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1.1 Introduction

The discipline and profession of computer science and [?] engineering (CS&E) has under-
gone dramatic changes in its short 50-year life. As the field has matured, new areas of
research and development have emerged and joined with older areas to revitalize the dis-
cipline. In the 1930s, fundamental mathematical concepts of computing were developed by
Turing and Church. Early computers implemented by von Neumann, Eckert, Atanasoff, and
others in the 1940s led to the birth of commercial computing in the 1950s and to numerical
programming languages like Fortran, commercial languages like COBOL, and artificial-
intelligence languages like LISP. In the 1960s the rapid development and consolidation of
the subjects of [?] algorithms, data structures, databases, and operating systems formed
the core of what we now call traditional computer science; the 1970s saw the emergence
of software engineering, structured programming, and object-oriented programming. The
emergence of personal computing and networks in the 1980s set the stage for dramatic ad-
vances in computer graphics, software technology, and parallelism. This Handbook aims to
characterize computing in the 1990s, incorporating the explosive growth of networks like the
World Wide Web and the increasing importance of areas like human–computer interaction,
computational science, and other subfields that would not have appeared in such an

This introductory chapter reviews the evolution[?] of CS&E during the last two decades.
It introduces those fundamental contemporary themes that form the nucleus of the subject

1-1
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matter and methodologies of the discipline, identifying the social context and scientific
challenges that will continue to stimulate rapid growth and evolution of CS&E into the next
century. Finally, it provides an overview of the discipline of CS&E, serving as a conceptual
introduction to the ten major sections and 122 chapters and appendices that constitute the
entire Handbook. These ten sections, corresponding to ten major subject areas, reflect a
useful classification of the [?] subject matter in CS&E:

• Algorithms and Data Structure

• Architecture

• Artificial Intelligence and Robotics

• Computational Science

• Database and Information Retrieval

• Graphics

• Human–Computer Interaction

• Operating Systems and Networks

• Programming Languages

• Software Engineering

Section 1.2 of this chapter presents a brief history of the computing industry and the
parallel development of the computing curriculum. Section 1.3 frames the practice of CS&E
in terms of four major conceptual paradigms: theory, abstraction, design, and the social
context. Section 1.4 [?] identifies the “grand challenges” that promise to extend the field’s
vitality and reshape its definition for the next generation and beyond, and section 1.5
summarizes the contents of the ten sections of the Handbook.

definition for the next generation and beyond, and section 1.5 summarizes the contents
of the ten sections of the Handbook.

definition for the next generation and beyond, and section 1.5 summarizes the contents
of the ten sections of the Handbook.

definition for the next generation [?] and beyond, and section 1.5 summarizes the con-
tents of the ten sections of the Handbook.

This Handbook is designed as a professional reference for researchers and practitioners in
the field. Readers interested in exploring specific subject topics may prefer to move directly
to the appropriate section of the Handbook. To facilitate rapid inquiry, the Handbook
contains a Table of Contents and three indexes (Subject, Who’s Who, and Key Algorithms
and Formulas) for immediate access to specific topics at various levels of detail.

1.2 Growth of the Industry and the Profession

The computer industry has experienced tremendous growth and change over the last several
decades, and most recently some retrenchment. The transition that began in the 1980s, from
centralized mainframes to a decentralized networked microcomputer–server technology, was
accompanied by the rise and fall of major corporations. The old monopolistic, vertically
integrated industry epitomized by IBM’s comprehensive client services gave way to a highly
competitive industry in which the major players changed almost overnight. In 1992 alone,
emergent companies like Dell and Microsoft had spectacular profit gains of 77% and 53%.
In contrast, traditional companies like IBM and DEC suffered combined record losses of
$7.1 billion in the same year [Economist 1993]. The exponential decrease in computer cost
and increase in power by a factor of two every eighteen months, known as Moore’s law,
shows no signs of abating, though underlying physical limits must eventually be reached.
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FIGURE 1.1 The doubling program in the GOTO language. The doubling program in the GOTO

language. The doubling program in the GOTO language.

Example 1.1

This inside the Example Environment. This inside the Example Environment. This inside
the Example Environment. This inside the Example Environment. This inside the Example
Environment. This inside the Example Environment. This inside the Example Environment.
This inside the Example Environment. This inside the Example Environment. This inside
the Example Environment. This inside the Example Environment. This inside the Example
Environment. This inside the Example Environment. This inside the Example Environment.
This inside the Example Environment. This inside the Example Environment. This inside
the Example Environment. This inside the Example Environment. This inside the Example
Environment. This inside the Example Environment. This inside the Example Environment.
This inside the Example Environment. This inside the Example Environment. This inside
the Example Environment. This inside the Example Environment. This inside the Example
Environment. This inside the Example Environment. This inside the Example Environment.
This inside the Example Environment. This inside the Example Environment. This inside
the Example Environment. This inside the Example Environment. This inside the Example
Environment. This inside the Example Environment. This inside the Example Environment.
This inside the Example Environment. This inside the Example Environment. This inside
the Example Environment. This inside the Example Environment. This inside the Example
Environment.

This is normal text. This is normal text. This is normal text. This is normal text. This
is normal text. This is normal text. This is normal text. This is normal text. This is normal
text. This is normal text. This is normal text. This is normal text.

FACT 1.1 A component part for an electronic item is [?] manufactured at one of three
different factories, and then delivered to the main assembly line.Of the total number supplied,
factory A supplies 50%, factory B 30%, and factory C 20%. Of the components manufactured
at factory A, 1% are faulty and the corresponding proportions for factories B and C are 4%
and 2% respectively. A component is picked at random from the assembly line. What is the
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1    PRINT 0
2    GO LEFT
3    GO TO STEP 2 IF 1 IS SCANNED
4    PRINT 1
5    GO RIGHT
6    GO TO STEP 5 IF 1 IS SCANNED
7    PRINT 1
8    GO RIGHT
9    GO TO STEP 1 IF 1 IS SCANNED
0    STOP1

FIGURE 1.2 The doubling program in the GOTO language. The doubling program in the GOTO

language. The doubling program in the GOTO language.

probability that it is faulty?

Overall, the rapid 18% annual growth rate that the computer industry had enjoyed in
earlier decades gave way in the early 1990s to a 6% growth rate, caused in part by a satura-
tion of the personal computer market. Another reason for this slowing of growth is that the
performance of computers (speed, storage capacity) has improved at a rate of 30% per year
in relation to their cost. Today, it is not unusual for a desktop computer to run at hundreds
of times the speed and capacity of a typical mainframe computer of the 1980s, and at a
fraction of the cost. However, it is not clear whether this slowdown in growth represents
a temporary plateau or whether a new round of fundamental technical innovations in ar-
eas such as networking and human–computer interaction might again propel the computer
industry to more spectacular rates of growth.∗

Overall, the rapid 18% annual growth rate that the computer industry had enjoyed in
earlier decades gave way in the early 1990s to a 6% growth rate, caused in part by a satura-
tion of the personal computer market. Another reason for this slowing of growth is that the
performance of computers (speed, storage capacity) has improved at a rate of 30% per year
in relation to their cost. Today, it is not unusual for a desktop computer to run at hundreds
of times the speed and capacity of a typical mainframe computer of the 1980s, and at a
fraction of the cost. However, it is not clear whether this slowdown in growth represents
a temporary plateau or whether a new round of fundamental technical innovations in ar-
eas such as networking and human–computer interaction might again propel the computer
industry to more spectacular rates of growth.

Example 1.2

This inside the Example Environment. This inside the Example Environment. This inside
the Example Environment. This inside the Example Environment. This inside the Example
Environment. This inside the Example Environment. This inside the Example Environment.
This inside the Example Environment. This inside the Example Environment. This inside
the Example Environment. This inside the Example Environment. This inside the Example
Environment. This inside the Example Environment. This inside the Example Environment.
This inside the Example Environment. This inside the Example Environment. This inside
the Example Environment. This inside the Example Environment. This inside the Example
Environment. This inside the Example Environment. This inside the Example Environment.
This inside the Example Environment. This inside the Example Environment. This inside

∗Here goes another one
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the Example Environment. This inside the Example Environment. This inside the Example
Environment.

Solution 1.1

This goes inside the solution. This goes inside the solution. This goes inside the solution.
This goes inside the solution. This goes inside the solution. This goes inside the solution.
This goes inside the solution. This goes inside the solution.

Overall, the rapid 18% annual growth rate that the computer industry had enjoyed in
earlier decades gave way in the early 1990s to a 6% growth rate, caused in part by a satu-
ration of the personal computer market. Another reason for this slowing of growth is that
the performance of computers (speed, storage capacity) has improved at a rate of 30% per
year in relation to their cost. Today, it is not unusual for a desktop computer

THEOREM 1.1 In most literature on PPDP, they [?] consider a more relaxed, yet more
practical, notion of privacy protection by assuming limited attacker’s background knowledge.
Below, the term “victim” refers to the record owner being linked. We can broadly classify
linking models to two families.

var∆̂ =

t∑
j=1

t∑
k=j+1

var (α̂j − α̂k) =

t∑
j=1

t∑
k=j+1

σ2(1/nj + 1/nk). (1.1)

One family considers a privacy threat occurs when an attacker is able to link a record
owner to a record in a published data table, to a sensitive attribute in a published data table,
or to the published data table itself. We call them record linkage, attribute linkage, and
table linkage, respectively. In all types of linkages, we assume that the attacker knows the
QID of the victim. In record and attribute linkages, we further assume that the attacker
knows the presence of the victim’s record in the released table, and seeks to identify the
victim’s record and/or sensitive information from the table [?]. In table linkage, the attack
seeks to determine the present or absent of the victim’s record in the released table. A data
table is considered to privacy preserved if the table can effectively prevent the attacker from
successfully performing these types of linkages on the table [?]. Sections ??-?? study this
family of privacy models.

Solution 1.2

This goes inside the solution. This goes inside the solution. This goes inside the solution.
This goes inside the solution. This goes inside the solution. This goes inside the solution.
This goes inside the solution. This goes inside the solution.

To run at hundreds of times the speed and capacity of a typical mainframe computer of
the 1980s, and at a fraction of the cost. However, it is not clear whether this slowdown in
growth represents a temporary plateau or whether a new round of fundamental technical
innovations in areas such as networking and human–computer interaction might again pro-
pel the computer industry to more spectacular rates of growth. or whether a new round of
fundamental technical innovations in areas such as networking and human–computer inter-
action might again propel the computer industry to more spectacular rates of growth. or
whether a new round of fundamental technical innovations in areas such as networking and
human–computer interaction might again propel the computer industry to more spectacular
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TABLE 1.1 Examples for illustrating attacks
Job Sex Age Disease

Engineer Male 35 Hepatitis
Engineer Male 38 Hepatitis
Lawyer Male 38 HIV
Writer Female 30 Flu
Writer Female 30 HIV
Dancer Female 30 HIV
Dancer Female 30 HIV

rates of growth. or whether a new round of fundamental technical innovations in areas such
as networking and human–computer interaction might again propel the computer industry
to more spectacular rates of growth.

1.2.1 Level 2/ B Head Curriculum Development

The computer industry’s evolution has been strongly affected by the evolution of both theory
and practice in the last several years. Changes in theory and practice are intertwined with
the parallel evolution of the field’s undergraduate and graduate curricula during the last
three decades, and those curricula have, in turn, defined the conceptual and methodological
framework for understanding the discipline itself.

Level 3/C Head

The computer industry’s evolution has been strongly affected by the evolution of both theory
and practice in the last several years. Changes in theory and practice are intertwined with
the parallel evolution of the field’s undergraduate and graduate curricula during the last
three decades, and those curricula have, in turn, defined the conceptual and methodological
framework for understanding the discipline itself.∗

Curriculum Development (Lavel 4 Head)

The first coherent and widely cited curriculum for CS&E was developed in 1968 by the
ACM Curriculum Committee on Computer Science [ACM 1968] in response to widespread
demand for systematic undergraduate and graduate programs [Rosser 1966]. “Curriculum
68” defined computer science as comprising three main areas: information structures and
processes, information processing systems, and methodologies. The first area included pro-
gramming languages, data structures, and formal models of computation; the second com-
puter architecture, compilers, and operating systems; the third numerical mathematics,
file management, text processing, graphics, simulation, information retrieval, artificial in-
telligence, process control, and instructional systems. Curriculum 68 used this taxonomy
to define computer science as a discipline and to provide concrete recommendations and
guidance to colleges and universities in

α+ β = γ + a+ α (1.2)

Lavel 5 Head Should be coded with a star. developing undergraduate, master’s, and
Ph.D. programs to respond to the widespread demand for computer scientists in research,
education, and industry. Curriculum 68 stood as a robust and exemplary model for degree
programs at all levels for a decade or more.

In 1978, a new ACM Curriculum Committee on Computer Science developed a revised

∗This is the second footnote
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and updated undergraduate curriculum [ACM 1978]. The “Curriculum 78” report responded
to the rapid evolution of the discipline and practice of computing and to a demand for a
more detailed elaboration of the computer science (as distinguished from the mathematical)
elements of the courses that would comprise the core curriculum. Around the same time, the
IEEE Computer Society developed a model curriculum for engineering-oriented undergrad-
uate programs in CS&E [IEEE-CS 1976]. Updated and published in 1983 by the Computer
Society as a “Model Program in Computer Science and Engineering” [IEEE-CS 1983], this
curriculum was designed not only to define a course of study for computer science programs
in engineering schools but also to meet a more extensive set of engineering accreditation
criteria.

In 1988, the ACM Task Force on the Core of Computer Science and the IEEE Computer
Society [ACM 1988] cooperated in developing a fundamental redefinition of the discipline of
CS&E. Called “Computing as a Discipline,” this report aimed to provide a contemporary
foundation for undergraduate curriculum design by responding to the changes in computing
research, development, and industrial applications in the previous decade. This report also
acknowledged some fundamental methodological changes in the field. No longer could the
“computer science = programming” model hope to encompass the richness of the field. In-
stead, three perspectives—theory, abstraction, and design—were used to characterize how
various kinds of computer professionals and researchers did their work. These three points
of view, those of the theoretical mathematician or scientist (theory), the experimental or
applied scientist (abstraction, or modeling), and the engineer (design), were essential com-
ponents of research and development throughout all the nine major subject areas (similar
to the ten Handbook areas) into which the field was divided.

α+ β = γ (1.3)

α+ β = γ (1.4)

“Computing as a Discipline” led directly to the formation of a joint ACM/IEEE-CS Cur-
riculum Task Force, which developed a comprehensive model for undergraduate curriculum
design in the 1990s called “Curricula 91” [ACM/IEEE 1991]. Acknowledging that under-
graduate computer science programs could be effectively supported in colleges of engineer-
ing, arts and sciences, and liberal arts, Curricula 91 proposed a core curriculum of common
knowledge that undergraduate majors in any of these programs should cover. This core
curriculum also contained sufficient theory, abstraction, and design content that students
would become familiar with the fundamentally different but complementary ways of “doing”
CS&E. It also ensured that students would gain a broad exposure to the nine major subject
areas, and their social and ethical context. A significant laboratory component ensured that
undergraduates gained significant abstraction (experimentation) and design experience.

TABLE 1.2 This is an Example of Table Title This

is an Example of Table Title This is an Example of

Table Title This is an Example of Table Title
Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

Ball 19,221 4,598 9,188 3,209 3,200
Pepsia 46,281 9,188 3,209 6,898 5,400
Keybrdb 9,188 3,209 27,290 2,968 3,405
Pepsi 14,796 9,188 3,209 9,188 3,209

Source: Couch, L.W., II, 1997, Digital and Analog
Communication Systems, 5th ed., Prentice Hall, Upper
Saddle River, NJ, pp. 231-232. With permission.
Source: Couch, L.W., II, 1997, Digital and Analog
Communication Systems, 5th ed., Prentice Hall, Upper
Saddle River, NJ, pp. 231-232. With permission.
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1    PRINT 0
2    GO LEFT
3    GO TO STEP 2 IF 1 IS SCANNED
4    PRINT 1
5    GO RIGHT
6    GO TO STEP 5 IF 1 IS SCANNED
7    PRINT 1
8    GO RIGHT
9    GO TO STEP 1 IF 1 IS SCANNED
0    STOP1

FIGURE 1.3 The doubling program in the GOTO language. The doubling program in the GOTO

language. The doubling program in the GOTO language.

1.2.2 Growth of Academic Programs

Fueling the rapid evolution of curricula in CS&E during the last three decades was an enor-
mous growth in demand, by industry and academia, for computer professionals, researchers,
and scientists at all levels. In response, the number of CS&E Ph.D.-granting programs in
the U.S. grew from 12 in 1964 to 132 in 1994. During the period 1966–1993, the annual
number of bachelor’s degrees awarded grew from 89 to 24,580, master’s degrees grew from
238 to 10,349, and Ph.D. degrees grew from 19 to 969 [ACM 1968, Andrews 1995].

Figure 1.1 shows the number of bachelor’s and master’s degrees awarded by U.S. colleges
and universities in CS&E from 1966 to 1993. The number of bachelor’s degrees peaked at
42,195 in 1986, and then declined, leveling off to a fairly steady 25,000 by 1993. In contrast,
master’s degree production in computer science has grown steadily throughout the same
period and shows no signs of leveling off. The rapid falloff in bachelor’s degree production
in 1986 may be attributed to the saturation of industry demand for programmers, while the
steady growth of master’s degrees in recent years may reflect a recognition by industry that
an undergraduate computer science degree by itself, while providing good preparation for
some positions, is not adequate for many of the newly emerging positions in the technology
industry.

Figure 1.2 shows the number of U.S. Ph.D. degrees in computer science and computer en-
gineering during the same 1966–1993 period [Andrews 1995]. The annual number of Ph.D.’s
in computer science in the U.S. grew from 19 in 1966 to 878 in 1993, while the overall
number of Ph.D.’s in computer science and computer engineering peaked at 1113 in 1992
and leveled off at 969 in 1993 and 1005 in 1994 [Andrews 1995].

Production of M.S. and Ph.D. degrees in computer science and engineering continued to
grow into the 1990s, fueled by continuing demand from industry for graduate-level talent
and continuing stong demand in academia to staff growing undergraduate and graduate
research programs in CS&E. However, there is also a widely held belief that the period of
growth in Ph.D. production in CS&E has now leveled off and reached a steady state with
respect to demand from industry and academia.

1.2.3 Academic R&D and Growth of Industry Positions

University and industrial research and development (R&D) investments in CS&E grew
rapidly in the period 1986–1993. Figure 1.3 shows that academic research and development
in computer science nearly doubled, from $321 million to $597 million, during this time
period, a growth rate somewhat higher than that of academic R&D in the related fields
of electrical engineering and mathematics. During this same period, the overall growth of
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academic R&D in engineering and the social sciences also nearly doubled, while that in
the physical sciences grew by only about 65%. In 1993, about 68% of the total support for
academic R&D came from federal and state sources, while 7% came from industry and 18%
came from the institutions themselves [NSF 1995a].

Figure 1.4 shows the growth between 1980 and 1990 in the number of persons with at
least a bachelor’s degree who were employed in nonacademic (industry and government)
computer science positions. Overall, the total number of computer scientists and systems
analysts grew by 150%, from 194,100 in 1980 to 485,200 in 1990. In 1990, there were 9400
Ph.D.’s in nonacademic computer science and systems analyst positions (of course, many
of these Ph.D.’s were not in computer science) [NSF 1995b]. An informal survey conducted
by the Computing Research Association (CRA) suggests that slightly more than half of
the domestically employed new Ph.D.’s accepted positions in industry or government in
1994, and the rest accepted academic positions in colleges and universities. This survey also
suggests that nearly a third of the total number of 1994 CS&E Ph.D.’s accepted positions
abroad [Andrews 1995].

Figure 1.4 also provides some comparative growth information for other professions,
again using 1980 and 1990 census data and considering only persons with bachelor’s de-
grees or higher. We see that only the operations and systems researchers’ growth of 250%
was greater than that of computer scientists, while most professions’ growth rates were
significantly lower. Overall, the total number of nonacademic scientists and engineers grew
from 2,136,200 in 1980 to 3,512,800 in 1990, an increase of 64.4% [NSF 1995b].

1.3 Perspectives in Computer Science and Engineering

Computer science and engineering is a multifaceted discipline that can be viewed from
at least four different perspectives. Three of the perspectives—theory, abstraction, and
design—underscore the point that computer scientists and engineers approach their work
and their subject areas from different intellectual viewpoints. A fourth perspective—the
social and professional context—acknowledges that computing directly affects the quality
of people’s lives, and that computing professionals must be prepared to understand and
confront the social issues that arise from their work.

1. The theory of CS&E draws from principles of mathematics and

2. logic as well as from the formal methods of the physical,

3. biological, behavioral, and social sciences. It normally

4. includes the use of advanced mathematical ideas and methods

5. includes the use of advanced mathematical ideas and methods

6. includes the use of advanced mathematical ideas and methods

7. includes the use of advanced mathematical ideas and methods

8. includes the use of advanced mathematical ideas and methods

9. includes the use of advanced mathematical ideas and methods

10. includes the use of advanced mathematical ideas and methods

11. includes the use of advanced mathematical ideas and methods

12. includes the use of advanced mathematical ideas and methods

13. includes the use of advanced mathematical ideas and methods

14. includes the use of advanced mathematical ideas and methods

15. includes the use of advanced mathematical ideas and methods
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taken from subfields of mathematics such as algebra, analysis, and statistics. Theory
includes the use of various proof and argumentation techniques, like induction and contra-
diction, to establish properties of formal systems that justify and explain underlying mod-
els and paradigms supporting computer science; examples are Church’s thesis, the study
of algorithmically unsolvable problems, and the study of upper and lower bounds on the
complexity of various hard algorithmic problems. Fields like algorithms and to a lesser ex-
tent artificial intelligence, computational science, and programming languages have more
mature theoretical models than human–computer interaction or graphics, but all ten areas
considered here have underlying theories to a greater or lesser extent.

Abstraction in CS&E includes the use of scientific inquiry, modeling, and experimenta-
tion to test the validity of hypotheses about computational phenomena. Computer profes-
sionals in all ten areas of the discipline use abstraction as a fundamental tool of inquiry—
many would argue that computer science is the science of building and examining abstract
computational models of reality. Abstraction arises in computer architecture, where the Tur-
ing machine serves as an abstract model for complex real computers, and in programming
languages, where simple semantic models like the lambda calculus are used as a frame-
work for studying complex languages. It appears in the design of heuristic and approxi-
mation algorithms for problems whose optimal solutions are computationally intractable.
It is surely used in graphics, where models of 3D objects are constructed mathematically,
given properties of lighting, color, and surface texture, and projected in a realistic way on
a two-dimensional video screen.

Design is a process used to describe the essential structure of complex systems as a pre-
lude to their implementation. It also encompasses the use of traditional engineering methods,
including the classical life-cycle model, to implement efficient and effective computational
systems in hardware and software. It includes the use of tools like cost/benefit analysis of
alternatives, risk analysis, and fault tolerance that ensure that computing applications are
brought to market effectively. Design is a central preoccupation of architects and software
engineers developing hardware systems and software applications. Like abstraction, it is an
important activity in computational science, database and information retrieval, human–
computer interaction, operating systems and networks, and the other areas considered here.

The social and professional context includes many issues that arise at the computer–
human interface, such as liability for hardware and software errors, security and privacy
of databases and networks, intellectual property issues (patent and copyright), and equity
issues (universal access to the technology and the profession). Computing professionals in all
subject areas must consider the ethical context in which their work occurs and the special
responsibilities that attend their work. The next preliminary chapter discusses these issues,
and several other chapters address topics in which specific social and professional issues
come into play. For example, security and privacy issues in databases, operating systems,
and networks are discussed in Chapters 49 and 89. Risks in software are discussed in several
chapters of section X of the Handbook.

1.4 Broader Horizons: HPCC and Grand Challenge Appli-
cations

The 1992 report “Computing the Future” (CTF) [CSNRCTB 1992], written by a group
of leading computer professionals in response to a request by the Computer Science and
Technology Board (CSTB), identifies the need for CS&E to broaden its research agenda and
its educational horizons. The view that the research agenda should be broadened initially
caused concerns among researchers that funding and other incentives might overemphasize
short-term at the expense of long-term goals. This Handbook reflects the broader view
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of the discipline in its inclusion of computational science, graphics, and computer–human
interaction among the major subfields of computer science.

CTF aimed to bridge the gap between suppliers of research in CS&E and consumers of
research such as industry, the Federal government, and funding agencies like NSF, DARPA,
and DOE. It addresses fundamental challenges to the field and suggests responses that
encourage greater interaction between research and computing practice. Its overall recom-
mendations focus on three priorities:

1. To sustain the core effort that creates the theoretical and experimental science
base on which applications build.

2. To broaden the field to reflect the centrality of computing in science and society.

3. To improve education at both the undergraduate and graduate levels.

CTF includes recommendations to federal policy makers and universities regarding re-
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The HPCC program encourages universities, research programs, and industry to de-
velop specific capabilities to address the “grand challenges” of the future. Realizing these
grand challenges requires both fundamental and applied research, including the development
of high-performance computing systems whose speed is two to three orders of magnitude
greater than that of current systems, advanced software technology and algorithms that en-
able scientists and mathematicians to effectively address these grand challenges, networking
to support R&D for a gigabit National Research and Educational Network (NREN), and
human resources that expand basic research in all areas relevant to high-performance com-
puting.

The grand challenges themselves were identified in HPCC as those fundamental problems
in science and engineering with potentially broad economic, political, or scientific impact
that can be advanced by applying high-performance computing technology and that can
be solved only by high-level collaboration among computer professionals, scientists, and
engineers. A list of grand challenges developed by agencies like NSF, DOD, DOE, and
NASA in 1989 includes:

• Prediction of weather, climate, and global change.

• Challenges in materials sciences.

• Semiconductor design.

• Superconductivity.

• Structural biology.

• Design of drugs.

• Human genome.

• Quantum chromodynamics.

• Astronomy.

• Transportation.

• Vehicle dynamics and signature.

• Turbulence.
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• Nuclear fusion.

• Combustion systems.

• Oil and gas recovery.

• Ocean science.

• Speech.

• Vision.

• Undersea surveillance for antisubmarine warfare.

More recently, an HPCC budget request identifies the following items as the “National
Challenges” that face American CS&E and related professions:

• Digital libraries.

• Crisis and emergency management.

• Educational and lifelong learning.

• Electronic commerce.

• Energy management.

• Environmental monitoring and waste management.

• Health care.

• Manufacturing processes and products.

• Public access to government information.

As an outcome of HPCC and CTF, two new subject areas, “computational science”
[Stevenson 1994] and “organizational informatics” [Kling 1993] emerged to influence the
structure of the original nine subject areas identified in the report “Computing as a Dis-
cipline.” In this Handbook, we view computational science as an extension of the area of
numerical and symbolic computation. This area includes as a central element the funda-
mental interaction between computation and scientific research. For instance, fields like
computational astrophysics, computational fluid dynamics, and computational chemistry
all emphasize applications of computing in science and engineering, algorithms, and special
considerations for computer architecture. Much of the research and early accomplishments
of the emerging computational science field is reported in section IV of this Handbook.

Organizational informatics, on the other hand, emphasizes applications of computing in
business and management, information systems and networks, as well as their implementa-
tion, risks, and human factors. Some of these intersect in major ways with human–computer
interaction, while others fall more directly within the realm of management information sys-
tems (MIS), which is usually treated as a separate discipline from computer science and
engineering. Thus, in this Handbook, we do not attempt to cover all of organizational in-
formatics as a separate subject area within CS&E. Rather, we include many of its concerns
within section VII on Human–Computer Interaction.

In addition, the growth of computer graphics and networks in the last few years provides
strong arguments for their inclusion as major subject areas in the discipline. This Handbook
distinguishes graphics from human–computer interaction, of which it had been a subarea in
“Computing as a Discipline.” Finally, the area of operating systems and networks in this
Handbook has evolved out of what had been called operating systems in “Computing as
a Discipline,” in recognition of the rapid growth of distributed computing in the last few
years.

1.5 Organization and Content



1-14 Handbook of Applications of Chaos Theory

In the 1940s computing was identified with number crunching, and numerical analysis was
considered a central tool. Hardware, logical design, and information theory emerged as
important subfields in the early 1950s. Software and programming emerged as important
subfields in the mid 1950s and soon dominated hardware as topics of study in computer
science. In the 1960s computer science could be comfortably classified into theory, systems
(including hardware and software), and applications. Software engineering emerged as an
important subdiscipline in the late 1960s. The 1980 Computer Science and Engineering
Research Study [Arden 1980] classified the discipline into nine subfields:

• Numerical computation.

• Theory of computation.

• Hardware systems.

• Artificial intelligence.

• Programming languages.

• Operating systems.

• Database management systems.

• Software methodology.

• Applications.

This Handbook’s classification into ten subfields is quite similar to that of the COSERS
study, suggesting that the discipline of CS&E is stabilizing:

• Algorithms and data structures.

• Architecture.

• Artificial intelligence.

• Computational science.

• Database and information retrieval.

• Graphics.

• Human–computer interaction.

• Operating systems and networks.

• Programming languages.

• Software engineering.

This Handbook’s classification has discarded numerical analysis and added the new areas
of human–computer interaction and graphics.

“A Process is a structured, measured set of activities designed to produce
a specific output for a particular customer or market—A process is thus a
specific ordering of work activities across time and space, with a beginning,
an end. and clearly defined inputs and outputs: a structure for action.”

Thomas Davenport
Senior Adjutant to the Junior Marketing VP

The other eight areas appear in both classifications with some name changes (theory of
computation has become algorithms and data structures, applications has become compu-
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tational science, hardware systems has become architecture, operating systems has added
networks, and database has added information retrieval as important new directions).

Though the high-level classification has remained stable, the content of each area has
evolved and matured. We examine below the scope of each area and the topics within each
area treated in the Handbook.

1.5.1 Algorithms and Data Structures

The subfield of algorithms and data structures is interpreted broadly to include core topics
in the theory of computation as well as data structures and practical algorithm techniques.
Its thirteen chapters provide a comprehensive overview that spans both theoretical and
applied topics in the analysis of algorithms. Chapter 3 introduces fundamental concepts
such as computability and undecidability and formal models such as Turing machines and
Chomsky grammars, while Chapter 4 reviews techniques of algorithm design like divide and
conquer, dynamic programming, recurrence relations, and greedy heuristics.

Chapter 5 covers data structures both descriptively and in terms of their space–time
complexity, while Chapter 6 reviews methods and techniques of computational geometry,
and Chapter 7 presents the rich area of randomized objects. Pattern matching and text com-
pression algorithms are examined in Chapter 8, graph and network algorithms in Chapter
9, and algebraic algorithms in Chapter 10. Chapter 11 examines topics in complexity like P
vs. NP, NP-completeness, and circuit complexity, while Chapter 12 examines parallel algo-
rithms, and Chapter 13 considers combinatorial optimization. Chapter 14 concludes section
I with a case study in VLSI layout that makes use of partitioning, divide and conquer, and
other algorithm techniques common in VLSI design.

1.5.2 Architecture

Computer architecture is the design of efficient and effective computer hardware at all levels,
from the most fundamental concerns of logic and circuit design to the broadest concerns
of parallelism and high-performance computing. The chapters in section II span all these
levels, providing a sampling of the principles, accomplishments, and applications of modern
computer architectures.

Chapters 15 and 16 introduce the fundamentals of logic design components, including
elementary circuits, Karnaugh maps, programmable array logic, circuit complexity and min-
imization issues, arithmetic processes, and speedup techniques. The architecture of buses is
covered in Chapter 17, while the principles of memory architecture are addressed in Chapter
18. Topics there include associative memories, cache design, interleaving, and memories for
pipelined and vector processors.

Chapter 19 concerns the design of effective and efficient computer arithmetic units.
Chapter 20 extends the design horizon by considering the various models of parallel ar-
chitectures, including the performance of contemporary machines that fall into the SIMD,
MISD, and MIMD categories.

1.5.3 Artificial Intelligence and Robotics

Artificial intelligence (AI) is the study of the computations that make it possible to simulate
human perception, reasoning, and action. Current efforts are aimed at constructing com-
putational mechanisms that process visual data, understand speech and written language,
control robot motion, and model physical and cognitive processes. Robotics is a complex
field, drawing heavily from AI as well as other areas of science and engineering.

AI includes techniques for automated learning, planning, and representing knowledge.
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Chapter 21 opens this section with a discussion of deductive learning. The use of decision
trees and neural networks in learning and other areas is the subject of Chapters 22 and 23,
while Chapter 24 introduces genetic algorithms.

Chapter 25 focuses on the area of computer vision. Chapter 26 addresses issues related
to the mechanical understanding of spoken language. Chapter 27 presents the rationale and
uses of planning and scheduling models in AI research. Chapter 28 describes the principles
of knowledge representation and their applications in natural-language processing (NLP).

Artificial-intelligence work requires a number of distinct tools and models. These include
the use of fuzzy, temporal, and other logics, as described in Chapter 29. The use of a
variety of specialized search techniques to address the combinatorial explosion of alternatives
in many AI problems is the subject of Chapter 30. Many AI applications must handle
the notion of uncertainty. Chapter 31 discusses the modeling of decision making under
uncertainty, while the related idea of qualitative modeling is discussed in Chapter 32.

Chapter 33 concludes section III with a thorough discussion of the principles and ma-
jor results in the field of robotics: the design of effective devices that simulate mechanical,
sensory, and intellectual functions of humans in specific task domains such as factory pro-
duction lines.

1.5.4 Computational Science

The emerging area of computational science unites computational simulation, experimental
investigations, and theoretical pursuits as three fundamental modes of scientific discovery.
It uses scientific visualization, made possible by computational simulation, as a window into
the analysis of physical phenomena and processes, providing a virtual microscope/telescope
for inquiry and investigation at an unprecedented level of detail.

Section IV focuses on the challenges and opportunities offered by computers in aiding
scientific analysis and engineering design. Chapter 34 introduces the section by presenting
the fundamental subjects of computational geometry and grid generation. The design of
graphical models for scientific visualization of complex physical and biological phenomena
is the subject of Chapter 35.

Each of the remaining chapters in this section covers the computational science chal-
lenges and discoveries in a particular scientific or engineering field. Chapter 36 presents the
computational aspects of structural mechanics, while Chapter 37 does the same for fluid
dynamics. Computational reacting flow is the subject of Chapter 38, while Chapter 39 sum-
marizes the progress in the area of computational electromagnetics. Chapter 40 addresses
the grand challenge of computational ocean modeling. This section closes with a discussion
of computational biological modeling in Chapter 41.

1.5.5 Database and Information Retrieval

The subject area of database and information retrieval addresses the general problem of
storing large amounts of data in such a way that they are reliable, up to date, and efficiently
retrieved. This problem is prominent in a wide range of applications in industry, government,
and academic research. Availability of such data on the Internet and in forms other than
text (e.g., audio and video) makes this problem increasingly complex.

At the foundation are the fundamental data models (relational, hierarchical, entity–
relationship, network, and object-oriented) discussed in Chapter 42. The conceptual, logical,
and physical levels of designing a database for high performance in a particular application
domain are discussed in Chapter 43.performance in a particular application domain are
discussed in Chapter 43.
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A number of basic issues surround the design of database models and systems. These
include choosing from alternative access methods (Chapter 44), optimizing database queries
(Chapter 45), controlling concurrency (Chapter 46), and benchmarking database workloads
and performance (Chapter 47).

The design of heterogeneous databases and interoperability is discussed in Chapter 48.
The issue of database security and privacy protection, in stand-alone and networked envi-
ronments, is the subject of Chapter 49. The special considerations involved in storing and
retrieving information from text databases are covered in Chapter 50.

A special topic in database research is the study of deductive (rule-based) databases,
addressed in Chapter 51. Chapter 53 closes section V with a case study on SQL, a widely
used database query language standard.

1.5.6 Graphics

Computer graphics is the study and realization of complex processes for representing physi-
cal and conceptual objects visually on a computer screen. These processes include the inter-
nal modeling of objects, rendering, hidden-surface elimination, color, shading, projection,
and representing motion. An overview of these processes and their interaction is presented
in Chapter 54.

Fundamental to all graphics applications are the processes of modeling and rendering.
Modeling is the design of an effective and efficient internal representation for geometric
objects (points, lines, polygons, solids, fractals, and their transformations), which is the
subject of Chapters 55 and 56. Rendering, the process of representing the objects in a
three-dimensional scene on a two-dimensional screen, is discussed in Chapter 57. Among its
special challenges are the elimination of hidden surfaces, color, illumination, and shading.

The reconstruction of scanned images is another important area of computer graphics.
Sampling, filtering, reconstruction, and antialiasing are the focus of Chapter 58. The rep-
resentation and control of motion, or animation, is another complex and important area of
computer graphics. Its special challenges are presented in Chapter 59.

Chapter 60 discusses volume data sets, and Chapter 61 looks at the emerging field of
virtual reality and its particular challenges for computer graphics. Chapter 62 concludes sec-
tion VI with a discussion of Renderman as a case study of a particularly effective application
of the principles of computer graphics in the real world.

1.5.7 Human–Computer Interaction

This area, the study of how humans and computers interact, has the goal of improving the
quality of the interaction and the effectiveness of those who use technology. This includes
the conception, design, implementation, risk analysis, and effects of user interfaces and tools
on those who use them in their work.

Chapter 63 opens section VII with a discussion of methods of overall system model-
ing, including users and modes of use. Modeling the organizational environments in which
technology users work is the subject of Chapter 64. Usability engineering is the focus of
Chapter 65, while user interface design methods are discussed in Chapter 66. The impact
of international standards for user interfaces on the design process is the main concern of
Chapter 67.

Specific devices, tools, and techniques for effective user-interface design form the basis
for the next few chapters in this section. Chapters 68 and 69 discuss, respectively, the char-
acteristics of input devices like the mouse and keyboard and output devices like computer
screens and multimedia audio devices. Chapter 70 focuses on design techniques for effective
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interaction with users through these devices. The special concerns for integrating multime-
dia with user interaction are presented in Chapter 71. Lower-level concerns for the design of
interface software technology are addressed in Chapter 72. The programming and software
development process for user-interface implementation is discussed in Chapter 73. The ef-
fective presentation of documentation, training, and help facilities for users is a perennial
concern for software designers, and its current status is reviewed in Chapter 74.

1.5.8 Operating Systems and Networks

Operating systems form the software interface between the computer and its applications.
Section VIII covers their analysis and design, their performance, and their special challenges
in a networked computing environment. Chapter 75 briefly traces the historical develop-
ment of operating systems and introduces the fundamental terminology, including process
scheduling, memory management, synchronization, I/O management, and distributed sys-
tems.

Think About It...

Commonly thought of as the first modern computer, ENTAC was built in
1944. It took up more space than an 18-wheeler’s tractor trailer and weighed
more than 17 Chevrolet Camaros. It consumed 140,000 watts of electricity
while executing up to 5,000 basic arithmetic operations per second. One of
today’s popular microprocessors, the 486, is built on a tiny piece of silicon
about the size of a dime.

With the continual expansion of capabilities, computing power will eventually
exceed the capacity for human comprehension or human control.

The Information Revolution

Business Week

The process is a key unit of abstraction in operating-system design. Chapter 76 discusses
the dynamics of processes and threads. Strategies for process and device scheduling are
presented in Chapter 77. The special requirements for operating systems in real-time and
embedded system environments are the subject of Chapter 78. Algorithms and techniques
for process synchronization and interprocess communication are the subject of Chapter 79.

Memory and input/output device management is also a central concern of operating
systems. Chapter 80 discusses the concept of virtual memory, from its early incarnations to
its uses in present-day systems and networks. The different types and access methods for
secondary storage and file systems are covered in Chapter 81.
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Box Title

Extending operating system functionality across a networked environment adds an-
other level of complexity to the design process. Chapter 82 presents an overview of
network organization and topologies, while Chapter 83 describes network routing pro-
tocols. The topology and functionality of internetworking, with the Internet as prime
example, are presented in Chapter 84.

The influence of networked environments on the design of distributed operating sys-
tems is considered in Chapter 85. Distributed file and memory systems are discussed in
Chapter 86, while distributed and multiprocessor scheduling are the focus of attention in
Chapter 87. Finally, the forward-looking notion of dynamically partitioning a computing
task across a network of heterogeneous computers is the topic of Chapter 88.

Operating systems and networks, especially the Internet, must make provisions for en-
suring system integrity in the event of inappropriate access, unexpected malfunction and
breakdown, and violations of security or privacy principles. Chapter 89 introduces some of
the security and privacy issues that arise in a networked environment. Models for system
security and protection are the subject of Chapter 90, while Chapter 91 discusses authen-
tication, access control, and intrusion detection. Chapter 92 focuses on security issues that
arise in networks, while a case discussion of some noteworthy malicious software and hacking
events appears in Chapter 93.

1.5.9 Programming Languages

In section IX the design space of programming languages is partitioned into paradigms,
mechanisms for compiling, and run-time management, and the theoretical areas of founda-
tional models, type systems, and semantics are examined. Overall, this section provides a
good balance between considerations of language paradigms, implementation issues, and

Chapter 94 considers traditional language and implementation questions for imperative
programming languages like Fortran, C, Pascal, and Ada 83. Chapter 95 considers topics
in functional programming like lazy and eager evaluation, and Chapter 96 examines object-
oriented concepts like classes, inheritance, encapsulation, and polymorphism. Chapter 97
considers declarative programming in the logic/constraint programming paradigm, while
Chapter 98 considers issues in concurrent/distributed programming as well as parallel mod-
els of computation. Compilers and interpreters for sequential languages are considered in
Chapter 99, while compilers for parallel architectures and dataflow languages are considered
in Chapter 100. The issues surrounding run-time environments and memory management
for compilers and interpreters are addressed in Chapter 101.

Chapters 102, 103, and 104 deal with foundations and theoretical models. Chapter
102 deals with foundational calculi like the lambda calculus and the pi calculus and
with the influence of input/output automata, Petri nets, and other models of computa-
tion on language design. Chapter 103 examines issues of type theory in programming,
including static versus dynamic type checking, type safety, and polymorphism. Chap-
ter 104 examines models of programming-language semantics, including denotational,
operational, and axiomatic models.
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1.5.10 Software Engineering

Section X on software engineering examines formal specification, design, verification and
testing, project management, and other aspects of the software life cycle. Chapter 105
considers models of the software life cycle such as the waterfall and spiral models as well as
specific phases of the life cycle. Chapter 106 examines software qualities like maintainability,
portability, and reuse that are needed for high-quality software systems, while Chapter 107
considers formal models, specification languages, and the specification process.

Chapter 108 deals with the traditional and object-oriented design processes, featuring a
case study in top-down functional design. Chapter 109 on verification and validation deals
with the use of systematic techniques like verification and testing for quality assurance,
while Chapter 110 examines testing models as well as risk and reliability issues.

Chapter 111 considers methods of project design such as chief programmer teams and
rapid prototyping, as well as project scheduling and evaluation. Chapter 112 considers soft-
ware tools like compilers, editors, and CASE tools and surveys graphical environments.
Chapter 113 on interoperability considers architectures for communicating among hetero-
geneous software components such as OMG’s Common Object Request Broker Architecture
(CORBA) and Microsoft’s Common Object Model (COM).

Glossary

Term 1 This is definition of Term 1. This is definition of Term 1. This is definition of
Term 1. This is definition of Term 1.

Term 2 This is definition of Term 2. This is definition of Term 2. This is definition of
Term 2. This is definition of Term 2.

Term 3 This is definition of Term 3. This is definition of Term 3. This is definition of
Term 3. This is definition of Term 3.

Term 4 This is definition of Term 4. This is definition of Term 4. This is definition of
Term 4. This is definition of Term 4.

Term 5 This is definition of Term 5. This is definition of Term 5. This is definition of
Term 5. This is definition of Term 5.

Term 6 This is definition of Term 6. This is definition of Term 6. This is definition of
Term 6. This is definition of Term 6.

Term 7 This is definition of Term 7. This is definition of Term 7. This is definition of
Term 7. This is definition of Term 7.

1.6 Conclusion

In 1997, the ACM celebrates its 50th anniversary. The first 50 years of CS&E are charac-
terized by dramatic growth and evolution. While it is safe to affirm today that the field
has reached a certain level of maturity, it would be foolish to assume that it will remain
unchanged in the future. Already, conferences are calling for new visions that will enable
the discipline to continue its rapid evolution into the twenty-first century. This Handbook is
designed to convey the modern spirit, accomplishments, and direction of CS&E as we see it
in 1996. It interweaves theory with practice, highlighting “best practices” in the field as well
as current research directions. It provides today’s answers to well-formed questions posed
by professionals and researchers across the ten major subject areas. Finally, it identifies key
professional and social issues that lie at the intersection of the technical aspects of CS&E
and its impact in the world.

The future holds great promise for the next generations of computer scientists and
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engineers. These people will solve problems that have only recently been conceived, such
as those suggested by the HPCC as “grand challenges.” To address these problems, and to
extend these solutions in a way that benefits the lives of significant numbers of the world’s
population, will require substantial energy, commitment, and real investment on the part
of institutions and professionals throughout the world. The challenges are complex, and the
solutions are not likely to be obvious.
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2.1 Introduction: Why a Chapter on Ethical Issues? This
head can be a lenghty one

Computers have had a powerful impact on our world and are destined to shape our future.
This observation, [?] now commonplace, is the starting place for any discussion of profes-
sionalism and ethics in computing. The work of computer scientists and engineers is part
of the social, political, economic, and cultural world in which we live, and affects many
aspects of that world. Professionals who work with computers have special knowledge and
that knowledge, when combined with computers, has significant power to change people’s
lives.

In this chapter of the Handbook we provide a perspective on the role of computer and
engineering professionals and we examine the relationships and responsibilities that go with
having and using computing expertise. In addition to the topic of professional ethics, we
briefly discuss several of the social-ethical issues created or exacerbated by increasing use
of computers: privacy, property, risk and reliability, and global communication.

Computers, digital data, and telecommunications have [?] changed work, travel, edu-
cation, business, entertainment, government, and manufacturing. For example, work now
increasingly involves sitting in front of a computer screen and using a keyboard to make
things happen in a manufacturing process or to keep track of records where in the past
these same tasks would have involved physically lifting, pushing, and twisting or using
pens, paper, and file cabinets. Changes such as these—in the way we do things—have, in

2-1
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1    PRINT 0
2    GO LEFT
3    GO TO STEP 2 IF 1 IS SCANNED
4    PRINT 1
5    GO RIGHT
6    GO TO STEP 5 IF 1 IS SCANNED
7    PRINT 1
8    GO RIGHT
9    GO TO STEP 1 IF 1 IS SCANNED
0    STOP1

FIGURE 2.1 The doubling program in the GOTO language. The doubling program in the GOTO

language. The doubling program in the GOTO language.

turn, fundamentally changed who we are as individuals, communities, and nations. Some
would argue, for example, that new kinds of communities (e.g., cyberspace on the Internet)
are forming, individuals are developing new types of personal identity, and new forms of
authority and control are taking hold as a result of this evolving technology.

Computer technology is shaped by social-cultural concepts, laws, the economy, and pol-
itics [?]. These same concepts, laws, and institutions have been pressured, challenged, and
modified by computer technology. Technological advances can antiquate laws, concepts, and
traditions, compelling us to reinterpret and create new laws, concepts, and moral notions
[?]. Our attitudes about work and play, our values, and our laws and customs are deeply
involved in technological change.

When it comes to the social-ethical issues surrounding computers, some have argued
that the issues are not unique. All of the ethical issues raised by computer technology
can, it is said, be classified and worked out using traditional moral concepts, distinctions,
and theories. There is nothing new here in the sense that all of the issues have to do
with traditional moral concepts such as privacy, property, responsibility, and traditional
moral ends such as maximizing individual freedom or holding individuals accountable. These
concepts and values predate computers; hence, it would seem there is nothing unique about
computer ethics.

On the other hand, those who argue for the uniqueness of the topic point to the funda-
mental ways that computers have changed so many human activities, such as manufacturing,
record keeping, banking, and communicating. The change is so radical, it is claimed, that
traditional moral concepts, distinctions, and theories, if not abandoned, must be significantly
reinterpreted and extended. For example, they must be extended to computer-mediated re-
lationships, computer software, computer art, electronic bulletin boards, and so on. The

1    PRINT 0
2    GO LEFT
3    GO TO STEP 2 IF 1 IS SCANNED
4    PRINT 1
5    GO RIGHT
6    GO TO STEP 5 IF 1 IS SCANNED
7    PRINT 1
8    GO RIGHT
9    GO TO STEP 1 IF 1 IS SCANNED
0    STOP1

FIGURE 2.2 The doubling program in the GOTO language. The doubling program in the GOTO

language. The doubling program in the GOTO language.
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uniqueness of the ethical issues surrounding computers can be argued for in a number of
ways. Computer technology makes possible a scale of activities not possible before. This
includes a larger scale of record keeping of personal information, as well as larger scale
calculations which, in turn, allow us to build and do things not possible before, such as un-
dertaking space travel and operating a global communication system. In addition to scale,
computer technology has involved the creation of new kinds of entities for which no rules
initially existed: entities such as computer files, computer programs, and user interfaces. The
uniqueness argument can also be made in terms of the power and pervasiveness of computer
technology. It seems to be bringing about a magnitude of change comparable to that which
took place during the Industrial Revolution, transforming our social, economic, and politi-
cal institutions, our understanding of what it means to be human, and the distribution of
power in the world. Hence, it would seem the issues are special if not unique.

A synthesis of these two views of computer ethics seems necessary since analysis of a
computer ethical issue generally involves both working on something new and drawing on
something old. Issues in computer ethics are new species of older ethical problems [Johnson
1994]. Most of the issues can be understood using traditional moral concepts such as auton-
omy, privacy, property, and responsibility. Most arise in contexts in which there are already
social, ethical, and legal norms; that is, the issues arise in the context of the workplace, gov-
ernment, business, role relationships, and so on. In this respect, the issues are not new or
unique. Nevertheless, when a computer is involved, the situation may have special features
which have not been addressed by prevailing norms, and these features make a moral differ-
ence. For example, although property rights and even intellectual property rights have been
worked out in the past, software has raised new property issues: Should the arrangement of
icons appearing on the screen of a user interface be ownable? Is there anything intrinsically
wrong with copying software? Software has features which make the distinction between
idea and expression (a distinction at the core of copyright law) almost incoherent. As well,
it has features which make standard intellectual property laws difficult to enforce. Hence,
questions about what should be owned when it comes to software and how to evaluate vio-
lations of software ownership rights are not new in the sense that they are property rights
issues, but they are new in the sense that nothing with the characteristics of software has
been addressed before. We have, then, a new species of traditional property rights.

Similarly, although our understanding of rights and responsibilities in the employer–
employee relationship have been evolving for centuries, never before have employers had
the capacity to monitor their workers electronically, keeping track of every keystroke, and
recording and reviewing all work done by an employee (covertly or with prior consent).
When we evaluate this new monitoring capability and ask whether employers should use
it, we are working on an issue that has never arisen before, though many other issues
involving employer–employee rights have. We address a new species of the tension between
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employer–employee rights and interests.

The social-ethical issues posed by computer technology are significant in their own right,
but they are of special interest here because computer and engineering professionals bear
responsibility for this technology. It is of critical importance that they understand the
social change brought about by their work and the difficult social-ethical issues posed. Just
as some have argued that the social-ethical issues posed by computer technology are not
unique, some have argued that the issues of professional ethics surrounding computers are
not unique. We propose, in parallel with our previous genes-species argument, that the
professional ethics issues arising for computer scientists and engineers are species of generic
issues of professional ethics. All professionals have responsibilities to their employers, clients,
coprofessionals, and to the public. Managing these types of responsibilities poses a challenge
in all professions. Moreover, all professionals bear some responsibility for the impact of their
work. In this sense, the professional ethics issues arising for computer scientists and engineers
are generally similar to those in other professions. Nevertheless, it is also true to say that
the issues arise in unique ways for computer scientists and engineers because of the special
features of computer technology.

In what follows, we discuss ethics in general, professional ethics, and finally, the ethical
issues surrounding computer technology.

2.2 Ethics in General

There is a lively history of ethical theories. Ethicists explore theories to: (1) explain and
justify prevailing moral notions, (2) critique ordinary moral beliefs, and (3) assist in ratio-
nal, ethical decision making. It is not our purpose here to propose, defend, or attack any
particular ethical theory. Rather, we offer brief descriptions of three theories to illustrate
the nature of ethical analysis. We also include a decision making method that combines
elements of each theory.

Ethical analysis involves giving reasons for moral claims and commitments. It is not just
a matter of articulating intuitions. When the reasons given for a claim are developed into a
moral theory, the theory can be incorporated into techniques for improved technical decision
making. Three traditions in ethical analysis and problem solving are described. This is by
no means an exhaustive account, nor is our description of any of the three any more than a
brief introduction. The three traditions are utilitarianism, deontology, and social contract
theory.

2.2.1 Utilitarianism

Utilitarianism has greatly influenced 20th-century thinking. According to this theory, we
should make decisions about what to do by focusing on the consequences of our actions.
Ethical rules are derived from their usefulness (their utility) in bringing about happiness.
Utilitarianism offers one seemingly simple moral principle which everyone should use to
determine what to do in a given situation: everyone ought to act so as to bring about the
greatest amount of happiness for the greatest number of people.

According to utilitarianism, happiness is the only value that can serve as the fundamental
base for ethics. Since happiness is the ultimate good, morality must be based on creating
as much of this good as possible. The utilitarian principle provides a decision procedure.
When you want to decide what to do, the alternative that produces the most overall net
happiness (good minus bad) is the right action. The right action may be one that brings
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about some unhappiness but that is justified if the action also brings about enough happiness
to counterbalance the unhappiness, or if the action brings about the least unhappiness of
all possible alternatives.

Be careful not to confuse utilitarianism with egoism. Egoism is a theory claiming that
one should act so as to bring about the most good consequences for one’s self. Utilitarianism
does not say that you should maximize your own good. Rather, total happiness in the world
is what is at issue; when you evaluate your alternatives you have to ask about their effects
on the happiness of everyone. It may turn out to be right for you to do something that will
diminish your own happiness because it will bring about an increase in overall happiness.

The emphasis on consequences found in utilitarianism is very much a part of decision
making in our society, in particular as a framework for law and public policy. Cost-benefit
and risk-benefit forms of analysis are, for example, consequentialist in character.

Utilitarians do not all agree on the details of utilitarianism; there are different kinds of
utilitarians. One issue is whether the focus should be on rules of behavior or individual acts.
Utilitarians have recognized that it would be counter to overall happiness if each one of us
had to calculate at every moment what the consequences of every one of our actions would
be. Sometimes we must act quickly, and often the consequences are difficult or impossible
to foresee. Thus, there is a need for general rules to guide our actions in ordinary situations.
Hence, rule utilitarians argue that we ought to adopt rules which, if followed by everyone,
would, in general and in the long run, maximize happiness. Act utilitarians, on the other
hand, put the emphasis on judging individual actions rather than creating rules.

Both rule utilitarians and act utilitarians share an emphasis on consequences; deonto-
logical theories do not share this emphasis.

2.2.2 Deontological Theories

Deontological theories can be understood as a response to the criticisms of utilitarian the-
ories. A traditional criticism of utilitarianism is that it sometimes leads to conclusions that
are incompatible with our most strongly held moral intuitions. Utilitarianism seems, for
example, open to the possibility of justifying enormous burdens on some individuals for
the sake of others. To be sure, every person counts equally; no one person’s happiness or
unhappiness is more important than any other person’s. However, since utilitarians are con-
cerned with the total amount of happiness, we can imagine situations where great overall
happiness might result from sacrificing the happiness of a few. Suppose, for example, that
having a small number of slaves would create great happiness for large numbers of people;
or suppose we kill one healthy person and use the resulting body parts to save ten people
in need of transplants.

Critics of utilitarianism say that if utilitarianism justifies such practices, then the the-
ory must be wrong. Utilitarians have a defense, arguing that such practices could not be
justified in utilitarianism because of the long-term consequences. Such practices would pro-
duce so much fear that the happiness temporarily created would never counterbalance the
unhappiness of everyone living in fear that they might be taken for sacrifice.

We need not debate utilitarianism here. The point is that deontologists find utilitarian-
ism problematic because it puts the emphasis on the consequences of an act rather than
on the act itself. Deontological theories claim that the internal character of the act is what
is important. The rightness or wrongness of an action depends on the principles inherent
in the action. If an action is done from a sense of duty, and if the principle of the action
can be universalized, then the action is right. For example, if I tell the truth because it is
convenient for me to do so, or because I fear the consequences of getting caught in a lie, my
action is not worthy. A worthy action is an action that is done from duty, which involves
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respecting other people, recognizing them as ends in themselves, not as means to some good
effect.

According to deontologists, utilitarianism is wrong because it treats individuals as means
to an end (maximum happiness). For deontologists, what grounds morality is not happiness,
but human beings as rational agents. Human beings are capable of reasoning about what
they want to do. The laws of nature determine most activities: plants grow towards the sun,
water boils at a certain temperature, and objects fall at a constant rate in a vacuum. Hu-
man action is different in that it is self-determining; humans initiate action after thinking,
reasoning, and deciding. The human capacity for rational decisions makes morality possi-
ble, and it grounds deontological theory. Because each human being has this capacity, each
human being must be treated accordingly: with respect. No one else can make our moral
choices for us, and each of us must recognize this capacity in others.

Although deontological theories can be formulated in a number of ways, one formulation
is particularly important: Immanuel Kant’s categorical imperative [Kant 1785]. There are
three versions of it, and the second version goes as follows: Never treat another human
being merely as a means but always as an end. It is important to note the merely in the
categorical imperative. Deontologists do not insist that we never use another person; only
that we never merely use them. For example, if I own a company and hire employees to
work in my company, I might be thought of as using those employees as a means to my
end (i.e., the success of my business). This, however, is not wrong if the employees agree
to work for me and if I pay them a fair wage. I thereby respect their ability to choose for
themselves and I respect the value of their labor. What would be wrong would be to take
them as slaves and make them work for me, or to pay them so little that they must borrow
from me and must remain always in my debt. This would show disregard for the value of
each person as a freely choosing, rationally valuing, specially efficacious person.

2.2.3 Social Contract Theories

A third tradition in ethics thinks of ethics on the model of a social contract. There are
many different social contract theories, and some, at least, are based on a deontological
principle. Individuals are rational free agents; hence, it is immoral to exert undue power
over them, to coerce them. Government and society are problematic insofar as they seem
to force individuals to obey rules, apparently treating individuals as means to social good.
Social contract theories get around this problem by claiming that morality (and government
policy) are, in effect, the outcome of rational agents agreeing to social rules. In agreeing to
live by certain rules, we make a contract. Morality and government are not, then, systems
imposed on individuals; they do not exactly involve coercion. Rather, they are systems
created by freely choosing individuals (or they are institutions that rational individuals
would choose if given the opportunity).

Philosophers such as Rousseau, Locke, Hobbes, and more recently Rawls [1971] are
generally considered social contract theorists. They differ in how they get to the social
contract and what it implies. For our purposes, however, the key idea is that principles
and rules guiding behavior may be derived from identifying what it is that rational (even
self-interested) individuals would agree to in making a social contract. Such principles and
rules are the basis of a shared morality. For example, it would be rational for me to agree to
live by rules that forbid killing and lying. Even though such rules constrain me, they also
give me some degree of protection: if they are followed, I will not be killed or lied to.

The social contract theory cannot be used simply by asking what rules you would agree
to now. Most theorists recognize that what you would agree to now is influenced by your
present position in society. Most individuals would opt for rules that would benefit their
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particular situation and characteristics. Hence, most social contract theorists insist that the
principles or rules of the contract must be derived by assuming certain things about human
nature or the human condition. Rawls, for example, insists that we imagine ourselves behind
a veil of ignorance. We are not allowed to know important features about ourselves, e.g.,
what talents we have, what race, gender we will be, for if we know these things we will not
agree to just rules, but only rules that will maximize our self-interest. Justice consists of
the rules we would agree to when we do not know who we are, for we would want rules that
would give us a fair situation no matter where we ended up in the society.

2.2.4 A Paramedic Method for Computer Ethics

Drawing on elements of the three theories described, Collins and Miller [1992] have proposed
a decision assisting method, called the paramedic method for computer ethics. This is not an
algorithm for solving ethical problems; it is not nearly detailed or objective enough for that
designation. It is merely a guideline for an organized approach to ethical problem solving.

Assume that a computer professional is faced with a decision that involves human values
in a significant way. There may already be some obvious alternatives, and there also may
be creative solutions not already discovered. The paramedic method is designed to help
the professional analyze alternative actions and to encourage the development of creative
solutions. The method proceeds as follows:

1. Identify alternative actions; list the few alternatives that seem most promising.
If an action requires a long description, summarize it as a title with just a few
words. Call the actions A1, A2, . . . , Aa. No more than five actions should be
analyzed at a time.

2. Identify people, groups of people, or organizations that will be affected by the
decision that must be made. Again, hold down the number of entities to the five
or six that are affected most. Label the people P1, P2, . . . , Pp.

3. Make a table with the horizontal rows labeled by the identified people and the
vertical columns labeled with the identified actions. We call such a table a P ×A
table. Make two copies of the P × A table, and label one as the opportunities
table and the other as the vulnerabilities table. In the opportunities table, list
in each interior cell of the table at entry [x, y] the possible good that is likely
to happen to person x if action y is taken. Similarly, in the vulnerability table,
at position [x, y] list all of the things that are likely to happen badly for x if
the action y is taken. These two graphs represent benefit/cost calculations for a
consequentialist, utilitarian analysis.

4. Make a new table with the set of persons marking both the columns and the
rows (a P × P table). In each cell [x, y] name any responsibilities or duties that
x owes y in this situation. (The cells on the diagonal [x, x] are important; they
list things one owes oneself.) Now make copies of this table, labeling one copy
for each of the alternative actions being considered. Work through each cell [x, y]
of each table and place a + next to a duty if the action for that table is likely
to fulfill the duty x owes y; mark the duty with a − if the action is unlikely to
fulfill that duty; mark the duty with a +/− if the action partially fulfills it and
partially does not; and mark the duty with a ? if the action is irrelevant to the
duty or if it is impossible to predict whether or not the duty will be fulfilled.
(Few cells generally fall into this last category.)

5. Review the tables from steps 3 and 4. Envision a meeting of all of the parties (or
one representative from each of the groups) in which no one knows which role
they will take or when they will leave the negotiation. Which alternative do you
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think such a group would adopt, if any? Do you think such a group could discover
a new alternative, perhaps combining the best elements of the previously listed
actions? If this thought experiment produces a new alternative, expand the P×A
tables from step 3 to include the new alternative action, and make a new copy
of the P × P table in step 4 and do the + and − marking for the new table.

6. If any one of the alternatives seems to be clearly preferred (i.e., it has high
opportunity and low vulnerability for all parties, and tends to fulfill all the duties
in the P × P table), then that becomes the recommended decision. If no one
alternative action stands out, the professionals can examine tradeoffs using the
charts, or can iteratively attempt step 5 (perhaps with outside consultations)
until an acceptable alternative is generated.

Using the paramedic method can be time consuming, and it does not eliminate the need
for judgement. But it can help organize and focus analysis as an individual or group works
through the details of a case situation to arrive at a decision.

2.2.5 Easy and Hard Ethical Decision Making

Sometimes ethical decision making is easy; for example, when it is clear that an action will
prevent a serious harm and has no drawbacks, then that action is the ethical thing to do.
Sometimes, however, ethical decision making is more complicated and challenging. Take
the following case: your job is to make decisions about which parts to buy for a computer
manufacturing company; a person who sells parts to the company offers you tickets to an
expensive Broadway show; should you accept the tickets? In this case the right thing to do
is more complicated because you may be able to accept the tickets and not have this affect
your decision about parts. You owe your employer a decision on parts that is in the best
interests of the company, but will accepting the tickets influence future decisions? Other
times you know what the right thing to do is but doing it will have such great personal costs,
that you can not bring yourself to do it; for example, you might be considering blowing the
whistle on your employer who has been extremely kind and generous with you, but who
now has asked you to cheat on the testing results on a life-critical software system designed
for a client.

To make good decisions, professionals must be aware of potential issues and must have
a fairly clear sense of their responsibilities in various kinds of situations. This often requires
sorting out complex relationships and obligations, anticipating the effects of various actions,
and balancing responsibilities to multiple parties. This activity is part of professional ethics.

2.3 Professional Ethics

Ethics is not just a matter for individuals as individuals. We all occupy a variety of so-
cial roles which carry with them special responsibilities and privileges. As parents, we have
special responsibilities for children. As citizens, members of churches, officials in clubs, and
so on, we have special rights and duties and so it is with professional roles. Being a pro-
fessional is often distinguished from merely having an occupation because a professional
makes a different sort of commitment. Being a professional means more than just having
a job. The difference is commitment to doing the right thing because you are a member of
a group that has taken on responsibility for a domain of social activity—a social function.
The group is accountable to society for this domain, and for this reason, professionals must
behave in ways that are worthy of public trust.

Some theorists explain this commitment in terms of a social contract between a pro-
fession and the society in which it functions. Society grants special rights and privileges
to the professional group, such as control of admission to the group, access to educational
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institutions, and confidentiality in professional–client relationships. Society, in turn, may
even grant the group a monopoly over a domain of activity (e.g., only licensed engineers
can sign off on construction designs, only doctors can prescribe drugs). In exchange, the
professional group promises to self-regulate and practice its profession in ways that are ben-
eficial to society, i.e., to promote safety, health, welfare. The social contract idea is a way
of illustrating the importance of the trust that clients and the public put in professionals;
it shows the importance of professionals acting so as to be worthy of that trust.

The special responsibilities of professionals have been accounted for in other theoretical
frameworks as well. Davis [1995], for example, argues that members of professions implic-
itly, if not explicitly, agree among themselves to adhere to certain standards because this
elevates the level of activity. If all computer scientists and engineers, for example, agreed
never to release software that has not met certain testing standards, this would prevent
market pressures from driving down the quality of software being produced. Davis’s point
is that the special responsibilities of professionals are grounded in what members of a pro-
fessional group owe to one another; they owe it to one another to live up to agreed-upon
rules and standards. Yet other theorists have tried to ground the special responsibilities of
professionals in ordinary morality. Alpern [1991] argues, for example, that the engineer’s
responsibility for safety derives from the ordinary moral edict, do no harm. Since engineers
are in a position to do greater harm than others, engineers have a special responsibility in
their work to take greater care.

In the case of the role of computing professionals, responsibilities are not always well
articulated because of several factors. Computing is a relatively new field. Moreover, many
computer scientists and engineers are both employees of companies and simultaneously
members of a profession. This can create a tension blurring a professional’s responsibilities.
Being a professional means having the independence to make decisions on the basis of special
expertise, but being an employee of a company often means acting for the best interests
of the company, being loyal, and so on. The demands of a business (expectations of one’s
employer) can conflict with the demands of professional responsibility.

Another difficulty in defining and maintaining professional ethics for computing profes-
sionals is the diversity of the field. Computing professionals are employed in a wide variety of
contexts, have a wide variety of expertise, and come from diverse educational backgrounds.
There is no single unifying organization, no uniform admission standards, and no single
identifiable professional role. To be sure, there are signs of the field moving in the direction
of more professionalization, but as yet, computing is still a loose cluster of overlapping fields
composed of individuals following diverse educational and career paths, and engaged in a
wide variety of job activities.

Despite the lack of well-articulated unifying professional standards and ideals, there are
expectations for professional practice. It is these expectations that form the basis of an
emerging professional ethic that may, in the future, be refined to the point where there will
be a strongly differentiated role for computer professionals.

These expectations, in particular their evolving character, can be seen in the growing
sophistication of ethical codes in the field of computing. Professional codes play an important
role in articulating a collective sense of what is both the ideal of the profession as well as
the minimum standards required. Codes of conduct state the consensus views of members
as well as shaping behavior.

A number of professional organizations have codes of ethics that are of interest here.
The most well known include the Association for Computing Machinery (ACM) Code of
Ethics and Professional Conduct (see Appendix B), the Institute of Electrical and Electronic
Engineers (IEEE) Code of Ethics, the Data Processing Managers Association (DPMA)
Code of Ethics and Standards of Conduct, the Institute for Certification of Computer
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Professionals (ICCP) Code of Ethics, the Canadian Information Processing Society Code
of Ethics, and the British Computer Society Code of Conduct. Each of these codes has
different emphases and goals. Each in its own way, however, deals with issues that arise in
the context in which computer scientists and engineers typically practice.

The codes are relatively consistent in identifying computer professionals as having re-
sponsibilities to be faithful to their employers, to clients, and to protect public safety and
welfare. The most salient ethical issues that arise in professional practice have to do with
balancing these responsibilities together with personal (or nonprofessional) responsibilities.
Two common areas of tension are worth mentioning here, albeit briefly.

As previously mentioned, computer engineers and scientists may find themselves in sit-
uations where their responsibility as professionals to protect the public comes in conflict
with loyalty to their employer. Such situations sometimes escalate to the point where the
computer professional has to decide whether to blow the whistle. Such a situation might
arise, for example, when the computer professional believes that a piece of software has not
been tested enough but her employer wants to deliver the software on time and within the
allocated budget (which means immediate release and no more resources being spent on
the project). The decision to blow the whistle or not to blow the whistle is one of the most
difficult computer engineers and scientists may have to face. Whistle blowing has received
a good deal of attention in the popular press and in the literature on professional ethics
because this tension seems to be built into the role of engineers and scientists. Ideally, cor-
porations and professional societies will, in the future, develop mechanisms to help avoid
the need to blow the whistle. For example, if corporations had ombudspersons to whom en-
gineers and scientists could report their concerns (anonymously) or if professional societies
maintained hotlines that professionals could call for advice on how to get their concerns
addressed, these would lessen the need to blow the whistle.

Another important professional ethics issue that often arises is directly tied to the im-
portance of being worthy of client (and indirectly public) trust. Professionals can find them-
selves in situations in which they have (or are likely to have) a conflict of interest. A conflict
of interest situation is one in which the professional is hired to perform work for a client
and the professional has some personal or professional interest that may (or may appear
to) interfere with their judgement on behalf of the client. For example, suppose a computer
professional is hired by a company to evaluate their needs and recommend hardware and
software that will best suit the company’s needs. The computer professional does precisely
what is requested, but fails to mention being a silent partner in a company that manufactures
the hardware and software that has been recommended. In other words, the professional
has a personal interest—financial benefit—in the company buying certain equipment. If the
company were to find this out later on, it might rightly be thought that there had been de-
ception. The professional was hired to evaluate the needs of the company and to determine
how best to meet them, and in so doing to have the best interests of the company fully
in mind. Now it is suspected that the professional’s judgment may have been biased. The
professional had an interest that might have biased his or her judgement.

There are a number of strategies that professions use to avoid these situations. A code
of conduct may, for example, specify that professionals reveal all relevant interests to their
clients before they accept a job. Or, the code might specify that members never work in a
situation where there is even the appearance of a conflict of interest.

This brings us to the special character of computer technology and the effects that the
work of computer professionals can have on the shape of our world. Some may argue that
computer professionals have very little say in what technologies get designed and built. This
seems to be mistaken on at least two counts. First, we can distinguish computer professionals
as individuals and computer professionals as a group. Even if individuals have little power
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in the jobs they hold, they can exert power collectively. Second, individuals can have an
effect if they think of themselves as professionals and consider it their responsibility to think
about the impact of their work.

2.4 Ethical Issues that Arise from Computer Technology

The effects of a new technology on society can draw attention to an old issue, and can change
our understanding of that issue. The issues listed in this section—privacy, property rights,
risk and reliability, and global communication—were of concern, even problematic, before
computers were an important technology. But computing and, more generally, electronic
telecommunications, have added new twists and new intensity to each of these issues. Al-
though computer professionals cannot be expected to be experts on all of these impacts, it is
important for them to understand how computer technology is shaping the world. And, it is
important for them to keep these impacts in mind as they work with computer technology.
Those who are aware of privacy issues are more likely to take this into account when they
design database management systems, those who are aware of risk and reliability issues are
more likely to articulate these to clients and attend to them in design and documentation,
and so on.

2.4.1 Privacy

Privacy is a central topic in computer ethics. Some have even suggested that privacy is a
notion that has been antiquated by technology and that it should be replaced by a new
openness. Others think that computers must be harnessed to help restore as much privacy
as possible to our society. Although they may not like it, computer professionals are at
the center of this controversy. Some are designers of the systems that facilitate information
gathering and manipulation; others maintain and protect the information. As the saying
goes, information is power, but power can be used and/or abused.

Computer technology creates wide ranging possibilities for tracking and monitoring of
human behavior. Consider just two ways in which personal privacy may be affected by com-
puter technology. First, because of the capacity of computers, massive amounts of informa-
tion can be gathered by record keeping organizations such as banks, insurance companies,
government agencies, educational institutions. The information gathered can be kept and
used indefinitely, and shared with other organizations, rapidly and frequently. A second
way in which computers have enhanced the possibilities for monitoring and tracking of in-
dividuals is by making possible new kinds of information. When activities are done using a
computer, transactional information is created. When individuals use automated bank teller
machines, records are created; when certain software is operating, keystrokes on a computer
keyboard are recorded; the content and destination of electronic mail can be tracked, and so
on. With the assistance of newer technologies, much more of this transactional information
is likely to be created. For example, television advertisers may be able to monitor television
watchers with scanning devices that record who is sitting in a room facing the television,
and new highway systems may allow drivers to pass through toll booths without stopping as
a beam reading a bar code on the automobile will automatically charge the toll to a credit
card, creating a record of individual travel patterns. All of this information (transactional
and otherwise) can be brought together to create a detailed portrait of a person’s life, a
portrait the individual may never see, though it is used by others to make decisions about
the individual.

This picture of computer technology suggests that computer technology poses a serious
threat to personal privacy. However, one can counter this picture in a number of ways. Is
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it computer technology per se that poses the threat or is it just the way the technology
has been used (and is likely to be used in the future)? Only those who understand the
technology are in a position to design or change computer technology so that it does not
eradicate privacy.

At the same time we think about changing technology, we also have to ask deeper
questions about privacy itself and what it is that individuals need, want, or are entitled
to when they express concerns about the loss of privacy. In this sense, computers and
privacy issues are ethical issues. They compel us to ask deep questions about what makes
for a good and just society. Should individuals have more choice about who has what
information about them? What is the proper relationship between citizens and government,
between individuals and private corporations? As previously suggested, the questions are
not completely new; but some of the possibilities created by computers are new, and these
possibilities do not readily fit the concepts and frameworks used in the past.

2.4.2 Property Rights and Computing

The protection of intellectual property rights has become an active legal and ethical debate,
involving national and international players. Should software be copyrighted, patented, or
free? Is computer software a process, a creative work, a mathematical formalism, an idea, or
some of all of these? What is society’s stake in protecting software rights? What is society’s
stake in widely disseminating software? How do corporations and other institutions protect
their rights to ideas developed by individuals, and what are the individuals’ rights? These
kinds of questions must be answered publicly through legislation, through corporate policies,
and with the advice of computing professionals. Some of the answers will involve technical
details, and all should be informed by ethical analysis and debate.

Perhaps the issue that has received the most legal and public attention is that concern-
ing the ownership of software. In the course of history, software is a relatively new entity.
Whereas western legal systems have developed property laws that encourage invention by
granting certain rights to inventors, there are provisions against ownership of things that
might interfere with the development of the technological arts and sciences. For this reason,
copyrights protect only the expression of ideas, not the ideas themselves, and we do not
grant patents on laws of nature, mathematical formulas, and abstract ideas. The problem
with computer software is that it has not been clear that we could grant ownership of it
without, in effect, granting ownership of numerical sequences or mental steps. Software can
be copyrighted, because a copyright gives the holder ownership of the expression of the
idea (not the idea itself), but this does not give software inventors as much protection as
they claim to need to fairly compete. Competitors may see the software, grasp the idea,
and write a somewhat different program to do the same thing. The competitor can sell
the software at less cost because the cost of developing the first software does not have to
be paid. Patenting would provide stronger protection, but until quite recently the courts
have been reluctant to grant this protection because of the problem previously mentioned:
patents on software would appear to give the holder control of the building blocks of the
technology, an ownership comparable to owning ideas themselves.

Like the questions surrounding privacy, property rights in computer software also lead
back to broader ethical and philosophical questions about what constitutes a just society.
In computing, as in other areas of technology, we want a system of property rights that
promotes invention (creativity, progress), but at the same time, we want a system that
is fair in the sense that it rewards those who make significant contributions but does not
give anyone so much control that they prevent others from creating. Policies with regard
to property rights in computer software cannot be made without an understanding of the
technology, and this is why it is so important for computer professionals to be involved in
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public discussion and policy setting on this topic.

2.4.3 Risk, Reliability, and Accountability

As computer technology becomes more important to the way we live, its risks become more
worrisome. System errors can lead to physical danger, sometimes catastrophic in scale.
There are security risks due to hackers and crackers. Unreliable data as well as intentional
misinformation are risks that are increased because of the technical and economic charac-
teristics of digital data. Furthermore, the use of computer programs is, in a practical sense,
inherently unreliable.

Each of these issues (and many more) requires computer professionals to face the linked
problems of risk, reliability, and accountability. Professionals must be candid about the
risks of a particular application or system. Computing professionals should take the lead in
educating customers and the public about what predictions we can and cannot make about
software and hardware reliability. Computer professionals should make realistic assessments
about costs and benefits, and be willing to take on both for projects they are involved with.

There are also issues of sharing risks as well as resources. Should liability fall to the
individual who buys software or to the corporation that developed it? Should society ac-
knowledge the inherent risks in using software in life-critical situations and shoulder some
of the responsibility when something goes wrong? Or should software providers (both indi-
viduals and institutions) be exclusively responsible for software safety? All of these issues
require us to look at the interaction of technical decisions, human consequences, rights, and
responsibilities. They call not just for technical solutions but for solutions which recognize
the kind of society we want to have and the values we want to preserve.

2.4.4 Rapidly Evolving Globally Networked Telecommunications

The system of computers and connections known as the Internet is forming a new kind
of community or sets of communities—electronic communities. Questions of individual ac-
countability and social control, as well as matters of etiquette that arise in all [?] societies
are taking shape in a new way, in the electronic medium. It is as if we have society (soci-
eties) forming in a new physical environment. A new way of living together is evolving as
we watch. What will the Internet be like in five years? Who will and won’t have access?
How much freedom will we trade for security? How will commercial interests and citizens
opposed to commercialization coexist? What will electronic communications mean to our
worlds of work and play? Will the Internet begin to change who we are or who we are to
each other?

Speculating about the Internet is now a popular pastime. But some researchers in com-
puter ethics think that more serious thought, and perhaps action, should be applied to
shaping the society of network users. Commercial, governmental, and recreational groups
are already changing what the Internet used to be, often making unilateral statements or
actions. Instead of asking What will happen to the Internet? we should perhaps be asking
What should happen to the Internet? Questions of should are exactly the questions that
ethics addresses.

2.5 Final Thoughts

Computer technology will, no doubt, continue to evolve and will continue to affect the
character of the world we live in. Computer scientists and engineers will play an important
role in shaping the technology. The technologies we use shape how we live and who we are.
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They make every difference in the moral environment in which we live. Hence, it seems of
utmost importance that computer scientists and engineers understand just how their work
affects humans and human values.


