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Abstract. The planar passive compass-gait biped robot on sloped surfaces is the
simplest model of legged walkers. It is a two-degrees-of-freedom impulsive mechan-
ical system known to exhibit, in response to an increase in the slope angle of the
walking surface, a sequence of period-doubling bifurcations leading to chaos before
falling down at some critical slope without any explanation. The fall is found to be
occured with the abrupt destruction of chaos. We showed recently that a cyclic-
fold bifurcation is also generated in the passive walking patterns of the compass
robot. The aim of this paper is to show that the fall of the passive compass-gait
biped robot occurs via a global bifurcation known as boundary crisis. We show
that the cyclic-fold bifurcation is the key of the occurrence of such boundary crisis.
We demonstrate how the same period-three unstable periodic orbit generated from
the cyclic-fold bifurcation causes the abrupt death of chaos in the passive dynamic
walking and hence the fall of the compass-gait biped robot.

Keywords: Compass-gait biped robot, Passive dynamic walking, Chaos, Cyclic–
fold bifurcation, Boundary crisis..

1 Introduction

In the last decades, the robotic community has shown increasing interest
in the field of biped robots. A key idea for natural and efficient walking
of a biped robot is utilizing the dynamical property of the passive dynamic
walking. This is a walking method which was first studied by McGeer in 1990
by exploring the behavior of the simplest passive biped robot known as the
point-foot walker [1]. He showed in numerical simulations and experiments
that such biped walking robot without controllers and actuators can walk
steadily, stably and hence passively down some shallow inclined surfaces.

In addition, it is shown in several studies on passive-dynamic biped robots
that the passive walk exhibits only a period-doubling route to chaos with re-
spect to an increase in the slope angle of the ground. Such behavior transient
is demonstrated with the point-foot walker [2], [9], the compass-gait model
[3], [6], [8], the kneed models [4], and the torso-driven biped models [5], [13].
In this work, we deal with the compass-gait biped robot. Recently, we showed
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that the compass-gait biped exhibits also a cyclic-fold bifurcation where two
period-three limit cycles (one stable and another unstable) meet and anni-
hilate each other [7]. Moreover, the period-three stable limit cycle exhibits
its own scenario of period-doubling bifurcations leading to the formation of
chaotic gaits. In all these studies, the conventional period-doubling route to
chaos will cause the sudden fall of the biped robot without any explanation.
The only argument stressed is that the bipedal walk becomes completely
chaotic which coincides with high speed of progression as well as with impor-
tant step length of the compass-gait biped robot.

Walk models of biped robots are characterized by an impulsive nonlinear
hybrid dynamics. A strong motivation to study such dynamics is the rich
variety of surprising phenomena and the extremely complex behavior that
possesses no counterpart in other nonlinear and linear systems. Examples
are strange attractors, bifurcation routes to chaos and fractals structures. In
this work, we focus on crisis [10] as a global bifurcation route to chaos in
passive dynamic walking of the compass-gait biped robot. In the context of
dynamical systems theory, a crisis is a global bifurcation provoking an abrupt
change in a chaotic attractor as some control parameter of the system is varied
[10]. In nonlinear dissipative systems, the most dramatic type of sudden
change in chaotic attractor is a boundary crisis, in which a chaotic attractor
abruptly disappears from the phase portrait [11]. Other important changes in
chaotic attractor include interior crisis in which a strange attractor undergoes
a sudden increase or decrease in size [12]. Both types of crisis involve in fact
the tangency (or collision) of a chaotic attractor with an unstable periodic
orbit. For the interior crisis, the tangency takes place in the interior of
the basin of attraction of the chaotic attractor, whereas for the boundary
crisis the tangency takes places on the boundary of the basin of attraction
of the chaotic attractor. It is known so far that chaos and the boundary
crisis appears in many complex nonlinear systems [14]-[20] . However, chaos,
bifurcation and crisis have not been fully investigated in dynamic walking of
biped robots. Recenlty, we revealed the presence of an interior crisis as route
to chaos in the passive dynamic walking of the compass-gait biped robot and
the torso-driven biped robot [21].

This work focuses only on the boundary crisis in the passive dynamic
walking of the compass-gait biped robot. The aim of this study is to show that
the onset/destruction of bipedal chaos can occur via the boundary crisis. We
will demonstrate how the period-three unstable limit cycle born at the cyclic-
fold bifurcation generates a double boundary crisis as a bifurcation parameter
(slope angle) varies. We will show how such boundary crisis provokes the
sudden death of a chaotic attractor and its basin of attraction causing hence
the abrupt fall of the passive biped robot while walking down a sloped surface.

This paper is organized as follows: the compass-gait biped robot and its
passive hybrid dynamics are presented in Section 2. Section 3 reveals the
boundary crisis exhibited in the passive dynamic walking causing the fall of

156

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



the compass-gait biped robot. Conclusion and future works are given in the
last Section 4.

2 Passive hybrid dynamic of the compass-gait biped

robot

2.1 The compass-gait biped robot

In order to investigate boundary crisis in passive dynamic walking, we utilize
the compass-gait biped robot [3], [21] shown in Figure 1 descending a slope
of angle ϕ. The compass robot is a passive two-degrees-of-freedom biped has
a frictionless hip joint connecting two straight identical legs: a stance leg
and a swing leg. The two legs are modeled as rigid bars. The hip has a
mass mH and each leg has a lumped mass m located at a distance b from
the hip. While walking, the compass-gait biped robot is powered only by
gravity without any actuation, and with an initial push it walks passively
and indefinitely down the walking surface.

Fig. 1. A passive compass-gait biped robot down a sloped ramp of angle ϕ. On
the right, physical parameters of the biped are listed.

The passive dynamic walking of the compass-gait biped robot as it goes
down a sloped surface is constrained in the sagittal plane. It is made up
primarily of two phases: a swing phase and a very instantaneous impact
phase. The swing phase describes that one leg is fixed on the ground as a
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pivot and the other leg swings above the ground while walking down the slope
of angle ϕ. The impact phase describes the instant when the swing leg strikes
the ground after passing the stance leg. We make the standard assumptions
that the impact is perfectly inelastic and that there is no slipping at the
foot/ground contact. The bipedal walk configuration is determined by the
support (stance) angle θs and the nonsupport (swing) angle θns. The positive
angles are computed counterclockwise with respect to the indicated vertical
lines.

2.2 Hybrid dynamics of the compass-gait biped robot

The model of the passive dynamic walking of the compass-gait biped robot
consists of nonlinear differential equations for the swing stage and algebraic

equations for the impact stage [3]. Let θ =
[

θns θs
]T

be the vector of
generalized coordinates. Under some standard assumptions noted before,
the motion of the compass-gait biped robot can be described by the following
hybrid nonlinear dynamics:

J (θ)θ̈ +H(θ, θ̇) + G(θ) = 0 if θ /∈ Γ , (1)

θ+ = Rθ− and θ̇+ = S θ̇− if θ ∈ Γ . (2)

The first equation represents the swing phase, whereas the second one
translates the impulsive impact stage. In (2), subscribes + and − denote just
after and just before the impact phase, respectively. Given the slope angle ϕ
of the walking surface, the impact surface Γ in (1) and (2) is defined by:

Γ =
{

θ ∈ ℜ2 : h(θ) = θns + θs + 2ϕ = 0
}

, (3)

Matrices in (1) and (2) are given by:

J (θ) =

[

mb2 −mlbcos(θs − θns)
−mlbcos(θs − θns) mH l2 +m(l2 + a2)

]

,

H(θ, θ̇) =

[

mlbθ̇2ssin(θs − θns)

−mlbθ̇2nssin(θs − θns)

]

, G(θ) = g

[

mbsin(θns)
−(mH l +m(a+ l))sin(θs)

]

,

R =

[

0 1
1 0

]

, S = (Q+(α))−1 Q−(α),

Q−(α) =

[

−mab −mab+ (mH l2 + 2mal)cos(2α)
0 −mab

]

,

Q+(α) =

[

mb(b− lcos(2α)) ml(l − bcos(2α)) +ma2 +mH l2

mb2 −mblcos(2α)

]

, and α is

the half-interleg angle expressed by α = 1

2
(θs − θns).

3 Boundary crisis in the passive compass-gait model

It is well-known so far that the passive dynamic walking of the compass-gait
biped robot exhibits only a period-doubling scenario route to chaos as the
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Fig. 2. Bifurcation diagram: step period as a function of slope angle ϕ.

slope angle ϕ increases [3]. The bifurcation diagram given by Figure 2 re-
veals such route to chaos (blue attractor A1). The conventional attractor is
observed for slopes between 0deg and 5.201deg. At this largest slope angle,
the attractor A1 is terminated and the compass-gait biped robot is found to
fall down for higher slopes and only unstable gaits exists. However, this fall
at such slope is not understood yet and the only reason given until nowa-
days is that the compass robot walks chaotically with high speeds and long
steps which leads to its fall at some given slope which is here found to be
5.201deg. Figure 3 shows the conventional chaotic attractor A1 for the slope
angle ϕ = 5.201deg. Accordingly, for slopes higher than this critical value,
the chaotic attractor does not exist and the biped robot falls down. Recently,
we revealed the coexistence of another attractor with the conventional one
in the compass-gait model [7]. Figure 2 shows this new attractor A2 which
is born via a cyclic-fold bifurcation (marked by CFB in Figure 2) at which
two period-three gaits, one stable and another unstable, meet and annihilate
each other. The cyclic-fold bifurcation is created at the slope ϕ = 3.8734deg.
Obviously, the attractor A2 is developed here to coexist with the period-
one attractor A1. Furthermore, it is clear that the period-three stable gait
generates its own scenario of period-doubling route to chaos. Thus, at the
slope angle ϕ = 4.0035deg, the chaotic attractor A2 is suddenly disappeared
and the gait switches to the period-one stable gait. Figure 4 plots the new
chaotic attractor A2 for the slope angle ϕ = 4.0035deg. Accordingly, in the
passive walking patterns of the compass-gait biped robot, two co-existing
period-doubling cascades route to chaos are observed. As mentioned before,
the resulting period-three stable gait of the attractor A2 undergoes a cas-
cade of period-doubling bifurcations which lead to the formation of chaotic
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Fig. 3. Chaotic attractor of passive dynamic walking of the compass-gait biped
robot down a slope of angle ϕ = 5.201deg.
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Fig. 4. Chaotic attractor of passive dynamic walking of the compass-gait biped
robot down a slope of angle ϕ = 4.0035deg.

behaviors. The chaotic attractor A2 of Figure 4 is destroyed abruptly at
ϕBC = 4.0035deg with the unstable period-three orbit (p-3 UPO) created by
the cyclic-fold bifurcation. Such event is known as boundary crisis (marked
by BC in Figure 2). Indeed, a deep examination of Figure 2 shows that the
occurrence of the boundary crisis is due to the collision of the chaotic at-
tractor A2 at its boundary with the period-three unstable periodic orbit. We
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emphasize that before the boundary crisis, two attractors A1 and A2 coexists,
each with its own basin of attraction. However, the boundary crisis is found
to kill the chaotic attractor A2 and hence its basin of attraction. Accordingly,
only the conventional attractor A1 is survived after this boundary crisis.

In addition, it is evident that the p-3 UPO survives the first boundary
crisis that causes the destruction of A2 and continues to participate in the
secondary boundary crisis that causes the abrupt destruction of the chaotic
attractor A1 at ϕBC = 5.201deg given by Figure 3. Hence, such double
boundary crisis is generated in order to terminate the chaotic attractor A1

and then to cause the fall of the compass-gait biped robot. We stress that the
sudden disappearance/appearance of both chaotic attractors at the two crisis
points involve the same p-3 UPO. Such event is called as a double boundary
crisis [11]. We inform that the p-3 UPO is robust and persists after the
destruction of chaotic attractor A1 where only unstable gaits exist.

4 Conclusion and future works

In this work, we have reported the main cause of the fall of compass-gait
biped robot as it goes down an inclined slope. We have demonstrated that
a global bifurcation known as the boundary crisis is occurred in the passive
dynamic walking causing as consequence the fall. We have shown that a
period-three unstable periodic orbit generated by a cyclic-fold bifurcation is
the key for the characterization of the boundary crisis. We have analyzed in
detail the role played by such unstable periodic orbit in the generation of a
double boundary crisis which takes place to terminate the chaotic attractors
and hence to be the main cause of the fall of the compass-gait biped robot.

In practice, the boundary crisis with its associated sudden death of a
chaotic attractor is qualified as a dangerous event that can occur in nonlinear
dynamics. Accordingly, it is worth mentioning that it will be very interesting
to control such event of boundary crisis in the passive dynamic walking of the
compass-gait biped robot in order to avoid the sudden death of an attractor
and its basin of attraction. The numerical tools developed in this paper can
be applied to the detection of boundary crisis and other nonlinear phenomena
in some other biped robots.

References

1.T. McGeer. Passive dynamic walking. The International Journal of Robotics Re-
search, 9(2): 62-68, 1990.

2.M. Garcia, A. Chatterjee, and A. Ruina. Efficiency, Speed, and Scaling of Two-
Dimensional Passive-Dynamic Walking. Dynamics and Stability of Systems,
15(2):75-99, 2000.

3.A. Goswami, B. Thuilot, and B. Espiau. A study of the passive gait of a compass-
like biped robot: symmetry and chaos. International Journal of Robotics Re-
search, 17(12):1282-1301, 1998.

161

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



4.P. Zhang, Y. Tian, Z. Liu, S. Yang, and R. Tian. Further research and comparison
of gaits for compass-like biped and kneed passive dynamic walker. International
Conference on Intelligent Robotics and Applications, 1216-1226, 2008.

5.T. Narukawa, M. Takahashi, and K. Yoshida. Biped Locomotion on Level
Ground by Torso and Swing-Leg Control Based on Passive-Dynamic Walk-
ing. IEEE/RSJ International Conference on Intelligent Robots and Systems,
4009-4014, 2005.

6.J. S. Moon, and M. W. Spong. Bifurcations and chaos in passive walking of a
compass-gait biped with asymmetries. International Conference on Robotics
and Automation, 1721-1726, 2010.

7.H. Gritli, N. Khraeif, and S. Belghith. Cyclic fold bifurcation route to chaos in
passive bipedal walking. International Conference on Informatics in Control,
Automation and Robotics, 2010, accepted.

8.H. Gritli, N. Khraeif, and S. Belghith. Cyclic-Fold Bifurcation in Passive Bipedal
Walking of a Compass-Gait Biped Robot with Leg Length Discrepancy. IEEE
International Conference on Mechatronics, 2011.

9.A. T. Safa, M. G. Saadat, and M. Naraghi. Passive dynamic of the simplest
walking model: Replacing ramps with stairs. Mechanism and Machine Theory,
42, 1314-1325, 2007.

10.C. Grebogi, E. Ott, and J. A. Yorke. Crises: Sudden Changes in Chaotic At-
tractors and Chaotic Transients. Physica D, 7, 181-200, 1983.

11.A. C.-L. Chian, F. A. Borotto, and E. L. Rempel. Alfven boundary Crisis. In-
ternational Journal of Bifurcation and Chaos, 12(7): 1653-1658, 2002.

12.F. A. Borotto, A. C.-L. Chian, and E. L. Rempel. Alfven Interior Crisis. Inter-
national Journal of Bifurcation and Chaos, 14(7): 2375-2380, 2004.

13.H. Gritli, N. Khraeif, and S. Belghith. Semi-Passive Control of a Torso-Driven
Compass-Gait Biped Robot: Bifurcation and Chaos. IEEE International
Multi-Conference on Systems, Signals and Devices, 2011.

14.L. Hong, Y. Zhang, and J. Jiang. A Boundary Crisis in High Dimensional Chaotic
Systems. Dynamical Systems: Discontinuity, Stochasticity and Time-Delay,
Part 1, 31-36, 2010.

15.H. M. Osinga, and U. Feudel. Boundary crisis in quasiperiodically forced systems.
Physica D, 141, 54-64, 2000.

16.W. Z. Stupnicka, A. Zubrzycki, and E. Tyrkiel. Properties of Chaotic and Reg-
ular Boundary Crisis in Dissipative Driven Nonlinear Oscillators. Nonlinear
Dynamics, 19, 19-36, 1999.

17.W. S. Stupnicka, and K. L. Janicki. Basin boundary bifurcations and boundary
crisis in the twin-well Duffing oscillator: Scenarios related to the saddle of the
large resonant orbit. International Journal of Bifurcation and Chaos, 7(1):129-
146, 1997.

18.H. B. Stewart, Y. Ueda, C. Grebogi, and J. A. Yorke. Double crises in two-
parameter dynamical systems. Phys. Rev. Lett., 75(13):2478-2481, 1995.

19.J. M. T. Thompson, H. B. Stewart, and Y. Ueda. Safe, explosive and dangerous
bifurcations in dissipative dynamical systems. Physical Review E, 49(2):1019-
1027, 1994.

20.J. A. C. Gallas, C. Grebogi, J. A. Yorke. Vertices in parameter space: double
crises which destroy chaotic attractors. Phys. Rev. Lett., 71(9):1359-1362, 1993.

21.H. Gritli, S. Belghith, and N. Khraeif. Intermittency and Interior Crisis as Route
to chaos in Dynamic Walking of two Biped Robots. International Journal of
Bifurcation and Chaos, 2011, submitted.

162

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



Flux Optimization in Field Oriented   

Control for Induction Machine Drives 
 

Said GROUNI, Madjid KIDOUCHE 

 

M’Hamed Bougara University of Boumerdes, Faculty of sciences, Physics Department, Boumerdes,  35000, Algeria  

E-mail: said.grouni@yahoo.com , kidouche_m@hotmail.com 

 
Abstract: This paper presents a novel strategy to control an induction machine drives with optimum rotor flux that minimizes the power 

loss under practical currents, voltages and position measurements. Based on strategy of flux optimization method, the implementation of 

indirect field oriented control for induction machine drives is realised. The improved practical control models are evaluated and 

confirmed through experiments using an induction machine (1.5kW/380V). Simulations tests are provided to evaluate the performance 

of the control scheme system.  
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1. Introduction 
Induction motors are, without any doubt, the most used in more industrial applications, G.K. Singh, 2005 [1]. Nowadays, 

loss optimization with optimum flux control is a topic in electrical drives for both scalar controlled and vector controlled 

induction motor drives. Different approaches have been recently proposed in the literature A.C. Machado and all, 2008 [2], R. 

Marino and all, 2008 [3], J.Q. Ren and all, 2008 [4], C. Thanga Raj and all, 2009 [5], S. Abourida and all, 2009 [6]. Adaptive 

control, fuzzy logic and neural networks and real time power loss with loss minimization techniques are new being 

increasingly applied to optimization control variable frequency drives, S. Abourida and all, 2009 [6], A.M. Bazzi and all, 2009 

[7]. The philosophy of optimization flux control is based on using optimum flux condition that minimizes losses with 

respect to air gap flux at steady state operation G.K. Singh, 2005 [1], A.M. Bazzi and all, 2009 [7],  S.C. Englebreston and all, 

2008 [11], R. Leidhold and all, 2002 [12]. However, to keep the drive performance, some physical limitations must be taken 

into account, S. Grouni and all, 2008 [9], G. W. Chang and all, 2001 [10], B. Wang and all, 2007 [17], A.S. Bezanella and all, 2001 

[18]. 

The first restriction is concerned with the stator current amplitude. As the induction motor flux is decreased, depending on 

the load torque condition. The stator current may be bigger than its rated value, what cause the destruction of the drive by 

over current. 

The second limitation is that the flux must not be decreased null. At each load torque, there exists a necessary minimum 

flux to keep the speed at the reference command value. In field oriented vector control induction motor drive this 

minimum flux does not only depend on the flux current ids, but also on the torque current iqs as it will be shown later. 

Other important aspect is the loss of electromagnetic torque in the induction motor. As the flux is decremented, the torque 

capability is reduced, F.F. Bernal and all, 2000 [19]. 

In this paper, these restrictions are studies analytically for an indirect vector controlled induction motor drives. Finally, 

different models of control are proposed at steady state to avoid the control problem of the drive. 

This paper presents the problem formulation of control optimum rotor flux that optimizes total energy under practical 

measurements variables of currents, voltages and position. Based on the mathematical dynamic model that used the 

induction motor model, physics-based methods that search for the minimum power loss regardless of the motor model or 

parameters. The practical application of our control models are evaluated and confirmed through experiments using an 

induction motor (1.5kW/380V). Simulations and experimental investigation tests are provided to evaluate the consistency 

and performance of the proposed control model. 

 

2. Mathematical model of control flux formulation  
The mathematical model of vector controlled induction motor drive is available in literature J. Holtz and all, 2002 [13], J. 

Holtz and all, 2006 [14], R. Krishnan, 2001 [16].  The mathematical function of motor flux and load torque is considered in (d, 

q) reference frame with synchronously rotating speed with stator current [15], R. Krishnan, 2001 [16], P. Vas, 1990 [21]. 

In this analysis of mathematical model, we are assuming of parasitic effects such as hysteresis, eddy currents and magnetic 

saturation are neglected. And an ideal behaviour of inverter, what implies the actual motor currents are equal to the 

reference commands therefore, the load torque at steady state must be equal to the electromagnetic torque developed by 

the machine. The function of d,q stator currents is defined: 

   22

qsdss iiI                                                              (2.1) 

where dsi  is the direct current or flux current component, and qsi  is the quadrate current or torque current component and 

sI is the current circulation by the stator windings. Moreover, the electromagnetic torque emC  which is the same as the 

load torque at steady state condition can be expressed by: 
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)( qsdstem iikC                                                                        (2.2) 

where tk  is a positive number.        

Manipulating both equations (2.1) and (2.2), yields the stator current amplitude as a function of load torque and flux 

current component: 

 2
2

ds

dst

em

s i
ik

C
I 













                                                           (2.3) 

If the load torque is assumed to be constant at steady state, the minimum of the stator current function (2.3) is achieved 

when: 

  

 
 

 2
2

32

2

ds

dst

em

dst

em

ds

ds

s

i
ik

C

ik

C
i

di

Id





















                                                         (2.4) 

which yields the relative minimum condition when the stator flux current is: 

t

em

Ids
k

C
i

s


min

                                                                       (2.5) 

 

 This minimum existence condition when (2.4) is equal at zero requires the second derivative of equation (2.3) will be 

positive for every torque which tk is constant number.  

However, if the flux current is too small, the stator current amplitude may become bigger than its rate value. It can be 

observed that at each flux current, the stator current is a function depending on the torque.  At light loads, the stator current 

with reduced flux is smaller than the corresponding with the rated flux. In this case, special care must be taken in order to 

avoid the destruction of the drive, as well as the motor, by over current. 

 

3. Minimum flux function of control problem 
At steady state condition, the allowed maximum current must be the rated current to avoid the destruction of the drive as 

well as the motor. The expression of stator current is given by: 

rated

RMSss II 2                                                                                    (3.1) 

  

As before, developed and manipulating equation (2.1), (2.2) and (2.3) which yields a biquadratic equation, whose positive 

solutions are: 

2

4

2

42
















t

em

ss

ds

k

C
II

i                                                              (3.2) 

  Therefore, the expression for the necessary minimum flux current at each load torque is: 

 

2

4

2

42
















t

em

ss

ds

k

C
II

i                                                              (3.3) 

It means the lowest value of the stator flux current needed to develop the torque required by the load. 
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Finally, the flux current reference must always be:  

22

qssds iIi                                                                                   (3.4) 

at every torque in order to keep the drive performance. 

 

4. Model loss of electromagnetic torque control  
 

The maximum current circulating by stator winding is given by: 

max

22

sqsdss IiiI                                                                      (4.1) 

 If we consider the maximum stator current as its rated value, we get the expression: 

   

   22max

22max

dsratedsdsrated

dssds

iem

iem

iIi

iIi

C

C

rated
ds

ds




                                                   (4.2) 

And  

1

1

2
max

2
max

2
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


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
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


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s
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I
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I

i
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C

C

rated
ds

ds

                                                  (4.3) 

This expression represents the loss of electromagnetic torque capability, as a function of flux current. In other words, this 

expression stands for the maximum available torque at each flux. At rated torque, the flux current cannot be smaller that its 

rated value, and in theory, at no load, the flux can be decreased to zero. In an actual drive, this would suppose the 

demagnetization of the machine, causing the motor stop. 

 

5. Optimization power loss in vector controlled motor 
 

The optimization power loss of an indirect vector controlled induction motor drives including the electrical and 

magnetically losses and mechanical losses are the most used in the literature A.C. Machado and all, 2008 [2], J.Q. Ren and 

all, 2008 [4], A.M. Bazzi and all, 2009 [7], S. Grouni and all, 2008 [9], F. Abrahamsen and all, 1997 [20], P. Vas, 1990 [21]. 

In order to calculate the power loss, the following model from is used:  

qsqsdsdse ivivP                                                                                            (5.1) 

The expression of electromagnetic total power is yield in dynamic regime: 
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The total power loss is given by:  
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where ( s , ) are the synchronous and mechanical rotor speeds of machine, ( sR , rR ) are resistances of stator and rotor, 

( ,dsi qsi ) and ( dri , qri ) are the d-q axis equivalent stator and rotor currents, ( ds , qs ) and ( dr , dr ) are the d-q axis 

flux linkages of the stator and rotor. 

The solution of optimization problem can easily show that optimal flux depends only of differential flux function. 

Optimum operation point, corresponding to minimum loss is obtained by differentiating (14) upon the component of the 

rotor flux, where   is a positive number: 
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The optimal control is then found to be: 
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The Fig.1 shows the block diagram of control drives. It consists of the following equipment: 

-  An industrial variable frequency drive (inverter-converter) of 1.5 kW that provides a three phase voltage with variable 

magnitude and frequency. 

-   A three phase squirrel cage induction motor, with the following nameplate data in appendix.  
 

 

    

 

       

 

 

 

 

 

                                                     Fig.1. Scheme of block diagram control  

 

To validate the proposed control scheme, the numerical results of stator current and losses are obtained as follows: 

 

 
                                                              a) Stator current response       b) Power loss response 

 

                                                         Fig.2. Simulation results with control flux for optimization loss 

 

In Fig.2, the behavior of the drive is shown under low load condition. It shows simulation results in indirect field oriented 

control of respectively the power loss at nominal and optimum fluxes operating in both transient and steady state. The 

graph shows successfully the waveform of stator current with imposing an optimum flux reference; we have obtained an 

improvement control loss optimization.  

 

6. Optimization loss with current function  qsds ifi   

The loss optimization is given by using the objective function linking two components of stator current for a copper 

loss minimization. The expression of power losses is given by: 
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In steady state, the stator current expression at minimum power loss is: 
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                                                                                   (6.2) 

In Fig.3, simulation results of stator current and power loss are presented. In order, to confirm the proposed control, we are 

taking into account of deviation motor parameters. The adaptation on line of rotor resistance is applied. The torque and 

speed responses in transient and steady state are obtained with rotor flux control. The responses of power loss have shown 

a reduced power loss. 

 
                                                         a) stator current response          b) power loss response 

 
                                                         c) speed response                     d) torque response 

 

                                                       Fig.3. Simulation results with flux variation control 
 

The comparison between loss minimization in Fig.2 and Fig.3 shows the improved response with iron and core losses 

parameters variations. 

 

 

7. Optimization loss using the function  ,qsds ifi   

Loss optimization is presented by introducing the mechanical phenomena. Copper and iron losses are given: 
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The expression of stator current that gives the minimum loss at the steady state is given by: 
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  The improved control design for an optimal process rotor flux is given by the following scheme block diagram: 

 

 

 

 

 

 

 

 

                                                   Fig. 4. Optimal control system for minimization loss 
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 The control system proposed consists of two parts: one for keeping the speed at the reference value in steady state, 

combined with the continuous search for the point of minimum electric losses, and the other to create the optimal transient 

process. In this control, we are taking into account the motor current limitation restriction, which is the limit current fixed 

for the motor, not higher than the minimum between the maximum admissible currents of the inverter and the motor. In 

order, this optimal flux control is based on the variation value of the rotor electromagnetic time constant, which this 

constant is adapted in the control induction drives.    

In Fig.4, we represent the simulation responses of stator current and power loss also the response of speed and torque. In 

order, the speed response follows perfectly the reference in steady state. The reduced losses are obtained by including the 

mechanical friction.  
 

 
                                                          a) Stator current response        b) Power loss response 

 
                                                          c) Speed response                       d) Torque response 

 

                                                        Fig. 4. Simulation responses including mechanical phenomena  

 

8. Conclusion 
 

In this paper, we have presented the loss optimization in indirect field oriented control with optimum flux for induction 

motor drives.  We are taking account of parameters variation. We are obtained the optimum flux in real time. Simulation 

responses were presented. Finally, this control achieves a good performance of induction machine drives.  

 

Appendix  
induction motor parameters: Pn= 1.5 kW, Un= 380/220 V, Ωn= 1420 rpm,  In= 3.64 A(Y)  6.31A(Δ), Rs= 4.85Ω, Rr= 3.805Ω, Ls= 

0.274 H, Lr= 0.274 H, p= 2,  Lm=  0.258 H, J= 0.031 kg.m2, fr= 0.008 Nm.s/rd. 
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Abstract: Ranking of fuzzy numbers plays a very important role in linguistic decision-

making and some other fuzzy application sys- terms. Several strategies have been 

proposed for ranking of fuzzy numbers. Each of these techniques has been shown to 

produce non-intuitive results in certain case. This paper proposes a new similarity 

measure to calculate the degree of similarity of generalized fuzzy numbers. The 

similarity measure is developed by integrating the concept of centre of gravity points and 

fuzzy difference of distance of points of fuzzy numbers. A fuzzy description for 

difference of distances between fuzzy numbers in its turn exploits appropriate similarity 

measure between the pattern sets when compared with other measures available. It 

greatly reduces the influence of inaccurate measures and provides a very intuitive 

quantification. Several sets of pattern recognition problems and a fingerprint-matching 

problem are taken to compare the proposed method with the existing similarity measures. 

Our approach gives a better and more robust similarity measure. 

Keywords: Magnitude of fuzzy numbers, Parametric form of fuzzy numbers, Ranking, 

Trapezoial fuzzy numbers. 

 

1. Introduction 
Ranking of fuzzy numbers is an important component of the decision process in 

many applications.  Many fuzzy ranking indices have been proposed since 1976. 

In 1976 and 1977, Jain [1,2] proposed a method using the concept of 

maximizing set to order the fuzzy numbers. Jain’s method is that the decision 

maker considers only the right side membership function.  A canonical way to 

extend the natural ordering of real numbers to fuzzy numbers was suggested by 

Bass and Kwakernaak [3] as early as 1977. Dubios and Prade 1978 [4], used 

maximizing sets to order fuzzy numbers. In 1979, Baldwin and Guild [5] 

indicated that these two methods have some disturbing disadvantages. Also, in 

1980, Adamo [6] used the concept of α-level set in order to introduce α-

preference rule. In 1981 Chang [7] introduced the concept of the preference 

function of an alternative. Yager in 1981 [8, 9] proposed four indices which may 

be employed for the purpose of ordering fuzzy quantities in [0, 1]. Bortolan and 

Degani have been compared and reviewed some of these ranking methods [10]. 

Chen and Hwang [11] thoroughly reviewed the existing approaches, and pointed 

out some illogical conditions that arise among them. Chen [12], Choobineh [13], 

Cheng [14] have presented some methods, and also more recently numerous 

ranking techniques have been proposed and investigated by   Cha and Tsao [15] 

and Ma, Kandel and Friedman [16]. Nowadays many researchers have 

developed methods to compare and to rank fuzzy numbers. Some of those 

methods are counter-intuitive and non-discriminating [17, 18, 19, 20, 21] and 

recently some methods based on different distance functions have been 
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introduced for ranking of fuzzy numbers [22, 23, 24, 25, 26, 27]. In 2007 Asady 

and Zendehanm [28] employed distance minimization to rank fuzzy numbers. 

Then Abbasbandy and Hajjari [24] found a shortcoming on their method, 

therefore they presented a new method for ranking trapezoidal fuzzy numbers.  

In 2010 Asady [29] revised the distance minimization method and introduced 

epsilon-neighborhood as a development of distance minimization. Now it is 

found that there is a drawback on their correction. 

The rest of the paper is organized as follows. Section 2 contains the basic 

definitions and notations use in the remaining parts of the paper. Section 3 

includes a new method to rank fuzzy numbers and a numerical example to 

compare the proposed method with the previous one. The paper is concluded in 

Section 4. 

 

2. Back ground Information 

 
2.1 Defiition 

First, In general, a generalized fuzzy number A  is membership )(xA  can be 

defined as [2] 



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                                                       (1) 

Where 10   is a constant, and    ,0,: baLA ,  

   ,0,: dcRA   are two strictly monotonical and continuous mapping 

from R  to closed interval  ,0 . If 1 , then A is a normal fuzzy number; 

otherwise, it is a trapezoidal fuzzy number and is usually denoted by 

),,,,( dcbaA    or ),,,( dcbaA   if 1 .  

In particular, when cb  , the trapezoidal fuzzy number is reduced to a 

triangular fuzzy number denoted by ),,,( dbaA   or ),,( dbaA   if 

1 .Therefore, triangular fuzzy numbers are special cases of trapezoidal 

fuzzy numbers. 

Since AL and AR  are both strictly monotonical and continuous functions, their 

inverse functions exist and should be continuous and strictly monotonical. Let 

   ,0,:1  baLA  and    ,0,:1  baRA  be the inverse functions of 

)(xLA and )(xRA , respectively. Then )(1 rL A


 and  )(1 rR A


 should be 

integrable on the close interval  ,0 . In other words, both drrLA )(
0

1






 and 
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drrRA )(
0

1






 should exist. In the case of trapezoidal fuzzy number, the inverse 

functions )(1 rL A


 and )(1 rR A


 can be analytically expressed as 

/)()(1 rabarLA 

     10                                                             (2) 

/)()(1 rcddrRA 

    10                                                             (3) 

The set of all elements that have a nonzero degree of membership in A , it is 

called the support of A , i.e. 

 

Supp  0)(|)( xXxA A                                                                      (4) 

      

The set of elements having the largest degree of membership in A , it is called 

the core of A , i.e. 








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Xx

AA ALxXxACore )(sup)(|)(                                                                  (5) 

In the following, we will always assume that A  is continuous and bounded 

support Supp )(A . The strong support of A  should be Supp  daA ,)(  . 

 

2.1 Definition  

A function    1,01,0: s   is a reducing function if is s  increasing and 

0)0( s  and 1)1( s . We say that s is a regular function if 

2/1)(
1

0
 drrs . 

 

 

2.2  Definition  

If  A   is a fuzzy number with r-cut representation,  )(),( 11 rRrL AA


 and s is a 

reducing function, then the value of A  (with respect to s); it is defined by 

drrRrLrsAVal AA
 

1

0

11 )]()()[()(
                                                             (6) 

2.3 Definition  

If A  is a fuzzy number with r-cut representation  )(),( 11 rRrL AA


, and s is a 

reducing function then the ambiguity of A  (with respect to s) is defined by 

drrLrRrsAAmb AA
 

1

0

11 )]()()[()(
                                                            (7)                               

   

2.4 Definition  

The addition and scalar multiplication of fuzzy numbers are defined by the 

extension principle and can be equivalent represented in [30, 31, 32] as follows.  
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For arbitrary  )(),( 11 rRrLA AA

  and  )(),( 11 rRrLB BB

  we define 

addition  BA  and multiplication by scalar 0k  as 
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                                                                  (8)                                                      

To emphasis the collection of all fuzzy numbers with addition and 

multiplication as defined by (8) is denoted by E, which is a convex cone. The 

image (opposite) of  ),,,( dcbaA   is ),,,( abcdA   (see [32, 

33]). 

 

3. New similarity measure for triangular fuzzy numbers 

Let ),,( 321 aaaA   and ),,( 321 bbbB   be two arbitrary triangular fuzzy 

numbers. We define the distance between A  and B as 

4

2

4

2
),( 321321 bbbaaa

BAd
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                                                    (9) 

Moreover, maximum and minimum of a triangular fuzzy number will be defined 

as 

      332211 ,max,,max,,max),max( bababaBA 

      332211 ,min,,min,,min),min( bababaBA   
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3

321 aaa
xA


  as the centroid point of fuzzy 

number M .  

Now let nAAA ,...,, 21  are triangular fuzzy number. The new index for each 

fuzzy number is  
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i
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AIndex 
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min
                                                           (10) 

Consequently the ranking order will be according to the following relation 

NM IndexIndex   if and only if .NM   

 

3.1 Example 

Consider three triangular fuzzy numbers )7,6,9.5(),7,6,5(  BA  

and )7,6,6(C . 

we can get that 

      )7,6,6()7,7,7max,6,6,6max,6,9.5,5(maxmax A

      )7,6,5()7,7,7min,6,6,6min,6,9.5,5(minmin A  
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Hence the ranking order is CBA  . 

To compare the proposed method with some of previous method 

we refer the reader to Table 1. 

 

 

 

 

 

 
 

 

 

 

 

 

 

175

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



Table. 1 

Fuzzy 

number 

Method 

A B C 

Cheng,CV-

index 0.028 0.0098 0.0089 

Chu and 

Tsao 3 3.126 3.085 

Yager 

36.03 39.69 40.07 

Lee and Li 

6 6.30 6.33 

Asady and  

Zendehnam 
6 6.22 6.25 

Chen and 

Hsieh 6 6.15 6.17 

  

4. Conclusion 
With the increasing development of fuzzy set theory in various scientific fields 

and the need to compare fuzzy numbers in different areas, the method can 

provide results currently ranking methods with ease and less time to the very 

useful and will be applied. In this research an index for ranking fuzzy numbers, 

which introduced the features and needs of researchers in this field will be 

useful.  
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Abstract. GRS 1915+105 is prominent black hole system exhibiting variability
over a wide range of time scales and the light curves from the source have been
classified into 12 temporal states. Here we undertake an analysis of the light curves
from all the states using three important quantifiers from nonlinear time series
analysis, namely, the correlation dimension (D2), the correlation entropy (K2) and
singular value decomposition (SVD). An important aspect of our analysis is that,
for estimating these quantifiers, we use algorithmic schemes which we have proposed
recently and tested successfully on synthetic as well as practical time series from
various fields. We show that nearly half of the 12 temporal states exhibit deviation
from randomness and their complex temporal behavior can be approximated by
a few (3 or 4) coupled ordinary differential equations. Based on our results, the
12 states can be broadly classified into three from a dynamical perspective: purely
stochastic with D2 tending to infinity, affected by colored noise and those which are
potential candidates for deterministic non linearity with D2 ≤ 4. Our results could
be important for a better understanding of the processes that generate the light
curves and hence for modeling the temporal behavior of such complex systems.
Keywords: Time Series Analysis, Applied Chaos, Black Hole Binaries.

1 Introduction

Most of the systems in Nature are described by models which are inher-
ently nonlinear. Since the discovery of deterministic chaos a few decades
back and the development of various techniques in subsequent years, there
remained the exciting prospect of a better understanding of the complex be-
havior shown by various natural systems in terms of simple nonlinear models.
A large number of techniques from nonlinear dynamics are routinely being
employed for this purpose. For example, see Hilborn [1] and Lakshmanan &
Rajasekhar [2] for details.

Astrophysical objects are among the most interesting real world syatems
where methods from nonlinear dynamics have been attempted right from the
development of chaos theory. Important examples include the analysis of
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variable stars [3] to understand the nature of variability, the study of the
temporal variations in the sun spot activities [4] and to develop possible
measures to differentiate between AGNs and black holes [5]. One major
limitation regarding the analysis of astrophysical objects is that the only
available information regarding the source is the light intensity variations
emitted by it, called the light curve, over which one has no control. It is a
single scalar variable recorded as a function of time, namely, a time series.
Thus the main task in the analysis is to understand the nature of variability
and to reconstruct the underlying model using the methods of time series
analysis.

A number of computational schemes and measures are used for the non-
linear time series analysis as discussed by many authors [6,7]. The most
important quantifiers among these are the correlation dimension (D2) and
the correlation entropy (K2). We have recently proposed automated algo-
rithmic schemes [8,9] for computation of D2 and K2 from time series based
on the delay embedding technique and applied them successfully to various
types of time series data. In this work, we apply these computational schemes
to analyse the X-ray light curves from a very prominent black hole binary,
GRS 1915+105.

2 Analysis of the Light Curves

Among the most important nonlinearity measures used for the analysis of
time series data are D2 and K2. D2 is often used as a discriminating mea-
sure for hypothesis testing to detect nontrivial structures in the time series.
However, if the time series involves colored noise, a better discriminating
measure is considered to be K2 [10]. We employ surrogate analysis using
both D2 and K2 as discriminating measures and to compute these measures,
we make use of the automated algorithmic schemes proposed by us recently
[8,9]. The scheme involves creation of an embedding space of dimension M
with delay vectors xj constructed from the time series. One then counts the
relative number of data points in the embedded attractor within a distance
R from a particular ith data point

pi(R) = lim
Nv→∞

1

Nv

Nv∑

j=1,j 6=i

H(R − |xi − xj |) (1)

where Nv is the total number of reconstructed vectors and H is the Heaviside
step function. Averaging this quantity over Nc number of randomly selected
centres gives the correlation sum

CM (R) =
1

Nc

Nc∑

i

pi(R) (2)
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Fig. 1. Light curves from the 12 temporal states of the black hole system GRS
1915+105. Only a part of the generated light curve is shown for clarity.

The correlation dimension D2(M) is then defined to be,

D2 ≡ lim
R→0

d(logCM (R))/d(log(R)) (3)

which is the scaling index of the variation of CM (R) with R as R → 0. In
our scheme, D2 is computed by choosing a scaling region algorithmically.

To compute K2, one measures the ratio at which the trajectory segments
are increased as M increases, using the formal expression

K2∆t ≡ lim
R→0

lim
M→∞

lim
N→∞

log(CM (R)/CM+1(R)) (4)

To generate the surrogate data sets, we apply the IAAFT scheme [11,12] using
the TISEAN package [7]. Finally, in order to visualise the qualitative features
of the underlying attractor, we use the singular value decomposition (SVD)
analysis (for details, see [9]). The SVD analysis computes the dominant eigen
vectors whose projection, called the BK projection, shows the reconstructed
attractors from the time series. Here we use the TISEAN package to generate
the SVD plots.

The black hole source under investigation in this work, GRS 1915+105,
is unique among all such sources in that it shows a wide range of variability
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Fig. 2. Surrogate analysis with D2 as a discriminating measure for the light curves
from four states of GRS 1915+105. Surrogates are represented by dashed lines
without error bar. Note that the null hypothesis can be rejected in all cases except
the γ state.

in the light curves. Belloni et al. [13] have classified the light curves into
12 spectroscopic classes based on the RXTE observations. The nature of the
light curves changes completely as the system flips from one temporal state
to another. We have chosen a representative data set from each temporal
class and extracted continuous data streams 3200 seconds long from it. The
light curves were generated with a time resolution of 0.5 seconds resulting
in approximately 7000 continuous data points for each class. More details
regarding the data are given elsewhere [14].

Fig.1 shows all the 12 light curves used for the analysis, which are labelled
by 12 different symbols representing the 12 temporal states of the black hole
system. An earlier analysis of these light curves has shown that more than
half of these 12 states deviated from a purely stochastic behavior [15]. Here we
combine the results of D2, K2 and SVD analysis to get a better understanding
regarding the nature of these light curves.

Fig.2 and Fig.3 show the results of surrogate analysis on eight different
states. It is clear that, of the states shown in the the two figures, only two -
γ and φ - show purely stochastic behavior. Of the remaining four states, two
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Fig. 3. Same as the previous figure, with four other states. Again, only one state,
φ, is consistent with noise.

more, namely δ and χ, are found to belong to this category. Thus, only four
out of the 12 states show behavior consistent with white noise in D2 analysis.

It is known that the X-ray emissions from the accretion discs may also
involve colored noise. The colored noise gives a saturated value of D2 and
hence it is difficult to identify it in D2 analysis. For this, we undertake
surrogate analysis with K2 as discriminating statistic. While data involving
nontrivial structures give a saturated value of K2, for pure colored noise,
K2 → 0 as the embedding dimension M is increased. Results of K2 analysis
for four representative states are shown in Fig.4. While the behavior of β, θ
and γ are consistent with earlier D2 analysis, the bahavior of κ suggests that
it is contaminated with colored noise. In fact 3 of the 8 states - κ, λ and
µ - which showed deviation from stochastic behavior in the D2 analysis are
found to be contaminated with colored noise in the K2 analysis.

Finally, we perform a SVD analysis on all the states which clearly shows
the qualitative nature of the underlying attractors. The plot of attractors for
selected states is shown in Fig.5. The most interesting plot is for the ρ state
which shows a typical limit cycle type attractor added with noise. Also, note
that the SVD plot for the κ state has nontrivial appearance, eventhough the
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Fig. 4. Surrogate analysis of the light curves from four states with K2 as the dis-
criminating measure. While the data and the surrogates can be distinguished for
β and θ, κ and γ behaves like colored noise and white noise respectively.

surrogate analysis suggested the presence of colored noise. This may be an
indication that the state is not a pure colored noise. The same behavior is
found for two other states, λ and µ. Thus, these 3 states are likely to be a
mixture of deterministic nonlinearity and colored noise.

Based on our results, the 12 states can thus be divided into 3 broader
classes from the point of view of their temporal properties. It turns out that
some of the states which are spectroscopically different, behave identically
in their nonlinear dynamics characteristics. This may be an indication of of
some common features in the mechanism of production of light curves from
these states.

3 Conclusion

Identifying nontrivial structures in real world systems is considered to be a
challenging task as it requires a succession of tests using various quantitative
measures. Eventhough a large number of potential systems from various
fields have been analysed so far, the results remain inconclusive in most
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Fig. 5. The plot of attractors underlying four states of the black hole system re-
constructed via SVD analysis. Except the φ state, which behaves as a white noise,
all the others indicate the presence of underlying attractors, the most interesting
being the ρ state.

cases. Here we present an interesting example of an astrophysical system,
which we analyse using several important quantifiers of nonlinear dynamics.
We find that out of the 12 spectroscopic states of the black hole system, only 4
are purely stochastic. The remaining states show signatures of deterministic
nonlinearity, with 3 of them contaminated by colored noise. All these 8 states
are found to have D2 < 4 so that their complex temporal behavior can be
approximated by 3 or 4 coupled ordinary differential equations. Based on
our results, the 12 states can be broadly classified into 3 from a dynamical
perspective: purely stochastic with D2 → ∞, affected by colored noise and
those which show deterministic nonlinear behavior with D2 < 4.

KPH and RM acknowledge the financial support from Department of Sci-
ence and Technology, Govt. of India, through a research grant No. SR/SP/HEP-
11/2008.
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