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Abstract: In this paper, a new method for constructing chaotically synchronizing 

systems is proposed. Furthermore, a new control method for stabilizing a periodic orbit 

embedded in a chaotic attractor is proposed. The validity of these methods is shown by a 

property of Kannan mappings. It is shown that in some cases in which method of 

contraction mappings, proposed by Ushio (T. Ushio. Chaotic Synchronization and 

Controlling Chaos Based on Contraction Mappings, Physics Letters A, vol. 198, 14-22, 

1995.), cannot be applied to synchronize or control of chaotic systems, the method may 

be applied. Ultimately, a numerical example is given in order to present the results 

established. 

Keywords: chaos synchronization, chaos control, Kannan mappings. 

 

1. Introduction 
     Chaos, as a very interesting nonlinear phenomenon, has been intensively 

studied over the past decades. Dynamic chaos has aroused considerable interest 

in many areas of science and technology due to its powerful applications in 

chemical reactions, power converters, biological systems, information 

processing, secure communication, neural networks etc. In the study of chaotic 

systems, chaos synchronization and chaos control play a very important role and 

have great significance in the application of chaos. 

     Chaos synchronization seems to be difficult to observe in physical systems 

because chaotic behavior is very sensitive to both the initial conditions and 

noise. However, Pecora and Carroll [1] have successfully proposed a method to 

synchronize two identical chaotic systems with different initial conditions. Since 

then, a variety of approaches have been proposed for the synchronization of 

chaotic systems which include contraction mappings [2], variable structure 

control [3,4], parameters adaptive control [5,6], observer based control [7,8], 

nonlinear control [9-11], nonlinear replacement control [12], variable strength 

linear coupling control [13], active control [14,15] and so on.  

     On the other hand, chaos control is a very attractive subject in the study of 

chaotic systems. Since the method for controlling of chaos was first proposed by 

Ott et al [16], many chaos control methods have been developed extensively 

over the past decades such as contraction mappings [2], chaotic targeting 

method [17,18], delayed feedback control [19] etc. Yu et al [20] used the 

contraction mapping method, proposed by Ushio [2], to stabilize chaotic 

discrete neural networks. 
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     Neural networks have been widely used as models of real neural structures 

from small networks of neurons to large scale neurosystem. In recent years, 

investigation of chaotic dynamics in neural networks becomes an active field in 

the study of neural networks dynamics. Numerous chaotic neural network 

models have been proposed for investigation [20-22]. Among the spectrum of 

applications of chaos control, neural system is a particularly interesting research 

object of complex structures that it can be applied [23,24].  

     In this paper, a new method for synthesis of chaotically synchronizing 

systems based on Kannan mappings is proposed. Also, a new method based on 

these mappings to stabilize chaotic discrete systems is proposed. These methods 

are applied to synchronize and control chaotic discrete neural networks. A 

similar advantage of the methods proposed in this paper and the methods 

proposed by Ushio [2] is that the linearization of the system near the stabilized 

orbit is not required. However, in some cases in which the proposed methods of 

Ushio [2] are not applicable to synchronize or control chaotic systems, the 

methods may be applied. 

     This paper is organized as follows. In section 2, problem of chaos 

synchronization is studied. In section 3, problem of controlling chaos is 

discussed. Eventually, a numerical example is given in order to present the 

result investigated.  

 

2. Chaos Synchronization 
First, the following theorem which Kannan proved in 1969 is introduced.  

     Theorem [25] Let  be a complete metric space. Let  be a Kannan 

mapping on , that is, there exists  such that 

 
for all  . Then, there exists a unique fixed point  of  . 

 

      We now consider chaotic discrete-time systems described by 

 
where   is the state of the system at time  , and  is a mapping from 

 to itself. We assume that f is rewritten as follows 

 
where both  and  are mappings from  to itself and  is a Kannan mapping 

on a closed set . It is assumed that a chaotic attractor  of Eq. (1) is in  

. Many methods for constructing synchronized chaotic systems are based upon 

the decomposition of states of chaotic systems, and it is proved by using 

conditional Lyapunov exponents whether the constructed systems are 

synchronized. Ushio proposes a method based on the partition of the nonlinear 

mapping, and synchronization of the constructed systems is guaranteed by a 

property of contraction mappings.  

     This paper proposes another method based on partitioning of the nonlinear 

mapping, and synchronization of the constructed systems is guaranteed by a 
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property of Kannan mappings. In the following subsections, we study synthesis 

methods for in-phase and anti-phase synchronization of chaotic systems.  

2.1  In-phase synchronization 
     That the difference of the states of two systems converges to zero is called 

in-phase synchronization or synchronization. We construct a system described 

by  

 
where    is the state of the system, and   is the state of Eq. 

(1). Suppose that initial state  of Eq. (1) is in the basin of the attractor ,  

and both states   and   of Eq. (1) and (3) are in   for each  , 

where  denotes the set of all natural numbers. We assume that there exist a 

closed set  and a nonnegative constant  such that for any 

  the mapping  satisfies 

 
We show that Eq. (1) and (3) are in-phase synchronized, so 

 
According to Theorem, we obtain 

 
Thus, in-phase chaotic synchronization of Eqs. (1) and (3) is achieved. Note that 

 is not necessarily in the basin of  . 

     Let us consider the following fully connected network composed of m-

neurons, as given in [20]:  

 
where  is assumed to be the sigmoid function. Let  

, i.e., consider the case where we have a  fully connected neural 

network defined as 
                                                                                      

                                                                                      

Altering the matrix  of connecting, this map can generate various 

complex dynamical patterns, including deterministic chaos [23]. We start our 

study with a  neural network with matrix 

 
This simplified neural network is dynamically equivalent to a one-parameter 

family of s-unimodal maps; it is well known that this map will generate chaotic 

via the Feigenbaum scenario. 

     We partition the neural network as follows 
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. 

The mapping  satisfies Kannan mapping for any . Then, we have the 

following new system 

 

                                            

                                           

So in-phase synchronization of System (4) and System (5) is achieved.   

     Remark 1 Because  is not contraction mapping, the results 

given in [2] are not applicable to show the synchronization of System (4) and 

System (5).  

 

2.2  Anti-phase synchronization 
     That the states of synchronized systems have the same absolute values but 

opposite signs is called anti-phase synchronization. We can say that anti-phase 

synchronization holds if 

 
where  , , is the state of the system. Suppose that the state  is both 

in the basin of the chaotic attractor  and in  , and  is in  . Then,  

 
According to Theorem, we obtain  

 
Thus, anti-phase chaotic synchronization of  and  is achieved. 

 

3. Chaos Control 
Consider the following chaotic discrete-time systems with an external input  

 
where  and  are the state and input of the system, and  is an 

 constant matrix. Eq. (6) without input has a chaotic attractor . Let 

 be a periodic orbit embedded in . We consider the following input  

                                                                

where  is a mapping from  to , and  is a sufficiently small positive 

constant. Assume that the mapping  is a Kannan mapping on a closed set 

, and the chaotic attractor  is within . Suppose that the initial state  

of Eq.(6) is within ; then, the following behavior  controlled by Eq.(7) is 

expected 

 
  . 

Since   , according to Theorem, we get  , and 

the periodic orbit  can be stabilized in . 
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     As in [20], we consider the neural network defined as follows: 

 

 
 

where   are control inputs. Then, we have 

 and  

Now, let us consider the following mapping   

 
Then, the mapping  is a Kannan mapping. Thus, the following control 

input can stabilize any periodic orbit embedded in a chaotic attractor of (6) 

 
where  denotes a stabilized periodic state with period 1. To obtain 

the necessary information of an approximate location of the desired periodic 

orbit, the strategy described in Ref. [26] is utilized. We collect a long data string 

of observed  and so on. If two successive  are closed to each 

other, say   and , then there will typically be a period-1 orbit   nearby. 

Having observed a first such close return pair, we then search the succeeding 

data for other close return pairs  restricted to the small region of the 

original close return. Because orbits on a strange attractor are ergodic, we will 

get many such pairs if the data string is long enough. When the first close return 

pair is detected, the first point of the pair is taken as a reference point. There are 

a number of close return pairs detected, which are close to reference point, 

where   and  are respectively used to denote the first point and its 

successive point of the th collected return pair, , where  is the 

maximum number of collected return pairs. The mean value 

 
is regarded as an approximate fixed point . This fixed point can be used to 

define a neighborhood   in which control input is activated.  

     Remark 2 In comparison with the results given in [20], it can be seen that 

using controller  , proposed in this section, the results of [20] cannot show the 

control of the chaotic discrete neural network. 
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4. Numerical Example 
     Consider the following chaotic neural network 

 

 
where  is assumed to be the sigmoid function. The 

system has chaotic behavior for , and the approximate period-3 orbit is 

estimated at and 

, when the condition  is satisfied 

[20].   

     We  first show the simulation results of chaotically synchronizing  System 

(10) and System (5) without control input. So System (5) becomes as follows 
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Fig. 1 The error  
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  Fig. 2  The error  

 

The system is simulated with initial conditions 

, and the differences are 

showed in Figs. (1) and (2). These figures show that system (10) is synchronized 

with system (11). 

     Now, we show the simulation results of chaos control of System (10) using 

controller  proposed in previous section. 

Behaviors of the state variables  and  and the input controls  and  are 

shown in Figs. 3-6, when a periodic orbit with period=3 is stabilized with 

. 
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Fig. 3 
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Fig. 4 

 

Figs.3 and 4 show behaviors of the state variables  and , respectively, with 

initial condition .  
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Fig. 6 

 

Figs.5 and 6 show behaviors of the input controls  and , respectively. 

These figures show that System (10) is stabilized by controller  proposed in 

this paper. 

 

5. Conclusions 
     In this paper, a new method based on Kannan mappings for chaotic 

synchronization is proposed. Furthermore, a new method based on the mappings 

is presented to stabilize chaotic discrete systems. These methods are applied to 

synchronize and control of chaotic discrete neural networks. Finally, a 

numerical example is given to validate the methods presented.  
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Abstract. We consider the theory and applications of the Kantorovich metric in
fractal image compression. After surveying the most important approaches for its
computation, we highlight its usefulness as a mathematical tool for comparing two
images and improve its performance by means of more appropriate data structures.
Keywords: Fractals, Hutchinson metric, Image comparison, Kantorovich metric.

1 Introduction

In many fields of computer science like pattern recognition and image pro-
cessing, it is important to have an efficient way to compare geometric objects.
The natural approach to this problem is to define a metric in the space of
the geometric objects and use this metric to compute the distance between
them. Considering digitized images as geometric objects, we can use that
metric to compare them.

The Kantorovich (or Hutchinson) metric, a.k.a. Wasserstein (or Vaser-
shtein), earth mover’s or match metric, takes into account the spatial struc-
ture of the compared images and, hence, corresponds more closely than other
metrics to our notion of the visual differences between two images. John E.
Hutchinson[6] used the Kantorovich distance to measure the distance between
self-similar probability measures obtained as limiting distributions for a fairly
simple type of Markov chains induced by affine, contractive mappings. He
used the Kantorovich metric to prove an existence and uniqueness theorem
of such limit measures.

The Kantorovich metric is also used by Michael F. Barnsley[2] and co-
workers to approach the convergence of iterated function systems, which were
introduced by Hutchinson. In trying to solve the so-called “inverse problem”
or “image encoding problem”, i.e. find an IFS that generates a predeter-
mined image, it is natural to use this metric as an objective function to
be minimised. Moreover, this metric appears to be a good indicator of the
perceived difference between two images.

Considering digitized images as a set of pixels, the problem of comput-
ing the Kantorovich distance between them is equivalent to the formulation
of a linear programming problem called the balanced transportation problem.
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According to Michael Werman et al.[9] the computational complexity of stan-
dard algorithms for transportation problems are of order O(N3), where N de-
notes the total number of pixels in the compared images. An algorithm for the
computation of the Hutchinson metric in the case of finite one-dimensional
sequences is presented in [3].

Thomas Kaijser[7] presented a variation of the primal-dual algorithm for
computing the Kantorovich distance function. To decrease the computational
complexity for updating the values of the dual variables for both transmit-
ting and receiving images, he always increases them by a constant value of 1.
Unfortunately, this is applicable, only if the underlying pixel distance value
is the L1-metric. Moreover, he developed two methods for fast determination
of new admissible arcs, one for the L1-metric and one for the L2-metric. Kai-
jser’s method was implemented by Niclas Wadströmer[8] in the context of his
PhD thesis, but the data structures used to implement the above mentioned
method as well as the way that the labelling procedure was implemented are
not so clear.

Another work on the computation of the Kantorovich distance is the
one of Drakopoulos V. et al.[5]. In this work the problem of computing
the Kantorovich distance is transformed into a linear programming problem
which is solved using the simplex method. To decrease the computational
complexity of the method, they developed an approximation algorithm for
“large images”. Yuxin Deng et al.[4] give a brief survey of the applications of
the Kantorovich distance in probabilistic concurrency, image retrieval, data
mining and bioinformatics.

The main purpose of the present paper is to improve the algorithm pre-
sented by Thomas Kaijser for computing the Kantorovich distance function
by means of more appropriate data structures. The metric we are using as
the underlying distance-function between pixels is the L1-metric. Using kd-
trees we don’t have to use different methods, but only to change the metric
for the construction of the appropriate kd-tree.

2 Problem formulation

We are interested in computing the Kantorovich distance between grey-scale
images. There are three types of image models: Measure spaces, pixelated
data and functions. Using this approach, we consider an image as a measure
space. Therefore, by an image P with support K we mean an integer-valued
nonnegative function p(i, j) defined on K, i.e. P = {p(i, j) : (i, j) ∈ K}. We
define as a Borel measure on the space of grey-scale images the pixel value
p(i, j), where i and j are the Cartesian coordinates of the pixel.

For a compact metric space (X, d), let P1 and P2 be two Borel probability
measures on X and define Θ(P1, P2) as the set of all probability measures P
on X×X with fixed marginals P1(·) = P (·×X) and P2(·) = P (X×·). Next,
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let
Lip(X) = {f :X → R

∣∣| f(x) − f(y) |≤ d(x, y), ∀x, y ∈ X}
and define the distance between P1 and P2 as

Bd(P1, P2) = sup

{∣∣∣∣
∫
X

f(x)P1(dx) −
∫
X

f(x)P2(dx)

∣∣∣∣ , f ∈ Lip(X)

}
.

The images considered are sets of finite collection of pixels, so they constitute
compact metric spaces.

Let K1 and K2 be two images, Sn, 1 ≤ n ≤ N be the pixels of K1 and
Rm, 1 ≤ m ≤ M the pixels of K2. Using the terminology of Kaijser we
call K1 the transmitting image and K2 the receiving image; Sn, 1 ≤ n ≤ N
denote sources whereas Rm, 1 ≤ m ≤ M denote sinks or destinations. By a
flow we mean the amount of goods sent from the source Sn to the sink Rm

denoted by x(n,m) whereas c(n,m), 1 ≤ n ≤ N, 1 ≤ m ≤ M denote the cost
of transferring goods from Sn to Rm. In our case the cost corresponds to the
distance between Sn and Rm. If a(n) denote the amount of goods available
in a source and b(n) the amount of goods needed in a sink, the Kantorovich
distance between K1 and K2 can be formulated as a balanced transportation
problem as follows:

Minimize

N∑
n=1

M∑
m=1

c(n,m) · x(n,m)

subject to x(n,m) ≥ 0, 1 ≤ n ≤ N, 1 ≤ m ≤ M ,

M∑
m=1

x(n,m) = a(n), 1 ≤ n ≤ N (1)

N∑
n=1

x(n,m) = b(m), 1 ≤ m ≤ M (2)

and
N∑

n=1

a(n) =

M∑
m=1

b(m).

The distance can be any of the following distances: L1-metric or L2-metric.
For each source and each sink we define two quantities α(n) and β(m) re-
spectively, called dual variables. If

c(n,m)− α(n) − β(m) ≥ 0, 1 ≤ n ≤ N, 1 ≤ m ≤ M,

we call the set of dual variables feasible. A pair of indices (n,m), where n is
an index of a source Sn and m is an index of a sink Rm, is called an arc. If
an arc (n,m) satisfies the condition

d(n,m)− α(n)− β(m) = 0, (3)
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where d(n,m) is the underlying distance-function between the pixels Sn and
Rm, it is called an admissible arc; otherwise it is called nonadmissible. We
say that a flow is optimal if Equations (2) and (3) hold.

The dual version of the transportation problem is

dK(P,Q) = Max

{
N∑

n=1

α(n) · a(n) +
M∑

m=1

β(m) · b(m)

}
(4)

when the set of dual variables is feasible.

3 The proposed algorithm

Our algorithm is based on the well known primal-dual algorithm which solves
the balanced transportation problem on the plane. We make several en-
hancements, however, that improve the efficiency of the algorithm. Our im-
provements are based on the data structures used to store image data and
on the fact that the transportation cost is the distance between the pixels.
The latter allows us to use some spatial data structures which facilitate the
computations and minimise the complexity of the problem. Before describing
our method in detail, we give the main steps of the primal-dual algorithm:

1. Determine an initial value of the dual variables, find the corresponding
set of admissible arcs and their flow.

2. Check if the current admissible flow is maximal. If it is go to (4), else
go to (3).

3. Update the admissible flow and go to (2).
4. Check if the current maximal flow is optimal. If it is go to (7), else go

to (5).
5. Update the dual variables.
6. Find the new admissible arcs and go to (2).
7. Stop.
Let us define as total transporting grey mass the summation of the grey

value of all pixels in the transporting image. Similarly, we define as total
receiving grey mass the summation of the grey value of all pixels in the re-
ceiving image. In order to convert the Kantorovich distance problem between
images to a balanced transportation problem on the plane, both transporting
and receiving total grey values must be equal. In general, these two amounts
are different and in order to make them equal we change both masses ac-
cordingly applying the following formula on every single pixel value of both
images:

pnew(n) = p(n) · L̂(K2), L̂(K2) =
( M∑

m=1

q(m)
)
/GCD(L,Q),

qnew(m) = q(m) · L̂(K1), L̂(K1) =
( N∑

n=1

p(n)
)
/GCD(L,Q),

14

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



where p(n) and q(m) are the pixel values of the transmitting and receiving

images respectively, L =
∑N

n=1 p(n), Q =
∑M

m=1 q(m) and GCD(L,Q) is the
greatest common divisor of L and Q. In the following we shall describe our
algorithm as well as the data structures we use to facilitate our computations
and image storage.

3.1 Dual variables and the flow of the current admissible arcs

After having made the total grey masses of both images equal we have to
initialise the dual variables. We set as initial values α(n) = min{d(n,m), 1 ≤
m ≤ M}, i ≤ n ≤ N and β(m) = 0, 1 ≤ m ≤ M. From the above equations
we observe that the initial values of the dual variables α(n) associated with
the transmitting image pixels, are the distances of their nearest neighbour
pixels of the receiving image. In order to compute this quantity we create a
kd-tree structure1 using the coordinates of the receiving image pixels and we
search for the nearest neighbour of every single transmitting pixel. So, if n is a
transmitting pixel and m one of its nearest neighbours in the receiving image,
then (n,m) is an admissible arc. Therefore, the initial flow along this arc is
x(n,m) = min{p(n), q(m)}, whereas the new pixel values are p(n)− x(n,m)
and q(m)− x(n,m).

3.2 Increasing the flow along the current set of admissible arcs

We call surplus source a transmitting pixel with p(n) > 0; otherwise, it is
called a zero source. A receiving pixel having q(m) > 0 is called a deficient
sink ; otherwise, it is called zero sink. We define as augmenting path a set of
admissible arcs connecting sources and sinks starting from a surplus source
and ending with a deficient sink running through zero sinks and sources
interchangeably. Moreover, the flow along admissible arcs connecting zero
sinks with zero sources must be positive. In this step we use a labelling
procedure to determine augmenting paths. It is clear that we can have flow
increment only along augmenting paths. The labelling procedure is described
as follows.

Start by labelling all surplus sources and then label all sinks that are
connected to those sources with admissible arcs. Then, using the last labelled
sinks, label all sources that are not labelled yet and are connected to those
sinks with admissible arcs of positive flow. Repeat the above procedure until
either a deficient sink is labelled or no more nodes can be labelled. If a
deficient sink is labelled, then proceed to flow augmentation along the path
that has been found. If no such path is found, the current admissible flow
is maximal. For faster labelling procedure, we don’t use any extra data
structure. We reorder the pixels of both the transmitting and the receiving
image in the initial data structure depending on whether they are labelled

1 http://www.cs.umd.edu/∼mount/ANN/
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or unlabelled. To speed up the reordering process, we store the pixel data in
doubly linked lists which need O(1) to move the nodes along the list.

Let θ1 = min{x(m,n)} be the minimum value of the positive flows be-
longing to the augmenting path connecting a labelled source and a label sink
directed from sink to source. We define by

θ = min
{
a(n)−

M∑
j=1

x(n, j), b(m)−
N∑
i=1

x(i,m), θ1

}
.

Then, we can increase the flow along the path by setting the value of the
starting source pixel to p(n)− θ, the value of the ending sink to q(m)− θ, by
increasing the flows directed from source to sink by θ and by decreasing the
flows from sink to source by the same amount. A drawback of this labelling
procedure is that, after increasing the flow along an augmenting path, we
may obtain cycles. In order to avoid them, we change the way we apply the
labelling procedure by using only positive admissible arcs during the whole
procedure. In that way, however, we cannot find all the augmenting paths.
So, we use a flow tuning procedure which finds all possible augmenting paths
for the current set of admissible arcs without having to store and use all the
zero flow admissible arcs.

3.3 Flow tuning procedure

We define as surplus flow tree a set of paths starting from a surplus source
and ending to zero sinks. A zero flow tree is a flow tree with a zero source
as starting node. The main purpose of the flow tuning procedure is to find
admissible arcs that connect zero sources belonging to surplus flow trees
and unlabelled deficient sinks. To do that, a kd-tree is constructed using
the coordinates of the unlabelled deficient sinks. Then, using the kd-tree
structure for each zero source belonging to a surplus flow tree, we locate all
the deficient unlabelled sinks that lay within a distance α(n) from itself. After
that, a new augmenting path has been located and the flow is augmented
as described in the previous subsection. According to the definition of the
augmenting path, there is no reason to search for arcs that connect zero
sources that belong to zero flow trees with unlabelled zero sinks. In such
a way we decrease the number of sinks as well as the number of considered
sources. The first one leads to a faster construction of the kd-tree whereas
the second one minimises the number of input points.

3.4 Dual variable update and the new set of admissible arcs

When no more augmenting paths can be located for the current set of ad-
missible arcs, we proceed to the dual variable update procedure. The main
reason for updating the dual variables associated with both sources and sinks
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is to create new admissible arcs in order to achieve the maximal and also the
optimal flow. According to Kaijser[7], if the underlying metric is the L1-
metric, the dual variable can be changed by δ = 1. In order to preserve the
current flow along the current set of admissible arcs, the dual variables are
changed as follows:

αnew(n) = αold(n) + δ, n ∈ M1, αnew(n) = αold(n), n ∈ U1,

βnew(m) = βold(m)− δ, m ∈ M2, βnew(m) = βold(m), m ∈ U2,

where M1 and M2 denote the sets of indices of labelled sources and sinks, re-
spectively, whereas U1 and U2 denote the sets of indices of unlabelled sources
and sinks, respectively. To improve the dual variable update, we define a new
variable Δ as the running total of the dual variable changes as the algorithm
evolves; see also [1]. We apply the above mentioned dual variable change rou-
tine using Δ instead of δ. Because of the way we change the dual variables,
new positive flow admissible arcs are created between the labelled surplus
sources and the unlabelled deficient sinks. To find out the new set of ad-
missible arcs, a kd-tree is constructed using the coordinates of the unlabelled
deficient sinks. Then, for each surplus source, we locate all the deficient sinks
that lay within a distance of α(n) +Δ from it. After finding out the new set
of positive flow admissible arcs, the algorithm is applied again until no more
surplus nodes exist.

4 Results

We now present typical results from the application of our algorithm to real
images, aiming to demonstrate its applicability to the demanding problems
inherent in the image compression area and its performance. The original
images used as our reference point in the experiments presented here are the
256× 256× 8 bpp Lena and Barbara images shown in Figure 1. We examine
for each original image how close it is to a filtered or compressed replica of it.
In other words we seek to measure the difference (i.e. the error) between two
images by computing the Kantorovich distance between the original image
and each of the associated filtered ones.

μ, μ1 μ, μ2 μ, μ3 ν, ν1 ν, ν2 μ, ν

dK 2,789,456 8,562,357 4,532,730 3,125,789 8,998,678 15,853,930
tK 27:26 42:22 41:15 31:52 44:27 1:12:36

Table 1. The Kantorovich distance dK between the real-world images and the
computation time in hour:min:sec format.

The correspondence between the images of Lena and the indices is the
following: μ = original image, μ1 = wavelet compression, μ2 = JPEG com-
pression and μ3 = 8:1 fractal compression. The correspondence between the
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Fig. 1. The original images of Lena (left) and Barbara (right) used in our experi-
ments (256 × 256 × 8 bpp).

images of Barbara and the indices is the following: ν = original image, ν1 =
64:1 compression and ν2 = JPEG compression. Time results are given in
CPU minutes on a CoreTM 2 Duo PC with a 2.13 GHz CPU clock, 4 GB
RAM and running Windows 7 Ultimate. Looking at Table 1 from left to
right we can see, which of the images are closer to the originals. The runtime
of our algorithm is better than the one presented in [7].
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Abstract. Natural convection flows arising from a horizontal cylinder centred in
a square-sectioned enclosure are studied numerically. The sequence of bifurcations
marking the transition of base fixed-point solutions to unsteady, chaotic flows is
followed for increasing values of the Rayleigh number, and for two values of the en-
closure aspect ratio, A. It is observed that, for the lower A-value, the route to chaos
is triggered by a supercritical Hopf bifurcation, followed by a sequence of period-
doublings, while, for the higher A-value, the symmetry of the system is broken by
a pitchfork bifurcation, with periodic orbits originating from both branches, and
eventually approaching chaos, exhibiting features typical of blue-sky catastrophes.
Keywords: Thermal convection, transition to chaos, bifurcations, period-dou-
bling.

1 Introduction

Buoyancy-induced flows in enclosures are very complex in nature, and highly
unpredictable, due to the bi-directional interaction between the flow and
temperature fields, and the sensitivity of the thermal-flow regimes to the
geometric and thermal configuration of the system.

The importance of bifurcations and chaos in buoyancy-induced flows as
a research topic goes far beyond the field of thermal sciences. In fact, it
is deeply entwined with the history of chaos theory, since the discovery of
the renown Lorenz attractor, originating from a simplified Rayleigh-Bénard
convection model [1]. From that seminal study, many works have been car-
ried out on the non-linear dynamics of thermal convection in basic enclosure
configurations, such as the rectangular enclosures heated from below and
from the side [2,3], and, more recently, the horizontal annulus between two
coaxial cylinders [4]. Fewer works dealt with more complex geometrical and
thermal configurations [5,6]. Nevertheless, from a theoretical and practical
standpoint, the interest in this topic is growing continuously.

The physical system considered in the present study is the cavity formed
by an infinite square parallelepiped with a centrally placed cylindrical heating
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source. The system is approximated to its 2D transversal square section
containing a circular heat source, as sketched in Fig. 1. The temperature
of both enclosure and cylinder is assumed as uniform, the cylindrical surface
being hotter than the cavity walls. The resulting flow is investigated with
respect to the leading parameter of the non-dimensionalized problem, the
Rayleigh number Ra, based on the gap width H, and for two values of the
aspect ratio A = L/H, between the cavity side length and the minimum
enclosure to cylinder gap width, namely A = 2.5 and A = 5. The third
parameter of the system, the Prandtl number, is fixed at a value Pr = 0.7,
representative of air at environmental conditions.

Fig. 1. Left: schematic of the system under consideration; (×) symbols indicate
locations of the sampling points. Right: quadrant of the computational grid for
A = 2.5.

Numerical predictions are carried out by means of a specifically developed
finite-volume code. Successive bifurcations of the low-Ra fixed point solution
are followed for increasing Ra. To this aim, time series of the dependent
variables (velocity components and temperature), are extracted in 5 locations
represented in Fig. 1 by points P1 to P5. Nonlinear dynamical features
are described by means of phase-space representations, power spectra of the
computed time series, and of Poincaré maps.

2 Numerical method

The problem is stated in terms of the incompressible Navier-Stokes formula-
tion, under the Boussinesq approximation. The governing equations (conti-
nuity, momentum and energy) are tackled in their non-dimensional form:
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∇ · u = 0 (1)

∂u
∂t

+ u · ∇u = −∇p +
Pr1/2

Ra1/2
∇2u + T ĝ (2)

∂T

∂t
+ u · ∇T =

1
(RaPr)1/2

∇2T (3)

where t, u, p and T represent the dimensionless time, velocity vector, pressure
and temperature, respectively, and ĝ is the gravity unit vector. A value
Pr = 0.7 is assumed for air. Boundary conditions for T and u are reported
in Figure 1.

The numerical technique adopted is based on a second-order, Finite Vol-
ume implementation of equations (1)-(3) on non-uniform Cartesian grids: a
more detailed description of the spatial and temporal discretization schemes
is found in [7]. The 2D modelling of arbitrarily irregular boundaries on Carte-
sian grids is achieved thanks to the original scheme developed by Barozzi et
al. [8], which preserves second-order accuracy for the method, as well as the
computational efficiency of the Cartesian approach.

In view of the work objectives, special care was put on the grid sizing of
both near-wall areas and internal domain regions, as shown in Fig. 1. The
average cell spacing in each region was chosen according to scaling considera-
tions, as illustrated in [6]. The time step size has been chosen small enough so
as to ensure a suitably accurate reproduction of the continuous-time system
dynamics.

For either A-value, the initial conditions were chosen so as to follow the
evolution of low-Ra base-flow, fixed-point solutions [7]. In order to detect the
occurrence of successive bifurcations, Ra was increased monotonically with
suitable steps, each simulation starting from the final frame of the preceeding
one. All the simulations were protracted to steady-state or, when unsteady
flows were detected, until a fixed dimensionless time span was covered.

A = 2.5 (190× 190 grid) A = 5 (288× 288 grid)

Ra Bifurcation Ra Bifurcation

4× 104 S (base flow) 1.8× 104 S (base flow)

6.6 ∼ 6.8× 104 S → P1 (supercritical Hopf) 3.2 ∼ 3.4× 104 S → NS (pitchfork)

1.7 ∼ 1.8× 105 P1 → P2 (period-doubling) 6.0 ∼ 7.0× 104 NS → P (Hopf)

1.8 ∼ 1.9× 105 P2 → P4 (period-doubling) 6.0 ∼ 7.0× 105 P → N (Blue-sky

1.9 ∼ 2.0× 105 P4 → . . .→ N catastrophe)

Table 1. Bifurcations of the low-Ra base flow solution for each A.
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3 Results and discussion

Table 2 summarizes the sequences of bifurcations leading to chaos for both
values of the aspect ratio A. The nomenclature used in defining the different
types of asymptotic behaviours follows the systematic introduced by Angeli
et al. [4]. In the following, details of both routes are briefly illustrated by
means of established nonlinear analysis tools.

For A = 2.5, starting from the base solution at Ra = 4 · 104, the system
asymptotically reaches a fixed-point for Ra ≤ 6.6 × 104. As Ra is increased
from Ra = 6.6× 104 to Ra = 6.8× 104, oscillatory behaviour sets in, until a
periodic limit cycle is reached. In Fig. 2, 2D projections of the corresponding
T -ux-uy attractors are plotted as a function of Ra. The passage from the
lower-Ra fixed-point solution to the periodic orbit is clearly portrayed, thus
suggesting the occurrence of a Supercritical Hopf bifurcation.

Fig. 2. Sequence of 2D attractors uy-T at point P2, for A = 2.5 and for increasing
Ra.

Fig. 3 reports the power spectral density distribution of the temperature
time series at point P1 for the case A = 2.5 and for increasing values of the
Rayleigh number. The values of Ra have been chosen with the aim of showing
the occurrence of a period doubling route to chaos which characterises the
evolution of the system dynamics for the mentioned aspect ratio. In fact, it
is possible to observe that the two original fundamental harmonics observed
in the power spectrum of temperature at Ra = 1.7 × 105 become four for
Ra = 1.8 × 105 and double again for Ra = 1.9 × 105; the last case, at
Ra = 2.0 × 105, is instead characterised by a broadband power spectrum,
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which represents a first hint of chaotic dynamics, with the broadened bands
arising around the original harmonics of the previous cases.

Ra = 1.7× 105 Ra = 1.8× 105

Ra = 1.9× 105 Ra = 2.0× 105

Fig. 3. Power spectral density of T at point P1, for A = 2.5 and for increasing Ra

This observation is confirmed by the analysis of the system attractors
reported in the T -ux-uy state space, as reported in Fig. 4. Considering
that each of the fundamental harmonics observed in the power spectrum
corresponds to a loop of the attractor in the phase space representation, it is
possible to observe that the original two-loop limit cycle at Ra = 1.7 × 105

gives rise to a four-loop limit cycle at Ra = 1.8 × 105, which, in turn, is
doubled again in a eight-loop limit cycle at Ra = 1.9 × 105. Finally, for
the last of the reported values of Ra, Ra = 2.0 × 105, in accordance with
previous observations on the power spectrum, the attractor shows a chaotic
morphology, with fractal bands distributed around the loops of the original
limit cycles.

Fig. 4 reports also the intersections of the 3-dimensional attractors with
Poincaré surfaces of section that have been obtained considering the plane ux-
T passing by the mean values of the calculated time series of the state variable
uy. Such intersections have been reported in the maps in Fig. 5. It is observed
that a couple of intersections arises for each loop of the limit cycle. Again,

23

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



Ra = 1.7× 105 Ra = 1.8× 105

Ra = 1.9× 105 Ra = 2.0× 105

Fig. 4. 3D attractor in state space T -ux-uy at point P1, for A = 2.5 and for
increasing Ra

the successive period doublings can be observed by spanning the maps at
Ra = 1.7×105 to Ra = 1.8×105 and, then, to Ra = 1.9×105, whereas ordered
series of intersections, typical of deterministic chaotic dynamics, characterise
the Poincaré map at Ra = 2.0×105. For brevity, it is just mentioned here that
an accurate observation of the local structure of such series of intersections
reveals the stretching and folding typical of fractal sets.

For the higher value of the aspect ratio A considered, A = 5, the system
undergoes a different sequence of bifurcations leading to chaos. Fig. 6(a)
represents the evolution of the T -uy attractors at point P2 as a function
of Ra. As Ra is increased beyond Ra = 3.2 × 104, the base flow becomes
unstable, and gives rise to two different solution branches, suggesting the
occurrence of a pitchfork bifurcation (whose sub- or supercritical nature is
still to be ascertained). The two solution branches correspond to stable
mirrored dual solutions [6].
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Ra = 1.7× 105 Ra = 1.8× 105 Ra = 1.9× 105 Ra = 2.0× 105

Fig. 5. Poincaré surfaces of section of the 3D attractors at point P1, for A = 2.5
and for increasing Ra

By further increasing Ra, each of the two solution branches undergo a
Hopf bifurcation to a periodic limit cycle, as clearly visible in Fig. 6(a).
Such transition occurs between Ra = 6×104 and Ra = 7×104. The periodic
orbits remain stable for a wide range of Ra-values, up to Ra = 6×105. From
Fig. 6(b), a progressive increase of the period of the limit cycle, i.e. of the
loop extension can be appreciated. This trend eventually leads to the chaotic
attractor reported in Fig. 6(c), for Ra = 7×105, in a general evolution which
seems to belong to the class of blue-sky catastrophes [9]. Such an observation
deserves further analyses which, however, are beyond the scope of the present
study.

Fig. 6. (a) Sequence of 2D attractors T -uy at point P2, for A = 5 and for increasing
Ra; (b) 3D periodic orbits in state space T -ux-uy at point P1, for A = 5 and for
increasing Ra; (c) chaotic attractor at point P1, for A = 5 and Ra = 7× 105.
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4 Concluding remarks

Natural convection flows arising from a horizontal cylindrical source centred
in a square enclosure were investigated numerically. Two values of the aspect
ratio A were considered; for which the entire scenario leading to deterministic
chaos was outlined, for increasing values of the Rayleigh number.

For the lower A-value, A = 2.5, the flow undergoes a Hopf bifurcation,
followed by a sequence of period-doublings. For the higher A-value, A = 5,
a pitchfork bifurcation gives rise to stable periodic orbits, persisting for a
large range of Ra-values. Chaotic behaviour is finally observed, on top of an
evolution which resembles a blue-sky catastrophe.
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Abstract. We consider a class of nonlinear elliptic equations containing a p(x)-
Laplacian type operator, lower order terms having nonstandard growth. The model
example is the equation

−4p(x)u+ |u|p(x)−2u = µ

in a bounded set Ω ⊂ IRN , coupled with a Dirichlet boundary condition. For
some right-hand side measure µ which admits some decomposition in L1(Ω) +

W−1,p′(x)(Ω).
Keywords: Nonlinear elliptic equation, Sobolev spaces with variable exponent,
entropy strongly-regular solution, truncations..

1 Introduction

The study on problems of elliptic equations and variational problems with
p(x)-growth conditions has attracted more and more interest in the recent
years. The aim of this paper is to discuss the existence of entropy strongly-
regular solution of the following quasilinear p(x)-Laplacian{

−4p(x)u+ |u|p(x)−2u = µ in Ω
u = 0 on ∂Ω.

(1)

where µ ∈ L1(Ω) + (Lp
′(x)(Ω))N , and where Ω is a bounded open subset of

IRN (N ≥ 2), p ∈ C(Ω̄), p(x) > 1. Especially, when p(x) = p = cte , (1)
is the well known quasilinear p-Laplacian equation. There have been a large
no. of papers on the existence of solutions for p-Laplacian equations. For
the existence of solutions for p(x)-Laplacian Dirichlet problems on a bounded
domain we refer to [11,12].
The natural framework to solve problem (1) is that of Sobolev spaces with
variable exponent. Recent applications in elasticity [14] , non-Newtonian fluid
mechanics [15,13,6], or image processing [8] , gave rise to a revival of the in-
terest in these spaces, the origins of which can be traced back to the work
of Orlicz in the 1930’s. An account of recent advances, some open problems,
and an extensive list of references can be found in the interesting surveys by
Diening [9] and Antontsev [5] (cf. also the work of Kováčik and Rákosník
[10], where many of the basic properties of these spaces are established).
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The interest of the study of Lebesgue and Sobolev spaces with variable ex-
ponent is developed from the proposed model by Chen, Levine and Rao [8]
in the application to image processing which the idea behind this application
requires the minimization over u of the energy,

E(u) =
∫
Ω

|∇u(x)|p(x) + |u(x)− I(x)|2dx, (2)

where I is given input. Recall that in the constant exponent case, the power
p = 2 corresponds to isotropic smoothing, which corresponds to minimizing
the energy,

E2(u) =
∫
Ω

|∇u(x)|2 + |u(x)− I(x)|2dx. (3)

Unfortunately, the smoothing will destroy all small details from the image,
so this procedure is not very useful. Where as p = 1 gives total variations
smoothing which corresponds to minimizing the energy,

E1(u) =
∫
Ω

|∇u(x)|+ |u(x)− I(x)|2dx. (4)

The Benefit of this approach not only preserves edges, it also creates edges
where there were none in the original image (the so-called staircase effect).
As the strengths and weaknesses of these two methods for image restoration
are opposite, it is a natural to try to combine them. That was the idea of
Chen, Levine and Rao [8], looking at E1 and E2 suggests that the appropriate
energy is E(u) (see 2), where p(x), is a function varying between 1 and 2.
This function should be close to 1 where there are likely to be edges, and
close to 2 where there are likely not to be edges, and depends on the location
, x, in the image. In this way the direction and speed of diffusion at each
location depends on the local behavior.
We point out that, this model is linked with energy which can be associated
to the p(x)−Laplacian operators, i.e.,

∆p(x)u = −div(|∇u|p(x)−2∇u). (5)

Moreover, the choice of the exponent yields a variational problem which has
an Euler-Lagrange equation, and the solution can be found by solving corre-
sponding evolutionary PDE.
In this paper, we consider a problem with potential applications. This prob-
lem has already been treated for constant exponent but it seems to be more
realistic to assume the exponent to be variable.
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Abstract. In this paper we study the numerical solution of singularly perturbed
systems with a discontinuous right hand side. We will avoid to consider the associate
reduced differential system because often this study leads to wrong conclusions. To
handle either the stiffness, due to different scales, or the discontinuity of the vector
field we will consider numerical method which are semi-implicit and of low order of
accuracy.

Keywords: Singularly perturbed differential systems, Filippov discontinuous sys-
tems, numerical methods.

1 Introduction

In this paper we study singularly perturbed systems with a discontinuous
right hand side. Differential systems of this type appear in several fields (see
for instance [7], [8], [14]) and they have attracted a growing interest also from
a theoretical point of view (see for instance [13]).

Let us consider the singularly perturbed differential system in R
n given

the the following form:
{

x′ = f(x, y), x(0) = x0, t ∈ [t0, T ],
ǫy′ = g(x, y), y(0) = y0,

(1)

where usually 0 < ǫ ≪ 1, while x : [0, T ] → R
n−m is the slow variable,

y : [0, T ] → R
m is the fast variable, the vector field f is discontinuous along

a surface Σ while g is sufficiently smooth. Let us suppose that the state
space R

n is split into two subspaces R1 and R2 by a surface Σ such that
R

n = R1 ∪ Σ ∪ R2.
The surface Σ is implicitly characterized by a scalar event function h :

R
n → R, that is

Σ = {(x, y) ∈ R
n| h(x, y) = 0} , (2)

so that the subspaces R1 and R2 are

R1 = {(x, y) ∈ R
n| h(x, y) < 0} , R2 = {(x, y) ∈ R

n| h(x, y) > 0} . (3)

We will assume that h(x, y) is sufficiently smooth and that its gradient

∇h(x, y) 6= 0 for all (x, y) ∈ Σ, so that the normal n(x, y) = ∇h(x,y)
‖∇h(x,y)‖ to
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Σ is well defined. In many practical applications, the function h is actually
linear (Σ is a plane).

Let us suppose that the vector field f is discontinuous along Σ, that is:

f(x, y) =

{

f1(x, y) when (x, y) ∈ R1

f2(x, y) when (x, y) ∈ R2
,

where f1 is sufficiently smooth on R1 ∪ Σ and f2 is sufficiently smooth on
R2 ∪ Σ.

Let us assume that for ǫ = 0, the algebraic equation (1.b), that is g(x, y) =
0, can be solved for y for all x and that this solution (denotated by y0(x))
satisfies the stability condition:

Re Spec ∂yg(x, y0(x))) < −µ < 0 (4)

with a uniform decay rate µ (see [12]).
Furthermore, let us assume that for the reduced system

x′ =

{

f1(x, y0(x)), when h(x, y0(x))) < 0
f2(x, y0(x)), when h(x, y0(x)) > 0

(5)

the sufficient conditions for the attractivity of the sub-surface

Σ0 = {(x, y) ∈ R
n|y = y0(x) , h(x, y0(x)) = 0} , (6)

hold.

2 Filippov approach

By setting:

z =

[

x

y

]

, F1(z, ǫ) =

[

f1(z)
1
ǫ
g(z)

]

, F2(z, ǫ) =

[

f2(z)
1
ǫ
g(z)

]

, (7)

the singularly perturbed discontinuous system (1) may be rewritten in Filip-
pov’s form

z′ = F (z, ǫ) =

{

F1(z, ǫ), when h(z) < 0
F2(z, ǫ), when h(z) > 0

(8)

with initial condition z0 = [x(0), y(0)]T .
A solution in the sense of Filippov (see [6]) is an absolutely continuous

function z : [0, T ] → R
n such that z′(t) ∈ F (z(t), ǫ) for almost all t ∈ [0, T ],

where F (z(t), ǫ) is the closed convex hull

co {F1, F2} = {F ∈ R
n : F = (1 − α)F1 + αF2, α ∈ [0, 1]} . (9)

Now, suppose z0 ∈ R1 (that is h(z0) < 0) and assume that the tra-
jectory of the differential system z′ = F1(z, ǫ) is directed towards Σ and
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reaches it in a finite time. At this point, one must decide what happens
next. Loosely speaking, there are two possibilities: (a) we leave Σ and enter
into R2 (transversal case); (b) we remain in Σ with a defined vector (sliding
mode). Filippov deviced a very powerful theory which helps to decide what
to do in this situation and how to define the vector field during the sliding
motion.

Let z ∈ Σ and let n(z) = ∇h(z)
‖∇h(z)‖ be the normal to Σ at z. Let

nT (z)F1(z, ǫ) and nT (z)F2(z, ǫ) be the projections of F1(z, ǫ) and F2(z, ǫ)
onto the normal direction and suppose that nT (z)F1(z, ǫ) > 0. We will ex-
clude the case in which we entry Σ in a tangent way, that is nT (z)F1(z, ǫ) = 0
at z ∈ Σ.

Transversal Intersection. In case in which, at z ∈ Σ, we have

[nT (z)F1(z, ǫ)] · [nT (z)F2(z, ǫ)] > 0 , (10)

then we will leave Σ and enter R2 with F = F2. Any solution of (8) with
initial condition not in Σ, reaching Σ at a time t1, and having a transversal
intersection there, exists and is unique.

Sliding Mode. Instead, if, at z ∈ Σ, we have

[nT (z)F1(z, ǫ)] · [nT (z)F2(z, ǫ)] < 0 , (11)

then we have a so-called attracting sliding mode through z.
When we have (11) satisfied at z ∈ Σ, a solution trajectory which reaches

z does not leave Σ, and will therefore have to move along Σ. During the
sliding motion the solution will continue along Σ with time derivative FS

given by:
FS(z, ǫ) = (1 − α(z))F1(z, ǫ) + α(z)F2(z, ǫ) . (12)

and α(z) such that FS(z, ǫ) lies in the tangent plane Tz of Σ at z, that is
nT (z)FS(z, ǫ) = 0, and this gives

α(z) =
nT (z)F1(z, ǫ)

nT (z)(F1(z, ǫ) − F2(z, ǫ))
. (13)

Observe that a solution having an attracting sliding mode exists and is
unique, in forward time.

As far as the reduced system (5) is concerned, we have to observe that
during the sliding mode the Filippov vector field will be

fS(x) = (1 − α0(x))f1(x, y0(x)) + α0(x)f2(x, y0(x)) . (14)

where

α0(x) =
nT

x (x)f1(x, y0(x))

nT
x (z)(f1(x, y0(x)) − f2(x, y0(x)))

. (15)

where nx(x) = ∇h(x,y0(x))
‖∇h(x,y0(x))‖ .
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3 An Example

We observe that while Σ0 is an attractive surface for the solution of the
reduced system (5), on the other hand, the trajectories of the singularly
perturbed system (1) could transverse the discontinuity surface Σ, or could
slide on it for a certain time interval, or could show a periodic or chattering
behaviour.

As an example of different behaviours between the initial and reduced
system, we consider the following system:

{

x′ = −sign[θx + (1 − θ)y],
ǫy′ = x − y ,

(16)

where θ is a real parameter (θ 6= 0) and where the discontinuity surface is
the line

Σ =
{

(x, y) ∈ R
2| h(x, y) = θx + (1 − θ)y = 0

}

. (17)

A theoretical study of singularly perturbed systems of this kind has been
derived in [13]. When ǫ = 0, the reduced system becomes the well known
discontinuous system x′ = −sign[x], x = y, which has the equilibrium point
(x, y) = (0, 0). Such a point is exponentially stable and attractive in finite
time. Actually (0,0) is a pseudo-equilibrium because it is an equilibrium of
(16) which is on the discontinuity surface Σ. Let us denote

F1(x, y, ǫ) =

[

1
1
ǫ
(x − y)

]

, F2(x, y, ǫ) =

[

−1
1
ǫ
(x − y)

]

, (18)

thus, the sliding region will be defined by the points of the line Σ such that
∇hT · F1 > 0 and ∇hT · F2 < 0, that is the points (x, y) ∈ Σ such that

θ +
1 − θ

ǫ
(x − y) > 0 , −θ +

1 − θ

ǫ
(x − y) < 0 .

Thus, for θ > 0 and θ 6= 1, assuming y = θ
θ−1x, it follows that the sliding

region is defined by

−ǫθ < x < ǫθ ,

this means that there is a small neighborhood of (0, 0), on the discontinuity
line Σ, on which the solution of (16) sliding reaches the pseudo-equilibrium.

If θ < 0, then (0, 0) is an unstable pseudo-equilibrium, in particular there
is a repelling sliding region near the origin and we have a symmetric expo-
nentially stable periodic orbit around the origin switching between the two
different vector fields F1 and F2 (see [13] for the details). Thus the dynamics
of the perturbed system (ǫ > 0) are close the dynamics of the unperturbed
system (ǫ = 0) only in a very weak sense (see [5]) and the reduced system
cannot be used to study the perturbed one.
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4 Numerical methods

The previous example shows that the study of the reduced stystem (ǫ = 0)
could lead to wrong conclusions, in particular certain dynamics of the system
could be lost. However, the reduced differential system (5) could be used to
approach the discontinuty surface Σ, that is to find an initial point close
to Σ from which starting with the numerical solution of the unperturbed
differential system.

On the other hand, the numerical solution of discontinuous singularly
perturbed problems meets several difficulties. In fact, we need to consider
numerical schemes that handle either the discontinuity of the vector field
or the stiffness of the solution which arises because of the presence of the
small parameter ǫ. To this end we will consider two semi-implicit schemes,
one in the class of Predictor-Corrector methods and the other in the class of
Rosenbrock methods.

We have adopted a computational approach in which each particular state
of the differential system is integrated with an appropriate numerical method,
and the event points, where structural changes in the system occur, are lo-
cated in an accurate way. In [1], this approach is called an event driven

method (see also the numerical methods in [2], [3]), and the numerical meth-
ods we consider will be effective if there are not too many events.

We will be mainly concerned with developing a numerical procedure which
will accomplish the following different tasks:

(i) Integration outside Σ;
(ii) Accurate location of points on Σ reached by a trajectory;
(iii) Check of the transversality or sliding conditions at the points on Σ;
(iv) Integration on Σ (sliding mode);
(v) check of the exit conditions from Σ.

For discretizing the singularly perturbed discontinuous system in (8) we
are going to consider schemes (of low order 1) suitable to handle stiff prob-
lems. Integration of (8) while the solution remains in R1 (or R2) is not
different than standard numerical integration of a singularly perturbed dif-
ferential system (see [10]). Therefore, the only interesting case to consider is
when, while integrating the system with F1 (or F2), we end up reaching the
surface Σ.

Let z0 ∈ R1 and consider one step of the implicit Euler method:

z1(τ) = z0 + τF1(z1(τ) , ǫ) , (19)

where τ > 0 is the time step of integration. We suppose that τ is sufficiently
small in order to avoid situations in which, in the interval [0, τ ], more than
one event point occurs. We have to notice that in order to find z1(τ) from
(19), we have to solve a nonlinear system of n algebraic equation. Let us
suppose that τ is such that

h(z0)h(z1(τ)) < 0 (20)
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that is z1(τ) is on the other side of Σ. We observe that in the interval [0, τ ]
the function H(η) = h(z1(η)) changes sign. Thus, we may apply a zero
finding routine (for instance the bisection or secant method) to determine τ̄ ,
such that h(z1(τ̄)) = 0, that z1(τ̄) ∈ Σ. The secant methods gives:

ηk+1 = ηk −
(ηk − ηk−1)

H(ηk) − H(ηk−1)
H(ηk), k ≥ 0,

with η0 = 0, η1 = τ . However, at each iteration of a such routine a nonlinear
system of equations must be solved in order to compute the new vector z1(ηk)
required in H(ηk) and this could be very expensive.

In order to derive a semi-explicit procedure suitable to treat stiff problems,
we consider a predictor-corrector method where the predictor is the Euler
explicit method and the corrector is the Euler implicit method, that is

{

z
(0)
1 (τ) = z0 + τF1(z0 , ǫ) ,

z1(τ) = z0 + τF1(z
(0)
1 (τ) , ǫ) ,

(21)

which is equivalent to the explicit formula:

z1(τ) = z0 + τF1(z0 + τF1(z0 , ǫ) , ǫ) . (22)

Now, if (20) holds, a simple scalar non linear equation must be solved to find
the step size τ̄ for which z1(τ̄) is on Σ.

A different method we could employ is the semi-explicit Rosenbrock method
of order 1:

z1 (τ) = z0 + τ t0, (23)

where the vector t0 is given by

[I − τJF1
(z0)] t0 = F1(z0, ǫ) , (24)

and where JF1
(z0) denotes the Jacobian matrix of F1 at z0.

Now, if (20) holds, in the zero finding routine, instead of (23), we may
consider the continuous extension of the Rosenbrock method

z1 (στ) = z0 + στ t0, σ ∈ (0, 1) (25)

where the vector t0 is again given by (24) but is independent on σ.
An advantage of (23) with respect (21) is that the former does not require

the evaluation of the vector field F1 above Σ, and this property could be
necessary in certain discontinuous models.

Once we have a point z̄ on Σ, we need to decide if we will need to cross
Σ or slide on Σ, that is we will check if

[nT (z̄)F1(z̄, ǫ)] · [nT (z̄)F2(z̄, ǫ)] > 0 , (26)

or
[nT (z̄)F1(z̄, ǫ)] · [nT (z̄)F2(z̄, ǫ)] < 0 , (27)
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[recall we are supposing that [nT (z̄)F1(z̄, ǫ)] > 0].
If (26) is satisfied, then we change the vector field and continue to inte-

grate the system:
z′(t) = F2(z(t), ǫ), z(τ̄) = z̄ , (28)

by using the same numerical method used to reach Σ.

5 Integration on Σ

Instead, if (27) is satisfied then we enter an attractive sliding mode, thus we
need to integrate the differential Filippov system:

z′(t) = FS(z(t), ǫ), z(τ̄) = z̄ , (29)

where with FS we indicate the standard Filippov vector field (12).
Since FS is a linear convex combination of F1 and F2, to integrate (29)

we will employ the same method used to reach Σ, that is (21) or (23) where
the vector field F1 is now replaced by FS .

Now, one step of the Rosenbrock method becomes z1(τ) = z0 + τt0, with

[I − τJFS
(z0)] t0 = FS(z0, ǫ) (30)

where JFS
(z0) denotes the Jacobian matrix of FS at z0 ∈ Σ. Because of the

form of FS , this Jacobian matrix JFS
could be very expensive to evaluate and

a free-Jacobian procedure has to be used in the solution of the linear system
(30) by means of iterative or Krylov type procedures (see [11]).

We observe that when we integrate on Σ, usually, the numerical solution
given by (21) or (23) leaves the surface Σ and a projection is necessary to
return on Σ. The projection on Σ may be done in the standard way (e.g.,
see [4], [9]). If ẑ is a point close to Σ, then the projected vector z = P (ẑ) on
Σ is the solution of the following constrained minimization problem

min
z∈Σ

g(z) , g(z) =
1

2
(ẑ − z)T (ẑ − z) .

By using the Lagrange’s multiplier’s method, we have to find the root of

G(z, λ) =

(

∇g(z) + λ∇h(z)
h(z)

)

, λ ∈ R ,

and we can apply Newton’s method to find the root of G(z, λ) = 0.
On the other hand, if Σ is flat, that is h(z) = aT z+b linear with respect to

z, then the numerical solution given by (21) lies on Σ while the one obtained
by (23) does not.

Theorem 1. Let us assume Σ given by h(z) = aT z + b, and suppose that
z0 ∈ Σ. Then z1 given by (21) lies on Σ while z1 given by (23) does not.
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Proof. Let us consider the numerical solution

z1 = z0 + τFS(z0 + τFS(z0 , ǫ) , ǫ) . (31)

We notice that the predicted vector z0 +τFS(z0 , ǫ) remains on Σ since it has
been obtained by an explicit method which preserves linear invariants (see
[9]). Thus, it follows that

aT z1 + b = aT [z0 + τFS(z0 + τFS(z0, ǫ), ǫ)] + b = aT z0 + b = 0 ,

since aT FS(z0 + τFS(z0, ǫ)) = 0 being aT the normal vector of Σ.
Now, we would like to see if aT z1+b = 0 when z1 is the numerical solution

obtained by (23). Then it follows that

aT z1 + b = aT (z0 + τ [I − τJ(z0)]
−1FS(z0, ǫ)) + b =

= aT z0 + b + τaT [I − τJ(z0)]
−1FS(z0, ǫ) ,

thus z1 is on Σ only if aT [I−τJ(z0)]
−1FS(z0, ǫ). We observe that aT FS(z0, ǫ) =

0, and that for τ sufficiently small we have

[I − τJ ]−1 = I + τJ +
τ2

2
J2 +

τ3

6
J3 + . . .

thus z1 is on Σ if and only if JFS = FS , that in general is not true.

Thus, usually, to remain on Σ a projection on it is required. While we
integrate on Σ, we will monitor if we have to continue sliding on it, or if we
need to leave Σ. Once the point z1 on Σ has been computed, we need to
check if the sliding condition

[nT (z1)F1(z1, ǫ)] · [n
T (z1)F2(z1, ǫ)] < 0 , (32)

is satisfied or if this product changes sign, that is

[nT (z1)F1(z1, ǫ)] · [n
T (z1)F2(z1, ǫ)] > 0 , (33)

If (32) holds then we continue to integrate on Σ. On the other hand, if (33)
holds then we have to determine τ̄ (and hence z1(τ̄)) such that the previous
product vanishes. Thus, starting with z1(τ̄), we exit the surface Σ with
vector field F2(z1(τ̄), ǫ).

6 Numerical tests

In this section we report the numerical simulations of some singularly per-
turbed discontinuous systems, obtained by using the numerical methods stud-
ied. We will report the results obtained by Matlab codes using both the
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predictor-corrector method in (21) and the Rosenbrock method in (23) with
sufficiently small time step τ .

Example 1. Here we consider the numerical solution of the system in (16),
with ǫ = 0.001, by means of the numerical methods proposed in the previous
section. Figure 1 concerns with the case θ > 0 (we have taken θ = 0.9 and
denoted by ’*’ the initial value). We can see that the numerical solution first
crosses the discontinuity surface Σ (denoted by the red color), then begins
to slide on Σ until to reach the pseudoequilibrium (0, 0).

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0

x 10
−3

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

x1

x2

Fig. 1. Example 1. Case θ = 0.90.

Figure 2 concerns with the case θ < 0 (θ = −0.9). We can see that the
numerical solution tends to an exponentially stable periodic orbit around the
origin while the vector field switches between the two different vector fields
F1 and F2. In Figure 3 we have reported the exponentially stable periodic
solution of the system.

Example 2. Let us consider the following discontinuous differential system:

(

x′
1

x′
2

)

=

{

µx1 − ωx2 − (x2
1 + x2

2)x1

ωx1 + µx2 − (x2
1 + x2

2)x2
, when h(x1, x2) ≥ 0 (34)

or
(

x′
1

x′
2

)

=

{

1
0

, when h(x1, x2) < 0 (35)

[µ and ω positive constants] while the switching line is given by h(x1, x2) =
x1 + 1, therefore ∇T h(x) = [1 0]. Using our notation, we have:

f1 =

[

1
0

]

, f2 =

[

µx1 − ωx2 − (x2
1 + x2

2)x1

ωx1 + µx2 − (x2
1 + x2

2)x2

]

, (36)
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Fig. 2. Example 1. Case θ < 0.
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Fig. 3. Example 1. Case θ < 0: stable periodic solution.

and observe that ∇T h ·f1 = 1 > 0. Hence, when µ > 1, the attractive sliding
region SR is the segment on the line x1 = −1 for which ∇T h · f2 < 0, that is
SR =

{

(−1, x2) ∈ R
2| − µ − ωx2 + (1 + x2

2) < 0
}

. In Figure 4 we report the
exponentially stable periodic solution of (35) obtained for µ = 1.5 and ω = 1
by our numerical methods.
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Fig. 4. Example 2. Stable periodic solution.

Now, let us consider the singularly perturbed discontinuous system:




x′
1

x′
2

ǫx′
3



 =







x1 − ωx2 − (x2
1 + x2

2)x1

ωx1 + µx2 − (x2
1 + x2

2)x2

ǫ[µx1 − ωx2 − (x2
1 + x2

2)x1] + x1 − x3

, h(x1, x2, x3) ≥ 0

(37)
while





x′
1

x′
2

ǫx′
3



 =







1
0
ǫ[µx1 − ωx2 − (x2

1 + x2
2)x1] + x1 − x3

, h(x1, x2, x3) < 0

(38)
where the last component of the vector field is continuous while the previous
two components are discontinuous with respect the line:

Σ =
{

(x1, x2, x3) ∈ R
3| h(x1, x2, x3) = θx1 + (1 − θ)x3 = 0

}

. (39)

The reduced system (ǫ = 0) is the one in (34)-(35). A theoretical study of
the system (37)-(38) may be found in [13]. In Figure 5 we report the periodic
solution of the singularly perturbed system (37)-(38) for ǫ = 0.01, µ = 1.5,
ω = 1 and assuming a positive value of the parameter θ (θ = 0.5). A zoom of
the solution near the sliding segment of the reduced system may be seen in
Figure 6. Instead, in Figure 7 the periodic solution of (37)-(38) with θ = −0.5
is shown, while in Figure 8 we show the chattering behaviour of the solution
near the sliding segment of the reduced system.
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Fig. 5. Example 2. Case θ = 0.5. Periodic solution.
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Fig. 6. Example 2. Case θ = 0.5. Zoom of the solution.
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Fig. 7. Example 2. Case θ = −0.5. Periodic solution.
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BetaBoop Brings in Chaos
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Abstract. The Verhults differential equation d
dt
N(t) = r N(t) (1 − N(t)) and its

logistic parabola difference equation counterpart xt+1 = αxt (1 − xt) I(0,1)(xt),
α ∈ [0, 4], are tied to sustainable growth. We investigate the implications of consid-
ering 1−N(t) the linear truncation of the MacLaurin expansion of− lnN(t), orN(t)
the linear truncation of− ln(1−N(t)), i.e. of curbing down either the retroaction fac-
tor 1−N(t) or the growing factor N(t), which leads to Gumbel extreme value pop-
ulation for maxima or minima, respectively. More generally, we consider d

dt
N(t) =

r N(t) (− lnN(t))1+γ
`
or, alternatively, d

dt
N(t) = r (− ln(1−N(t)))1+γ (1−N(t))

´
and its difference equation counterpart. Simple extensions of the beta densities
arise naturally in this context, and we discuss a BetaBoop(p, q, P,Q), p, q, P,Q > 0
family of probability density functions, that for P = Q = 1 reduces to the usual
Beta(p, q) family.
Keywords: Population dynamics and chaos, extremal models, beta family.

1 Introduction

The rationale of the Verhulst population dynamics model

d
dt
N(t) = r N(t) (1−N(t)) (1)

is well-known: due to the malthusian reproduction rate r > 0, r N(t) im-
plies growth, but on the other hand the retroaction term −r N2(t) slows
down the growth impetus, and ultimately dominates, an action that is of-
ten interpreted in terms of sustainability. Hence the logistic solution of (1),
N(t) = 1/(1 + e−rt) (normalized so that N(t) is a probability distribution
function), is often tied to the idea of sustainable population dynamics growth.

Using Euler’s algorithm, with an appropriate factor s, the equation (1)
can be rewritten as

N(t+ 1) = N(t) + sr N(t) (1−N(t)) ⇐⇒ xt+1 = αxt (1− xt) (2)

where xt = sr N(t)/(sr + 1), α = 1 + sr; if α ∈ (0, 4), xt ∈ (0, 1) =⇒ xt+1 ∈
(0, 1).

45

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



Due to its connection to the logistic curve, αx (1 − x)I(0,1)(x) is some-
times referred to as logistic parabola. Observe that, with the notation
Xp,q _ Beta(p, q), αx (1 − x) I(0,1)(x) = α

6 fX2,2(x), where fX2,2(x) =
6x (1− x) I(0,1)(x) is the probability density function of X2,2 _ Beta(2, 2).

The fact that Euler’s algorithm transforms the logistic differential equa-
tion in the difference equation model xn+1 = αxn (1−xn) had an important
impact in the recognition that bifurcations, fractality, and ultimate chaos
when the reproduction rate r is explosive and sustainability fails, were in-
deed important tools in modeling population dynamics.

As the Verhulst model is closely tied to the Beta(2, 2) probability den-
sity function, Aleixo et al. [1], [2], investigated the population dynamics of
its natural extensions tied to general Beta(p, q) models. Explicit solutions
of the differential equation d

dtN(t) = r Np−1(t) (1 − N(t))q−1 exist only for
some (p, q) other than (2, 2) — for instance, 4 ert/ (1 + ert)2 is the solution
of d

dtN(t) = r N(t)
√

1−N(t) — but using appropriate software (we used
Mathematica 7) numerical approximations of the solutions of practical prob-
lems are easily worked out.

As lnN(t) = −
∑∞
k=1 (1−N(t))k/k, the factor 1 − N(t) in (1) may be

looked at as the linear truncation of − lnN(t). In the differential equation

d
dt
N(t) = r N(t) (− lnN(t)), (3)

the retroaction factor − lnN(t) is much lighter than 1−N(t), and hence it is
not surprising that the solution of (3), N(t) = e−e−rt (once again normalized
to be a probability distribution function) is one of the extreme value laws for
maxima, namely the Gumbel law.

On the other hand ln(1−N(t)) = −
∑∞
k=1N

k(t)/k, and considering that
the growing factor N(t) in (1) is the linear approximation of − ln(1−N(t)),
we may regard (1) as an approximation of

d
dt
N(t) = r (− ln(1−N(t))) (1−N(t)) (4)

whose solution, once again normalized, is the Gumbel extreme value distri-
bution for minima, N(t) = 1− e−ert , which makes sense since in this case we
curbed down the growing factor.

Pestana et al. [4] investigated d
dtN(t) = r N(t) (− lnN(t)) and its dis-

cretization counterpart xt+1 = s r xt(− lnxt) in modeling extremal growth
rate, as observed in the dynamics of cancer cells populations.

The generalization fp,Q(x) = pQ

Γ(Q) x
p−1(− lnx)Q−1I(0,1)(x) of the beta

densities, has been introduced by Brilhante et al. [3]. In Section 2 we discuss
the behavior of xt+1 = r xt(− lnxt) I(0,1)(x), the more general differential
equation d

dtN(t) = r N(t) (− lnN(t))1+γand its connection to extreme value
laws, as well as the behavior of xt+1 = s r xt(− lnxt)1+ 1

γ I(0,1)(x). In Section
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3 we introduce a new extension of the beta densities, namely

fp,q,P,Q(x) = c xp−1(1− x)q−1(− ln(1− x))P−1(− lnx)Q−1I(0,1)(x), (5)

p, q, P,Q > 0, and a general discussion on modeling population dynamics via
differential equations/difference equations, questioning whether chaos is in
fact an appropriate framework in the description of evolution of populations.

2 Extreme value laws and population dynamics

As observed in Section 1, the Gumbel distribution function for max-
ima, N(t) = e−e−rt , is a solution of the differential equation d

dtN(t) =
r N(t) (− lnN(t)), and the Gumbel distribution function for minima, N∗(t) =
1 − e−ert , is a solution of the differential equation d

dtN
∗(t) = r (− ln(1 −

N∗(t))) (1 − N∗(t)). We now consider difference equations closely tied to
those differential equations, i.e., we assume that there exists an appropriate
c such that

N(t+ 1) = N(t) + cN(t) (− lnN(t))⇐⇒ N(t+ 1) = −cN(t) ln
(
N(t)

e
1
s

)
,

and we obtain the difference equation,

xt+1 = c xt (− lnxt), (6)

closely associated to (3). As long as xt ∈ (0, 1), if c ∈ (0, e) we also have
xt+1 ∈ (0, 1). The stationary solutions of (6) are xt+1 = xt = x0 with x0 = 0
or x0 = e−

1
c . In view of the stability criterion for the stationary solutions,∣∣c (− lnx− 1)
∣∣ < 1, and hence the stationary solution x0 = e−

1
c is stable for

0 < c < 2., cf. Fig. 1

Fig. 1. Left: 1.5xt (− lnxt); right: 2.5xt (− lnxt).

Using in Mathematica 7 the output of the instructions

Clear[f, x]

f[c_][x_] := c x *(-Log[x]) // N
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x[c_][n_] := x[c][n] = f[c][x[c][n - 1]] // N

x[c_][0] := 0 // N;

tb = Table[{c, x[c][n]}, {c, .1, Exp[1], .01}, {n, 1000, 1300}];

Short[tb]

as input for the instructions

tb2 = Flatten[tb, 1];

ListPlot[tb]

we obtain the graph in Fig. 2, exhibiting bifurcations for c ≥ 2, and ultimately
chaos, as expected from the observations above.

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

Fig. 2. Bifurcation diagram, solving x = f(c, x) = c x (− lnx), c ∈ (0, e), using the
fixed point method.

As we have discussed previously, the Gumbel distribution for minima
N(t) = 1 − e−ert is a solution for the differential equation d

dtN
∗(t) =

r (− ln(1 − N∗(t))) (1 − N∗(t)), which is tied to the difference equation
xt+1 = c(− ln(1−N(t))) (1−N(t)). Fig. 3 is the simile of Fig. 2 for this case.
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Fig. 3. Bifurcation diagram, solving x = f(c, x) = c (− ln (1−x)) (1−x), c ∈ (0, e),
using the fixed point method.

A more general situation involves the study of the differential equations
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• d
dtN(t) = r N(t) (− lnN(t))1+ 1

γ , whose solution for γ > 0 is (again
in standardized form) the Fréchet distribution function for maxima
N(t) = e−( rγ x)−γ I[0,∞)(t), and whose solution for γ < 0 is the Weibull
distribution function for maxima N(t) = e−(− rγ t)

γ

I(−∞,0)(t)+1 I[0,∞)(t).
• d

dtN(t) = r N(t) (− lnN(t))1+ 1
γ , whose solution for γ > 0 is the Fréchet

distribution for minima, and for γ < 0 is the Weibull distribution function
for minima.

Fig. 4 and Fig. 5 illustrate the dynamical behavior when solving by the
fixed point method the difference equations closely associated to the above
differential equations, namely xt+1 = c xt (− lnxt)1+ 1

γ for γ = 1 (Fréchet-1)
and γ = −2 (Weibull-0.5).

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

Fig. 4. Bifurcation diagram, solving x = f(c, x) = c x (− lnx)2 using the fixed point
method.
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Fig. 5. Bifurcation diagram, solving x = f(c, x) = c x (− lnx)0.5 using the fixed
point method.

Remark 1. Considering the General Extreme V alue (GEV ) distribu-
tion for maxima, Gγ∗(t) = e−(1+γ∗t)−1/γ∗

, 1 + γ∗t > 0, it is ob-

vious, from (1 + γ∗t)−1/γ∗−1 = ((1 + γ∗t)−1/γ∗)
1/γ∗+1
1/γ∗ = (− lnGγ∗(t))1+γ∗ ,
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that Gγ∗ satisfies the differential equation

d
dt
Gγ(t) = Gγ(t) (− lnGγ(t))1+ 1

γ , γ =
1
γ∗
.

In the GEV representation, a shape parameter γ∗ > 0 corresponds to the
Fréchet- 1

γ∗ , γ∗ < 0 corresponds to the Weibull- 1
|γ∗| , and γ∗ → 0 corresponds

to the Gumbel.
The similarity of d

dtN(t) = r N(t) (− lnN(t))1+ 1
γ and d

dtN(t) =
r (− ln(1 − N(t)))1+ 1

γ (1 − N(t)) comes from the fact that stable distribu-
tions G for maxima (either Gumbel, or Fréchet or Weibull) and the corre-
sponding stable distributions G∗ for minima are tied through the relationship
G∗(x) = 1−G(−x).

3 The BetaBoop family

Brilhante et al. [3] extensively studied the family of probability density func-
tions fp,Q(x) = pQ

Γ (Q) x
p−1(− ln x)Q−1 I(0,1)(x), p,Q > 0, and their relevance

in population studies. Denote Xp,Q _ Betinha(p,Q), p,Q > 0, the random
variable whose probability density function is fp,Q(x), given above.

In fact, 4x (− lnx) I(0,1)(x), tied to the Gumbel model, is the case p =
Q = 2 in this family, just as 6x (1 − x), tied to the logistic parabola and
the Verhulst population model, is the case p = q = 2 of the Beta(p, q)
family of probability density functions, whose dynamical behavior has been
studied in depth in Aleixo et al. [1], [2], and references therein. This new
family provides difference models whose associated differential models have
as solution, among others, the stable distributions for maxima.

In the previous section we have seen that the probability density function
of random variables YP,q = 1−Xq,P , with q = 2, are connected to difference
equations associated to differentail equations having as solutions the stable
distributions for minima.

In fact, in view of Hölder’s inequality, the function xp−1(1−x)q−1(− ln(1−
x))P−1(− lnx)Q−1 I(0,1)(x) is integrable for every p, q, P,Q > 0, and hence
there exists c ∈ (0,∞) such that fp,q,P,Q(x), in (5), is a probability den-
sity function. We denote the corresponding random variable Xp,q,P,Q _
BetaBoop(p, q, P,Q). Observe that BetaBoop(p, q, 1, 1) is the same as
Beta(p, q), and BetaBoop(p, 1, P, 1) is the same as Betinha(p, P ).

Betty Boop brought in chaos to the American Board of Censorship —
sorry, we were dreaming of Betty Boop and Jessica Rabbit, and what we
really meant to say is BetaBoop(p, q, P,Q) brings in chaos, in the sense that
the fixed point solution of equations of the type x = c xp−1(1−x)q−1(− ln(1−
x))P−1(− lnx)Q−1 exhibit all the problems first encountered in the numerical
solution of the case p = q = 2, P = Q = 1. In Fig. 6 we illustrate this for
p = q = P = Q = 1.5, and in Fig. 7 for p = q = 1, P = Q = 3
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Fig. 6. Bifurcation diagram, solving x = f(c, x) = c(x(1−x)(− ln(1−x))(− lnx))0.5

using the fixed point method.

2.5 3.0 3.5 4.0

0.2

0.4

0.6

0.8

1.0

Fig. 7. Bifurcation diagram, solving x = f(c, x) = c((− lnx (− ln(1 − x)))2 using
the fixed point method.

In fact, many other generalizations of the logistic parabola
fc(x) = cx(1− x) are potentially interesting in modeling population dynam-
ics, as far as they reflect recognizable characteristics. For instance, the linear
truncation of e−x ≈ (1 − x) shows that c x e−xI(0,1) ≈ c∗ x (1 − x)I(0,1). In
Fig. 8 we represent the bifurcation diagram corresponding to the difference
equation xt+1 = c x e−x, modeling extremely slow growth.

0 5 10 15

2

4

6

8

10

Fig. 8. Bifurcation diagram, solving x = f(c, x) = c x e−x using the fixed point
method.
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Finally, let us remark that there are grounds to argue that the chaos
map

(
for instance xt+1 = c xt (− lnxt)

)
is not an appropriate discrete

equivalent of the original differential equation
(
for that example, d

dtN(t) =
r N(t) (− lnN(t))

)
, inasmuch as the chaos map implies bifurcations and ulti-

mately chaos, inexistent in the original differential equation. An interesting
point is that if we consider that the retroaction acts at time t+ 1, we obtain
a difference equation xt+1 = c xt (− lnxt+1), that has the same stationary
solutions as the chaos map xt+1 = c xt (− lnxt), but does not exhibit bi-
furcation and chaos. In fact, from xt+1 = c xt (− lnxt+1) we get a solution
fc(x) = cxW

(
1
cx

)
I(0,∞), where W (x) is the Logarithmic Product function.

Fig. 9 below shows that cxW
(

1
cx

)
I(0,∞) is a distribution function, that may

serve as a non-stable approximation, in the right tail, to the Gumbel distri-
bution.
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Fig. 9. cxW
`

1
cx

´
I(0,∞) approximation of e−e−cx
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