 

factor at(t) using the above specified formulae. Their plots are presented in Fig. 

1.  

              
 

Fig. 1. Plots of  the time-dependent temporal fractal dimension bt(t) and scaling 

factor at(t) for neuronal cells growth characterized by the Gompertz parameters 

a=0.0739(89) [day] and b=0.3395(378) [day].  

 

In the case of tumorigenessis we consider as an example the Flexner-Jobling 

rat’s tumor whose growth is described by the Gompertz function with 
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 parameters:  a=0.0490(63) [day], b=0.394(66) [day] determined by Laird [5]. 

They were used to generate plots of bt(t) and at(t) presented in Fig. 2.  

 

 

          
Fig. 2. Plots of the temporal fractal dimension bt(t) and the scaling factor at(t) 

for Flexner-Jobling rat’s tumor whose growth is characterized by the parameters  

a=0.0490(63) [day], b=0.394(66) [day]. 

 

Analysis of the results obtained reveal that during  neuronal differentiation and 

synapse formation, the temporal fractal dimension bt(t) increases from 1 for t=0 

to a maximal value 1.80 for  t=11.97 [day] and then decreases to zero. We find 

here an interesting correlation with the spatial fractal dimension calculated in 

vivo for retinal neurons; it takes value 1.68(15), whereas a diffusion-limitted-

aggregation model predicts 1.70(10) [6]. Those spatial dimensions are equal in 

the range specified standard errors to temporal fractal dimension 1.80 

determined in this work. In the case of the brain’s neurons of two teleost species 

Pholidapus dybowskii and  Oncorhynchus keta, the application of the box-

counting method provided the fractal dimension equal to 1.72 for less 

specialized neurons, whereas highly specialized neurons displayed a relatively 

low  dimension [7]. We conclude that the temporal fractal dimension can be 

applied as a numerical measure of the neuronal complexity emerging in the 

process of differentiation, which is correlated with the morphofunctional cell 

organization. In particular, the change from maximal value of the fractal 

dimension bt(t=11.97)=1.80 to dimension attained at plateau bt(t=50)=0.43 

reflects the appearance of the highly specialized neurons evolving from the less 

specialized ones. The temporal fractal dimension of the Flexner-Jobling’s tumor 

growth increases from 1 for t=0 to a maximal value 2.98 for t=20[day] and then 

decreases to zero. Both bt(t) and at(t) determined for neuronal differentiation and 

tumour progression behave in the identical manner. We conclude that 

tumorigenesis has a lot in common with the neuronal differentiation and synapse 

formation, although the dynamics of these  processes are different: the maximal 

values of the temporal fractal dimension are equal to 1.8 and 2.98, respectively. 
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4. The origin of y(t) 

 

One may demonstrate that the fractal function y(t) ) is a special case solution of 

the annihilation operator  

ˆ  A α α α=  

for the space-like, minimum-uncertainty coherent states of the time-dependent 

counterpart of the Kratzer-Fues oscillator [8]. In the above equation 

0 0

1ˆ    exp[- ]exp[ 2 ] 
2

bd b
A x x x

dx x
β α β α = + − = 

 
 

and x=t/t0 dimensionless temporal variable appearing in the time-dependent 

version of the Kratzer-Fues potential V(x)=D(1-1/x)
2
. In the limiting case α→0, 

β0 →0 the ground coherent state reduces to the fractal function y(t) 

, 0 0
lim ( )  by t atα β α

→
= =  

 

5. Conclusions 

 

The results obtained permit formulation of two interesting rules governing the 

biological growth in the fractal space-time: 

(i) each system of interacting cells within a growing system possesses its own, 

local intrasystemic fractal time, which differs from the linear (bt=1) scalar time 

of the extrasystemic observer; 

(ii) fractal structure of space-time in which biological growth occurs, is lost 

during progression.  
The possibility of mapping the Gompertz function, describing the biological 

growth, onto the temporal fractal power law scaling function confirms a thesis 

that biological growth is a self-similar, alometric and coherent process of a 

holistic nature [9]. It means that all spatially separated subelements (cells) of the 

whole system, are interrelated via long-range (slowly decaying) interactions, 

which seem to be an essential ingredient of the self-organized systems. Such 

interactions can be mediated e.g. through diffusive substances (growth factors), 

which interact with specific receptors on the surface of the cells, affecting and 

controlling proliferation. It has been proved [9] that the Gompertz function 

represents the coherent state of the growth which is a macroscopic analog of the 

quantal minimum-uncertainty coherent state of the Morse oscillator. Such states 

are space-like (nonlocal) and propagate along the well-defined time trajectory 

being coherent in space. The mapping procedure transfers this peculiar property 

of the Gompertz function onto the fractal function y(t). Hence, the biological 

growth in the fractal space-time with temporal fractal dimension is predicted to 

be coherent in space. 
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Abstract 

In this paper, a new approach to the problem of stabilizing a chaotic system is presented. In this regard, stabilization 
is done by sustaining chaotic properties of the system. Sustaining the chaotic properties has been mentioned to be of 
importance in some areas such as biological systems.  
The problem of stabilizing a chaotic singularly perturbed system will be addressed and a solution will be proposed 

based on the OGY (Ott, Grebogi and Yorke) methodology. For the OGY control, Poincare section of the system is 

defined on its slow manifold. The multi-time scale property of the singularly perturbed system is exploited to control 
the Poincare map with the slow scale time. Slow scale time is adaptively estimated using a parameter estimation 
technique. Control with slow time scale circumvents the need to observe the states. With this strategy, the system 
remains chaotic and chaos identification is possible with online calculation of lyapunov exponents.  
Using this strategy on ecological system improves their control in three aspects. First that for ecological systems 
sustaining the dynamical property is important to survival of them. Second it removes the necessity of insertion of 
control action in each sample time. And third it introduces the sufficient time for census. 
 
Keywords: OGY, lyapunov exponent, slow manifold, adaptive, singular perturbation, scale time 
  
1. Introduction 

Nonlinear singularly perturbed models are known by dependence of the system properties on the perturbation 
parameter [5]. Multi time scale characteristic is an important property of this class of nonlinear systems. For this class 
of systems a two-stage procedure for design composite controller is presented in [9]. On the other hand, chaotic 
behavior is an important characteristic of a class of nonlinear systems. Many researchers have shown interest in the 
analysis and control of the chaotic systems. Among the proposed approaches is the control of the Poincare Map (the 
OGY-Method) [8]. 
 In this paper, the OGY method is applied to the singularly perturbed chaotic systems. The proposed control strategy 
exploits the chaotic property of the system and a discrete system model on the Poincare map is defined. This 
Poincare map lies on the slow manifold of the system. It is shown that by using the two time scale property of the 
system, an OGY control with slow time scale on the slow manifold of system, could be defined.  
 
This strategy of control results in keeping chaotic property of the system and then online identification of chaos with 
calculation of lyapunov exponents is possible. An adaptive parameter estimation technique is used to estimate 
perturbation parameter and the slow time scale of the singularly perturbed system. Population models are examples 
of systems where sustaining the dynamical property of controlled systems is important for survival of them. Chaotic 
model of food chains were initially found in [2,4]. Recently, chaotic impulsive differential equations are used in 
biological control [6,11-13]. Multi time scale approach was first used in [7] for food chain models. Method is 
implemented on a prey-predator type of population model.  

The paper is organized as follows. In section 2 the slow-fast manifold separation based on the slow and fast states 
for singularly perturbed systems is introduced. 
In section 3 an adaptive estimation technique for the estimation of perturbation parameter is proposed. 
In section 4 chaotic property of the system is exploited and the OGY control is implemented for the stabilizing 
problem. Then singularly perturbed property is exploited and slow manifold of the system is selected as the Poincare 
section. Then a new control based on the slow scale time estimation is introduced. 
Section 5 presents the results of employing the proposed method on the ecological prey-predator system. 
 
2. Problem Formulations 

In this paper, chaotic singularly perturbed systems of the following form are considered, 

),( yxfx   

),( yxgy  (1) 
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Where, Rx  , 
1 nRy and   is a small parameter.  RRf n : , 

1:  nn RRg  are both smooth functions 

and the system is chaotic. 
The slow manifold of (1) is defined with 

 

),( yxgy  (2) 

This S  manifold  0: fS  is smooth and results in separation of time scales as x  the fast, and y  as the slow 

variable. It is easily seen that, 
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By taking 




t
 (4) 

the second scale time of system is 


1
T . 

3. Adaptive Estimation of  

In [10] an estimation method for constant terms using the least-squares approach is proposed. Here the method is 
used here for  estimation. The estimated  is found to minimize the total prediction error as 

drreJ
t

)(
2

0  

Where the prediction error )(te   is defined as 

yyxfxyxgte  ),(),(ˆ)(    

This total error minimization can average out the effects of measurement noise. The resulting estimation is [4] 
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To reduce the size of manipulations we defined  window , then (5) changes to (6) 
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4. OGY Control Based On Second Time Scale Estimation 

In this part a new control strategy is proposed such that controlled system remains chaotic. This strategy exploits 
OGY method to design control and then uses two time scale property of the system to improve the designed control 
such that system remains chaotic. 

),(0 yxf
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4.1 Fast Direction Properties 

Consider the chaotic singularly perturbed system (1). As   is a small parameter, an approximation of the fastest 

eigenvalue of Jacobian matrix (7) is  
z

g








1
   . Since the chaotic systems are dissipative and the absolute value of 

the sum of negative exponents is bigger than the sum of the positive Lyapunov exponents, this big value is almost 
negative. It means that calculation of Lyapanov exponents in fast direction is not necessary in chaos identification. 
And for system with one perturbation term the fast direction is a stable direction. 

 

 

 

         (7) 
 

 

 

 

 

 

4.2 OGY Control On The Slow Manifold 

In the OGY control design, a manifold is defined such that the discrete model of the system will be obtained by the 
intersections of this manifold with system trajectories. Then, the control of this discrete model on this manifold will 
result in the control of the system. It is obvious that the manifold approach will result in a more accurate control of 
system if it contains all unstable modes of the system. Stable modes lead the system dynamics toward a desired 
point. One of the modes should be eliminated to have a manifold with unit co-dimension. Eliminating the fastest 
stable mode and letting it to be free leads to a more accurate control (compared to the elimination of other modes). 

Considering Jacobian matrix (7) Where eqx  is the value on the fixed point of the system while the fixed point is 

calculated as: 

0),(

0),(





eqeq

eqeq

yxg

yxf
                                                 (8) 

Then, the discrete model will be:  

eqkkk xxuypy  ),,(1                                 (9) 

The OGY control,  proposed with the following strategy on slow manifold will be: 
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Where  is the dead zone in traditional OGY method and )( kyK  is a control for slow states of discrete model (9) 

designed with a suitable method for example, proportional feedback. 
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4.3 New OGY Control Based On Slow Time Scale Estimation 

In the OGY method, control of the Poincare map is equivalent to the control of the chaotic system (1). According to 
two time scale property of the system, to control this Poincare section on the slow manifold, it is sufficient to control it 
with the slow scale time, because the states on the slow manifold have slower motions than total dynamical system. 
Hence, control is designed by following strategy: Control starts with the OGY control and as soon as the first section 
with the Poincare map is detected, system could be controlled with the slow scale time.  

Suppose that T is the estimation of slow scale time of the system. And 0k  is the time of first section or first pulse, the 

system can be controlled by inserting control action (10) only in the following instants;
 
 

 
,2,1,0,0  nnTkk

 

 Where, according to (4) T is 


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1
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and     is a bracket symbol. 

an approximation of the fastest mode will be
z

g




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

1
 . Then the accurate manifold is defined by the equation; 

),(0 yxf which is the slow manifold of the system. In other expression with this strategy, the Poincare section in 

this problem lies on the slow manifold (2). For stabilizing problem in fixed point Poincare section becomes: 

 
eqxxyS  :                                 (12) 

The main idea of this new control method is keeping the system on its chaotic state without resisting to be settled 
down in the desired rejoin. 

The control strategy can be summarized as; when the chaotic system states enter the dead zone, by insertion of the 
control pulse, the states settle more in the neighborhood of the slow manifold. Afterward system works in open loop 
and remains by its dynamic in the slow manifold. This slow manifold contains all unstable modes that are also all 

slow. If unstable modes try to abduct trajectory from the desired point, it needs a time. Since smaller  result in bigger 
fast stable modes then the time that system remains on slow manifold increases too, an approximation of this time is 
slow time scale of the system.  

During this time after the application of the control pulse, states of the system remain in the neighborhood of the 
desired trajectory. Then, after this time before the exit from the desired region, the loop is closed again and insertion 
of an enough effective control pulse returns the trajectories closer in the slow manifold. Then system becomes open 
loop again and so on. 

Result 1: control of Poincare map and control of system (1) are equivalent. With T  period the system is controlled. 

Then all needed information to control the Poincare map exist at nTkk  0  . Then T  is the sufficient census time 

(sufficient period of observation) for system (1). 

Result 2: By this method between the pulses system is open loop. Then system remains chaotic and online 

calculation of the Lyapunov exponents result in positive maximum lyapaunov exponent. By defining   as 




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
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
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
u (13) 

When 1  the system identified as chaotic and control rule (10) could be inserted adaptively.  
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4.4 Algorithm  

According to the above discussions a new algorithm to adaptive OGY control for the one term singularly perturbed 
systems is proposed as follows: 

Step 0: By the slow manifold (12) construct the Poincare map (9) and design )( kyK  appropriately to control this 

discrete model. 

Step 1: At the first time t  that condition (10) is satisfied, insert the impulse control  ku . 1pulses  

Step 2: During t   to wt  estimate   using (5) to estimate the slow scale time (T ) with (11). 

wcensuscensus   

Step 3: do no act till Ttt    If condition (10) is satisfied insert control ku
. 

1 pulsespulses
 

Step 4: back to 2. 

 

5. Simulation Results 

In this section, the planned algorithm of section 4 is implemented on the Rosenzweig–MacArthur model. The system 
is model of food chains of prey-predator type. Chaotic property of the system in some range of parameters is proved 
in [1,3]. This model includes three states: a prey ( x ), a predator ( y ) and a top-predator ( z ), with the following 

equations: 
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Where 

3.0,62.0,1.0,1.0,3.0 2121    

Problem of stabilizing equilibrium point of saddle type is addressed. The Poincare section is on the following slow 
manifold 

 eqxxzyS  :),(  

Extinction of species is not desired.  While, the equilibrium point with positive and nonzero terms are desired (of 

biological significance). Desired fixed point is )1678.0,1632.0,8593.0( . 

To design OGY and new method of control, Poincare section is linearized, and proportional feedback is used to 
control it.  For efficiency of the method, close loop poles selected enough faster than the fastest stable pole. 

Figures (1) shows the result of stabilizing with OGY control and new method. It indicates that the stabilizing with new 
method converges to results of OGY method. New method has lower accuracy only in the early times. But the 
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numbers of inserted pulses decreased considerably in comparison to OGY method of control (approximately 

proportional to 










1
   ). 

Figures (2) shows the lyapunov exponents under new method. It indicate that maximum lyapunov exponent is 

positive and the condition 1  for insertion the control rule (10) is satisfied and positive lyapunov exponent are in 
slow directions. 

Figure (3) shows slow variations of states in neighbourhoud of slow manifold and effect of control pulses on the staes 
under new method. It indicates that in interval between the pulses, the states have slow variations.  

 Figure (1) Comparison of the states errors by OGY control and new method (for 01.0 ). 
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 Figure (2) Lyapunov exponents of the controlled system by new method (for 01.0 ). 
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 Figure (3)   a) variation of controlled states by new method in neighbourhood of slow manifold, b) inserted control 

pulses (for 01.0 ). 

 

This variations are such slow that dynamic of this open loop situation remains in the neighborhood of the desired 
trajectory. Each time insertion of the control pulses approaches systems more to the desired trajectory.  

6. Conclusions 

The simulation results on ecological model satisfying the efficiency of the new method. In proposed OGY control on 
slow manifold, instead of trying to drive the system trajectory to a stable rejoin, system is guided to a dynamical 
unstable slow manifold. Since that instability is slow, by applying the control pulses in proper times, states of system 
remains in neighborhood of the desired point. One of the advantages of this control strategy is that it removes 
necessity of observation of states for all samples. This is very important for situations that census has high 
expenditure (for example in biological populations) or for situation that dispatch of control action has higher 
expenditure (for example in pesticide). Also, maximum Lyapunov exponents remain positive and then it is useful for 
online adaptive identification of chaotic property of the system.   
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Abstract 

The idea that chaos could be a useful tool for analyze nonlinear systems considered in this paper and for the first 
time the two time scale property of singularly perturbed systems is analyzed on chaotic attractor. The general 
idea introduced here is that the chaotic systems have orderly strange attractors in phase space and this orderly 
of the chaotic systems in subscription with other classes of systems can be used in analyses. Here the singularly 
perturbed systems are subscripted with chaotic systems. 
Two time scale property of system is addressed. Orderly of the chaotic attractor is used to analyze two time scale 
behavior in phase plane. 
Keywords: chaos, singular perturbation, strange attractor, phase space  

 
1. Introduction 

Phase space analysis is common method in analysis of nonlinear systems [3]. Chaotic systems are class of 
nonlinear systems that are known by dependance of system dynamics on initial values. Since for first time in 
1963 chaotic property introduced by Lornz , many researchers have shown interest in the analysis of them. On 
other hand nonlinear Singular perturbation models are known by dependence of the system properties on the 
perturbation parameter [3]. Multiple time scale characteristic is an important property of this class of systems. In 
this paper for the first time the two time scale property of singularly perturbed systems is analyzed on chaotic 
attractor. The general idea introduced here is that the chaotic systems have orderly strange attractors in phase 
space and this orderly of the chaotic systems in subscription with other classes of systems can be used in 
analyses. Here the singularly perturbed systems are subscripted with chaotic systems. 
Two time scale property of system is addressed. Orderly of the chaotic attractor is used to analyze two time scale 
behavior in phase plane.  Linearization method only gives the information around the point that system is 
linearized but phase space analysis gives all information about all points of the system. Mathematical models of 
ecological systems are examples of chaotic sinularly perturbed systems that analysis done on them here.     
The paper is organized as follows. In section 2 the two time scale property of the singularly perturbed systems is 
introduced. In section 3 linearization method introduced to analyze the time scale. 
Section 4 presents the results of employing the linearization method on the three ecological prey-predator 
systems. 
In section 5 the two time scale behavior of singularly perturbed system on the chaotic attractor is analyzed. 
Section 6 contains the conclusion of this paper. 
 
2. Two Time Scale Singularly Perturbed Systems  

In this paper, chaotic singularly perturbed systems of the following form are considered, 

),( yxfx   

),( yxgy  (1) 

Where, Rx  , 
1 nRy and   is a small parameter.  RRf n : , 

1:  nn RRg  are both smooth 

functions and the system is chaotic. 
The slow manifold of (1) is defined with 

 

),( yxgy  (2) 

This S  manifold  0: fS  is smooth and results in separation of time scales as x  the fast, and y  as the 

slow variable. It is easily seen that, 



 1

),(

),( 1   

x

y

yxf

yxg

x

y








(3) 

By taking 




t
 (4) 

),(0 yxf
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as the slow time and  as the fast time, rescaling gives 

),( yxfx
d

dx



 

),( yxgy
d

dy



  

The fast manifold yields: 

),( yxfx   

0y  

3. Analysis of Two Time Scale Behavior with Linearization around Slow Manifold 

In this section system (1) is linearized around its fixed point. Then slow manifold produced with (2). Then 
eigenvalues of jacobian matrix for full system and reduced system (slow manifold) used to analyze the speed of 
states. The equations 

0x  

0y                                                                          (5) 

or equivalently the equations 

),(0 yxf  

 

),(0 yxg   (6) 

give the fixed points ),( eqeq yx  of the system (1). And according to (2) the slow manifold yields with 

 
eqxxyS  :)(    (7) 

Linearization of full system around the fixed point result in fallowing jacobian matrix 

 

 

 

(8) 

 

 

 

and linearization of reduced system result in following jacobian matrix 

 

 

(9) 

 

 

It is obvious that eigenvalues with nonzero real parts of this matrixes (8),(9) show the speeds of states around the 
fixed pointes. 
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4. The Linearization Method on Three Ecological Models  

Here the linearization method is implemented on three models of food chains of prey-predator type. The 
Rosenzweig–MacArthur, the Hastings–Powell, and the Volterra–Gause model are investigated here. All are 
singularly perturbed and the chaotic property of them in some range of parameters is proved in [1-2].The models 

include three states: a prey ( ), a predator ( ) and a top-predator ( ). 

4.1. The Rosenzweig–Mac Arthur Model  

)(
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 (10) 

Where 

3.0,62.0,1.0,1.0,3.0 2121    

Fixed point )1678.0,1632.0,8593.0(  is on the slow manifold. Eigenvalues of Jacobian matrix around this 

point for full system and reduced system for  1.0  are 
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For 01.0  eigenvalues change to 
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4.2. The Volterra–Gause Model 
 
 

353

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



zyz
dt

dz

zyyxy
dt

dy

yxxx
dt

dx

)(

)1(

2

1













      (11) 

 
 

Where 

428.1,376.0,577.0 21    

Fixed point )1289524.0,141376.0,8463235.0(   is on the slow manifold. Eigenvalues of jacobian matrix 

around this point for full system and reduced system for 1.0    are  
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4.3. The Hastings–Powell Model 
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Where 

2.0,2,3,01.0,4.0,1.0,5 212121  aa  

Fixed point )808.9,125.0,8192.0(    is on the slow manifold. Eigenvalues of Jacobian matrix around this point 

for full system and reduced system for   1.0  are  
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It is obvious that for three systems fast mode is in perturbed direction. Fast modes are stable and very big in 
comparison to other poles. With decrement of   stable fast mode becomes faster and slow modes 

approximately remain unchanged. Then two time scale behavior in such systems means that with decrement of 
  value fast states become faster and slow sates speed is approximately unchanged. The eigenvalues of the 

reduced system (slow manifold) also remain unchanged with   value changes. 

5. Phase Space Analysis on Chaotic Attractor 
 

Phase space analysis is common method in analysis of nonlinear systems. For nonlinear systems the phase 
portrait of a solution is a plot in phase space of the orbit evolution [4]. One of the most important properties of 
chaotic systems is that they have strange attractors; that has an apparent qualitative and bounded shape for 
each systems in range of parameters that system is chaotic and initial conditions that arisen from basin of 
attraction. We named here this property as orderly of the chaotic systems. 
 
Strange attractor can be shown with plot of trajectories in phase portrait. Here the property of chaotic systems 
that "qualitative shape of system attractor is unchanged and bounded", or in other expression the orderly of the 
strange attractor of chaotic systems in phase portrait, is used to analyze the two time scale behavior of singularly 
perturbed chaotic systems in phase space. 
 

According to (3) by   variation, speeds of systems states meet different scale times proportional to 


1  , 

theoretically. Figures (1) shows the strange attractor of three above ecological systems for two different values 

in phase space. According to figure (1) by changing the   value the qualitative shape of attractor is 

approximately unchanged.  
Figure (2) shows the two dimensional plot of attractors for fast states (y,z). According to figure (2) the qualitative 
shape and quantitative domain of variation of attractor for slow states is approximately independent on variation 
of  value and there is no sensible variation in slow states. 

 
Figure (3) shows the two dimensional plot of the same attractors for the fast state (x) and one of the slow 
states(y). It shows that the speed of states increase in fast direction. 
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Figure (1) chaotic strange attractor of three food chain models (for 1.0 in left and for  01.0  in right). 
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Figure (2) 2-Dimensional perspective of chaotic attractor of three food chains models for slow states 

(for 1.0 in left and for  01.0  in right). 
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Figure (3) 2-Dimensional perspective of chaotic attractor of three food chains models for fast state x  (respect to 

one of the slow states z   (for 1.0 in left and for  01.0  in right). 

 

 
According to these figures, the quantitative domain of variation of attractor in the direction of fast state  increased 
by the decrement of   value, and for slow states is approximately is no sensible variation.  

Then, analyze of the two scale time behavior of singularly perturbed systems on chaotic attractor shows that be 
  decrement the slow states speed is approximately unchanged but the speed of fast states increase. This 

result is for laa trajectories of the system not only about the around the fixed point on slow manifold.  
 
 
6. Conclusions 

In linearization method the eigenvalues with nonzero real parts introduced to analyze the multi time scale 
property of system around the point that system linearized. Results of implementation of this method on three 
ecological models show that the eigenvalues of jacobian matrix in fast direction are very bigger than slow 
directions. To analyze the system behavior on all points the phase portrait method is used. Because the system 
is chaotic its strange attractor in phase portrait is bounded and has a regular qualitative shape. Using phase 
portrait method satisfied the results of linearization method but applicable for all points of the system on the 
strange attractor. Both method show that by decrement of   value the speed of fast state increases but the 

speed of slow states are approximately unchanged. The orderly of the chaotic system on strange attractor used 
to analyze the two scale time property of the singularly perturbed class of nonlinear systems. Using chaotic 
property in subscription with other classes of nonlinear systems may be extendable to analyze them. 
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Abstract. Shape Memory Alloys (SMAs) present unusual behaviour compared
to more standard linear elastic materials. Indeed, they can accomodate large re-
versibe strain (pseudo-elasticity) or recover their shape, after being strained, by
simple heating (shape memory effect). These behaviours are due to a displacive
first order phase transformation called martensitic transformation. These features
promote their use in many applications ranging from biomedical field to spatial
domain. In the current work, we focus on the pseudoelastic behaviour. To this
end, the thermomechanical constitituve law developped by Moumni and Zaki [1]
is used. Firstly, the behaviour is reduced to a single degree of freedom. Secondly,
inertial effect is considered and the forced oscillations of a device witnessing a
pseudoelastic behaviour are studied. The analysis of the results through frequency-
response curves and Poincaré maps reveals softening behaviour, jump phenomena,
symmetry-breaking bifurcations and occurence of chaos. Results are in good agree-
ment with those found in the literature [2] and using a different modelisation of the
shape-memory effect.
Keywords: hysteresis loop, damping capacity, softening behaviour, chaotic solu-
tions, symmetry breaking, Poincaré map.

1 Introduction

The interesting behaviour of shape memory alloys (SMA) is usually at-
tributed to their ability to undergo a reversible solid - solid phase change
between a parent phase called austenite and a product phase called marten-
site. The transition from austenite to martensite is accompanied by a loss of
crystallographic symmetry, which produces entropy and heat. Austenite can
usually transform into martensite when the SMA is mechanically stressed,
the resulting transformation strain can then be recovered by unloading. This
seemingly elastic yet dissipative behaviour is called pseudoelasticity. During
a pseudoelastic transformation, a considerable amount of heat can be gener-
ated due to phase change, which can result in temperature variations that
readily impact the behaviour of the SMA resulting in a strong thermome-
chanical coupling. This paper is devoted to the computation of the dynamic
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response of a pseudoelastic device in isothermal condition. The behaviour of
the device is derived from a full 3D model that has been exhaustively pre-
sented in [1]. It is recalled in section 2. The reduction to a one-dimensional
system is exhibited in section 3 by assuming axial loading of a slender beam,
resulting in a non-linear pseudoelastic spring characteristic. An added mass
ensures inertia effect, and the oscillator model is completed with a dashpot
and external harmonic forcing. Comparing with the model used in [2], [3]
and [4], the originality of the current work is the use of a thermodynamic
admissible 3-D law which allows studying vibrations of either continuous or
discrete systems. The frequency-response of the pseudoelastic device is com-
puted in the vicinity of its eigenfrequency corresponding to purely austenitic
(small amplitude) motions. In the lines of the results presented in [2], a soft-
ening behaviour, characterized by a shift of the resonance frequency to lower
frequencies, is found, resulting in jump phenomena. Moreover, symmetry-
breaking bifurcations and onset of chaotic responses are detected for selected
parameters values.

2 ZM model-3D version

The Zaki-Moumni (ZM) model for shape memory alloys is based on the of
solid-solid phase change modelisation developed by Moumni [5] and was first
introduced by Zaki and Moumni [1]. It was later extended to take into
account cyclic SMA behaviour and training [6], tension-compression asym-
metry [7] and irrecoverable plastic deformation of martensite [8]. The model
is developed within the framework of Generalized Standard Materials with
internal constraints ([9], [5]) in order to guarantee thermodynamic consis-
tency. For the original ZM model, the thermodynamic potential is chosen as
the Helmholtz free energy density taken as:

W =(1− z)

[

1

2
(ǫA) : SA

−1 : (ǫA)

]

+ z

[

1

2
(ǫM − ǫori) : SM

−1 : (ǫM − ǫori) + C(T )

]

+G
z2

2
+

z

2
[αz + β (1− z)]

(

2

3
ǫori : ǫori

)

(1)

In the above equation, ǫA and ǫM are the local strain tensors of austenite
and martensite respectively, T is temperature, z is the volume fraction of
martensite, and ǫori is the orientation strain tensor. SA and SM are the
compliance tensors of austenite and martensite respectively. ρ is the mass
density, G, α, and β are material parameters that influences the shape of the
superelastic hysteresis loop and the slopes of the stress-strain curve during
phase change and martensite orientation. The parameter C(T ) is an energy
density that depends on temperature as follows:

C(T ) = ξ(T − T 0) + κ, (2)
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where ξ and κ are material parameters. The state variables obey the following
physical constraints :

• The macroscopic strain tensor ǫ is an average over the REV (Represen-
tative Elementary Volume) of the strain within austenite and martensite
phases. By construction, ǫ is given by

(1− z) ǫA + zǫM − ǫ = 0, (3)

• z is the volume fraction of martensite, restricted to the [0,1] interval,
• The equivalent orientation strain cannot exceed a maximum γ:

γ −

√

2

3
ǫori : ǫori ≥ 0. (4)

The above constraints derive from the following potential:

Wl = −λ : [(1− z) ǫA + zǫM − ǫ]−µ

(

γ −

√

2

3
ǫori : ǫori

)

− ν1z− ν2 (1− z) ,

(5)
where the Lagrange multipliers ν1, ν2, and µ are such that

ν1 ≥ 0, ν1z = 0,

ν2 ≥ 0, ν2 (1− z) = 0,

and µ ≥ 0, µ

(

γ −

√

2

3
ǫori : ǫori

)

= 0.

(6)

The sum of the Helmholtz energy density (1) and the potential Wl (5) gives
the Lagrangian L, which is then used to derive the state equations. With
some algebra, the following stress-strain relation is obtained:

σ = S
−1 : (ǫ− zǫori) , (7)

where S is the equivalent compliance tensor of the material, given by

S = (1− z)SA + zSM. (8)

The thermodynamic forces associated with z and ǫori are taken as subgradi-
ents of a pseudo-potential of dissipation D defined as

D = [a (1− z) + bz] |ż|+ z2Y

√

2

3
ǫ̇ori : ǫ̇ori, (9)

where a, b are positive material parameters, and Y is a parameter linked
to the orientation yield stress. This allows the definition of yield functions
for phase change (F1

z and F2
z ) and for martensite orientation (Fori). The

evolutions of the state variables z and ǫori are governed by the consistency
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conditions associated with yield functions. If the orientation-finish stress is
lower than the critical stress for forward phase change (i.e. if σrf < σms),
the model is such that the stress-induced martensite is completely oriented
as soon as forward phase change begins.
In the next section, the ZM model will be reduced to 1D dimension in order
to derive the dynamic response of a SMA device.

3 SMAs device-1D version

A single degree of freedom device can be considered by using a SMA beam
with length l and cross-section area S. The SMA beam can be assimilated
to a spring with nonlinear stiffness by studying relative displacement of its
extremities. Figure 1 represents a sketch of the device, where a viscous struc-
tural damping (C) is added to model internal losses that are not contained
into the hysteresis loop. The mass M is subjected to external harmonic exci-
tation of amplitude Emax and frequency ω as: Ee(t) = Emax cos(ωt). Assum-
ing that in the direction (−→x ), σxx =

(

F
S

)

, εxx =
(

X
l

)

and εori,xx =
(

Xori

l

)

,
dimensioned model equations are summarized in table 1, where K(z) repre-

sents the nonlinear stiffnes. It is defined by: K(z) =
(

1−z
Ka

+ z
Km

)−1

, where

Ka =
(

EaS
l

)

(respectively Km =
(

EmS
l

)

) is the the stiffness in austenitic
phase (resp. martensitic phase), related to their respective Young’s modulus
Ea and Em. In the remainder, forward transformation means phase change
from austenitic phase to martensitic one and reverse transformation in the
inverse direction. Finally, Xori is an internal displacement of the device due
to detwinning process and is defined by Xori = Xmaxsgn (F ), where sgn(F )
stands for the sign of F ; a, b, G, α, β, ε0, ξ, κ, θ0 and Y are material param-
eters [1].

Motion equation :

MẌ + CẊ + F (X,z,Xori) = Ee(t)
Behaviour equation :

F (X,z,Xori) = K(z) (X − z.Xori)
Thermodynamic force :

Az = −1

2Ea

(

F

S

)2

+ 1

2Em

(

F

S

)2

+ 1

Sl
F.Xori − C(T )−Gz −

(

(α− β) z + β

2

) (

Xori

l

)2

,

Forward transformation criterion :
F

cri
1 = Az − a (1− z)− bz

Reverse transformation criterion :
F

cri
2 = −Az − a (1− z)− bz

Table 1. Dimensionalized equations
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Fig. 1. (a) The pseudo-elastic device (b) Pseudo-elastic behaviour of the SMA beam

For calculations convenience, the following dimensionless equations are introduced
: Ω = ω

ωn
,τ = ωnt, x = X

Xms
,γ = Emax

Fms
,ζ = C

2ωnM
and f = F

Fms
where ωn is

the natural frequency of the device in its austenitic phase and is given by ωn =
√

Ka

M
, Xms and Fms are respectively displacement and force tresholds of forward

transformation. Assuming Ka = Km, the dynamics of the systems is finally given
by:

{

ẍ+ 2ζẋ+ (x− z.xori) = γ cosΩτ (10)

f(x, z, xori) = (x− z.xori) (11)

A Newmark scheme for time integration of motion equation with parameters γ1 = 1

2

and β1 = 1

4
is used, where the internal Newton-Raphson iterations allows incre-

mental fulfillement of the conditions provided by the criteria functions.

4 Results and discussion

In the remainder of the paper, the material parameters and the damping
coefficient have been set to: a=17.920Mpa , b=17.920Mpa , ε0 = 0.112 ,
α = 1.4732Gpa , β = 1.4732Gpa , G = 26.88Mpa ,κ = 8.68Mpa , ξ =
0.53114Mpa/oC , T0 = 233.3498K , Af = 238.5945K , Y = 164Mpa , Ea =
50Gpa ,Em = 50Gpa and ζ = 0.05. These values have been identified from
the simulations shown in [2] in order to compare results. Frequency-response
curves are obtained, for a given excitation frequency Ω, by numerical integra-
tion. The transient is removed and the maximal value of the displacement
is recorded. Ω is then increased and decreased so as to obtain all stables
branches of solutions. Figure 2 (a) shows the results obtained for increasing
values of γ. For γ = 0.1, the response is linear, as no phase change is involved
for that amplitude of response. For γ = 0.2 and γ = 0.5, the amplitude of
the response exceeds 1: phase transformation occurs and the non-linear be-
haviour is characterized by a softening-type nonlinearity, as the resonance
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frequency is seen to shift to lower values. Indeed, the equivalent stiffness
of the pseudoelastic oscillator decreases. Saddle-node bifurcation points are
then noted at points A, B,C and D, where jump phenomena are observed:
when continuously varying the excitation frequency, the solution jumps to a
stable solution to another one. For highest amplitude γ = 0.8, an additional
branch of solutions is found between points F and G, it corresponds to cases
where the phase transformation is completed ; the material becomes fully
martensitic. The solution branch is bent to high frequencies as the stiffness
increases from the transition plateaus to the purely martensitic case, with a
volumic fraction z equal to 1. These results agree well with those in [2]. To
go beyond, the amplitude γ = 1.2 is computed, results are shown in Fig. 2
(b). Before the resonance, for Ω ∈ [0, 0.5], a succession of erratic points are
found, corresponding to the occurrence of superharmonic resonances of differ-
ent orders. In order to get insight into the observed regimes for Ω ∈ [0, 0.5],
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Fig. 2. (a)xmax vs. Ω at different γ, (b) xmax vs. Ω at γ = 1.2

Poincaré maps are computed by making a stroboscopy of the response at the
excitation frequencies. Results are presented in Fig.3, they clearly show the
presence of chaos for a narrow frequency band [0.22, 0.28]. By decreasing
the excitation frequency, a period-doubling route to chaos is observed from
point D. On the other hand, for Ω ∈ [0, 0.22], periodic solutions persist.
The chaotic solutions at the beginning of their existence window, namely for
Ω = 0.23, are shown in Fig.4(a). The temporal solution shows that chaos
is driven by the erratic behaviour of the enveloppe. Phase portrait reveals
a fractal attractor. Interestingly, Fig.4(b) shows the emergence of even har-
monics in the FFT of the displacement signal although the behaviour is sym-
metric. This shows that the bifurcation scenario when entering the chaotic
window from low-frequencies is that of a symmetry-breaking bifurcation, as
already observed in the Duffing oscillator [10].
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Fig. 3. Poincaré map at γ = 1.2
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5 Conclusion

The non-linear dynamic responses of pseudoelastic SMAs have been studied
through reduction of a complete 3D model to a single degree-of-freedom os-
cillator. Results shows the emergence of chaotic solutions in the computed
responses, for high values of the forcing amplitude. The chaotic region is de-
limited by a symmetry-breaking bifurcation and a period-doubling scenario.
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de doctorat, Ecole Nationale des Ponts et Chaussées, 1995.
10.Parlitz U. and Lauterborn W. Superstructure in the bifurcation set of the duffing

equation. Physics Letters A, 107(8):351–355, 1985.

366

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



Influence of activator-inhibitor transport ratio on 

Turing patterns in three coupled CSTRs with 

glycolytic oscillatory reaction 
 

F. Muzika, I. Schreiber 

 

Institute of Chemical Technology, Prague, Department of Chemical 

Engineering, Center for Nonlinear Dynamics of Chemical and Biological 

Systems, Technická 5, 166 28, Praha 6, Czech Republic.: tel. +420-220445118, 

fax: +420-220444320, e-mail: Frantisek.Muzika@vscht.cz 

 
Abstract: This work study three CSTRs in parallel, coupled by two membranes, in order 

to find and analyse Turing instability. Our goal is to extend the theory of compositional 

complementarity in the origin of life and propose usage of Turing patterns as memory 

arrays and cellular logical units. Every CSTR  have glycolytic oscillatory reaction, which 

is realized by model proposed by Moran and Goldbeter (1984). Turing instability reacts 

sensitively to ratio of transport of activator and inhibitor through every membrane it the 

system. Solution diagrams and Turing patterns as schematic concentration profiles are 

shown for three different ratios of transport coefficients of inhibitor and activator  q=100, 

q=1 and q=0.8. 

Keywords: Turing instability, Turing pattern, glycolysis, memory array, logical unit 

 

1. Introduction 
There are many types of organisms, which differ in shape and metabolism. 

Common property is asymmetric shape and asymmetric location of their sensing 

arrays and propulsion system. That should not be possible, if diffusion had 

homogenizing effect for every two subsystems of such organism. A possible 

explanation was given by Alan Turing in 1952, when he proposed a mechanism, 

where diffusion dehomogenizes the system of coupled cells [1]. Turing 

instability mechanism was also proposed for many problems concerning 

pigmentation and agglomeration of organism, which was summarized in [2] and 

this field of research is extended for example by [3]. Turing instability was 

found in neural networks and brain tissue models [4, 5]. There are also other 

mechanisms, that have probably major occurrence inside neural network. It is 

the bistability based network of reactors, which can be compared to a Hopfield 

network and which can create logic gates by setting the right coupling strength 

between reactors [6]. Similar network can be used to store any pattern according 

to Hebbian rule and it is also resistent to small errors or undesirable perturbation 

[7, 8, 9]. Turing patterns are able to store memory as well [10].  

As a general example of biochemical processes, two steps of glycolysis are 

taken. It can generate many cases of interesting dynamical behavior [11]. 

Membrane proper for ATP/ADP transport can be found in mitochondria, where 

outer membrane is permeable for both species and inner membrane posses 
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ability of active transport of ATP with very small permeability for ADP [12]. 

This transport unequality gives opportunity for occurrence of Turing patterns 

from primary branch point bifurcation of homogeneous stationary state. Inner 

membrane of mitochondria currently does not contain phosphofructokinase, but 

it can be found in outer membrane of mitochondria of Tetrahymena 

thermophilia [13]. It is possible, that phosphofructokinase was present in inner 

membrane of mitochondria or similar organism like Rickettsia prowazekii [14] 

in the past and with aid of Turing instability, it could have important role during 

evolution, like in theories of compositional complementarity [15]. There is also 

ATP/ADP permeable membrane inside nervous system, where ATP acts as 

neurotransmitter. Its permeability is given by the presence of purin based 

receptors, which are partially described in [16, 17]. There are still many purin 

based receptors undiscovered in brain tissue and they are expected in slime 

molds, because genetic coding for such receptors is in their DNA. There is also 

a possibility of artificial urea based membrane [18], which is capable of ATP 

transport, when calcium ion is added.  

In the first part of this paper, we describe the glycolysis model for three coupled 

continuous stirred tank reactors and its Turing instability region schematic 

location in parametric and extended parametric space. Then solution diagrams 

with changing ratio of transport coefficients of inhibitor over activator are 

shown. Ratio parameter is set to q=100, q=1 and q=0.8. 

The second part of this paper is dedicated to dynamic simulations of static 

Turing patterns and oscillatory behavior with proposed technical usage as 

memory array and three input XOR+AND logic gate. 

 

2. Model of Glycolysis 
For purpose of simplicity we took model of glycolysis inside yeast [19]. 

Intercellular diffusion element was added as product of transport coefficient of 

ADP (kADP) and concentration difference of one specie between two specified 

reactors. Diffusion rate coefficient of ATP and ADP based on its molecular 

structure and permeability through membrane is ~10
-6
 cm

2
/sec according to [20]. 

It is element of overall transport rate coefficient of ADP, which is defined as = 

(diffusion rate coefficient / membrane thickness ) x (cell surface / cell volume). 

For purpose of future usage as three-input logic gate or three to one-input 

memory array, we chose three coupled continuous stirred tank reactors and the 

model equations are

 

d [ATP ]1
d [ t ]

= f 1([ATP ]1,[ADP ]1)+ k ADP q([ATP ]2−[ATP ]1)

d [ADP ]
1

d [ t ]
= f 2([ATP ]1,[ADP ]1)+ k ADP ([ADP ]2−[ADP ]1)

d [ATP ]2
d [t ]

= f 1([ATP ]2,[ADP ]2)+ k ADP q ([ATP ]1−[ATP ]2)

d [ADP ]2
d [t ]

= f 2([ATP ]2,[ADP ]2)+ k ADP([ADP ]1−[ADP ]2)
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d [ATP ]3
d [t ]

= f 1([ATP ]3,[ADP ]3)+ k ADPq([ATP ]3−[ATP ]3)

d [ADP ]
3

d [ t ]
= f 2([ATP ]3,[ADP ]3)+ k ADP ([ADP ]3−[ADP ]3)

   

1)

f 1 = ν+ ν i

[ADP ]1
n

K
n+ [ADP ]1

n
−ν M

[ATP ]1(1+ [ATP ]1)(1+ [ADP ]1)
2

L+ (1+ [ATP ]1)
2(1+ [ADP ]1)

2

f 2 =ν M

[ATP ]1(1+ [ATP ]1)(1+ [ADP ]1)
2

L+ (1+ [ATP ]1)
2(1+ [ADP ]1)

2
−k S[ADP ]1−ν i

[ADP ]1
n

K
n+ [ADP ]1

n

2) 

where [ATP ]  is dimensionless concentration of ATP, [ADP ]  is dimensionless 

concentration of ADP, ν = 1.84  is uptake rate, ν i is inhibition rate 

coefficient, ν M  is autocatalytic rate coefficient, k S=0.06 is removal of 

product, L= 5×10
6

 is allosteric constant, K = 10  is Michaelis constant 

divided by ADP dissociation constant, n=4  is degree of cooperativity (Hill 

coefficient), k ADP  is ADP transport coefficient. Ratio between transport 

coefficients of ATP and ADP is q .  

 

3. Parametric an Extended Parametric Space 

Schematic region of Turing instability can be shown in space of three 

changeable parameters (Fig. 1). We can also see, that vertical and horizontal 

cross-sections of such three parametric space would lead to bifurcation diagrams 

(Fig. 1 d,e,f). Horizontal bifurcation diagram is extended by one stationary 

concentration parameter and vertical cross-section through extended parametric 

space creates solution diagrams (Fig. 1 a,b,c). 

Figure 1.: Schematic Turing instability region inside parametric and extended 

parametric space. SSS represents stable stationary state, while USS represents 
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unstable stationary state. Other parameters can be found in “Model” section. 

Schematic pictures in (Fig. 1) correspond to the real location and shape of 

Turing instability region of our model in parametric space. We can generally 

assume, that the lower the value of ratio of transport coefficient of inhibitor over 

activator, the smaller is Turing instability region. 

4. Solution Diagrams 

Solution diagram are calculated by Fortran based program CONT [21]. 

Continuation parameter is transport coefficient of ADP (kADP), printed stationary 

variable is stationary concentration of ADP (Fig. 2). 

 2.: Solution diagrams with assigned Turing patterns. Constants can be found in 

“Model” section. Turing patterns have two concentration levels: 1) low (bottom 

line inside reactor), 2) high(upper line inside reactor) 

Stable stationary state is marked by full line and if it is inhomogeneous, 
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resulting Turing pattern is assigned. Dashed line represents unstable stationary 

state. Three type of points are present. Branch points represent division or union 

of multiple stationary states, it is also point of occurrence of Turing instability. 

Limit points represent parametric border of stationary state, the point, where 

inhomogeneous stationary curve turns its direction inside parametric space. 

Hopf bifurcation points represent point of occurrence or disappearance of 

oscillations, which are not drawn here. Their stability depends on stability of 

previous curve, so it transfers stability from oscillations into stationary states. 

We divide curves in solution diagram  into symmetric, asymmetric and 

homogeneous, because  it is more transparent (Fig. 2). 

 

5. Dynamic Behavior of Static Turing Patterns 

There are generally two types of Turing patterns, first are static Turing patterns, 

which are found in solution diagrams (Fig. 2) and the second one are dynamic 

Turing patterns. Their behavior and mathematical basis is descibed in [4]. The 

apparent multiplicity of stationary states (Fig. 2) and change of dynamic Turing 

patterns lead us to idea of switching between static Turing patterns by 

perturbations. Perturbations are chosen to have similar values, in order to gain 

modularity of the system. Dynamic simulations are made by fortran based 

program CONT [21]. System is set for equal transport rates of activator and 

inhibitor due to focus on using most simple coupling membrane possible, thus 

q=1. System prefers stable oscillations, when it is not externally influenced. We 

confirmed it by many calculations. 

Our simulation is designed for simultaneous perturbation of all reactors. There 

are many possibilities leading to Turing patterns, but there are only three 

perturbation combinations, which can change stable oscillations into Turing 

patterns and after applying the same or other perturbation combination of this 

type, Turing pattern will change to other Turing pattern or stay the same. To gain 

such perturbation combination, we need to perturb reactors simultaneously with 

perturbations of ATP with values 1.2 for two reactors and -0.5 for remaining 

reactor. We thus obtain three possibilities of perturbation combination with three 

resulting Turing patterns. Such patterns can be used for storing one digital 

information in first an third reactor. Other perturbation combinations lead to 

stable oscillations. We can declare, that perturbation of ATP with value of 1.2 

will be taken as digital 1 signal and perturbation of ATP with value of -0.5 will 

be taken as digital 0 signal. Turing pattern can be understand as stationary stable 

concentration level of each reactor. There are purin based receptors [17], 

capable of reading ADP concentration level and than open itself to transport 

ATP. If there will be receptor, which will read high concentration level from 

third reactor and than transport ATP from that reactor with value of 1.2, than 

result of three input reactor array will be digital 1 signal and it can be used for 

other reactor array as input signal. If there will be receptor, which will read low 

concentration level of third reactor and than transport ATP from extracellular 

space or other reactor array into that reactor with value of 0.5, than result of 
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three input reactor array will be digital 0 signal and it can be used for other 

reactor array as input signal. Many inputs result in stable oscillations. These 

oscillations can be changed into Turing patterns by the mentioned receptor 

mechanism, but the receptor would react to higher concentration than in case of 

Turing instability. Such regulatory receptors need to be in every cell. In (Fig. 3) 

we use oscillation regulation based on digital 1 for first and second reactors and 

digital 0 for third rector. Signals from receptors from third reactor will give the 

same output as XOR+AND logic gate. 

 

Figure 6.: System with three perturbation inputs regulated by controlling 

perturbation into Turing patterns. Third reactor output correspond to 

XOR+AND logic gate. Input perturbations are written in order first, second, 

third reactor. Values of perturbations are taken for 1.2 as digital 1 and for -0.5 

as digital 0. Input perturbations are: (0 1 1) t=500, (1 0 0) t=1500, (0 0 1) 

t=2500, (0 1 0) t=3500, (1 0 1) t=4500, (1 1 0) t=5500, (0 0 0) t=6500, (1 1 1) 

t=7500. Every perturbation have time length 100, controlling perturbations are 

applied with time difference 200 from start of oscillations with values (1 1 0). 

Constants are set 

to: ν = 1.84 , ν i=35 , ν M=100 , k S=0.06 , L= 5×10
6

, K = 10 , n=4 ,
k ADP=0.1 , q=1 . ADP1 represents ADP in first reactor, ADP2 represents ADP  

in second reactor and ADP3 represents ADP in third reactor. 

 

6. Results and discussion 
Turing instability was found in three coupled reactors with glycolytic oscillatory 

reaction for parameters, where inhibitor is transported 100 times faster then 
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activator. Then it was found in system with equal transport rates and for 1.25 

times faster activator transport rate. It occurs due to secondary stabilization of 

unstable branches, bifurcated from Turing instability. Secondary stabilization 

was realized by Hopf bifurcations. System with faster activator transport rate 

can be found in fuel cells and system with equal transport rates is very common. 

We suggest, that for such common transport parameters, we can propose 

procedure of memory storage and logic gate based on diffusion mechanism as 

dehomogenizing factor. Our procedure is in contrast with experiments, based on 

diffusion as homogenizing factor, made by Hjelmfelt, Schneider and Ross, 

where memory storage and logic functions are possible because of bistability. 

Three coupled reactors with glycolysis model, with parameters leading to 

supecritical Turing instability, can create memory array and with oscillation 

control can create XOR+AND gate. We will focus on finding other logic gates 

and other technical usage of Turing patterns in our future work. 
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 Improvement Performance of TH-UWB System Using

Spatiotemporal Chaotic Sequences
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Abstract. The residential environments are an important scenario for Ultra Wide Band (UWB) com-
munication systems. In this paper, the performance of correlating receivers operating in a Line-Of-Sight
(LOS) scenario in these environments is evaluated. In such channel the interference between users is an
additional source of noise, that may deteriorate the performance of the system. In this research axis; it
aims to exploit the richness of chaotic and spatiotemporal sequences with respect to topologic properties.
We check through simulations, that chaotic sequences are shown to have improved performance compared
to the Gold sequences in terms of Bit Error Rate (BER).
Keywords: Time hopping Utra wide band, Chaotic sequences, Multi-path channel, Spatiotemporal..

1 Introduction

Ultra-wideband (UWB) systems [1] use ultrashort impulses to transmit information which spreads
the signal energy over a very wide frequency spectrum of several GHz. The sucess of UWB systems
for short-range wireless communications [1,4] is due to the fact that they potentially combine re-
duced complexity with low power consumption, low probability-of-intercept (LPI) and immunity to
multipath fading. In 2004, the IEEE 802.15.4a group presented a comprehensive study of the UWB
channel over the frequency range 2-10 GHz for indoor residential, indoor office, industrial, outdoor
and open outdoor environments [5]. In this work we are concerned with the indoor residential
environment channel.
In time-hopping format (TH-UWB) TH codes are used as multiple user diversity and pulse po-
sition modulation (PPM) as data transmission [1,4]. As any wireless communication system, the
interference between users is an additional source of noise, that may degrade the performance of
the system. Thus the choice of the modulation type, the multiple access techniques, the codes
allowing multiple access is important in the determination of the system performance. Different
works have tackled the statistical characteristics of the Multi-User Interference (MUI). Many of
them have modeled the MUI as a random Gaussian process [1,4,6]. Due to this assumption, no
code optimization has been considered.
Other works have dealt with the optimization of the performance by code selection [2,3]. In [3], the
authors considered the asynchronous case, multi channel propagation such IEEE 802.15.3a channel
model and rake receiver; they derived a criterion to find optimal codes that minimizes the variance
of the MUI of a reference user. The proposed criterion appears as a significant measure to design
TH-codes that optimize the performance of a reference user.
In [7] a criterion named Average Collision Number (ACN) that minimize the MUI variance has

been defined then the average BER of active users was computed to confirm the relevance of this
criterion, it has been shown that sequences having smaller ACN allow better BER. As we show
later this criterion is unsuitable in some cases for selecting codes. In this contribution, instead
of the ACN criterion we will use the new criterion called Average of Squared Collision Number
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 (ASCN). Based on this criterion we will analyse how much chaoticity of the chaotic codes affects
the performance of the considered TH-UWB system. To validate our criterion, the performance in
terms of BER is computed by simulating the TH-UWB system with line-of-sight (LOS) multi-path
and AWGN channel in a residential environment IEEE 802.15.4a.
This paper is organized as follows. Section 2 gives a detailed description of the TH-UWB sys-

tem; after introducing the TH-UWB-PPM system model, we give the format of the channel model
IEEE 802.15.4a and the statistics of correlation receiver. In Section 3 the ASCN criterion is defined
and compared to ACN [7]. In section 4 we define the different considered sequences; for chaotic
sequences, the ASCN is computed versus bifurcation parameter and compared to Lyapunov expo-
nent. In section 5, we validate our method by reporting simulation results showing the advantage
of using ASCN. Finally we conclude in section 6.

2 System description

In this section, we begin by reminding the TH-UWB system model and the expression of the
received signal in a synchronous TH-UWB system using the PPM modulation. Then we compute
the variance of the MUI versus TH-codes when a correlation receiver is used.

2.1 System model

A typical expression of the TH-UWB transmitted signal for a user j is given by equation 1.

s(j)(t) =
∞∑

k=−∞

Nf−1∑

l=0

w(t− kTs − lTf − c̃
(j)
l Tc − d

(j)
k δ) (1)

Where w(t) is the transmitted UWB pulse shape, Ts is the period of one bit.Every bit is conveyed by
Nf frames. Each frame has a duration of Tf and is divided into Nc time slots. Each time slot has a

duration of Tc. c̃
(j)
l is the TH code sequence assigned to the user j, where c̃

(j)
l ∈ {0, 1, . . . , Nc−1}.

The location of each pulse in each frame is defined by the code c̃
(j)
l . d

(j)
k ∈ {0 , 1} is the binary

transmitted symbol at time k by user j, δ is the time shift associated with binary PPM, the pulses
corresponding to bit 1 are sent δ seconds later than the pulses corresponding to bit 0. N = NcNf

presents the total processing gain of the system.

2.2 IEEE 802.15.4a Channel Model (CM1)

The IEEE 802.15.4a has recently proposed a channel model [5] propagation in residential area [5].
According to this model the impulse response is [5,8],

h(j)(t) =

M−1∑

m=0

R−1∑

r=0

α(j)
r,mδ(t− T (j)

m − τ (j)
r,m) (2)

where αr,m is the tap weight of the r-th ray (path) in the m-th cluster, Tm is the arrival time of the
m-th cluster and τr,m is the arrival time of the r-th ray in the m-th cluster. The distribution of the
cluster arrival times is given by a Poisson process and the distribution of the ray arrival times is
given by a mixed Poisson process [5]. The small scale fading statistics are modeled as Nakagami-m
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 distributed with different m-factors for different multipath components. The probability density
function of Nakagami-m distribution is given in [5]. The ray amplitudes are lognormal distributed.
The channel model which is used in the paper is for LOS scenarios in residential environments,
referred to as CM1 [5]. The parameters of the channel are modeled as a function of the transmitter-
receiver distance and the line-of-sight (LOS) availability. If Nu is the number of active users
transmitting asynchronously; the received signal is

r(t) =

Nu∑

j=1

M−1∑

m=0

R−1∑

r=0

α(j)
r,ms(j)(t− T (j)

m − τ (j)
r,m) + n(t) (3)

2.3 Statistics of the correlation receiver

The output of the correlation receiver of the ith user at time h is given by:

s
(i)
h =

Nf−1∑

p=0

∫ hTs+pTf+c̃(i)
p Tc+Tc+τ

(i)
0,0+T

(i)
0

hTs+pTf+c̃
(i)
p Tc+τ

(i)
0,0+T

(i)
0

r(t)v(t− hTs − pTf − c̃(i)p Tc − τ
(i)
0,0 − T

(i)
0 )dt (4)

where v(t) is the receiver’s template signal defined by v(t) = w(t+ δ)− w(t).

An accurate value of τ
(i)
0,0 can be obtained by UWB acquisition techniques such as [13]. From the

previous equations and after variable changes, we obtain

s
(i)
h = TU (i) + TISI(i) + TI(i) + TN (i) (5)

with
TU is the useful signal, TISI is inter-symbol interference signal, TI is the MUI and TN is the

term corresponding to the noise.
In [7], we defined a criterion named ACN for selecting codes in synchronous and single-path TH-
UWB system. Also we have shown numerically, that this criterion is adequate even in the multi
path channel.
Indeed in the synchronous case, it has been shown that

TI(i) = Ew

Nu∑

j=1,j 6=i

α(j)(2d
(j)
h − 1)cn(i, j) (6)

where Ew is the amplitude which controls the transmitted power, α
(j) is the tap weight of the user

j, d
(j)
h is the binary sequence, cn(i, j) is the number of collision between codes c̃(i) and c̃(j). c̃(j) can

be computed by taking into account the developed Time-Hopping Codes (DTHC) [9] corresponding
to TH codes as follows, for a given code c̃(j), the DTHC is a binary code of length NcNf and is
defined by

c(j)r =

{
1 if r = c̃

(j)
l + lNc, r = 0 . . . , NcNf − 1.

0 otherwise.
(7)

cn(i, j) =

NfNc−1∑

l=0

c
(i)
l c

(j)
l (8)
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 The Average Collision Number ACN of the sequence set (c̃(j)), j = 1, . . . Nu is therefore defined
by [7]:

ACN =
1

Nu(Nu − 1)

Nu∑

i=1

Nu∑

j=1,j 6=i

cn(i, j) (9)

3 ASCN criterion

In [7] we have defined the ACN criterion, and we have showed that the experimental results vali-
date the relevance of the ACN as an ’off-line’ performance evaluation criterion for codes sequences.
These results motivated us to use the ACN as a tool to predict the performance of code sequences.
However, we found intuitively that this criterion may in some cases be unsuitable for code selection.

For example we take three users (Nu = 3). For scenario A, the THC are respectively c̃
(1)
l = [ 0 0 1 1 ],

c̃
(2)
l = [ 1 1 1 1 ] and c̃

(3)
l = [ 0 0 2 2 ]. We find that the total number of collisions is equal to 4. For

scenario B, the THC are respectively c̃
(1)
l = [ 0 0 1 1 ], c̃

(2)
l = [ 0 0 1 1 ] and c̃

(3)
l = [ 2 2 2 2 ]. Also the

total number of collisions is equal to 4. In both scenarios, ACN = 4
6 .

To remedy to this drawback, we defined a new criterion called Average of Squared Collision Number
ASCN which is defined as:

ASCN =
1

Nu(Nu − 1)

Nu∑

i=1

Nu∑

j=1,j 6=i

cn2(i, j) (10)

This is motivated by the observation that when the collisions are regrouped on few positions the
performance are significantly degraded.
Now if we consider this new criterion; for scenario A, ASCN = 8

6 . For scenario B, ASCN = 16
6 .

In this work, we propose to use the ASCN criterion to examine the performance of the TH-UWB
system.
This is confirmed by Table 1 where we represented the BER for the two scenarios with Nu = 3 and
Nc = 4. We can see that the BER of scenario A is almost the half of the BER of scenario B.

Table 1. ACN vs ASCN with BER simulation.

ACN ASCN BER

Scenario A 4/6 8/6 0.0728

Scenario B 4/6 16/6 0.1662

4 ASCN optimization using chaotic sequences

Chaotic sequences have some properties that motivate researchers to use them in various applica-
tions: determinism, long term unpredictability and high sensitivity to initial conditions. Especially
chaotic sequences generated by one dimensional non linear transformation have been used in cryp-
tography, watermarking, spectrum spreading systems [10].
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 We begin by defining Gold and chaotic sequences that will be considered in this work; then
we define the ASCN for chaotic sequences versus their bifurcation parameter, and analyse how
chaoticity measured by Lyapunov exponent is correlated with the ASCN.

Gold sequences

The Gold sequence based TH codes are generated as shown in [11], where we illustrate how is
generated a sequence taking values in {0, 1, · · · , Nc − 1 = 7} and with a length Nf ≤ 29.

Sequences generated by Skew tent map

Chaotic sequences are generated by the Skew tent map defined by:

xn+1 =

{
xn

r
, 0 ≤ xn ≤ r

1−xn

1−r
, r < xn ≤ 1

(11)

The skew tent map exhibits chaotic behavior for every value of the bifurcation parameter r ∈ [0 1].

Sequences generated by Logistic map

The logistic map is given by the following equation:

xn+1 = rxn(1− xn) (12)

The logistic map exhibit alternatively regular and chaotic behavior when r belongs to [3 4].
Figures 1 and 2 show the Lyapunov exponent and ASCN versus the bifurcation parameter r for

different chaotic sequences. We can see that the curves of the ASCN follow the one of Lyapunov
exponent and that the greater the exponent is the smaller the ASCN. For logistic map r = 4 gives
the best value of Lyapunov exponent and ASCN. For skew tent map r = 0.5, have the best ASCN
and Lyapuonv exponent. According to these two examples, we showed numerically that the ASCN
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Fig. 1. Lyapunov exponent and ASCN for logis-
tic.
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Fig. 2. Lyapunov exponent and ASCN for skew
tent map.

of a quantized chaotic sequence depends on the chaoticity of these sequences measured by their
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 Lyapunov exponent.

In Figure 3, we represent the ASCN versus user number for Nc = 8; for Gold sequences con-
sidered here as a reference and the two quantized chaotic sequences defined above; the ASCN of
chaotic sequences are averaged over 100 realizations. For both logistic and skew tent maps we
considered the bifurcation parameter that gives the best ASCN, i.e. r = 4 for logistic map and
r = 0.5 for skew tent.
The results show that skew tent map chaotic sequences, have a better ASCN than Gold sequences.
We can notice likewise that Gold sequences show better performance compared to the chaotic se-
quence when Nu < 6, this is because of the orthogonality of this sequences.
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Fig. 3. ASCN versus user number for different types of codes. Nc = 8.

Sequences generated by spatiotemporal chaotic systems

Spatiotemporal chaotic systems have been the subject of intensive research in physics in the 80’s to
model and study some physical phenomena exhibiting chaotic behavior in time and space at once,
such as turbulence, convection in chemical reactions and engineering. They have generally been
modeled by networks of coupled lattice or CML (Coupled Map Lattices). Different models of CML
have been proposed in the literature [12]. In our work we are interested only to the family of CML
given by:

xi+1(k + 1) = (1− ε)f [xi+1(k)] + εf [xi(k)] (13)

Where:

• i is the space index, i = 1, · · · ,M , M the system dimension
• k is the time index, k = 1, · · · , N
• f is a one dimensional chaotic map defined in the interval [0 1].
• ε is the coupling coefficient.

Spatiotemporal systems exhibit greater complexity compared to classical chaotic systems. They
also provide more chaotic sequences, this increases the chaoticity of the system is a property of
great importance in the use of CML to generate code sequences.
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 5 Performance comparaison of classical and chaotic codes sequences

In this section, we present the performance of MA-TH-UWB system in a residential environment
CM1 channel by simulating the system and computing the BER; we consider the correlation receiver
and the Gaussian pulse defined by:

w(t) = (1− 4π(
t

τ
)2) exp(−2π(

t

τ
)2) (14)

The simulation parameters are listed in table 2. For simplicity, we assume that the number of paths

Table 2. Simulations parameters of TH-UWB system

Simulation parameters Acronym Value
Pulse duration τ 0.2ns

Sampling frequency Fs 8GHz
Chip duration Tc 1ns

Number of sampling Ne 50
Number of chip Nc 8
Number of frame Nf 4

Number of bits for each user Nb 105

Factor for spread spectrum Gold N 31
Number of path L 10

Signal to Noise Ratio SNR 10dB

L is the same for all users.
For chaos based TH-codes we used logistic and skew tent maps with parameters r = 4 and r = 0.5
respectively. These values correspond to the minimal of ASCN (the maximal of Lyapunov exponent)
in the two cases. The simulation results are shown in Fig. 4 where we presented the BER of the
system versus user number for Gold and the two chaos based sequences. We can see that skew tent
map based sequences allow the best performance however logistic map based ones allow the worst
performance. These results compared to the results shown in Fig. 3 prove that the ASCN is a
suitable criterion to select TH-codes.
The ASCN of the used skew tent map is equal to 1 however it is equal to almost 1.3 for the used
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Fig. 4. BER performance of asynchronous TH-
UWB system for different TH codes.
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Fig. 5. BER performance of asynchronous TH-
UWB system: Skew tent map vs. spatiotemporal.

logistic map. This explains the superiority of skew tent map based sequences with respect to the
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 logistic map based ones. In Fig. 5 we represent the BER versus user number for the skew tent map
and the spatiotemporal system (13) based on skew tent map, for a coupling coefficient ε = 0.97,
the spatiotemporal are averaged over 100 realizations and the bifurcation parameter is set to the
value that gives the best ASCN, i.e. r = 0.5. We can see clearly that the THC generated by the
CML can get better performance than THC generated by the skew tent map. Thus, the proposed
spatiotemporal chaotic system considered is not only advantageous in terms of synchronization, but
can also generate THC outperform the conventional chaotic system.

6 Conclusion

In this contribution we considered code selection problem for MA-TH-UWB systems. We defined
the ASCN criterion to choose codes and we showed that the lower the ASCN the better the per-
formance. Based on this result, we chose to look for codes with low ASCN by using the features of
chaotic transformation; we found that the ASCN of chaotic map based sequences depends on the
chaoticity of the map measured by Lyapunov exponent; we showed specifically that the higher the
Lyapunov exponent the lower the ASCN; and subsequently the better the performance.
On the other hand, the use of THC generated by spatiotemporal chaotic system has shown better
performance in term of BER that other sequences used in this article. This improves the quality
and the security of the transmission, and shows the significance of using chaos specifically spa-
tiotemporal chaotic system in communication.
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Abstract. This article compares two techniques: Data Envelopment Analysis (DEA) and Factor Analysis (FA) to 
aggregate multiple inputs and outputs in the evaluation of decision making units (DMU). ِِData envelopment analysis 
(DEA), a popular linear programming technique, is useful to rate comparatively operational efficiency of DMUs based 
on their deterministic or stochastic input–output data. Factor analysis techniques, such as Principal Components 
Analysis, have been proposed as data reduction and classification technique, which can be applied to evaluate of 
decision making units (DMUs). FA, as a multivariate statistical method, combines new multiple measures defined by 
inputs/outputs. Nonparametric statistical tests are employed to validate the consistency between the ranking obtained 
from DEA and FA. Also, the results have been compared with PCA approach. SAFA Rolling & Pipe Mills Company’s 
data is used as a case study to consider the proposed approach in practical. Results of numerical reveal that new 
approach has a consistency in ranking with DEA. 
 
Keywords: Data Envelopment Analysis; Factor Analysis, Principal Component Analysis; Decision Making; Data 
Reduction 

 
1 Introduction 
Data envelopment analysis (DEA) initially proposed by Charnes et al.  [1] is a non-parametric technique for 
measuring and evaluating the relative efficiencies of a set of entities, called decision-making units (DMUs), 
with the common inputs and outputs. DEA is a linear programming-based technique that converts multiple 
input and output measures into a single comprehensive measure of productivity efficiency. DEA provides a 
measure by which one firm or department can compare its performance, in relative terms, to other 
homogeneous firms or departments. DEA is mainly utilized under two different circumstances. First, it can 
be used when a department from one firm wants to compare its level of efficiency performance against that 
of a corresponding department in other firms. Second, DEA can be used in a longitudinal nature by 
comparing the efficiency of a department or firm over time  [2]. There are other ranking methods in the 
DEA context. Joe Zhu  [3] proposed a procedure for ranking of DMUs, based on the principal component 
analysis (PCA) and showed that the ranking is consistent with the DEA ranking for the data set considered 
in his article. Sinuany_Stern and Freidman  [4] proposed a new method for ranking of DMUs which is a 
combination of DEA and discriminant analysis of ratios (DR/DEA approach). This article proposes a 
Factor Analysis approach to evaluate of decision making units (DMUs). In this method, data reduction is 
comparable to that achieve in PCA. Moreover, correlation between rankings obtained by FA and DEA 
techniques is much higher than what is gained from the PCA&DEA method, which is introduce by Zhu  [3]. 
The rest of this article is organized as follows. In Section 2, a brief description of the DEA models used for 
ranking of DMUs is presented. Section 3 gives the fundamental of FA technique. The FA approach is 
developed in Section 4. Numerical comparison of the proposed FA method versus DEA and PCA 
procedures is presented in Section 5, using several benchmark data along with a case study of SAFA Rolling 

& Pipe Mills Company to evaluate consistency of each method. Finally, Section 6 concludes this research. 
 

2 Data Envelopment Analysis 
Various models, used for ranking of DMUs, such as CCR  [1], BCC  [5] and ADD  [6] are applied. The BCC 
model relaxes the constant returns to scale (CRS) assumption in the CCR model and the additive model 
ADD is an equivalent formulation of the CCR model. The original fractional CCR model proposed by 
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Charnes et al.  [1] evaluates  the relative efficiency of n DMUs (j=1,..,n), each with m input and s outputs 
denoted by x1j,x2j,…,xmj and y1j,y2j,…,ysj, respectively, maximizing the ratio of weighted sum of outputs to 
weighted sum of inputs, as given by  (1). 
(CCR ratio model) 

0,...,,  

0,...,,  

                 ),...,1(      1
....

.....
  

subject to 

.........

......
   

21

21

11

1

022011

022011
0

1














m

s

mjmj

sjsj

mjomjj

sjosjj
j

nj
xx

yy

xxx

yyy
eMax










 
(1). 

In model  (1), the efficiency of DMUj0 is determined by ej0 while αi and βi are the Factor weights.  
 

3 Factor Analysis (FA) 
Factor Analysis is a statistical method that is based on the correlation analysis of multi-variables. The main 
applications of factor analytic techniques are: (1) to reduce the number of variables and (2) to detect 
structure in the relationships between variables, in order to classify variables. Nadimi and Jolai [10] applied 
factor analysis method to data reduction in decision making units [10], and then they illustrated their 
proposed method is a good consistency in ranking with DEA. Therefore, factor analysis can be used as a 
data reduction or structure detection method. There are two major types of FA: exploratory and 
confirmatory. Confirmatory FA is a much more sophisticated technique used in the advanced stages of the 
research process to test a theory about latent processes. Variables are carefully and specifically chosen to 
reveal underlying processes. To explain the method, a few terms are defined for more details about the 
following definition look at  [8] or [10]. Let q(n×1) be a random vector with a mean of μ and a covariance 
matrix named Σ(p×p)., where qi specifies efficiency or an overall performance index of the ith DMU. Then a 
k-factor model holds for q, if it can be written in the following form: 
q = H f + u + μ (2), 
where H(n×k) is a matrix of constants and f(k×1) and u(n×1) are random vectors. The elements of f are called 
common factors and the elements of u are specific or unique factors. In this study we shall suppose that:  
E( f ) = 0, Cov( f ) = I 
E( u ) = 0, Cov(ui,uj) = 0; i≠j 
Cov( f , u ) = 0 

(3). 

Thus, if  (2) holds, the covariance matrix of d can be split into two parts, as follows: 
Σ = H H T + Φ (4), 
where H H T is called the communality and represents the variance of qi which is shared with the other 
variables via the common factors and Φ=Cov(u) is called the specific or unique variance and is due to the 
unique factors u. This matrix explains the variability in each qi that is not shared with the other variables. 
The main goal of FA is to apply f instead of q for assessing DMUs. 
 To do this, mainly there are three main stages in a typical FA technique  [9]: 
1. Initial solution: Variables, as indexes of DMU performance measures, are selected and an inter-
correlation matrix is generated. An inter-correlation matrix is a p×p array of the correlation coefficients of 
p variables with each other. Usually, each variable is standardized by a certain formula, e.g. to have a mean 
of 0.0 and a standard deviation of 1.0. When the degree of correlation between the variables is weak, it is 
not feasible for these variables to have a common factor, and a correlation between these variables is not 
studied. Kaiser–Meyer–Olkin (KMO) and Bartlett’s tests of sphericity (BTS) are then applied to the studied 
variables in order to validate if the remaining variables are factorable.  
2. Extracting the factors: An appropriate number of components (Factors) are extracted from the inter-
correlation matrix based on the initial solution. Due to the standardization method, there should be a certain 
rule to extract the selected effective factors.  
3. Rotating the factors: Sometimes one or more variables may load about the same on more than one factor, 
making the interpretation of the factors ambiguous. Thus, factors are rotated in order to clarify the 
relationship between the variables and the factors. While various methods can be used for factor rotation, 
the Varimax method is the most commonly used one.  
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Let’s summarize and formulize the above steps as follows. In this study, we skip the rotation step. First, the 
correlation matrix, namely R, is computed on the basis of data due to the standardized variables, dij: 
R = Corr( D ) = DTD (5), 
where D is an n× p matrix of p variables for n DMU’s. This matrix can be decomposed to a product of 
three matrices:  
R = V L V T (6), 
where, V is the p×p matrix of eigenvectors and L = Diag([λ1, …, λp]) is a diagonal matrix of the 
eigenvalues, assorted descendingly. At the second step, different criteria may be applied to extract the most 
important factors. Since sum of the first r eigenvalues divided by the sum of all the eigenvalues, 

( 1+2+…+ r ) / ( 1+2+…+p ), represents the “proportion of total variation”  explained by the first r 

factor components, we select r principal components as the factors, if  (1+2+…+ r)/( 

1+2+…+p) > 90%. Another criterion is to cut the matrix L from a point that the ratio of λi / λi+1 is 
maximized. However, r eigenvalues are defined as dominant eigenvalues. The dominant eigenvalues are 
saved and the other are skipped. To explain more, suppose L and V are decomposed as follows: 











2

1

0

0

L

L
L

    
(7), 

where L1 (r×r) and L2 are diagonal matrixes. Consequently, the eigenvectors V will be separated into two 
parts too: 
V = [ V1 , V2 ]  (8), 
Similarly, V1 and V2 are p×r and p×(p-r) matrices, respectively. Suppose  (6) is rewritten as follows:  

  TVLLVR    (9). 

Then, replacing L with the form given by  (7), the first part 11 LV  is called the Factor Loading matrix 

and denoted by A (p×r). Equation  (9) is frequently called the fundamental equation for FA. It represents the 
assertion that the correlation matrix is a product of the factor loading matrix, A, and its transpose  [8]. It can 
be shown that an estimate of the unique or specific variance matrix, Φ, in  (4) is: 
B = I – A AT (10), 
where I(p×p) is the identity matrix. So far our study of the factor model has been concerned with the way in 
which the observed variables are functions of the (unknown) factors, f. Instead, factor scores can be 
estimated by the following pseudo-inverse method:   
ST = (AT B-1 A )-1 AT B-1 
F = D S 

(11), 
(12), 

where F is a n×r matrix, each row of which corresponds to a DMU. The estimate in  (12) is known as 
Bartlett’s factor score, and S is called the factor score coefficient matrix. In this paper, we use the FA 
technique to evaluate DMUs by reducing inputs and outputs whilst minimizing the loss of information. This 
will be introduced in the next section. 
 

4 New approach: FA method 

It can be seen that DEA uses   00
*

jj emaxe  to evaluate and rank DMUs according to their performances. 

It is still possible to look at ratios of individual output to individual input: 

  ijrj
j

ir xyd  ; i =1, …, m; r =1, …, s;  j=1,…,n (13), 

for each DMUj. Unlike the ej0,  d j
ir gives the ratio between every output and every input. Obviously, the 

bigger the j
ird , the better the performance of DMUj in terms of the rth output and the ith input  [11]. 

Now let j
ir

j
k dd  , with, e.g. k=1 corresponds to i=1, r=1 and k=2 corresponds to i=1, r=2, etc., where 

k=1,…, p' ; p'=m×s; for example: ,.....    ,
2

1
2

1

1
1 x

ydx
yd  We need to find some weights that 

combine those p' individual ratios of j
kd  for DMUj. Consider the following n×p' data matrix, composed 

by j
kd ’s:  DT= [d1, …, dp'] n×p' , where each row represents p' individual ratios of j

kd  for each DMU and 
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each column represents a specific output/input ratio, i.e.  Tn
kk d,...,d 1kd . In a modified approach, 

proposed by Premachandra  [12], DT is re-defined as an augmented matrix, the ending column of which is 
equivalent to the sum of the elements in the first p' columns of the original matrix:  

n,...,jdd
p

k

j
k

j
p 1     

1
1 




  (14). 

The new added variable, is supposed to take into account the overall performance of each DMU with 

respect to all the variables j
ird . As a normalizing skill, each column is then divided by its least element, thus 

a new matrix, D p×n ; p=p'+1, is generated which will be processed from now on.    
In this paper, the factor analysis is employed to find out new independent measures which are respectively 
different linear combinations of d1, …, dp. In fact, we apply the estimation given by  (12) to obtain factor 
scores, thus, the FA process of D is carried out as follows: 
Step 1: Calculate the sample correlation matrix, given by  (5), to obtain eigenvalues and eigenvectors 
(solutions to |R – λ 1p | = 0 where 1p is a p×p identity matrix), as introduced in  (6). 
Step 2: Considering λ1 ≥ λ2 ≥ … ≥ λp as the sorted eigenvalues, compute the following weightings, which 
determine share of each factor in the model: 

p,...,iw p

k
k

i
i 1  ; 

1
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
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

  
(15). 

Each weighting actually determines the share of each eigenvalue out of a whole. This approach uses the 
same method of Zhu [3] to obtain sign of the weightings wi, i.e. if sum of the corresponding eigenvector 
elements is positive, then wi is considered positive, otherwise it is negative. 
Step 3: Apply FA technique on D to obtain ST and then F, as defined by  (11) and (14). 
Step 4: Select the factor components by determination of the dominant eigenvalues according to one of the 
criteria proposed in Section 3.  
Step 5: Compute: 

  
1




r

i
iiw fz  (16), 

 where fi is the ith column of the matrix F in (14) and r is the number of the dominant eigenvalues. The 
value of z gives a combined measure to evaluate and rank performance of DMUs.  
 

5 Numerical results 
The proposed method is applied to several sets of sample data, the numerical results of which are illustrated 
and compared to other methods in this section. 
Example1: In order to compare new approach with both the Zhu method, denoted by PCA(Zhu), and the 
modified PCA method used by Permachandra  [12], abbreviated by PCA(PM), we hereby apply data used 
by Zhu  [3]. This data sets describe economic performance of 18 china cites. (x1: Investment in fixed assets 
by state owned enterprises, x2: Foreign funds actually used, y1: Total industrial output, y2: Total value of 
retail sales, y3: Handling capacity of coastal ports) 

Table 1: The data set used by Zhu  [3] 
DMU x1 x2 y1 y2 y3 DMU x1 x2 y1 y2 y3 

dmu1 2874.8 16738 160.89 80800 5092 dmu10 428.4 574 53.69 47504 430 

dmu2 946.3 691 21.14 18172 6563 dmu11 6228.1 29842 258.09 151356 4649 

dmu3 6854 43024 375.25 144530 2437 dmu12 697.7 3394 38.02 45336 1555 

dmu4 2305.1 10815 176.68 70318 3145 dmu13 106.4 367 7.07 8236 121 

dmu5 1010.3 2099 102.12 55419 1225 dmu14 5439.3 45809 116.46 56135 956 

dmu6 282.3 757 59.17 27422 246 dmu15 957.8 16947 29.2 17554 231 

dmu7 17478.6 116900 1029.09 351390 14604 dmu16 1209.2 15741 65.36 62341 618 
dmu8 661.8 2024 30.07 23550 1126 dmu17 972.4 23822 54.52 25203 513 

dmu9 1544.2 3218 160.58 59406 2230 dmu18 2192 10943 25.24 40267 895 
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Obviously, x1 and x2 can be assumed as two inputs and y1, y2, and y3 as three outputs, data of which are 
presented in Table 1. First, variables are generated by  (13) based on data set given in Table 1, and an 
additional variable is calculated by  (14) to form matrix D7×7.  
Table 2:  FA&PCA result with PM and FA approaches.             Table 3: Component score coefficients 

Dominant Eigenvalues 4.31 2.06   Components 

Shares of Eigenvalues (wi) 0.62 0.29 
1 2 

Dominant Eigenvectors v1 v2 

vi1 0.40 -0.20 Output1 0.19 -0.14 
vi2 0.46 0.04  Output2 0.22 0.03 
vi3 0.45 -0.13 Output3 0.21 -0.09 
vi4 0.45 0.10 Output4 0.22 0.07 
vi5 0.05 0.68 Output5 0.03 0.47 
vi6 0.04 0.69 Output6 0.02 0.48 
vi7 0.47 0.01  Output7 0.23 0.01 

Then we used MATLAB 7, to test the proposed approach fulfilling the steps introduced in Section 4. Table 
2 and Table 3 represent the Eigen-analysis of the correlation matrix calculated by  (5). Here, we have two 
components which account for 90.502% of the total sample variance; i.e. V1 in  (8) contains two vectors, 
columns of which are named vi . Note that the sum of all eigenvalues is 7, equal to the number of total 
variables. Since there are two dominant eigenvalues, regarding Table 2 and Table 3, data can be 
summarized to two factors. Therefore, F and z can be obtained with the following specifications, while the 
results due to each DMU are given in Table 4:  
z = 0.616*f1 +0.293*f2 

The CCR model in  (1) is applied to measure efficiencies. Besides that ranking and efficiency resulted of the 
new approach is compared to that of the original DEA and PCA in Table 5.  

Table 4:  Elements of matrix F and vector z 
DMU f1 f2 z DMU f1 f2 z 

dmu1 5.152027 15.05106 7.598766 dmu10 38.77745 34.08271 33.91536 
dmu2 26.30816 354.0689 120.2769 dmu11 4.296202 7.290633 4.790482 
dmu3 3.795629 2.50461 3.075336 dmu12 9.06524 22.04124 12.06491 
dmu4 6.753832 13.45095 8.115659 dmu13 12.50429 15.1375 12.15531 
dmu5 17.25288 24.79452 17.92009 dmu14 1.439878 0.995586 1.179994 
dmu6 26.36602 14.3498 20.46666 dmu15 1.76438 0.716694 1.298013 
dmu7 3.936839 6.127137 4.22705 dmu16 4.555125 2.040313 3.406946 
dmu8 7.868007 24.35411 12.00684 dmu17 2.634921 1.407985 2.037696 
dmu9 15.18935 28.80653 17.82752 dmu18 2.25695 3.98423 2.561933 

 
To compare significance of the methods, correlation between rankings obtained for each method, i.e. PCA 
(Zhu), PCA (PM) and FA (New Method), with the rankings of the DEA method is computed.  

Table 5: Efficiency and ranking with three methods 

DMU 
DEA PCA(Zhu) PCA(PM) FA(New Method) 

Efficiency Rank Score Rank Score Rank Score(z) Rank 

dmu1 0.469066 13 -0.44767 10 12.93987 10 7.598766 10 
dmu10 1.000000 3 2.669271 1 64.00527 2 33.91536 2 
dmu11 0.277912 15 -0.74310 13 8.572844 11 4.790482 11 
dmu12 0.502220 5 0.098945 7 20.89581 7 12.06491 7 
dmu13 0.631077 4 0.286791 6 22.3876 6 12.15531 6 
dmu14 1.000000 16 -1.19004 18 2.262825 18 1.179994 18 
dmu15 0.358036 11 -1.08807 17 2.560632 17 1.298013 17 
dmu16 0.495945 9 -0.59194 11 6.690926 13 3.406946 13 
dmu17 0.657663 10 -0.85912 15 3.966397 16 2.037696 16 
dmu18 1.000000 14 -1.08282 16 4.568629 15 2.561933 15 
dmu2 0.300970 1 1.904927 3 182.9389 1 120.2769 1 
dmu3 0.786606 17 -0.81823 14 5.914462 14 3.075336 14 
dmu4 0.751444 12 -0.30670 9 14.31571 9 8.115659 9 
dmu5 0.115331 6 0.698640 4 32.53710 4 17.92009 4 
dmu6 0.186711 2 1.917903 2 39.79927 3 20.46666 3 
dmu7 0.470368 18 -0.72208 12 7.622350 12 4.227050 12 
dmu8 0.305945 8 -0.24401 8 20.33831 8 12.00684 8 
dmu9 0.195259 7 0.517300 5 31.58701 5 17.82752 5 
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It is easy to find that correlations between ranking of DEA&PCA (Zhu), DEA&PCA (P.M.) and DEA&FA 
are 0.83, 0.80 and 0.80 respectively. Obviously, all of the methods result in significant correlations (at level 
1%), and approximately are equal.  
 
Example 2: In this example, we apply data set used by Wong et al.  [14], to compare efficiencies of seven 
university departments. Three inputs and three outputs are defined as follows, data of which is listed in 
Table 6. 

    Table 6: Data set used by Wong et al. [14] 
x1: Number of academic staff  DMU x1 x2 x3 y1 y2 y3 

x2: Academic staff salaries  dmu1 12 400 20 60 35 17 

x3: Support of undergraduate students  dmu2 19 750 70 139 41 40 

y1:  Number of undergraduate students  dmu3 42 1500 70 225 68 75 

y2:  Number of postgraduate students  dmu4 15 600 100 90 12 17 

y3:  Number of research papers published  dmu5 45 2000 250 253 145 130 

  dmu6 19 730 50 132 45 45 

  dmu7 41 2350 600 305 159 97 

 
The same procedure of section 4 is followed. The matrix D is generated by 10 variables extracted out of 
data in Table 6, and four dominant eigenvectors are selected and Table 7 includes the results of ranking. 

Table 7: Efficiencies and rankings obtained by the three methods 

DMU 
DEA PCA(Zhu) PCA(PM) FA(New method) 

Efficiency Rank Score Rank Score Rank Score Rank 

dmu1 1.829615 1 0.51261 2 4.13838 1 2.011187 1 
dmu2 1.048895 6 0.288772 4 3.315666 5 1.712316 5 
dmu3 1.198308 4 0.011661 5 3.25405 6 1.559566 6 
dmu4 0.819737 7 -1.9633 7 1.616393 7 0.895427 7 
dmu5 1.219992 3 0.456634 3 3.801057 3 1.943119 2 
dmu6 1.190642 5 0.918423 1 3.846452 2 1.917534 3 
dmu7 1.266094 2 -0.2248 6 3.47953 4 1.883721 4 

In this example the correlation between results obtained by PCA(Zhu) and DEA is 0.321, while correlation 
between DEA&PCA(PM) is 0.678. However, the new approach of FA has a higher correlation with the 
DEA, that is, 0.75, due to the scores given to the dmu5 and dmu6. This example shows that the FA 
approach can lead to better results, in the sense of DEA ranking, compared to the both PCA approaches 
proposed by Zhu and Premachandra. 
 

Case Study: SAFA Rolling & Pipe Milling Company, Saveh, Iran.  
SAFA Rolling & Pipe Mills Company by possessing 297.877 sqm of covered area has the annual capacity 
of producing 1.6 million tons of pipes for oil, gas, petrochemical, water, and industrial and construction 
industries application  [15]. It is one the biggest company in producing of oil, gas and water pipe in Middle 

East. Electrical Resistance Welding (ERW) and Submerged-Arc Welding (SAW) are two welding 
processes in this company. In fact, this company is divided into four factories which are called "SPIRAL", 
"ROLL BENDING (RB)", "ERW" and "COATING" factories. The latter has been established to cover up 
the required pipe with the Epoxy, Polyethylene and Paste. However, manufacturing efficiency determines 
how well a factory operates in production. To avoid wasting money, all processes in manufacturing must be 
as efficient as possible. Calculating a numerical value to the efficiency helps to identify if improvements to 
the production process need to be made. In follow, we will illustrate how the proposed approach can be 
used to measure the efficiency of RB factory given the existence of multiple inputs and outputs. 
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Table 8: SAFA Company data 

      
Electricity  

Consumption 
(KW) 

Man-hours 
 (Man-hours) 

Total produced 
 pipe weight 

(Ton) 

Total produced 
 pipe length 

(KM) 

Year Season DMU x1 x2 y1 y2 
2010 3 d1 1642087.1 117768 18904.47 60880 

2010 2 d2 1571303.8 133829 12940.54 51981 

2010 1 d3 1840209.6 142704 23191.82 54248.99 

2009 4 d4 1701038 145971 16724.54 20815.6 

2009 3 d5 1113093 119571 18504.58 24750.13 

2009 2 d6 582130 73057 7092.62 8766.8 

2009 1 d7 1577788 121611 25510.27 35524.17 

2008 4 d8 1748892 132331 9444.83 55652.56 

2008 3 d9 1681965 117292 11593.18 71118.11 

2008 2 d10 919053 83136 6493.39 42605.97 

The proposed approach is applied on mentioned data and its results are compared to show the capability of 
the proposed approach with other methods. In Table 9 bellow, the scores and ranking of DMUs by four 
methods are given to evaluate the efficiency of different methods.  

Table 9: Efficiencies and rankings obtained by the three methods 

DMU 
DEA PCA(Zhu) PCA(PM) FA(New method) 

Efficiency Rank Score Rank Score Rank Score Rank 

dmu1 1.0000 3 0.6774 4 4.2177 3 2.8049 3 
dmu2 0.8227 7 0.4689 5 3.2996 5 2.1772 6 
dmu3 0.9409 6 -0.1295 6 3.2252 6 2.2209 4 
dmu4 0.5857 10 -1.2947 9 1.3048 9 0.992 9 
dmu5 1.0000 4 -1.2036 8 1.9863 8 1.5357 8 
dmu6 0.7154 9 -1.3613 10 1.2067 10 0.9702 10 
dmu7 1.0000 5 -1.0185 7 2.5829 7 1.902 7 
dmu8 0.7398 8 0.7474 3 3.4045 4 2.1842 5 
dmu9 1.0000 1 1.5931 1 4.7861 1 3.056 1 
dmu10 1.0000 2 1.5206 2 4.3851 2 2.8165 2 

Correlation between results obtained by PCA (Zhu) and DEA, DEA&PCA(PM)  and DEA&FA (New 
method) here, are respectively 0.685, 0.745 and 0.782. It illustrates that the proposed approach is in high 
consistency with DEA methods.  
 
 
 

6 Conclusion 
The current article presents alternative approach to evaluate and rank DMUs which have multiple outputs 
and multiple inputs. The DEA –non-statistical method– uses linear programming technique to obtain a ratio 
between weighted outputs and weighted inputs. The new approach proposed in this paper is the Factor 
Analysis to evaluate efficiencies and rank DMUs. Results obtained by numerical experiments employed as 
well as the case study in manufacturing area, show that there is a high correlation between DEA and FA 
methods, even higher than what obtained by the PCA methods. Thus, we can use FA to evaluate efficiency 
and ranking DMUs instead of DEA with enough significance and minimum lose of information. 
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Some Problems of Convergence and
Approximation in Random Systems Analysis

Gabriel V. Orman and Irinel Radomir
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Abstract. In some previous papers we have introduced numerical functions able
to characterize classes of derivations according to a given generative system up to
an equivalence. They are referred to as ”derivational functions”. In this paper we
establish some new properties by considering a new type of generation of the words.
Also, we shall refer, in short, to new aspects concerning the Brownian motion as
one of the most important stochastic processes. Finally the Markov property is
discussed shortly.
Keywords: generative systems, Brownian motion, Markov process, transition
probabilities, Markov property.

1 A problem of approximation in generative systems

To find new possibilities to characterize the process of generation of the words
by sequences of intermediate words we have adopted a stochastic point of
view involving Markov chains. Because such sequences of intermediate words
(called derivations) by which the words are generated are finite, it results
that finite Markov chains will be connected to the process. Such derivations
are considered according to the most general class of formal grammars from
the so-called Chomsky hierarchy, namely those that are free of any restrictions
and are called phrase-structure grammars.

The process of generation of the words is organized by considering the
set of all the derivations according to such a grammar split into equivalence
classes, each of them containing derivations of the same length (here we
are not interested in the internal structure of the intermediate words of a
derivation but only in its length).

We remind some basic definitions and notations. A finite nonempty set is
called an alphabet and is denoted by Σ. A word over Σ is a finite sequence
u = u1 · · ·uk of elements in Σ. The integer k ≥ 0 is the length of u and
is denoted by |u|. The word of length zero is called the empty word and is
denoted by ε. IfΣ is an alphabet, let us denote byΣ∗ the free semigroup, with
identity, generated by Σ (Σ∗ is considered in relation to the usual operation
of concatenation).

For y and z in V ∗ it is said that y directly generates z, and one writes
y ⇒ z if there exist the words t1, t2, u and v such that y = t1ut2, z = t1vt2
and (u, v) ∈ P . Then, y is said to generate z and one writes y ∗⇒ z if
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either y = z or there exists a sequence (w0, w1, · · · , wj) of words in V ∗ such
that y = w0, z = wj and wi ⇒ wi+1 for each i ( we write ∗⇒ for the reflexive-
transitive closure of⇒). The sequence (w0, w1, · · · , wj) is called a derivation
of length j and from now on will be denoted by D(j). Because a derivation
of length 1 is just a production we shall suppose that the length of any
derivation is ≥ 2.

Now we consider that a word is in a random process of generation, the
equivalence classes of derivations being connected into a simple Markov chain.
Obviously, it can or cannot be generated into the equivalence class Dx. Thus,
if it is, then the probability that it should be also generated into the class
Dx−1 is denoted by γ; but given that it is not generated into Dx, the prob-
ability that it should be generated into Dx+1 is denoted by β. Now we take
into consideration only the case when a word cannot be generated by an
equivalence class of derivations. Thus, if it is not generated by the class
Dx, x ≥ 2, then it will be generated by the class Dx−1 with probability q
and by the class Dx+1 with probability p = 1 − q. Relating to the first and
the last classes we suppose that it can or cannot be generated by them.

Let us remain in the case when a word is generated by more derivations
according to a given generative system. This is a specific propriety of the
so-called ambiguous languages, that is interesting to be characterized.

To this end let νx be the number of derivations into the equivalence class
Dx, x ≥ 2, by which the word w is generated. Obviously νx is a random
variable that takes the values 1 and 0 with the probabilities px and qx = 1−px
respectively. Then, the number of derivations in n− 1 equivalence classes by
which w is generated is the following

ν =
n∑
x=2

νx.

Now, because the equivalence classes of the derivations are connected into
a homogeneous Markov chain, the expectation and the variance of ν are as
follows

Eν =
n∑
x=2

Eνx = (n− 1)p+
n∑
x=2

(p1− p)δx−1 = (n− 1)p+ (p1− p)
δ − δn

1− δ
(1)

and

Dν = E

[ n∑
x=2

(νx−px)
]2

=
n∑
x=2

E(νx−px)2 +2
∑

i<j,i≥2

E(νi−pi)(νj−pj) (2)

Now regarding the expectation of ν, excepting (n − 1)p the other term
is bounded as n increases, such that it results Eν = (n − 1)p + un, while
regarding its variance excepting (n − 1)pq and npq δ

1−δ , the other all terms
are bounded as n increases, so that we get Dν = (n− 1)pq + 2npq δ

1−δ + vn,
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where un and vn are certain quantities that remain bounded as n increases.
Thus, the following main result is obtained

Theorem 1 If among the equivalence classes of the derivations according
to a generative system G, a Markov dependence exists then, L(G) tends to
become an ambiguous language of order n if there exists a word w ∈ L(G)
such that the expectation and the variance of the random variable giving the
number of derivations by which w is generated verify the following relations

Eν = (n− 1)p+ un , Dν = pq

[
n

1 + δ

1− δ
− 1
]

+ vn.

1.1 The alternating generation procedure

Now we consider the special case when a word can be generated into the
equivalence class of a derivation on the following conditions:

1 It can be generated into the class Dx, x ≥ 2, by more of its elements.
2 If it is not generated into the class Dx, x ≥ 2, then it is generated into

the preceding and the next class.

We refer to such a way for generating words as being an alternating gen-
eration procedure. We shall use the notation w for the case when this word
is generated into an equivalence class and the notation w otherwise.

We propose to determine the probability Pn(k) that a word w should be
generated by m (m < n) derivations in the following ways:

(i) It will be generated by the first class and the last and there is a direct
rule (σ,w);

(ii) It will be generated by the first class but it will be not generated by the
last and there is a direct rule (σ,w);

(iii) It will be not generated by the first class but it will be generated by the
last and there is not a direct rule (σ,w);

(iv) It will be not generated both by the first class and the last and there is
not a direct rule (σ,w).

Then Pn(k) is given by the following equality

Pn(k) = Pn(k,ww) + Pn(k,ww) + Pn(k,ww) + Pn(k,ww) (3)

where Pn(k,ww) is the notation for (i), and so on.
Now, computing the terms in (3), it results:

Pn(k,ww) ≈ p1β√
2π[kγ(1− γ) + (n− k)β(1− β)]

e−
z2
2 ,

Pn(k,ww) ≈ p1(1− γ)√
2π[kγ(1− γ) + (n− k)β(1− β)]

e−
z2
2 ,
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Pn(k,ww) ≈ q1β√
2π[kγ(1− γ) + (n− k)β(1− β)]

e−
z2
2 ,

Pn(k,ww) ≈ q1(1− γ)√
2π[kγ(1− γ) + (n− k)β(1− β)]

e−
z2
2 .

Pn(k) will be obtained by adding these probabilities, and we get

Pn(k) ≈ p1β + p1(1− γ) + q1β + q1(1− γ)√
2π[kγ(1− γ) + (n− k)β(1− β)]

e−
z2
2 .

or, after some transformations

Pn(k) ≈ 1− γ + β√
2πnpq(1 + γ − β)(1− γ + β)

e−
z2
2 .

Thus, the following main result is obtained

Theorem 2 If a word is generated by an alternating generation procedure,
according to a generative system just considered, the derivations of which
belonging to n equivalence classes then, the probability that it should be gen-
erated by k classes out of n is given by the following relation

Pn(k) ≈ 1√
2πnpq

√
1− γ + β

1 + γ − β
e−

z2
2 .

[Details and connected problems can be seen in Orman[11], Orman[9]].

2 Brownian motion

Brownian motion, used especially in Physics, is of ever increasing importance
not only in Probability theory but also in classical Analysis. Its fascinating
properties and its far-reaching extension of the simplest normal limit theo-
rems to functional limit distributions acted, and continue to act, as a catalyst
in random Analysis. It is probable the most important stochastic process.
As some authors remarks too, the Brownian motion reflects a perfection that
seems closer to a law of nature than to a human invention.

In 1828 the English botanist Robert Brown observed that pollen grauns
suspended in water perform a continual swarming motion. The chaotic mo-
tion of such a particle is called Brownian motion and a particle performing
such a motion is called a Brownian particle.

The first important applications of Brownian motion were made by L.
Bachélier and A. Einstein. L. Bachélier derived (1900) the law governing
the position of a single grain performing a 1-dimensional Brownian motion
starting at a ∈ R1 at time t = 0

Pa[x(t) ∈ db] = g(t, a, b)db (4)
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where (t, a, b) ∈ (0,+∞)×R2 and g is the Green (or the source) function

g(t, a, b) =
1

t
√

2π
e−

(b−a)2

2t2

of the problem of heat flow

∂u

∂t
=

1
2
∂2u

∂2a
, (t > 0).

Bachélier also pointed out the Markovian nature of the Brownian path but
he was unable to obtain a clear picture of the Brownian motion and his ideas
were unappreciated at that time. This because a precise definition of the
Brownian motion involves a measure on the path space, and it was not until
1908-1909 when the works of É. Borel and H. Lebesgue have been appeared.
Beginning with this moment was possible to put the Brownian motion on a
firm mathematical foundation and this was achived by N. Wiener in 1923.

It is very interesting that A. Einstein also derived (4) in 1905 from statisti-
cal mechanical considerations and applied it to the determination of molecu-
lar diameters. He wanted also to model the movement of a particle suspended
in a liquid. Einstein’s aim was to provide a means of measuring Avogadro’s
number, the number of molecules in a mole of gas, and experiments suggested
by Einstein proved to be consistent with his predictions.

We remind, for example, the following aspect. Let us consider that x(t)
is the notation for the displacement of the Brownian particle. Then, the
probability density of this displacement, for sufficiently large values of t, is
as follows

p(x, t,x0,v0) ≈ 1
(4πDt)

3
2
e−
|x−x0|

2

4Dt (5)

where D is
D =

kT

mβ
=

kT

6πaη
(6)

and is referred to as the diffusion coefficient.
Furthermore it results that p(x, t,x0,v0) satisfies the diffusion equation

given below
∂p(x, t,x0,v0)

∂t
= D∆p(x, t,x0,v0). (7)

The expression of D in (6) was obtained by A. Einstein.

Remark 1. From physics it is known the following result due to Maxwell: Let
us suppose that the energy is proportional to the number of particles in a gas
and let us denoted E = γn, where γ is a constant independent of n. Then,

P{a < v1
i < b} =

b∫
a

(
1− x2m

2γn

) 3n−3
2

dx

+( 2γn
m )

1
2∫

−( 2γn
m )

1
2

(
1− x2m

2γn

) 3n−3
2

dx

→
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→
(

3m
4πγ

) 1
2

b∫
a

e
−

3mx2

4γ dx.

Now, for γ =
3kT

2
the following Maxwell’s result is found

lim
n→∞

P{a < v1
i < b} =

( m

2πkT

) 1
2

b∫
a

e
−
mx2

2kT dx.

T is called the ”absolute temperature”, while k is the ”Boltzmann’s con-
stant”.

[For details and proofs see Itô and McKean Jr.[4], Schuss[14], Stroock[15],
Orman[12]].

3 The extended Markov property

In some previous papers we have dicussed on Markov processes in a vision
of Kiyosi Itô. In this section we shall continue this discussion by considering
the extended Markov property. More details and other aspects can be found
in Itô and McKean Jr.[4], Itô[5], Bharucha-Reid[1].

As it is known, the intuitive meaning of the Markov process (for example
X(t)) is the fact that such a process ”forget” the past, provided that tn−1 is
regarded as the present.

Now, the intuitive meaning of the Markov property is that under the
condition that the path is known up to time t, the future motion would be
as if it started at the point Xt(ω) ∈ S.

Let S be a state space and consider a particle which moves in S. Also,
suppose that the particle starting at x at the present moment will move into
the set A ⊂ S with probability pt(x,A) after t units of time, “irrespectively of
its past motion”, that is to say, this motion is considered to have a Markovian
character.

The transition probabilities of this motion are {pt(x,A)}t,x,A and we con-
sidered that the time parameter t ∈ T = [0,+∞).

The state space S is assumed to be a compact Hausdorff space with a
countable open base, so that it is homeomorphic with a compact separable
metric space by the Urysohn’s metrization theorem. The σ-field generated by
the open space (the topological σ-field on S) is denoted by K(S). Therefore,
a Borel set is a set in K(S).

The mean value

m = M(µ) =
∫
R

xµ(dx)
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is used for the center and the scattering degree of an one-dimensional proba-
bility measure µ having the second order moment finite, and the variance of
µ is defined by

σ2 = σ2(µ) =
∫
R

(x−m)2µ(dx).

On the other hand, from the Tchebychev’s inequality, for any t > 0, we
have

µ(m− tσ,m+ tσ) ≤ 1
t2
,

so that several properties of 1-dimensional probability measures can be de-
rived.

Note that in the case when the considered probability measure has no
finite second order moment, σ becomes useless. In such a case one can in-
troduce the central value and the dispersion that will play similar roles as m
and σ for general 1-dimensional probability measures.

Definition 1 A Markov process is a system of stochastic processes

{Xt(ω), t ∈ T, ω ∈ (Ω,K,Pa)}a∈S ,

that is for each a ∈ S, {Xt}t∈S is a stochastic process defined on the proba-
bility space (Ω,K,Pa).

The transition probabilities of a Markov process will be denoted by {p(t, a,B)}.
Now the Markov property is expressed in the theorem below.

Theorem 3 Let be given Γ ∈ K. The following is true

Pa(θtω ∈ Γ |Kt) = PXt(ω)(Γ ) a.s.(Pa);

that is to say
Pa(θ−1

t Γ |Kt) = PXt(ω)(Γ ).

Remark 2. The following notation can be used

PXt(ω)(Γ ) = Pb(Γ )|b=Xt(ω).

To prove the theorem, it will be suffice to show that

Pa(θ−1
t Γ ∩D) = Ea(PXt(Γ ), D) (8)

for Γ ∈ K and D ∈ Kt.

Corollaire 1

Ea(G ◦ θt, D) = Ea(EXt(G), D) for G ∈ B(K), D ∈ Kt,

Ea(F · (G ◦ θt)) = Ea(F · EXt(G)) for G ∈ B(K), F ∈ B(Kt),
Ea(G ◦ θt|Kt) = EXt(G) (a.s.)(Pa) for G ∈ B(K).
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It can be obseved that the Markov property can be extended as it is given
in the following theorem

Theorem 4 (The extended Markov property).

Pa(θtω ∈ Γ |Kt+) = PXt(Γ ) a.s. (Pa)

for Γ ∈ K.

The theorem results by considering the equality (8) before and by proving
it for D ∈ Kt+.
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Abstract:  A chaotic generator based on two operational amplifiers, three capacitors and four resistors is described. The 

circuit is simulated using PSpice and the hardware implementation is done.  The circuit can be implemented easily by using 

simple available electronic devices in electronics lab. Basically the circuit is an oscillator which behaves chaotically for some 

values of R. This circuit has low power spectral density thus it can be used as a chaotic generator in many indoor and 

mobile applications 

Index terms- Chaotic, PSpice, Oscillator. 

1. Introduction  

 Today, with a view to developing designed techniques for chaos generator, there is a definite need to 

characterize the complex behaviour exhibited by oscillators for some combinations of the circuit parameters. 

From this perspective, it should be noted that by moving the control parameters away from the oscillation 

condition many different kinds of complex behaviour may arise like chaos. Over the last three decades, many 

analog chaotic circuits have been proposed. Chua’s circuit was the simplest electronic network which exhibits a 

verity of bifurcation phenomenon and attractors [1]. The circuit consists of two capacitors, inductors, a linear 

resisters and a nonlinear resistor. PSpice simulation produces quick visual results that satisfy certain learning 

criteria. Paul Tobin describes the Chua’s circuit on PSpice [2]. K. Murli proposed a non-autonomous chaotic 

circuit based on a transistor, two capacitors and two resistors [3]. Jessica R. Piper proposed a simple 

autonomous chaotic circuit using op amp and passive components [4]. Analysis of chaotic generators has been 

subject of great interest because they can be implemented with simple electronic components. In our circuit 

chaotic signal is generated by simple electronic circuit designed with two AD741 ICs, four resisters and three 

capacitors. The circuits have extremely low power spectral density. Circuit is beneficial for indoor and mobile 

applications where high data rates are not required and where low bit error rate are achieved by 

acknowledgement protocols. Some applications of the circuits are networking devices of embedded systems 

and personal or body area networks. 

2. Practical realization of the circuit 

The circuit diagram for chaotic generator is shown in figure 1[4]. The circuit is realized with standard electronic 

components. The circuit is made on the bread board and the output voltages are measured at node 1 and 2. A 

practical version of this chaotic generator circuit is built with IC AD741, R1=47K, R2=47K, C1=1nF, C2=10nF, 

C3=20nF, R=47K, RC =1MΩ.   V1 and V2 are the voltages taken at node 1 and 2 in the circuit. The plot between V1 

and V2 is observed on CRO as shown in figure 2. 

         

Figure.1 Circuit diagram for chaotic generator.             Figure 2. V1 versus V2 simulated plot for R=40K 
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3.   Analysis of the circuit 

 The nonlinearity in this electronic circuit is produced by the operational amplifier. Two operational amplifiers 

with positive feedback form the chaotic oscillator. The dynamics of the circuit is described by system equation. 

S
3
+AS

2
+BS+C=0                                     (1) 

Where the parameters A, B, C are described by  

      A=
    

     
  + 

     

      
 +

 

    
                                                                                      (2) 

      B=
       

         
  + 

            

           
                          (3) 

                                     C=
 

           
                                          (4)             

 By simulation on PSpice, the plots of V1 Versus time and V2 Versus time are plotted as shown in figure 3 (a) 

and (b). Because of the positive feedback the circuit oscillates and the primary observed frequency will be 

333Hz. Circuit produce sustained oscillations for the value of R lie between  10K<R<25K . And the circuit 

generates chaotic attractors for R>25.Figure 4 (a) & (b) shows plots for  V1 versus V2 for practically 

implemented and PSpice simulated for R=45K.  

 

 

 

Figure.3. (a) plot for the voltage V1 versus time (b) plot of the voltage V2 versus time. 
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Figure 4. Plot of V1 versus V2 (a) oscilloscope photo    (b) simulated PSpice circuit 

4. Conclusion 

The circuit described in this brief have several advantages. The circuit is easy to fabricate with simple 

electronic components and it is very compact. The present circuit is general and robust. This circuit behaves 

chaotically for varying values of R. This chaotic generator is used in chaotic communication systems as 

encryption key at transmitter end and as a decryption key at the receivers end.   
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Abstract-Chaotic communication is a way to utilize the potential of chaos in communication. In this approach, message signal is 

mapped on to a chaotic signal and at the receiver same key is to be generated to get the actual information. Chaotic signals are 

easily generated and are aperiodic, impossible to predict, wide band signals having low power spectral density thus they have 

all advantages of spread spectrum signals. One major advantage of chaotic signals is that they are more secured because only 

intended receiver can received the signal. This paper provides an overview of chaotic communication, chaos generators and 

chaotic modulation schemes. 

Index terms-Chaotic Communication, Spread Spectrum. 

1.Introduction 

Once the characteristics of chaotic signals are observed then engineers are thinking to utilize chaos signals as a 

candidate for spread spectrum signal. Chaotic signals are non periodic thus possess a continuous spectrum having 

significant strength over a wide range of frequencies. Chaotic signals have complex structure and are of very 

irregular nature. Chaos generator can produce totally different trajectories if its initial condition is changed and are 

uncorrelated. Chaotic signal looks like a noise in time domain thus have less risk of interception and are hard to 

detect by unintended receiver. Chaotic signal are generated first time by chua’s diode [1].Recently VLSI chaotic 

generators are designed. To discuss chaotic communication this paper is organized as follows: In sec II chaotic 

generators are discussed. In section III chaotic modulation techniques are discussed. Finally sec IV contains some 

concluding remarks. 

2. Chaotic Generators 

Many chaotic Generators have been used in chaotic communication. The most common ones are: 

 Basic Chua’s circuits 

 Single stage Collpitt’s oscillator 

 Using PWM/PPM signals 

 Integrated CMOS chaos generator 

 

 

Fig 1 shows the basic Chua’s circuit in which nonlinearity is found in Chua’s resistor to generate chaotic signal. 
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                               Figure1. Basic Chua’s circuit. 

Chua’s circuit dynamical equation is given by 

    = f1(x, y, z) = (  ) –  

  = f2(x, y, z) = (  ) +  

  = f3(x, y, z) = -  -z (  )  

id (x) = m0x +  (m1 - m0  ){  

Where R, C1 ,C2 , and L are passive linear elements, rL is the inductor’s resistance, id is the current through Chua’s 

diode with m0 , m1 and Bp as parameter[1]. 

The circuit diagram of collpitt’s oscillator is shown in Fig 2.The circuit is described by three state equations as [2] 
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   Fig. 2    collpitt’s oscillator 
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Codes have been written in MATLAB for three equations. After programming in MATLAB, simulated results have 

been analysed. The 3D view of chaotic attractor is shown in fig. 3 and output voltage (For RL = 33 Ω) with respect to 

time is shown in fig 4. 
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                         Fig. 3         3D view of chaotic attractor  

 

                           

                     Fig 4  output voltage w.r.t. time of collpitt’s oscillator. 

 

 

406

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



 3. Chaotic Modulation Techniques 

Number of modulation techniques is used in chaotic communication. The most common ones are: 

• Chaotic masking 

• Chaos shift keying (CSK) 

• Chaos on off keying (COOK) 

• Differential Chaos shift keying (DCSK) 

One of the very first proposals to use chaos in communication is chaotic masking [3] which is applicable to analog 

and digital messages. The chaotic signal x is added to message signal m, forming the transmitted signal y.  

 

           Fig.   5(a)    Chaotic Masking                                 Fig. 5(b)    Chaos shift keying 

 Fig  5 (a)  shows the masking describe by Y(t)  =  x(t)  + m(t). CSK is a digital method, depending upon the N ary 

message symbol, the signal xi (t) ( i = 1,2,3---N) from one of N chaos generators with different characteristics are 

transmitted. Fig 5(b) shows CSK and output signal is describe by 

                               x1(t)   if m(t) = m1 

                              y(t)  =  x2(t)  if m(t) = m2    

                                XN(t)  if m(t) = mN 

 

 

        Fig. 5(c)       COOK                                                  Fig. 5(d)      DCSK 

A special case of CSK is the chaotic on-off keying (COOK). It uses one chaos generator, which is switched on or off 

according to a binary message symbol to be transmitted as shown in Fig 5(c)   . 

407

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



In DCSK, two channels are formed by time division, for every message symbol, first the reference signal is 

transmitted, followed by the modulated reference carrying  the message symbol of duration Tb, the transmitted 

signal becomes 

            x(t)  ,                 if KTb ≤ t ≤   Tb  

y(t)  = x ( t - if      Tb   ≤ t < (k + 1) Tb  and  m(t) = m1  

           ..........                                                                                                                                       

         -x (t -  ,        if      Tb   ≤ t < (k + 1) Tb    and m (t) = m2   

For reception of a message, references can be generated at receiver which is synchronized to the generator at 

transmitter or the reference has to be transmitted in addition to the actual message carrying signal. 

4. Conclusion 

This paper, gives an overview of chaos generators and chaotic modulation schemes found in literature. A few 

chaotic generators and Chaotic modulating schemes are described. The Chaotic signal is generated by collpitt’s 

oscillator and waveforms are observed.  The performance and the rate of information generation in a chaos 

generator are remains to be studied. Chaotic communication has many advantages over traditional 

communication and It is useful where the security is the first priority. 
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Abstract: It is generally difficult to synchronize a ring network that features chaotic 

behaviour, especially if the system’s order is too large. In this paper, we consider a ring 

network of three identical nonlinear and non-autonomous circuits of fourth order, which 

are bidirectionally coupled through three coupling linear resistances RC. We present 

simulation and experimental results for synchronization of such a network in low 

frequency area, and derive a sufficient condition for chaotic synchronization of this type 

of network.   

Keywords: Ring connection, Nonlinear circuit, Low frequency area, Chaotic 

synchronization.   

 

1. Introduction 
Synchronization is an important property of chaotic dynamical systems. In the 

past decades the synchronization in large scale complex networks has attracted 

lots of attention in various fields of science and engineering [2, 3, 5, 14, 15, 16]. 

In general, a complex network is a large set of interconnected nodes, where a 

node is a fundamental unit-joint with detailed contents, which lines intersect or 

branch. 

The nonlinear electric circuits are veritable tools to study the fundamental 

mechanisms underlying the onset of chaos. A variety of autonomous [7, 8, 12] 

and non-autonomous [6, 10] circuits have been reported in the literature in 

recent times. A plethora of bifurcation and chaos phenomena, such as period 

doubling routes to chaos, intermittency, quasi periodicity, chaotic 

synchronization and so on, have been studied extensively.      

In this paper, theoretical and experimental results of chaos synchronization of 

three identical non-autonomous circuits, bidirectionally coupled in ring 

connection network are presented. The system’s evolution from non 

synchronized oscillations to synchronized ones, when its individual circuit 

exhibits chaotic behaviour, is studied. 

 

2. The Nonlinear, Non-Autonomous Circuit 
Chaotic performance of the fundamental non-autonomous circuit has been 

investigated in the past [4]. It is based on a third order autonomous piecewise 

linear circuit, which introduced by Chua and Lin [1], and is capable of realizing 

every member of Chua's circuit family. A second inductor L2 has been added in 

the branch of the voltage source vs(t), in order to enrich circuit’s dynamics. The 

circuit also consists of two active elements, a nonlinear resistor RN, which has a 

v-i characteristic of N-type with Ga=-0.35mS, Gb=5.0mS and Bp=0.8V, and a 
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negative conductance Gn=-0.50mS. In recent papers, circuit’s dynamics in low 

frequency area has been studied extensively [10, 11, 13]. The circuit’s 

parameters are considered unchangeable during our study. More particularly: 

L1=L2=100mH, C1=33nF, C2=75nF and R1=1KΩ. We use sinusoidal input 

signal vs(t) with amplitude Vo equal to 0.60V or 0.75V, while the frequency f 

ranges from 30Hz to 50Hz. Using the above parameters circuit exhibits chaotic 

behaviour. In Figures 1a) and b) theoretical and experimental phase portraits vC2 

vs. vC1 for Vo=0.75V and f=35Hz are presented, respectively. The maximum 

Lyapunov exponent for the above parameters is positive (LEmax=0.0156), which 

indicates that the system exhibits chaotic behaviour.  

 

 
 

a) theoretical b) experimental 

Fig.1. Phase portrait vC2 vs. vC1 for Vo=0.75V and f=35Hz 

 

3. Dynamics of Ring Connection Topology 
In recent paper [9] we have seen that chaotic synchronization of two identical 

non-autonomous, unidirectionally coupled, nonlinear, fourth order circuits is 

possible. In this work, chaotic synchronization of three bidirectionally coupled 

circuits in ring connection, as seen in Figure 2, is studied. 

 

 
Fig. 2. Three non-autonomous, nonlinear fourth order circuits in ring connection 
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The resulting set of system’s differential equations is derived using Kirchhoff’s 

circuit laws. 
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Where the current iRNi through the nonlinear element i, with i=1, 2, 3 for circuit 

1, 2 and 3 respectively, and input signal vs(t) are given by equations 

 

( ) ( )1 1 10 5RNi b C i a b C i p C i pi G v . G G v B v B= + − + − −  
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2s ov ( t ) V cos( ft )π=  

 

In figures 3a) and b) bifurcation diagrams vC21(t)-vC22(t) vs. eC and vC22(t)-vC23(t) 

vs. eC are presented, where eC is the coupling parameter and is given by equation 

  

1C Ce R / R=  

  

Where RC is the coupling resistance. 

We can see that chaotic synchronization of the three identical circuits in ring 

connection is observed for coupling parameter eC>0.568, or for coupling 

resistance RC<1.8kΩ.   

 

 
a) vC21(t)-vC22(t) vs. eC 

 
b) vC22(t)-vC23(t) vs. eC 

Fig. 3. Bifurcation diagrams for Vo=0.75V and f=35Hz 

 

In figure 4 simulation and experimental results of waveforms vC21(t)-vC22(t) for 

various values of coupling resistance RC are presented. More particularly, in 

figures 4a), b) and c) simulation vC21(t)-vC22(t) for RC=1.0MΩ (eC→0),  

RC=10.0kΩ (eC=0.1) and RC=1.8kΩ (eC=0.568) are shown, while in figures 4d), 

e) and f) experimental vC21(t)-vC22(t) for the same parameters are illustrated.  

 

 
a) RC=1.0MΩ 

 
b) RC=10.0kΩ 

 
c) RC=1.8kΩ 

 
d) RC=1.0MΩ 

 
e) RC=10.0kΩ 

 
f) RC=1.8kΩ 

Fig. 4. a), b), c) Simulation and d), e), f) Experimental waveforms vC21(t)-vC22(t) 

(x: 1ms/ div, y: 1V/ div) 
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In figures 4c) and f) we can see that chaotic synchronization occurs for coupling 

resistance RC=1.8kΩ (eC=0.568). This threshold synchronization value of RC is 

lower than in the case of chaotic synchronization of two bidirectionally coupled 

identical circuits, with the same circuit’s settings, which is RC=2.28 (eC=0.479) 

[9]. 

In figure 5 a collection of results are displayed. Specifically, we can see the 

threshold synchronization value of coupling parameter eC versus frequency f, for 

amplitude of the input sinusoidal signal Vo=0.60V and Vo=0.75V. We can see 

that the values of eC in the case of Vo=0.60V are lower than in the case of 

Vo=0.75V.      

 

 

Fig. 5. Threshold synchronization value of coupling parameter eC vs. f 

 

4. Conclusions 
In this paper, we have studied chaos synchronization of three identical non-

autonomous circuits, bidirectionally coupled in ring connection network, in low 

frequency area. Simulation and experimental results of the system’s evolution 

from non synchronized oscillations to synchronized ones, when its individual 

circuit exhibits chaotic behaviour, were presented. Both, theoretical calculations 

and experimental results appear to be in complete agreement. We have seen that 

the values of threshold synchronization coupling parameter eC in the case of 

Vo=0.60V are lower than in the case of Vo=0.75V, for various values of input 

frequency f, but higher than in the case of two bidirectionally coupled identical 

circuits with the same setup.  

 

References 

1. L.O. Chua and G.N. Lin. Canonical Realization of Chua’s Circuit Family, IEEE Trans. 

on Circuits and Systems, vol. 37, no. 7, 885–902, 1990. 

413

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



2. O. Gaci and S. Balev. A General Model for Amino Acid Interaction Networks, World 

Academy of Science Engineering and Technology 44: 401–405, 2008. 

3. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai and A.-L. Barabási. The Large-Scale 

Organization of Metabolic Networks, Nature 407: 651–654, 2000. 

4. I.M. Kyprianidis and I. N. Stouboulos. Chaotic and Hyperchaotic Synchronization of 

Two Nonautonomous and Nonlinear Electric Circuits, IEEE 8th Int. Conf. on 

Electronics, Circuits and Systems 3: 1351–1354, 2001.  

5. I.M. Kyprianidis and I.N. Stouboulos. Chaotic Synchronization of Three Coupled 

Oscillators with Ring Connection, Chaos Solitons and Fractals, vol. 17, no. 2-3, 

327–336, 2003. 

6. E. Lindberg, L. Member, K. Murali and A. Tamasevicius. The Smallest Transistor-

Based Nonautonomous Chaotic Circuit, IEEE Trans. on Circuits and Systems—II: 

Express Briefs, vol. 52, no. 10, 661–664, 2005. 

7. E. Lindberg, E. Tamaseviciute, G. Mykolaitis, S. Bumeliene, T. Pyragiene, A. 

Tamasevicius and R. Kirvaitis. Autonomous Third−Order Duffing−Holmes Type 

Chaotic Oscillator, European Conference on Circuit Theory and Design, 663–666, 

2009. 

8. H. Nakano and T. Saito. Basic Dynamics from a Pulse-Coupled Network of 

Autonomous Integrate-and-Fire Chaotic Circuits, IEEE Trans. on Neural Networks, 

vol. 13, no. 1, 92–100, 2002. 

9. M.S. Papadopoulou, I.M. Kyprianidis and I.N. Stouboulos. Chaos Synchronization and 

its Application to Secure Communication, Journal of Concrete and Applicable 

Mathematics, vol. 9, no. 3, 205–212, 2011. 

10. M.S. Papadopoulou, I.M. Kyprianidis and I.N. Stouboulos. Complex Chaotic 

Dynamics of the Double-Bell Attractor, WSEAS Trans. on Circuits and Systems, vol. 

7, no. 1, 12–21, 2008. 

11. M.S. Papadopoulou, I.N. Stouboulos and I.M. Kyprianidis. Study of the Behaviour 

of a Fourth Order Non-Autonomous Circuit in Low Frequency Area, Nonlinear 

Phenomena in Complex Systems, vol. 11, no. 2,  193–197, 2008. 

12. I.N. Stouboulos, I.M. Kyprianidis and M.S. Papadopoulou, Antimonotonicity and 

Bubbles in a 4th Order Non Driven Circuit, Proc. of the 5th WSEAS Int. Conf. on 

Non-Linear Analysis Non-Linear Systems and Chaos, 81–86, 2006. 

13. I.N. Stouboulos, I.M. Kyprianidis and M.S. Papadopoulou. Genesis and Catastrophe 

of the Chaotic Double-Bell Attractor, Proc. of the 7th WSEAS Int. Conference on 

Systems Theory and Scientific Computation, 139–144, 2007. 

14. S.H. Strogatz. Exploring Complex Networks, Nature 410: 268–276, 2001. 

15. X. Wang and G. Chen. Synchronization in Small-World Dynamical Networks, Int. 

J. Bifur. Chaos, vol. 12, no. 1, 187–192, 2002. 

16. W. Yu, J. Cao, G. Chen, J. Lü, J. Han and W. Wei. Local Synchronization of a 

Complex Network Model, IEEE Trans. on Systems Man and Cybernetics, vol. 39, 

no. 1, 230–241, 2009. 

414

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



Mode-competition in flow-oscillations
investigated by means of symbolic-dynamics

Luc R. Pastur1,2, François Lusseyran2, and Christophe Letellier3

1 University Paris Sud 11, F-91405 Orsay Cedex, France
(E-mail: luc.pastur@limsi.fr)

2 LIMSI-CNRS, BP 133, F-91403 Orsay Cedex, France
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Abstract. The dynamical mode-switching phenomenon, between two dominant
frequencies of oscillation in a self-sustained oscillating cavity-flow, is investigated
by the means of dynamical system analysis and symbolic dynamics. Two sym-
bols are attributed, according to a partition of the angular first-return map to a
Poincaré section. As a result, each symbol is mainly associated with a given mode
of oscillation.
Keywords: Fluid mechanics, self-sustained oscillating flows, Poincaré section, an-
gular first-return map, symbolic dynamics.

1 Introduction

Impinging flows have been long studied for their astonishing features and
practical applications, ranging from woodwind to structure damage or noise
generation. Eddies generated in the unstable shear-layer grow up to satu-
ration while being advected downstream, where they impinge on the down-
stream cavity-corner. At impingement, a feedback though pressure triggers
new perturbations at the leading corner, closing the feedback-loop [8,12,13].
The flow-regime is characterised by self-sustained oscillations and power-
spectra organize around a few narrow-banded peaks. Among other features,
amplitude modulations [2,7] or mode-competition [6,9,11] may be encoun-
tered.

In this contribution, the two-modes competing-regime is investigated us-
ing some tools borrowed to the nonlinear dynamical system theory. The
competition-process is characterised by means of phase portraits, Poincaré
sections and return-maps to the Poincaré section, from which is pursued a
symbolic-dynamics-based approach.

2 The cavity-flow

The cavity-scheme is shown in Figure 1(a). It is an open rectangular cav-
ity of length L = 10 cm, height H = 5 cm and span W = 30 cm, defin-
ing two aspect-ratios L/H = 2 and W/H = 6. The inlet-flow generates a
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(a) Cavity scheme

(b) Skecth of the wind-tunnel

Fig. 1. Experimental setup.

Fig. 2. Side-view smoke-visualisation of the cavity-flow.

shear-layer at the cavity top-plane, which exhibit self-sustained oscillations
at some well-defined frequencies in power-spectra. A side-view of the flow is
shown in Figure 2. In addition to the shear-layer oscillations, the inlet-flow
also initiates a fluid-recirculation inside the cavity, visible in Figure 2. A
coordinate-system origin is set mid-span at the upstream edge of the cavity,
see Figure 1(a). The x-axis is streamwise, y-axis is normal to the upstream
wall along the boundary layer and z-axis is along the cavity span. The cavity
is inserted into a vein of span W = 30 cm and total height 12.5 cm. Air-flow
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is produced by a centrifugal fan located at the entry of the settling chamber,
see Figure 1(b). The incoming boundary layer is laminar and stationary.
The external velocity Ue is measured upstream of the cavity trailing cor-
ner, at xe/L = −1, ye/H = 0.5, using a Laser Doppler Velocimeter (LDV).
The air-flow leaves the wind-tunnel directly in the atmosphere. The refer-
ence velocity for this study is Ue = 2.09 m.s−1, defining a Reynolds number,
based on L, ReL = UeL/ν ' 14 000. The flow characterisation is based on a
LDV measurement of the velocity x-component, downstream of the cavity, at
x/L = 1.15, y/H = 0.33 and z = 0. The resulting time-series are resampled,
using a linear interpolation, at a sampling-rate of fs = 1 530 Hz. Acquisition
time is about 9 min giving time-series length of about 840 000 data points.

Fig. 3. Frequency analysis of the x-component of the velocity measured with a LDV
technique. A power spectral density (to the right) reveals two main frequencies —
f1 = 23.2 Hz and f2 = 31.0 Hz. A spectrogram (to the left) — corresponding to
the power spectral density plotted as color levels (from dark to bright for increasing
amplitudes) — shows that roughly, a single mode dominates at a given time.

For the control-parameters (L/H,ReL) of the study, two main frequency-
components are observed, at f1 = 23.2 Hz and f2 = 31.0 Hz, in the power
spectral density (PSD) of Figure 3 (plot on the right). Other peaks are
mainly linear combinations of these two frequencies. PSD does not provide
any information about the temporal behaviour of the frequency components,
since it only evaluates their averaged energetic contribution on the overall
time of observation. Instead, the spectrogram of Figure 3 (left plot) clearly
exhibits a switching phenomenon between the two dominant modes: when
one frequency is powerful in the spectrogram, the other one tends to be weak.

3 Symbolic dynamics analysis

As a first step we reconstruct a phase-portrait of the dynamics from the
time-series. Different coordinate-sets can be used, delay or derivative coordi-
nates, as mentioned in earlier works [10,14], or principal-components based
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on the singular-value decomposition of a delayed data matrix [1,11]. All
these coordinate-sets are equivalent [3]. Here, the reconstructed space is
based on principal-components (the Xi’s in what follows). The dimension-
ality of the phase-portrait is estimated using a Grassberger-Proccacia algo-
rithm [5]. The correlation-dimension is found to be about 4.2, meaning that a
10-dimensional-space should be enough to obtain a diffeomorphism between
the original phase-space and the reconstructed space, according to Takens’
criterion. This is a far too large dimension: as a first step, a projection of the
reconstructed space, spanned by the first two principal-components, is used
to get some insights about the dynamics.

(a) (b)

Fig. 4. (a) Phase-portrait spanned by the first two principal-components recon-
structed from the measurements of the horizontal component of the velocity. (b)
First-return map to a Poincaré section of the phase portrait spanned by the first two
principal components reconstructed from the measurements of the x-component of
the velocity. The Poincaré section is defined by X1 = 0 and Ẋ1 > 0 (white dashed-
line in (a)).

The phase-portrait of Figure 4(a) exhibits a toroidal structure, the orbit
is therefore mainly organized around a torus. The first-return map to a
Poincaré section exhibits a cloud of points, see Figure 4(b), meaning that
the toroidal structure is filled by the trajectory. From the return-map it
is quite difficult to distinguish a deterministic dynamics from a stochastic
process. It was shown in the dynamical analysis of a water-jet that a toroidal
structure can be conveniently investigated using an angular first-return map
[4]. Such a map is built on the angle θn associated with the nth iterate
of the first-return map as follows. At each point of the first-return map,
in Figure 4(b), the angle between the segment joining that point to the
barycenter of the first-return map, and the right-hand half-line from the
barycenter, is defined as θn. In Figure 5 (top), θn+1 is plotted versus θn,
together with a probability density function P (θn), see Figure 5 (bottom).
It clearly appears that the dynamics is mainly organized around two main
neighborhoods in the Poincaré section, corresponding to the two peaks of the
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Fig. 5. Angular map built on the first-return map. Two neighborhoods of the first
bisecting line are more visited than the other parts. Each neighborhood corresponds
to one the two modes identified within the dynamics from a Fourier spectrum.

probability-density function P (θn). These two neighborhoods are located
along the bisecting line, i.e. θn+1 ≈ θn. Since period-1 orbits are involved,
it is possible to associate with them a characteristic frequency of oscillation.
Consequently, points located in the center of each cloud on the first bisecting-
line should correspond to a realization of one of the modes identified with the
spectral analysis. Other points — far from the bisecting line — are expected
to be associated with transitions from one mode to the other. Therefore,
only points in the bisecting line will be taken into account to estimate the
mean-time duration of oscillations associated with each of the two orbits.

To begin with, two different symbols, 0 and 1, are introduced, depend-
ing on whether two successive crossings of the Poincaré section lies in the
angular sector θn ∈ [−π/4, 3π/4] (symbol 0) or in the angular sector θn ∈
[−π/2;−π/4]∪]3π/4; 3π/2] (symbol 1). With this representation, subsequences
of identical symbols ...0000.. or ...1111... occur when the dynamics is locked
on a given period-1 orbit. Subsequences like ...001011.. evidences transitions
between the two orbits.

Probability distributions of symbolic sequences with 8 characters are
shown in Figure 6(a). Sequences Σi are indexed according to the natural or-
der of the integer associated with the binary number, 0000 0000 being indexed
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(a) (b)

Fig. 6. (a) Probability density functions of the symbolic sequences. Sequences
corresponding to repeated symbols (i = 0 and i = 255) are obviously the most
probable. (b) Probability density function of the different symbolic sequences built
on the “transitional” symbolic dynamics. The number of points considered in the
Poincaré section is N = 15 000.

as i = 0. Sequence 0000 0100 is for instance associated with index i = 4. The
histogram of the symbolic sequences realized by the dynamics is not flat. This
means that the underlying dynamics does not correspond to a white noise
[4]. Obviously two main sequences are observed, Σ0 and Σ255 = 1111 1111.
Sequence Σ255 is slightly more often realized, in agreement with the time du-
rations during which symbols 0 (48%) or 1 (52%) are observed. Isolated from
the “background” (probability greater than 0.017), most probable sequences
are Σ127 = 0111 1111, Σ128 = 1000 0000, Σ192 = 1011 1111, Σ63 = 0100 0000,
Σ252 = 1111 1100, Σ3 = 0000 0011, Σ254 = 1111 1110, Σ1 = 0000 0001,
with probabilities of realisation P127 = 0.022, P128 = 0.023, P192 = 0.018,
P63 = 0.019, P252 = 0.018, P3 = 0.017, P254 = 0.022, P1 = 0.023, respec-
tively. These most often realized sequences can be paired as follows. Let
0 = 1 and 1 = 0, that is, the complementary function Σi maps each of its
symbols to the other (0 7→ 1 and 1 7→ 0), then the complementary sequence
Σ corresponds to the sequence of complementary symbols {σn}. Therefore,
Σ127 = Σ128, Σ192 = Σ63, Σ252 = Σ3, and Σ254 = Σ1. Thus, it is found
that sequence Σj = Σi is realized with a probability Pj nearly equal to Pi.
There is therefore a symmetry between symbols 0 and 1.

In the same spirit, a “transitional” symbolic-dynamics can be introduced,
defining ξi such that ξn = R if σnσn+1 = 00 or σnσn+1 = 11 and ξn =
T if σnσn+1 = 10 or σnσn+1 = 01. The probability density function of 8-
characters words, Ξi, based on ξn, is shown in Figure 6(b). The main peak is
observed for Ξ0 =RRRR RRRR, that is, a sustained mode. The next most
often realized sequences are Ξ128 = TRRR RRRR, Ξ64 = RTRR RRRR,
Ξ32 = RRTR RRRR, Ξ16 = RRRT RRRR, Ξ8 = RRRR TRRR, Ξ4 =
RRRR RTRR, Ξ2 = RRRR RRTR, Ξ1 = RRRR RRRT, . . ., which are
cyclic permutations of an isolated transition. This is a signature of se-
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quences corresponding to more than 8 repeated symbols. Are also found
Ξ192 = TTRR RRRR, Ξ160 = TRTR RRRR, Ξ96 = RTTR RRRR, Ξ80 =
RTRT RRRR, Ξ48 = RRTT RRRR. The relative preponderance of these
sequences reveals that once the dynamics realizes a symbol, if a transition
to the other symbol occurs, it most usually quickly returns to the previous
symbol. In other words, once a mode is locked, it tends to exclude the other.

4 Discussion and conclusion

Fig. 7. Distributions of the time-duration between two crossings of the Poincaré
section for events associated with symbol 0 (top) or 1 (bottom).

Now the very question is: can we fully associate each symbol with a
cycle of oscillation at either f1 or f2? Distributions of the time-duration
between two successive crossings of the Poincaré section, associated with each
symbol 0 or 1, are shown in Figure 7. The mean-time duration of crossings
associated with symbol 0 is 0.0319 s, corresponding to a frequency of about
31.3 Hz, rather close to f2 = 31.0 Hz. The mean-time duration of crossings
associated with symbol 1 is 0.0430 s, corresponding to a frequency of about
23.2 Hz, similar to f1 = 23.2 Hz. Henceforth, it is reasonable to consider that
the events at frequency f1 essentially contribute to the first partition, while
events associated with the second partition are essentially due to frequency
f2. Although fairly good, the relation between symbols and frequencies is not
perfect, since it can be seen in Figure 7 that some events with time-durations
' 1/f1 are present in the histogram associated with symbol 0, while events
occurring with time-durations ' 1/f2 are present in the histogram associated
with symbol 1.
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Symbolic dynamics allows to scan the dynamics of the system at time-
scales of the order of one basic oscillation, something hardly achievable with
Fourier techniques due to the reciprocal relation between time and frequency.
As a consequence, while transitions from one cycle of oscillation to the other
cannot be detected at the scale of an elementary oscillation with usual tech-
niques, symbolic dynamics has such an ability. One limitation is that the
relation between symbol and frequency of oscillation is not perfectly bijec-
tive. Nevertheless, with some care, it is possible to detect transitions from one
oscillating mode to another at time-scales non-accessible otherwise, making
symbolic dynamics a powerful tool for investigating such kind of switching-
mode phenomena.
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Abstract: The problem of construction of the deterministic dynamical system from 

output signals (reconstruction) is very important. Two reconstruction methods have been 

used and compared. First one is the method of successive differentiation and the second 

is based on delay coordinates. It was firstly suggested to choose time delay parameter 

from the stable region of a divergence of the reconstructed system. Results show that 

both methods can capture regular and chaotic signals from reconstructed systems of the 

third order with nonlinear terms up to sixth order. Types of signals were examined with 

spectral methods, construction of phase portraits and Lyapunov exponents. 

Keywords: Reconstruction, Dynamical system, Chaotic regime, Successive 

differentiation, Delay time. 

 
1    Introduction 

The problem of reconstruction of deterministic dynamical system from output 

signals is of great importance in studying of properties of experimental signals 

such as acoustic signals, ECG, EEG and so on. Reconstructed dynamical system 

may add a significant qualitative information to chaotic data analysis. Stability 

conditions, bifurcation curves, all types of steady – state regimes could be 

studied for solutions of a reconstructed system. Two reconstruction methods 

have been developed by Crutchfield and McNamara [1] and used for variety of 

signals later [2-4]. The first method is based on suggestion that the signal can be 

presented by a function that has at least three derivatives, so this is method of 

successive differentiation. Applying this method the dynamical system has a 

following form [1-4]: 

 

21 xx =&  

32 xx =&  

),,( 32133 xxxFx =&  

 

where ),,( 3213 xxxF  is a nonlinear function. The second method of 

reconstruction is based on delay coordinates. We need to reconstruct the 

dynamical system from the time series of some state variable )(tx  with the 
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fixed sampling step dt . We have series of )( kdtxsk = , k=0,1,2,…,N, using 

value of time delay ndt=τ  (which is chosen to yield optimal reconstruction 

[1]) we construct the dynamical system in the form [1-4]: 

 

),,( 32111 xxxFx =&  

),,( 32122 xxxFx =&  

),,( 32133 xxxFx =&  

 

where )()(1 txtx = ; )()(2 τ+= txtx ; )2()(3 τ+= txtx , ),,( 321 xxxFi  

are nonlinear functions. 

 

2    Construction of Dynamical Systems from Output Signals of 

Pendulum System 

Reconstruction methods are applied to the signals of a deterministic dynamical 

system of pendulum oscillations which may have regular and chaotic regimes 

[5]: 

 

)(
8

1
1.0 3

22

2

13211 yyyyyyy +−−−=&  

1)(
8

1
1.0 3

11

2

23122 ++−+−= yyyyyyy&  

Fyyy +−−= 323 61.05.0&  

 

Nonlinear functions ),,( 321 xxxFi  in the first and second systems  have the 

following form: 

 

∑∑∑
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3
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3
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ijknmo
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i
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with nonlinear terms up to third order for the regular signals and up to the six 

order for the chaotic. 

The traditional way to obtain time delay parameter ndt=τ  for the second 

method of reconstruction is to use time interval when the autocorrelation 

function is equal to zero [2-4]. For such chosen τ  the divergence of a 
reconstructed system may not be negative. So that we introduce other way to 

choose τ . Real system is nonconservative and, the divergence of systems 

should be negative too. For example, for the original pendulum system  div  is 
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equal to -0.81. In Figure 1 the dependence of reconstructed systems divergence 

on n  in the steady – state regimes is shown. We choose n  for time delay τ  

from the stable region of div .  
 

 
a)  

 
b) 

Fig. 1. The dependence of reconstructed systems divergence on n  for  regular 

initial signal 257.0=F  (case a) and chaotic 114.0=F  (case b). 

 

For every value of the bifurcation parameter F  from the interval 
3.01.0 ≤≤ F  the reconstructed systems were built and the output signals 

were determined. And then the largest Lyapunov exponents [6] were calculated. 

For that purpose we use the fifth – order Runge – Kuttas method with the 

precision of )10( 7−O . Initial conditions were selected in the vicinity of the 

original signal, and for the steady – state regime signals we choose 

,218=N 004.0=dt . 

The dependence of the largest Lyapunov exponent of the pendulum system  on 

values of the bifurcation parameter F  is shown in Figure 2.a. The dependences 
of the largest Lyapunov exponent on  F  for the first and the second 
reconstructed dynamical systems are shown in Figure 2.b – c correspondingly. 

 

 
a) 

 
b) 

 
c) 

Fig. 2.The largest Lyapunov exponent of the pendulum system (case a) and of 

the reconstructed systems  (cases b and c). 

 

, 

We may see similarity of both graphs to the dependence for the original system 

in Figure 2.a with the exception of the region  18.015.0 ≤≤ F  where the 

transition to chaos occurs. 
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2    Construction Systems from Regular Output Signal 

As was shown in the book [5] the solution of the pendulum system would be 

regular if bifurcation parameter is F=0.257. We used this value and solved the 

system in order to get the output signal. Then we reconstruct the system using 

the two methods. 

For the second method we reconstruct the system using small initial value for 

the delay parameter and build the dependence of the divergence on value n  and 
choose n  from the stable interval of the  delay parameter (Figure 1.a, n=240). 
As the result the system get the form with nonlinear terms only to the third order 

of nonlinearity. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

 
i) 

Fig. 3.  The portrait of initial pendulum system (F=0.257), case a , the portraits 

of the reconstructed systems, cases b–c, their time realizations, cases d–f, and 

power spectrums, cases g–i. 

 
Projections of the limit cycle with two loops on the plane are shown in Figure 3. 

a–c for the solution of the original system (Figure 3.a) and the reconstructed 

first and second dynamical systems   (Figure 3.b–c). Since for reconstruction we 

use only the first variable signal phase portrait projections on the plane with the 
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second variable only qualitatively are look like the original limit cycle with two 

loops. Time realizations of the first variable and their power spectrums are 

presented in Figure 3.d–i. Figure 3.d and Figure 3.g describes the solution of the 

original system, and Figure 3.e–f and Figure 3.h– i gives the information about 

solutions of the reconstructed dynamical systems. 

Since power spectrum indicates the power contained at each frequency, the peak 

heights corresponds to the squared wave amplitudes (i.e. the wave energy) at the 

corresponding frequencies. The first method of reconstruction gives the solution 

which the power spectrum for the regular signals coincides with the output 

signal power spectrum up to 96% for the first three peaks. The second method 

gives the precision up to 98%. Also the second method determines the 

maximum Lyapunov exponent more precisely for chaotic regimes (with a 

precision to
310( −O ) )  than the first method. 

 

3. Construction Systems from Chaotic Output Signal 

Now we use such parameter F for the pendulum original system when this 

system has the chaotic solution, namely F=0.114. Then we reconstruct the 

system using the two methods of reconstruction with nonlinear function 

),,( 321 xxxFi   with nonlinear terms up to the sixth order. For the second 

method we reconstruct the system using small initial value for the delay 

parameter and build the dependence of the divergence on value n  and choose 
n  from the stable interval of the  delay parameter  ( Figure 1.b, n=240). 
Projections of the chaotic attractor of the initial system and of the reconstructed 

systems are shown in Figure 4.a–c. As could be seen from Figure 4 the both 

methods qualitatively good approximate chaotic attractor of  the original system. 

Time realizations of the chaotic attractors after finished transient regimes are 

also similar and given in Figure 4.d–f. Power spectrums for the original signal 

and for the signals from the reconstructed systems are shown in Figure 4.g– i 

and may be approximated by the same decay function fS 5.875.6 −−= . 

 

 
a) 

 
b) 

 
c)  

427

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

 
i) 

Fig. 4.  The portrait of initial system (case a) (F=0.114),  the portraits of the 

reconstructed systems  (cases b –c), their time realizations (d –f) and power 

spectrums (g–i). 

 
3    Construction System from Synthetic ECG Signal 

As practical application of the considered methods the signal of a dynamical 

model for generating synthetic electrocardiogram signals [9] was used. This 

signal is regular and outwardly looks like the electrocardiogram of healthy man. 

Using the method of delay the system of eighth order was built. In Figure 5 

temporal realization is represented by synthetic electrocardiogram. In Figure 6 

temporal realization of the first coordinate of  the solution of the reconstructed 

system is represented. As is obvious from graphs both signals are regular and 

have an identical period of oscillations. 

 

 

Fig. 5. Synthetic electrocardiogram signal. 
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Fig. 6. Signal generated by reconstructed system. 

 

4    Conclusions 

 

Results show that both methods can capture regular and chaotic signals from 

reconstructed systems of the third order with nonlinear terms up to sixth order. 

Types of signals were examined with spectral methods, construction of phase 

portraits and Lyapunov exponents.  The first method gives the solution which 

the power spectrum for the regular signals coincides with the output signal 

spectrum up to 96 % for the first three peaks. The second method gives a 

mistake around 2 %. And the second method determines the maximum 

Lyapunov exponent more precisely for chaotic regimes (with a precision 

to
310( −O ) ) than the first method. 

Real systems are nonconservative and, a divergence of systems should be 

negative. It was suggested for the first time that the delay parameter for the 

second reconstruction method must be chosen from the stable region of the 

divergence behaviour of the reconstructed system. 

The both methods qualitatively good approximate the phase portrait of chaotic 

attractor of the original system. Moreover, time realizations of the chaotic 

attractors after finished transient regimes are quiet similar. And what is more 

important, power spectrums for the original signal and for the signals from the 

reconstructed systems may be approximated by the same decay function 

fS 5.875.6 −−= . Calculations also show that more precisely the value of 

bifurcation parameter for chaotic regimes gives the second method of 

reconstruction.   
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Abstract: This paper introduces a new three-dimensional quadratic continuous 

autonomous chaotic system with golden proportion equilibria, which can generate single 

folded attractor. Some basic dynamical behaviors, and the dynamical structure of the new 

chaotic system are investigated either analytically or numerically. Finally, the chaos 

generator of the new chaotic system are experimentally confirmed via a novel electronic 

circuit design. It is convenient to use the new system to purposefully generate chaos in 

chaos applications. A good qualitative agreement is illustrated between the simulations 

and the experimental results. 

Keywords: Chaotic attractor, chaotic system, golden proportion, golden equilibria, 

chaotic circuit, chaotic oscillator 

 

1. Introduction 
As the first chaotic model, the Lorenz system has become a paradigm of chaos 

research[1]. Chen constructed another chaotic system[2], which nevertheless is 

not topologically equivalent to the Lorenz's[2, 3]. This system is the dual to the 

Lorenz system and similarly has a simple structure[3]. Lü and Chen found the 

critical new chaotic system [4], which represents the transition between the 

Lorenz and Chen attractors. For the investigation on generic 3D smooth 

quadratic autonomous systems, Sprott [5-7] found by exhaustive computer 

searching about 19 simple chaotic systems with no more than three equilibria. It 

is very important to note that some 3D autonomous chaotic systems have three 

particular fixed points: one saddle and two unstable saddle-foci (for example, 

Lorenz system [1], Chen system [2], Lu system [4]). The other 3D chaotic 

systems, such as the original Rossler system [8], DLS [9] and Burke-Show 

system [10], have two unstable saddle-foci. Yang and Chen found another 3D 

chaotic system with three fixed points: one saddle and two stable fixed points 

[11]. Recently, Yang et al. [12] and Pehlivan et al. [13] introduced and analyzed 

the new 3D chaotic systems with six terms including only two quadratic terms 

in a form very similar to the Lorenz, Chen, Lu and Yang–Chen systems, but 

they have two very different fixed points: two stable node-foci. Therefore, They 

are very interesting to further find out the new dynamics of the system. 

 

This article introduces another novel three-dimensional quadratic autonomous 

system with golden equilibria, which can generate single folded attractor.  
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2. A New 3D Chaotic System and its Analyses 
Following nonlinear autonomous ordinary differential equations are the new 

chaotic system.   

 

x =  y x a z

y= x z x

z =  xy y b

− − ⋅

⋅ −

− − +

&

&

&

 

 

The new system have eight terms, three quadratic nonlinearities and two 

parameters ‘a’ and ‘b’. Typical parameters are  a=2, b=1.  Let us consider a 

volume in a certain domain of the state space. For the system, one has 

 

1
x y z

V r
x y z

∂ ∂ ∂
∆ = + + = − =

∂ ∂ ∂

& & &
 

 

with 1= −r , where r is a negative value. Dynamical system is one dissipative 

system, and an exponential contraction rate of the system is 

 

1rdV
e e

dt

−
= =  

  

In the dynamical system, a volume element V0 is apparently contracted by the 

flow into a volume element 0 0

rt tV e V e−=  in time t. It means that each volume 

containing the trajectory of this dynamical system shrinks to zero as t→∞ at an 

exponential rate r. So, all this dynamical system orbits are eventually confined 

to a specific subset that have zero volume, the asymptotic motion settles onto an 

attractor of the system. 

The new system equations has three equilibrum points as  

  

2 2

1

1 2 1 4 1 2 1 4
( ,  ,  1)

2 2

a a a b a a a b
E

− − + − + + − + − + +
 

2 2

2

3

1 2 1 4 1 2 1 4
( ,  ,  1)

2 2

(0,  ,  )

a a a b a a a b
E

b
E b

a

− − − − + + − − − + +
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As the variables x, y, z ∈ℜ , this implies that fixed point to exist, 0a ≠  and 
2 2 1 4a a b− + + > 0. So, 

2( 1) 4a b− +  > 0, and a∈ℜ . When a=0, the 

system has unbounded  solutions.  

The equilibrium points of the new system are 

 

1

3 5 1 5
( ,  , 1)

2 2
E

− + +
, 2

3 5 1 5
( ,  , 1)

2 2
E

− − −
, 3

1
(0,  1, )

2
E  

 

for a=2 and b=1 values. More interestingly the equilibrium points have Golden 

Proportion values as  

 

2 0

1( ,  , )E τ τ τ
−

− , 2 1 0

2 ( ,  , )E τ τ τ
−

− − , 
0

0

3(0,  , )
2

E
τ

τ  

    

The famous Golden Proportion 
1 5

2
τ

+
=  , found often in nature. Many 

objects alive in the natural world that possess pentagonal symmetry, such as 

marine stars, inflorescences of many flowers, and phyllotaxis objects have a 

numerical description given by the Fibonacci numbers which are themselves 

based on the Golden Proportion. In the last few years, the Golden Proportion has 

played an increasing role in modern physical research[14-21]. 

For the 1

3 5 1 5
( ,  , 1)

2 2
E

− + +
, the eigenvalues are found as follows; 

 

 1 2 31.56581 8,     2.331903 ,     0.233915λ λ λ= = − = −  

 

For the 2

3 5 1 5
( ,  , 1)

2 2
E

− − −
, the eigenvalues are found as follows; 

 

2 31
1.0579,  0.0289 + 2.3521 i,  0.0290 2.3521 i = − = ⋅ = − ⋅λ λ λ  

 

For the 3

1
(0,  1, )

2
E  , the eigenvalues are found as follows; 

 

 1 2 30.5 0.5 i,       2,     0.5 0.5 iλ λ λ= − ⋅ = − = + ⋅  

 

For the equilibrum points, according to the Routh-Hurwitz criterion, the case 

that the real parts of all the roots are negative does not exist. Therefore, the fixed 
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points are not stable and this implies chaos. So, the system orbits around the 

unstable equilibrium points.  

Phase portraits of the new chaotic system were achieved as performing the 

numerical simulation for initial conditions x0=0, y0=0, z0=0 and parameters a=2, 

b=1, and shown in Figure 1- 3. 
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Fig. 1. x, y, z chaotic signals of the new chaotic system against to time  
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Fig. 2. Phase portraits of the new chaotic system 

 

 

-4

-2

0

-2
-1

0
1

0

1

2

xy

z

 
Fig. 3. 3D phase portrait of the new chaotic system 

 

Largest Lyapunov Exponent spectrum of the new chaotic system was achieved 

as performing the numerical simulation and shown in Figure 4. 
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Fig. 4. Largest Lyapunov Exponent Spectrum of the new chaotic system 

 

3. Circuit Realization of the 3D Chaotic System 
The electronic circuit schematic and the experimental realization results of the 

new system for  parameters a=2 and b=1, are seen in Fig. 5 and Fig. 6 

respectively. 
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Fig. 5. The electronic circuit schematic of the new chaotic system 

Because of the fact that origin(0,0,0) point is not equilibria for the new system, 

it’s not require the initial condition voltages for executing the circuit. 
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Consequently realization of the new circuit is very easy. Chaotic differential 

equations of the new circuit  are given below. 

 

                      
1 1 2 1 3 1

1 1 1

R  C R  C R  C
x =  y  x  z− −&  

                      
5 2 4 2

1 1

R  C R  C
y = x z  x⋅ −&  

     
n

7 3 6 3 8 3

V1 1
x

R  C R  C R  C
z = y  y  ⋅− − −&  

 

 

 
 

Fig. 6. Phase portraits of the real electronic experimental circuit  

of the new chaotic system 

 

4. Conclusions 
This article introduces one three-dimensional autonomous interesting new 

chaotic system with golden proportion equilibria, which can generate single 

folded attractor. The famous Golden Proportion 
1 5

2

+
=τ , found often in 

nature. Many objects alive in the natural world that possess pentagonal 

symmetry, such as marine stars, inflorescences of many flowers, and phyllotaxis 

objects have a numerical description given by the Fibonacci numbers which are 

themselves based on the Golden Proportion. In the last few years, the Golden 

Proportion has played an increasing role in modern physical research. The chaos 

generator of the new chaotic system are confirmed via a novel electronic circuit 

design. Electronic circuitry of the new chaotic system is simple. It is convenient 

to use the new system to purposefully generate chaos in chaos applications. We 

believe that the unknown dynamical behaviors of this chaotic attractor deserve 

further investigation and are desirable for engineering applications in the near 

future. 

 

Acknowledgements 

436

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



This work was supported by the Sakarya University Scientific Research Projects 

Commission Presidency (No. 2010-01-00-002).  

 

References 
1.    E. N. Lorenz, Deterministic nonperiodic flow; J. Atmos. Sci., 20:130–141, 1963. 

2. G. Chen and T. Ueta, Yet another chaotic attractor, Int. J. Bifurcation and Chaos, 

Vol. 9,1465-1466, 1999.  

3. T. Ueta and G.Chen, Bifurcation analysis of Chen's attractor, Int. J. Bifurcation and 

Chaos, Vol 10(8), pp. 1917-1931, 2000. 

4.    J. Lü and G. Chen, A new chaotic attractor coined, Int. J. Bifurcation and Chaos, 

Vol. 12(3), 659-661, 2002. 

5.    J. C. Sprott, Some simple chaotic flows, Phys. Rev. E 50, 647–650, 1994. 

6.    J. C. Sprott, A new class of chaotic circuit, Phys. Lett. A 266, 19–23, 2000. 

7.    J. C. Sprott, Simplest dissipative chaotic flow, Phys. Lett. A 228, 271–274, 1997. 

8.    O. E. Rossler, An equation for continuous chaos, Phys. Lett. A 57, 397–398, 1976. 

9.  G. van der Schrier, L. R. M. Maas, The diffusionless Lorenz equations;Silnikov 

bifurcations and reduction to an explicit map, Physica D 141, 19–36, 2000. 

10. R. Shaw, Strange attractor, chaotic behaviour and information flow, Z. Naturforsch. 

A 36, 80–112, 1981. 

11. Q. G. Yang, G. R. Chen, A chaotic system with one saddle and two stable node-foci, 

Int. J. Bifurcat. Chaos 18, 1393–1414, 2008. 

12. Q. G. Yang, Z. C. Wei, G. R. Chen, A unusual 3D autonomous quadratic chaotic 

system with two stable node-foci, Int. J. Bifur. Chaos, 2010, 

doi:10.1142/S0218127410026320. 

13. I. Pehlivan, Y. Uyaroglu, A New Chaotic attractor from General Lorenz System 

Family and its Electronic Experimental Implementation, Turkish Journal of 

Electrical Eng. Comput. Sci. 18(2), 171-184, 2010. 

14. M. S. El Naschie, On dimensions of Cantor set related systems, Chaos, Solitons & 

Fractals 3,675–685, 1993. 

15. M. S. El Nashie, Quantum mechanics and the possibility of a Cantorian space–time, 

Chaos, Solitons & Fractals, 1,485–487, 1992. 

16. M. S. El Nashie, Is quantum space a random cantor set with a golden mean 

dimension at the core?, Chaos, Solitons & Fractals, 4(2), 177–179, 1994. 

17. M. S. El Naschie, Complex vacuum fluctuation an a chaotic ‘‘limit’’ set of any 

Kleinian group transformation and the mass spectrum of high energy particle 

physics via spontaneous self-organization, Chaos, Solitons & Fractals, 17, 631–638, 

2003. 

18. M. S. El Nashie, Experimental and theoretical arguments for the number and mass 

of the Higgs particles, Chaos, Solitons & Fractals, 23,1091–1098, 2005. 

19. Y. S. Vladimirov, Quark Icosahedron, charged and Vainberg’s angle, In. 

Proceedings of the international conference ‘‘Problems of harmony, symmetry and 

the golden section in nature, science and art’’, Vinnitsa, 15, 69–79, 2003. [in 

Russian] 

437

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



20. V. V. Petrunenko, To the question on physical essence of the phenomenon 

decalogarifmic periodicity, In. Proceedings of the international conference 

‘‘Problems of harmony, symmetry and the golden section in nature, science and 

art’’, Vinnitsa, 15, 80–86, 2003. [in Russian] 

21. A. O. Maiboroda, Finding the Golden Section in fundamental relations of physical 

magnitudes, In. Proceedings of the international conference “Problems of harmony, 

symmetry and the golden section in nature, science and art”, Vinnitsa, 15, 87–94, 

2003. [in Russian] 

438

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



Four-Scroll Stellate New Chaotic System  
 

İhsan Pehlivan, Yılmaz Uyaroğlu, Mehmet Ali Yalçın, Abdullah Ferikoğlu 
 

Sakarya University, Serdivan, Sakarya, Turkey  

E-mail: ipehlivan@sakarya.edu.tr  

 
Abstract: This paper introduces a new chaotic system of three-dimensional autonomous 

ordinary differential equations, which can display strange four-scroll stellate chaotic 

attractors simultaneously. Some basic dynamical behaviors of the new system 

investigated via theoretical analysis by means of equilibria and Lyapunov exponent 

spectrum. Finally, the chaos generator of the new chaotic system is experimentally 

confirmed via a novel analogue circuit design. It is convenient to use the system to 

purposefully generate chaos in chaos applications. A good qualitative agreement is 

illustrated between the simulation results. 

Keywords: Chaos, chaotic system, chaotic attractor, chaotic circuit, four-scroll, chaos 

generator 

 

1. Introduction 
As the first chaotic model, the Lorenz system has become a paradigm of chaos 

research[1]. Chen constructed another chaotic system[2], which nevertheless is 

not topologically equivalent to the Lorenz's[2, 3]. This system is the dual to the 

Lorenz system and similarly has a simple structure[3]. Lü and Chen found the 

critical new chaotic system [4], which represents the transition between the 

Lorenz and Chen attractors. For the investigation on generic 3D smooth 

quadratic autonomous systems, Sprott [5-7] found by exhaustive computer 

searching about 19 simple chaotic systems with no more than three equilibria. It 

is very important to note that some 3D autonomous chaotic systems have three 

particular fixed points: one saddle and two unstable saddle-foci (for example, 

Lorenz system [1], Chen system [2], Lu system [4]). The other 3D chaotic 

systems, such as the original Rossler system [8], DLS [9] and Burke-Show 

system [10], have two unstable saddle-foci. Yang and Chen found another 3D 

chaotic system with three fixed points: one saddle and two stable fixed points 

[11]. Recently, Yang et al. [12] and Pehlivan et al. [13] introduced and analyzed 

the new 3D chaotic systems with six terms including only two quadratic terms 

in a form very similar to the Lorenz, Chen, Lu and Yang–Chen systems, but 

they have two very different fixed points: two stable node-foci. Therefore, They 

are very interesting to further find out the new dynamics of the system. 

 

This paper introduces one more interesting complex three-dimensional quadratic 

autonomous four-scroll stellate chaotic system, which can depict complex 4-

scroll chaotic attractors simultaneously. 
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2. A New Four-Scroll Stellate Chaotic System and its Analyses 
Following nonlinear autonomous ordinary differential equations are the new 

chaotic system.   

 

x = - a x + y + y z 

y = x - a y + b x z 

z =  c z - b x y

⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

&

&

&
 

 

where     ∈a, b, c  R  are parameters of the system. Typical parameters are  a=4, 

b=0.5, c=0.6 . Let us consider a volume in a certain domain of the state space. 

For the system, one has 

 

2 0
∂ ∂ ∂

∆ = + + = − − + = − + <
∂ ∂ ∂

& & &x y z
V a a c a c

x y z
 

 

As the divergence of vector field is negative, it can be concluded that the system 

is dissipative. It should be noticed that the system will always be dissipative if 

and only if c < 2a  with an exponential rate 

 

2− += a cdV
e

dt  
 

In the dynamical system, a volume element V0  is apparently contracted by the 

flow into a volume element 0

(-2a+c) tV  e  in time t. It means that each volume 

containing the trajectory of this dynamical system shrinks to zero as  t→∞  at an 

exponential rate (-2a+c). So, all this dynamical system orbits are eventually 

confined to a specific subset that have zero volume, the asymptotic motion 

settles onto an attractor of the system. This suggests that the dynamics may tend 

to an attractor as t→∞. 

Phase portraits of the new chaotic system were achieved as performing the 

numerical simulation for initial conditions x0=0.6, y0=0, z0=0 and parameters 

a=4, b=0.5, c=0.6, and shown in Figure 1. 

As can be seen in the Figure 2., the lyapunov exponents of the new system are  

 

1 2 3 0.2439,   0,   7.6254= = = −λ λ λ  

 

for initial conditions x0=0.6, y0=0, z0=0 and parameters a=4, b=0.5, c=0.6, 
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Fig. 1. 2D and 3D Phase portraits of the four-scroll stellate new chaotic system 
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Fig. 2. Lyapunov Exponents of the new chaotic system for initial conditions 

x0=0.6, y0=0, z0=0 and parameters a=4, b=0.5, c=0.6 

The new system equations have five equilibrum points as 
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 (0,0,0) , ( 3.648,  2.361, 7.179)± −m , ( 2.548,  1.968, 4.179)± ±  

 

 for a=4, b=0.5, c=0.6 .  

 

For the fixed point 
* * *

1( x y z, ,  ) (  0 ,  0 ,  0 )=E  the Jacobian matrix of 

the system is given as follows: 

 

1

4 1 0

( ) 1 4 0

0 0 0.6

− 
 

= − 
 
 

J E  

 

Obviously, the characteristic equation about the equilibria 1E  is : 

3 2

1det( ( )) 7.4 10.2 9 0− = + ⋅ + ⋅ − =I J Eλ λ λ λ , by solving the 

characteristic equation, the eigenvalues are found as   

 

1 2 35, 3, 0.6         = − = − =λ λ λ  . 

For the fixed point 
* * *

2 ( x y z, ,  ) ( 3.648,  2.361,  7.179)= − −E  the 

Jacobian matrix of the system is given as follows: 

 

2

4 6.179 2.361

( ) -2.590 4 1.824

1.181 1.824 0.6

− − − 
 

= − 
 − 

J E

 
 

Obviously, the characteristic equation about the equilibria 2E  is : 

3 2

2det( ( )) 7.4 1.312 48.928 0− = + ⋅ + ⋅ + =I J Eλ λ λ λ , by 

solving the characteristic equation, the eigenvalues are found as   

 

1 2 38, 0.3 2.455 , 0.3 2.455     i     i= − = + ⋅ = − ⋅λ λ λ . 

 

For the fixed point 
* * *

3( x y z, ,  ) ( 3.648 ,  +2.361 ,  7.179 )= − −E  the 

Jacobian matrix of the system is given as follows: 
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3

4 6.179 2.361

( ) -2.590 4 1.824

1.181 1.824 0.6

− − 
 

= − − 
 − 

J E

 
 

Obviously, the characteristic equation about the equilibria 3E  is : 

3 2

3det( ( )) 7.4 1.312 48.928 0− = + ⋅ + ⋅ + =I J Eλ λ λ λ , by 

solving the characteristic equation, the eigenvalues are found as   

 

1 2 38, 0.3 2.455 , 0.3 2.455     i     i= − = + ⋅ = − ⋅λ λ λ
 . 

 

For the fixed point 
* * *

4 ( x y z, ,  ) (  2.548,  1.968 , 4.179 )=E  the 

Jacobian matrix of the system is given as follows: 

 

4

4 5.179 1.968

( ) 3.090 4 1.274

0.984 1.274 0.6

− 
 

= − 
 − − 

J E  

Obviously, the characteristic equation about the equilibria 4E  is : 

3 2

4det( ( )) 7.4 1.244 28.48 0− = + ⋅ − ⋅ + =I J Eλ λ λ λ
, by 

solving the characteristic equation, the eigenvalues are found as   

1 2 38, 0.3 1.863 , 0.3 1.863     i     i= − = + ⋅ = − ⋅λ λ λ  . 

 

For the fixed point 
* * *

5 ( x y z, ,  ) (  2.548,  1.968 , 4.179 )= − −E  the 

Jacobian matrix of the system is given as follows: 

 

5

4 5.179 1.968

( ) 3.090 4 1.274

0.984 1.274 0.6

− − 
 

= − − 
 
 

J E

 

Obviously, the characteristic equation about the equilibria 5E  is : 

3 2

5det( ( )) 7.4 1.244 28.48 0− = + ⋅ − ⋅ + =I J Eλ λ λ λ , by 

solving the characteristic equation, the eigenvalues are found as   

 

1 2 38, 0.3 1.863 , 0.3 1.863     i     i= − = + ⋅ = − ⋅λ λ λ  . 

The equilibria and eigenvalues for certain systems are tabulated in Table I. 
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Table I. Equilibria and eigenvalues for certain chaotic systems 

 
 

Figure 3. shows the Lyapunov Exponents Spectrum of the new system for 

varying parameter c, and constant parameters a=4, b=0.5. As can be seen from 

the Lyapunov exponents spectrum, the new system is chaotic when a positive 

Lyapunov exponent. 
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Fig. 3. (a) Lyapunov Exponent Spectrum of the new system for varying 

parameter c, and constant parameters a=4, b=0.5. (b) Largest Lyapunov 

Exponent Spectrum of the new system for varying parameter c, 

and constant parameters a=4, b=0.5. 
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3. Circuit Realization of the Four-Scroll Chaotic System 
The designed electronic circuit schematic and the Orcad-PSpice simulation 

results of the new chaotic circuit for parameters a=4, b=0.5, c=0.6, are seen in 

Fig. 4 and Fig. 5-6 respectively. 
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Fig. 4. The electronic circuit schematic of the new chaotic system 

 

Chaotic differential equations of the new circuit  are given below. 

 

                      
1 1 2 1 3 1

1 1 1

R  C R  C R  C
x =  x  y  y z− − ⋅&  

                      
4 2 5 2 6 2

1 1 1

R  C R  C R  C
y = x y  + x z− ⋅&  

          
7 3 8 3

1 1

R  C R  C
z = z  x y− ⋅&  
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Fig. 5. x, y, z chaotic signals of the new chaotic system against to time  
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Fig. 6. Phase portraits of the new chaotic system 
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4. Conclusions 
This article introduces one three-dimensional autonomous interesting new 

chaotic system which can display strange four-scroll stellate chaotic attractors 

simultaneously. Our investigation was completed using a combination of 

theoretical analysis and simulations.The chaos generator of the new chaotic 

system are confirmed via a novel electronic circuit design. Electronic circuitry 

of the new chaotic system is simple. It is convenient to use the new system to 

purposefully generate chaos in chaos applications. We believe that the unknown 

dynamical behaviors of this chaotic attractor deserve further investigation and 

are desirable for engineering applications in the near future. 
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Abstract. An interactive musical application is developed for realtime impro-
visation with a machine based on Lindenmeyer-systems. This has been used
on an installation whose goal is to draw the attention of unexperienced users
to the wealth of realtime applications in computer music. Issues on human
computer interaction and improvisation grammars had to be dealt with, as well as
probabilistic strategies for musical variation. The choice of L-systems as a basis
for machine composition is a consequence of their ability to create results that
easily have aesthetic appeal, both in the realms of sound and image.

Keywords: human-computer interaction, L-systems, fractals in algorithmic
music composition, interactive composition, improvisation, computer music.

1 Introduction

Musical variation, and composition rules defined by Schönberg, exploit to
a certain extent the self-similarity of fractals, and Lindenmeyer (cf. Rozen-
berg[11]) created algorithms (in biological research) that can be exploited
fully using iteration in algorithmic music composition. But can fractals cre-
ate harmony of sound and cantabile music as well as they create beauty for
the eyes in graphical arts?

We present examples of an interactive algorithmic music composition sys-
tem exploiting Lindenmeyer’s technique, generating some forms of minimalist
music based on user input, and further developments using the interaction of
probability models, fractals and chaos.

Lindenmayer systems, or L-systems, are parallel formal grammars in-
troduced in 1968 by the botanist Aristid Lindenmayer[3] as “a theoreti-
cal framework for studying the development of simple multicellular organ-
isms” (Prusinkiewicz and Lindenmayer[10]). As such, in essence an L-system
is a rule-based generative system that, drawing from a finite set of sym-
bols, applies substitution schemes starting with an initial subset, called in
Prusinkiewicz[9] an axiom. In Chomsky grammars, substitutions are made in
series, with each pass focusing exclusively on a sole symbol, while L-systems
are parallel, in the sense that all symbols are replaced within each iteration.
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Extending the initial application of L-systems, developments were made
in order to generate realistic computer images of plants and trees (Smith[15]),
fractal curves (Prusinkiewicz[8]), and musical scores (Prusinkiewicz[9]).

Given words with a fair amount of complexity, an L-system will exhibit
a noticeable degree of self-similarity over iterations, which makes its results
memorable and pleasing when interpreted as musical height or visual branch-
ing, in the sense that there is an equilibrium of expected and unexpected de-
velopments. In other words, as Schröder[12], p. 109, boldly presents the key
ideas of Birkhoff’s theory of aesthetic value, the results are pleasing and inter-
esting since they are neither too regular and predictable like a boring brown
noise with a frequency dependence f−2, nor a pack of too many surprises like
an unpredictable white noise with a frequency dependence f−0.

The remainder of this paper is organized as follows. In Section 2 we
describe implementations of L-systems for the automatic generation of music.
In Section 3 the focus is on the analysis of musical parameters from user input,
such as pitch velocity and duration, and their mapping to L-systems. Section
4 deals with possible extensions of this work to polyphonic input and output,
and Section 5 deals with the specific implementation of this project. Finally,
in Section 6, we briefly discuss further issues and possible developments.

2 Construction of an L-system

L-systems come in several categories: context-free (OL-systems) or context-
sensitive (IL-systems); deterministic or non-deterministic; propagative
or non-propagative, and so on. The interested reader is referred to
Manousakis[4] and to Rozenberg[11] for an extensive review of different types
of L-systems. The present work uses non-deterministic OL-systems, as de-
scribed below.

Let A denote an alphabet of letters `, V the vocabulary, i.e. the set of
words w = `1`2 · · · `n (strings of letters from this alphabet); ∅, the empty set,
is considered a word.

A production P : A −→ V is described by random variables associated
with each ` ∈ A, i.e.

`
P7→ P (`) = X` =

 wk

pk = P[X` = wk]
,

and j-letter Lj : V −→ A selects the j-letter of any given word,

w = `1`2 · · · `k
Lj7→ Lj(w) = `j .

We assume that if `i 6= `j , then X`i
and X`j

are independent. If the
actual result of P (`) is w, we write ` 7→ w, and say that ` is the predecessor
of w, or alternatively that w is the successor of `.
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If w = `1`2 · · · `k, P(w) = P (L1(w))P (L2(w)) · · ·P (Lk(w)). A production
of size k with root w0, Pw0,k is

Pw0,k(·) = P(P(P(· · ·P(·) · · ·))),

and Pw0(·) =
⋃
k∈N

Pw0,k(·).

An OL-system is an ordered triplet G = {A, w0, Pw0}, with w0 ∈ A
the starting point for the successive iterations, and Pw0 is a production of
finite size with root w0. In an OL-system the predecessor is a one-letter
word whereas the successor can be of arbitrary length (it can even be an
empty word). In a non-deterministic system, different successor words may
occur according to a probabilistic distribution. Hence the production may be
described in terms of a branching process, whose many possible trajectories
are tied to the possibilities that actually do occur.

A very easy construction of a musical grammar (McCormack[5]) could be
built by taking an alphabet A = {C, D, E, F, G,A, B} corresponding to the
notes of a C major scale (or an even larger musical scale alphabet), an axiom
that would be given by user input and a set of productions that may be
arbitrary or may follow rules from common practice of harmony. Alternative
constructions have been given by Soddell and Soddell[16], who map branching
angles to changes in pitch, Prusinkiewicz[9] where a deterministic OL-system
is used to generate a graphical turtle interpretation of the production, and
then the resulting curve is traversed and the height of each line segment is
interpreted as pitch among others. Most of the studied constructions have
seamlessly resulted in pleasing musical results and in our approach we opted
for the former, more literal one.

As an example, consider the alphabet {C, D, Eb, F, G, Ab, B}, the root
w0 = DEbCB (the celebrated Shostakovich signature, used in many of his
mature works), and the stochastic transition matrix — a sparse matrix, so
that the equilibrium of expected and unexpected generates aesthetic value
— describing the probabilities governing the productions P :

Ab AbEb AbG B C CFD CFG DC Eb F G GAb GF

C 0 0 0 0.7 0 0 0 0 0 0 0.2 0 0.1
D 0 0 0.8 0 0 0 0 0 0 0 0.2 0 0
Eb 0 0 0 0.8 0.2 0 0 0 0 0 0 0 0
F 0 0 0 0 0.2 0 0.7 0 0 0 0 0.1 0
G 0 0.2 0 0 0.7 0.1 0 0 0 0 0 0 0
Ab 0 0 0 0 0.2 0 0 0.8 0 0 0 0 0
B 0.2 0 0 0 0 0 0 0 0.7 0.1 0 0 0

Assume we get the sequence

w0 = DEbCB 1
w1 = AbGBGEb 0.0896

w2 = DCCFDEbAbEbB 0.00896
w3 = AbGBBCFGAbGBDCBEb 0.078675968

w4 = DCCEbEbBCFGCDCCEbGBEbB 0.004934557
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with the probabilities indicated in the right column. So, in
this example, with probability 3.11678 × 10−7 we get PDEbCB,4 =
DCCEbEbBCFGCDCCEbGBEbB.

Observe that the rich theory of Markov chains, and concepts such as
communicating evens, cyclicity, stationarity, can therefore be imported to
analyse productions.

3 Analyzing user input

In the proposed interaction model, a user inputs a musical phrase which
serves as the root (axiom), and given a significant pause the system reacts
branching into the successive iterations given by the production set. At
any point the user could feel inspired by the results and step in with a new
musical phrase as a new root, stopping the automatic production, from which
the computer draws new material according to the same set of productions
or a revised version of it. The focus of this work is on the user-satisfaction
with the musical results, and as such it was decided that the interface should
not be a tried and tested one such as the music keyboard. This is also helpful
in that it allows us to use a very robust MIDI communication, leading to a
clear interpretation of pitch, velocity and duration.

The possibility of having the computer analyzing the intention of the
musical input and generating different productions would be the first step
towards a musical and engaging result. A first approach should consist on
scale detection, and Chai and Vercoe’s strategy based on hidden Markov
models (see Chai and Vercoe[1]) was used in order to extrapolate the global
outline of the production set, cf. also Noland and Sandler[6]. The set itself
was constructed in strict adherences to classic common practice as described
by authors such as Piston[7], as it was deemed that the musical results should
be satisfying to a wide non-expert “random” audience.

An additional concern has been how to map user-inputted velocity and
duration into the productions of the model. Three approaches have been
considered and tested for note duration:

• Having an additional algorithm for tempo detection and building a par-
allel fixed set of productions for note duration.
• Keeping the duration that was given by user-input across successive gen-

erations of productions.
• Cycling through the set of user-inputted durations.

The first approach has been abandoned. Without further constraints forc-
ing the user to adhere to a tempo it would have been unmusical to let the
computer-generated productions have a strictly quantized feel as a result of
the original input being free from adequate rules. The second approach has
also been discarded, since after a few generations a pattern of unnatural
repetitiveness would begin to emerge, creating unmusical productions. The
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third approach has been, surprisingly, musically rewarding, as it potentiated
the natural feel that resulted from the self-similarity of successive iterations.
Consequently, it has been our choice to govern this parameter. The last
member of the set needs to be automatically generated, as there is no way
to infer the duration of the user’s last note. For this we simply repeat the
previous duration value.

It was also not clear from the start which solution would be better for
velocity mapping and again different paths were evaluated:

• Quantizing the velocity to a set value given by the average value of the
user input.

• Giving a fixed velocity to each of the words in the vocabulary, again
averaging the user-inputted value for that word.

• Keeping the velocity that was given by user-input across successive gen-
erations of productions

• Cycling through the set of user-inputted velocities.

In fact, any of those solutions proved to be too mechanical, and we had to
create a new rule that would allow for musical variety. We choose to create
a set of user-inputted velocities, and to discard at random one value from
the set in each iteration. The result is immediately more natural, since now
there is a much longer period before any pattern of duration-velocity pairs
can repeat.

4 Extending the system towards polyphony

The above discussion on analysis is straightforward for monophonic input
and output, but the possibility of using multiple voices poses a string of
new issues that are not so easily solvable. On the input side, making the
distinction between harmonic movement and melodic movement is fraught
with ambiguity and the allocation of each melodic movement to a unique
voice is also a tremendous challenge. On the output side, decisions had to
be made as to adherence to melodic rules and voice independence. Each
problem has to be addressed in turn.

The distinction between harmonic and melodic movement cannot depend
on simultaneity, when human input is considered. Users never perform with
infinitesimal precision and we must therefore create time windows within
which two events can be considered simultaneous. A sensible time window
would be in the range of 30-50 ms, according to the Haas principle or prece-
dence effect, that states that the human listener integrates all sound events
that occur within that time frame. This is a very bold statement from a musi-
cal perspective as musical interpretation and style might at times dictate that
events that are technically simultaneous should be performed with enough
separation between them to clearly exceed the above-mentioned interval. One
well-known and consistent example is the Flamenco’s rasgueado, where the
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harmonic intervals are always performed as a very quick succession. We must
therefore agree on an extended interval based not on a Haas-inspired pursuit
of simultaneity, but on the opposite idea of what would not be a melodic in-
terval. With this in mind we can safely say that is untypical for a performer
to go faster than a eighth-note on a 120 bpm tempo which would point us to
a 63 ms window. This is of course ambiguous and might be prone to error
on fast ornamentations.

Correctly distributing events between voices in a setting where different
voices might have different musical durations and pauses is a subject that
has not yet been successfully solved. Indeed, it is not clear whether the
rules described in the previous section would work with multiple axioms as
a starting point. Due to those yet unsolved questions, for the time being,
the input side of polyphony has been dropped and the user would only be
allowed to play monophonically.

It was however interesting from a musical standpoint that the output
could be done polyphonically with the aid of an automatic accompaniment.
A simplification of the model proposed by Schwarz et al.[13], based on HMM,
has been used in order to extend the system, using a low and sparsely-
generated voice.

5 Implementation

The system was implemented in Max/MSP, making use of the in-build Jit-
ter object jit.linden. A first patcher parses the input and does the scale
analysis, and feeds the finished list to the patcher responsible for the pro-
ductions (shown in Fig. 1). The productions are fed to a third patcher that
converts them to MIDI and sends them as UDP packages to SuperCollider,
where a simple implementation of a quasi-sinusoidal synth that resembles a
vibraphone is used as a sound module.

An example we fed the system with Shostakovich’s aforementioned sig-
nature DSCH (used musically as D, Eb, C, B) played as a pair of quavers
followed by a pair of semi-quavers of equal velocity. The input patcher in-
terprets the motif as played in C harmonic minor and constructs the set
of productions already presented as a sparse stochastic transition matrix in
Section 2, presented below in a more readable condensed form for those not
wanting to dive in stochastic processes theory:

P =



P11 : C
70%−→B P12 : C

20%−→G P13 : C
10%−→GF

P21 : D
80%−→G P22 : D

20%−→AbG

P31 : Eb
80%−→B P32 : Eb

20%−→C

P41 : F
70%−→CFG P42 : F

20%−→C P43 : F
10%−→GAb

P51 : G
70%−→C P52 : G

20%−→AbEb P53 : G
10%−→CFD

P61 : Ab
80%−→DC P62 : Ab

20%−→C

P71 : B
70%−→Eb P72 : B

20%−→Ab P73 : B
10%−→F


.

The result can be heard at http://www.stereosonic.org/lindenmayer.
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Fig. 1. Max/MSP main patcher

6 Concluding remarks

Many alternative ways do exist of music composition tied to fractals, cf.
Johnson[2] and Skiadas[14], for instance. OL-systems as used in our exam-
ples generate appealing musical productions as far as letters map onto words
of small size. Otherwise, the system must be interrupted by the user, since
a rather small number of iterations generates a musical output that is too
clumsy. The organisation of natural languages, and namely of the mating
songs of birds and insects, seems to incorporate a strategy of long range de-
pendence axed on a sequence of modulated shortcut Markov-type memories.
Hence, for more elaborated vocabularies and mappings, it would be sensible
to use only the r last letters from the (k-1)-th iteration to map onto the k-th
iteration, instead of using all the letters as described for OL-systems. This
is easily implemented using an endletters application Er : V −→ A selecting
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the r-endletters of any given word,

w = `1`2 · · · `k
Er7→ Er(w) = `k−r+1`k−r+2 · · · `k−1`k,

so that the memory of the initial k − r letters is erased and the musical
composition will flow more naturally.

Research partially supported by FCT/OE. The author is grateful to Professors
Álvaro Barbosa (UCP) and Joshua D. Reiss (QMUL) for generous guidance,
stimulating discussions and encouragement.
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