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Abstract. Planar motion of an orbiting dumb–bell having a variable length in a
central field of gravity is under analysis. Within the so-called “satellite approxima-
tion” planar attitude dynamics is described by a non-autonomous equation of the
second order. The rule of the dumb-bell length vibrations implying an existence
of the radial and tangent relative equilibria for any value of the orbit eccentric-
ity is proposed. Stability of the found relativer equilibria and chaoticity for total
dynamics are investigated.

Splitting of separatrices for the perturbed, with respect to the pendulum-like
motions, problem is established. This effect was proved not only for small eccen-
tricities, but also for their finite values. Moreover, it turned out that the chaotic
dynamics of a dumb-bell with an invariable mass distribution, existing because of
the ellipticity of the orbit, cannot be suppressed with aid of periodic variations of
the mass distribution, or the dumb-bell length. Nevertheless one might observe
islands of regularity corresponding to librations of large amplitude demonstrating
stable behavior. These librations can be useful for the transportation operation in
the near-transversal directions of the dumb-bell orbital motion.
Keywords: dumb-bell, elliptic orbit, controlled motion, attitude dynamics, split-
ting of separatrices, chaoticity, islands of regularity.

1 Introduction

The dynamics of space objects, including moving elements, has been investi-
gated by many authors. These studies usually have been connected with the
necessity to estimate the influence of relative motions of moving parts, for
example, crew motions [1,2], circulation of liquids [3], etc. on the attitude
dynamics of a spacecraft.

The development of projects of large-scale space systems with mobile
elements, in particular, of satellite systems with tethered elements and space
elevators, has posed problems related to their dynamics. Various aspects
of the role of mass distribution even for the simplest orbiting systems, like
dumb-bell systems are known since the publications [4–7], etc. The possibility
of the sudden loss of stability because of the mass redistribution has been
pointed out in [8] (see also [9–13]).
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The considered system belongs to the mentioned class of systems and
represents by itself one of the simplest systems allowing both analytical and
numerical treatment without supplementary simplifying assumptions such
as smallness of the orbital eccentricity. Another set of applied problems is
related to orientation keeping of the system for deployment and retrieval of
tethered subsatellites as well as for relative cabin motions of space elevators.
In particular the problem of the stabilization/destabilization possibility for
the given state of motion due to rapid oscillations of the cabin exists. This
could be the subject of another additional investigation.

2 Satellite Approximation

Consider motions of a body in a central force field with a center O. Assume
the body is equipped by facilities of the mass redistribution, for example,
by massive points, which are able to move with respect to it along some
prescribed curves. Introduce a frame OX1X2X3 fixed in the absolute space.
If C is a center of mass for the body, really an orbital system, then one
can introduce the so-called König’s frame (KF) with the origin in the point
C and with the axes collinear to the axes of absolute frame. According to
König’s theorem the kinetic energy of the system can be presented as a sum
of the kinetic energy associated to the movement of the center of mass and
the kinetic energy associated to the movement of the particles relative to the
center of mass.

Let Cx1x2x3 be the mobile frame (MF) having an origin at the whole
system center of mass, and tracking certain spatial orientation, see below for
details. One can find further that kinetic energy of the motion relative to KF
might be represented as T = T1 + T2 + T3 with the terms having the form

T1 =
1
2

(Iω, ω) , T2 = (ω,K), T3 =
∑

µ(ρ̇, ρ̇),

where I is the central tensor of inertia of the whole system in MF; ω is a
vector of the angular velocity of the MF with respect to the KF given by its
projections onto the axes of MF; K is the relative, with respect to the MF,
kinetic moment of the system; summation spans all points of the body; µ is
the mass of the particular point; ρ is the radius vector for this point with
respect to MF.

Since one assumes that the points perform prescribed motions with re-
spect to the MF, described by functions of time only, the function T3 also
depends on time only. Hence it does not play any role for derivation of the
equations of motion and can be omitted from the Lagrange function.

Further, one makes two principal assumptions, though general enough, re-
lated to the rules of mass redistribution in the body: (a) I = diag(I1, I2, I3);
(b) K = 0. Such an approach is motivated by examples of an affinely, in
particular, similarly deformable bodies ([14–16]) as well as cross-shaped bod-
ies considered in [6,7,17]. Other examples with a mass distribution along a
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straight line are discussed below. Within these assumptions one can choose
initial conditions and a rule of the mass redistribution in a way such that
the plane Cx3x1 is coincident to the orbital frame for all time of motion. It
means that the axis Cx2 remains orthogonal to the orbital plane.

If the body dimensions are small compared to the radius of orbit of the
mass center, then one may speak about consideration of motion in the so-
called “satellite approximation”. Developing expression for the kinetic and
potential energy with respect to the small parameter equal to the ratio of the
characteristic size of the body and the distance from its mass center to the
attracting center, we obtain the Lagrange function

L = L0(r, ṙ, ν̇) + L2(t, r, ν̇, ϕ, ϕ̇), L2 ¿ L0,

L0 =
m

2
(
ṙ2 + r2ν̇2

)
+

GMm

r
, L2 =

I2

2
(ν̇ + ϕ̇)2+GM

I3 − I1

2r3

(
3 cos2 ϕ− 1

)
,

where m is the body mass, G is the Gauss gravitational constant, M is
the mass of the attracting center. The angle ϕ characterises a deviation of
the axis Cx1 from the local vertical, the angle ν is the true anomaly. The
strain rate term in the kinetic energy is additive and within the accepted
assumptions depends on time only. This is a reason why it is omitted in the
expression for the Lagrange function.

Within the frame of the considered approximation the attitude dynamics
of the satellite as well as its vibrations do not affect the motion of its mass
center being described by the Kepler problem with the Lagrange function L0.
At the same time the attitude dynamics defined by L2 with an explicit time
dependence through r and ν is described by the equation

d

dt
[I2(ϕ̇ + ν̇)] = −GM

3(I3 − I1)
r3

sin ϕ cosϕ. (1)

In order to integrate this equation one must substitute here the expres-
sions for r and ν, found from the altitude dynamics. It means that in dif-
ference with the above case the orbital motion of the mass center plays an
important role for its attitude dynamics. Thus, similar to [18], performing the
proper Kepler reduction one can use the true anomaly ν as an independent
variable instead of t.

Supposing that the moments of inertia are also parameterized by ν, one
is able write the equation describing the attitude dynamics of the body with
variable mass distribution as

d

dν

[
(1 + e cos ν)2I2

(
1 +

dϕ

dν

)]
= −3(I3 − I1)(1 + e cos ν) cos ϕ sin ϕ. (2)

The equation (2) is a direct generalisation of the so-called Beletsky equa-
tion for the bodies with a variable mass distribution. Beletsky’s equation,
initially written in [19], possesses a Lagrangian structure and can be obtained
from Hamilton’s principle after the preliminary change of the independent

55

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 

variable described above. However this fact was not explicitly described, so
far in [20] the Hamiltonian representation of this equation was guessed, but
not obtained via a regular way.

Now we obtain immediately from the equation (2) the following

Corollary 1. If the variations in the mass distribution are arranged in a
way such that

(1 + e cos ν)2I2 = I∗2 = const, (3)

then the equation (2) possesses partial solutions of two kinds: (A) ϕ = 0, π,
(B) ϕ = ±π/2 existing for all values of the orbital eccentricity. At relative
equilibria corresponding to these solutions the body is oriented pointing to the
attracting center by the ends of the axes Cx3 and Cx1 respectively.

The simplest interesting example of such systems relates to the objects
with mass distribution along the line segment. Suppose that the object is
located in the Cx1 axis. Then I1 = 0, I2 = I3 = I. If the mass redistribution
satisfies (3), then resolving this relation with respect to I and substituting
the solution into (2), one obtains

(1 + e cos ν)ϕ′′ + 3 sin ϕ cos ϕ = 0. (4)

This equation depends only on the eccentricity e of the orbit. Let us study
its properties in dependence on this parameter.

2.1 Relative equilibria and their stability

Under the mentioned conditions the system with a linear mass distribution
possesses relative equilibria (A) and (B). For the relative equilibria (A),
known as vertical or radial ones the dumb-bell is oriented along the local
vertical and turned to the attracting center by one of its endpoints. Then
ϕ = 0 or ϕ = π. For the relative equilibria (B), known as tangent ones, the
dumb-bell is oriented along the tangent to the orbit of the center of mass.

In order to investigate stability of steady motions (A), that are most in-
teresting from the practical viewpoint, denote the absolute value of the mon-
odromy matrix trace for the Eq. (4) linearized in vicinity of ϕ = 0 or ϕ = π by
| tr A|. The numerical experiment demonstrates that the necessary condition,
that reads | tr A| < 2, see [21] for example, is fulfilled for all e excepting may
be a countable set of the eccentricity values e ≈ 0.748, 0.945, 0.986, 0.999 . . .
with infinite oscillations of the value tr A between −2 and 2 while approach-
ing unit eccentricity, see Fig. 1. By virtue of Zhukovsky’s result [22], see also
[23], Ch. VIII, the stability conditions are fulfilled if e ≤ 1/4.

2.2 Splitting of separatrices and chaotic dynamics

The equation (4) for small values of eccentricity e can be written as

δ′′ + 3(1− e cos ν + . . .) sin δ = 0, δ = 2ϕ.
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Fig. 1. Trace of the monodromy matrix as a function of the eccentricity.

Fig. 2. Poincaré iterated map for e = 0.33.

For equations of this kind the splitting of separatrices, and as a conse-
quence the non-integrability are established in [24] not only for small, but
also for finite values of the parameter. Thus the chaotic dynamics, observed
in the problem of oscillations of a satellite with constant inertia moments
[20] cannot be suppressed by periodic variations of the mass distribution.
The dependence of the equation on the only parameter partially simplifies a
qualitative investigation of system’s dynamics. Poincaré iterated one-period
maps are depicted in Fig. 2 for the value e = 0.33 as an illustration, some
interesting trajectories are highlighted by red color. One can observe that
the growth of the parameter leads to enlargement of the regions of chaotic

57

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 

behavior in vicinity of the splitted separatrices, accompanied by appearing of
stable, from the numerical viewpoint, periodic motions, bordered by invariant
tori.

Fig. 3. Poincaré iterated map for e = 0.03.

Fig. 4. Poincaré iterated map for e = 0.53.

One can estimate the chaoticity growth as the eccentricity increases by
comparing Poincaré iterated map portraits for different values of e = 0.03,
0.33, 0.53 shown in Figs. 3, 2, 4 sequentially. Note that as numerical experi-
ments show the chaoticity is a common case in the problem under consider-
ation, without any correlation with the specific control law like (3).

3 Examples

There exist two important examples of bodies with a linear variable mass
distribution, namely, a pulsating dumb-bell and a dumb-bell with a cabin
wandering between its endpoints. Consider these examples separately.

First, assume the body is composed of a massless rod and a couple of
mass points m1 and m2, located at its endpoints. Suppose the rod length
` varies with time according to the prescribed rule and both endpoints are
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located at the same plane, fixed to the absolute space and passing through
the attracting center O. Let C be, as above, the dumb-bell center of mass,
(r, ν) are the point C polar coordinates, and ϕ is the angle between the ray
OC and the dumb-bell.

If the length of the dumb-bell is invariable then `′ = 0 in the previous
equation, and the change of variable δ = 2ϕ leads to so-called Beletsky’s equa-
tion. Further if the length of the dumb-bell varies as ` = `0 (1 + e cos ν)−1,
then the condition (3) is fulfilled, and the equation (2) reads as (4). It is
remarkable that the speed of the length variation vanishes in apsides of the
orbit.

Second, assume the body is composed of a massless rod AB of the length
` and a couple of mass points mA and mB , located at its endpoints. Suppose
that there exists a cabin K of the mass mK performing motions between
the endpoints of the dumb-bell according to the prescribed rule, which is
evidently a generalization of [9] where the cabin position on the rod was
fixed. Let both endpoints be located at the same plane, being fixed in the
absolute space and passing through the attracting center O. Introducing a
parameter f ∈ R one can implement a positioning of the cabin using the
relation −−→

OK = f
−→
OA + (1 − f)−−→OB. Thus the moment of inertia I can be

presented as a quadratic function of this parameter:

I = I(f) = m−1`2
(
mAmB + mBmKf2 + mAmK(1− f)2

)
. (5)

If we want to fix the MF orientation at realive equilibria, radial or trans-
verse, then the variable f has to satisfy equation (3) where one has to replace
the variable I2 by the expression for variable I defined in equation (5).
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Ghwhuplqlvwlf frkhuhqfh uhvrqdqfh lq v|vwhpv
zlwk rq0r� lqwhuplwwhqf| dqg ghod|hg ihhgedfn

M1 Exu|n/ D1 Nudzlhfnl/ dqg W1 Exfkqhu
Idfxow| ri Sk|vlfv/ Zduvdz Xqlyhuvlw| ri Whfkqrorj|/

Nrv}|nrzd :8/ SO0330995 Zduvdz/ Srodqg

Devwudfw1 Frkhuhqfh uhvrqdqfh frqvlvwv lq wkh lqfuhdvh ri uhjxodulw| ri dq rxwsxw
vljqdo ri d qrqolqhdu ghylfh iru qrq0}hur lqwhqvlw| ri lqsxw qrlvh1 Wklv skhqrphqrq
rffxuv/ h1j1/ lq vwrfkdvwlf v|vwhpv zlwk ghod|hg ihhgedfn lq zklfk h{whuqdo qrlvh
dpsol�hv wkh shulrglf frpsrqhqw ri wkh rxwsxw vljqdo zlwk wkh shulrg htxdo wr wkh
ghod| wlph1 Lq wklv frqwulexwlrq lw lv vkrzq wkdw lq fkdrwlf v|vwhpv zlwk ghod|hg
ihhgedfn ghwhuplqlvwlf +qrlvh0iuhh, frkhuhqfh uhvrqdqfh fdq rffxu/ zklfk frqvlvwv lq
wkh pd{lpl}dwlrq ri wkh shulrglf frpsrqhqw ri wkh rxwsxw vljqdo lq wkh devhqfh ri
vwrfkdvwlf qrlvh/ gxh wr wkh fkdqjhv lq wkh lqwhuqdo fkdrwlf g|qdplfv ri wkh v|vwhp
dv wkh frqwuro sdudphwhu lv ydulhg1 Wklv skhqrphqrq lv revhuyhg lq v|vwhpv zlwk
rq0r� lqwhuplwwhqf| dqg dwwudfwru exeeolqj/ lqfoxglqj jhqhulf pdsv dqg v|vwhpv
ri gl�xvlyho| frxsohg fkdrwlf rvfloodwruv dw wkh hgjh ri v|qfkurql}dwlrq1 Wkh rf0
fxuuhqfh ri ghwhuplqlvwlf frkhuhqfh uhvrqdqfh iru wkh rswlpxp ydoxh ri wkh frqwuro
sdudphwhu +h1j1/ ri wkh frxsolqj vwuhqjwk ehwzhhq v|qfkurql}hg rvfloodwruv, lv fkdu0
dfwhul}hg e| wkh dsshdudqfh ri d vhulhv ri pd{lpd dw wkh pxowlsohv ri wkh ghod|
wlph lq wkh suredelolw| glvwulexwlrq ri wkh odplqdu skdvh ohqjwkv/ vxshulpsrvhg rq
wkh srzhu0odz wuhqg w|slfdo ri rq0r� lqwhuplwwhqf|/ dqg e| wkh suhvhqfh ri d vwurqj
pd{lpxp lq wkh srzhu vshfwuxp ghqvlw| ri wkh rxwsxw vljqdo1
Nh|zrugv= rq0r� lqwhuplwwhqf|/ frkhuhqfh uhvrqdqfh/ ghod|hg ihhgedfn1

Rq0r� lqwhuplwwhqf| +RRL, lv d vruw ri h{wuhph exuvwlqj zklfk rffxuv
lq v|vwhpv srvhvvlqj d fkdrwlf dwwudfwru zlwklq dq lqyduldqw pdqlirog zkrvh
glphqvlrq lv ohvv wkdq wkdw ri wkh skdvh vsdfh ^4/5`1 Dv d frqwuro sdudphwhu
furvvhv d fhuwdlq wkuhvkrog wklv dwwudfwru xqghujrhv d vxshufulwlfdo eorzrxw
elixufdwlrq ^6` dqg orvhv wudqvyhuvh vwdelolw|/ dqg d qhz dwwudfwru lv iruphg
zklfk hqfrpsdvvhv wkdw frqwdlqhg zlwklq wkh lqyduldqw pdqlirog1 Mxvw deryh
wkh eorzrxw wkh skdvh wudmhfwru| vwd|v iru orqj wlphv forvh wr wkh lqyduldqw
pdqlirog dqg rffdvlrqdoo| ghsduwv iurp lw> li wkh glvwdqfh iurp wkh lqyduldqw
pdqlirog lv dq revhuydeoh/ wklv uhvxowv lq d vhtxhqfh ri odplqdu skdvhv dqg
exuvwv1 Wkh glvwulexwlrq ri odplqdu skdvh ohqjwkv � reh|v d srzhu vfdolqj
odz S +� , 2 ��6@5 ^4`1 Lq wkh suhvhqfh ri dgglwlyh qrlvh fkdrwlf exuvwlqj
rffxuv ehorz wkh eorzrxw elixufdwlrq wkuhvkrog> wklv skhqrphqrq lv nqrzq
dv dwwudfwru exeeolqj ^5/7`1 RRL dqg dwwudfwru exeeolqj zhuh revhuyhg lq
v|vwhpv dv glyhuvh dv prgho pdsv zlwk wlph0ghshqghqw frqwuro sdudphwhu
^4`/ fkdrwlf v|qfkurql}dwlrq ^8`/ vslq0zdyh fkdrv ^9`/ plfurvfrslf prghov ri
�qdqfldo pdunhwv ^:`/ hwf1
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Wkh uroh ri ghod|hg ihhgedfn lv lpsruwdqw lq pdq| v|vwhpv ^;043`/ h1j1 rs0
wlfdo uhvrqdwruv/ fkhplfdo uhdfwlrqv dqg sk|vlrorj| ^;` ru fkdrv frqwuro ^</43`1
Lq wklv sdshu wkh lq xhqfh ri ghod|hg ihhgedfn rq RRL lv vwxglhg xvlqj jhqhulf
rqh0glphqvlrqdo pdsv zlwk d wlph0ghshqghqw frqwuro sdudphwhu dqg v|qfkur0
ql}hg rvfloodwruv1 Lw lv vkrzq wkdw dgglwlrq ri ghod|hg ihhgedfn fkdqjhv wkh
wkuhvkrog iru wkh eorzrxw elixufdwlrq dqg fdq lq xhqfh wkh fkdudfwhu ri wkh
lqwhuplwwhqw exuvwlqj= Iru rswlpxp fkrlfh ri wkh frqwuro sdudphwhu d vwurqj
shulrglf frpsrqhqw lq wkh wlph vhulhv deryh wkh eorzrxw rffxuv/ zlwk wkh
shulrg htxdo wr wkh ghod| wlph1 Wklv lv dq h{dpsoh ri frkhuhqfh uhvrqdqfh
+FU, ^4404;`/ d skhqrphqrq uhodwhg wr wkh zhoo0nqrzq vwrfkdvwlf uhvrqdqfh
+VU, ^4<`1 FU pdqlihvwv lwvhoi dv wkh shdn ri uhjxodulw| ri wkh rxwsxw vljqdo
ri fhuwdlq qrqolqhdu vwrfkdvwlf v|vwhpv iru rswlpxp lqwhqvlw| ri wkh lqsxw
qrlvh dqg zlwkrxw dq| h{whuqdo shulrglf vwlpxodwlrq1 Lq sduwlfxodu/ FU zdv
revhuyhg lq v|vwhpv zlwk ghod|hg ihgedfn/ lqfoxglqj elvwdeoh ^49` dqg h{0
flwdeoh ^4:` rqhv dqg vlpsoh wkuhvkrog furvvlqj ghwhfwruv ^4;`1 Vlqfh lq wkh
prghov xqghu frqvlghudwlrq wkh uroh ri h{whuqdo qrlvh lv sod|hg e| wkh lqwhuqdo
fkdrwlf g|qdplfv zlwklq wkh lqyduldqw pdqlirog/ wkh revhuyhg skhqrphqrq lv
ghwhuplqlvwlf FU ^53`/ d frxqwhusduw ri wkh qrlvh0iuhh +ghwhuplqlvwlf, VU^54`1

Dv d edvlf prgho ohw xv frqvlghu wkh orjlvwlf pds zlwk wkh wlph0ghshqghqw
frqwuro sdudphwhu dqg ghod|hg ihhgedfn

|q.4 @ +4�N, d�q|q +4� |q, .N|q�n> +4,
zkhuh 3 ? N ? 4 lv dq dpsolwxgh ri wkh ihhgedfn whup dqg �q 5 +3>4, ghqrwhv
dq| fkdrwlf surfhvv frqvwudlqhg wr wkh xqlw lqwhuydo1 Wkh pds lq Ht1 +4, kdv
wkh lqyduldqw pdqlirog |q @ 3 zlwk wkh fkdrwlf dwwudfwru +�q 5 +3> 4,> |q @ 3,
zlwklq lw1 Iru d A df wkh yduldeoh |q h{klelwv lqwhuplwwhqw exuvwv/ zkhuh
df lv wkh eorzrxw elixufdwlrq wkuhvkrog ghshqghqw rq �q1 Iru N @ 3 Ht1
+4, lv wkh jhqhulf prgho iru RRL ^4`1 Wkh txdolwdwlyh surshuwlhv ri RRL
duh lqghshqghqw ri wkh ghwdlov ri wkh g|qdplfv zlwklq wkh lqyduldqw pdqlirog
surylghg wkdw wkh fruuhodwlrq wlph ri wkh surfhvv �q lv qhjoljleoh lq frpsdulvrq
zlwk wkh phdq wlph ehwzhhq exuvwv/ zklfk lv wuxh mxvw deryh wkh wkuhvkrog
iru wkh eorzrxw elixufdwlrq> khqfh/ �q fdq eh dssur{lpdwhg e| zklwh qrlvh
�q xqlirupo| glvwulexwhg rq +3> 4, ^4`1 Lw vkrxog eh dovr qrwhg wkdw Ht1 +4,
zlwk wkh frqwuro sdudphwhu frqvwdqw lq wlph/ l1h1/ zlwk �q � 4/ +wkh orjlvwlf
pds zlwk ghod|hg ihhgedfn, fdq vhuyh dv d prgho iru fkdrv frqwuro ^43`1

Iru |q � 3 wkh g|qdplfv wudqvyhuvh wr wkh lqyduldqw pdqlirog lv zhoo
dssur{lpdwhg e| d olqhdul}dwlrq ri Ht1 +4,/

|q.4 � +4�N, d�q|q .N|q�n= +5,
Lqwurgxflqj qhz yduldeohv lq wkh gluhfwlrq wudqvyhuvh wr wkh lqyduldqw pdql0
irog/ |+4,q @ |q/ |+5,q @ |q�n> = = =/ |+m,q @ |q�n.m�5> = = =/ |+n.4,q @ |q�4 ^43` Ht1
+5, fdq eh zulwwhq dv d olqhdu wudqvirupdwlrq

|q.4 @ aPq|q> +6,
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zkhuh |q @
�
|+4,q > |+5,q > = = = > |+n.4,q

�W +wkxv/ |q @ 3 lv wkh lqyduldqw pdqlirog,/
dqg

aPq @

3
EEEEEC

+4�N, d�q N 3 3 = = = 3
3 3 4 3 = = = 3
3 3 3 4 = = = 3
111 111 111 111 1 1 1 111
4 3 3 3 = = = 3

4
FFFFFD
= +7,

Wkh wudqvyhuvh vwdelolw| ri wkh dwwudfwru zlwklq wkh lqyduldqw pdqlirog lv frq0
wuroohg e| wkh wudqvyhuvh O|dsxqry h{srqhqw �W ^406`/

�W @ olpQ$4
4
Q oq

���
��� aPQ�4 = = = aP5 aP4|3

���
���

mm|3mm > +8,

zkhuh |3 lv dq duelwud| lqlwldo yhfwru wudqvyhuvh wr wkh lqyduldqw pdqlirog +lq
vlpxodwlrqv/ |3 lv dvvxphg dv d udqgrp yhfwru ri xqlw ohqjwk,1 Wkh h{srqhqw
�W lqfuhdvhv zlwk d iurp qhjdwlyh wr srvlwlyh ydoxhv dqg furvvhv }hur dw wkh
wkuhvkrog iru wkh eorzrxw elixufdwlrq d @ df/ fruuhvsrqglqj wr wkh rqvhw ri
RRL1

Wkh ghshqghqfh ri df rq N iru wkh pds +4, zlwk �q @ �q dqg ydulrxv n lv
vkrzq lq Ilj1 4+d,1 Wkh ydoxh ri df zhdno| ghshqgv rq n dqg prqrwrqlfdoo|
ghfuhdvhv wr df @ 5=3 iru N $ 41 W|slfdo wlph vhulhv |q iru d mxvw deryh df lv
vkrzq lq Ilj1 4+e,1 Iru lqfuhdvlqj N wkh fkdudfwhu ri wkh wlph vhulhv fkdqjhv
iurp lqwhuplwwhqw exuvwv zlwk kljk dpsolwxgh w|slfdo ri RRL wr iuhtxhqw
exuvwv zlwk vpdoo dpsolwxgh1 Wkhuh lv dovr d jds ehwzhhq wkh plqlpxp
ydoxh ri |q dqg wkh lqyduldqw pdqlirog |q @ 31 Wkxv wkh h�hfw ri wkh ghod|hg
ihhgedfn rq wkh jhqhulf prgho iru RRL uhvhpeohv wkdw ri dgglwlyh qrlvh zklfk
suhyhqwv wkh skdvh wudmhfwru| iurp dssurdfklqj forvho| wkh lqyduldqw pdqlirog
dqg orzhuv wkh wkuhvkrog iru wkh rffxuuhqfh ri exuvwlqj/ ohdglqj wr dwwudfwru
exeeolqj ^5/7`1 Wklv lv qrw vxusulvlqj vlqfh wkh dgglwlyh qrlvh hqwhuv Ht1
+4, lq wkh vdph zd| dv wkh ihhgedfn whup> pruhryhu/ hvshfldoo| iru orqj n/
gxh wr ghfuhdvlqj fruuhodwlrq/ wkh ihhgedfn whup fdq eh wuhdwhg dv d vruw ri
ghwhuplqlvwlf qrlvh1

Iru N A 3 wkh glvwulexwlrq ri odplqdu skdvh ohqjwkv S +� , iru d mxvw deryh
df h{klelwv d vhulhv ri pd{lpd dw wkh ydoxhv ri � htxdo wr n dqg lwv pxowlsohv
+Ilj1 4+f,, vxshulpsrvhg rq d srzhu0odz wuhqg w|slfdo ri RRL1 Ohw xv gh�qh
wkh rxwsxw vljqdo dv ]q @ 3 li |q lv lq wkh odplqdu skdvh dqg ]q @ 4 li |q
lv lq wkh exuvw skdvh +vxfk glvfuhwl}dwlrq lv w|slfdo lq wkh vwxg| ri v|vwhpv
zlwk vwrfkdvwlf uhvrqdqfh,1 Wkhq/ d eurdg shdn fhqwhuhg dw wkh iuhtxhqf|
5�@n dsshduv lq wkh srzhu vshfwuxp ghqvlw| +SVG, ri ]q +Ilj1 4+g,,1 Erwk
devroxwh dqg uhodwlyh +zlwk uhvshfw wr wkh phdq ydoxh ri wkh SVG rq wkh
lqwhuydo +�@n> 6�@n,, khljkw ri wklv shdn h{klelw pd{lpxp dv ixqfwlrqv ri d
+Ilj1 4+h,,> wkhvh txdqwlwlhv fruuhvsrqg wr wkh vshfwudo srzhu dpsol�fdwlrq
+VSD, dqg vljqdo0wr0qrlvh udwlr +VQU, xvhg lq wkh vwxglhv ri VU/ uhvshfwlyho|1
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Ilj1 41 Iru wkh pds jlyhq e| Ht1 +4, zlwk l? ' 1?= +d, lqwhuplwwhqf| wkuhvkrog @S
yv1 g iru ydulrxv & +vhh ohjhqg,> +e, wlph vhulhv +?E|� iru & ' 2f/ g ' f�2/ @ ' 2�2
+mxvw deryh @S,/ wkh lqlwldo frqglwlrq lv +f M Efc ��/ zkhuh +f lv d udqgrp qxpehu/
dqg +3� ' +32 ' � � � +3&n� ' f> +f, klvwrjudp ri wkh qxpehu ri odplqdu skdvhv
�E�� ri gxudwlrq � iru & ' 2f/ g ' f��/ @ ' 2��/ +? zdv dvvxphg wr eh lq wkh exuvw
skdvh +~? ' �, li +? : f�f�/ yhuwlfdo olqhv duh gudzq dw pxowlsohv ri &> +g, SVG
iurp wkh wlph vhulhv ~? iru & ' Se/ g ' f��/ @ ' 2��> +h, VSD +flufohv, dqg VQU
+grwv, yv1 @ iru & ' Se/ g ' f��1

Wkh khljkw ri wkhvh pd{lpd lqfuhdvhv/ wkhlu zlgwk ghfuhdvhv dqg wkhlu orfdwlrq
dssurdfkhv d @ df dv N $ 4 vlqfh wkhq wkh ihhgedfn whup ehfrphv grplqdqw
lq Ht1 +4, dqg wkh vljqdo ]q lv doprvw shulrglf iru d mxvw deryh df1

Wkhvh uhvxowv vkrz wkdw FU rffxuv lq wkh pds +4, dv wkh frqwuro sdudphwhu
lv lqfuhdvhg deryh wkh wkuhvkrog iru wkh eorzrxw elixufdwlrq1 Lq idfw/ v|vwhpv
zlwk RRL uhvhpeoh h{flwdeoh rqhv/ lq sduwlfxodu mxvw deryh wkh lqwhuplwwhqf|
wkuhvkrog zkhq wkh exuvwv duh vkruw lq frpsdulvrq zlwk wkh txlhvfhqw odplqdu
skdvhv1 Wkxv/ FU lq wkh pds +4, uhvhpeohv wkdw revhuyhg lq h{flwdeoh v|vwhpv
dqg wkuhvkrog0furvvlqj ghwhfwruv zlwk ghod|hg ihhgedfn dqg h{whuqdo qrlvh
^4:/4;`/ h1j1/ wkh pxowlsoh pd{lpd lq wkh klvwrjudp ri odplqdu skdvh ohqjwkv lq
Ilj1 4+f, fruuhvsrqg wr wkrvh irxqg lq wkh klvwrjudpv ri lqwhu0vslnh lqwhuydov
lq h{flwdeoh v|vwhpv zlwk FU ^45`1 Krzhyhu/ FU lq wkh pds +4, dsshduv
gxh wr fkdqjhv ri wkh lqwhuqdo g|qdplfv zlwklq wkh lqyduldqw pdqlirog dv wkh
frqwuro sdudphwhu lv ydulhg udwkhu wkdq xqghu wkh lq xhqfh ri h{whuqdo qrlvh1
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Wkxv/ wklv skhqrphqrq ehorqjv wr wkh fodvv ri ghwhuplqlvwlf FU dv lq Uhi1
^53`1

Vlplodu skhqrphqd zhuh revhuyhg lq d v|vwhp ri wzr gl�xvlyho| frxsohg
fkdrwlf Uùvvohu rvfloodwruv/

b{4 @ � +|4 . }4,
b|4 @ {4 . d|4 . n +|5 � |4, .Nv+� ,
b}4 @ e. }4 +{4 � f,
b{5 @ � +|5 . }5,
b|5 @ {5 . d|5 . n +|4 � |5,�Nv+� ,
b}5 @ +e. �e, . }5 +{5 � f, > +9,

zkhuh d @ 3=5/ e @ 3=5/ f @ 44/ n lv wkh vwuhqjwk ri wkh gl�xvlyh frxsolqj/
v+� , @ |5+w�� ,�|4+w�� , @ �| +w� � , surylghv ghod|hg ihhgedfn zlwk ghod|
� dqg dpsolwxghN/ dqg vpdoo �e 9@ 3 fdq eh dgghg wr prgho wkh plvpdwfk ri
sdudphwhuv lq dq h{shulphqwdo v|vwhp1 Iru N @ 3 dqg �e @ 3 wkh rvfloodwruv
duh lghqwlfdoo| v|qfkurql}hg iru n A nf � 3=45 dqg wkhuh lv d fkdrwlf dwwudfwru
zlwklq wkh lqyduldqw v|qfkurql}dwlrq pdqlirog {4 @ {5/ |4 @ |5/ }4 @ }51 Iru
n ? nf v|qfkurql}dwlrq lv orvw +l1h1/ wkh lqyduldqw pdqlirog orvhv wudqvyhuvh
vwdelolw|, dqg �|+w, @ |5+w, � |4+w, h{klelwv fkdrwlf exuvwv w|slfdo ri RRL>
wkxv/ n lv wkh frqwuro sdudphwhu iru wkh vxshufulwlfdo eorzrxw elixufdwlrq1 Iru
�e 9@ 3 exuvwv rffxu douhdg| iru n A nf gxh wr dwwudfwru exeeolqj1 Vlplodulo|/
wkh ghod|hg ihhgedfn Nv+� , zlwk N A 3 dovr irufhv wkh wudmhfwru| wr ohdyh
wkh lqyduldqw pdlqirog/ dv lq Ht1 +4,/ dqg fdxvhv wkh rqvhw ri lqwhuplwwhqw
exuvwv iru n A nf1

W|slfdo wlph vhulhv ri �|+w, h{klelwlqj RRL duh vkrzq lq Ilj1 5+d,1 Li/
djdlq/ wkh rxwsxw vljqdo lv gh�qhg dv ]+w, @ 3 li�|+w, lv lq wkh odplqdu skdvh
dqg ]+w, @ 4 li �|+w, lv lq wkh exuvw skdvh/ d eurdg shdn fhqwhuhg dw wkh
iuhtxhqf| 5�@� dsshduv lq wkh SVG ri ]+w, iru d udqjh ri n ehorz dqg mxvw
deryh nf +Ilj1 5+e,,1 Wkh khljkw ri wklv shdn +VSD, h{klelwv pd{lpxp dv d
ixqfwlrq ri n/ erwk iru �e @ 3 dqg �e A 3 +Ilj1 5+f,,> lq wkh odwwhu fdvh rqo|
wkh udqjh ri wkh frqwuro sdudphwhu zkhuh wkh exuvwv duh revhuyhg lv voljkwo|
eurdghqhg wrzdug kljkhu ydoxhv1 Wklv ghprqvwudwhv wkdw ghwhuplqlvwlf FU
rffxuv lq wkh v|vwhp jlyhq e| Ht1 +9, dqg wkh rxwsxw vljqdo h{klelwv pd{lpxp
uhjxodulw| iru rswlpxp ydoxh ri wkh sdudphwhu n zklfk frqwurov wkh lqwhuqdo
g|qdplfv zlwklq wkh lqyduldqw v|qfkurql}dwlrq pdqlirog1 Wkh pd{lpxp ri
wkh VQU yv1 n lv qrw fohduo| ylvleoh +Ilj1 5+g,,= hydoxdwlqj SVG iurp pxfk
orqjhu wlph vhulhv zrxog suredeo| ohdg wr vprrwkhu fxuyhv ri wkh VQU1 Khqfh/
wkh uhvxowv ri qxphulfdo vlpxodwlrqv vxjjhvw wkdw ghwhuplqlvwlf FU fdq eh
revhuyhg h{shulpdqwdoo| lq v|vwhpv ri frxsohg fkdrwlf rvfloodwruv dw wkh hgjh
ri lghqwlfdo v|qfkurql}dwlrq1

Wr vxppdul}h/ wkh lq xhqfh ri ghod|hg ihhgedfn rq RRL zdv vwxglhg
xvlqj jhqhulf pdsv zlwk wkh wlph0ghshqghqw frqwuro sdudphwhu dqg v|qfkur0
ql}hg fkdrwlf rvfloodwruv1 Lw zdv irxqg wkdw ghod|hg ihhgedfn fdq ghfuhdvh
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Ilj1 51 Iru wkh v|vwhp ri gl�xvlyho| frxsohg Uùvvohu rvfloodwruv jlyhq e| Ht1 +4,
zlwk � ' D�2/ g ' f�fD/ +d, wlph vhulhv {+E|� iru & ' f��2/ BK ' �f3e> +e, SVG
iurp wkh wlph vhulhv ~E|� iru & ' f��2/ BK ' �f3e/ {+E|� zdv dvvxphg wr eh lq
wkh exuvw skdvh +~E|� ' �, li {+E|� : f��> +f, VSD dqg +g, VQU yv1 & iru BK ' f
+flufohv, dqg BK ' �f3e +grwv,

wkh wkuhvkrog iru wkh eorzrxw elixufdwlrq1 Ghwhuplqlvwlf FU zdv revhuyhg lq
v|vwhpv xqghu frqvlghudwlrq/ fkdudfwhul}hg e| wkh dsshdudqfh ri d vhulhv ri
pd{lpd dw wkh pxowlsohv ri wkh ghod| wlph lq wkh suredelolw| glvwulexwlrq ri
wkh odplqdu skdvh ohqjwkv/ vxshulpsrvhg rq wkh srzhu0odz wuhqg w|slfdo ri
RRL/ dqg e| wkh suhvhqfh ri d vwurqj shulrglf frpsrqhqw lq wkh lqwhuplw0
whqw wlph vhulhv/ zlwk shulrg htxdo wr wkh ghod| wlph1 Wkh vwuhqjwk ri wklv
frpsrqhqw h{klelwv pd{lpxp dv wkh frqwuro sdudphwhu lv ydulhg/ gxh wr wkh
fkdqjhv ri wkh lqwhuqdo g|qdplfv ri wkh v|vwhp zlwklq wkh lqyduldqw pdqlirog1

Uhihuhqfhv
41Q1 Sodww/ H1 D1 Vslhjho/ dqg F1 Wuhvvhu/ Sk|v1 Uhy1 Ohww1 :3=5:</ 4<<6> M1 I1 Khdj|/

Q1 Sodww/ dqg V1 P1 Kdppho/ Sk|v1 Uhy1 H 7<=4473/ 4<<7> V1 F1 Yhqndwdudpdql
hw do1/ Sk|vlfd G <9=99/ 4<<91

51S1 Dvkzlq/ M1 Exhvfx/ dqg L1 Q1 Vwhzduw/ Sk|v1 Ohww1 D 4<6=459/ 4<<71
61H1 Rww dqg M1 Vrpphuhu/ Sk|v1 Ohww1 D 4;;=6</ 4<<71
71Q1 Sodww/ V1 P1 Kdppho/ dqg M1 I1 Khdj|/ Sk|v1 Uhy1 Ohww1 :5=67<;/ 4<<7> V1 F1

Yhqndwdudpdql hw do1/ Sk|v1 Uhy1 Ohww1 ::=8694/ 4<<91
81D1 �Fhq|v hw do1/ Sk|v1 Ohww1 D 546=58</ 4<<91
91I1 Uùghovshujhu/ D1 �Fhq|v/ dqg K1 Ehqqhu/ Sk|v1 Uhy1 Ohww1 :8=58<7/ 4<<8> D1

Nudzlhfnl dqg D1 Vxnlhqqlfnl/ Dfwd Sk|v1 Srorqlfd D ;;=59</ 4<<81
:1W1 Ox{ dqg P1 Pdufkhvl/ Qdwxuh 5<:=7<;/ 4<<<> D1 Nudzlhfnl/ M1 D1 Kr#o|vw/ dqg

G1 Khoelqj/ Sk|v1 Uhy1 Ohww1 ;<=48;:34/ 53351
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;1J1 Jldfrphool/ U1 Phxffl/ D1 Srolwl/ dqg I1 W1 Duhffkl/ Sk|v1 Uhy1 Ohww1 :6=43<</
4<<7> L1 U1 Hsvwhlq/ M1 Fkhp1 Sk|v1 <5=4:35/ 4<<3> P1 F1 Pdfnh| dqg O1 Jodvv/
Vflhqfh 4<:=5;:/ 4<::1

<1N1 S|udjdv/ Sk|v1 Ohww1 D 4:3=754/ 4<<5> K1 X1 Yrvv/ Sk|v1 Uhy1 Ohww1 ;:=347435/
53341

431W1 Exfkqhu dqg M1 M1 ]heurzvnl/ Sk|v1 Uhy1 H 96=49543/ 53341
441K1 Jdqj hw do1/ Sk|v1 Uhy1 Ohww1 :4=;3:/ 4<<6> Z10M1 Udssho dqg V1 K1 Vwurjdw}/

Sk|v1 Uhy1 H 83=657</ 4<<71
451D1 Orqjwlq/ Sk|v1 Uhy1 H 88=;9;/ 4<<:1
461D1 V1 Slnryvn| dqg M1 Nxuwkv/ Sk|v1 Uhy1 Ohww :;=::8/ 4<<:> M1 U1 Sudglqhv/ J1

Y1 Rvlsry/ dqg M1 M1 Froolqv/ Sk|v1 Uhy1 H 93=973:/ 4<<<> J1 Jldfrphool/ P1
Jlxglfl/ dqg V1 Edooh/ Sk|v1 Uhy1 Ohww1 ;7=65<;/ 53331

471D1 Qhlpdq/ S1 L1 Vdsdulq/ dqg O1 Vwrqh/ Sk|v1 Uhy1 H 89=5:3/ 4<<:> L1 ]1 Nlvv
hw do1/ Sk|v1 Uhy1 H 9:=368534/ 5336> R1 Y1 Xvkdnry hw do1/ Sk|v1 Uhy1 Ohww1
<8=456<36/ 53381

481F1 Sdohq}xhod hw do1/ Hxursk|v1 Ohww1 89=67:/ 53341
491O1 V1 Wvlpulqj dqg D1 Slnryvn|/ Sk|v1 Uhy1 Ohww1 ;:=583935/ 5334> G1 Kxehu dqg

O1 V1 Wvlpulqj/ Sk|v1 Uhy1 Ohww <4=593934/ 5336> G1 Kxehu dqg O1 V1 Wvlpulqj/
Sk|v1 Uhy1 H :4=369483/ 5338> N1 Sdqdmrwry hw do1/ Sk|v1 Uhy1 D 9<=344;34/
5337> P1 Dul}dohwd Duwhdjd hw do1/ Sk|v1 Uhy1 Ohww1 <<=356<36/ 533:> \1 Mlq dqg
K1 Kx/ Sk|vlfd D 6;5=756/ 533:1

4:1J1 F1 Vhwkld/ M1 Nÿuwkv/ dqg D1 Vhq/ Sk|v1 Ohww1 D 697=55:/ 533:1
4;1U1 Pruvh dqg D1 Orqjwlq/ Sk|v1 Ohww1 D 68<=973/ 53391
4<1U1 Ehq}l/ D1 Vxwhud/ dqg D1 Yxosldql/ M1 Sk|v1 D 47=O786/ 4<;4> O1 Jdppdlwrql

hw do1/ Uhy1 Prg1 Sk|v1 :3=556/ 4<<;> Y1 V1 Dqlvfkhqnr hw do1/ Sk|vlfv � Xv0
shnkl 75=:/ 4<<< ^Xvs1 Il}1 Qdxn 49<=:/ 4<<<`> I1 Prvv/ %Vwrfkdvwlf uhvrqdqfh=
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Abstract 

We have analyzed experimental temperature time series from a horizontal turbulent 

heated jet, in order to identify the jet axis location using non linear measures. The 

analysis was applied on both, the original time series as well as on the extreme value 

(minimum and maximum values) time series. In our analysis we employed mainly non-

linear measures such as mutual information and cumulative mutual information. The 

results show that the analysis of the extreme values time series using cumulative mutual 

information permits to distinguish the jet axis time series from the rest of the jet, as well 

as discriminate regions of the jet located close to jet axis or close to the boundaries. 

Furthermore, it is of interest that the application of simple statistical measures and 

clustering techniques shows that the use of extremes time series let us distinguish with 

greater confidence the jet axis than the use of the original one. 

 

Keywords: Non-linear time series analysis, turbulence, mutual information, cumulative 

mutual information, clustering 

 

1. Introduction  
Jet flow is a very important research subject that has attracted scientific interest 

due to extensive applications in environmental engineering. So far a large 

number of investigations have been carried out to locate the trajectory and 

understand the turbulence properties of the flow using statistical methods which 

do not necessarily lead to understanding the dynamics of the flow [3, 19]. 

The transition from laminar to turbulent flow in a jet has been extensively 

studied as a fundamental non linear dynamical problem [4, 5, 17, 25]. The study 

of dynamical systems by analysis of the time series of a variable measured in a 

physical system, is of particular interest over the last decades, and gives the 

possibility of comprehension the underlying system dynamics. Time series 

analysis may include linear and non linear methods. The linear analysis includes 

simple statistical measures such as autocorrelation function and power 

spectrum, while non linear analysis methods based on the reconstruction of 

phase through spaces include the mutual information and correlation dimension. 

For a concise review of these methods one can consult the book by Kantz and 

Schreiber (1995) [10] and Abarabnel (1996) [1]. These more complex methods 
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allow us to extract more detailed characteristics of the underlying dynamical 

system. 

In this paper linear and non linear measures are used to analyze temperature 

fluctuation time series. Our aim was to study the dynamic characteristics of the 

temperature fluctuation experiment. More specifically we analyze the 

temperature fluctuation measurements recorded using fast response thermistors 

along a horizontal line in order to investigate if one can discriminate time series 

corresponding to regions close to the jet axis, where conditions of fully 

developed turbulence are expected, from time series corresponding to regions 

that are more distant and from those close to the boundary with the ambient 

water. Horizontal buoyant jet investigations [2, 6, 9, 18] are mainly concerned 

with the structure of the flow. 

The novelty of the present work is that the analysis was applied both on the 

original time series as well as on the extreme value (minimum and maximum 

values) time series. The initial time series is reduced to a series (extreme time 

series) of successive pairs of minimum and maximum values. The objective of 

our analysis is to investigate whether it is possible that a time series of extreme 

values can reveal dynamic characteristics of the underlying system in the same 

or better way as the analysis of the original time series. One can easily 

understand that the interest is important, since this would permit us to study 

dynamical systems using reduced information.  

 

The structure of the paper is as follows. In Sec. 2 we discuss briefly the 

theoretical background and the experimental set-up for the temperature 

measurements. In Sec.3 we present the methodology employed for data analysis 

along with the linear and nonlinear measures. The results and discussion are 

presented in Sec. 4.  Finally the conclusions are presented in Sec. 5.  

 

2. Theory and Experimental Set-up 

2.1 Theory  

A horizontal heated round jet of diameter D  and density ορ  flows out of a 

nozzle with velocity U  in a calm ambient fluid of density αρ . The specific 

volume, horizontal momentum and buoyancy fluxes are defined as 

 

2

'

4

o

D
Q U

M QU and

B g Q gQ
α ο

α

π

ρ ρ

ρ

=

=

−
= =

  (1) 

respectively, where g  is the gravitational acceleration and 
'

og  the effective 

gravity that will subsequently produce vertical momentum flux. Fisher et al. 

(1979) [7] have defined two characteristic length scales as  

70

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



 

3 / 4

1/ 2 1/ 2Q M

Q M
l and l

M B
= =   (2) 

the ratio of which is the initial jet Richardson number  oR     
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 (3) 

where oF  is the initial densimetric Froude number.  

The temperature difference between the jet and ambient fluid produces the 

density deficiency that is responsible for the initial jet specific buoyancy flux. 

The dilution S  at a point of the jet flow field is defined to be the ratio  

 o a

a

T T
S

T T

−
=

−
  (4) 

Where oT  is the initial jet temperature aT  the ambient temperature and the T  

the local time-averaged temperature. Jirka (2004) [8] has defined the jet axis to 

be the point of minimum dilution Sc 

 o a

c

c a

T T
S

T T

−
=

−
 (5) 

where cT  is the maximum time-averaged (centerline) temperature. We define 

cx  and cy  the horizontal and vertical distances from the nozzle where the jet 

axis is located. Near the nozzle ( )1/ <Mlx  the jet trajectory is horizontal, the 

flow is mainly driven by the initial momentum flux and it is characterized as jet-

like [18]. When ( )2/ >Mly  the trajectory of the flow is altered to vertical and 

the flow is characterized as plume-like. The flow regime ( )5/1 << Mlx  is the 

transition from jet-like to plume-like flow [18], [21]. 

 

2.2 Experimental setup 
The experiments were performed at the Hydromechanics and Environmental 

Engineering Laboratory of the University of Thessaly [20]. The dispersion tank 

is made of 12.5mm thick Lucite with orthogonal horizontal section 0.90m x 

0.60m and 0.80m depth. A perspective view of the experimental setup is shown 

in Fig.1.  
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.Fig. 1.  Perspective view of the experimental setup 

 

The tank was equipped with a peripheral overflow to remove excess water. In 

this mater the depth of water is fixed at 77 cm. The hot water jet supply consists 

of a water heater made of stainless steel, which is well insulated and pressurized 

by air at 2 atm, to provide adequate constant head pressure to drive to jet. 

During the water heating, a recirculating pump was used to ensure that the hot 

water is well mixed and there are no temperature gradients. An insulated pipe 

drives the water from the heater into the jet plenum, through a calibrated flow 

meter. A jet nozzle of 0.65cm diameter was used. The jet water temperature was 

around 60 ºC, while the ambient water temperature ranged between 18 to 20 ºC. 

Temperature measurements were obtained by an array of eight fast response 

thermistors spaced equally at 1cm apart, positioned at constant elevation from 

the nozzle, on the plane of symmetry of the buoyant jet. The jet was made 

visible by means of a slide projector on a semitransparent paper sheet 

(shadowgraph) in order to place the rake of thermistors properly. In this paper, 

we use the data recorded at an elevation of 5cm above the nozzle axis. The 

initial parameters of the flow are shown in table 1. We analyzed 24 recordings 

of temperature time series, one for each location of measurement, where the 

sampling time at each location was 30s at a frequency of 200Hz. 

Comprehensive details about the experimental setup can be found in 

Karakasidis et al (2009)  [11].     

 

 

Table 1. Experimental conditions  

D(cm) W(cm/s) To(
oC) Ta(

oC) M(cm4/s2) B(cm4/s3) Re lm(cm) Ro yc/lm 

0.65 29.25 60 17.8 284 149 1646 5.66 0.102 0.883 

 

 

X=7.5 X=30.5 

Close to jet axis 

X=16.5 -175cm 
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3. Time series analysis 

3.1 Methodology 
In an effort to discriminate the jet axis time series from the rest of the jet we 

used linear and nonlinear measures applied both on the original time series as 

well as on the extreme value (minimum and maximum values) time series. The 

initial time series is reduced to a series (extreme time series) of successive pairs 

of minimum and maximum values following the methodology by D.Kugiumtzis 

et al., 2006 [14]. The goal of this work was to examine if simple linear and non 

linear methods such as cumulative mutual information, can discriminate 

different states of systems from the analysis of the reduced length time series, 

instead of the full original time series. 

 

3.2 Data set – Extreme time series model 
As already mentioned 24 time series of temperatures have been recorded using 

fast response thermistors along a horizontal line of a fully developed turbulent 

heated jet. Consequently some of the time series correspond to conditions of 

turbulent flow (time series derived close to centerline of the jet) while other time 

series, obtained close to the boundary between the heated jet and the ambient 

water, have intermittent (laminar and turbulent) flow characteristics. Each time 

series consist of 6000 observations.  

We derived new extreme time series of successive maximum and minimum 

values from each initial time series. Suppose we have a time series of length 

N , ( )tχ , 1,2,....t N= . If  
1 1

( )y tχ=  the first minimum, 
2 1 ...

( )y tχ +=  the 

first turning point (maximum), 
3 2 ...

( )y tχ +=  the second turning point 

(minimum) etc we extract from the initial time series the time 

series
1 2 3

( ) , , ,.....
n

y t y y y y=  called extreme time series. The extracted time 

series have lengths varying from N=130 to 1500 depending on the structure of 

the initial time series. 

An example of a whole initial and extreme time series is shown in Fig. 2(a). In 

Fig. 2 (b) a zoom of a segment of the initial temperature time series of Fig 2(a) 

is presented.  
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Fig. 2. (a)  Initial and extreme time series. (b)  Segment of initial and extreme time series. 
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3.3 Nonlinear measures 
The most widely known nonlinear measure, which is used to select the 

appropriate delay time τ  for state space reconstruction is the Mutual 

Information ( )I t  and is defined as: 

                      
x(ti),x(ti+ )

P(x(ti),x(ti+ ))
I( )= P(x(ti),x(ti+ ))*log[ ]

P(x(ti))*P(x(ti+ ))τ

τ
τ τ

τ
∑                (6) 

Where ( )ix t is the i
th

 data point of time series, 
max

( 1, 2, ..... )k t k kτ = ∆ = ; 

( )( )
i

P x t  is the probability density at ( )i
x t ; ( )( , ( ))

i i
P x t x t τ+  is the joint 

probability density at ( ) ( ),
i i

x t x t τ+ ; τ  is the delay time. 

The delay t  of the first minimum is chosen as a delay time for the 

reconstruction of phase space. 

We also used a new nonlinear measures the Cumulative Mutual Information  

max
( )M τ , defined as the sum of mutual information ( )I t  D.Kugiumtzis et al., 

2007 [14] for a number of delay τ  .   

                           
max

max

1

( ) ( )M I
τ

τ

τ τ
=

=∑                        (7) 

 

3.4 Clustering analysis using the Cumulative Mutual 

Information function 
Clustering is an important technique that groups together similar data sets. 

Several studies used clustering methods based on mutual information [23, 24]. 

In our study we used single linkage hierarchical clustering algorithm in order to 

classify our data. The clustering techniques applied both on the original time 

series as well as on the extreme value (minimum and maximum values) time 

series. As a measure of similarity we used the Cumulative Mutual Information.  

One of the main advantages of hierarchical clustering is that a dendrogram can 

be drawn to find the appropriate number of clusters in a dataset. Briefly we 

propose the following clustering algorithm steps: 

o We compute the Euclidean distance y between pairs of objects in n-by-p 

data matrix X. Rows of X correspond to observations; columns correspond 

to variables. 

o We create a hierarchical cluster tree z from the distances in y (y is a 

Euclidean distance matrix or a more general dissimilarity matrix, formatted 

as a vector) 

o Finally we group the data set into clusters. The most dependent data are 

grouped together. 

 

4. Results and Discussion 
During the experiment the jet axis (at elevation 5cm above the nozzle axis) was 

located by optical measurements nearly at the midpoint between the jet 
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boundaries (x=16.5 – 17.5 cm). This was also supported by the behavior of the 

average temperatures observed in these time series, as well as from Recurrence 

Plot analysis [11]. It is well known from the theory of fluid mechanics that 

turbulence near the center of the jet is fully developed. There appear many 

short-lived small scale turbulent structures, while near the jet boundary the large 

scale flow structures live longer.  

We calculated the mutual information function for both, the original as well as 

for the extreme data series and the results are presented in Figs. 3(a)-(b). In Fig. 

3 (b) we observe that for the extreme time series reported at x=16.5 cm and 

x=17.5 cm (points which are near jet axis) the mutual information function 

clearly attains the lowest values for any value of the time delay, if compared to 

the results for the rest of the time series. Such behavior is consistent with what 

we expected since close to the jet centreline the memory of the flow structures is 

lost fast.  

             (a) 
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x=24.5 cm

x=8.5 cm

x=25.5 cm

 

Fig. 3. (a)  Mutual information of the Initial time series along the horizontal line. (b) Mutual 

information of the Extreme time series along the horizontal line 
 

In Fig. 3(a) we can see that there are time series presenting the smallest local 

minimum but not the lowest values of average mutual information which 

correspond in fact to regions in or close to the ambient water, while time series 

close to the jet axis (close to x=17.5cm) present the lowest values of average 

mutual information although for larger lags. As we get far from the jet axis ,but 

always in the turbulent jet region, average mutual information increases and 

time lags of the minimum are shifted toward larger times. We must however 

75

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



bear in mind that the time lags are not directly compared for the original and the 

extreme time series, since the distance between successive points varies. 

 

In Fig.4 (a) and (b) we summarize results for the cumulative mutual information 

for the original and extreme time series. A close look in Fig. 4(b), where the 

cumulative mutual information for the extreme time series is presented, 

indicates that we can discriminate three main regions corresponding to time 

series. The first region corresponds to a set of time series toο far from the 

centerline of jet (x=7.5cm, x=27.5cm, x=28.5cm, x=29.5cm, x=30.5cm). The 

second region corresponds to a set of time series very close to the center of jet 

(x=16.5cm, x=15.5cm, x=17.5cm, x=18.5cm, x=19.5cm). The third region 

corresponds to a set of time series (x=9.5cm, x=21.5cm, x=22.5cm, x=23.5cm) 

far from the center of jet but not as much as the time series from the first region.  
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Fig. 4. (a)  Cumulative Mutual information of the Initial time series along the horizontal 

line. (b) Cumulative Mutual information of the Extreme time series along the horizontal line 
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It is of interest to note that such a detailed discrimination of the three regions is 

not so straightforward in Fig. 4(a) where the cumulative mutual information 

from the original time series is presented. 

 

Furthermore we evaluate the discriminating power of cumulative mutual 

information, applying a clustering algorithm to the set of our cumulative mutual 

information time series. For the clustering we used the algorithm described in 

paragraph 3.4. The hierarchy built by the clustering algorithm based on 

cumulative mutual information from reduced and original time series is 

represented by the dendrograms given in Fig. 5 and Fig.6. 
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Fig. 5. (a), (b), and (c)  Dendrogram Cumulative Mutual information of the Extreme time series 

along the horizontal line at different cut point 
 

 

In Figure 5(a) we present the hierarchy clustering of each extreme time series. 

We decided to make two ΄΄cuts΄΄ at the dendrogram at different levels of 

distance (vertical axis). In Fig. 5(b), the first ΄΄cut΄΄ is made at distance~16, 

where one can clearly see two main partitions. One main group consisted from 

the time series at x=7.5cm, x=26.5cm, x=27.5cm, x=28.5cm, x=29.5cm, 

x=30.5cm. This group corresponds to the region toο far from the axis of the jet. 
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The second main cluster includes the remaining time series. This first step is 

important because we can exclude the time series time series corresponding to 

the edges of the measuring area.  

 

In Fig. 5 (c) we can see the dendrogram which results in from the second ΄΄cut΄΄ 

at distance~3.5. We can see more clearly some major cluster and some smaller. 

Specifically the time series at x=23.5cm, x=24.5cm, x=20.5cm and at x=9.5cm, 

x=21.5cm, 22.5cm join and at x=21.5cm, x=10.5cm, x=19.5cm is joined with 

x=18.5cm. These above partitions correspond to a set of time series far from the 

center of jet but not as much as the time series from the first step (x=7.5cm, 

x=26.5cm, x=27.5cm, x=28.5cm, x=29.5cm, x=30.5cm). 

Moreover in Fig. 5 (c) we can distinguish other some small clusters which 

include the time series at x=15.5cm, x=14.5cm, x=20.5cm and x=13.5cm, 

x=12.5cm, x=17.5cm. We can notice that the time series at x=16.5cm 

correspond close to the centerline of jet is separate from other.  
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Fig. 6. Dendrogram Cumulative Mutual information of the Initial time series along the horizontal 

line. 

 
As we can see in Fig 6 where the results for the cumulative mutual information 

resulting from the analysis of the original time series are presented, there are 

several clusters without the same discriminating structure observed from the 

analysis of the extremes time series (Fig.5). 

 

5. Conclusions  
In this work we have investigated a new approach in order to detect the jet axis 

of temperature time series derived from experimental data. The novelty of this 

study is that the analysis was applied both on the original time series as well as 

on the extreme value (minimum and maximum values) time series. More 

specifically we focus to a new measure the Cumulative Mutual Information, and 

78

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



we showed that it can discriminate the underlying dynamics from one time 

series to another. Another important issue is that the performance of the 

Cumulative Mutual Information was applied to a reduced length time series 

(extreme time series) and showed that it has higher discriminating power than in 

the original time series. This issue is very important if we take into account the 

size of the computational analysis of original data due to the length of the time 

series.  
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Abstract: Changes in EEG time series before, during and after removing a pain 

syndrome by applying the psychorelaxation technique are examined for healthy subjects 

and patients with chronic psychogenic pain disorders connected with disruptions of 

interrelations between cortex and subcortex on the thalamic and the brain-stem level. The 

degree of psychorelaxation and decrease of the pain syndromes is estimated as a change 

in the multifractality degree gained by the wavelet transform modulus maxima method. 

For the healthy subjects we observe the reliable decrease of the multifractality degree and 

the enhancement of the anticorrelated dynamics of consecutive EEG values during the 

pain and their recovery up to the previous values during psychorelaxation. The all 

healthy subjects notice that the pain syndrome disappears. The analogous dynamics in 

the multifractality and the improvement of the functional state are observed only for 70% 

“thalamic”patients. For other 30% patients of the group the multifractality degree 

remains less than for the healthy subjects. For all the “brain-stem”patients during 

relaxation the multifractality degree remains high and the singularity spectrum 

corresponds to both the correlated and anticorrelated dynamics. The study demonstrates 

that the changes in the multifractality give a good ability to estimate the psychorelaxation 

efficiency for the healthy and pathological human brain. 

Keywords: EEG, Psychorelaxation technique, Multifractal analysis.  

 

1. Introduction 
It is well known that bioelectrical activity of the human brain recorded from the 

head surface as electroencephalography signal (EEG) can be considered as 

oscillatory processes exhibiting clearly defined variability and having the 

chaotic and fractal properties [2, 9]. Fractal dynamics of EEG is supported by 

the form with step-like features and some sort of self-similarity at least 

stochastically. In other words, on small scales EEG patterns are not identical to 

the whole signal but the self-similarity remains after averaging by statistically 

independent samples of the signal. Multifractality of the human brain is found in 

EEG time series in both healthy and pathologic states [5, 7]. The present work is 

devoted to the comparative analysis of the multifractality degree in EEG 

                                                 
*
 Paper included in Chaotic Systems: Theory and Applications, C.H. Skiadas 

and I. Dimotikalis, Eds, World Scientific, pp      , 2011. 
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patterns of normal and pathological brain activities. Impairments connected with 

anxious phobic disorders are considered as pathology. Chronic pain complaints 

are specific for patients suffering these disorders. These complaints frequently 

are not confirmed by medical research and accompanied by emotional 

disturbances leading to a significant reduction in the level of social functioning 

[4]. Neural disorders of this type are rather resistant to medicinal treatment. That 

is why the development of various psychotherapeutic methods is of interest to 

clinical practice. These methods allow to remove pain symptoms sometimes. 

One of the methods is psychorelaxation technique [3] in which the 

psychorelaxation is in switching attention from the pain sense on the perception 

of color spots arising spontaneously in the state of concentrating on the pain 

locus with closed eyes. Switching attention from the pain intensity to the color 

spots is accompanied by decreasing the pain symptoms up to their complete 

disappearance. 

The aim of the work is to estimate the psychorelaxation efficiency for treatment 

of psychogenic pain in patients with anxious phobic disorders by the method of 

multifractal analysis. For solving the task we analyze EEG fragments recorded 

during the perception of psychogenic pain and during its removal by the 

psychorelaxation technique. 

 

2. Experimental procedure 
The scalp EEG data were recorded during 50 minutes with Ag/AgCl electrodes 

placed at the frontal F3, F4, Fz and occipital O1, O2, Oz sites from 15 healthy 

subjects and 18 patients with neural impairments connected with anxious phobic 

disorders. For healthy subjects the pain was evoked by a tactile stimulation on 

the midpoint between the first and second fingers during 1 minute. The pain was 

removed by psychorelaxation technique. For patients with psychogenic pain its 

reduction was perfomed during 10 - 20 psychorelaxation trials. So, the 

recordings were obtained for three states: before tactile pain stimulation (10 

minutes), during it (20 minutes) and during relaxation (20 minutes) for the 

healthy subjects and during psychogenic pain and in relaxation state for the 

patients with neural disorders. The psychorelaxation technique [3] was is in 

switching attention from the pain sense on the perception of color spots arising 

spontaneously when concentrating on the pain locus with closed eyes. Thus, in 

the psychorelaxation state the pain sense transformed into a color image by the 

patient brain. The observed color spots could appear as achromatic (black or 

grey) colors or chromatic (red, orange, yellow or blue) ones and they could 

change the color. As attention was shifted from the pain to the color spots and 

their color was changed, the patient’s condition could be improved up to the 

complete disappearance of pain symptoms. 

The data were sampled at a rate 256 samples/sec with a resolution of 12 

bits/sample. Then the data were digitally filtered using 1–45 Hz band pass filter. 

The each state included 256000 samples and it was divided into 20 segments of 

the duration 50 seconds. After repeated recordings  60 non- artifact segments of 
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equal duration were randomly chosen from the sets: “before pain”, “during 

pain” and “during psychorelaxation”. 

 

2. Estimation of EEG multifractality 
To estimate multifractal scaling properties of EEG time series we applied the 

wavelet transform modulus maxima (WTMM) method [1]. The algorithm of the 

method consists of the following procedures. 

1) The continuous wavelet transform of the time series describing the examined 

signal x(t): 
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is used. Here a and t0  are the scale and space parameters, ψ((t- t0)/a) is the 

wavelet function obtained from the basic wavelet ψ(t) by scaling and shifting 

along the time, symbol * means the complex conjugate. As the basic wavelet we 

use the complex Morlet wavelet: 
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The value ω=2π gives the simple relation between the scale a and the frequency 

f:  f=1/a. 

2) A set L(a) of lines of local modulus maxima of the wavelet coefficients is 

found at each scale  a.  

3) The partition functions are calculated by the sum of  q - powers of the 

modulus maxima of the wavelet coefficients along the each line at the scales 

smaller the given value a: 
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tl(a*) determines the position of the maximum corresponding to the line l at this 

scale. 

4) By the fact that the partition function is )(~),( qaaqZ τ at a→0 [1], the 

scaling exponent can be extracted as .log),(log~)( 1010 aaqZqτ  

5) Choosing different values of the power q one can obtain a linear dependence 

τ(q) with a constant value of the Hölder exponent constdqqdqh == )()( τ  for 

monofractal signals and nonlinear dependence )()()( hDqqhq −=τ with large 

number of the Hölder exponents for multifractal signals. 
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6) The singularity spectrum (distribution of the local Hölder exponents) is 

calculated from the Legendre transform [1]:  ).()()( qqqhhD τ−=  

Using the WWTM algorithm for the different EEG segments we obtain the 

multifractal parameter, namely, the width of the singularity spectrum 

∆h = hmax – hmin , where hmax  = h (q = – 5) and hmin = h (q = 5) are the maximal 

and minimal values of the Holder exponent corresponding to minimal and 

maximal fluctuation of the brain activity, respectively. Smaller ∆h indicates that 

the time series tends to be monofractal and larger ∆h testifies the enhancement 

of multifractality. To examine the differences between the mean values of the 

parameter obtained for all the segments of different sets of one subject the non-

parametric Mann-Whitney test ( p < 0.05) was applied. 

 

4. Results and discussion 
In three different states: background (before the pain stimulation), during the 

pain stimulation and during psychorelaxation power spectra of EEG for a 

healthy subject have no significant differences. Alpha activity [7 - 14] Hz 

dominates. 

Multifractal analysis enables us to distinguish the EEGs in the three states. For 

the all examined electrode sites the width of the singularity spectrum (∆h) 

decreases during the pain stimulation and recovers up to previous values after 

pain removing. In the all states hmax <0.5 (Fig. 1), hence, the singularity 

spectrum corresponds to anticorrelated dynamics of consecutive EEG values.  
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Fig. 1. The examples of singularity spectra of a healthy subject in three 

functional states (the curve denoted as “*” symbol corresponds the state before 

the tactile pain stimulation, the curve specified as “o” describes the state during 

the pain stimulus and the solid line corresponds the psychorelaxation state. 

 

Thus, persistent sequences are characterized by stochastically ‘up–down’ 

patterns. The decrease of hmax during the pain stimulation testifies about the 

enhancement of the anticorrelation degree, so that the signal becomes less 

smooth and more singular and the randomness of the fluctuations increases. 
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Therefore, the interval time series tend to become more random during the pain 

stimulation and recover during relaxation. 

The decline of the width of the singularity spectrum during the pain stimulation 

shows a reduction of nonuniformity of the signal and a fall in the multifractality 

degree. This fall is due to weak fluctuations (for q<0, h>0), and аt strong 

fluctuations (q>0) the time series become monofractal (uniform by scaling 

characteristics) and the singularity spectrum transfoms into a point (h=const). 

In the state of concentration of the attention on the pain sense the all healthy 

subjects noticed achromatic colors (black or grey) and the short-wavelength 

colors (blue or green) in the relaxation state. The pain syndrome disappeared. 

The results agree with the previous data in which each color image caused a 

specified shift in the psychophysiological state of a subject and determined the 

presence of psychoemotional stress [6]. In the work [3] it has been revealed that 

psychotherapeutic influence relieving the stress, is accompanied by a reliable 

enhancement of colors of the short-wavelength part of visible light. 

The patients with neural disorders were separated into two groups accordingly 

to the classification [8]. For the first group of patients (10 subjects) the 

disruptions of interrelations between cortex and subcortex on the thalamic level 

were found in the rest state. It was expressed in changing thalamo – cortical 

(vertical) and thalamo – thalamic (horizontal) links. Except for alpha activity 

describing optimal cortico – subcorctical relations, the EEG time series of the 

patients included theta activity specified pathological changes in these relations. 

During the pain sense the power spectra are characterized by the increase in 

theta activity. It testifies about an enhancement of unstability of neurodynamic 

processes. During psychorelaxation theta activity falls in occipital sites of 45% 

of the group and remains or increases both in frontal and occipital sites (55% of 

the group). Improvement of psychophysiological state did not correlate with a 

decrease of theta activity. In other words, there were no reliable changes in 

power spectra. 

During concentrating on the pain locus the patients observed mainly the long-

wavelength colors (red, orange, yellow). These colors remained during the 

psychorelaxation for the 30% patients of the group. The other 70% patients 

noticed the transformation of color spots to the short-wavelength blue and the 

complete removal of the pain sense. 

Multifractal analysis shows the reliable changes in the electrical brain activity. 

In all states of the patients with disruptions on the thalamic level the Holder 

exponent values and the width of the singularity spectrum are less than the 
values obtained for the healthy subjects. It means that the degree of 

anticorrelation of persistent sequences of EEG is higher and the randomness of 

‘up–down’ patterns increases. It corresponds to the enhancement of unstability 

of neurodynamic processes in the brain of the patients as compared with the 

healthy subjects. 

During the pain sensation by the patients the multifractal parameter reduces in 

all electrode sites. During psychorelaxation the recovery of the Holder exponent 

values up to the values corresponding to the healthy subjects corresponds to the 

transformation of color spots to the short-wavelength blue (70% patients of the 
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group) (Fig. 2a). For other 30% patients the maximal values of the Holder 

exponent increase weakly during psychorelaxation and they do not reach the 

values obtained for the healthy subjects (Fig. 2b). The width of the singularity 

spectrum remains less than for the healthy subjects.  

 

-0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

s
in

g
u

la
ri

ty
 s

p
e

c
tr

u
m

 D

Holder exponent h

a) for a "thalamic" patient, there is recovery

-0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

s
in

g
u

la
ri

ty
 s

p
e

c
tr

u
m

 D
Holder exponent h

b) for a "thalamic" patient, there is no recovery

 
 

Fig. 2. The examples of singularity spectra of a subject with disruptions of 

cortico – subcortical links on the thalamic level during the pain sense and during 

the psychorelaxation (the curve specified as “o” describes the state during the 

pain sensation and the solid line corresponds to the psychorelaxation state). 

 

Thus, removing pain syndromes for the first group patients corresponds to the 

fall in the degree of anticorrelation of persistent EEG sequences and decline of 

the randomness of ‘up–down’ patterns observed in all electrode sites. Hence, the 

improvement of the functional state testifies about a decline of unstability of 

neurodynamic processes of the brain and optimization of cortico – subcortical 

links. 

For the patients of the second group (8 subjects) disruptions in cortico – 

subcortical relations manifest on the brain-stem level that leads as a rule to 

distortion of the stem – cortical and cortico – thalamic (vertical) links. It results 

to the significant suppression of the alpha component and emergence of the 

theta acitivity. It is accompanied by the large unstability of neurodynamic 

processes and amplification of the psychoemotional stress. So, the theta acitivity 

is prevalent in the all states of this group of the patients. The spectra decline 

with increasing frequency remembering the spectrum of the pink noise with its 

inverse proportionality to frequency (~1/f). 

The Holder exponent values and the width of the singularity spectrum are larger 

than the values obtained for the healthy subjects in all studied electrode sites. 

That is why the multifractality degree of the persistent sequences of EEG far 

exceeds the degree obtained for the healthy subjects.  

During the pain sense the singularity spectrum (0.1<h<0.9) corresponds to the 

both correlated dynamics (h>0.5) and anticorrelated dynamics (h<0.5) (Fig.3). 

During relaxation аt strong fluctuations (q>0) the Holder exponent values 

decline but the multifractality degree remains high and the singularity spectrum 

corresponds to both ‘up–down’ and ‘up – up’ patterns. 

86

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



0 0.5 1
0

0.2

0.4

0.6

0.8

1

s
in

g
u

la
ri

ty
 s

p
e

c
tr

u
m

 D

Holder exponent h

 for the  brain-stem disruptions, there is no recovery

 
 

Fig3. The examples of singularity spectra of a subject with neural disorders on 

the brain stem level during the pain sense and during the psychorelaxation (the 

curve specified as “o” describes the state during the pain sensation and the solid 

line corresponds the psychorelaxation state). 

 

The transformation of achromatic dark color spots is not observed for 81% 

patients. For others 19% achromatic dark colors change into long - wavelength 

red or orange (distant from colors for the healthy subjects). The both cases are 

characterized by the similar changes in the singularity spectra and the absence 

of the improvement of the psychophysiological state. 

 

3. Conclusion 
The study demonstrates that power spectra of the patients with neural disorders 

do not always reflect variations of the psychorelaxation degree. Contrastingly, 

the changes in the multifractal parameter give a good ability to estimate changes 

in the healthy and pathological brain activity. Multifractality of the healthy brain 

is statistically stable as well as stable its neurodynamics. The both cases of 

unstability in two studied groups of the patients with anxious phobic disorders 

are connected with deviation (in different sides) of the multifractal parameter 

from the values specified for the healthy brain. The improvement of the 

psychophysiological state of the patients during psychorelaxation correlates to 

approximation of the multifractal parameter to the values obtained for the 

healthy subjects 
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Abstract. A chaotic signal is used to excite a cracked beam and statistical prop-
erties of the resulting time series of beam response are analyzed to detect and
characterize the crack. For a single degree of freedom (SDOF) approximation of
the beam with opening and closing crack, standard deviation, skewness, and kurto-
sis of are shown to be strongly influenced by crack properties. For a finite element
model of a cracked cantilever beam, standard deviation and kurtosis are shown to
yield information about the location and severity of crack. Simulation results are
experimentally validated.
Keywords: Chaotic excitation, Duffing oscillator, Standard deviation, Skewness.

1 Introduction

Vibration-based damage detection methods are widely used to identify hidden
damages in beam and structural components [1,8,14]. In recent years, many
researchers have investigated the use of chaotic excitation signals to develop
crack detection techniques due to their applicability over a wide frequency
spectrum [7,10]. Although the influence of chaotic excitation on statistics-
based characterizing parameters has been investigated [7], statistics-based
characterizing parameters are significantly influenced by the choice of excita-
tion signal. Recently, statistics-based characterizing parameters were shown
to yield satisfactory results in predicting the severity and location of crack in
[14], which used a harmonic signal to excite a plate structure in the vicinity
of its natural frequency.

In this paper, we consider the chaotic excitation of [10] and statistics-
based characterizing parameters examined in [14] for crack detection in beams.
Similar to [10], we use a SDOF approximation of a cracked beam. However,
unlike the Hausdorff distance used in [10], we consider several statistical
characteristics to quantify the crack. Moreover, we extend this framework
to the continuous model of structure. In contrast to [10], our proposed tech-
nique does not necessitate the reconstruction of the chaotic attractor, instead
relevant information is extracted from the time series. We present several al-
ternatives to allow the detection of i) only the presence of crack using one
time series data; ii) the location and severity of crack using time series data
measured at uniformly distributed locations along the beam span; and iii)
approximate location and severity of crack using only two time series data.
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2 Input Signal

Although a variety of input signals has been studied for vibration-based crack
detection in the literature [1,7,8,10,14], in this paper, we report on the effec-
tiveness of the chaotic solution of a forced Duffing’s equation, which can be
expressed as a set of three first-order ordinary differential equations

ẏ1 = y2, ẏ2 = F cos(y3) + k1y1 − k2y
3

1
− dy2, ẏ3 = ω, (1)

where d, k1, and k2 correspond to some physical parameters of the Duffing
oscillator, F is the amplitude of the sinusoid driving the oscillator, and ω
is the angular frequency of the forcing sinusoid. Setting the parameters to
d = 0.05, k1 = 0, k2 = 1, F = 7.5, and ω = 1 with initial values of y1(0) = 0,
y2(0) = 0.4, and y3(0) = 0, equation (1) exhibits a chaotic behavior [10].

3 Modeling of a Cracked Beam as a SDOF System

with Displacement Input

Following [10], a cracked beam is modeled as a SDOF piecewise linear spring-
mass-damper system which behaves nonlinearly due to the presence of crack
as the system stiffness changes with opening/closing of crack. For the closed
crack case, the effective stiffness is assumed to be k, which reduces to ks =
k − ∆k for the open crack case where ∆k is related to the depth of the
crack. For a SDOF model with a relatively small crack, it follows that ∆k

k
=

a

h
, for a ≪ h [2,10]. Next, we consider that the y1 solution of (1) is used as an

excitation input applied at the base of the SDOF system as a displacement.
The equations of motion for this piecewise continuous SDOF system are [10]

Mẍ1 + cẋ1 + kx1 = cẏ1 + ky1, for x1 ≥ 0,

Mẍ1 + cẋ1 + ksx1 = cẏ1 + ksy1, for x1 < 0, (2)

where M is the mass of cantilever beam, c is the damping coefficient, and x1

is the displacement of beam from the undeformed position.

4 SDOF Results

We subject the SDOF model of (2) to the chaotic excitation y1 resulting from
(1). The resulting time series output is recorded and used to evaluate the
values of statistical parameters such as standard deviation (σ), skewness, and
kurtosis [12]. This process is repeated for varying crack depths. The results
are graphed and examined to determine the existence of any trends that may
indicate the presence and severity of crack. The physical parameters of the
problem data used in our simulations are as follows: mass m = 0.18 kg, nom-
inal stiffness k = 295 N/m, and damping c = 0.03 Ns/m. We also consider
one stiffness value above and one below the nominal stiffness. This allows us
to investigate how the proposed methodology may work on randomly selected
specimen since in real world situations the natural frequency of specimen may
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not be known a priori. The results of our analysis are summarized in Fig-
ure 1. All three statistical characterizing parameters, namely σ, skewness,
and kurtosis exhibit a continuous growth with increasing crack depth and
this trend is observed for three test structures of different natural frequen-
cies, each excited with the same chaotic input. This result indicates that
we do not need to have the exact knowledge of the natural frequency of the
structure that is being investigated for crack detection. This of course stems
from the fact that the chaotic excitation signal possesses a broad frequency
content.
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Fig. 1. SDOF results of statistical characterizing parameters for chaotic input.
Crack depth ratio versus (a) Standard deviation, (b) Skewness, and (c) Kurtosis.

5 Continuous Model

We now extend the results of section 4 to the continuous model case. To do
so, as in [11,13], we consider a continuous model of the dynamical behavior
of the beam with a surface crack in two parts. Specifically, when the beam
moves away from the neutral position so that the crack remains closed, then
the beam behaves as a typical continuous beam [4,11,13]. However, when
the beam moves in the other direction from the neutral position, causing the
crack to be opened, the resulting dynamics require the modeling of crack with
a rotational spring whose stiffness is related to the crack depth [3,4,11,13].

Next, we used the ANSYS software [6] to simulate the dynamics of a
cracked beam under external excitation. We modeled the beam as a 2-D
elastic object using a beam3 element [6] which has tension, compression, and
bending capabilities. The crack is simulated by inserting a torsional spring
at the location of the crack and using the mathematical model described in
[3,4,11,13]. The torsional spring is modeled using a combin14 element [6]
which is a spring-damper element used in 1-D, 2-D, and 3-D applications. In
our FE model, we used the combin14 element as a pure spring with 1-D (i.e.,
torsional) stiffness since the model of [3,4,11,13] does not consider damping.
The physical characteristics of the beam used in our FE model are as fol-
lows: material–Plexiglass, length–500 mm, width–50 mm, thickness–6 mm,
modulus of elasticity–3300 MPa, density–1190 kg/m3, and Poisson’s ratio–
0.35. This FE model was validated [4] by comparing the natural frequencies
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resulting from the FE simulations versus the natural frequencies computed
in Matlab for the dynamic model of [4,11,13].

Next, we subject the FE model to a base displacement using the time
series y1 of (1). In particular, using MATLAB, we simulate (1) and save
15, 000 time steps of y1 time series, which is used as an input to excite the
FE model. The FE simulation is used to produce and record spatio-temporal
responses for each node (corresponding to discretized locations along the
beam span). The resulting data is imported in MATLAB for a detailed time
series analysis, whose results are grouped in two parts as explained below.

We first analyze the beam tip time series data to detect the presence of
any cracks along the beam span. Figure 2 provides plots of the normalized
crack depth a/h versus σ and kurtosis, both of which exhibit a growth trend
with increasing crack depth. However, increasing crack depth produces a
significantly greater growth in kurtosis compared to σ. Moreover, note that
the rate of growth in σ and kurtosis increases when the crack is near the fixed
end of the beam and decreases as the crack location shifts to the free end of the
beam. Finally, a sound beam starts out with a nominal kurtosis value (in our
example, 2.056) and the presence of crack anywhere along the beam causes
the kurtosis value to increase indicating the presence of crack. However, it is
not possible to determine either the crack depth or crack location using only
the beam tip response analysis.
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Fig. 2. Variation in standard deviation σ and kurtosis with crack severity for dif-
ferent crack locations

Next, we use the time series data of the beam response along its span
to develop a method to predict the severity and approximate location of the
crack on the beam surface. We conduct a FE simulation of a beam with a
known crack depth and a known crack location. As before, we use the time
series y1 of (1) as the input excitation and record the time series of beam
response at every 5 mm distance along the beam length. This simulation
is repeated for three different crack locations to test the consistency of our
results. Next, σ, skewness, and kurtosis are computed for the time series at
each location for each crack depth and are plotted in Figures 3 and 4 for
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crack locations of L1 = 0.2L and L1 = 0.6L, respectively. The σ versus
normalized beam length plot shows that the slope of the resulting curve
increases with increasing crack depth, i.e., the beam without crack has the
smallest slope and the beam with the most severe crack has the largest slope.
Moreover, the slope of each curve changes abruptly at the location of crack;
thus this behavior can be used to determine the approximate location of crack.
A careful examination of the skewness plot reveals that the various curves
corresponding to different crack depths do not follow the kind of ordering
observed in the standard deviation σ plots. Thus we will no longer consider
the skewness plots. Next, the kurtosis plots are found to behave in a similar
manner as σ plots and can be used to predict crack location and severity. In
fact, the kurtosis plots exhibit an order of magnitude larger changes compared
to standard deviation σ, rendering them more suitable for detecting crack
location and severity.
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Fig. 3. Variation in standard deviation σ, skewness, and kurtosis with varying crack
severity for a crack located at 0.2L
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Fig. 4. Variation in standard deviation σ and kurtosis with varying crack severity
for a crack located at 0.6L

As seen above, we can detect the severity and location of a crack provided
that the spatio-temporal data is recorded for a series of locations along the
beam length. An examination of the kurtosis plots of Figures 3–4 suggests
one approach to overcome this problem. For each crack depth and each crack
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location, the kurtosis yields a distinct slope past the crack location. For
example, Figure 5(a) shows the variation of kurtosis slope versus the crack
depth, thus yielding constant crack location curves. Similarly, Figure 5(b)
shows the variation of kurtosis slope versus the crack location, thus yielding
constant crack depth curves. To use the diagrams in Figure 5, we record
only two time series along the beam span, preferably near the beam tip. The
recorded time series can be analyzed to obtain the corresponding kurtosis
values. Furthermore, the knowledge of location where the time series data
was recorded allows us to compute the kurtosis slope. Next, superimposing
the computed kurtosis slope value on Figure 5(a) yields the approximate crack
location whereas doing the same on Figure 5(b) yields the approximate crack
depth. Having obtained the approximate knowledge of the crack location,
we can focus on either collecting additional time series data in the identified
region of crack or we can make efficient use of NDT techniques by focusing
only on the identified region of crack.
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Fig. 5. (a) Kurtosis slope versus normalized crack depth for fixed crack locations
and (b) kurtosis slope versus normalized length for fixed crack depths

6 Experimental Verification

A schematic of the experimental setup used is given in Figure 6. An alu-
minum base holds the shaker (Brüel & Kjær Type 4810). To produce a
base excitation, a test specimen is clamped on shaker. An accelerometer
(Omega ACC 103) is mounted at the tip of the specimen using mounting bee
wax. Our software environment consists of Matlab, Simulink, and Real Time
Workshop in which the Duffing’s chaotic oscillator is propagated to obtain
the time series corresponding to the y1 signals of (1). Next, an analog output
block in the Simulink program outputs the y1 signal to a digital to analog
converter of Quanser’s Q4 data acquisition and control board which in turn
is fed to a 12 volt amplifier (Kenwood KAC-8202) to drive the shaker. The
accelerometer output is processed by an amplifier (Omega ACC PSI) and
interfaced to an analog to digital converter of the Q4 board for feedback to
the Simulink program. Properties of the specimen used in our experiments
are same as in Section 5. To emulate a fine hair crack, we used a 0.1 mm
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saw to introduce cracks of several different desired depths. For specimen of
different crack depth, all located at L1 = 0.2L = 100 mm from fixed end,
the accelerometer measurement is recorded and used to produce the output
response time series, which is used to perform our analysis. A total of six
specimens were prepared with crack depth varying from 0% to 50% of the
thickness. In all the specimen, saw crack was introduced on the top surface to
match with the simulation condition. The time series data obtained from the
accelerometer suffered from general sensor errors (dc offset and ramp bias),
causing the raw time series data to be unusable for further analysis. We
used the Wavelet transformation toolbox [5] of MATLAB, to filter the raw
time series data and remove the errors [4]. The corrected time series data [4]
is used to compute various statistical characterizing parameters. Figures 7
provides the variation in standard deviation, skewness, and kurtosis, versus
the crack depth for the corrected time series data. Note that these three
statistical characterizing parameters show an increasing trend with increas-
ing crack depth validating the predictions of our numerical study in Section
4 for SDOF case and in Section 5 for the continuous beam case when only
tip displacement measurement is used. Although the plots obtained from
the experimental data are not as smooth as the ones resulting from numeri-
cal simulation, this may be the result of inaccuracies resulting from sample
preparation or a variety of experimental errors [4].

Fig. 6. Experimental setup
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Fig. 7. (a) Standard deviation (σ), (b) Skewness, and (c) Kurtosis for different
crack depths at L1 = 0.2L

7 Conclusion

In this paper, to detect and characterize a crack in a beam, we considered a
SDOF and a FE model of the beam excited by a chaotic input, as displace-
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ment at the base. We showed that for the SDOF model, crack severity can be
easily and consistently predicted by using standard deviation, skewness, and
kurtosis of the time series data. Moreover, for the FE model, we showed that
standard deviation and kurtosis exhibit trends that can be used to predict
crack location and crack depth. Finally, the simulation results were validated
experimentally.
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Abstract. A chaotic signal is used to excite a cracked beam and wave fractal di-
mension of the resulting time series and power spectrum are analyzed to detect and
characterize the crack. For a single degree of freedom (SDOF) approximation of
the cracked beam, the wave fractal dimension analysis reveals its ability to consis-
tently and accurately predict crack severity. For a finite element simulation of the
cracked cantilever beam, an analysis of spatio-temporal response using wave fractal
dimension in frequency domain reveals distinctive variation vis-à-vis crack location
and severity. Simulation results are experimentally validated.
Keywords: Chaotic excitation, Chen’s oscillator, Wave fractal dimension.

1 Introduction

Vibration-based methods for crack detection in beam type structures continue
to attract intense attention from researchers. To quantify the crack depth
and to detect crack location, vibration-based crack detection methods employ
a variety of characterizing parameters, such as natural frequency [8], mode
shape [13], mechanical impedance [2], statistical parameters [16], etc. In
recent research, wave fractal dimension, originally introduced by Katz [9]
to characterize biological signals, has been used to detect the severity and
location of crack in beam [4] and plate structures [5].

Since the past decade, progress in chaos theory has led several researchers
to consider the use of chaotic excitation in vibration-based crack detection
[11,12]. A majority of these efforts necessitate the reconstruction of a chaotic
attractor from the time series data corresponding to the vibration response of
the structure [11,12]. Unfortunately, the reconstruction of a chaotic attrac-
tor is often tedious and may not always yield satisfactory results for crack
detection even in the SDOF approximation case. To detect and character-
ize cracks, the current chaos-based crack detection methods use a variety
of chaos and statistics-based parameters, such as correlation dimension [12],
Hausdorff distance [12], average local attractor variance ratio [11], etc. In
this paper, we study the use of wave fractal dimension as a characterizing
parameters to predict the severity and location of a crack in a beam that is
made to vibrate using a chaotic input.
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2 Beam Excitation Input

In [3] we considered three methods to excite the cracked beam: a non-zero
initial condition, a harmonic input, and the chaotic solution of autonomous
dissipative flow type Chen’s attractor [14]. Due to space constraints, here we
report on the results corresponding to the use of chaotic signal as an input
excitation force to vibrate a cracked beam. The Chen’s system in state space
form is expressed as

ẏ1 = a1(y2 − y1), ẏ2 = (a3 − a1)y1 − y1y3 + a3y2, ẏ3 = y1y2 − a2y3, (1)

where a1, a2, and a3 are constant parameters. Setting the parameters to
a1 = 35, a2 = 3, and a3 = 28, with initial values of y1(0) = −10, y2(0) =
0, and y3(0) = 37, equation (1) exhibits a chaotic behavior [3,14] and the
solution y1 is expected to be non-periodic. See [3] for our reasons to restrict
consideration to Chen’s system.

3 Wave Fractal Dimension

Waveforms are common patterns that arise frequently in scientific and en-
gineering phenomena. The concept of wave fractal dimension [9] is used to
differentiate one waveform from another. For waveforms, produced using
a collection of ordered point pairs (xi, yi), i = 1, . . . , n, the total length,
L, is simply the sum of the distances between successive points, i.e., L =
n−1∑

i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2. Moreover, the diameter d of a waveform is

considered to be the farthest distance between the starting point (correspond-
ing to n = 1) and some other point (corresponding to n = i, i = 2, . . . , n), of
the waveform, i.e., d = max

i=2,...,n

√
(xi − x1)2 + (yi − y1)2. Next, by expressing

the length of a waveform L and its diameter d in a standard unit, which is
taken to be the average step α of the waveform, the wave fractal dimension
can be expressed as [9]

D = log(L/α)/ log(d/α) =
log(n)

log(n) + log(d/L)
, (2)

where n = L/α, denotes the number of steps in the waveform. We use (2) to
estimate the wave fractal dimension.

4 Modeling of a Cracked Beam as a SDOF System
with Force Input

Following [1,12], a cracked beam is modeled as a SDOF switched system
which emulates the opening and closing of the surface crack by switching the

98

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



effective stiffness ks = k − Δk, where k is the stiffness of the beam without
crack, ks is stiffness during stretching and Δk is stiffness difference. For a
SDOF model with a relatively small crack, the ratio of Δk to k is equal to
the ratio of the crack depth a to the thickness h of the beam [1,12]. Next, we
consider that the y1 solution of (1) is applied as a force to the mass of the
SDOF system. The equations of motion for this piecewise continuous SDOF
system are

Mẍ + cẋ + kx = F (t), for x ≥ 0,

Mẍ + cẋ + ksx = F (t), for x < 0, (3)

where M is the mass of the cantilever beam, c is the damping coefficient, and
x is the displacement of the beam. The physical parameters of the problem
data used in our simulations are as follows: mass m = 0.18 kg, nominal
stiffness k = 295 N/m, and damping c = 0.03 Ns/m.

5 SDOF Results

We now consider the application of the chaotic forcing input of (1) to vibrate
the SDOF model for various values of crack depths. The resulting time series
plots (see Figure 3.11 of [3]) are used to compute the corresponding wave
fractal dimension. Figure 1(a) plots normalized crack depth versus the wave
fractal dimension, showing that the wave fractal dimension monotonically
increases with increasing crack depth. Since wave fractal dimension is a
characteristic of the waveform only, we consider the wave fractal dimension
analysis of the time series of [3] in frequency domain. Using the Fast Fourier
Transform (FFT) [7] technique, we convert the time domain data of [3] to
frequency domain (see Figure 3.13 of [3]), producing the power spectrum of
the response of the SDOF cracked beam. The power spectrum reveals that
the portion of FFT in the vicinity of beam’s natural frequency ωn experiences
significant changes. Thus, we concentrate in the neighborhood of ωn as our
window for computing the wave fractal dimension. Using this technique, in
Figure 1(b), we plot normalized crack depth versus the wave fractal dimension
for the windowed waveforms of Figure 3.13 of [3]. The wave fractal dimension
is seen to monotonically increase with increasing crack depth and this curve
exhibits a significant rate of change. Thus, in the following analysis, we use
the wave fractal dimension of power spectrum as a natural choice for crack
detection and crack characterization.

6 Continuous Model

We now extend the results of section 5 to the continuous model case. To do
so, as in [13,15], we consider a continuous model of the dynamical behavior
of the beam with a surface crack in two parts. Specifically, when the beam
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Fig. 1. (a) Time domain and (b) Frequency domain change of the wave fractal
dimension with normalized crack depth for chaotic forcing input

moves away from the neutral position so that the crack remains closed, then
the beam behaves as a typical continuous beam [3,13,15]. However, when
the beam moves in the other direction from the neutral position, causing the
crack to open, the resulting dynamics require the modeling of crack with a
rotational spring whose stiffness is related to the crack depth [2,3,13,15].

Next, we used the ANSYS software [10] to simulate the dynamics of a
cracked beam under external excitation. We modeled the beam as a 2-D
elastic object using a beam3 element [10] which has tension, compression, and
bending capabilities. The crack is simulated by inserting a torsional spring
at the location of the crack and using the mathematical model described in
[2,3,13,15]. The torsional spring is modeled using a combin14 element [10]
which is a spring-damper element used in 1-D, 2-D, and 3-D applications. In
our FE model, we used the combin14 element as a pure spring with 1-D (i.e.,
torsional) stiffness since the model of [2,3,13,15] does not consider damping.
The physical characteristics of the beam used in our FE model are as fol-
lows: material–Plexiglass, length–500 mm, width–50 mm, thickness–6 mm,
modulus of elasticity–3300 MPa, density–1190 kg/m3, and Poisson’s ratio–
0.35. This FE model was validated [3] by comparing the natural frequencies
resulting from the FE simulations versus the natural frequencies computed
in Matlab for the dynamic model of [3,13,15].

Next, we apply force input to the FE model using the time series y1 of (1).
In particular, using MATLAB, we simulate (1) and save 15, 000 time steps of
y1 time series, which is applied as force input at 40 mm from the fixed end in
ANSYS. The FE simulation is used to produce and record spatio-temporal
responses for each node (corresponding to discretized locations along the
beam span). The resulting data is imported in MATLAB for a detailed
wave fractal dimension analysis, whose results are grouped in two parts as
explained below.
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We first analyze the beam tip displacement power spectrum data to detect
the presence of any cracks along the beam span. Figure 2 provides plots of
the normalized crack depth a/h versus wave fractal dimension for a crack
located at L1 = 0.2L and, alternatively, at L1 = 0.4L. We term these curves
as uniform crack location curves. We observe that a beam without a crack
yields a wave fractal dimension of 1.1205, and wave fractal dimension above
this nominal value indicates presence of a crack in the beam. However, it is
not possible to determine either the crack depth or crack location using only
the beam tip response analysis.
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Fig. 2. Wave fractal dimension versus normalized crack depth–uniform crack loca-
tion curves for L1 = 0.2L and L1 = 0.4L

Next, to predict the severity and approximate location of the crack on
the beam surface, we record the time series data of the beam response along
its span for chaotic forcing input. Using the FFT, the time series data is
converted to frequency domain. The resulting power spectrum plot is ana-
lyzed to identify a suitable window for computing the wave fractal dimension.
Throughout this analysis, the frequency window used for computing the wave
fractal dimension is kept fixed for all crack depths considered. Figure 3(a)
plots wave fractal dimension against normalized beam length for cracks of
various severity located at L1 = 0.2L. These uniform crack depth curves
yield the same wave fractal dimension till the crack location and their slopes
change abruptly at the location of crack. In fact, past the crack location, the
uniform crack depth curves exhibits a larger slope for a larger crack depth.
Figure 3(b) shows similar behavior for crack location, L1 = 0.4L. The abrupt
split in uniform crack depth curves at crack location and their increasing slope
with increasing crack depth can be used to establish both the severity and
location of crack.

101

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



0 0.2 0.4 0.6 0.8 1

1.22

1.23

1.24

1.25

1.26

1.27

1.28

Normalized beam length (L
1
/L)

W
av

e 
fr

ac
ta

l d
im

en
si

on
 (D

)

 

 
a/h=0
a/h=0.1
a/h=0.3
a/h=0.5
a/h=0.7

0 0.2 0.4 0.6 0.8 1

1.22

1.23

1.24

1.25

1.26

1.27

1.28

Normalized beam length (L
1
/L)

W
av

e 
fr

ac
ta

l d
im

en
si

on
 (D

)

 

 
a/h=0
a/h=0.1
a/h=0.3
a/h=0.5
a/h=0.7

(a) (b)

Fig. 3. Wave fractal dimension versus normalized beam length–uniform crack depth
curves for (a) L1 = 0.2L and (b) L1 = 0.4L

7 Experimental Verification

A schematic of the experimental setup used is given in Figure 4. An alu-
minum base holds the shaker (Brüel & Kjær Type 4810). To produce a
base excitation, a test specimen is clamped on shaker. An accelerometer
(Omega ACC 103) is mounted at the tip of the specimen using mounting bee
wax. Our software environment consists of Matlab, Simulink, and Real Time
Workshop in which the Chen’s chaotic oscillator is propagated to obtain the
time series corresponding to the y1 signals of (1). Next, an analog output
block in the Simulink program outputs the y1 signal to a digital to analog
converter of Quanser’s Q4 data acquisition and control board which in turn
is fed to a 12 volt amplifier (Kenwood KAC-8202) to drive the shaker. The
accelerometer output is processed by an amplifier (Omega ACC PSI) and
interfaced to an analog to digital converter of the Q4 board for feedback to
the Simulink program. Properties of the specimen used in our experiments
are same as in Section 6. To emulate a fine hair crack, we used a 0.1 mm
saw to introduce cracks of several different desired depths. For specimen of
different crack depth, all located at L1 = 0.2L = 100 mm from fixed end,
the accelerometer measurement is recorded and used to produce the output
response time series, which is used to perform our analysis. A total of six
specimens were prepared with crack depth varying from 0% to 50% of the
thickness. In all the specimen, saw crack was introduced on the top surface
to match with the simulation condition.

The time series data obtained from the accelerometer suffered from gen-
eral sensor errors (dc offset and ramp bias), causing the raw time series data
to be unusable for further analysis. We used the Wavelet transformation
toolbox [6] of MATLAB, to filter the raw time series data and remove the
errors [3]. The corrected time series data [3] is converted to frequency domain
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and used to compute wave fractal dimension. Figures 5 provides the varia-
tion in wave fractal dimension versus the crack depth for the corrected power
spectrum data. Note that the wave fractal dimension shows an increasing
trend with increasing crack depth validating the predictions of our numerical
study in Section 5 for SDOF case and in Section 6 for the continuous beam
case when only tip displacement measurement is used. Although the plots
obtained from the experimental data are not as smooth as the ones resulting
from numerical simulation, this may be the result of inaccuracies resulting
from sample preparation or a variety of experimental errors [3].

Fig. 4. Experimental setup
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Fig. 5. Frequency domain change of wave fractal dimension with normalized crack
depth at L1 = 0.2L

8 Conclusion

In this paper, to detect and characterize a crack in a beam, we considered
a SDOF and a FE model of the beam excited by a chaotic force input. We
showed that for the SDOF model, crack severity can be easily and consistently
predicted by using wave fractal dimension of power spectrum of time series
data. Moreover, for the FE model, we showed that wave fractal dimension
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exhibits a trend that can be used to predict crack location and crack depth.
Finally, the simulation results were validated experimentally.
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Abstract: A 3D ecosystem model of Baltic Sea is presented, and model output is 

compared with field data from the southern Baltic Sea. This model is used to estimate the 

annual phytoplankton biomass under circulation and solar radiation forcing conditions. 

The marine ecosystem model consists of a set of equations. There are all of the same 

general form, i.e. equations of the diffusion type (a second-order partial differential 

equation), expressing changes in any state variable. The marine ecosystem model is 

coupled to the three-dimensional, time-dependent hydrodynamical model, POPCICE for 

the Baltic Sea. The POPCICE model consists of Parallel Ocean Program (POP) and 

Community Ice CodE (CICE). Both models are from Los Alamos National Laboratory 

(LANL). POPCICE was forced using European Centre for Medium-Range Weather 

Forecasts (ECMWF) data. The POPCICE model provides the velocities, temperature and 

salinity on a temporal  and spatial scale that resolves the atmospherically induced 

variability mentioned above.  The results of the simulations are presented for one year 

(2004) for the whole of Baltic Sea. Model generally in good agreement with field data. 

The study was financially supported by the Polish State Committee of Scientific Research 

(grants: No N N305 111636, N N306 353239) and ECOOP IP WP 10.1.3  Project.  

Keywords: 3D ecosystem model, Baltic Sea, phytoplankton, nutrient, temperature   
 

1. Introduction 
The Baltic Sea is a semi-enclosed shelf sea bounded by the Scandinavian 

Peninsula in the north and east, the Jutland Peninsula in the west and continental 

Europe in the south. The brackish nature of the Baltic, in which salinity 

decreases in a north-easterly direction, is due to the combination of the high 

river discharge and the limited inflows of salty water from North Sea. The Baltic 

Sea run off drains a catchment area which is approximately four times bigger 

than the sea itself. Major part of catchment area, especially in the continental 

part, intensive agriculture is practiced. This means that high loads of nutrients 

and organic matter eventually could reach the Baltic, making this sea one of the 

most productive marine ecosystems in the world [5].  

The numerous threats and natural disasters elicited by changes in the 

environment have persuaded experts to radically intensify ecological 

investigations and forecasts on a regional and global scale. A key part in these 

changes is played by marine ecosystems, especially the organic matter 

production processes occurring in them. During the last four decades, a way of 

solving these problems has been developed using numerical methods describing 

the bioproductivity of marine basins. Mathematical models of ecosystems can 

also be used as tools for forecasting and evaluating the influence of human 

activities, or for analysing future changes to an ecosystem that may take place 

under the influence of external factors [2].  
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The marine system model consists of two parts: hydrodynamic and ecosystem 

part. The main goal of this work was to create a three-dimensional, biological 

model embedded in the hydrodynamical model for simulation of the annual 

phytoplankton biomass in the Baltic Sea. 

 

2. The CEMBSv1 model  
The CEMBSv1 model was embedded in the existing 3D hydrodynamic model of 

the Baltic Sea. Described in project ECOOP IP WP 10 sea – ice model 

(POPCICE) has been use to implement biological equations for plankton 

system. Some basic information about the model: POPCICE – coupled sea-ice 

model. The model consists of Parallel Ocean Program (POP) and Community 

Ice CodE. Both are from Los Alamos National Laboratory (LANL). POPCICE 

was forced using European Centre for Medium-Range Weather Forecasts 

(ECMWF) data. It is forced by the following atmospheric fields: 2 meters 

temperature and dew point, long and short waves radiation (downward), 10 

meters wind speed and air-ocean wind stress. Ocean model time step is 480 s  

and ice model time step is 1440 s. Horizontal resolution for ice and ocean 

model: ~9 km (1/12 degree). Vertical resolution (ocean model): 21 levels (for 

the Baltic sea  ~18 levels). Both models work on the same grid, so there are no 

problems with exchanging fluxes between the models. In this paper, we are 

focused only on the biological part of the model. 

Conceptual basis 
The ecosystem model is based on 1D biological model of Dzierzbicka-

Glowacka [2, 3]. In 3D model, phytoplankton is represented by state variable 

and the model formulations are based on a simple total inorganic nitrogen 

(NO3+NO2+NH4) cycle (Figure 1). Nutrient serves initially as a means to trigger 

the bloom of phytoplankton and later to limit the phytoplankton production.  

The model is conceptualized for the shallow sea, typical with the replenishment 

of the mixed layer with nutrients from the bottom. The water column dynamics 

are implemented in a three-dimensional frame, where phytoplankton and 

nutrient (nitrogen) are transported by advection and diffusion. The physical 

frame, including all necessary forcing is presented at Figure 2.  

The biological model incorporates formulations for the primary production 

mechanism and remineralization mechanisms within the mixed layer, in the 

lower layer and at the bottom. Primary producers are transported, die and are 

utilized by zooplankton (mesozooplankton). The grazed phytoplankton is 

divided into three parts: the first one contributes to zooplankton growth, the 

second is deposited as fecal pellets, and the last one is excreted by zooplankton 

as dissolved metabolites; thus, it replenishes the nutrient pool. 

A proportion of the material contributes growing is assumed to be lost 

immediately, represents dying zooplankton. Proportions of both the fecal and the 

excreted material are immediately regenerated (see [2]). Mortality of 

phytoplankton is modeled in two ways: the grazing by mesozooplankton, which 

form the bulk of grazers in the Baltic Sea and here it is prescribed by 

mesozooplankton biomass; all other kinds of mortality, like cell lyses and 
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grazing by zooplankton other than mesozooplankton, are assumed to be 

proportional to phytoplankton standing stock, with a constant mortality rate, and 

therefore dynamically coupled to phytoplankton dynamics. The effect of the 

microbial food web (see [1]) is parameterized by converting this portion of 

detrital material immediately into regenerated nutrients within the water column. 

The major portion sediments onto the bottom where it is re-worked by benthic 

communities. 

 
 

Fig. 1. Schematic diagram of the CEMBSv1 processes 

 

 

                   
 

Fig. 2. Schematic diagram of the forcing data and related state variables  

 

Equations 
Two partial differential equations describe the spatial and temporal evolution in 

the total inorganic nitrogen Nutr(x,y,z,t) (mmol N m
-3

) and phytoplankton 

Phyt(x,y,z,t) (mg C m
-3

) pools, and an ordinary differential equation describes 
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the benthic detritus Detr(x,y,t) (mg C m
-2

) pool. The set of equations with model 

parameters is below presented. 

 

 

 

 

 

 

 
where:  u, v, w – the time-dependent velocities obtained from the POPCICE, and 

wz – sinking velocity of phytoplankton,  Kx, Ky ,Kz – horizontal and vertical 

diffusion coefficient (see ECOOP WP 10.1.1). 

 

The first four terms on the right-hand side of the phytoplankton equation 

describe the horizontal and vertical advection and diffusion of phytoplankton, 

where u, v and w are the time-dependent velocities obtained from our model for 

the Baltic Sea (POPCICE, see ECOOP WP 10.1.1), Kx, Ky, Kz are the horizontal 

and vertical diffusion coefficients, and the following terms describe gross 

production (PRP), respiration (RESP), mortality (MORP) and grazing (GRZ). 

Gross primary production (PRP) is calculated from the nutrient and light 

limitation functions - fN and fI. Steele's function, (Steele, 1962) where optimal 

light intensity Iopt, is used as a light limitation function which includes 

photoinhibition. For nutrient limitation the Michaelis-Menten formuła is applied 

with a constant KN as the half-saturation constant. Respiration (RESP) consists 

of basal maintenance and photorespiration, each being proportional to 

phytoplankton biomass, where the basic dark respiration proportion is rBR as a 

proportionality factor to the maximum photosynthetic rate, and the 

photorespiration proportion rPR is proportional to gross primary production. The 

temperature dependence fT is modeled according to fT = exp(0.0769(T-10)) with 

the constant 0.0769 expressing the respiration change fT with temperature, 

yielding a doubling by an increase of 10°C in temperature and fT (To) = l at To = 

10°C. Mortality of phytoplankton (MORP) is assumed to be proportional to the  

phytoplankton standing stock, with mortality rate mp. Copepod grazing (GRZ) is 

assumed to be proportional to copepod biomass Zoop with rate gmax, but this rate 

is modified by a Michaelis-Menten function of phytoplankton biomass with the 

half-saturation constant kPhyt subject to a threshold Phyto, below which grazing 

ceases. 

The state equation for nutrient includes the first four terms on the right-hand 

side expressing the horizontal and vertical advection and diffusion of nutrient, 

where the same velocities and diffusion coefficients are used as for 

phytoplankton, and the four processes nutrient uptake (UPT), dark respiratory 
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release (RELE), remineralization in the water column (REM) and zooplankton 

excretion (EXCZ). Nutrient uptake (UPT) appears in the nitrogen equation for 

positive net production in the euphotic zone only. The constant gN is the N:C 

ratio according to the Redfieid ratio. Respiration in the dark consumes 

particulate organic matter. To conserve matter, the respiration term in the 

equation for phytoplankton carbon must be balanced by a nutrient release term 

(RELE) in the equation for nitrogen. This term parameterizes the contribution of 

respiration to the nutrient pool at the given fixed ratio gN. For light intensities 

below the compensation intensity, the respiratory release is regenerated 

immediately into nitrogen. Fractions of dead phyto- and zooplankton and of 

fecal pellets that are instantaneously remineralized within the water column by 

the microbial food web (REM) are given by proportionality factors pM for 

phytoplankton, pZ for zooplankton and pF for fecal pellets. Excretion of 

dissolved (EXCZ) and particulate material is parameterized as fixed proportions 

of zooplankton grazing (ez), fecal pellet production (f) and zooplankton 

mortality (mz), with the condition ez + f + mz =1. 

The benthic detritus equation consists of two terms, sedimentation out of the 

water column to the bottom (indicated by the integration from the surface to the 

bottom H, simultaneously from all depths) and regeneration at the bottom. Efect 

of sedimentation of  detrital material out of the water column consists of 

contributions by dead phytoplankton, fecal pellets and dead zooplankton, which 

are not remineralized in the water column by the microbial food web. 

Remineralization at the bottom is assumed to be proportional to the amount of 

available benthic detritus, with a constant rate rD. 

 

3. Results of the simulations 
For a large areas, the biogeochemical processes storng depend on 

hydrodynamics of the sea. On figures (3-5) monthly model output for the 

surface layer is shown for the different model variables (temperature, 

phytoplankton and nutrient). Figure 4 presents the on set of the spring bloom of 

phytoplankton calculated by the model. It shows that the simulated spring bloom 

begins in the Skagerrak-Kattegat area earlier than in the Baltic Proper. When the 

spring bloom starts in the Baltic Proper it firstly develops in the coastal zone and 

southern part and then it is spread northwards. In late spring/early summer the 

spring bloom starts in the Gulf of Finland and Bothnian Sea and finally it 

reaches the Bothnian Bay. In the second part of year, in September and October, 

blooms of smaller intensity appears throughout the Baltic, but in the northern 

regions and coastal zone of the sea they are higher than in the southern Baltic 

Sea. 

Following the annual nutrient dynamics (Figure 5), the season begins with high 

total inorganic nitrogen concentrations in the whole column water. As the spring 

starts the nutrient is consumed. The phytoplankton prefers ammonia to nitrate, 

so as long as ammonia is available, ammonia is consumed.  
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Fig. 3. Monthly averaged temperature (

o
C) for the surface layer during January – 

December 2004  
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Fig. 4. Monthly averaged total inorganic nitrogen concentration (mmol m

-3
) for 

the surface layer during January – December 2004  
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Fig. 5. Monthly averaged phytoplankton biomass (mgC m

-3
) for the surface layer 

during January –  December 2004  
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As soon as the ammonia pool in the surface layer is emptied, the phytoplankton 

turns towards the nitrate for assimilation. It is also noticeable that the one spring 

bloom has started, and the total inorganic nitrogen concentrations turn low, the 

bloom is maintained by the external supply of inorganic nitrogen. At the end of 

June, when the system is depleted of nitrate, the nitrogen fixation starts and 

phosphorus pool is regained, it is not included in this model. However, winds 

are strong enough in September to replenish the full water column with 

abundant nutrients. In the autumn, there is a slightly rise in the phytoplankton 

biomass. It is caused by the increase in nutrient concentrations resulting from 

the deeper mixing of the water. However, the growing season is ended in 

December, when the phytoplankton biomass dropped to the January-February 

level.  

 

4. Conclusions 
As a rule, mathematically simulated data are only an approximation of 

environmental processes. However, a properly validated model provides 

substantial knowledge as regards the spatial and temporal resolutions of 

processes, which is very difficult to obtain from in situ measurements.  

The results indicate that the 3D CEMBSv1 model could be a useful tool for 

investigating the annual phytoplankton biomass and predicting its changes. 

Some of the discrepancies observed (see ECOOP WP 10.1.3 Project) could be 

the result of the dynamism of ecosystem changes.  

The 3D CEMBSv1 model is an open model which enables the study of (1) 

annual, seasonal, monthly and daily variability of marine plankton in the 

southern Baltic sea, (2) the impact of various climatic conditions over several 

years, and (3) the influence of different hydrophysical and biological process on 

the vertical distributions of characteristics as a function of time. The 3D model 

presented in this paper may have a practical use in forecasting ecological 

changes in the Baltic (see [4], ECOOP WP 10.1.3 Project).  
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Abstract: In the recent decade, a considerable number of optimal control problems have 

been solved successfully based on the properties of the measures. Even the method, has 

many useful benefits, in  general, it is not able to determine the optimal trajectory and 

control at the same time; moreover, it rarely uses the advantages of the classical solutions 

of the involved systems.  In this article, we are going to use of measure theory for solving 

bone marrow cancer. Model adapted from a paper by K.R.Fister and J.C.Panetta [9]. 

. 

Keywords: Non-Linear Model, Bone marrow cancer model, optimal control, Radon 

measure, cell-cycle-specific,dynamic System.  

 

1. Introduction 
According to an idea of L. C. Young ,by transferring the problem in to a 

theoretical measure optimization, in 1986 Rubio introduced a powerful method 

for solving optimal control problems ([12]). The important properties of the 

method (globality, automatic existence theorem a linear treatment even for 

extremely nonlinear problems,...) caused it to be applied for the wide variety of 

problems. Even the method has been used frequency for solving several kinds of 

problems, like [5], [6], [7], [8]and [10], but at least two important points were 

not considered in applying the method yet. Generally the method can not be able 

to produce the acceptable optimal trajectory and control directly at the same 

time; and moreover, the classical format of the system solution, usually  is not 

taken into account. Therefore, there is no any possibility to use this important 

fact and their related literatures in the analysis of the system not prescribed, 

although the various table text styles are provided. The formatter will need to 

create these components, incorporating the applicable criteria that follow. 

chemotherapy drugs are a common type of drug used in treating cancer. The 

main action of these drugs works against cells in a specific phase of the cell 

cycle. That is, all cells go through a well-studied cycle of growth which includes 

a resting phase, a DNA replication phase, and a cell division (mitosis)phase. 

These types of drugs do not affect cells in the resting state. Hence, cells in the 

quiescent state are thought of as kinetically resistant to these drugs. Agur [1], 

                                                 
*
 Paper included in Chaotic Systems: Theory and Applications, C.H. Skiadas 

and I. Dimotikalis, Eds, World Scientific, pp 302—308, 2010. 
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Agur, Arnon, and Schechter [2]use both age-structured and probabilistic models 

with an “on-off” type drug function (the drug is either active or inactive)to 

describe the effects of cell-cycle-specific drugs on the bone marrow.  Swan [15] 

provides a good review of the role of optimal control in non-cell-cycle-specific 

cancer chemotherapy. Another work by Swierniak, Polanski, and Kimmel [16] 

uses optimal control theory on a cell-cycle-specific chemotherapeutic model. 

They investigate a variety of ways to model the cell-cycle by various groupings 

of the cell-cycle phases. In each case, they attempt to minimize the total cancer 

mass at the end of some specified time interval using the least amount of drug 

possible. 

2. The nonlinear model of bon marrow cancer 
There is a control model study the effects of chemotherapy as a immume system 

infected with bone marrow cancer, see for example Panetta [10]. We basically 

used the model and notation introduced in [10]. We assume that the control 

model of bone marrow cancer is an follows: 

)2()()()(

)1()()())((

tQtP
dt

dQ

tQtPtsu
dt

dP

βλα

βαδγ

+−=

+−−−=
 

The function u(t) is the control describing the effects of the chemotherapentic 

treatment only on the proliferating cells. There are measurable functions defined 

on J=[0,T], which bounded and assume  . In the medical model (1), parameters 

and constrains, defined as follows: 

P(t) =The proliferating cell mass in the bone marrow 

Q(t) =The quiescent cell mass in the bone marrow 

γ  =Cycling cells growth rate  

δ =Natural cell death 

β  =Transion  rate from resting to proliferating 

λ  =Cell differentation 

s=The strength or effectivness of the ~treatment 

All the units for the parameters are We would like to give as much drug as 

possible while not excessively destroying the bone marrow. The objective 

function that to be maximized is defined as: 

)3(]))(1(
2

)()([),,(
0

2 dttu
b

tQtaPuQPJ

T

∫ −−+=  

The parameters a and b are weights describing the importance of each term in 

the objective functional. The objective function is contained the total amount of 

one  arrow and the amount of drug give. Model adapted from a paper by 

K.Renee Fister and J.Carl Panetta [9]. 

3. Transformation  nonlinear model 
We define the function RUQPJf →×××:0

 as following where P,Q and U are 

compact subsets of R 
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then we write the problem (2) in the following form: 
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 Now, Let  UQPJ ×××=Ω and  21 , ff  are continuous functions, where the 

trajectory functions p(t) and q(t) is absolutely continuous and the control 

function u(t) is Lebesgue-measurable. We assume that the set of all admissible 

pairs is nonempty and denote it by Γ  . Let (.)](.),[ uX=ω   be an admissible 

pair, and B an open ball in
3R   containing AJ × , and  )(BC′ be the space of all 

real-valued continuously differentiable functions on B such that the first 

derivation is also bounded.  

 Let )(BC ′∈φ  , and define function
1f

φ   , 21 ,,
2

ψψφ f  as follows: 
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 Also by choosing a variable t, we have 
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By using [11] and Radon measure µ  ,we have: 

)9()(,)(

)8(),0(2,1,0)(

)7()(2,1,)(

1 Ω∈=

∈==

′∈=∆=

Cgag

Ti

BCi

g

i

if

i

i

µ

ψψµ

φφφµ
 

 Define Ω  the set of all positive Radon measures on   

satisfying (7),(8) and (9) as Σ  . Also we assume )(Ω+M  be the set of all 

positive Radon measures on Ω  . Now if we topologize the space )(Ω+M    by 

the weak*- topology, it can be shown that Σ   is compact([12]). 

4. Metamorphosis 
We now estimate the optimal control by a nearly-optimal piecewise constant 

control. The problem (7),(8) and (9) is an infinite dimensional linear 
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programming problem, because all the functionals in (7),(8) and (9) are linear in 

the variable  ,and furthermore µ  is required to be positive.  

Now, we construct a piecewise constant control function 

corresponding to the finite-dimensional problem. Therefore in the infinite-

dimensional linear programming problem (7)-(9) with restriction defined by [9], 

we shall consider how 

one can choose total functions in the constraints (7)-(9). Consider first  iφ   

in )(BC ′   as the following form: 
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Trivially the linear combinations of these functions are uniformly dense in the 

space )(1 ΩC   ([14]), we choose only   number of them. Also, we choose  

2M functions with compact support in the following form: 
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Finally, it is necessary to choose L number of functions of time only, as follows: 
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The set   UAJ ××=Ω will be covered with a grid, where the grid will be 

defined by taking all points in  Ω  as ),,,( jjjjj uqptz =  

 the points in the grid will be numbered sequentially from 1 to N, which can be 

estimated numerically. Instead of the infinite-dimensional linear programming 

problem, we consider the following finite dimensional linear programming 

problem, where  ω∈jz  
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5. Numerical Example 
In section we obtain the approximation  solution of the bone marrow cancer 

problem by measure theory techniquie . Numerical information for parameters is 

as in [9] and can be found in the following. 

1164.0

48.0643.5

047.1

ba ==

==

==

λ
βα
δγ

 

let the set  ]2,0[=∈ Jt divided into 10 subinterval,the sets P,Q and U are 

divided respectively into 10 subintervals, so that Ω   is divided into 10,000 
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Then our linear programming problem form 
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The graph of the control and trajectory are shown in Figs.1-2, respectively . 
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Abstract: A great number of mathematical-programming applications are cast naturally 

as linear programs. Linear programming assumptions or approximations may also lead  to 

appropriate problem representations over the diversity of decision variables being 

measured. At other times, however, nonlinearities in the form of either nonlinear 

objective functions or nonlinear constraints are critical for representing an application 
properly as a mathematical program. In mathematics, nonlinear programming (NLP) is  

the process of solving a system of equalities and inequalities, collectively termed 

constraints, over a set of unknown real variables, along with an objective function to be 

maximized or minimized, where some of the constraints or the objective function are 

nonlinear. This paper aims to list several nonlinear programming methods for solving 
problems that have been published at last 10 years. 

Keywords: nonlinear programming, methods, bibliographic review  

 
1. Introduction 
The models produced by linear programming are, as its name implies, linear 

(both the objective function, and restrictions). This fact is, without doubt, "most 

of the restrictions" imposed on a model of programming. In most applications, 

linear models reflect only approximations of real models. Physical or economic 

phenomena are usually better represented by nonlinear models. 

 

Most nonlinearities encapsulated in a programming model is within two main  

categories: 

1) Relations empirically observed, such as changes in non-proportional costs, 

results and process quality characteristics. 

2) St ructurally derived relations, which include physical phenomena inferred  

mathematically and administrative ru les. 

In general, the models employed in Nonlinear Programming are like:  

 

Max (or Min)   f(x) 

 

          for i=1, 2, ... , m 

 

With: 

X = (x1 , x2, ... , xn) 

f(.) and gi(.) are nonlinear functions 
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The methods for solving problems of Nonlinear Programming can be div ided 

into two groups: 1) Models without restrictions and 2) Models with restrictions. 

The main concept involved in Nonlinear Programming is the rate of change. The 

major problem that hinders the achievement of the optimal solution of the 

problems Nonlinear Programming is the min imum and maximum (extreme) 

local of the objective function. 

 

According to [1], the practical problems of optimizat ion often involve nonlinear 

behavior, which must be taken into consideration. Sometimes it is  possible to 

reformulate these nonlinearities to fit a linear programming format. However, 

the best approach often is to use a nonlinear programming formulation. In most 

models is that real problems do not have some degree of linearity.  

 

When studying computer science, or science in general is essential to seek to 

understand what the state of the art research theme. For this, the literature 

review becomes essential because through it we know what is being produced in 

the academic environment and, therefore, brings ideas and explanations for the 

researcher. 

 

Thus, this paper attempts to show some work on nonlinear programming 

produced recently, with the objective of jo in, organize and present a systematic 

manner such publications. 

 

2. Bibliographic Review 
 

The propose of [2] was a new approach to solving nonlinear optimizat ion 

problems with discrete variab les using continuation methods . His focus was on 

pure integer nonlinear optimization problems with linear equality constraints 

(ILENP) but he showed how the technique can be extended to more general 

classes of problems such as those involving linear inequality and mixed integer 

constraints. 

 

He showed the effectiveness of the approach by applying it to a number of real 

problems and also test problems taken from the literature. These include the 

binary unconstrained quadratic problem, the frequency assignment problem and 

the quadratic assignment problem. The results were compared to those from 

alternative methods, indicating that the new approach was  able to produce good-

quality solutions for diverse classes of nonlinear d iscrete optimization problems.  

 

[3] presented a nonlinear model predictive control (NMPC) for mult iple 

autonomous helicopters in a complex environment. The NMPC provides a 

framework to solve optimal discrete control problems for a nonlinear system 

under state constraints and input saturation. Their approach combines 

stabilization of vehicle dynamics  and decentralized trajectory generation, by 
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including a potential function that reflects the state information of possibly 

moving obstacles or other vehicles to the cost function.  

 

Various realistic scenarios were presented by [3] which show that the integrated 

approach outperforms a hierarchical structure composed of a separate controller 

and a path planner based on the potential function method. The proposed 

approach is combined with an efficient numerical algorithm, which enables the 

real-t ime nonlinear model pred ictive control of multiple autonomous 

helicopters. 

 

 [4] studied an integrated overview and derivation of mixed-integer nonlinear 

programming (MINLP) techniques, Branch and Bound, Outer-Approximation, 

Generalized Benders and Extended Cutting Plane methods, as applied to 

nonlinear discrete optimization problems that are expressed in algebraic form.  

Numerical comparisons were presented on a small p rocess network problem to 

provide some insights to confirm the theoretical properties of these methods. 

 

The objective of the work of [5] was to develop non-linear p rogramming models 

for land grading to be applied in irregular shaped areas and that minimize soil 

movement. The GAMS (General Algebric Modeling System) software was used 

for calculat ions and the models were compared with the Method of Genera lized  

Minimum Squares developed by [6], using as evaluation parameter the volume 

of moved soil. It was concluded that the non-linear programming models 

developed in this study were shown suitable for application to irregular shaped 

areas and provided smaller values of soil movement when compared with the 

method of minimum squares. 

 

3. Conclusions 
A bibliographical rev iew on nonlinear programming is extremely important 

when performing research in this area. Thus, this work has brought a brief 

presentation on some works that use this form of programming to solve the most 

diverse problems. 
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Abstract. A harmonic oscillator subject to two periodic fields with two incom-
mensurate frequencies is characterized by a broadband spectrum of the correlation
function, which is typical for deterministic chaos. This ”erratic” behaviour, like
deterministic chaos, shows the close connection between determinism and chaos.
Keywords: .

The oscillator is the well -known toy model which is commonly used to
describe many phenomena in Nature. In addition to the deterministic model,
extensive use has been made of the stochastic oscillator which is described by
the deterministic equation supplemented by a random force which has chaotic
solutions. One of the great achievements of twentieth-century physics was
the prediction of deterministic chaos which appears without any random force
in the equations [1]. Deterministic chaos means an exponential increase in
time of the solutions for even the smallest change in the initial conditions.
Therefore, to obtain a ”deterministic” solution, one has to specify the initial
conditions to an infinite number of digits. Otherwise, the solutions of de-
terministic equations show chaotic behavior. To exhibit deterministic chaos,
the differential equations have to be nonlinear and contain at least three
variables. This points to the important difference between underdamped and
overdamped equations of motion of an oscillator, since deterministic chaos
may occur only in the underdamped oscillator.

Here, we consider an overdamped oscillator subject to two periodic fields,

dx

dt
+ ω2x = C1 cos (ω1t) + C2 cos (ω2t) , (1)

and show that the solutions of this equation are ”erratic”, being intermediate
between deterministic and chaotic solutions.

The stationary solutions of Eq. (1) have the following form

x (t) =
C1

ω1
sin (ω1t) +

C2

ω2
sin (ω2t) (2)

Replace the continuos time in Eq. (1) by the discrete times 2πn/ω2 [2].The
solution of this equation then becomes

x

(
n
2π

ω2

)
= x (0) +

C1

ω1
sin

(
2πn

ω1

ω2

)
(3)
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If ω1/ω2 is an irrational number, the sin factor in (3) will never vanish
and the motion will become ”erratic”. The properties of ”erratic” motion
can be understood from analysis of the correlation function associated with
the n-th and (n+m)-th points,

C (2πmω1/ω2) = limN→∞ 1
N

N

n=0
x (2πnω1/ω2)x [2π (n+m)ω1/ω2] = x2 (0)+

x (0) (C1/ω1) limN→∞ 1
N

N

n=0
{sin (2πnω1/ω2) + sin [2π (n+m)ω1/ω2]}+

(C1/ω1)
2
limN→∞ 1

N

N

n=0
sin (2πnω1/ω2) sin [2π (n+m)ω1/ω2]

(4)

Using the well-known relations between the trigonometric functions, one
obtains from (4)

C

(
m
2πω1

ω2

)
= x2 (0) +

1

2

(
C1

ω1

)2

cos

(
m
2πω1

ω2

)
(5)

The Fourier spectrum of the correlation function (5) depends on the ra-
tio ω1/ω2. If this ratio is a rational number, this spectrum will contain a
finite number of peaks. However, for irrational ω1/ω2, the spectrum becomes
broadband, what is typical of deterministic chaos. However, this ”erratic”
behavior arises from a simple ”integrable” equation (1), which distinguishes
it from deterministic chaos.

In conclusion, we found that in addition to deterministic chaos, which
forms a bridge between deterministic and chaotic phenomena, another pos-
sibility exists for the “rratic” behavior induced by two periodic forces with
incommensurate frequencies.
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Abstract: The complex nature of the reactive packed distillation column owing 

to the occurrence of both reactions and separations in a single unit brought up 

the need for the search for a very robust tool of representing the process. In view 

of this, delayed neural networks are considered as tools that can handle this 

problem effectively. As such, in this work, Nonlinear AutoRegressive, Nonlinear 

AutoRegressive with eXogenous inputs and Nonlinear Input-Output models are 

developed and simulated with the aid of MATLAB R2010b to predict the top 

and bottom sections temperatures. The predicted results obtained from the Input-

Output models were not satisfactory. However, observing the good agreements 

from the plots as well as the correlation coefficients and the mean squared errors 

between the predicted results of the NAR and NARX models and the 

experimental ones showed that these two models can be used to represent the 

reactive packed distillation column. 
Keywords: Reactive packed distillation column, Delayed Neural Network (DNN), 

Nonlinear AutoRegressive (NAR), Nonlinear AutoRegressive with eXogenous inputs 

(NARX), Nonlinear Input-Output (IO), MATLAB, Correlation coefficient (R), Mean 

squared error (MSE).  

 

1. Introduction 
In recent years, integrated reactive separation processes have attracted 

considerable attention in both academic research and industrial applications, 

Völker et al., 2007 [1]. One of these processes which is known as reactive 

distillation is potentially attractive whenever conversion is limited by reaction 

equilibrium, Balasubramhanya and Doyle III, 2000 [2]. Reactive distillation 

combines the benefits of equilibrium reaction with the traditional unit operation 

(distillation) to achieve a substantial progress in not only promoting the reaction 

conversion through constant recycling of reactants and removal of products but 

also reducing the capital and operating costs. In addition, reactive distillation 

has the capability of avoiding azeotropes. However, the design of reactive 

distillation processes, especially when a packed column is involved, is still a 

challenge because of the difficulties involved in obtaining process models 

capable of reliably describing the several complexes (such as the exhibition of 

multiple steady states) and interrelated phenomena including simultaneous 

reactions and separations in the column. The complicated behavior of the 

process made the search for a very robust and powerful tool of modeling and 

simulating the dynamics of the reactive distillation very challenging. Among the 
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strategies proposed for handling this kind of a task are the neural networks 

because they can be trained to handle complex functions, Beale et al., 2010 [3]. 

Neural Networks (NN) modeling can be viewed as a nonlinear empirical model 

that are especially useful in representing input–output data, in making 

predictions in time, and in classifying data, Himmelblau, 2000 [4]. NN can be 

highly nonlinear, can learn easily, require little or no a priori knowledge of the 

structure, are fault-tolerant and can handle complex problems that cannot be 

satisfactorily handled by the traditional methods, MacMurray and D. M. 

Himmelblau, 2000 [5]. 

 

In this paper, a reactive packed distillation column is modeled and simulated 

using three different kinds of delayed neural network models and the production 

of ethyl acetate from the reaction between acetic acid and ethanol was used as a 

case study. 

 

2. The Model and Simulations 

2.1 Data acquisition 
The data used for the neural network modeling were acquired by carrying out 

experiments in a pilot scale packed reactive distillation column shown in Figure 

1 which has, excluding the condenser and the reboiler, a height and a diameter 

of 1.5 and 0.05 m respectively. The main column was divided into three parts of 

0.5 m each. The upper, middle and lower sections were the rectification, 

reaction and stripping sections respectively. The rectification and stripping 

sections were packed with rasching rings while the reaction section was filled 

with Amberlyst 15 catalyst. The column was fed with acetic acid at the top 

(between the rectification section and the reaction section) whereas ethanol was 

fed at the bottom (between the reaction section and stripping section) with the 

aid of peristaltic pumps which were operated with the aid of a computer 

program (MATLAB/Simulink). The top, reaction, stripping and bottom sections 

temperatures were measured and recorded on-line and in real-time using 

thermocouples linked to the computer also via MATLAB/Simulink. The 

reaction taking place in the column is given as: 

3 2 5 3 2 5 2 (1)
f

b

k

k
CH COOH C H OH CH COOC H H O   
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Fig.1. Reactive packed distillation pilot plant 

 

Two different experiments were carried out using a reboiler duty of 560 W and 

applying a step input to the recycle ratio from total reflux to 5 and acetic acid to 

ethanol feed ratio from 0 to 1.25 to generate two sets of data. One set was used 

for training and validating the model while the other was used to test the 

developed model. 

 

2.2 Model development 
The sets of data obtained from the experiments were treated by converting them 

to time sequence ones which were represented by a cell array because the 

delayed neural network model to be developed required that the data have to be 

sequential. The parameters used for the formulation of the model are as shown 

in Table 1 below: 

 

Table 1. Neural network model formulation parameters 

S/N Parameter Value/Description 

1. No. of inputs 2 

 No. of outputs 2 

2. No. of layers 2 

3. No. of neurons 10 

4. No. of delays 5 

5. Training algorithm Levenberg-Marquardt 

 
Three kinds of delayed neural networks (Nonlinear Autoregressive, Nonlinear 

Autoregressive with Exogenous Inputs and Nonlinear Input-Output) models 
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were developed for the reactive packed distillation column using the parameters 

tabulated above. 

 

The mathematical structures of the models are thus; 

NARX:               1 , 2 ,..., , 1 , 2 ,...,y t f u t u t u t d y t y t y t d       (2) 

NAR:            1 , 2 ,...,y t f y t y t y t d                       (3) 

Input-Output:           1 , 2 ,...,y t f u t u t u t d                               (4) 

 

2.2 Results and discussions 
Applying a step change to the inputs (recycle ratio and feed ratio) of the model, 

the generated outputs from the experiments described in Section 2.1 are as 

shown in Figure 2 below. 

  

60

62

64

66

68

70

72

74

0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)

T
e
m

p
e
ra

tu
re

 (
o
C

)

Training Top Section Temperature

Testing Top Section Temperature

Training Reaction Section Temperature

Testing Reaction Section Temperature

 

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)

R
a
ti

o

Recycle Ratio

Feed Ratio

 
Fig 2. Input-output sampled data 
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After developing the neural network models, each of them was tested using the 

separate testing data collected in order to predict the top section and reaction 

section temperatures. Figure 3 and Figure 4 show the results of temperature 

predictions for the top and reaction sections respectively. 
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Fig. 3. Temperature prediction for the top section  
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Fig. 4. Temperature prediction for the reaction section 

 

From the results shown in Figure 3 and Figure 4, it was observed that there were 

good correlations between the experimental and predicted results for the NARX 
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and NAR models and the relationships can also be supported by observing the 

performance values of the networks shown in Table 2 below. 

 

Table 2. Delayed neural network model performance values 

  

Model Type 
Top section temperature Reaction section temperature 

MSE R MSE R 

NAR 0.0063 0.9927 0.0120 0.9852 

NARX 0.0023 0.9952 0.0011 0.9984 

IO 0.2270 0.2642 0.3195 0.0454 

 

From the table, it was observed that the correlation coefficients were 0.9927 and 

0.9852 respectively for top section and reaction section temperatures predictions 

using NAR model while those of the NARX model were 0.9952 and 0.9984 

respectively. The good results given by these models can be attributed to the 

presence of feedback in the model structures.  

 

However, in the case of the Nonlinear Input-Output model, the situation was 

different because, as can be seen from the graphs, the curves produced were not 

in close relationships with those of the experimental data. The unsatisfactory 

performance of this model can also be seen from Table 2. For instance, the 

correlation coefficients obtained when this model was used to predict the top 

and reaction sections temperatures were 0.2642 and 0.0454 respectively. These 

values are very low for any good model. The discrepancies observed between 

the predicted results of this model and the experimental data can be said to be as 

a results of the fact that the Nonlinear IO model structure does not incorporate 

the past values of the target variables.  

 

3. Conclusions 
Three kinds of delayed neural networks models were developed and simulated. 

The good closeness of predicted results to the experimental ones for both the 

NARX and NAR models revealed that both of them could be used to represent 

the dynamics of the reactive packed distillation column.  
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Abstract. The iterative procedure of removing “almost everything” from a
triangle ultimately leading to the Sierpinski’s gasket S is well-known. But what
is in fact left when almost everything has been taken out? Using the Sir Pinski’s
game described by Schroeder [4], we identify two dual sets of invariant points in
this exquisite game, and from these we identify points left over in Sierpinski gasket.
Our discussion also shows that the chaos game does not generate the Sierpinski
gasket. It generates an approximation or, at most, a subset of S.

Keywords: Sierpinski gasket, Sierpinski points, fractals, Sir Pinski game,
chaos game, self-similarity, periodicity.

1 Introduction

Let T be a triangle. A player chooses a point P0 inside the triangle. Sir
Pinski game consists of iteratively jumping to the points {P1, P2, . . .}, where
Pk+1 doubles the distance of Pk to its nearest vertex. The player looses at
step n if P0, P1, P2, . . . , Pn−1 ∈ T and Pn /∈ T .

LetM1 denote the “middle triangle” whose vertices are the middle points
of the T sides. It is obvious that M1 is the set of loosing points at step 1.
Similarly, the union M2 of the three middle triangles of T − M1 is the
set of loosing points at step 2, the union M3 of the 32 middle triangles of
(T −M1) −M2 = T − (M1 ∪M2) is the set of loosing points at step 3,
and so on. Loosing points are illustrated in Figure 1, that also clarifies the
connection of loosing points at step n with middle triangles removed at step
n in the classical iterative construction of the Sierpinski gasket.

Schroeder [4] characterizes Sierpinski’s gasket as the set of winning points
S = T −

⋃∞
k=1Mk of Sir Pinski game.

In fact, from Banach’s contractive mapping fixed point theorem it follows
that the Sierpinski gasket S = T −

⋃∞
k=1Mk =

⋃3
i=1 ψi(S), where ψi(·) is

the dilation of ratio 1/2 around the vertex vi of T . In other words, S is the
unique non-empty fixed point of the corresponding Hutchinson operator [2]
ψ, where ψ(A) = ψ1(A)∪ψ2(A)∪ψ3(A), i.e. ψ(A) = A if and only if A = S.
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Fig. 1. Loosing points at steps 2 (left), 3 (center) and 4 (right).

Hence the Sierpinski points s ∈ S can be characterized as the set of points
s ∈ T such that (s+ vi)/2 ∈ S, i = 1, 2, 3. So, starting from whatever point
P ∈ T , iteratively jumping for a point halving the distance to vi creates an
infinite sequence of points in a straight line that ultimately converges to vi.
Observe however that

• if P ∈ S, all the iterates are Sierpinski points; but, on the other hand,
• if P /∈ S, none of the iterates is a Sierpinski point.

In fact, the halving contractions ψi generate points that are nearer and
nearer to Sierpinski points, but as the Sir Pinski game clearly shows their
inverse doubling ultimately leaves T unless the starting point is itself a Sier-
pinski point.

Iteratively halving (or, alternatively, doubling) the distance to a fixed
vertex vi creates an infinite sequence of colinear points. Hence we need some
rule to use in turn, either deterministically or randomly, the different vertices
in order to approximate the Sierpinski gasket S. Sir Pinski game uses the rule:
take the nearest vertex to the starting point/iterate, and double the distance.
A “dual” rule is: use the farthest vertex from the starting point/iterate, and
halve the distance (randomly choose one of the vertices when there is a tie) —
this rule has the advantage of always changing the vertex to use in sequential
steps of the algorithm.

Barnsley [1] devised a chaos game, using randomness to generate the
three sets ψi(T ): pick a starting point P0, and generate iterates {P1, P2, . . .},
such that Pk is the midpoint of the segment whose endpoints are Pk−1 and
one of the vertices vi of T , randomly chosen using the discrete uniform law

X =
{

v1 v2 v3
1/3 1/3 1/3 . This chaos game is generally presented as a device

to generate the Sierpinski gasket S, but in view of the above observations
it produces in general an approximation of the Sierpinski gasket, since in
general P0 /∈ S. Observe also that even starting from a Sierpinski point,
what we obtain is a subset of the Sierpinski gasket — for example, the choice
of the top vertex of the equilateral triangle used in [3], page 306, will generate
as iterates only vertex points of the triangles left out when middle triangles
are removed, in the classical deterministic iterative construction of S. This
issue will be discussed later in further detail.
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2 The points of the Sierpinski gasket

As seen in the introduction, the points s ∈ S are easily described using the
concept of self-similarity and its far-reaching consequences.

Using translation and rotation, if needed, we assume that the vertices of
T are v

L
= (0, 0), v

R
= (a, 0), a > 0, and v

T
= (c, d), d > 0.

If T is the triangle with vertices v
L

= (0, 0), v
R

= (1, 0), and v
T

= (0, 1),
in dyadic notation its Sierpinski points are s = (x, 1 − x), i.e. if the abcissa
is x = 0.ν1ν2ν3 · · ·, the k-th digit of the ordinate is 1 − νk — for instance,
s = (0.11001011101 . . . , 0.00110100010 . . .), cf. Peitgen et al. [3], p. 173.

Let T be the equilateral triangle with unit height, vertices v
L

= (0, 0),
v

R
= (2

√
3 /3, 0), and v

T
= (
√

3 /3, 1). Schroeder [4], pp. 22–24, used
a sophisticated redundant three-coordinates points affixation to show that
the Sierpinski points are those with coordinates (in dyadic expansion)
x = 0.a1a2a3 · · ·, y = 0.b1b2b3 · · ·, z = 0.c1c2c3 · · ·, such that (ak, bk, ck) ∈
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} , k = 1, 2, . . .

Let us now consider that T is the equilateral triangle with unit sides,
with top vertex A = (1/2,

√
3 /2), left vertex B = (0, 0), and right vertex

C = (1, 0). Project A in the point A′ = (1/3, 0), B in B′ = (5/6,
√

3 /6), and
C in C ′ = (1/3,

√
3 /3).

We claim that the points

• V1 = (3/7, 2
√

3 /7), intersection of AA′ with CC ′,
• V2 = (5/14,

√
3 /14), intersection of AA′ with BB′, and

• V3 = (5/7,
√

3 /7), intersection of BB′ with CC ′,

are Sierpinski points, cf. Figure 2.

A '

B '

C '

V1

V2

V3

A

CB

Fig. 2. Period-3 invariant Sir Pinski {V1, V2, V3} attractor.

In fact, V1 is the midpoint of AV2, V2 is the midpoint of BV3, V3 is the
midpoint of CV1, and therefore those points are winning points in the Sir
Pinski game, i.e. {V1, V2, V3} is an invariant cycle-3 attractor of Sierpinski
points.
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Project A in the point A′′ = (2/3, 0), B in B′′ = (2/3,
√

3 /3), and C in
C ′′ = (1/6,

√
3 /6). Obviously, intersecting AA′′ with BB′′ we obtain W1 =

(4/7, 2
√

3 /7), intersecting AA′′ with CC ′′ we obtain W2 = (9/14,
√

3 /14
)
,

and intersecting BB′′ with CC ′′ we obtain W3 = (2/7,
√

3 /7). For similar
reasons, {W1,W2,W3} is an invariant cycle-3 attractor of Sierpinski points,
cf. Figure 3.

A''

A ' A ''

B '

B ''C '

C ''

V1

V2

V3

W1

W2

W3

A

CB

Fig. 3. Period-3 {V1, V2, V3} and {W1, W2, W3} invariant Sir Pinski points attrac-
tors. {A}, {B} and {C} are invariant in Sir Pinski game; {A′, A′′}, {B′, B′′} and
{C′, C′′} are period-2 invariant sets in Sir Pinski game.

Remark 1. If we re-scale multiplying by 2/
√

3 in order to have unit heights
(i.e., each vertex is at distance 1 from the opposite side), the ordinates of
the transformed V ∗1 and W ∗1 become 4/7, the ordinates of the transformed
V ∗2 and W ∗2 become 1/7, and the ordinates of the transformed V ∗3 and W ∗3
become 2/7.

Hence, if we adhere to Schroeder [4] three-coordinates system (x, y, z),
where x is the distance from the bottom side, y the distance from the left
side, and z the distance from the right side, we see that the period-3 invariant
points must have x-coordinate 4/7, 1/7 or 2/7.

From the (2π/3)-rotational symmetry of T , it follows that in Schroeder’s
three coordinates system V ∗1 = (4/7, 1/7, 2/7), V ∗2 = (1/7, 2/7, 4/7), V ∗3 =
(2/7, 4/7, 1/7), W ∗1 = (4/7, 2/7, 1/7), W ∗2 = (1/7, 4/7, 2/7), and W ∗3 =
(2/7, 1/7, 4/7). ut

Remark 2. The points V1, V2, V3,W1,W2,W3 lie on a circumference of radius√
21 /21 centered at the barycenter (1/2,

√
3 /6) of T . ut

Remark 3. Each vertex of T is invariant in Sir Pinski game. Hence A,B,C ∈
S. On the other hand, in Sir Pinski game, the image of A′ is A′′ and vice-
versa, i.e. {A′, A′′} is a period-2 invariant set, and the same holds for {B′, B′′}

140

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



and {C ′, C ′′}. V = {V1, V2, V3} and W = {W1,W2,W3} are period-3 invari-
ant sets (attractors) in Sir Pinski game.

Higher order periodic invariant sets do exist. For instance, us-
ing conditions (a − 1/2)2 + (b −

√
3/2
)2 = 4[(2a − 1/2)2 + (2b −√

3/2)2] and (2b−
√

3 /2)/(2a− 1/2) = (
√

3 /2− b)/(a− 1/2) on the
set of points {(a, b), (2a, 2b), (1− a, b), (1− 2a, 2b)}, so that (a, b) =
(0.3, 0.288675), we obtain the period-4 invariant set {(0.3, 0.288675),
(0.6, 0.636194), (0.7, 0.288675), (0.4, 0.636194)}, cf. Figure 4.

A

B C

(0.4, 0.636194) (0.6, 0.636194)

(0.3, 0.288675) (0.7, 0.288675)

Fig. 4. A period-4 invariant Sir Pinski set.

Using the (2π/3)-rotational symmetry of T , two other period-4 invariant
sets are readily obtained. ut

Now we perform the same construction in the T1 (Top), L1 (Left) and
R1 (Right) triangles remaining once the middle triangle of T is removed
in step 1 of the classical construction of the Sierpinski gasket, obtaining
2 × 32 points — 32 V s and 32 W s — , as shown in Figure 5. With the

A

B C

Fig. 5. More Sierpinski points, in T1, in L1 and in R1.

self-explaining addressing and notations Vi,L1 ,Wi,L1 , i = 1, 2, 3, it is obvious
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that Vi,L1 = 1
2 Vi and Wi,L1 = 1

2 Wi — for instance, V2,L1 = (5/28,
√

3 /28),
V1,L1 = (4/14, 2

√
3 /14).

Analogously, the corresponding points in the Right triangle R1 are
Vi,R1 = (1/2, 0) + 1/2Vi and Wi,R1 = (1/2, 0) + 1/2Wi, and the corre-
sponding points in the Top triangle T1 are Vi,T1 = (1/4,

√
3 /4) + 1/2Vi

and Wi,T1 = (1/4,
√

3 /4) + 1/2Wi. For instance, V1,T1 = (13/28, 11
√

3 /28).
The 32 V points in this second stage of the construction are, fol-

lowing the above algoritm, (3/14,
√

3 /7), (5/7,
√

3 /7), (13/28, 11
√

3 /28),
(5/28,

√
3 /28), (19/28,

√
3 /28), (3/7, 2

√
3 /7), (5/14,

√
3 /14), (6/7,

√
3 /14),

(1/28, 9
√

3 /28) — exactly the 9 points we obtain when we compute the mid-
dle point of the segments joining each of the (3/7, 2

√
3 /7), (5/14,

√
3 /14),

(5/7,
√

3 /7) V points from stage one of the construction with each of the
three vertices of T . Similar results hold in what concerns W points.

Continuing the procedure, in step 3 of the iterative construction of Sier-
pinski’s gasket we obtain 2×33 points as shown in Fig. 6. (We have included
some extra segments connecting points to make clear that in Sir Pinski game
whatever the initial V point [respectively, W point], in a few steps we shall
land in the attractor V = {V1, V2, V3} [respectively, in W = {W1,W2,W3}].)

A

B C

Fig. 6. More Sierpinski points, in T1, in L1 and in R1.

Once again the coordinates of any V or W point are easy to com-
pute. For instance W1,L1T2 = (1/8,

√
3 /8) + (1/2)2 × (4/7, 2

√
3 /7) =

(9/56, 11
√

3 /56), since the left vertex of the triangle whose address is L1T2

is (1/8,
√

3 /8).
Using the same line of reasoning, the Vi,R1T2R3 points of R1T2R3 will have

coordinates (3/4,
√

3 /8)+(1/2)3 Vi, the Wi,R1L2T3T4 points of R1L2T3T4 will
have coordinates (13/16, (13/16)(

√
3 /2)) + (1/2)4Wi. More generally,

• in step n, the coordinates of the original V s and W s are scaled by a factor
(1/2)n;

• the address determines the left vertex of the triangle: a Lk does not affect
neither the abcissa nor the ordinate, a Rk shifts the left corner (1/2)k
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and does not affect the ordinate, and a Tk adds (1/4)k to the abcissa and
(1/2)k

√
3 /2 to the ordinate.

For instance, the left corner of T1L2L3R4R5T6 is (1/4 + (1/2)4 +
(1/2)5 + (1/4)6, (1/2 + (1/2)6) (

√
3 /2)) = (1409/4096, 33

√
3 /128).

Hence, the Sierpinski point W3,T1L2L3R4R5T6 is (1409/4096, 33
√

3 /128) +
(1/2)6(2/7,

√
3 /7) = (10119/28672, 233

√
3 /896).

Remark 4. Suppose that in the k-th step of the iterative deterministic con-
struction of the Sierpinski gasket we focus our attention in one of the remain-
ing triangles, for instance T1R2R3T4 · · ·Lk.
• The midpoints of the segments whose endpoints are the vertex A and the

points of T1R2R3T4 · · ·Lk are the points of T1T2R3R4T5 · · ·Lk+1.
• The midpoints of the segments whose endpoints are the vertex B and the

points of T1R2R3T4 · · ·Lk are the points of L1T2R3R4T5 · · ·Lk+1.
• The midpoints of the segments whose endpoints are the vertex C and the

points of T1R2R3T4 · · ·Lk are the points of R1T2R3R4T5 · · ·Lk+1.
Hence, the chaos game transforms the V points [respectively, the W
points] of T1R2R3T4 · · ·Lk in V points [respectively, W points] of either
T1T2R3R4T5 · · ·Lk+1, or L1T2R3R4T5 · · ·Lk+1 or R1T2R3R4T5 · · ·Lk+1. ut

It seems useless to elaborate more on this matter to conclude that:

• In the k-th step of the classical construction of the Sierpinski gasket we
may explicitly compute the coordinates of 3 V points and of 3 W points
in each remaining triangle.

• The midpoint of any V point [respectively, W point] and any vertex of T
is a V point [respectively, a W point]. In other words, in the chaos game
the set of V points and the set of W points do not communicate.

• In Sir Pinski game, a V starting point generates iterates that ultimately
will land in V, and a W starting point generates iterates that ultimately
will land in W. Hence all V and W points are winning points of the Sir
Pinski game, i.e. they lie in S. We say that V points [respectively, W
points] are in the attraction domain of V [respectively, of W], or that V
and W are invariant periodicity-3 attractors in Sir Pinski game.

Remark 5. We also observe that subsets of 3 V points and 3 W points lie in
circumferences centered at the barycenter of T , cf. Fig. 7. ut

3 Concluding Remarks

Under the heading “Randomness Creates Deterministic Shapes”, Peitgen et
al. [3], p. 299, raise some interesting questions. The discussion in the previous
section patently shows that the chaos game does not generate the Sierpinski
gasket.
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A

CB

Fig. 7. A consequence of the 2 π
3

-rotational symmetry of S

More precisely, if the starting point P0 is not a Sierpinski point, its de-
scendants are not Sierpinski points, and eventually some of them computed
in the initial steps are clearly spurious specks observed upon close scrutiny of
the images. The set looks like the Sierpinski gasket, because the composition
of contractions creates something that is very close to the Sierpinski gasket,
but its intersection with the Sierpinski gasket S is void.

On the other hand, our discussion shows that sets generated by the chaos
game starting with a Sierpinski V point and with a Sierpinski W point are
disjoint. Moreover, any of them leaves out points in the domain of attraction
of invariant attractors with periodicities other than 3.

So, even with a carefully selected Sierpinski point in any of those invariant
sets, the best we can get applying the chaos game is a rarefied pale image of
the rich complexity of the Sierpinski gasket. The gross imperfection of the
representation of points and our eyes trick us in believing we are generating
the Sierpinski gasket. In fact, the representation we get is as innacurate as
the representation we get after a finite number of steps of removal of middle
triangles, in the classical deterministic construction.

Research partially supported by FCT/OE and PTDC.
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Analogue circuitry realization of neuron
network
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Abstract. In this paper, some new numerical as well as experimental results con-
nected with simplified neuron model were presented. These neuron models were
described by the nonlinear equations. First the differential equations describing
the system were analysed from the chaos point of view. Then the system was
synthesised into a circuit and was supported and verified by a measurement. The
measurement proved spiking and bursting behaviour and also the presence of a
chaos. The novel method of connecting the individual neural cells into the large
networks was briefly discussed. This approach can be the first step of achieving the
artificial intelligence.
Keywords: Chaos, neural model, neural network, artificial intelligence, Hindamarch
Rose model.

1 Introduction

A huge pile of the journal articles solving problems with various models of the
elemental neural cells have been published from its discovery. We present a
new circuitry realization of the advanced nonlinear model (Hindamarch-Rose
model) capable coupling into the arbitrary networks. For the synthesized
analogue circuit the spectrum of the largest Lyapunov exponents (LLE) has
been calculated. The model exhibit chaotic behaviour if some conditions are
met. It needs to be modified to accomplish terms of bounding into the net-
works. It is well known that the most straightforward method for modelling
motion of autonomous or driven dynamical systems is to design the corre-
sponding electronic circuit. Understanding a complex dynamics is useful also
from the theoretical point of view because chaos can be considered as uni-
versal phenomenon due to the normalization of the system parameters and
handling with the system of the differential equations. This approach is very
promising because it is the first small step towards creating basic artificial
networks. Important parts creating a neural model were various measure-
ment of a single neuron. A measurement of a single neuron is a very delicate
process. First, the neuron has to be extracted from a slice of the hippo cam-
pus, followed by inserting a micro-pipette in its membrane. In this process
the cell can easily be destroyed. The micro-pipette acts as measurement
probe and stimulator. Because this micro-pipette does not disturb the flow
of ionic currents across the membrane, the current clamped set up is close to
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the natural situation of the neuron [1]. During the years many neural models
were created with different porpoises.

2 Mathematical analysis of single neuron

A well known Hindmarsh-Rose system was chosen

ẋ = y + bx2 − x3 − z + I(t)
ẏ = 1 − ax2 − y

ż = µ [s (x+ x0) − z] ,
(1)

where dots over state variables denote time derivatives and a, b, s, µ are
the real numbers. State x represents membrane potential, y is called recovery
variable and the z variable represents adaptation of neuron. Constants a, b, µ
and s are time constants. I(t) is an external applied or clamping current as
function of time. Variable x0 is the x-coordinate of the stable sub-threshold
equilibrium point. Time constants were chosen according to Hindmarsh-Rose
observations.

It is computed for which real numbers (meaning a and b) the system
behave chaotically. Setting parameters a = 5, b = 2.96, mi = 0.01, s = 4,
I = 2.99 and x0 = 1.6 the equilibrium points and its tight regions were
investigated. The equilibria points are located at

P [x, y, z] =
[
−0.801355 −2.21085 3.19458

]
. (2)

It is obvious, that for chosen values, there is only one equilibria point.
Investigation of stability around point P is given by

det(J− λI) = 0, (3)

where J is Jacobian matrix of all first order derivatives, I is identity ma-
trix and λ is a characteristic value. If x is equal to −0.801355, we can get
polynomial roots for λ λ1

λ2
λ3

 =

−7.313
0.149
0.024

 . (4)

Examination stability around fixed point in three dimensional system, where
two values are positive and one is negative, we get unstable saddle point.
Varying values a and b as an control parameter, the overall behaviour of
system can change dramatically. Unstable fixed point is not a guarantee of
chaotic behaviour. In Figure 1. can be seen a long transient performance,
when integrating directly after powering on the circuit. For this case the
initial conditions varies around zero ic = [00.10]T .For an extensive analy-
sis, largest Lyapunov exponents(LLE) were used. Analysing the LLE for
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Fig. 1. Three dimensional representation of integrated system with initial point ic
and unstable equilibria point P left and right is a different solution with unstable
points P and P2

permutation of a and b of bonded set in Figure 2., can be seen the extreme
sensitivity of parameters of the flow. Maximum obtained Lyapunov exponent
was equal to λ1max = 0.025 and λ1min = −0.055. Slightly positive exponent
is an obvious evidence of presence of a weak chaos.

Fig. 2. Largest Lyapunov exponents for different a and b
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3 Circuitry realization of single neuron

There exist several ways how to practically realize chaotic oscillators. Most
of these techniques are straightforward and have been already published.
Only few basic building blocks are necessary: inverting integrator, summing
amplifier, analogue multipliers and voltage sources. Electronic neuron system
consists of three integrator circuits (using operational amplifier TL084 with
four amplifiers in one housing), which integrate the equations (1), and a
multiplier circuits (also with TL084), build using AD633 multipliers, that
generates the squared and cubic terms in the equations(1). Values of passive
parts and voltage sources can be estimated directly from the equations.The
synthesised schematics with values can be seen at Figure 3. Thus frequency
re-normalization is an easy and straight-forward process covering identical
change of all integration constants simultaneously.

Fig. 3. Schematics of circuit realization

4 Experimental measurements of single neuron

Despite theoretical expectations, there are slight differences between the mea-
sured signals and the signals that can obtained through numerical integration
of the equations (1). This mismatch is due to tolerances of the used com-
ponents, i.e. the parameters of each circuit differ a little from the nominal
ones. It is also important to note that the above mentioned system has a
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relatively long transient before the system becomes chaotic. This transient
phenomenon was expected because it had been discovered the mathematical
simulation and analysis.In Figure 4. can be seen the solution that corre-
sponds to the most chaotic system of equations. Here the parameters of
system corresponds approximately to a = 4.91, b = 2.54 in mathematical
model.

Fig. 4. Largest Lyapunov exponets for different a and b

5 Hindmarsh-Rose neural network coupling

The basic idea is build-up upon true account of Hindmarsh-Rose model and
its description of physical behaviour. In case of true behaviour of a single
neuron, the coupling into a networks by synapses is suggested. As porpoised
in [10] the synaptically coupled two HR neurons are considered

ẋ1 = y + bx2 − x3 − z − gs(x1 − Vs1)Γs(x2)
ẏ1 = 1 − ax2 − y

ż1 = µ [s (x+ x0) − z] .
(5)

Where gs is coupling strength, Vs is the offset representing reversal potential
(Vs > xi) and Γs(x) is the sigmoid function given by

Γs(x) = 1
1+exp(−κ(x−Θs))

, (6)

where κ represents slope and Θ is the threshold of sigmoid. Realizing sigmoid
function by circuit is possible, but due complexity it is not necessary. In our
porpoised realization sigmoid is supplied by comparator circuit. Generally
the input current I(t) synaptically connected with neighbouring neurons can
be written as

I(t) = −gs[x1(t) − Vs]Σ
n
i=1wiΓ [x2(t)]. (7)

After making the block model, the circuit realization was designed. Set-
ting up the parameters of network is realized by digital potentiometers (wi
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and gs). This approximation cuts of the options of setting up the network
only to defined levels. The digital potentiometers were also chosen because
of better management by any of external optimizing algorithms (e.g. genetic
algorithms, swarm algorithms, or others). Training the network by setting
the weights analogue would be almost impossible task for large networks.
The circuit was designed only by the basic building blocks as in Figure 5.

Fig. 5. Schematics or realizing coupling synapses between neurons

Analogue comparator, summing amplifier multiplier, voltage source and dig-
ital potentiometers were used. The output of synaptic model is connected
with single HR model designed in Figure 3. into I(t). And also integrated
variable x(t) is taken and connected as a feedback into synaptic model from
HR circuit. The weights are set-up by digital potentiometers field and also
the coupling strength is set-up by another pair of digital potentiometers.

6 Complexity of network and presence of chaos

The presence of weak chaos was proved in section 2. with the single neural
model. It is obvious, that neurons connected into the porpoised networks
rises the order of differential equations and it can lead to robust chaotic
behaviour.

Fig. 6. Schematics of four synaptically coupled neurons
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Considering four simplified mathematically coupled neurons

ẋ1 = y1 + bx2 − x31 − z1 + I(t)
ẏ1 = 1 − ax21 − y1
ż1 = µ [s (x1 + x0) − z1]

ẋ2 = y2 + bx22 − x32 − z2 − gs1[x2 − Vs]
[
w1

1
1+exp(−ẋ1)

]
ẏ2 = 1 − ax22 − y2
ż2 = µ [s (x2 + x0) − z2]

ẋ3 = y3 + bx23 − x33 − z3 + −gs2[x3 − Vs]
[
w2

1
1+exp(−ẋ1)

]
ẏ3 = 1 − ax23 − y3
ż3 = µ [s (x3 + x0) − z3]

ẋ4 = y4 + bx24 − x34 − z4 − gs3[x4 − Vs]
[
w3

1
1+exp(−ẋ2)

+ w4
1

1+exp(−ẋ3)

]
ẏ4 = 1 − ax24 − y4
ż4 = µ [s (x4 + x0) − z4] .

(8)

Fig. 7. Four coupled neurons and network’s chaotic behaviour

Integrating numerically the system of (10) with previously mentioned
parameters for single neurons, additionally with coupling strength set to
gs1 = 1, gs1 = 1, gs3 = 0.8, reversal potential set to Vs = 2 and all weights
set to 1, the Figure 7. can be obtained. The presence of chaos is almost
certain.

7 Conclusion

Hindmarsh-Rose neuron system [1] was analysed and synthesized into a prac-
tical circuit. The mathematical model showed to be suitable for practical im-
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plementation. The basic properties of neuron model examined by means of
the numerical analysis have been discussed and verified. Huge number of the
simulations reveals some cases, where the model behave chaotically. Measure-
ments verified advanced neuron properties as is bursting and spiking, Figure
4.The synaptic model was presented and synthesised into a circuit. Creating
the synapses is a very difficult task because of rising complexity with number
of neural cells. Creating an array of neurons and their connections on the
chip could help to create an intelligent analogue cells. Of course it would be
necessary to adjust the weights in the learning process, for example, using
genetic algorithm and digital potentiometers.This connection could be ver-
satile, and there would be used in many industries.If the reader is interested
in more details please do not hesitate to contact the corresponding author.
Useful informations can be also found for example in [10].
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Chaos and multiple mode spatio-temporal complexity in 

 thermo-visco-elastic systems subject to laser irradiation 
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   A self-excited nonlinear dynamical system is one that, in the absence of external modulated forcing, will 

undergo bounded periodic limit-cycle oscillations beyond a stability threshold of an equilibrium state. 

Thermally driven limit-cycle oscillations have been shown to occur in mechanical systems that span 

multiple spatial scales. A large scale example is a space structure which absorbs solar radiation that can 

either increase or decrease as the structure bends towards or away from the incoming radiation. This consists 

of a feedback loop that can change the equilibrium configuration or can lead to self-excited bending 

vibrations. Additional examples include limit-cycle oscillations of a five cm long aluminum coated glass 

cantilever [1], and recently, various nano-resonators in the shape of disks, domes, paddles and wires [2]. The 

advantages of self-excited nano-electro-mechanical-systems include a dramatic improvement of the quality 

factor via parametric amplification, stability enhancement through the use of feedback, and incorporation of 

a single optical configuration for both drive and motion sensing. To date, these systems have been modeled 

by single-degree-of-freedom resonators coupled to a lumped-mass thermal description. However, while their 

analysis qualitatively reveals the onset of limit cycle oscillations, the analytically determined thresholds 

differ from measurements by a factor of two [2]. Furthermore, these systems have been shown 

experimentally to exhibit complex vibrations that alternate between several continuous vibration modes 

which cannot be explained by lumped-mass models [1]. 

 

   Thus, in order to resolve the spatio-temporal complexity of the thermo-visco-elastic system response 

near primary, secondary and multiple internal resonances, we formulate an initial-boundary-value problem 

that consistently includes both nonlinear viscoelastic and thermal fields [3]. We determine the coupled 

thermo-elastic field basis functions and construct a low-order nonlinear multi-mode dynamical system for 

the experimental conditions (Fig. 1) defined by Hane in 1996 [1]. 
 

Metal thin layer 

Glass layer 

Reflecting Surface 

CW laser  

s 

y 

V(x,t) 

x+U(x,t) 

L 

B 

H 

x 

V0 

Metal thin layer 

Reflecting surface  
Figure 1: Definition sketch of the laser irradiation initial-boundary-value problem. 

 

The resulting dynamical system truncated to cubic order, consistently incorporates the coupled thermo-

visco-elastic equations [3] with the geometric stiffness and gyroscopic nonlinearities of a micro-cantilever 

developed for finite amplitude dynamics in atomic force microscopy [4]. The influence of the laser is 

embedded within the thermal field equation as the time-averaged absorption of a standing wave captured 

within a bi-material (the cantilever) and the mirror, creating a Fabri-Pero interferometer. Stability analysis of 

the thermo-elastic dynamical system equilibrium configuration reveals existence of a complex bifurcation 

structure (Fig. 2) which includes coexisting bi-stable solutions between snaddle-node pairs, and flutter 

thresholds that correspond to saddle-node and Hopf bifurcations, respectively. 

 

 
 

Figure 2: Bifurcation diagram of equilibrium as a function of input power (solid-stable, dashed-unstable). 
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  A numerical analysis of system response exhibits free vibration decay (Fig. 3 left) below the Hopf 

threshold in region I of Figure 2, self-excited vibrations (Fig. 3 center) for the low power input documented 

by [1] in region II of Figure 2, and possible irregular chaotic jumps (Fig. 3 right) between coexisting bi-

stable solutions in region V of Figure 2. 

 

  
Figure 3: Cantilever tip time-series response: free decay (left) below the first Hopf threshold, periodic limit-

cycle motion above the first Hopf threshold (center), and non-stationary response above the first bi-stable 

transition (right). 

 

Investigation of system periodicity via sampling of the non-dimensional displacement (X) and temperature 

(Z) response intersection with the zero velocity plane (Y=0), yields a bifurcation diagram of Poincare' points 

for various values of input power (Fig. 4 left). The bifurcation structure reveals a period-doubling 

mechanism (M~15) which culminates with a strange attractor (M~15.5) which is then destroyed via a 

reverse bifurcation (M~16).  

 

 
Figure 4: A bifurcation diagram (left) depicting the displacement Poincare' points (Xp) for increasing laser 

intensity (M) spanning regions VII to XVI in Figure 2. A three dimensional chaotic state-space (upper right) 

and fractal Poincare' map projection (lower right) for a selected intensity in region XVI of Figure 2 

(M=24.4). 

 

An example chaotic strange attractor (M=24.4) is depicted (Fig. 4 upper right) via its three dimensional 

state-space [Z(X,Y)] and (Fig. 4 lower right) Poincare' map projection [Z(X)] which exhibits a distinct 

fractal behavior that includes both stretch and fold properties. 

 

This numerical investigation enables a quantitative description of a complex multiple-mode bifurcation 

structure that includes coexisting equilibrium solutions, self-excited periodic oscillations, quasiperiodic 

solutions due to a 3:1 internal resonance between the third and second modes, and chaotic structural 

response of the thermo-visco-elastic dynamical system that is subject to laser irradiation.  
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