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Abstract. A number of deterministic dynamic systems that are nonideal according
to the Sommerfeld-Kononenko classification are considered. In particular, pendulum,
hydrodynamic, and electroelastic systems with limited excitation are considered. The
scenarios of transitions to chaos that are possible in the above systems are analyzed.
We study both the transitions ”regular attractor - chaotic attractor” and the transi-
tions ”chaotic attractor of one type - chaotic attractor of another type”. In particular,
the ”chaos - hyperhaos” and ”hyperhaos - hyperhaos” transitions are studied. Ten
scenarios of transition to chaos are analyzed in detail. Some of the scenarios were
widely known, while others are very unusual and are revealed only in nonideal dy-
namic systems.
Keywords: nonideal dynamic system, scenario of transition to chaos, chaotic attrac-
tor.

1 Introduction

A prominent place among dynamical systems is occupied by so-called nonideal
systems or systems with limited excitation. For the first time such systems
originated in the experiments of A. Sommerfeld in the early twentieth century
[1,2]. But as a established scientific direction, the theory of systems with lim-
ited excitation was formed after the publication V. Kononenko [3] in which he
introduced a clear axiomatics and constructed mathematical models for a wide
range of problems. The theory of systems with limited excitation explores the
interaction of vibrational systems with excitation sources of their oscillations.
Within the framework of this theory, it is assumed that oscillation excitation
sources have a power comparable to the power consumed by the oscillatory load.
In this case, the operation of the energy source depends on the regime of oscil-
lation load and influenceof the source cannot be expressed as a predetermined
explicit time function. Whereas in the traditional mathematical modeling of
the oscillatory system, idealized sources of excitation of unlimited power are
considered. In many cases, the ideal approach is fundamentally wrong, which in
practice leads to gross errors in describing the dynamics of both the oscillatory
system and the source of excitation [4–7]. The use of limited excitation models
becomes even more relevant in our time, when humanity faces the problems of
global energy conservation, which requires the maximum minimization of the
power of the applied excitation sources.

The discovery of deterministic chaos stimulated the emergence of a new
direction in theory of systems with limited excitation associated with the search
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for chaotic modes of interaction of oscillatory systems with sources of excitation.
Of particular interest are those chaotic regimes whose appearance is associated
with a nonlinear interaction between the oscillatory system and the excitation
source, and not with their autonomous properties.

In the papers [8–11] describe the occurrence of chaotic attractors in a num-
ber of deterministic nonideal dynamical systems whose chaotization is funda-
mentally impossible when considering cases of ideal (unlimited) excitation.

2 Mathematical models of considered nonideal systems

In studying the occurrence of deterministic chaos in dynamical systems, it is of
great interest to identify and describe scenarios of transition to chaos. More-
over, both scenarios of transitions from regular attractors to chaotic, and sce-
narios of transitions between chaotic attractors of different types. Some of these
scenarios are widespread and implemented in many dynamic systems. Such
scenarios include, for example, the Feigenbaum’s scenario and the Manneville-
Pomeau scenario. Other scenarios were described relatively recently and the
question of their prevalence requires further study.

In this paper, we analyze the scenarios of transition to chaos identified and
described in a number of nonideal dynamical systems. The implementation of
transitions to chaos considered in such systems: a pendulum - an excitation
source,
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an analog generator - a piezoceramic transducer,
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a tank with a liquid - an excitation source,
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The derivation of systems of equations (1)–(4) is given in monograph [12],
in which phase variables and parameters of these systems are described in
detail. Note that the techniques for detecting, classifying, and investigating
the properties of attractors of systems (1)–(4) are described in [13,14].

3 Scenarios of transition to chaos

Further we enumerate and describe the scenarios for the transition to chaos in
systems (1)–(4):

3.1. Feigenbaum’s scenario.
The most widespread scenario of transition to chaos through an infinite

cascade of bifurcations of doubling the period of limit cycles [15–17]. The tran-
sition to chaos in the Feigenbaum scenario is observed in almost all dynamic
systems. In particular, the appearance of chaotic attractors according to the
Feigenbaum’s scenario takes place in all systems (1)–(4).

3.2. Intermittency by Manneville–Pomeau.
Another widespread scenario of transition to chaos was first described in pa-

pers [18–20]. The transition from the limit cycle to the chaotic attractor occurs
in one bifurcation. As a result of this bifurcation, the limit cycle disappears
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and a chaotic attractor arises in the system. The motion of trajectories along
the attractor consists of two phases - laminar and turbulent. In the laminar
phase, the trajectory makes quasiperiodic movements in a small neighborhood
of the disappeared limit cycle, and in the turbulent phase, it moves away to
distant (relatively the disappeared cycle) regions of the phase space. Note that
the transition from the laminar phase to the turbulent one and vice versa is
unpredictable. The described transition to chaos through intermittency is also
observed in all systems (1)–(4).

Next, we consider scenarios that are generalizations and combinations of a
cascade of bifurcations of period doubling and intermittency.

3.3. Generalized intermittency ”chaos–chaos”.

The Manneville–Pomeau’s scenario describes the transition ”limit cycle –
chaotic attractor”. A natural complication of this scenario is the scenario of
transition ”a chaotic attractor of one type – a chaotic attractor of another
type”. This scenario was first described in [13] and later called generalized
intermittency. In further publications [14,21], this scenario was analyzed and
substantiated in more details.

Briefly, this scenario can be described as follows. A some chaotic attractor
exists in the system, which disappears when the bifurcation parameter reaches
a certain value and a chaotic attractor of another type of is born in the sys-
tem. The motion of the trajectories along the new attractor consists of two
alternating phases. At one of these phases, the trajectory makes chaotic walks
in a small neighborhood of the trajectories of the disappeared attractor. Then,
at an unpredictable point in time, the trajectory leaves the region of localiza-
tion of the disappeared attractor and leaves in the remote regions of the phase
space. After some time, the movement of the trajectory again begins to resem-
ble movement near of trajectories the disappeared chaotic attractor. The first
of these phases was called coarse-grained (rough) laminar phase. The second is
as before called turbulent phase. Note the duration of both the coarse-grained
(rough) laminar and turbulent phases is unpredictable as are the moments of
times of transition from one phase to another. An illustration of such a scenario
is Fig.1. Here in Fig.1a shows the projection of the phase portrait before the
bifurcation point, and in Fig.1b after the bifurcation point. The densely black
part of the projection in the central region of Fig. 1b is the laminar phase of
intermittency, and the more sparse part of this figure is the turbulent phase.

In fact, in this scenario a disappearing chaotic attractor plays the role of a
disappearing limit cycle from the classical intermittency scenario.

3.4. Generalized intermittency ”hyperchaos–hyperchaos”.

Recall that an attractor is called hyperchaotic if it has at least two positive
Lyapunov’s characteristic exponents. That is, in the phase space there are at
least two directions along which the trajectories belonging to the hyperchaotic
attractor diverge. Hyperchaotic attractors can exist only in dynamical systems
whose phase space dimension is at least four.

This scenario was discovered and described in detail in the papers [22–24].
This scenario is similar of the scenario described in item 3.3. The only dif-
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Fig. 1.

ference is that the transitions from a hyperchaotic attractor of one type to a
hyperchaotic attractor of another type are considered. Also, in such scenarios,
transitions of the ”chaos–hyperhaos” type are possible.

3.5. Symmetry and intermittency in Feigenbaum’s scenario

This scenario is an unusual combination of Feigenbaum’s scenario and in-
termittency. We briefly describe this scenario based on the results of the papers
[21,22].

First, there are two stable limit cycles in the system. These cycles are
symmetric with respect to one or another coordinate axis. Each of the limit
cycles has its own basin of attraction. Then, with a change of the bifurcation
parameter, infinite cascades of bifurcations of doubling the periods of these
cycles simultaneously begin. Moreover, all bifurcations of doubling of each of
the cycles occur at the same value of the bifurcation parameter. This cascade of
doubling bifurcations ends with the simultaneous appearance of two symmetric
chaotic attractors. Each of these attractors has its own basin of attraction.

With a further change of the parameter of bifurcation, phase portraits are
glued together and only one chaotic attractor remains in the system. The aris-
ing chaotic attractor has a symmetric structure of the phase portrait. The
motion of a typical trajectory of a chaotic attractor can be conditionally di-
vided into two phases. In the first of these phases, the trajectory is located in
the localization region of one of the disappeared chaotic attractors from time to
time approaching the boundary of such a region. That is, in this phase, the tra-
jectory is in one of the symmetric parts of the arising chaotic attractor. Then,
at an unpredictable moment of time, the trajectory passes into the localization
region of the second of the disappeared chaotic attractors, that is, into another
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symmetric region of the arising chaotic attractor. This is the second phase
of the trajectory. At an unpredictable moment of time, the trajectory again
returns to the first symmetric region of the chaotic attractor. This process of
transition from one symmetric region of the attractor to another is repeated
an infinite number of times. Note that the duration of stay the trajectory in
one of the symmetric regions of the attractor is unpredictable.

Thus, an unusual combination of the Feigenbaum’s scenario (an infinite
cascade of bifurcations of doubling of limit cycles) and intermittency (unpre-
dictable intermittency between symmetric parts of the phase portrait of the
arising chaotic attractor) takes place.

3.6. Intermittency with two laminar phases

We will describe such a scenario schematically. A necessary condition for
the implementation of this scenario of transition to chaos is the simultaneous
existence in the system of two symmetric stable limit cycles. Further changes
in any parameter of bifurcation lead to the disappearance of both limit cycles
and the birth of a chaotic attractor. In this case, the contours of the arising
chaotic attractor in their form are two united symmetric limit cycles. The onset
of chaos has many features typical of intermittency. However, in this case,
moving the trajectory in the attractor includes three phases, two laminar and
one turbulent. In the first laminar phase, the trajectory makes quasiperiodic
movements in a small neighborhood of one of the stuck together limit cycles. At
an unpredictable moment of time, a turbulent surge occurs and the trajectory
leaves for a region of the phase space that is distant from the neighborhood of
the disappeared cycle. Moreover, after the completion of the turbulent phase,
the trajectory can either return to the first laminar phase of motion or go to
the second laminar phase, which corresponds to quasiperiodic movements in
a small neighborhood of the second of the disappeared limit cycles. Such a
process of motion of a trajectory along an attractor of the form one of the
laminar phases the turbulent phase one of the laminar phases is repeated an
infinite number of times. Moreover, both the time moments of the transition of
the trajectory into the turbulent phase and the switching between two laminar
phases are unpredictable. Thus, the transition to chaos resembles the classic
scenario of Manneville-Pomeau. However, unlike the classical scenario, we have
not one, but two laminar phases of trajectory moving.

A graphic illustration of this scenario is shown in Fig.2. In Fig.2a–b show
projections of symmetric limit cycles. In Fig.2c shows the distribution of the
invariant measure in the projection of the phase portrait of a chaotic attractor.
Bold sections Fig.2c correspond to two laminar phases of the trajectory motion.
The paler areas in Fig.2c correspond to the turbulent phase.

Note that for the first time such a scenario was described in paper [22].

3.7. Generalized intermittency with two coarse-grained (rough)
laminar phases

This scenario is in many ways similar to the scenario described in item ”3.5.
Symmetry and intermittency in Feigenbaum’s scenario”. For describe the be-
ginning of this scenario, we can simply repeat the description of the scenario
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adduced in item 3.5. The differences begin from the moment of arising two
symmetric chaotic attractors, which arise at the same value of the bifurcation
parameter and have different attraction basins. With a further change in the
bifurcation parameter, two symmetric chaotic attractors are combined into one
chaotic attractor. The most significant difference from the scenario from item
3.5. is that the motion of the trajectory along the attractor consists of three
phases. At two of these phases, the trajectory makes chaotic walks in a small
neighborhood of the trajectories of the disappeared symmetric chaotic attrac-
tors. Such phases of movement are called coarse-grained (rough) laminar. The
third phase of the movement is the departure of the trajectory into remote ar-
eas – this is the turbulent phase. The description of the sequence of transitions
from one phase to another almost literally repeats such a description given in
item ”3.6. Intermittency with two laminar phases” . Only everywhere should
the word ”laminar” be replaced by ”coarse-grained (rough) laminar”.

A graphic illustration of ending this scenario is shown in Fig.3a-c. In Fig.3a-
b are shown projections of phase portraits of symmetric chaotic attractors.
Figure 3c is shown a chaotic attractor, which occurs after the disappearance
of a pair of symmetric chaotic attractors. Three phases of the trajectory of
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the attractor are clearly visible. These are two coarse-grained (rough) laminar
phases (two dark regions in the upper right and lower parts of the figure) and
a turbulent phase (the lighter region in the left part of the figure).

3.8. Generalized intermittency ”hyperchaos–hyperchaos” with
two coarse-grained (rough) laminar phases

This scenario has been discovered and described relatively recently and
published in [23,24]. Qualitatively, this scenario is similar to the scenario given
in the previous item ”3.7. Generalized intermittency with two coarse-grained
(rough) laminar phases”. It begins with the appearance of two symmetric stable
limit cycles. As a result of further changes in the bifurcation parameter, two
hyperchaotic symmetric attractors arise, which then disappear and a combined
hyperchaotic attractor is born in the system. The disappearing symmetric
hyperchaotic attractors form two coarse-grained (rough) laminar phases of the
final hyperchaotic attractor of this scenario.

Probably two more varieties of such a scenario are possible. The arising
symmetric attractors will be chaotic, and the final attractor will be hyper-
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chaotic. Conversely, symmetric attractors will be hyperchaotic, the final at-
tractor will be chaotic.

We emphasize that the implementation of the scenarios described in items
3− 8 was found only for systems with a five-dimensional phase space.

3.9. Atypical change of sequences scenarios
The Feigenbaum’s scenario and intermittency by Manneville-Pomeau are

the main scenarios of the transition to chaos in dynamical systems. Moreover,
in majority of dynamic systems, both of these scenarios are observed. As a
rule, with an increase (decrease) in the value of the bifurcation parameter, the
following sequence of transitions to chaos takes place. Cascade of bifurcations
of period doubling – chaos – window of periodicity – cascadeof bifurcations
of period doubling – chaos – window of periodicity and so on. On the other
hand, with a decrease (increase) in the value of the bifurcation parameter,
the following sequence takes place: window of periodicity – chaos through
intermittency – window of periodicity – chaos through intermittency – window
of periodicity and so on [25,26]. In systems (1), (3), (4) the situation was
observed when, with an increase (decrease) in the value of the bifurcation
parameter, transition to chaos is possible both according to the Feigenbaum’s
scenario and through intermittency.

Fig. 4.

We illustrate this with help of the phase-parametric characteristic of system
(3) is shown in Fig. 4. In system (3) there are numerous transitions from limit
cycles to chaotic attractors, as well as the destruction of chaotic attractors

925



and the occurrence of limit cycles. All such transitions are clearly visible on
the built bifurcation tree. Separate ”branches” of this tree correspond to limit
cycles, and densely dark areas correspond to chaotic attractors. The splitting
points of the branches of the bifurcation tree are clearly visible in Fig. 4. In
these points the bifurcations of the period doubling of the limit cycle occur. The
threshold points are also clearly visible, during the passage of which an endless
cascade of period doubling bifurcations ends with the appearance of a chaotic
attractor, that is, a transition to chaos occurs according to the Feigenbaum’s
scenario. In turn, here is also possible a hard transition to chaos, in only one
bifurcation, through Manneville-Pomeau intermittency. As can be seen from
Fig. 4, the transition to chaos according to the Feigenbaum’s scenario occurs
both with increasing and decreasing values of the bifurcation parameter. A
similar situation occurs for the transition to chaos through intermittency. Thus,
there is some symmetry in the alternation of scenarios of transition to chaos.
Such symmetry is atypical for dynamical systems.

Note that a similar symmetry effect of the scenarios of transition to chaos
was established for nonideal systems (1), (4) in papers [27], [28].

4 Conclusion

The considered nonideal dynamic systems (1)–(4) are characterized by ex-
tremely diverse dynamic behavior. In these systems, there are possible all types
of regular attractors: equilibrium positions, limit cycles, invariant tori. Also,
various types of chaotic attractors were found in these systems, and various
types of hyperchaotic attractors were revealed in systems (3), (4). In addition
to all the scenarios of transition to chaos inherent in nonlinear dynamics as a
whole, a number of unusual scenarios of transition to chaos were discovered and
described in these systems. In further studies, the construction and study of
the attraction basins of attractors of such systems can be of great interest. No
less interesting will be an attempt to discover the described unusual scenarios
of the transition to chaos in other dynamical systems.
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Abstract. Mathematical models of a deterministic dynamic system of the type ana-
log generator–piezoelectric transducer are considered taking into account the influence
of delay. A technique for searching for hidden and rare attractors of such system is
proposed. Two approaches to the study of systems with delay are analyzed. The
transformations of hidden attractors into self-excited ones, and rare attractors into
non rare ones and vice versa are studied. The pairs of regular attractor – chaotic
attractor are studied in point of view of their qualifications in terms of ”hidden” and
”rare”. Symmetry was revealed in the scenarios of the transition from regular attrac-
tors to chaotic attractors. The effect of delay on the regular and chaotic dynamics of
the system is investigated.
Keywords: hidden attractor, rare attractor, scenario of transition to chaos, delay.

1 Introduction

A dynamic system consisting of a piezoceramic transducer excited by an vac-
uum tube generator of limited power is considered. Such systems are widely
used in various technical devices. Many aspects of the dynamic behavior of
such systems were studied in papers [1–4,6–9]. The existence of various types
of steady-state modes of interaction between the generator and the converter
was revealed. In particular, chaotic and hyperchaotic regimes of interaction
were discovered and the features of transitions from regular regimes to chaotic
one were described. It was shown that dynamic chaos in that systems arise
solely due to the interaction between the generator and the converter, and
their individual characteristics.

However, earlier studies almost did not take into account such an important
factor as the delay in the impact of the generator on transducer and delay of
the inverse effect of the transducer on generator. Note that delay may be
present in real systems due to limited speed signals: waves of compression,
tension, bending, current and electrical voltage, as well as many other factors.
In some cases influence of delay does not lead to significant changes in the
dynamic behavior of researched systems. In other cases delay leads not only to
significant quantitative changes of characteristics steady-state movement, but
to completely qualitatively changes in the type of steady-state regimes.
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2 The mathematical model

Consider a system consisting of a piezoceramic transducer, the source of exci-
tation of which is an analog vacuum tube generator. Assume that a piezoce-
ramic transducer has the shape of a circular cylinder and placed in an acoustic
environment. Transducer and generator form an electrical circuit through a
transmitting transformer. Let eg and Eg be the variable and constant com-
ponents of the grid generator lamp voltage, accordingly. Denote by V (t) the
electric voltage applied to the electrodes of the transducer. Introduce variable
ψ(t) by the formula

ψ(t) =

∫ t

0

(eg + Eg)dt

Then, the equation describing the electrical oscillations of the generator has
the form [6–8]:

ψ̈(t) + ω2
0ψ(t) = a1ψ̇(t) + a2ψ̇

2(t)− a3ψ̇3(t)− a4V (t− ρ), (1)

here

ω2
0 =

Ra +Rc

RcLcCc
; a0 = a1 −

M2Rc

LcCcLR2
a

; a2 =
3McI3Eg

LcCc
; a3 =

McI3
LcCc

;

a4 =
2MMc

LRaLcCc
; a1 =

Mc

LcCc
(I1 −

RaRcCc − Lc

Ra(Mc −DLc)
+
RcL1

R2
aMc

− 3I3E
2
g).

(2)

A detailed description of all the electromagnetic parameters of the generator,
contained in the equation (2) is given in [7,8,10]. Constant non-negative param-
eter ρ introduced for accounting delay of influence the impact of the transducer
on the generator.

In turn, the equation describing the voltage oscillations V (t), taking into
account the delay of the signal of the generator on transducer, can be written
as [6–8]:

V̈ (t) + ω2
1V (t) = a5ψ(t− ρ) + a6ψ̇(t)− a7V̇ (t), (3)

here,

ω2
1 =

2h

LSε33(1− k2)
; a5 = −Mω2

1Rc(Ra +Rc)

2McRaLc
; a6 = −Mω2

1Rc

2McRa
;

a7 =
k2

η0hS(1− k2)
; k =

d33√
ε33s33

, .

(4)

The parameters d33, s33 and ε33 are constant coefficients of the theory of
longitudinal deformations of a piezoelectric element described in [10]. Note that
the presence of delay in real devices ”generator–piezoceramic transducer” may
be associated with territorial remoteness, sometimes quite significant, subsys-
tems of the specified device. This leads to a delay feedback from one subsystem
to another for the reasons stated in the Introduction.

Thus, the system of equations with retarded argument (1, 3) describes the
interaction process a piezoceramic transducer with a source of its excitation, an
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analog generator. We pass to the new system with the dimensionless variables
according to the following formulas:

ξ(τ) =
ψ(τ)ω0

Eg
,
dξ(τ)

dτ
= ζ(τ), β(τ) =

V (τ)

Eg
;

dβ(τ)

dτ
= γ(τ), τ = ω0t.

(5)

Then we get the following system of equations

dξ(τ)

dτ
= ζ(τ);

dζ(τ)

dτ
= −ξ(τ) + α1ζ(τ) + α2ζ

2(τ)− α3ζ
3(τ)− α4β(τ − δ);

dβ(τ)

dτ
= γ(τ);

dγ(τ)

dτ
= −α0β(τ) + α5ξ(τ − δ) + α6ζ(τ)− α7γ(τ).

(6)

here

α0 =
ω2
1

ω2
0

, α1 =
a0
ω0
, α2 =

a2Eg

ω0
, α3 =

a3E
2
g

ω0
,

α4 =
a4
ω0
, α5 =

a5
ω3
0

, α6 =
a6
ω2
0

, α7 =
a7
ω0
, δ = ω0ρ.

(7)

The function β(τ) corresponds to the signal propagated transducer into
the acoustic medium, and the function ξ(τ) describes internal processes in the
generator. Delays that are present in the system of equations (6) may lead
qualitative changes of the steady-state regimes of interaction. Particularly,
delay can lead, as to emergence of new regular and chaotic attractors, or lead
to disappearance of such attractors, existing in the system in the absence of
delay. Consider these processes in some concrete examples.

3 Simulation at absence of delay

Firstly, consider the case of absence of delay in system (6), i.e. δ = 0. In such
case the system (6) is a nonlinear system of differential equations of fourth
order, so all its researches were carried out by means of various numerical
methods. The technique for such calculations was developed and described in
detail in [5,6,11–13].

Recently, new classification of attractors of dynamic systems has been pro-
posed, which give the definition of self-excited, hidden and rare attractors [14–
16]. We briefly recall the definitions of such types of attractors. An attractor
is called self-exciting if there is an equilibrium position such that any neigh-
borhood of it intersects with basin of attraction of the attractor. An attractor
is called hidden if it is not self-excited.
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For most dynamic systems, the main focus is the study of self-excited attrac-
tors. This is due to the fact that currently detection of the existence of hidden
attractors is, generally speaking, extremely challenging. However, attractors
of dynamical systems are not limited by self-excited attractors. Occurrence in
specific dynamic system (device, structural element) of a hidden attractor can
completely change the expected behavior of the system and make it impossible
to perform its intended operational functions. Moreover, developers of a par-
ticular system may not guess that the functioning of the system occurs in the
regime of a hidden attractor.

The attractor is called rare if it is located in the phase space nearby with
other attractor herewith phase volume (measure) of its basin of attraction
significantly less compared to the basin of attraction of attractor near which it
is located. Or simply rare attractor is attractor that has an extremely small
basin of attraction. It is clear that the probability of a trajectory entering this
attractor is small.

The main goal of this work is to detect attractors of the system (6) and to
identify their types, taking into account the classification proposed in [14–16].
Note that the study of rare attractors of system (6) was started in paper [17].

For revealing hidden attractors of the system (6), following algorithm can
be proposed. Firstly, the trajectory of system is calculated using the Runge-
Kutta method with correction of a variable step of numerical integration ac-
cording to Dormand-Prince [18], at that is selected relatively large local error
O(10−4) − O(10−5) for Dormand-Prince procedure and any initial conditions
for the system (6) are specified. Next, for chosen trajectory, after ending of
transition process, Lyapunov’s characteristic exponents (LCEs) are calculated
[19]. On the basis of LCEs identification of type of attractor are made. How-
ever, a paradoxical situation may arise. In our case such situation is absence of
zero exponent in LCE spectrum for an attractor, which is not an equilibrium
position. This situation may happen due to presence in the system hidden
(rare) attractor. After decreasing the local error up to O(10−7)−O(10−8) the
problem with absence of non zero LCE goes away and trajectories of system
over time may be belong to hidden (rare) attractors.

Let parameters of the system be equal α0 = 0.995, α1 = 0.0535, α3 = 9.95,
α4 = 0.103, α5 = −0.0604, α6 = −0.12, α7 = 0.01 and leave parameter α2 as
bifurcation one. For so chosen values the parameters, system (6) has a single
unstable equilibrium position

ξ = 0, ζ = 0, β = 0, γ = 0,

so-called zero equilibrium position [6,8,17].
At α2 = 8.925 chaotic attractor is the only attractor of the system in the

neighborhood of the zero equilibrium position. This attractor is self-excited
attractor. At increasing value of bifurcation parameter up to α2 = 8.94 another
attractor arises, namely, the limit cycle. In system (6), in the neighborhood
of the zero equilibrium position, two attractors begin to exist simultaneously.
One of them is a chaotic attractor, and the second is a limit cycle. Phase
portrait projections of coexisting attractor are presented in fig. 1a. Moreover,
the chaotic attractor (black attractor) is still a self-excited attractor. In turn,
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the limit cycle (red attractor) is both a hidden attractor and a rare attractor.
The limit cycle is a hidden attractor because it is not a self-excited attractor.
And it is rare attractor, because it has very small basin of attraction.

(a) (b)

Fig. 1. Phase portrait projections at: α2 = 8.958 (a); α2 = 8.959 (b).

In the future, one of the attractors of a pair of simultaneously existing at-
tractors will be conventionally called black attractor, and the other - red. A
part of the phase-parametric characteristics of the coexisting pair of attractors
(black and red) is shown in fig. 2. For both attractors, as for black attractor as
for red attractor, separate ”branches” of this trees correspond to limit cycles.
The densely black regions correspond to chaos of the black attractor, and the
densely red regions correspond to the quasiperiodic regimes of the red attractor.
In fig. 3 an enlarged fragment of the middle part of the phase-parametric char-
acteristics is shown. The fig. 2 and the fig. 3 give a clear view of bifurcations
in system (6) in a selected region of the space of its parameters. So there are
numerous bifurcations of the black attractor of the type ”cycle - chaos - cycle
- chaos”, etc. However, in such transitions, the black attractor will always be
a self-excited attractor. In turn, for the red attractor, in fact, there is only one
rigid bifurcation ”cycle - invariant torus”. Moreover, the red attractor, both
being a limit cycle and an invariant torus, also constantly remains a hidden
attractor and a rare attractor.

Another interesting feature of the alternation of scenarios of transition to
the chaos of the black attractor is visible in Fig. 3. The transition to chaos
according to the Feigenbaum’s scenario through the endless cascade of periods
doubling of limit cycles, occurs at increasing of bifurcation parameter α2 and
at decreasing of bifurcation parameter α2. The same feature is inherent in the
transition to chaos through intermittency. That is, there is some symmetry in
the alternation of scenarios of transition to chaos. This situation, in general,
is atypical for dynamical systems [19], however it seems to be natural for the
system (6), since similar symmetry were already found before in paper [17].

We also illustrate these bifurcations using phase portraits of attractors. At
α2 = 9.02 the black chaotic attractor turns into limit cycle through one rigid
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Fig. 2. Phase-parametric characteristic for α2 ∈ [8.925; 9.1].

Fig. 3. Phase-parametric characteristic in window of periodicity at α2 ∈
[8.958; 8.9595].
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(a) (b)

Fig. 4. Phase portrait projections at: α2 = 9.04 (a); α2 = 9.07 (b).

bifurcation. In turn red attractor remains periodic. This situation holds until
α2 = 9.06 when new bifurcation occurs with red limit cycle which turns it into
invariant torus and remains up so to its disappearance at α2 = 9.072. As we
have already noted, a black attractor will always be a self-excited attractor.
The red attractor will always be a hidden attractor and at the same time will
be a rare attractor. Projections of phase portraits of pairs ”self-exited limit
cycle – hidden and rare limit cycle” and ”self-exited limit cycle – hidden and
rare invariant torus” are pictured in fig. 4a–b correspondingly.

4 Methods of transformation systems with delay

We consider methods for transforming systems with a delayed argument into
systems of ordinary differential equations. First one is based on assumption
that delay factor δ is sufficiently small, so that we can write

β(τ − δ) ≈ β(τ)− δ · dβ(τ)

dτ
= β(τ)− δ · γ(τ);

ξ(τ − δ) ≈ ξ(τ)− δ · dξ(τ)

dτ
= ξ(τ)− δ · ζ(τ).

Substituting the obtained expressions into the system of equations (6), we
obtain

dξ(τ)

dτ
= ζ(τ);

dζ(τ)

dτ
= −ξ(τ) + α1ζ(τ) + α2ζ

2(τ)− α3ζ
3(τ)− α4β(τ) + α4δ · γ(τ);

dβ(τ)

dτ
= γ(τ);

dγ(τ)

dτ
= −α0β(τ) + α5ξ(τ)− α5δ · ζ(τ) + α6ζ(τ)− α7γ(τ).

(8)
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The system of equation (8) is transformed in a system of ordinary differential
equations. Delay δ is in the system (8) as additional parameter. This approach
is applicable for systems with constant delay and with variable delay.

A more accurate approximation method is applicable only to systems with
a constant delay of δ. Let us divide segment [−δ; 0] into m equal parts and
introduce such new functions.

β(τ − iδ

m
) = βi(τ), ξ(τ − iδ

m
) = ξi(τ), i ∈ {0, . . . ,m}.

Then, using difference approximation of derivative, we turn system (6) into
system

dξ0(τ)

dτ
= ζ0(τ);

dζ0(τ)

dτ
= −ξ0(τ) + α1ζ0(τ) + α2ζ

2
0 (τ)− α3ζ

3
0 (τ)− α4βm(τ);

dβ0(τ)

dτ
= γ0(τ);

dγ0(τ)

dτ
= −α0β0(τ) + α5ξm(τ) + α6ζ0(τ)− α7γ0(τ);

dξi(τ)

dτ
=
m

δ
·
(
ξi−1(τ)− ξi(τ)

)
, i ∈ {1, . . . ,m};

dβi(τ)

dτ
=
m

δ
·
(
βi−1(τ)− βi(τ)

)
, i ∈ {1, . . . ,m}.

(9)

System (9) is a system of ordinary differential equations of (2m + 4)-th
order. The delay δ is introduced as additional parameter of this system.

It should be noted that solutions ξ, ζ, β, γ of the system (6) are approx-
imated by solutions ξ0, ζ0, β0, γ0 of the system (9) respectively. And ξ0 →
ξ, ζ0 → ζ, β0 → β, γ0 → γ as m→∞.

Thus, we can study the influence of delay on the dynamic behavior of the
generator-transducer system using either a system of equations (8) or a system
of equations (9). Such studies are carried out using a number of numerical
methods according to the technique described in [6,11,13]. The application of
the second approach to reduce the system of differential equations with delay
to the system of differential equations without delay allows, generally speaking,
to obtain more accurate results at studying the dynamics of the ”generator-
transducer” system. However, this significantly increases the duration of com-
puter calculations and complicates the procedure for creating the appropriate
computer programs. So there must be a balance between computational speed
and accuracy.

We will find such balance for a number of concrete cases. Assume that
α0 = 0.995, α1 = 0.0535, α3 = 9.95, α4 = 0.103, α5 = −0.0604, α6 = −0.12,
α7 = 0.01. As bifurcation parameters we use the parameters α2, δ.

Comparison results for the two used methods are shown in fig. 5.
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In fig. 5a the projection of the phase portrait of the limit cycle of system
(8), constructed at α2 = 9.075, δ = 0.01 is shown. Accordingly, in fig. 5c, e the
projection of the phase portrait of the limit cycle of system (9), constructed
at the same values of α2, δ are shown. The fig. 5c is constructed at m = 3
and the fig. 5e is constructed at m = 30. In fig. 5b, d, f the projections of the
phase portrait of the chaotic attractor constructed at α2 = 9.075, δ = 0.04 are
shown. In fig. 5b the chaotic attractor of system (8) is shown. Accordingly in
fig. 5d the chaotic attractor of system (9) (m = 3) is shown and in fig. 5f the
chaotic attractor of system (9) (m = 30) is shown.

Note that the identification of the type of attractor (limit cycle or chaotic
attractor) was carried out on the basis of calculation and analysis of the LCE
spectrum. As can be seen in fig. 5, all constructed phase portraits almost co-
incide. However, the duration of computer calculations increases significantly
when applying the second method of transformation a system with delay (6) to
a system without delay (9). At m = 30, the duration of computer calculations
by the second method is more than 5000 times the duration of computer cal-
culations by the first method. Moreover, the constructed phase portraits and
Lyapunov’s characteristic exponents practically coincide. Therefore all further
analysis of influence of the delay was carried out by the first method.

5 Influence of the delay on the type of attractor

We investigate the influence of delay on the appearance and disappearance of
various attractors of the ”generator-transducer” system. As in the previous
section, we assume that α0 = 0.995, α1 = 0.0535, α2=9.075, α3 = 9.95, α4 =
0.103, α5 = −0.0604, α6 = −0.12, α7 = 0.01. As bifurcation parameters we
use the delay δ.

In fig. 6, phase parametric characteristics of a pair of attractors coexisting
in the system (6) are constructed. As previously conditionally we will call them
black and red attractor.

In the absence of delay in the system, there is only one black attractor.
This attractor is a stable limit cycle. In addition, this attractor will be the self-
excited attractor. However, even at a negligible value of the delay δ = 0.0015,
another attractor is born in the system, namely, the invariant torus (red region
in fig. 6). This invariant torus is both a hidden attractor and a rare attractor.
At increasing delay, at δ = 0.005 for red attractor the bifurcation ”torus–cycle”
is taken place. The invariant torus is destroyed and a resonant limit cycle is
born in the system. With a further increase of the delay, in the selected interval
of the change of the delay, no red attractor bifurcations occur anymore. The
new resonant limit cycle will continue to be both a hidden attractor and a rare
attractor.

Next, we consider the bifurcations of the black attractor. As can be seen
from fig. 6 at δ = 0.032 through one rigid bifurcation the limit cycle disap-
pears and a chaotic attractor arises in the system. Such a chaotic attractor
exists at the vast majority of δ > 0.032. To this chaotic attractor corresponds
the densely black region in fig. 6 and this attractor is self-excited attractor in
this region. In addition, small slots are visible in this thickly black area. As
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a rule, such slots correspond to periodicity windows in chaos. However, here
the situation is much more interesting. At the values of delay corresponding
to such slots, the chaotic attractor does not disappear and does not turn into
a limit cycle. It will still be chaotic attractor, but not self-excited attractor.
This attractor turns into hidden attractor, since trajectory that starts in the
neighborhood of equilibrium position skips black attractor and approach to red
limit cycle. Moreover, the phase portrait of such hidden attractor is not practi-
cally distinguishable from the phase portraits of self-excited chaotic attractor.
Thus, at the values of delay corresponding to the ”slots” in fig. 6, a rare and
self-excited limit cycle and a hidden chaotic attractor simultaneously exist in
the system.

Fig. 6. Phase-parametric characteristic at α2 = 9.075 for δ ∈ [0; 0.1].

Projections of phase portrait of mentioned pairs of attractor (”limit cycle
– torus”, ”limit cycle – limit cycle”, ”limit cycle – chaos”) are shown in fig.7.

6 Conclusion

In the space of parameters of the ”generator-piezoceramic transducer” system,
regions were discovered in which two attractors coexist simultaneously. More-
over, these attractors can be both regular and chaotic. These attractors are
located in close proximity to one another. At absence of delay one of the co-
existing attractors is always a self-excited attractor, and the second attractor
is always hidden and rare. It is shown that the presence of delay in the system
can contribute to the appearance and disappearance of attractors of various
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(a) (b)

(c)

Fig. 7. Phase portrait projections at: δ = 0.0015 (a); δ = 0.01 (b); δ = 0.035 (c).

types. The possibility of simultaneous coexistence in the system of a hidden
chaotic attractor and a rare and self-excited limit cycle is established.
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Abstract. In this paper, a modified Leslie-Gower predator-prey discrete model with
Michaelis-Menten type prey harvesting is investigated. It is shown that the model
exhibits several bifurcations of codimension 1 viz. Neimark-Sacker bifurcation, tran-
scritical bifurcation and flip bifurcation on varying one parameter. The extensive
numerical simulation is performed to demonstrate the analytical findings. The sys-
tem exhibits periodic solution including flip bifurcation, Neimark-Sacker bifurcation
followed by the wide range of dense chaos. .

Keywords: Discrete model, Codimension 1, Flip bifurcation, Neimark-Sacker bi-
furcation .

1 Introduction

The resource-consumer species interaction is one of the most common and focal
research area in the field of mathematical biology. The dynamics of population
models is concerned with population size, age distribution and many other nat-
ural factors. In biological systems, there are a number of models in which time
is taken as a continuous function [1–3]. For population model this could be
seen as a overlapping situation which implies a continuous series of birth and
death processes and these models are usually performed by ordinary differential
equations.
The discrete time population models are pertinent for non-overlapping gener-
ation models [4–6] and thus seems to be more realistic than continuous one.
Many researchers investigated discrete-time models and gave interesting dy-
namics of the system by exploring several type of bifurcations [7–11].
The Lotka-Volterra prey-predator model with discrete time was firstly intro-
duced by Maynard Smith [12] and studied by Levine [13] and Liu and Xiao
[14]. It has been shown that these discrete time models undergo several bifurca-
tions such as fold bifurcation, flip bifurcation and Neimark-Sacker bifurcation.
Moreover, Hadelar and Gerstmann [15] were the first who derives a discrete
time model involving Holling type-II functional response using continuous time
model. Also the complete discussion for the bifurcations of codimension 1 and
parametric restriction for non-hyperbolicity has been done by Li and Zhang
[16]. In another study, the authors discussed the chaotic dynamics of a discrete
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prey-predator model with Holling type-II functional response [6]. Singh and
Deolia investigated a discrete-time the prey-predator model with Leslie-Gower
functional response [11]. In their study the system exhibited Neimark-Sacker
bifurcation, flip bifurcation and fold bifurcation under certain conditions.

2 Mathematical Model

Aziz-Alaoui and Daher Okiye [17] proposed the following two-dimensional prey-
predator model with modified version of Leslie-Gower and Holling type II func-
tional response:

dx

dt
=

(
r1 − b1x−

a1y

k1 + x

)
x

dy

dt
=

(
r2 −

a2y

k2 + x

)
y (1)

with positive initial conditions x(0) ≥ 0 and y(0) ≥ 0, when x(t) and y(t)
represent the population densities at time t. Here r1 denotes growth rate of
prey and b1 represents strength of competition among individuals in prey. The
parameter k1(k2) signifies the extent of protection provided by environment to
the prey (predator) and r2 describes the growth rate of y. a1(a2) measures
the maximum value per capita reduction rate of prey x (predator y). All the
parameters are assumed to be positive.
The model (1) with Michaelis-Menten type harvesting under the assumption
that same extent (k1 = k2 = k) to which environment provided protection to
both the predator and prey [18,19] is given by:

dx

dt
=

(
r1 − b1x−

a1y

k + x

)
x− cEx

m1E +m2x

dy

dt
=

(
r2 −

a2y

k + x

)
y (2)

Here c signifies catchability coefficient and E denotes harvesting effort in prey
species. Where m1 and m2 are suitable constants. All the parameters are
assumed to be positive and similar meaning as of (1).
To investigate the dynamics of the system (2), the following non-dimensional
scheme is taken:

x =
r1x

b1
, t =

t

r1
, y =

r2
1y

ab21

p =
1

b1
, α =

cEb1
m2r2

1

, γ =
b1k

r1
, δ =

m1Eb1
m2r1

, β =
r2

r1
, q =

a2

a1b1

Using the above scheme, we get the following non-dimensional system:

dx

dt
= x

(
1− x− py

γ + x
− α

δ + x

)
dy

dt
= βy

(
1− qy

γ + x

)
(3)
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with the initial conditions x(0) = x0 ≥ 0, y(0) = y0 ≥ 0.

Gupta and Chandra [20] investigated the continuous-time model (3) and
determined several local bifurcations viz. Hopf bifurcation, saddle-node, tran-
scritical bifurcation and Bogdanov-Takens bifurcation.
In order to derive discrete time model from the system (3) employing forward
Euler scheme and taking ε is the step size. Letting ε→ 1 then (n+1)th genera-
tion of the prey-predator population is governed by following set of equations:,
it is obtained

xn+1 = xn + xn

(
1− xn −

pyn
γ + xn

− α

δ + xn

)
yn+1 = yn + βyn

(
1− qyn

γ + xn

)
(4)

with initial conditions x(0) = x0, and y(0) = y0.
Now, the discrete time prey-predator model can be defined by a mapping

G :

(
x
y

)
→

x+ x
(

1− x− py
γ+x −

α
δ+x

)
y + βy

(
1− qy

γ+x

)  (5)

The map (5) is considered for the region Ω = R+
2 = {(x, y) : x ≥ 0, y ≥ 0}.

3 Existence and stability of fixed points

This section illustrates the existence and stability of the fixed points of the
map (5).
The fixed points of the map (5) are summarized as follows:

1. The trivial fixed point is E0(0, 0).
2. The semitrivial fixed points are Ex1,2

(x1,2, 0), where

x1,2 =
1

2

(
1− δ ±

√
(1− δ)2 − 4(α− δ)

)
,

δ < 1 and (δ + 1)2 > 4α.
• If α > δ, then Ex1,2

(x1,2, 0) both exits provided (δ + 1)2 > 4α, δ < 1.
• If α < δ, then Ex1

exists only.
3. Another semitrivial fixed points is Ey(0, γq ).

4. The positive fixed points are E(xy)1,2 = (x∗1,2, y
∗
1,2), where y∗1,2 =

γ+x∗
1,2

q and

x∗1,2 = 1
2

(
(1− δ − p

q )±
√

(1− δ − p
q )2 − 4δ(pq + α

δ − 1)
)

, where p
q+ α

δ > 1.

• E(xy)1,2 both exists, when p
q+δ < 1 and

(
1− δ − p

q

)2

> 4δ
(
p
q + α

δ − 1
)
.

• If
(

1− δ − p
q

)2

= 4δ
(
p
q + α

δ − 1
)

, then Ē(x̄, ȳ) exists, where x̄ = 1
2 (1−

δ − p
q ) and ȳ = γ+x̄

q .
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• If
(

1− δ − p
q

)2

< 4δ
(
p
q + α

δ − 1
)

, no positive fixed point exists.

The Jacobian matrix for the discrete map (5) as arbitrary fixed point (x̂, ŷ) is
given as

J(E) =

 2−
(

2x̂+ pγŷ
(γ+x̂)2 + αδ

(δ+x̂)2

)
− px̂
γ+x̂

qβŷ2

(γ+x̂)2 1 + β
(

1− 2qŷ
γ+x̂

) .

The corresponding characteristic equation is written as

λ2 − Trλ+Det = 0 (6)

where

Tr = 3 + β − 2x̂− pγŷ

(γ + x̂)2
− αδ

(δ + x̂)2
− 2βqŷ

γ + x̂

Det =

(
2− 2x̂− pγŷ

(γ + x̂)2
− αδ

(δ + x̂)2

)(
1 + β − 2βqŷ

γ + x̂

)
+

pqβx̂ŷ2

(γ + x̂)3

The dynamical behavior of the fixed points can be classified by the following
lemma:

Lemma 1. Consider a polynomial τ(λ) = λ2 − Trλ + Det, λ1 and λ2 be the
eigenvalues. Suppose τ(1) > 0 then

1. |λ1| < 1 and |λ2| < 1 if and only if τ(−1) > 0 and Det < 1;
2. |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) if and only if τ(−1) < 0;
3. |λ1| > 1 and |λ2| > 1 if and only if τ(−1) > 0 and Det > 1;
4. λ1 = −1 and λ2 6= 1 if and only if τ(−1) = 0 and Tr 6= 0, 2;
5. λ1 and λ2 are complex conjugate and |λ1| = |λ2| if and only if (Tr)2 −

4Det < 0 and Det = 1.

3.1 Dynamical behavior around the trivial fixed point E0(0, 0):

The Jacobian of (5) has eigenvalues λ1 = 2− α
δ and λ2 = 1 + β at trivial fixed

point E0. The fixed point E0 is a saddle when α > δ, a source when α < δ and
non-hyperbolic for both conditions α = δ and α = 3δ.

3.2 Dynamical behavior around the semitrivial fixed points:

(a) The eigenvalues of the Jacobian of the map (5) are λ1 = 2−2x1,2− αδ
(δ+x1,2)2

and λ2 = 1 + β at semitrivial fixed point Ex1,2
(x1,2, 0). Ex1,2

is a saddle

point if 1 < 2x1,2 − αδ
(δ+x1,2)2 < 3, a source if 0 ≤ 2x1,2 − αδ

(δ+x1,2)2 <

1 and non-hyperbolic for both the conditions 2x1,2 − αδ
(δ+x1,2)2 = 1 and

2x1,2 − αδ
(δ+x1,2)2 = 3.

(b) The eigenvalues are λ1 = 2 − p
q −

α
δ and λ2 = 1 − β at semitrivial fixed

point Ey(0, γq ).
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3.3 Dynamical behavior at positive fixed point Exy(x∗, y∗):

The characteristic polynomial at Exy(x∗, y∗) is obtained as

τ(λ) = λ2 − (3− β −A)λ+ (2−A+ β(B − 2))

where A(x∗) = 2x∗ + pγ
q(γ+x∗) + αδ

(δ+x∗)2 and B(x∗) = 2x∗ + p
q + αδ

(δ+x∗)2 . The

stability of the positive fixed point Exy can be discussed by using the following
results. The positive fixed point Exy(x∗, y∗) is said to be stable if:

Tr(J(Exy))−Det(J(Exy)) < 1
Tr(J(Exy)) +Det(J(Exy)) > −1
Det(J(Exy)) < 1.

(7)

Theorem 1. The dynamical behavior of the map (5) at positive fixed point
Exy(x∗, y∗) is concluded as follows:

1. Sink when 2(A−3)
B−3 < β < A−1

B−2 .

2. Source when β > max
{
A−1
B−2 ,

2(A−3)
B−3

}
or β < 2(A−3)

B−3 .

3. Non-hyperbolic if one of the following condition holds:

(a) β = 2(A−3)
B−3 , β 6= A−2

B−2 and β 6= A
B−2 .

(b) β = A−1
B−2 and (1 + β +A)2 < 4Bβ + 8.

4 Bifurcation of codimension 1

This subsection determines the conditions of occurrence of flip bifurcation and
Neimark-Sacker bifurcation at positive fixed point Exy(x∗, y∗)

Theorem 2. (i) Flip bifurcation is occurred at β = 2(A−3)
B−3 (ii) Neimark-

Sacker bifurcation is occurred at β = A−1
B−2 around the positive fixed point

Exy(x∗, y∗) in map (5).

Proof.: It is clear, the Jacobian J has eigenvalues |λ1| 6= 1 and λ2 = −1 at the

positive fixed point Exy(x∗, y∗) for β = 2(A−3)
B−3 . i.e. Exy is non-hyperbolic.

Let u = x − x∗, v = y − y∗ and µ = β − β1, where β1 = 2(A−3)
B−3 . The fixed

point Exy(x∗, y∗) is shifted to the origin and expanding the right-hand side of
map (5), it yields

(
u
v

)
→

a11u+ a12v + a13uv + a14u
2 + a15u

2v +O(|u, v|4)
b11u+ b12v + b13µ+ b14v

2 + b15µv + b16u
2 + b17µu

+b18uv + b19uv
2 +O(|u, v|4)

. (8)

where a11 = 2 − 2x∗ − αδ
(δ+x∗)2 −

pγy∗

(γ+x∗)2 , a12 = − px∗

γ+x∗ , a13 = − pγ
(γ+x∗)2 ,

a14 =
(

αδ
(δ+x∗)3 + pγy∗

(γ+x∗)3 − 1
)

, a15 = pγ
(γ+x∗)3 , b11 = qβ1(y∗)2

(γ+x∗)2 , b12 = 1 +

β1

(
1− 2qy∗

γ+x∗

)
, b13 = y∗

(
1− qy∗

γ+x∗

)
, b14 = − qβ1

γ+x∗ , b15 =
(

1− 2qy∗

γ+x∗

)
, b16 =
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− qβ1(y∗)2

(γ+x∗)3 , b17 = q(y∗)2

(γ+x∗)2 , b18 = 2qβ1y
∗

(γ+x∗)2 and b19 = − qβ1(y∗)2

(γ+x∗)3

Now linearizing the map (8) at (0, 0) and forming an invertible matrix,

T =

λ1 − a11 −a11 − 1 0
a12 a12 0
0 0 1

 .

By using the transformation

u
v
µ

 = T

X
Y
w

 , the map (8) turns into

X
Y
w

→
λ1 0 0

0 −1 0
0 0 1

X
Y
w

+

 F1(X,Y,w)
G1(X,Y,w)

0


where

F1(X,Y,w)= k1X
2 + k2Y

2 + k3XY + k4X
2Y + k5XY

2 + k6X
3 +O(|X,Y |4)

G1(X,Y,w)= e1Y
2 + e2wY + k3wX + e4XY + e5X

2 + e6X
3 + e7Y

3 +O(|X,Y |4).

Here k1 = a12a13(λ1−a11)+a14(λ1−a11)2, k2 = a14(1+a11)2−a12a13(1+a11),
k3 = a12a13(λ1−a11)−a12a13(1+a11)−2a14(λ1−a11)(1+a11), k4 = a15(λ1−
a11)2 − 2a15(λ1 − a11)(1 + a11), k5 = 2a15(1 + a11)2 − 2(λ1 − a11)(1 + a11),
k6 = a15(λ1−a11)2, e1 = b14+b16(1+a11)2−b18(1+a11), e2 = b15−b17(1+a11),
e3 = b15 + b17(λ1 − a11), e4 = 2b14 − 2b16(λ1 − a11)(1 + a11) + b18(λ1 − a11)−
b18(1 + a11), e5 = b14 + b16(λ1 − a11)2 + b18(λ1 − a11), e6 = a2

12(λ1 − a11) and
e7 = −a2

12(1 + a11)
To discuss the stability of (X,Y ) = (0, 0) near w = 0, the center manifold is
considered as

Zc(0) = {(X,Y,w) ∈ R3|X = S(Y,w), S(0, 0) = 0, DS(0, 0) = 0},

here X and w are sufficiently small. Let

S(Y,w) = S1w
2 + S2wY + S3Y

2 +O(|Y,w|3). (9)

Then

κ(S(Y,w), w) = S(−Y +G1(S(Y,w), Y, w))−λ1S(Y,w)−F1(S(Y,w), Y, w) = 0.
(10)

Substituting (9) into (10) and comparing the coefficients of (10) we obtain
S1 = S2 = 0 and S3 = k2

1−λ1
.

Then the map (8) restricted to the center manifold is given by

Y ∼ G̃1(Y,w) = e1Y
2 − Y + e2wY + e3S3wY

2 + e4S3Y
3 + e5S

2
3Y

4 + e7Y
3 +O|Y,w|5

It can be seen that G̃1(0, 0) = 0, ∂G̃1

∂Y (0, 0) = −1, ∂G̃1

∂w (0, 0) = 0, ∂2G̃1

∂Y 2 (0, 0) =

2e1 6= 0, ∂
2G̃1

∂Y w (0, 0) = e2 6= 0 and ∂3F̃1

∂Y 3 (0, 0) = 6(e4S3 + e7).
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%1 =

(
1

2

∂F̃1

∂w

∂2F̃1

∂X2
+
∂2F̃1

∂Xw

)

%2 =

(1

2

∂2F̃1

∂X2

)2

+
1

6

∂3F̃1

∂X3


From above equation, %1 = e2 6= 0 and %2 = e4S3 + e2

1 6= 0 (see more details
[21,22]).
Therefore, the map (5) occurs flip bifurcation at fixed point Exy for bifurcation

parameter β = 2(A−3)
B−2 .

(ii) Now, we discuss Neimark-Sacker bifurcation at fixed point Exy is non-
hyperbolic at β = A−1

B−2 for |λ1| = 1, |λ2| = 1.
We transform the fixed point Exy(x∗, y∗) to the origin and expand the right-
hand side of map (5) around the origin by using following translation u = x−x∗,
v = y − y∗ and β1 = A−1

B−2 . The map (5) yields(
u
v

)
→
{
a11u+ a12v + a13uv + a14u

2 + a15u
2v +O(|u, v|4)

b11u+ b12v + b13uv + b14u
2 + b15v

2 + b16u
2v + b17uv

2 +O(|u, v|4)
(11)

where a11 = 2− 2x∗ − αδ
(δ+x∗)2 −

pγy∗

(γ+x∗)2 , a12 = − px∗

γ+x∗ , a13 = − pγ
(γ+x∗)2 , a14 =(

αδ
(δ+x∗)3 + pγy∗

(γ+x∗)3 − 1
)

, a15 = pγ
(γ+x∗)3 , b11 = qβ(y∗)2

(γ+x∗)2 , b12 = 1+β
(

1− 2qy∗

γ+x∗

)
,

b13 = 2qβy∗

(γ+x∗)2 , b14 = − qβ(y∗)2

(γ+x∗)3 , b15 = − qβ
γ+x∗ , b16 = − 2qβy∗

(γ+x∗)3 , b17 = qβ
(γ+x∗)2 .

Let us consider the following set of complex eigenvalues, obtained by linearizing
the map (11) at (0, 0)

λ1,2 =
m(β)± ι

√
4n(β)− (m(β))2

2

with |λ1,2| =
√
n(β), followed by the transversality condition(

d|λ1,2|
dβ

)
β= A−1

B−2

=
−1

2

√
n
(
A−1
B−2

) 6= 0.

It is required to verify nondegeneracy condition λj1,2 6= 1, j = 1, 2, 3, 4 which
is equivalent to m(β) 6= 0,−1 i.e. A 6= 4

B−1 and A 6= B+2
B−1 .

Now, assume an invertible matrix

T =

[
a12 0

M − a11 N

]
M = m(β)

2 , N =
√

4n(β)− (m(β))2.
The map (11) becomes(

X
Y

)
→
(
M −N
N M

)(
X
Y

)
+

(
F1(X,Y )
G1(X,Y )

)
(12)
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F1(X,Y ) = k11X
2 +K22X

3 + k33XY + k44X
2Y +O(|X,Y |4)

G1(X,Y ) = e11X
2 + e22Y

2 + e33XY + e44X
2Y + e55X

3 +O(|X,Y |4),

k11 = a12a13(M−a11)+a2
12a14, k22 = a2

12a15(M−a11), k33 = −a12a13N , k44 =
−a2

12a15N , e11 = a12b13(M −a11) +a2
12b14 + b15(M −a11)2 +a12b17(M −a11)2,

e22 = (b15 +a12b17)N2, e33 = −N(a12b13 + 2b15(M −a11) + 2a12b17(M −a11)),
e44 = −a2

12b16N and e55 = b16a
2
12(M − a11).

It is easily noticed that (12) is exactly in form of center manifold, the non-
degeneracy condition for the Neimark-Sacker bifurcation is given by

β̂ = −Re
(

(1− 2λ)λ̄2

1− λ
Φ11Φ20

)
− 1

2
|Φ11|2 − |Φ02|2 +Re(λ̄Φ21) (13)

where

Φ20 =
1

4
[k11 + e33 + i(e11 − e22 − k33)](0,0)

Φ11 =
1

2
[k11 + i(e11 + e22)](0,0)

Φ02 =
1

4
[k11 − e33 + i(e11 − e22 + k33)](0,0)

Φ21 =
1

8
[3k22 + e44 + i(3e55 − k44)](0,0) .

Thus, the aforementioned argument provides following theorem for the occur-
rence of Neimark-Sacker bifurcation [21,22]:

Theorem 3. The map (5) undergoes Neimark-Sacker bifurcation if the both

conditions β 6= 3 − A and β 6= 4 − A holds and β̂ 6= 0 at fixed point Exy.

Moreover, if β̂ < 0 (β̂ > 0) then a unique closed invariant curve bifurcates at
β = A−1

B−2 which is supercritical (subcritical) and asymptotically stable (unsta-
ble).

5 Numerical Simulation

In order to substantiate the obtained results and explore the complex dynamics
in the map (5), the numerical simulation is performed for the following set of
parameters [20]:

p = 0.40, q = 1.0, α = 0.10, γ = 0.10, δ = 0.05, β = 0.25

For these set of parameters, the stability conditions of the fixed point Exy(x∗, y∗)
are satisfied. Fig.1 shows the stable dynamics in the system (5). It confirms
that both species coexist and converge to fixed point Exy(0.35, 0.45).
For these parameters, the results of first part of theorem 2 holds i.e. %1 =
−3.13426, %2 = 2741.9, hence the system (5) undergoes flip bifurcation at Exy
and as %2 > 0 which shows period-2 point and its stability. Fig.2 gives bi-
furcation diagram for the parameter β at α = 0.095 (without changing other
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parameters). The system (5) exhibits flip bifurcation followed by chaos (pe-
riod doubling route to chaos) at the parameter β. The system shows a stable
window upto β = 2.3, followed by a cascade of period doubling. Further a
dense chaotic region is occurred for β ∈ (2.862, 3.012) along with intermittent
quasi periodic windows at (2.94, 2.952) which ends to a stable window beyond
β = 3.012. The maximal Lyapunov exponent (MLE) for the same values is
plotted in fig.3. The positive value of Lyapunov exponent confirms the pres-
ence of chaos in the system.

Further for substantiating the results of theorem 2(ii), we choose the new set
of parameters

p = 0.9, q = 2.0, α = 0.1695, γ = 0.10, δ = 0.3

The value of nondegeneracy condition for Neimark-Sacker bifurcation is β̂ =
−0.13563 < 0. According to theorem 3, the fixed point Exy is stable when
β < β1, E∗

xy loses its stability and becomes unstable, a closed invariant curve

appears when β > β1. And β̂ < 0, supercritical NSB is occurred. The bifurca-
tion diagram is plotted in (β, x) plane at β1 = 0.245 in fig.4, a closed invariant
curve appears.

6 Conclusion

In this paper, a discretized form of a modified Leslie-Gower prey-predator
model with Michaelis-Menten type harvesting in prey, has been studied. Bifur-
cation theory and center manifold theory has been employed to exhibit various
bifurcations of codimension 1 viz. Neimark-Sacker bifurcation, flip bifurcation.
The approximate expression of bifurcation curves is also determined.The nu-
merical simulation gives an extensive presentation about occurrence of different
bifurcation and chaos.
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Fig. 2. Stable time series at β = 0.25

Fig. 3. Maximal Lyaupnov exponent w. r. to β

Fig. 4. NSB diagram w. r. to β

953



 

954



Connecting Bernoulli and Schrödinger Equations and 

its Impact on Quantum-Mechanic Wave Function 

and Entanglement Problems 
 

Siavash H. Sohrab 

 

Northwestern University, Robert R. McCormick School of Engineering and Applied 

Science, Department of Mechanical Engineering, 2145 Sheridan Road, Evanston, Illinois  

60208-3111, U.S.A.  

E-mail: s-sohrab@northwestern.edu 

 

Abstract. An invariant model of Boltzmann statistical mechanics is applied to derive 

invariant Schrödinger equation of quantum mechanics from invariant Bernoulli equation 

of hydrodynamics.  The results suggest new perspectives regarding quantum mechanics 
wave function and its collapse, stationary versus propagating wave functions, and wave-

particle duality. The invariant hydrodynamic model also leads to the definition of 

generalized shock waves in “supersonic” flows at molecular-, electro-, and chromo-

dynamic scales with (Mach, Lorentz, and Michelson) numbers exceeding unity. The 
invariant internal hydro-thermo-diffusive structure of such generalized “shock” waves 

are described.   
 

1  Introduction 
 

It is well known that our universe involves statistical fields at five major scales 

that are approximately separated by a factor of 10-17, beginning at exceedingly 

small Planck scale of 10-35 m, electrodynamics 10-17m, molecular-dynamics 100 

m, astrophysics 1017 m, and finally cosmology 1035 m, with each statistical field 

having a characteristic “atomic” particle graviton, electron, molecule, star, and 

galaxy. Schematic diagram in Fig. 1 shows hierarchies of such statistical fields 

from photonic to cosmic scales. Under the assumption of weak interactive 

forces known as ideal gas, Boltzmann statistical mechanics governs the 

generalized thermodynamics associated with such statistical fields of diverse 

scales. Studies on generalized Boltzmann statistical mechanics and turbulent 

phenomena that are common universal features shared by stochastic quantum 

fields [1-17] and classical hydrodynamic fields [18-30] resulted in recent 

introduction of a scale-invariant model of statistical mechanics and its 

applications to thermodynamics [31, 32], fluid mechanics [33,34], and quantum 

mechanics [35-37] at intermediate, large, and small scales.    

 In the present study, after a brief description of a scale-invariant model of 

statistical mechanics, the invariant forms of conservation equations are 

presented. Next, derivation of invariant Schrödinger equation from invariant 

Bernoulli equation for potential incompressible flow is discussed. The nature of 

quantum mechanics wave functions for both time-independent and time-

dependent Schrödinger equations respectively associated with time-periodic 

stationary versus propagating states are identified.  Also, the objective (real) 
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versus subjective (imaginary) aspects of wave function [3] in connection to 

particle localization and Born probabilistic interpretation are studied.   

 The invariant forms of conservation equations result in introduction of an 

invariant definition of Mach number leading to a hierarchy of generalized 

normal “shock” waves from photonic to cosmic scales. The internal hydro-

thermo-diffusive structure of such shock waves is examined and some of its 

implications to dissipation in quantum gravity and black holes are discussed. 

 

2  Scale–Invariant Model of Boltzmann Statistical Mechanics 
 

The scale-invariant model of statistical mechanics for equilibrium galactic-, 

planetary-, hydro-system-, fluid-element-, eddy-, cluster-, molecular-, atomic-, 

subatomic-, kromo-, and tachyon-dynamics corresponding to the scale g, p, 

h, f, e, c, m, a, s, k, and t is schematically shown on the left hand side of Fig. 1.  
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Fig. 1. A scale-invariant model of statistical mechanics. Equilibrium--Dynamics on the 

left-hand-side and non-equilibrium Laminar--Dynamics on the right-hand-side for 

scales  = g, p, h, f, e, c, m, a, s, k, and t as defined in [35]. Characteristic lengths of 

(system, element, “atom”) are (L , ),    and  is the mean-free-path. 

 

For each statistical field, one defines particles that form the background fluid 

and are viewed as point-mass or "atom" of the field.  Next, the elements of the 

field are defined as finite-sized composite entities composed of an ensemble of 

"atoms". Finally, ensemble of a large number of "elements" is defined as the 

statistical "system" at that particular scale. The most-probable element of scale  

is identified as the “atom” (system) of the next higher  (lower ) scale.   

 Following the classical methods [19, 38-42], the invariant definitions of the 

density 

, and the velocity of atom u


, element v


, and system w


 at the scale 

are given as [36] 
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w 1
ρ n m m f du               ,            
       
   u v            (1) 

 

1

w 1
m f du                   ,            



       
  v u w v

  
              (2)  

 

Similarly, the invariant definitions of the peculiar and diffusion velocities are 

introduced as  
 

1
      ,             ,      

       
   V u v V v w V V                     (3) 

 

 Following the classical methods [19, 38-40], the scale-invariant forms of 

mass, thermal energy, linear and angular momentum conservation equations at 

scale are given as [33, 34]   
 

i

i i( )
t



  




   


v                     (4) 

i

i

ε
(ε ) 0

t



 




 


v                    (5) 

i

i ij
( )

t



  




  


P

p
p v                (6) 

 

iβ

iβ β iβ β β

β

( )
t


  


ωv v


                         (7) 

involving the volumetric density of thermal energy 
i i i

ρ h
  

  , linear 

momentum
i i i

ρ
  
p v , and angular momentum

i i i
ρ

  
  .  Also, 

i
  is the 

chemical reaction rate and h  is the absolute enthalpy [32].  

 It is noted that the time coordinates in Eqs. (4-7) also have a scale subscript 

.  In a recent study [43], the nature of physical space and time was investigated 

and the concepts of internal spacetime versus external space and time were 

introduced. Assuming that a statistical field at scale  is in thermodynamic 

equilibrium with the physical space at scale (within which is resides, both 

fields will have a homogenous constant temperature 
1

T T
 
  defined in terms 

of Wien wavelength of particle thermal oscillations as [32] 

2 2

1 w 1 1 w 1m u m v kT k                                       (8a)  

Hence, constant internal measures of (extension w , duration w ) will be 

associated with every “point” of space at temperature
1

T T
 
 .  For example, 
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at cosmic scale  = g one employs internal (ruler, clock) of the lower scale of 

astrophysics = s to define external space and time coordinates defined as [43] 
 

x y z wx 1 t w 1
(x , y , z ) ( , , )           ,         N N N t N

         
                   (8b) 

 

with the four numbers
x y z t

( , , , )N N N N
   

 being independent numbers. 

 

3 Derivation of Invariant Schrödinger Equation from 

Invariant Bernoulli Equation 
 

 The connection between energy spectrum of photon gas given by Planck 

[44] distribution and both energy and dissipation spectrum of isotropic 

stationary turbulence has been recognized [35, 36].  In a recent study [35], the 

gap between problems of quantum mechanics and turbulence was investigated 

through connections between Cauchy, Euler, Bernoulli equations of 

hydrodynamics, Hamilton-Jacobi equation of classical mechanics, and 

Schrödinger equation of quantum mechanics.  In a more recent investigation on 

foundation of classical thermodynamics [32] it was shown that stochastic 

definitions of Planck k k rkh h m c    and Boltzmann k k rkk k m c    

universal constants involve the speed of light identified as root-mean-square 

speed of photons rkc v  in Casimir [45] vacuum. The new insights into the 

statistical nature of both Planck and Boltzmann universal constants as well as 

the definition of absolute temperature [32] suggest a slightly modified 

derivation of Schrödinger equation [35, 46] discussed in the following. 

 For potential flow 0
β

 v  with velocity 
β

 v   [35], equation (6) 

leads to invariant Bernoulli equation  
 

2

β β
( )

0
2

V
mΦ mΦ

t m


 
  


             (9) 

 

where the atomic potential energy is (p ) p p ˆn vV m    
      

 .  By 

Eq. (3), local velocity in an arbitrary direction is expressed in terms of the most 

probable or Wien velocity of the lower scale and peculiar velocity as 

perturbation  
 

x x x wx 1 x
,         1        

    
      v u V v V                (10) 

 

In absence of vorticity 
w 1

0
  

     v v V    equation (10) gives 

 

   m m m  
    

  
wβ-1

                (11) 
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Comparison of Eq. (9) with Hamilton-Jacobi equation of classical mechanics 

[2] leads to the definition of invariant action [36] 
 

wβ-1 wβ-1 βS S S(x t ) m Φ m Φ m Φ,         
       =        (12) 

 

and quantum mechanics wave function  defined as 

 

S (x t ) / m(x ,t ) , Φ 
      

    =               (13)          

 

Substitution from equations (12)-(13) into Bernoulli Eq. (9) and separation of 

zeroth and first power of  leads to [35] 
 

2

wβ wβ
( )

0
2

S S
V

t m



 
  


                 (14) 

 

β 2

wx β-1 β β( 0
2

v ) ( )
t


 



 
 


               (15) 

 

 To reveal the “stationary states” of the system one moves to coordinate 

system moving at the most-probable speed 

 

β-1wxβ β βvz = x t 
                      (16) 

 

The solution of equation (14) results in conservation of energy due to internal 

and peculiar translational motions    
 

 

tβ tβE T V                         (17) 
 

where 
 

2 2 2

tβ β β-1 tβ β β-1 β β β
ˆv pv Vv    ,         ,     wx wx xE m T m / 2 V m / 2        (18)  

 

The equality of translational kinetic and potential energies 
tβ tβ

T V  is in 

accordance with Boltzmann equipartition principle. In Eq. (18) the velocities 

refer to periodic motions in direction of a single translational coordinate say 

(x+, x-) and Eq. (17) corresponds to atomic translational enthalpy [32] 
 

tβ tβ β β
ˆ ˆ ˆh u p v 2kT                       (19) 

 

where 
2 2 2 2

tβ wx wx wx wxû mv mv / 2 mv / 2 mv      is atomic internal 

translational kinetic energy [32].  
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 As described in [32], the conventional assumption of particle undergoing 

translational motion along three degrees of freedom (x, y, z) is not appropriate 

since particle cannot simultaneously move in three independent coordinate 

directions. Also, according to Clausius [47], the kinetic energy due to random 

rotational and vibrational motions of particles cannot be properly neglected.  

Therefore, as discussed in [32], the conventionally assumed random 

translational kinetic energy in (y+, y-) and (z+, z-) directions are instead 

respectively attributed to particle rotational (+, -) and vibrational (r+, r-) 

kinetic energies [32] 
 

β β
2

tyû vwym                    
2

rβ β θβû kTI                 (20a) 

 

β β β
2

tzû vwzm                      
2

β β βv kTû rk                (20b) 

 

According to equations (19-20), particles have four simultaneously independent 

degrees of freedom namely, translational, rotational, vibrational, and potential.  

Boltzmann principle of equipartition of energy requires that all four degrees of 

freedom have the same energy resulting in atomic internal energy and atomic 

enthalpy of ideal gas respectively defined as [32] 
 

ββ tβ rβ vβ
ˆ ˆ ˆ ˆ= u u u u 3kTE                           (21) 

 

ββ β β β β
ˆ ˆ ˆ = h u p v 4kTH                            (22) 

 

Total internal energy, potential energy, and enthalpy are 

respectively βû=N E N U=
   

, β β ββpN V V= , and β β β ββ
ˆN H N Hh= = such 

that [32] 

 

β β β β  pH U V                               (23) 

 

 In summary, by the above procedure Bernoulli equation in “three 

dimension” accounts for three types of internal kinetic energies E

as well as 

potential energy β β β
ˆ= p vV that is also a kinetic energy due to random external 

peculiar motion of particles.  Another perspective concerning the results in Eqs. 

(19) and (20) is to view the particle as a small cylindrical object with period 

oscillations in axial (z+, z-), angular (+, -), and radial (r+, r-) directions in a 

cylindrical coordinate (z, , r) system.   

 Next, Bernoulli equation in the first order of  is considered. In the 

limit 0ε , taking time derivative of Eq. (15) and substituting for 
β β

/ t    in 

the resulting equation from Eq. (15) itself leads to the wave equation [35] 
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2

β 2 2

wβ-1 β2
v z

t







 


                           (24) 

 

Since wave function in Eq. (24) guides the motion of “particle” that is a 

singularity on the wave, one moves to the adjacent lower scale () and 

introduces space and time coordinates [35, 43]  

 

 β( )        ,       ( )β o o= z z / ε = t t / ε        
    

    (25) 

 
It is important to emphasize that the time and space coordinates (25) are based 

on internal spacetime governed by thermodynamic temperature T as 

discussed in [43].  Internal wavelength and frequency are not independent and 

wave number /k 2
 
    and angular frequency 2

 
    must follow the 

relations  

 

w r w r3            ,            3k = k =                               (26) 

 
in order to satisfy the relationship between root-mean–square and most-probable 

speeds
r+ w

v 3v
 
  [43]. Therefore, one introduces the scaled space and time 

coordinates  
 

 3              ,            3    t  =                       (27) 

 

Substitution from Eq. (27) into Eq. (24) leads to the wave 

equation
r+ w

v 3v
 
  

2

β 2 2

β-1 β2
c

t







 


                         (28) 

 

with root-mean-square speed or speed of “sound” defined as
2 2 2

wr
c v v3 
  . 

 The separated product solution of Eq. (28) is the complex wave function 

 

r rr r3

β ( ) ( )e e e e
i3k  ik  i  i t 

Φ Φ t
   

                   (29) 
 

with frequency r 1 associated with stationary state thus the vanishing of time 

dependence. In other words, because at stationary state the mean velocity must 
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be zero, the frequency relation 
2 2 2 2

r r2    must hold in order to maintain 

the stationary internal kinetic energy given by the relation from Eq. (21). 

 The wave equation (28) and the solution in Eq. (29) after substitution from 

Eq. (23) for internal energy U


 result in the invariant time-independent 

Schrödinger equation [35, 37, 48] 
 

2

2

2m
( ) 0H V

 



                      (30) 

 

By equations (13, 27-30)   represent stationary state of spatial geometry of 

velocity potential ( )Φ
  governing the peculiar motion of particles.  Clearly, any 

interference with the stationary field by a measuring device will disturb the 

velocity potential and hence lead to “collapse of the wave function”


 . 

 The time-independent Schrödinger equation is next employed to define a 

new time-dependent wave function  
 

β

r r2i (4/3)i
( )( ) ( ) ( )e e

t t
t Φ t

  




 

 
               (31) 

 

involving a new time coordinate 
1/2

2 )(2 / 3) ( 3/t t
  
    . The 

multiplicative factor of two in frequency is because the period of traveling wave 

is half of that of stationary wave. The wave function in Eq. (31) with the factor 

of (4/3) multiplying the frequency r  results in total atomic thermal energy 

or atomic enthalpy 
2 2

r wr mv mv kT4 4 4 4 H
              . In view 

of the definition of invariant Planck constant r rh v hm       [32], equation 

(31) gives energy and momentum operators [49] 
  

β=i H
t













                          (32a) 

 

rβ=i p











                           (32b) 

where
rβ rβ

vp m


 is the root-mean-square momentum.  Multiplying Eq. (30) by 

the new time-dependent part 
r(4/3)i i /

e e
t Ht  
 from Eq. (31) and 

substitution from Eq. (32a) leads to the invariant time-dependent Schrödinger 

equation [35, 48] 
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2

2

0
2m

i V
t



    

 


   


                 (33) 

 

Therefore, the energy in Eq. (32a) corresponding to the classical Hamiltonian is 

the atomic enthalpy
β

2 2

w(4 / 3)mc (4 / 3)(3mv ) 4kTH      that is the sum of 

the atomic internal energy
2 2 2

β r wmv mc mv 3kT3E         and atomic 

potential energy
2

x β ββ mV p / 3 kTv̂ UV   
    . Hence, enthalpy as the sum 

of kinetic or “electromagnetic” energy βU  and potential or “gravitational” 

energy βV  of equilibrium radiation in enclosures is in exact agreement with the 

pioneering prediction of Hasenöhrl [50, 51] 

 
2 2 2

β β β mc (1 / 3)mc (4 / 3)mcH E V                  (34) 

 

However, as opposed to 
2 2 2

β x y zp p p / 2m( )E    in classical model [49], the 

atomic internal energy is now defined as the kinetic energy associated with 

internal translational, rotational, and vibrational degrees of freedom [32] in 

accordance with Eq. (21).  

        Since the most probable element at scale  is the entire system of statistical 

field at lower scale (see Fig.1), once again one finds a velocity potential 

1
Φ


 hence a new wave function 

1 1
Ψ =Φ

 
 Therefore, in harmony with de 

Broglie [2, 3] picture of quantum mechanics, motion of “particle” or “wave-

packet” is guided by an external wave function as shown in Fig. 2.   
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Fig. 2 Macroscopic wave functions  or de Broglie guidance waves at (ECD), (EMD), 

and (EAD) scales that guide particles identified as wave-packets or de Broglie matter-

waves [46]. 
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         As an example, let us consider stationary fluid corresponding to the field 

of equilibrium cluster-dynamics c where the “atom” is a cluster 
c wm
u v  

that by Eq. (2) is the most-probable element of the adjacent lower scale of 

equilibrium molecular-dynamicsm. The random motion of clusters 

accounts for the phenomena of Brownian motions as discussed in [35].  The 

molecules as sub-particles of c field are confined within the most-probable 

molecular-cluster that is stabilized by an external force induced by Poincaré 

stress [35] and follow the wave equation (28) hence Schrödinger equation (30).  

It is important to emphasize that the wave equation (28) for quantum mechanics 

wave function c  by definition (13) is the velocity potential of the peculiar 

particle velocity in ECD field. Therefore, in harmony with de Broglie picture of 

quantum mechanics [2, 3], the “outer” scale = c wave function 
c

 

 guides 

the motion of particle or molecule identified as wave-packet as shown in Fig. 2.   

 In order to connect the quantum mechanics wave function to particle 

localization, one moves to the stationary coordinates in Eq. (16) and obtains for 

the first perturbation of density 
o  

     from continuity equation (4) in 

the absence of chemical reactions  

 

w
v . 0



 




  


+                  (35) 

 

Taking time derivative of Eq. (35) and substituting for 
β β

/  
 
in the resulting 

equation from equation (35) itself one obtains the wave equation propagating at  

w -1
v


 similar to Eq. (24) that after the introduction of scaled coordinates in Eq. 

(27) leads to the density wave equation [52] 
 

2

2 2

12
c

t



  



 
  


                 (36) 

 

Hence, under stationary states, density hence particle localization correlate with 

quantum mechanics wave function


 .  Indeed, by equations (35) and (36) it 

can be shown that 
1/2

  also satisfies a wave equation similar to Eq. (36) that 

when combined with Eq. (28) through cross-multiplication result in a new 

solution hence a modified quantum mechanics wave function 
1/2

 
   such 

that 


  
  in harmony with the classical result [49].  Therefore, both 

objective and subjective aspect of quantum mechanics wave function discussed 

by de Broglie [3] are clarified.  This is because density is the real hence 
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objective part of 


  that accounts for particle localization. On the other hand, 

the complex i.e. imaginary part of 


  is its subjective part that accounts for 

normalization hence success of Born [53] probabilistic interpretation of 


 . 

 The results shown in Fig. 2 and the objective versus subjective aspects of 


 discussed above also resolve the wave-particle duality problem in quantum 

mechanics.  This is because particle that appears as a local singularity is actually 

a de Broglie wave packet at scale  that is embedded within and is guided by 

an “external” complex hence virtual wave function 


  associated with velocity 

potential of peculiar atomic motions in the background space composed of 

atoms of the same scale. The adjective “external” is because the velocity 

potential Φ
 

   refers to peculiar motion at outer scale .   

 According to the new paradigm of physical foundation of quantum 

mechanics each equilibrium statistical field is composed of a spectrum of 

cluster or wave-packet sizes containing “atoms” with velocity, speed, and 

energy respectively following Gauss, Maxwell-Boltzmann, and Planck 

distribution functions.  For example, the statistical field of equilibrium-electro-

dynamics ESD (Fig. 1) takes place within and is in thermodynamic equilibrium 

with the background physical space that is the field of EKD or Casimir vacuum. 

In view of Maxwell-Boltzmann distribution function, the spectrum of “atomic” 

clusters must remain stochastically-stationary by the principle of detailed 

balance.  Transition of an electron from a small fast-oscillating “atom” (high 

energy-level-j) to a large slowly-oscillating “atom” (low energy-level-i) will 

results in emission of a “sub-particle” that is a photon ji to carry away the 

excess energy given by Bohr [54] frequency formula
ji j i

h( )
  

     as 

schematically shown in Fig. 3a,  

 

         

atom-j

atom-i

subparticle

aj

ai

s ji

photon

kji

             

j

i

ji

2 ji

element-j

element-i

atom-ji
subatom-ji

   
 

(a)                                                                (b) 

 
Fig. 3  (a) Transition of electron sij from atom-j to atom-i leading to emission of photon 

kij (b) Generalized transitions [36]. 

 

Therefore, stochastically stationary sizes of particle clusters (energy-levels) are 

identified as Bohr stationary-states of quantum mechanics [54] and must satisfy 
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the stationarity criteria imposed by Maxwell-Boltzmann distribution. A 

generalized scale-invariant concept of “atomic” transitions is shown in Fig. 3b.   

For example, at cosmic scales  g (Fig. 1), transition of an “atom” i.e. galaxy 

from a small rapidly-oscillating galactic cluster (high-energy-level j) to a large 

slowly-oscillating cluster (low-energy-level i) results in emission of a star sij 

that constitutes a “subatomic” particle of cosmic field [43].  Such quantum 

transitions between spectrums of particle clusters (Fig. 3) are in harmony with 

quantum transitions between different “cells” in recent cellular automaton 

model of quantum mechanics [55]. 

 Finally, we examine the influence of the nonlinear term in Eq. (15) by 

taking the time derivative of equation (15) and substituting for 
β

/ 


  in the 

result from Eq. (15) itself, and introducing internal coordinates from Eq. (25) to 

obtain the non-linear equation 
 

2
2 2 2 2 2

w 1 w 12
v v2 ( )      

 
          


       (37) 

 

Comparisons of numerical analysis of Eq. (37) for double-slit problem with 

results obtained from non-linear Schrödinger equations involving what de 

Broglie called quantum potential in de Broglie-Bohm [56] model of quantum 

mechanics will be most interesting. 

 

4 Scale-Invariant Model of Normal Shock and its Hydro-

Thermo-Diffusive Structure 
 

 The wave equations (28) and (36) correspond to “stochastically stationary” 

equilibrium state with coordinate system β β w βv tz = x  
    involving the most 

probable speed
βwv .  Parallel to density wave in Eq. (36), one obtains a 

momentum wave equation from momentum conservation equation (6) that after 

introduction of coordinates in Eq. (27) results in  
 

2

2 2

12
c

t



  




 



v
v                  (38)  

 

The momentum waves in Eq. (38) propagate at the speed of “sound” or root-

mean-square speed 
1 w 1r 1

3c v v
  

  of molecules [32]. Similar 

procedures applied to conservation equations (4)-(5) lead to density, 

temperature (thermal), and pressure waves [52] 
 

2

2 2

12

f
= c f

t



  







        ,        f = ,  T ,  p                     (39) 
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The derivation of Eq. (39) involves the assumption of ideal gas p TR
   
   

with gas constant as ratio of universal gas constant and molecular weight 

/ w
o

R R
 
 and the absence of mass and heat diffusivities.   

 Since each statistical field in the hierarchy (Fig.1) has a root-mean-square 

speed 
r

v


 and usually a much faster “atomic” speed u


, in view of (39) one 

may associate a “wave” and a “particle” speed with each statistical field [43,52] 

 

r
v c 

   Wave speed                                                (40a) 

w 1u v           Particle emission speed                                                   (40a) 

 

For example, in statistical field of ECD at scale  = c the sound waves occur 

at the adjacent lower LMD scale  = m and follow Eq. (39) and hence 
 

mr m
v c              Acoustic speed                                              (41a) 

m wau v           Particle emission speed                                                 (41b) 
 

where the speed of “sound” waves in standard atmospher is about 

mr r m
340 m / sv v c 

  [57]. The velocity of particle emission in Eq. 

(41b) on the other hand is the speed of single molecule m wa 1200 m / su v   

that is the speed of typical detonation wave [58].   

 At the scale LKD (Fig. 1) physical space is identified as Casimir vacuum 

[45] and is considered to be a compressible fluid, Planck compressible ether 

[59] as discussed in [60].  Lorentz perceptions about the medium of space as 

Aristotle or Huygens ether [60] is further described in the following quotation 

by Verhulst [61] from Lorentz 1915 lecture at the Royal Academy of Sciences 

in Amsterdam: 
 

“Why can we not speak of the ether instead of vacuum?  Space and time are 

not symmetric; a material point can at different times be at different spots, 

but not in different places at the same time” 
 

Therefore, it is reasonable to anticipate that density waves in Eq. (35) will be 

connected to waves of space curvature thus corresponding to the recently 

observed gravitational waves first discussed by Poincaré [62].  It is ironic that 

in their 1935 paper submitted to Physical Review, Einstein and Rosen denied 

the existence of gravitational waves but later changed their opinion due to 

discovery of the error by Robertson [63]. Although gravitational waves travel at 

the speed of light +

8

kr k
v v c c 2.9978 10 m/s gw     , gravitational 

emission (gravitational radiation) [52] propagates at exceedingly larger speed 

of tachyon waves estimated as 
13

t 7.7c 10 c   making the entire universe 

causally connected [52, 60].  This is in harmony with the perceptions of Laplace 

who, as was noted by Poincaré [64], believed that the speed of gravitational 
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signal is a million times faster than that of light. Such superluminal signals 

could resolve the entanglement problem by providing for ontological 

description of long-distance correlations between entangled particles such as 

photons [55]. 

     The scale-invariant definition of the speed of “sound” waves described 

above leads to invariant dimensionless number v / c
  called (Mach, Lorentz, 

Michelson) numbers 
m e k

v / c v / c v / c( , ,  )Ma MiLo    associated with 

(supersonic, super-electronic, and superluminal) flows [43].  Thus, supersonic 

flow of gas ( Ma > 1 ), super-electronic flow of plasma ( Lo > 1 ), and 

superluminal flow of gravitons ( Mi > 1 ) lead to the formation of (Mach, 

Lorentz, and Poincaré-Minkowski) cones as illustrated in Fig. 4 [43, 65].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 4 “Supersonic” flows at (molecular-, chromo-, and electro-dynamics) scales leading 

to the formation of (Mach, PoincaréMinkowski, Lorentz) cones [43].  

 

As a result, statistical field of scale  will be separated from the statistical field 

at adjacent lower scale of  by a surface of discontinuity called shock wave 

[65] as schematically shown in Fig. 5.   
 

           
 

Fig. 5 Shock in polyatomic gas with thin and thick layers corresponding to type C shock 

structure of Taniguchi et al. [66]. 

m m rm mv u 3v 3c   

k k rk kv u 3v 3c 3c    

e e rev u 3v  

m
v / cMa 

k
v / cMi 

e
v / cLo 

Mach 
nu
mb
er 
Michelson 
numb
er 
Lorentz 
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ber 
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In Fig. 5, a stationary body at B is being approached by supersonic flow from 

the left. Hence, the fluid with properties 
1 1 1 1

(c ,  ,  T ,  p )
   

 to the left of the 

shock is “supersonic” and that to the right of the shock with properties 

(c ,  ,  T ,  p )
   
  is subsonic. For example, gaseous supersonic flow at LAD 

scale  a with signal speed 
a mr a

c c  v  arrives at point A of the shock and 

a subsonic flow 
m

cv at LMD scale  m leaves the shock wave at point C. 

Similarly, but at much higher speeds encountered in cosmology, a superluminal 

flow at LTD scale  t with wave speed t kr t
v c c c     arrives at point A 

of the event-horizon or “shock” surrounding a black hole at point B and a 

luminal flow with wave speed kr k
v c  at LKD scale  k leaves the shock at 

point C.  This invariant model of generalized shock waves is in harmony with 

Unruh [67] “dumb-hole” model of black hole.   

 The nature of jump-like transition across diverse types of generalized 

“shock waves” is interesting.  In classical gas dynamics, the hydro-thermo-

diffusive structure of normal shock will be governed by Eq. (39), with the 

reduced temperature  profile predicted as [65]  



erf ( ) erf (0.2 y)                  (42) 
 

in close agreement with the experimental data [68] shown in Fig. 6. 
 

              
 

Fig. 6 Comparison between measured normalized wire temperature  versus position 

(0.2y) in normal shock [68] and theory [65]. 
 

 
 
 

It is reasonable to anticipate that similar error-function type profiles (Fig. 6) 

would govern the dimensionless velocity, density, pressure, and temperature 

inside generalized “shock” waves in the hierarchy of statistical fields shown in 

Fig. 1.  We next examine the nature of a superluminal shock wave at stochastic 

chromodynamics scale.  

 As discussed in Section 2, absolute thermodynamic temperature identified 

as Wien wavelength  
w

T  
 
   of thermal oscillations [32] also defines the 

internal measures of extension and duration 
w w

( , )
 

   called spacetime [43].   

For example, crossing a shock wave from supersonic laminar-atomic-dynamic 
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(LAD) side with 
a wa

T     to the subsonic laminar-molecular-dynamic (LMD) 

side 
m wm

T     corresponds to transition from one Euclidean space with larger 

wa
  (high temperature) to another Euclidean space with smaller 

wm
 (low 

temperature).  However, the description of shock internal structure necessarily 

involves varying temperatures (Fig. 5) hence variable-measure or non-

Euclidean geometry.  

 Following Poincaré [69] description of hyperbolic space, one expresses 

temperature as 
2 2 1/2

T R r( )

  with square root added to account for the 

dimension of absolute temperature (meter) as Wien wavelength of thermal 

oscillations [32].  If one postulates that space “curvature” be inversely related to 

absolute temperature  1 / T
 

   it will lead to  ( 0 , )      at 

T ( ,  0)

  resulting in formation of (white hole, black hole) at (center, 

circumference) of Poincaré disk [43, 69]. Also, as discussed in Section 2, 

thermodynamic temperature defines internal spacetime leading to Poincaré [62] 

and Minkowski [70] 4-dimesional spacetime (x , y , z  ), t
   

. However, 6 

additional compactified dimensions could be associated with 3-rotational and 3- 

vibrational internal degrees of freedom in Eq. (20). Therefore, the total number 

of dimensions required for the description of each statistical field (Fig. 1) 

including the physical space or Casimir [45] vacuum will be 4 + 6 = 10 in 

harmony with models of superstring theories [71].    

  By the equation of state p TR
   
   at constant pressure, density is also 

inversely related to absolute temperature.  Because pressure can be viewed as 

volumetric energy density of the field [32], negative values of pressure, often 

assumed in inflationary models of cosmology, are expected to be nonphysical.  

In view of finite value of Casimir [45] zero-point energy, it is reasonable to 

anticipate a finite positive pressure of Casimir vacuum in accordance with 

modified van der Waals equation of state [72]  
 

r

rg ra rv c2

c r r

1 T 9 3
p p p Z

Z v 1 / 3 8v 8
     



 
 
 

           (43) 

 

Since critical compressibility factor of all substances are smaller than that of van 

der Waals fluid c,vdwZ 3 / 8 , in the limit rv    equation (43) leads to 

positive reduced vacuum pressure [72] 
 

rv c
p (3 / 8) / Z 1 0                 (44) 

 

A schematic diagram of physical space as states of a compressible fluid from 

infinite rarefaction (white hole WH) to infinite compression (black hole BH) 
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corresponding to pressure range 
WH BHam v m

0 p p p p p        is shown 

in Fig. 7.    
  

                          o 1 2 3-3 -1-2  
 

Fig. 7 Different degrees of rarefaction and compression of Casimir vacuum identified as 

a compressible fluid.  (-3) White hole 
WH

0  (-2, -1) Anti-matter 
AM v

    (0) 

Casimir vacuum 
v

    (1, 2) Matter 
MA v

    (3) Black hole 
BH

   [43, 60]. 

 
Therefore, if one introduces the concept of space “scalar curvature” as deviation 

of space density from the density of Casimir [45] vacuum
v

     , one finds 

that ( 0 , 0 , 0)       could be respectively associated with 

( , , )Riemannian Euclidian Lobachevskian space. The hydrodynamic model of 

chromodynamics shock waves in compressible space (Fig. 7) is in harmony with 

the perceptions of ‘t Hooft [73] concerning quantum gravity as a dissipative 

deterministic dynamic system. The application of the model to derive 

Schrödinger Eq. (33) at photonic scale of Casimir vacuum= k suggests that 

density waves in Eq. (39) correspond to gravitational waves that propagate at 

the speed of light [32, 43, 52, 60].   

 

5   Concluding Remarks 

 
A scale-invariant model of Boltzmann statistical mechanics was applied to 

derive invariant Schrödinger equation from invariant Bernoulli equation by way 

of Hamilton-Jacobi equation of classical mechanics. The nature of time-

dependent and time-independent Schrödinger equations and the corresponding 

quantum mechanics wave functions in connection to stationary states of the 

system were described.  

       The invariant hydrodynamic model resulted in generalized shock waves and 

introduction of a scale-invariant definition of Mach number v / c  .  Hence, 

“supersonic” flows at molecular-, electro-, and chromo-dynamics scales result in 

formation of (…, Mach, Lorentz, PoincaréMinkowski, …) cones separating 

“super-sonic” from “sub-sonic” sides. The internal hydro-thermo-diffusive 

structure of generalized shock waves were discussed. Finally, a model of space 

curvature as deviation of density from Casimir vacuum density v      

was introduced leading to ( 0,  0,  0)       corresponding to (Riemannian, 

Euclidean, Lobachevskian) space. The results are in harmony with quantum 

gravity considered as dissipative deterministic dynamic system [73]. 
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Abstract. Paper is devoted to explaining the nature of symmetry breaking of dynamical 
classical and quantum systems in the framework of evolutionary physics. A brief 

explanation of the deterministic mechanism of irreversibility is presented. The nature of 

the non-potential forces, which leads to symmetry breaking, is analyzed.  The concept of 

evolutionary nonlinearity and the deterministic symmetry breaking based on the motion 
equation for the structural particle and modified Schrödinger equation is discussed. The 

nature of the potential, which follows from evolutionary nonlinearity and leads to 

violation of symmetry in classical and quantum systems, is considered.  

Keywords: symmetry, irreversibility, evolution, principle of least action, entropy, 
quantum systems, mechanics, dynamics. 

 

1. Introduction 

 
The world is a collection of open nonequilibrium dynamic systems. Therefore, this 

world is characterized by the evolutionary processes of the emergence of new structures 

of matter, phase transitions, the appearance and disappearance of objects of the Universe, 

catastrophic phenomena on Earth, the climate change, and so on. To understand these 
processes, it is necessary to have a theoretical foundation to answer questions such as 

how, why and in what direction nature is developing. For this, first of all, it is necessary 

to understand the essence of the physical nature of evolution [1-6]. However, there is a 

big obstacle to this understanding [6]. It is a fact that the basic laws of physics, its 
formalisms are reversible. Therefore, modern physics describes the stationary world 

rather well, but does not always adequately describe the irreversible processes of 

evolution. This is also the reason for the lack of unity in various fields of physics, for 

example, mechanics, thermodynamics, statistical physics, quantum mechanics. 
The search for an explanation of irreversibility first led to its probabilistic 

mechanism. It is based on the property of exponential instability of phase trajectories of 

Hamiltonian systems and the hypothesis of the existence of random external fluctuations 

[5]. The probabilistic mechanism of irreversibility significantly helped in the 
development the kinetical and statistical methods of irreversible processes, in 

understanding the nature of chaos, in explaining spontaneous symmetry breaking in 

quantum systems [8].  

The need to describe irreversible processes occurring in different forms of matter 
with symmetry breaking forces us to develop empirical methods for their description. 

Today these methods are based primarily on the Hamilton formalism. Although these 

methods are extremely complex and diverse, their essence reduces to perturbation theory 

by adding the corresponding empirical terms to the Hamiltonian [8, 10]. In addition, In 
addition, empirical equations of physical kinetics and statistical physics are actively used 

today to describe nonequilibrium evolutionary systems. 
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Although good agreement with experiments was obtained based on these methods, 
they do not reveal the nature of symmetry breaking and the mechanism of irreversibility. 

Moreover, these methods encounter problems in determining the scope of their use, in 

explaining the correctness of applying the Hamilton reversible formalism to solve 
irreversible problems in explaining cause-effect relationships in the corresponding 

processes [8, 13]. It does not answer key questions about the evolution of the picture of 

the world.  For example, the following questions remain open: how does order emerge 

from chaos, how does nature choose the path “from simple to complex,” how symmetry 
breaking leads to evolution, where evolution is directed. This is due, in particular, to the 

fact that probabilistic laws and principles are incompatible with the fundamental laws of 

physics. Indeed, the solution of problems concerning with the construction of an 

evolutionary picture of the world cannot but rely on the ideas of determinism, the 
cognoscibility of the world, its uniqueness, and also the closeness of the laws of physics. 

However, these ideas exclude probability in their starting positions. Therefore, the search 

for the mechanism of irreversibility within the framework of the determined laws of 

physics did not stop even after the discovery of the probabilistic mechanism of 
irreversibility [5, 6].  

Only taking into account the role of the body structure in its dynamics, the 

deterministic mechanism of irreversibility (DMI) was discovered [11]. DMI has opened 

up the possibility of building a "physics of evolution". The task of the «physics of 
evolution" is to describe the key processes of evolution: the emergence, development and 

destruction of systems, the definition of the principles for constructing an evolutionary 

picture of the world "from simple to complex" based on the fundamental laws of the 

physicist. 
A method for constructing the physics of evolution was found as follows. First of all, 

the model of a structured particle (SP) replaced the unstructured material point model in 

classical mechanics, where the SP is an equilibrium system of potentially interacting 

material points. Then, according to the principle of dualism of symmetry, the energy of 
the system was presented as the sum of the energy of motion and internal energy. After 

that, from this form of energy, the equation of motion of the system was obtained. This 

equation is irreversible. Irreversibility is determined by the nonlinear terms of this 

equation, which are proportional to the gradients of external forces. These terms provide 
the linking of the elements of the symmetry groups of micro and macro variables, which 

determine the change in the internal energy and the system’s motion energy respectively. 

Thanks to these conditions, the motion energy is converted into internal energy when the 

total energy is conserved. Thus, due to the interaction of dynamic symmetry groups 
arising in the presence of gradients of external forces, irreversibility appears. In turn, 

DMI has opened the possibility of building a “physics of evolution”. 

In this paper, based on the deterministic mechanism of irreversibility in classical 

mechanics, an alternative explanation of the nature of symmetry breaking for quantum 
mechanics is proposed. For this, the properties of the equation of motion for a system of 

material points are first explained. Then the DMI mechanism and the concept of 

evolutionary nonlinearity is analyzed. It is shown how the free energy function follows 

from the evolutionary nonlinearity and how symmetry breaking in classical and quantum 
systems follows from this function. Then, the universal nature of symmetry breaking for 

nonequilibrium dynamical systems of classical and quantum mechanics is discussed. 

 

2. System’s motion equation 
The key idea that led to the emergence of DMI was the idea of the need to take into 

account the influence of body structure on its dynamics. This idea arose as a result of 

studying the interaction of the simplest systems of elastically colliding disks [11, 12]. As 
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a result of studying disks systems, the question arose of how to take into account the role 
of the body structure in its dynamics. As it turned out, this should be done based on the 

principle of dualism of symmetry. According to this principle, the motion of the 

structured bodies is determined not only by the symmetry of space, as in the case of an 
unstructured material point, but also by the internal symmetry of the body. The second 

question was how to take into account that these types of symmetry determine the motion 

of the system. As it turns out, this question is solved by representing the total energy of 

the system as the sum of the motion energy and internal energy. The body's motion 
equation was found from this form of energy when its model was represented in the form 

of systems of potentially interacting material points [11, 12]. The generality of this 

representation of the body model follows from the fact that, as a rule, all bodies with a 

good degree of approximation can be represented by a set of potentially interacting 
material points. As a result, the system’s motion equation was obtained in the framework 

of the laws of classical mechanics without using Hamilton's reversible formalism, since 

this formalism is not applicable to the description of dissipative systems [14, 15]. 

Thus, the equation of motion of the system was obtained based on fundamental laws 
and principles. These laws and principles include the laws of conservation of energy, 

momentum, the Galileo principle, and the principle of dualism of symmetry. Using the 

principle of dualism of symmetry solved two problems. Firstly, this principle took into 

account the role of system symmetry in its dynamics. Secondly, its use made it possible 
to understand that symmetry breaking within the framework of formalisms of classical 

mechanics is impossible. This approach to the derivation of the system’s motion equation 

completely has justified himself.  

The system’s motion equation and the DMI mechanism resulting from it were 
explained in sufficient detail in previous works  [11, 12]. Therefore, the key stages of its 

construction were emphasized below, and then its main properties are described. 

In accordance with the principle of dualism of symmetry, there are exists two groups 

of variables that determine the total energy of the system [12]. Variables that define 
internal energy are micro variables. The variables that determine the energy of motion SP 

are macro variables. These micro and macro variables belonging to two different 

symmetry groups are independent [15]. As it turned out, the total energy in these 

variables breaks down into the internal energy of the system and its energy of motion.  
In accordance with the law of conservation of energy, the sum of the energy of the 

system’s motion and internal energy is invariant along its trajectory, but each of these 

types of energy is not an invariant of the system’s motion. A violation of the symmetry 

of time is associated with a violation of the invariance of the system’s motion energy. 
 The system’s motion equation is obtained by differentiating the energy with respect 

to time, and then by summing the scalar values of the changes in the energies of each 

material point. This equation has the form [15, 17]: 

 
0

N N N NM V F V   ,   (1) 

where 0 0

1

N

N ii
F F


  ; 0

iF - is external force acting on the i -th material point; 

int 2/ ( )max

N NE V  ; 
ijF  - is the strength of interaction i  and j  material points; 

0 0 0

ij i jF F F  ; 
1int 0

1 1
( )

N N

N ij ij ij iji j i
E v mv F NF



  
    ; 

int 0/ 0max

N N NV E F  .  

The first term on the right side of the equation. (1) determines the potential external 

forces that act on the center of mass. These forces change the system’s velocity.  
The second term is nonlinear and bisymmetric, since it depends on micro and macro 

variables simultaneously. This term determines non-potential forces that change of the 
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system’s internal energy. The work of these forces is non-equal to zero only when the 
field of external forces is non-homogeneous. This term is called evolutionary 

nonlinearity [18]. It is responsible for the origin of the DMI. In the general case, this term 

links two symmetry groups of micro- and macro variables and determines the mutual 
transformation of the system’s motion energy and internal energy. 

The eq. (1) is true for systems consisting from any number of material points. In the 

approximation of a solid body, the eq. (1) becomes the reversible Newton’s motion 

equation. The eq. (1) is true for systems consisting from any number of material points. In 
the approximation of a solid body, the eq. (1) becomes the reversible Newton motion 

equation.  

The canonical Lagrange and Hamilton equations do not take into account evolutionary 

nonlinearity and therefore these equations are reversible and cannot be used to analyze the 
dissipative dynamics of a body [14, 23]. This is due to the use of golonomic restrictions in 

obtaining them. However, extended Hamiltonian, which was constructed based on eq. (1), 

can be used to analyze the SP’s dissipative dynamics. The phase trajectory can be 

determined in the dual phase space [12, 21].  
In the general case, from eq. (1) we will have that the body is at rest or motion at a 

constant velocity if the nonlinear forces are equal to external forces.  

In according with the principle Galilee, in evenly moving system it is impossible to 

determine the fact of its motion, because dynamic equations do not depend from the 
choice of an inertial coordinate system. In according with eq. (1) a similar situation arises 

at the system’s motion in the homogeneous field of forces, when we have: 
0 0ijF  . For 

clarification this statement, let us take as example a star system with planets moving with 

uniform acceleration in an external gravitational field of forces. If someone moves in the 

gravitational field of one of the planets, then by the nature of these motions it is 

impossible to establish inside the system that system as a whole moves with acceleration. 
This conclusion is consistent with the D'Alembert equation and Einstein's ideas [14]. 

Analysis of system dynamics using eq. (1) performed in micro and macro variables. 

As a result, the role of the body structure in its dynamics was taken into account. 

Therefore, we will say that eq. (1) gives a “complete description” of the dynamics of 
bodies in an inhomogeneous force field. 

Of course, solving eq. (1) for a system with a large number of elements is a difficult 

task. However, studying the properties of this equation makes it possible to determine the 

general properties of the behavior of dissipative systems and establish how statistical and 
thermodynamic laws follow from the basic laws of classical mechanics [11, 15]. 

 

3. Irreversibility of the nonequilibrium systems 

 
Below we consider the processes of equilibrating nonequilibrium systems using the 

eq. (1). In the approximation of local thermodynamic equilibrium with a sufficient degree 

of generality, the nonequilibrium system can be specified by a set of SP’s moving in  

relative to each other [13, 16].  In this case, SP is already playing the role of system 
elements.  The motion of each SP in an inhomogeneous field of forces, created by all SP 

is determined by eq.  (1) [14]. In this case, the proof of equilibration is reduced to the 

proof that the energy of the relative motions of the SP is irreversibly converted into their 

internal energy.  Thus, in order to prove irreversibility, it is necessary to show that such 
transformations take place. To do this, we estimate the energy flows for SP [13, 18].  

Obviously, for the nonequilibrium system consisting from a set of SP, the mechanism 

of the formation of direct and reverse energy flows is associated with the mutual 

transformation of the energies of the relative motions of the SP and their internal 
energies. Hence, the proof of the irreversibility of the dynamics of the nonequilibrium 
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system is reduced to the proof that the influx of internal energy of the SP is greater than 
the outflow. 

Let us trE  is the energy of the relative motion of the SP, which is transformed into 

its internal energy. According to eq. (1), trE  is determined by a bilinear term whose 

value is equal to the second order of smallness. Therefore we can write: 
2~trE  , where 

  is any small parameter. If it so, then int/ 1trE E   and the equilibrium violation of 

the SP can be neglected. Let us notice that the value trE  has a second order of smallness 
also in according with the estimations of an increment of entropy [19]. 

Thus, as it follows from eq. (1), the SP 

dynamics in a weak inhomogeneous field 
of external forces is irreversible. Indeed, 

in such a field of force the changes of SP’s 

internal energy is a second order 
smallness, and the violation of the SP 

equilibrium can be neglected. However, 

according Galileo principle, the system’s 

motion energy cannot increase due to of 
internal energy of the system, which is in 

equilibrium. Therefore, we have the 

decreases of the SP’s motion energy along 

Fig. 1. The graph of the formula 2. 
 

its trajectory. In this case, irreversibility takes place. The internal motions of the material 

points that determine the internal energy are also irreversible due to the dependence of 

internal energy from the time.  
If the SP’s interaction forces or their gradients are the great enough, the equilibrium 

of the SP can be disturbed. Then each SP, like a nonequilibrium system, can be 

represented as a set of equilibrium subsystems moving relative to each other. In this case, 

for increment of the SP’s internal energy one can write: tr tr h

insE E E     , where tr

insE  

is the increment of the energy of the relative motions and 
hE  is the increment of the 

subsystem’s internal energies. That is, 
tr

insE < trE .  

The energy of the equilibrium subsystems cannot be transformed into their motion 

energy. Therefore, we will consider that only energy of relative motions of subsystems 

can be transformed back into the motion energy of the SP. Let us denote this reverse flow 

of the SP’s internal energy, as tr

retE . According to eq. (1), the value tr

retE  is determined 

by the bilinear function of the subsystems variables, which determined its motion 

energies and the internal energies. These are terms of the second order of smallness of 

their micro and macro variables. But because:
2~trE  , we will have that 

4~tr

retE  . 

Thus, the reverse flow of the internal energy of the SP, tr

retE , into of its motion energy 

during their strong interactions cannot to be more, than the fourth order of smallness. In 
this case, a potential, which corresponds to the change of the SP motion energy, can be 

defined by the next equation:  

 
2 4H        (2) 

Here the ,   constants can be determined using of the eq. (1). 
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Fig. 1 shows a graph of eq. (2). For values: 0  , where 0  are the roots of eq. (2), 

the irreversibility or violation of symmetry of time takes place. For stationarity of the 

non-equilibrium system it is necessary to fulfill the equality: 0H  .  

If to take any complex system with a large number of hierarchical levels, then for its 

stationarity this equality should hold for each hierarchical level [17].  The study of these 
conditions goes beyond the laws of classical mechanics, because for this study it is 

necessary to take into account Planck radiation and different quantum effects [13]. 

To prove and understand the nature of system's equilibration, we studied the change 

in the internal energy of the system during its motion in a stationary external 
inhomogeneous field of forces depending on the number of particles in the system. This 

was done numerically based on the eq. (1) [21, 22]. 

It turned out that for some initial conditions and for sufficiently small systems, the 

internal energy could not only increase, but also decrease.  The calculations showed that 
for an oscillator with N=2 which moved in an inhomogeneous field of external forces, 

depending on the initial phase of its oscillations, the internal energy can be converted 

into energy of motion [17]. With an increase in the number of particles in the system, the 

part of internal energy, which can be converted into the energy of movement of the 
system decreases, and when N> 100, internal energy can only increase.  

When N>103 there is no increase in the increase in internal energy [22]. Thus, N~103 

determines the range of applicability of the thermodynamic description for the system. 

This is in consistent with [23] where stated, that the irreversibility is qualitative: the more 
particles in the system, the more irreversibly it behaves. 

The calculations showed that the magnitude of fluctuations of the internal energy of 

the system due to a changes in the initial conditions for given energy values and for a 

given number of elements in the system obeys the law: 
trE ~1/ N  [22]. This 

corresponds to the statistical law of fluctuations of quadratic functions [19].  Because the 

above statistical laws for dynamical systems are derived basing on the deterministic eq. 

(1), it can be argued that they follow from the deterministic laws of physics. A similar 

conclusion was made in [24]. It follows that the fundamental laws of physics determine 
the scope of statistical laws. And if it so, then probabilistic laws can be considered as 

possible simplifications for analysis of the complex systems. This view coincides with 

the well-known position of Leibniz and Einstein [25]. 

Thus, in accordance with eq. (1) from a mathematical point of view, the DMI 
mechanism can be explained by the fact that there is a connection for vectors from 

different symmetry groups. For SP, these are the groups of symmetry SP and space 

symmetry. This linking is determined by bilinear terms since these terms depend on 

variables belonging to different symmetry groups. These bilinear terms determine the 
conversion of the body’s motion energy into its internal energy and lead to a violation of 

the conservation law of the motion energy, when the sum of the internal energy and the 

motion energy is preserved. Bilinear terms arise when the body moves in an external 

inhomogeneous field of forces. The forces between SPs play the role of these forces in 
nonequilibrium systems. Thus, the energy of the relative motion SP is transformed into 

the internal energy of the chaotic motion of the elements SP. This is the essence of the 

second law of thermodynamics. The eq. (2) characterizes the efficiency of converting the 

energy of movement of the system into internal energy. 
The existence of dissipation is a necessary condition for the formation of attractors 

[26]. However, dissipation is possibly only for structured bodies due to the 

transformation of the motion energy into their internal energy.  Hence the conclusion 

about the infinite divisibility of matter [12, 27]. This means that according to the laws of 
classical mechanics, matter should be an infinite hierarchy of systems. That is, any 
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selected part of the matter is a system. 
Let us accept the condition of the matter’s infinite divisibility, demand the unity of 

the picture of the world and the evolutionary origin of matter. In this case, the basic 

element of matter should be an open nonequilibrium dynamic system [15]. If this is so, 
then the following explanation of the Heisenberg uncertainty principle can be proposed 

[28, 29].  In according with the eq. (1), the trajectory of an element depends on its 

structure. This means that its trajectory, determined based on the canonical formalism of 

classical mechanics, has uncertainty. This uncertainty is determined by the value: 

0tr

NE t   . In any interaction of particles, or in any measurement process, this 

uncertainty will occur. The attractiveness of this explanation is that it reinforces the 

position of the principle of know ability of the world [30].  

Below we consider how to explain the spontaneous symmetry breaking for quantum 

systems. 
  

4. DMI and spontaneous symmetry breaking 

 

The modern theory of quantum systems is based on the canonical Hamiltonian 
formalism. The scope of this formalism is limited to holonomic systems that are invariant 

with respect to the direction of time. Therefore, within the framework of the Hamiltonian 

formalism, only non-dissipative reversible systems can be studied [5, 23, 31]. Indeed, 

how it is follows from the eq. (1), the dissipation is due to the nonlinear conversion of its 
motion energy into internal energy. However, the use of the condition of the 

holonomicity of connections in deriving the Lagrange and Hamilton equations precludes 

the possibility of describing such a transformation. Therefore, the search for an 

explanation of the mechanisms of the spontaneous symmetry breaking for phase 
transitions led to a phenomenological model that describes the thermodynamics and 

kinetics of superfluidity [9].  

The explanation of the mechanism of spontaneous symmetry breaking was based on 

the so-called order parameter. Using this parameter, the empirical type of the free energy 
function in the phase transition region was determined. Thus, the restriction of the 

canonical Hamiltonian formalism related to its reversibility is circumvented empirically, 

for example, taking into account the additional terms of the expansion of the potential 

function in the Hamiltonian. The final solution to the problem is based on the idea of the 

existence of an external infinitely small influence on the system  [8, 9, 35]. Therefore, in 

this case we also have a probabilistic explanation of spontaneous symmetry breaking. Let 

us briefly recall the essence of this explanation of the nature of symmetry breaking in the 

theory of phase transitions. 
Landau and Ginsburg offered the mathematical description of spontaneous violation of 

symmetry in 1937 [9]. They explained this effect to infinitesimal fluctuations in the 

values of operating parameters near an unstable line of phase transitions. They called 

these parameters scalar order parameters. They themselves determined symmetry 
breaking due to the expansion of free energy, representing it in the phase transition 

region as follows [8, 9]: 
2 4

0 2 4( ) ( / 2 / 4 )F F V a a h       ,  (3) 

where ( )F   is the thermodynamic potential (Gibbs energy);   is the scalar order 

parameter; 
2 4, ,a a h are the empirical coefficients. 

The eq. (3) is similar as eq. (2). This expression is sometimes called the “Mexican hat”, 
based on its graphic form (see Fig. 1). To explain the spontaneous symmetry breaking in 

superfluidity and superconductivity, Ginzburg and Landau used the effective electron 
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wave function. It performed the role of a two-component order parameter: 

( ) ( ) exp[ ( )]r r i r    [8]. In accordance with this, properties of the superconductor 

were specified by the wave function, which depends on the magnetic field, ( )B r . It was 

determined by the functional of the free energy [8]: 

 
2 2 4 2

0( ) { / (8 ) 1/ (2 ) ( ( / ) ) ( ) }nF F dr B a b m i q c A r 



                (4) 

Here 
0nF  is the free energy in the normal state, ( ) ( )B r rot A , ,q m  is the effective 

charge and mass of superconducting electrons.  

Bogolyubov proposed an explanation of the physical nature of the two-component 

wave function, as well as the theory of superconductivity and superfluidity. He showed 

the unity of the phenomena of superfluidity and superconductivity, which was 
subsequently confirmed experimentally [8].  As it turned out later, a similar scalar 

potential as formula (2) is acceptable not only for spontaneous symmetry breaking during 

phase transitions. A similar type of expansion of thermodynamic potentials or scalar 

functions is also used to describe the violation of superfluidity,  superconductivity, 
particle formation processes, the appearance of mass, etc. [3, 8, 31, 33].  

Let us consider how a deterministic explanation of symmetry breaking in quantum 

systems can be introduced. The dynamics of quantum systems is determined by the 

canonical Schrödinger equation. This equation, like Newton’s equation of motion, is 
reversible. To describe the irreversible dynamics of quantum systems, the Schrödinger 

equation was modified [29]: 

 
2 2

2 2

1 2 int 1 21
{ ( , ,.... , , ) [ ( )]} ( , ,.... , , ) 0

2 2 i

N

R N r i Ni
i U r r r R t W r r r r R t

t M m





      


  (5) 

Here R - coordinates of the center of mass of system; ir  - these are coordinates i - 

particles concerning the center of mass of system; 1, 2,3...i N ; N –is a number of 

particles; M  -is a system’s mass; m –is a mass of i - th particle; int,U W  external and 

internal potential energy consequently; wave function   represents work of wave 

functions for each particle and for all system when the external field is homogeneous.  

The eq. (5) was obtained in the same way as in classical mechanics, using the 

principle of dualism of symmetry.  In connection with this principle, the energy of a 

quantum system should be represented by the sum of the motion energy and internal 
energy. For this, the Hamiltonian in eq. (5), in accordance with the complete description 

method, was written in micro and macro variables, as the sum of the Hamiltonians for the 

internal dynamics of the elements of the system and for the dynamics of the system as a 

whole. In this case, irreversibility in quantum systems will be explained by evolutionary 
nonlinearity. 

It is important that in the complete description of the extended Schrödinger equation 

there is no singular bifurcation point for eq. (2), since this point is a region of the space 

of micro variables. In this point, the motions of the body’s elements affect on the 
system’s motion. From this, it is clear that with a macroscopic description of the system’s 

motion in the bifurcation point, which was used in the general Schrödinger equation, we 

lose the determinism of the description [11, 17]. Thus, spontaneous symmetry breaking 

can be explained due to the linking of micro- and macro variables through the terms of 
evolutionary nonlinearity and due to instability of the system’s motion at the bifurcation 
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point, where the motions of the body’s elements determine the system’s motion. This 
allows us to conclude that, despite the difference in the processes of symmetry breaking 

in classical and quantum mechanics, its nature is universal, and the mechanism of 

spontaneous symmetry breaking in quantum mechanics can be explained in the same way 
as in classical mechanics. This conclusion is based on the condition of infinite divisibility 

of matter [30, 31]. Therefore, symmetry-breaking processes can be studied using the 

complete description. This description can be implemented based on the motion eq. (1) 

for classical systems or based on the eq. (5) for quantum systems [29].  
In accordance with eq. (1), micro and macro variables are linked due to the 

inhomogeneous field of external forces. This will be determined by the terms of 

evolutionary nonlinearity, should depend simultaneously on micro and macro variables. 

These terms leads to a violation of symmetry of time, since the motion energy of the 
system due to these terms is converted into internal energy of the elements. 

The conclusion that the nature of irreversibility in quantum mechanics should be 

similar to the nature of irreversibility in classical mechanics is confirmed by the 

similarity of the form of potential (2) for classical mechanics and the potential in (3), 
used to explain spontaneous symmetry breaking in quantum mechanics. 

Thus, the differences between explanation of the symmetry breaking in quantum 

systems and DMI for systems of classical mechanics are as follows. To explain the 

spontaneous symmetry breaking in quantum systems for superconductivity, superfluidity, 
etc., the method of second quantization of systems was used. It was assumed that the 

state of the system is determined by the available statistical states of its elements. 

Therefore, due to the empirical shape of the transition matrix, used to explain 

spontaneous symmetry breaking, it was necessary to use the hypothesis of the existence 
of external arbitrarily small oscillations. 

To explain the symmetry breaking in classical mechanics the method of complete 

description was used. In this explanation of symmetry breaking, the deterministic 

motions of system elements play the role of random external influence. Due to the 
instability in the bifurcation point, the micro processes leads to macro processes.  

The advantage of a complete description of quantum systems is that it basically takes 

into account the role of the internal dynamics of quantum systems in their dynamics and 

can help to understand and find analytically the creation and destruction operators of the 
corresponding particles, for example, in the case of supersymmetres [35]. 

 

5. Conclusions 

The canonical Hamiltonian formalism is built based on Newton’s reversible 
mechanics, when the conditions of holonomic restrictions and the potentiality of all 

collective forces acting on the systems are met. Such an empirical solution to the 

irreversibility problem does not follow from closed equations of dynamics and is 

equivalent to a probabilistic explanation of symmetry breaking processes. However, in 
the framework of mechanics of structured bodies, a deterministic way of describing these 

processes becomes possible. 

The motion equation of a structured body is obtained by representing the body as a 

system of potentially interacting material points. In according with the principle of 
dualism of symmetry, the dynamics of this system is determined not only by the 

symmetry of space, but also by symmetry of the system. Therefore, to determine its 

dynamics, the system's energy should be presented in the form of sums of the system’s 

motion energy and its internal energy. Such representation is realized in the spaces of two 
independent groups of micro and macro variable. Micro variables determine the system‘s 

internal energy, and macro variables determine the system’s motion energy in space. The 

violation of symmetry for the system is caused by the conversion of the system’s motion 
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energy into its internal energy, when the system moves in an inhomogeneous field of 
forces. Such a transformation is defined by bilinear terms of evolutionary nonlinearity, 

which connects the dynamics of the elements of the system with its dynamics, as a 

whole. In according with the extended Schrödinger equation, violation of symmetry in 
quantum systems will also be determined by bilinear terms of evolutionary nonlinearity.   

It turned out that evolutionary nonlinearity for systems of classical mechanics is 

determined by the potential, which coincides with the potential that determines the 

spontaneous symmetry breaking in quantum systems. This allows us to conclude that the 
symmetry breaking mechanism is universal for classical and quantum systems. If so then 

the nature of symmetry breaking in quantum and classical systems can be studied as a 

result of a complete description of the dynamics of systems using micro- and macro-

descriptions of dynamics based on the principle of dualism of symmetry. 
In mathematical language, this means that for deterministic irreversibility or, in other 

words, for breaking deterministic symmetry, at least two symmetry subgroups are 

needed. These two subgroups of symmetry form a complete symmetry group, which 

determines the dynamics of the body. In this case, the invariant of motion is the total 
energy, which is equal to the sum of the energies corresponding to these two subgroups 

of symmetry. When a body moves in an inhomogeneous field of forces between these 

subgroups of symmetry, an interaction occurs, that is, the engagement of the elements of 

the symmetry from different subgroups. As a result, the motion energy is converted into 
internal energy. This means a violation of symmetry or irreversibility. 
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Abstract. The paper is devoted to study, how the physics of evolution allows 
developing an evolutionary picture of the world. Here we briefly examine the basic 

concepts of the world’s picture and how these concepts can find development based on 

the physics of evolution.  For this purpose, the next questions will be analysed: how 

physics of evolution leads to the conclusion about the infinite divisibility of matter; how 
nature solves the problem of the static state of matter, when motion is a way of existence 

of matter; how symmetry and its violation determine the evolution of matter; what are the 

principles of building "from simple to complex", etc. As a result, we show how taking 

into account the structure of matter in its dynamics leads to the possibility of describing 
evolutionary processes in nature. This means the possibility of constructing a 

deterministic evolutionary picture of the world within the framework of the laws of 

physics. 

Keywords: Irreversibility, entropy, chaos, phase space, physics of evolution. 
 

Introduction 
 

Creating a picture of the world is the main task of science. However, many problems 

arise on the way to its creation. The most important of them is the problem of 
knowability of nature. This problem is most clearly manifested in the clash of ideas of 

reductionism and holism. 

Proponents of reductionism believe that all phenomena in nature are knowable in 

principle, and there is a finite set of fundamental laws, the knowledge of which allows 
you to create a picture of the world, moving from “simple to complex” [1,2]. Proponents 

of holism, on the contrary, believe that the properties of the "whole" do not follow from 

the properties of its elements. In addition, there was even an opinion that the “golden 

age” of science was over, and its further development is possible only on the path of 
expanding knowledge without intensification. As evidence, they use examples such as a 

misunderstanding of the relationship between the laws of inert matter and living matter. 

In their opinion, these relations cannot be established within the framework of the laws 

of physics. All this causes heated debate between supporters of reductionism and holism 
[3,4,5]. 

The problem of the cognizability of nature is directly related to the problem of the 

principle of causality in physics. Here the development of a picture of the world is faced 

with a problem related to the fact that the causality principle is still not even among the 
fundamental principles of physics. This occurs mainly because the fundamental laws of 

physics are reversible, and natural processes are usually irreversible [6]. Consequently, 

not only the physical picture of the world does not correspond to the principles of 

causality and its unity, but also physics itself represents a multitude of separate areas of 
knowledge that are weakly interconnected. These are, for example, classical mechanics, 

thermodynamics, and quantum mechanics. As a result, physics explains how the world 
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works, but does not answer questions about how the world develops, in what direction 
the processes of its evolution are going, and what determines these directions [6,7,8]. 

The problem of irreversibility has arisen since the creation of  Newtonian mechanics. 

In the process of solving this problem, Boltzmann et al., Scientists discovered its 
probabilistic mechanism, according to which evolutionary processes are random [9, 10]. 

If this is so, then it is not clear how to build a physical picture of the world based on the 

laws of physics, how to understand the emergence of organized structures of matter from 

chaos. It also means that on the way to the development of knowledge, insurmountable 
epistemological problems arise [11,12,13]. Therefore, the search for a solution to the 

problem of irreversibility within the framework of the laws of physics was continued. 

Finally, a deterministic irreversibility mechanism (DMI) has been proposed. DMI 

has opened up the possibility of building physics of evolution. The task of “physics of 
evolution” is to study the processes of evolution of matter and to develop methods for 

constructing its evolutionary models within the framework of the fundamental laws of 

physics [14]. 

In a previous paper, we examined the question of how DMI strengthens the positions 
of determinism in physics and the cognoscibility of a picture of the world [11]. The 

purpose of this paper is to show how the physics of evolution opens up opportunities for 

constructing a deterministic evolutionary picture of the world, how it affects the 

development of philosophical concepts that underlie the modern picture of the world. 

 

Basic concepts of a picture of the world and physics of 

evolution 

 

Here we briefly examine the fundamental concepts of the picture of the world that are 

related to the physics of evolution, and how these concepts can find their development on 

the basis of physics of evolution. 
The key concepts on which the picture of the world is based arose in antiquity. One 

of the first fundamental concepts was related to the question of what everything consists 

of. Many ancient philosophers, as a result of observations of nature, came to the 

conclusion that matter consists of elementary particles or indivisible bricks. The father of 
this idea can be considered Democritus [13, 15]. He claimed that matter is composed of 

atoms. Subsequently, modern ideas appeared for discretizing the structure of matter, its 

fractality and self-similarity [16]. Today we are witnessing the discovery of an increasing 

number of components of matter, and so far this limit has not been discovered. In this 
regard, we will show here how the physics of evolution leads to the conclusion about 

the infinite divisibility of matter. 

On the one hand, the Universe, the Milky Way, stars, as we see, are static. However, 

on the other hand, according to Heraclitus, we have, that "everything flows, everything 
changes" [15]. That is, the world is evolving. In connection with it there was an opinion 

that motion is a way of existence of matter. It was strengthened in the works of Galilee, 

Newton, and Leibniz. They found the fundamental laws of motion. They introduced 

modern concepts of energy, acceleration, angular momentum, etc., characterizing matter 
in its dynamics [17]. Here we show how nature solves the problem of the static nature 

of matter, when motion is a way of existence of matter. 

The rate of change in the position of matter in space is determined by the concept of 

time. Therefore, it is impossible to describe matter without using space-time concepts. 
The relationship between the concepts of matter, dynamics, space and time is established 

using the concept of symmetry. The concept of symmetry appeared in connection with 

Plato [18]. According to Plato, symmetry is the cornerstone of the picture of the world. 
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Thanks to the dynamics, matter takes such diverse forms that are determined by the 
interaction of the elements of matter in accordance with the symmetry of space and time. 

The problem of conformity of form and content, provided that both form and 

content are in constant evolution, stands in the way of the further development of 

the picture of the world. 
However, the violation of symmetry is also characteristic of nature, as well as its 

conservation. Apparently, the second law of thermodynamics is the first law in the 

history of physics, which is associated with the violation of symmetry. In recent decades, 
it has been discovered that in quantum physics spontaneous symmetry breaking also 

occurs. Until recently, these symmetry violations, one way or another, were explained in 

a probabilistic manner. But this contradicts the principle of causality. Moreover, in 

quantum mechanics there is the Heisenberg uncertainty principle, which actually means 
the existence of a limit to the cogniscability of a picture of the world [19]. These 

problems lead to questions: how symmetry, its violation, determine the evolution of 

matter, what is the nature of symmetry breaking. 
We find the first fundamental laws of logical thinking, fundamental concepts about 

the world around us, such as matter, force, motion, space and time, at Aristotle [15]. He 

believed that the world is one, and the laws of its development are universal. But how to 

connect the unity of the world and the universality of the laws of its development with 

the existence of many weakly coordinated sections of physics? Here we discuss, how 

this problem is related to the physics of evolution by the example of the relationship 

of the laws of classical mechanics, thermodynamics and quantum mechanics. 
A millennium after Aristotle, the laws of classical mechanics were discovered. These 

laws determine the motion of material objects. They also define concepts such as 
acceleration and energy[15]. According to Galileo, Descartes, Newton, not the velocity 

of the body is proportional to the force, as Aristotle claimed, but to its acceleration [17, 

20]. However, experience shows that the acceleration of the body becomes equal to zero 

when the force acting on it, becomes equal to the  force of friction. This corresponds to 
the irreversible mechanics of Aristotle. Newton, on the contrary, sought to eliminate 

friction in order to reveal the essence of the law of motion, regardless of the various 

properties of bodies and the environment. Thanks to a model of a body in the form of an 

unstructured particle, he discovered that acceleration, not speed, is proportional to force. 
A natural question arises, how to combine the mechanics of Aristotle and Newton? 

An important problem in the development of knowledge concerns the principles of 

constructing a scientific picture of the world and the limitations of cognizability of the 

world. Two points of view can be distinguished here. From the point of view of those 
who adhere to the positions of cognizability of the picture of the world, there must be 

principles that allow movement in the direction of construction of knowledge from 

“simple to complex”.  In this case, the whole picture of the world should be based on 

fundamental laws that give rise to the whole variety of known empirical laws. 
Reductionists support this view [1, 2]. In particular, Weinberg believes that the “theory 

of everything” should be based on laws that make it possible to understand the whole 

picture of the world. Holists hold the opposite point of view [3, 4]. They argue that the 

whole contains "new", not arising from the laws of its elements. They say: “The whole is 
not the sum of its parts” [20]. This raises important questions: is it possible to build a 

holistic picture of the world within the framework of the laws of physics, are there 

physical principles for building a picture of the world “from simple to complex”.  
That is, we approach the problem of the existence of principles for constructing 

systems based on their elements in the framework of the fundamental laws of physics. 

Below we will try to show how the problems that were shown in this chapter are 

related to the physics of evolution. 
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DMI and physics of evolution 
 

It is hardly possible to understand how the physics of evolution expands the 

possibilities of developing a picture of the world, if we do not briefly explain the nature 
of DMI. It is most convenient to begin an explanation of the nature of DMI based on the 

concepts of symmetry. Indeed, without breaking the symmetry of time that leads to DMI, 

evolution itself is impossible [18, 21]. 

1. Principle of dualism of symmetry. As already noted, symmetry is a key concept 
for a picture of the world [18]. Indeed, the principle of least action, which determines the 

harmony of the world, follows from the types of symmetries of bodies. This is because 

the different types of symmetry of time and space correspond to the invariants of 

dynamics, in particular energy, momentum. These invariants determine the properties 
and laws of the dynamics of bodies. For example, the dynamics of a structureless 

material point (MP) as the simplest model of a body that Newton used to reveal the 

essence of the laws of dynamics is determined only by the symmetries of space and time. 

MP energy is determined in accordance with their symmetries. The motion equation of 
MP follows from its energy [14]. 

Boltzmann showed that the body model, within the framework of the laws of 

classical mechanics, is well approximated by a system of potentially interacting MPs. 

And knowing the energy of the MP system, in principle, you can find the system’s 
motion equation.  

Usually, the system's motion equation is determined using the canonical formalisms 

of classical mechanics. Canonical formalisms were built on the assumption that all 

collective forces are potential, since the forces between elements of the system are 
potential. This assumption is confirmed by the fact that the total forces of moving 

systems are potential. But it turned out that the dynamics of systems determined by the 

canonical formalisms of classical mechanics is reversible, as is the motion of a single MP 

[22]. Any search for a solution to the problem of irreversibility within the framework of 
canonical formalisms led to a probabilistic mechanism of irreversibility. However, this 

mechanism is excluded the existence of causal relationships. Therefore, the search for a 

deterministic solution of the problem of irreversibility was continued. 

A study of the simplest systems of elastically colliding disks led to the conclusion 
that irreversibility is possible only for systems interacting with each other and that the 

fundamental laws of physics did not prohibit irreversibility. This led to the assumption 

that the reversibility of Hamiltonian systems, which follows from the formalisms of 

classical mechanics, is associated with the restrictions used in their construction. This 
assumption was confirmed. It became clear why all attempts to find DMN in the 

framework of formalisms of classical mechanics were unsuccessful [21, 23]. 

Thus, the first key idea providing a breakthrough in solving the problem of 

irreversibility was the idea of the need to take into account the role of the body 
structure in its dynamics. The essence of this idea is easy to understand by the example 

of body motion on a surface with friction. Aristotle was guided by this example. 

Boltzmann also tried to find the mechanism of irreversibility. He relied on the statistical 

methods he developed. However, these methods are incompatible with the deterministic 
laws of classical mechanics. 

Systems, unlike MP, also have symmetry. Then the equation of motion of the system 

should also depend on their symmetry. This means the need to take into account the 

symmetry of bodies in their dynamics. The fact that the dynamics of bodies is 

determined by the symmetries of the body and the symmetries of the surrounding 

space was the second idea necessary to solve the problem of irreversibility. It was 
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called the principle of dualism of symmetry (PDS). The essence of PDS is that the 
state of the body, the nature of its interaction with external objects, its dynamics and 

evolution are determined by both the symmetries of the external world and the 

symmetries of the body. Based on the PDS and the dual representation of energy, as a 
sum of internal energy and of the motion energy, the body’s motion equation was 

obtained. This equation is irreversible, and DMI follows from this equation. Thus, it 

turns out that the property of the irreversibility of their system arose from the reversible 

properties of the dynamics of elements in a deterministic way. The question arises: how 

can the irreversibility of the MP’s system motion arise when the motion of each MP 

is reversible? 

It was shown that irreversibility is connected with the fact that the motion energy, 

which determines the trajectory of the system in space, is transformed into the internal 
energy [21]. The system’s motion energy we will call the energy of “order”. We will call 

the internal energy of an equilibrium body the energy of “chaos”. That is, the system’s 

motion energy turns into "chaos” energy in an inhomogeneous space, but the energy of 

"chaos" cannot be converted into energy of the "order". This is a process of breaking the 
symmetry of time, since the invariance of the body’s motion energy is violated. But why 

this process is irreversible? The answer on this question is hidden in the nature of 

the forces, which transform the system’s motion energy into internal energy. 
The dissipative nature of the forces that transform the energy  of motion into internal 

energy follow from the MP’s system motion equation. For each MP, forces are 

determined through the efficiency of the transformation of potential energy into its 

kinetic energy. The fact that these forces are potential ensures the reversibility of this 

energy conversion. For a structured body, forces are determined through the efficiency of 
the transformation of external energy. In this case, the external energy is transformed into 

both the motion energy and internal energy. Consequently, in the case of a structural 

body, forces are divided into two classes: forces that determine the change in the energy 

of motion of the body, and forces that determine the change in internal energy. The 
forces performing the work on moving the system are equal to the sum of the external 

forces acting on the elements of the system. They are potential. This corresponds to 

classical mechanics [22]. 

The forces that change the internal energy of a system are made up of two parts. One 
part is the potential forces of interaction of the elements of the system. Another part of 

the forces performing work on changing internal energy is proportional to the gradients 

of external forces. Non-potential friction forces arise as a gradient of potential 

external forces! This is the mechanism of the emergence of non-potential friction forces 
from potential forces [23]. The difference in the collective forces that determine the 

system’s motion and the change in internal energy is related to the difference between 

internal energy and the motion energy. Internal energy also exists if the system is at rest, 

due to the continuous motions of the elements relative to its center of mass. The system’s 
motion energy exists only when it moves in space. This energy does not depend on the 

internal motion of the system’s elements. The internal energy of an equilibrium system is 

the energy of “pure chaos”. The word "pure" means that when a system is divided into 

subsystems, these subsystems are in equilibrium and do not have the energy of relative 
motions. 

Without taking into account the role of body structures in their dynamics, 

irreversibility cannot be explained. But without dissipation, attractors and structures do 

not arise [16]. And if the world evolved “from simple to complex”, then this means 

that the primary element of matter had to have a structure. The assumption of the 

need to take into account the structural nature of bodies already at the first stages of 

describing open systems also follows from statistical considerations [24].  
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The development of nonlinear dynamics has shown that the appearance of various 
forms of matter or attractors is possible only in the presence of dissipation. The 

dissipation occurs only in the interaction of systems. Therefore, to describe the 

evolutionary processes, it is necessary to take into account the openness of bodies [12, 
16]. If we also take into account the infinity of divisibility of matter and accept its 

evolutionary origin, we conclude that the structureless elements of matter cannot arise 

and exist. This inevitably leads to the conclusion that the main element of matter 

should be an open nonequilibrium dynamic system (ONDS), and the matter itself is 

a hierarchy of ONDS [23]. 

The dynamics of the ONDS is described using the extended formalism of classical 

mechanics, which takes into account the role of the structure of systems in their 

dynamics. Such a formalism is obtained in the same way as canonical formalisms from 
the D'Alembert equation, but instead of the Newton’s motion equation, the MP motion 

equation is used [14, 32]. 

The most important concept that derives directly from PDS is D-entropy. D-entropy 

determines how internal energy changes due to change of the motion energy. Unlike the 
thermodynamic concept of entropy, D-entropy is applicable for both large and small 

systems. D-entropy can be used to analyze the processes of occurrence, evolution, 

destruction of new systems. D-entropy reveals the epistemological significance of 

existing types of entropy, since it directly connects the dynamics and states of the system, 
implements the relationship of “order” and “chaos”. 

For a deeper understanding of the role of the body’s structure in the mechanism of 

violation of time symmetry, the oscillator motion in an inhomogeneous force field has 

been numerically studied [25]. As a result, a previously unknown effect of passage of an 
oscillator through a potential barrier was discovered. The effect occurs when its motion 

energy is less than the energy of the barrier, but when the sum of internal energy and the 

motion energy is greater than the energy of the barrier. It turned out that such a passage 

of an oscillator through a potential barrier is determined by its phase. The nature of this 
effect cannot be established without taking into account the PDS [14, 26]. 

 

2. Physics of evolution in the world picture. Below we discuss the contribution that 

the “physics of evolution” can make to the evolutionary picture of the world. 
The simplest ONDS can be represented by a set of equilibrium subsystems, which we 

called SP, and SP, in turn, can be represented by a set of potentially interacting MPs. 

Thus, ONDS is the third step in bringing the body model closer to reality. SP mechanics 

arise from MP mechanics, and mechanics of ONDS arise from SP mechanics. This 

means that there are principles for constructing a model of matter "from simple to 

complex." Here are some of these principles [23]. 

1. The principle of the relationship of the laws of systems and their elements. ONDS 

mechanics are built based on fundamental laws that apply to their elements. These are the 
laws of conservation of energy, momentum. The energy of structureless particles has 

only the motion energy. However, the ONDS energy consists from the motion energy 

and internal energy. Changes in these energies occur so that their sum is conserved. The 

nature of the change in the internal energy of the ONDS obeys the second law of 
thermodynamics. That is, from the fundamental laws of element dynamics follows the 

empirical law of the dynamics of ONDS. 

The presence of а nonlinear interrelation between the laws of adjacent hierarchical 

levels for MP, SP, ONDS, determined by the “evolutionary nonlinearity” of the SP 
motion equation [23], suggests that such a relationship should exist for all hierarchical 

levels of matter. It means opportunity of constructing the entire hierarchical picture of 

matter for all its hierarchical levels, if the laws of behavior of one of the hierarchical 
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levels of matter are known. Thus, the reductionism is valid for any hierarchical level of 
matter. 

2. The parameters of the upper hierarchical levels of ONDS are determined based on 

the parameters of the lower levels. The parameters of the upper hierarchical level are 
constructed based on the parameters of the lower hierarchical level. For example, 

parameters characterizing the dynamics of MP systems are based on parameters that 

determine the dynamics of MP. MP parameters are coordinates, velocity, mass. For 

ONDS, there are also these parameters, but for ONDS, the mass is the sum of the MP 
masses. The ONDS coordinates are determined by its center of mass. The coordinates 

and speeds of the ONDS center of mass are determined through the coordinates and 

velocities of the MPs included in them.   

New concepts also  appear for ONDS. For example, dissipative forces are determined 
by gradients of external potential forces. They lead to the concept of D-entropy, which 

characterizes the change in the internal energy of the ONDS. D-entropy leads to the 

concept of entropy in thermodynamics. The concepts of the thermodynamics and 

statistical physics are appeared from here: temperature, pressure, density, distribution 
function. The emergence of new concepts for ONDS leads to a modification of the 

methods and techniques for their description. For example, instead of the phase space, it 

is more convenient to use the SD-space for  ONDS analysis. This modification of the 

phase space is dictated by PDS. 
3. The evolution of ONDS is the result of double symmetry breaking. At each 

hierarchical level of ONDS, evolution is determined by breaking the symmetries of this 

level and the symmetry of the lower hierarchical level. That is, the violation of symmetry 

is always associated with the interaction of the adjacent hierarchical level of matter. 
The process of symmetry breaking in quantum systems is characterized by 

bifurcation [16, 23]. The essence of bifurcation is that a change in the topology of the 

system occurs at special points in the phase space. Probabilistic laws were used to solve 

bifurcation problems. However, according to the mechanics of the SP, an analytical 
method for solving them follows from the condition of infinite divisibility of matter [23]. 

Indeed, if we take into account the infinite divisibility of matter, then the bifurcation 

point will become a region of micro variables. The description of the system at the 

micro level eliminates the peculiarity of the macro-description of the dynamics of 
the body at the bifurcation point! The possibility of a deterministic micro-description 

of the dynamics of a system at the bifurcation point means that the use of probabilistic 

models can be considered as coarsening of models of bodies and theories. This 

coarsening allows us to describe processes in the absence of knowledge about the initial 
data’s. The physical laws themselves determine the region of permissible coarsening. 

This mechanism of symmetry breaking at the bifurcation point indicates its universality, 

both for classical and for quantum mechanics, since it is always associated with the 

interaction of the upper level with the lower level [23]. 
3. The conditions of the ONDS existence. Although "motion is the way of existence 

of matter", in practice we often deal with stationary objects. Let us assume that the 

ONDS is stationary if the characteristic time of its existence is much longer than the 

characteristic times of internal processes that ensure this existence. From the point of 
view of physics, stationarity means that at all physical points of the ONDS, the values of 

its parameters do not change during the characteristic times of internal processes.  

The way in which stationary ONDS exists is the balance of incoming and outgoing 

flows of matter, energy, entropy at all hierarchical levels [21, 28]. Bernard's convection 
cell is one of the simplest stationary objects. It exists due to the flow of matter, which 

transfers energy from the heated region to the cold region. This flow is created by the 

temperature difference at the boundaries of the gas or liquid [7]. The larger the 
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temperature gradient, the smaller the structure of convective cells. With a sufficient value 
of the gradient, turbulence appears. 

The stationarity of the complex ONDS requires stationarity at all its hierarchical 

levels. If for the existence of a Bernard’s cell it is sufficient to maintain a temperature 
gradient, then for the existence of more complex ONDS, for example, a living cell, a 

balance of flows of various types of matter and energy is necessary. In this case, the flow 

of matter entering the ONDS is a similar of combination of ONDS lower hierarchical 

levels. Therefore, all levels of ONDS can exist only through interactions between 
themselves and with the outside world. It follows from PDS that these interactions are 

determined by the symmetries of both body and space. 

In fact, the stationarity of the ONDS cannot be absolutely. During a time long 

enough, its structure will change. This time, which determines the ONDS lifetime, can 

be called evolutionary. For complex systems, the lifetime will be determined by the 

existence of various channels of energy conversion between different hierarchical levels 

of ONDS. The connection between the steps of this hierarchical ladder of the ONDS is 

determined by evolutionary nonlinearity, which also responsible for symmetry breaking. 
Then, the greater the gradient of external forces, the deeper the hierarchy of systems 

is violated [21]. This corresponds to the established by Einstein and other laws, 

according to which, the deeper the energy levels of an atom, the more short-wave photon 

it can be excited. 
The existence and evolution of two adjacent hierarchical levels of matter, MP and 

SP, can be described in the framework of the laws of classical mechanics. However, the 

processes connecting the more distant hierarchical levels of matter are much more 

complicated. Since the number of hierarchical levels of matter is infinite, a complete 
description of evolution is a task of enormous complexity. Nevertheless, the existence of 

deterministic interrelations of laws for the two adjacent hierarchical levels allows us 

to state that such relationships exists for all hierarchical levels of matter. 

One of important example for used of the physics of evolution is the problem of the 
Universe. Indeed, the physics of evolution can be directly used to solve some problems 

of astrophysics, since it allows one to calculate the energy fluxes in the Universe during 

the motion of galaxies, stars, planets, in inhomogeneous fields of gravity forces, particles 

flows. Today, astrophysics is based on the Newtonian motion equation and on the 
Einstein equation, which is a relativistic analogue of the Newton motion equation. In 

many ways, the contradictions between the results of observations and these equations 

compel us to introduce hypotheses about hidden matter, about dark energy, etc. This may 

be because Newton’s motion equation does not take into account the role of matter 
structures in their dynamics. This disadvantage can be eliminated by using the equations 

of physics of evolution. [26]. For example, taking into account changes in the internal 

energy of a star when this star moves in inhomogeneous gravitational fields will give 

corrections to the energy balance of stars [23, 27]. According to the physics of evolution, 
for the existence of a nonequilibrium Universe, it must expand. This will provide it with 

the negentropy necessary to maintain nonequilibrium processes, for organize new 

structures and compensate for the growth of D-entropy in the Universe. 

Thus, the physics of evolution includes the mechanics of systems, the extended 
formalisms of classical mechanics, the principles of the relationship of the hierarchical 

steps of the ONDS, obtained from the analysis of the properties of the SP’s motion 

equations [14, 23]. 

 

Physics of evolution and philosophical principles 
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The essence of the physics of evolution has been explained in previous sections. In 
this section we will consider the philosophical problems associated with the physics of 

evolution. 

1. Unity and the struggle of opposites. A search for DMI led to PDS. From PDS we 
came to the dualism of energy, according to which the invariant of the body’s motion is 

the sum of the body’s motion energy and the internal energy. Thus, each of these 

energies can change, but its sum is invariant. The concept of "symmetry of ideal chaos" 

is associated with the internal energy of an equilibrium system. This symmetry 
corresponds to the absence of relative motion for all subsystems, the combination of 

which can represent this system. It follows that the equilibrium of the system means that 

the sum of the moments of the subsystems relative to the center of mass of this system is 

always zero. Thus, we have “chaos”, which we associate with the internal energy of the 
equilibrium system. In addition, we have an “order”, which we associate with the body’s 

motion energy as a whole. 

That is, the nature of DMI is due to the transition of the body’s motion energy into 

the internal energy of the chaotic motion of their elements. Hence, the evolution of 
matter, the formation of its structures are due to the struggle of two opposites - “chaos” 

and “order”. Chaos plays the role of a "black hole", providing the absorption of the 

body's motion energy. This is the destructive role of chaos. However, on the other hand, 

the existence of "chaos" is necessary for the emergence of a new order. That is, the 

process of evolution occurs according to the law of unity and struggle of opposites 

“chaos”  and “order”. 

The measure of the transformation of “order” energy into energy of “chaos” is 

characterized by D-entropy. That is, D-entropy plays the role of a measure of increasing 
“chaos” [29]. The violation of the symmetry of time is also associated with the 

transformation of the motion energy into internal energy. This allows us proposing a 

measure of “evolutionary time”, defined as the rate of change of D-entropy. There is no 

perfect “chaos” or “order” in nature and entropy does not reach an absolute maximum. 
This means that the body’s motion energy and internal energy cannot be equal to zero 

[30]. That is, matter cannot be in a state of absolute motion or absolute chaos! “Chaos” 

and “order” can only coexist.  

The "birth" of new systems is inextricably linked with the destruction of previous 
systems and occurs in accordance with the laws of conservation of energy and matter of 

both systems and the world around them. This is reflected in the principle of dualism of 

symmetries, according to which the evolution of the world proceeds in the unity and 

struggle of “chaos” and “order”. 

2. The unity of the world’s picture and the universality of the fundamental laws 

of physics. The unity of nature follows from the condition of openness. This is extremely 

important for building a physical picture of the world. The Universe cannot be divided 

into independent parts that is always done for its mathematical description. This is a huge 
flaw in mathematical models. Dirac suggested that it can be eliminated if one knows the 

principles of interaction of system elements and evolution [31]. This assumption is 

confirmed by the existence of principles for constructing a hierarchical structure of 

matter “from simple to complex”, as well as the fact that matter is an ONDS hierarchy. 
Thus, these principles are consistent with evolutionism, with the idea of unity, 

interconnection and interdependence of all structures of the Universe.  

If the world develops in accordance with deterministic physical laws, then in nature 

there is nothing that does not arise from a simpler one [12]. Thus, the physics of 
evolution confirms the integrity and uniqueness of the picture of the world, as well as the 

universality of the laws of physics for the Universe. 
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Let us to give a historic fact. Aristotle, not knowing the concepts of energy and 
acceleration, found of the body’s motion equation, based on observations. According to 

his equation, the velocity of bodies is proportional to the force. This result is 

fundamentally contrary to Newtonian mechanics. However, as follows from the 
mechanics of SP, the Aristotle motion equation is true in the limiting case, when the 

body’s velocity reaches its maximum value due to friction. The SP motion equation 

contains these two, at first glance, mutually exclusive limit cases. As follows from this 

equation, when the role of the structure of the body in its dynamics is small, then 
Newtonian mechanics is valid. However, when the work of external forces goes only for 

increase in internal energy due to the friction, the Aristotle equation is valid [14]. It 

follows that the lack of unity in the existing physical picture of the world may be due to 

the use of restrictions in the creation of a particular theory. If these restrictions are 
removed, then the contradictions may disappear, and the lost unity will be restored. 

Thus, the physics of evolution reinforce the principles of the unity of the world’s 

picture and the universality of the fundamental laws of physics [14]. 

3. Intensive way of constructing new knowledge. The main method for the 
development of physics is the study of new phenomena, objects, the identification of new 

laws and their explanation in the framework of existing fundamental theories. But in the 

process of the development of science, the limitations that were used in their construction 

began to appear. This can be seen in the example of elementary particle physics and 
cosmology. For example, here theories are faced with the problems of spontaneous 

symmetry breaking in understanding the Heisenberg uncertainty principle. In 

astrophysics there is a problem of dark matter. A similar difficulty existed to explain the 

problem of irreversibility in the framework of theories of classical mechanics [30]. This 
difficulty was overcome by the expansion of formalisms of classical mechanics as a 

result of taking into account the role of the structure of bodies in their dynamics. Thanks 

to such accounting, DMI was found, which opened the way to the physics of evolution. It 

follows that there is a possibility of the development of physics by identifying and 
eliminating the limitations on which its theories were based. This demonstrated that 

physical theories can go the intensive way if existing theories are improved using 

more realistic models. 
Newton found new laws of classical mechanics, thanks to the simplest model of the 

body in the form of MP, which excludes from consideration the structure of bodies. 

However, as it turned out, to describe the processes of evolution in nature, it is necessary 

to take into account the structure. This has led to the possibility of constructing 

evolutionary physics based on the fundamental laws of physics. In turn, the physics of 
evolution has opened up the possibility of studying nature during its evolution. 

The construction of the physics of evolution has revealed the need to develop new 

approach to the construction of a mathematical apparatus that allows us to describe the 

universal processes of symmetry breaking in physics. The essence new approach lies in 
the description of the interaction of symmetry groups arising from the motion of the 

ONDS in inhomogeneous external force fields. The interaction of symmetry groups leads 

to a violation of the symmetry of time and then to DMI. These violations are associated 

with "evolutionary nonlinearities" that describe the transformation of energies between 
independent spaces of variables from different symmetry groups [21, 23]. 

4. Nonlinear reductionism, the principle of causality and holism. Reductionism 

plays an important role in the development of science. Today this principle collides with 

the great difficulties. These difficulties, as a rule, indicate that the further development of 
knowledge about nature along the path of "primitive reductionism" and the extension of 

theory based on its existing foundation, is no longer a sufficiently effective way of 

understanding the world, as it was in the initial stages of the development of science. 
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Let us call by the  "primitive reductionism" or linear reductionism such reductionism 
for which the sum of information about the elements gives complete information about 

the entire system. This reductionism does not take into account a qualitative leap in 

information due to the transition of quantity into quality. However, the processes of 
evolution in nature are impossible without these leaps. Therefore, in "primitive 

reductionism" it is impossible to search for laws and principles that establish a nonlinear 

relationship between the properties and laws that characterize the upper hierarchical level 

of matter, with the properties and laws of the elements of the lower level.  
DMI, which establishes the causality principle in the physics of evolution, is non-

linear. This suggests a nonlinear relationship of qualitatively new laws of system 

behavior based on the laws of the dynamics of their elements. Therefore, this also speaks 

of the nonlinearity of reductionism and the principle of causality. 
In connection with the physics of evolution, it is necessary to use as we call 

“nonlinear reductionism” to study the evolutionary process. “Nonlinear 

reductionism” may be one of the promising ways to develop a picture of the world. This 

path is justified by the existence of general principles for the synthesis of knowledge 
about the laws of ONDS behavior, based on knowledge of physical laws that determine 

the dynamic and evolutionary characteristics of their elements. Using these principles, 

you can build a picture of the world, climbing the hierarchical ladder of matter. 

A pre-existing explanation of irreversibility is based on probabilistic principles. 
However, it is one thing to use the concept of randomness for a statistical description of 

systems, and another when it is a principle that determines the evolution of the world. If 

the concept of randomness belonged to the fundamental principles of nature, this would 

mean the absence of determinism [31]. And this, in turn, would mean the absence of 
“nonlinear reductionism”, according to which there is the possibility of knowledge 

developments from “simple to complex” due to the universality and self-consistency of 

the physics laws. 

The absence of “nonlinear reductionism” will mean the triumph of holism, an 
alternative to the principle of reductionism, which has deep roots in ancient Eastern 

philosophy. A brief definition of holism: “the whole is greater than the sum of its parts” 

[20]. For example, according to holism, life has properties that do not follow from the 

properties of inanimate matter. These are the properties of reproduction, homeostasis, 
regeneration, etc. However, if the properties of the whole are not related to the properties 

of its parts, this means the unknowability of nature. Consequently, the question of the 

validity of reductionism is a question of the cognoscibility of the world and the 

possibility of constructing its closed, self-consistent picture. Thus, the physics of 
evolution has expanded the position of the principle of cognitive ability of nature due to 

the “nonlinear reductionism”, since it demonstrates the possibility of constructing a 

hierarchical structure of matter based on the fundamental laws of physics. 

Reductionism is impossible without the principle of causality. DMI, which underlies 
the physics of evolution, establishes the principle of causality in evolution. Indeed, DMI 

made it possible to connect evolution with the fundamental laws of physics, taking into 

account the influence of the structure of bodies on their dynamics. 

According to principles of the physics of evolution, there is a causal relationship 
between the laws of different hierarchical steps of matter because the laws of the 

dynamics of elements determine qualitatively new laws of evolution of their systems. For 

example, the second law of thermodynamics, reflecting the irreversibility of processes in 

the system, follows from the reversible laws of the dynamics of the elements of system. 
This led to the possibility of a deterministic description of evolutionary processes [16, 

29]. 
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Without taking into account evolution, determined by the processes of organization, 
development and destruction of natural systems, the evolution picture of the world not 

only cannot be complete, it cannot be constructed in principle. The fact that the physics 

of evolution satisfies the causality principle opens the way to building an evolutionary 
picture of the world.  

Thus, in the frame of the “nonlinear reductionism” it became possible to unite 

different fields of science in accordance with the principles of the unity of the picture of 

the world and the universality of the laws of nature. 
5. Transition of quantity into quality. DMI was found due to the possibility of 

establishing the physical properties of systems based on knowledge of the properties of 

their elements. For example, if we build ONDS from the MP set, then it will have the 

irreversibility property, while the MP motion is reversible. Therefore very existence of 
DMI in the framework of the laws of physics indicates the deterministic way transition of 

quantity to quality. 

DMI follows from the ONDS motion equation. According to this equation, DMI is 

associated with the conversion of motion energy into internal energy [14]. This transition 
is characterized by D-entropy. An analysis of D-entropy for systems with different 

number of elements moving in an inhomogeneous space showed that key statistical laws, 

for example, the law of fluctuations of quadratic functions [21], follow from the 

fundamental laws of physics.  
Using methods of numerical calculations of the dynamics of systems in an 

inhomogeneous force field, it was found that for the number of elements in the system 

N> 100, the D-entropy can only be positive.  This number characterizes the transition of 

the system to a new quality, in which the laws of statistics are applied. When N> 1000, 
the behavior of D-entropy ceases to depend on an increase in the number of elements. 

This number determines the area of validity of thermodynamics. That is, the fundamental 

laws of physics determine the scope of the empirical laws [11]. For example, take the 

Boltzmann equation [28]. Its importance for physics is difficult to overestimate. But this 
is an empirical equation, and therefore it has a number of limitations and even 

contradictions. For example, this equation contradicts the Poincare reversibility theorem, 

although formally, like the Poincare theorem, it is constructed based on the Hamiltonian 

formalism. These shortcomings are eliminated if the Boltzmann equation is directly 
derived from the extended Liouville equation [32]. Even when solving the problem of N-

bodies, it is impossible to do without taking into account the fact that the energy of 

ONDS always consists of internal energy and the motion energy of its structures. 

6. The unity of the micro and the macro world. The basic laws of physics, 
regardless of their field of application, must be closed, self-agreements and satisfy the 

causality principle if the world has evolved from simple to complex. This is true for 

objects of classical mechanics. However, in quantum mechanics, these conditions are 

violated due to the Heisenberg uncertainty principle. According to this principle, it is 
impossible to simultaneously determine the position and momentum of microparticles 

[19, 33]. This violates the causality principle in the micro world and therefore, excludes 

the possibility of constructing an evolutionary picture of the world. However, based on 

the conditions of the infinite divisibility of matter and the fulfillment of PDS, a 
deterministic explanation of the uncertainty principle can be proposed. If matter is 

divisible infinitely, it should be a combination of ONDS and possess internal energy. In 

this case, the principles of the formation macrosystems from microsystems are valid. 

Using the canonical Schrödinger equation to describe their dynamics will lead to the 
uncertainty of their trajectory. Indeed, the canonical Schrödinger equation is obtained 

from the Hamilton formalism of classical mechanics, which does not take into account 

the role of the structure of the system in its dynamics.  
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This uncertainty is similar to the trajectory uncertainty that will arise when 
describing the dynamics of a system using the Newton equation since this equation does 

not take into account the influence of the body structure on its dynamics. Thus, the 

uncertainty in the description of dynamics based on the canonical Schrödinger equation 
can also be explained by the fact that it does not take into account the influence of the 

structure of quantum particles on their dynamics. As in classical mechanics, this 

uncertainty will be determined by changes in internal energy. 

It is known that in quantum mechanics the internal energy of a system cannot be 
equal to zero. Therefore, as in classical mechanics, this will give uncertainty in the 

calculations of the volume of the phase space of interacting quantum systems, which is 

comparable with the value of the Planck constant. To eliminate this uncertainty, one 

needs to use the extended Schrödinger equation. This equation takes into account the role 
of changes in internal energy in the dynamics of quantum particles during their 

interaction [34]. Therefore, the Heisenberg uncertainty principle can be associated with 

existing methods for describing quantum systems that do not take into account the role of 

their structures in dynamics, but not because it is dictated by the nature of the 
microworld. This conclusion is confirmed by the above calculation results of the passage 

of a classical oscillator through a potential barrier. Only taking into account the role of 

internal energy in the dynamics of the system, we take into account this effect [25]. If 

this dependence is not taken into account, we will come to the problem of Aristotelian 
dichotomy between potentiality and relevance, which Heisenberg has deeply studied and 

which is still controversial [19, 35]. 

If so, the problem of substantiating the possibility of constructing physics of 

evolution, associated with the principle of uncertainty in quantum mechanics, is 
removed. This testifies in favor of the unity of the laws of physics and in favor of the 

existence of a "theory of everything". 

 

Conclusion 
 
The physics of evolution is based on the mechanics of structural particles. The 

mechanics of structural particles arose as a result of taking into account the influence of 

the structure of bodies on their dynamics. This mechanics is based on the motion 

equation of structural particles arising from the laws of classical mechanics and the 
principle of dualism of symmetry. From the motion equation of structural particles, it 

became possible to establish how non-potential dissipative forces arise from potential 

external forces. This allowed us to create the physics of evolution. The task of 

evolutionary physics is to describe the evolutionary processes of the appearance, 
development, and disappearance of physical systems in the framework of the 

fundamental laws of physics. 

According to the physics of evolution, matter is infinitely divisible and represents an 

infinite hierarchy of open nonequilibrium dynamical systems. There are principles that 
allow you to climb the hierarchical levels of the structure of matter, getting the laws of 

the dynamics of the upper levels of matter according to the laws of the dynamics of the 

lower level. As a result, you can go “from simple to complex”, relying on the 

fundamental laws of physics, without involving any probabilistic laws. This allows you 
to build a hierarchical picture of matter, if the laws of behavior of only one of the 

hierarchical levels of matter are known. 

Obviously, the number of principles that determine the relationship of hierarchical 

levels will increase with the development of knowledge. New principles will dictate new 
laws, such as the laws of evolution of living beings: the laws of self-reproduction, 

homeostasis, the adaptation of the body and its elements to external conditions. For 
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example, if we stand on the position of Marx, according to which consciousness is a 
property of matter, which reflects itself, and not a separate, independent entity, then in 

principle we can develop the physics of consciousness. Thus, in the process of 

developing knowledge, new laws of behavior of higher hierarchical levels of matter will 
become known. However, since new laws are built on the basis of the well-known, none 

of these new laws should contradict the well-known ones, which corresponds to the 

principle of “common foundations”. 

The physics of evolution reveals the essence of the law of unity and struggle of 
opposites, as is seen in the example of dualism “chaos” and “order”. Chaos and order 

coexist only together. The mediator of these opposites is D-entropy, which determines 

the relationship of “chaos” and “order”. 

The physics of evolution strengthens the positions of those philosophical concepts 
that confirm the possibility of constructing an evolutionary picture of the world based on 

the fundamental laws of physics. In particular, this applies to reductionism. 

The very possibility of constructing evolutionary physics testifies in  favor of the 

existence of the causality principle within the framework of the basic laws of physics. As 
Einstein said: "God does not play dice." Indeed, according to the physics of evolution, 

the future arises from the present in a deterministic way. In general, the physics of 

evolution opens up the possibility of building a picture of the world within the 

framework of universal evolutionism, climbing the hierarchical ladder of matter from 
"simple to complex."  

In accordance with the physics of evolution, the possibility of constructing an 

evolutionary picture of the world does not mean at all that someday in a very distant 

future, humanity will create the final picture of the world. The fact is that the number of 
hierarchical levels of matter is infinite, and the complexity of the process of cognition 

rapidly increases with the growth of the hierarchical level. Indeed, it is easy to see the 

history of the explanation of the second law of thermodynamics, which began about 200 

years ago. However, this is only the second step in the hierarchy of matter from MP to 
SP! However, any natural phenomenon will eventually become known. That is, although 

the processes of studying nature are endless, but the limitations of existing knowledge are 

associated with the limitations of theories and models used, and not with the existence of 

the boundaries of knowledge. 
Thus, taking into account the structural nature of matter and its role in dynamics has led 

to the possibility of describing irreversibility, the establishment of infinite divisibility of 

matter, the universality of the mechanism of symmetry breaking, and, ultimately, the 

possibility of describing evolutionary processes within the framework of the basic laws 
of physics. All this means the possibility of constructing a deterministic evolutionary 

picture of the world within the framework of the laws of physics. 
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Abstract. The appearance of devil’s staircase and chaos have been studied in the
dc+ac driven Frenkel-Kontorova model. In the overdamped limit, the devil’s staircase
structure arising from the complete mode-locking of an entirely nonchaotic system
was observed. Even though no chaos was found, a hierarchical ordering of the Shapiro
steps was made possible through the use of a previously introduced continued frac-
tion formula. When the inertial term is included, unlike in the overdamped case, the
increase of mass led to the appearance of the whole series of subharmonic steps in
the staircase of the average velocity as a function of average driving force in any com-
mensurate structure. At certain values of parameters, the subharmonic steps became
separated by chaotic windows while the whole structure retained scaling similar to
the original staircase.
Keywords: Frenkel-Kontorova Model, Shapiro steps, Devil’s Staircase, Chaos.

1 Introduction

One of the most interesting properties of nonlinear dynamical systems with
competing time scales is their ability to exhibit frequency locking phenomena.
One such phenomenon, that occurs in nonlinear systems under some external
radiation or force are Shapiro steps, which appear as a result of dynamical
mode-locking of frequencies. Due to significance for various technological ap-
plications, for years, they have been the subject of intensive theoretical and
experimental studies in charge-density wave systems [1–4], vortex matter [5–7],
irradiated Josephson junctions [8–10], and, more recently, even in supercon-
ducting nanowires [11,12]. In the search for an optimum way to control the
dynamical mode-locking, one should keep in mind that there is one usually un-
wanted but often present phenomenon in nonlinear dynamical systems, which
is highly sensitive to the initial condition, and which can affect the stability of
locked states, this phenomenon is the chaos. Therefore, studies of chaotic be-
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havior are necessary in order to get a complete microscopic picture of frequency
locking in nonlinear systems.

One of the models capable of capturing the essence of frequency locking,
and the appearance of Shapiro steps is the Frenkel - Kontorova (FK) model
under external periodic forces [13–15]. The standard FK model represents a
chain of harmonically interacting identical particles subjected to the sinusoidal
substrate potential [13,14]. When the external dc and ac forces are applied
locking occurs between the frequency of the particles motion over the periodic
potential and the frequency of external ac force [14]. On the macroscopic scale,
this effect is characterized by the appearance of a staircase of Shapiro steps in
the curve for average velocity as a function of the average external driving force
v̄(F̄ ). The steps are called harmonic if the locking appears at integer multiples
of the ac frequency or subharmonic at noninteger rational multiples.

It is well known that dissipative dynamical systems with competing frequen-
cies can be described by the circle map. Depending on the coupling strength,
the circle map can develop a cubic inflection point leading to the appearance of
a devil’s staircase and the transition to chaos [16,17]. When the coupling is be-
low some critical value, the staircase is incomplete, i.e., there are quasiperiodic
intervals between the frequency locked plateaus (steps) of periodic behavior.
As coupling increases, the frequency locked regions start to broaden, and at
some critical value, they fill up all the space. Though the quasiperiodic inter-
vals have zero measure, and the devil’s staircase is said to be complete, they
have nonzero fractal dimension (scaling index) which is universal, i.e. the same
D = 0.87 for all the systems (at least for those described by the circle map with
a cubic inflection point), and thus often considered as a constant of nature [16].
The mechanism leading eventually to chaos is the interaction between differ-
ent resonances caused by the nonlinear coupling and overlapping of resonant
regions when coupling exceeds certain critical value. However, the universality
of this scenario as well as the universality of the fractal dimension have been
questioned in the past years, and numerous studies in the wide range of biolog-
ical, chemical, and physical systems have been devoted to models showing the
occurrence of the entire nonchaotic regions with complete phase locking [18–
21]. Nonchaotic transition from quasiperiodicity to complete locking [18] and
deviation from the universality with fractal dimension varying from 0.64 to 0.98
have been observed [20,22].

In this paper we will explore the appearance of devil’s staircase and chaos
in the dc+ac driven Frenkel-Kontorova model. The discrete FK model is not
integrable, and in general, its dynamics can be chaotic [13] since due to its
nonintegrability, atomic motion is always accompanied by energy exchange
between different modes leading to intrinsic chaotisation of its dynamics [13].
We will analyze both over- and underdamped models and examine how the
system dynamics changes with the changing of parameters and transferring
from one limit to another.

The paper is organized as follows. The model is introduced in Sec. II,
and simulation results are presented in Sec. III and IV. The devil’s staircase
structure is revealed in Sec. III, while the chaos was examined in Sec. IV.
Finally, Sec. V concludes the paper.
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2 Model

We consider the dynamics of the standard damped FK model, which consists of
a series of coupled harmonic oscillators ul of mass m, subjected to the periodic
substrate potential V (u):

V (u) =
K

(2π)2
[1− cos(2πu)], (1)

where K is the pinning strength. This potential belongs to the family of nonlin-
ear periodic deformable potentials, introduced by Remoissent and Peyrard [23]
as a way to model many specific physical situations without employing per-
turbation methods. By changing the shape parameter r, the potential can
be tuned in a very fine way, from the simple sinusoidal one for r = 0 to a
deformable one for 0 < |r| < 1.

The system is driven by dc and ac forces,

F (t) = Fdc + Fac cos(2πν0t), (2)

where Fac and ν0 are amplitude and frequency of the ac force respectively.
If the system is overdamped, its dynamics is described by the following

system of equations of motion:

u̇l = ul+1 + ul−1 − 2ul − V ′(ul) + F (t). (3)

where l = −N/2, ..., N/2.
In the underdamped case we will consider the following set of equations:

u̇l = υl

mυ̇l = ul+1 + ul−1 − 2ul −
K

2π
sin(2πul)− υl + F (t),

(4)

where l = 1, ..., N labels the particles, and the term, which comes from the
substrate potential is given for the case r = 0. The damping is fixed by two
parameters m and K, and for some constant force F , the system is overdamped
for [24,25]:

0 < m ≤ 1

4(2 +K)
. (5)

When the system is driven by a periodic force, two frequency scales appear
in the system: the frequency ν0 of the external periodic (ac) force and the char-
acteristic frequency of the particle motion over the periodic substrate potential
driven by the average force F̄ = Fdc. The competition between these two fre-
quency scales can result in the appearance of dynamical mode-locking. The
solution of the system (4) is called resonant if the time average mean velocity
v̄ satisfies the relation:

v̄ :=

〈
1

N

N∑
i=1

vi

〉
t

=
iω + j

s
ν0, (6)
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where i, j, s are integers and ω is the winding number [15], which is fixed to
rational or irrational values, characterizing commensurate or incommensurate
structures, respectively.

The above systems of equations (3) and (4) have been integrated for the
commensurate structures ω = 1

2 . using the fourth-order Runge-Kutta method
with the periodic boundary conditions for the system of N = 8 particles. The
force has been increased from zero with the very fine discretization 10−4 −
10−6. Unlike in the overdamped case, the behavior of the underdamped system
depends on its previous history therefore, the initial condition at the each step
of driving force was obtained from the last step in the integration, at its previous
value.

3 Devil’s staircase in a nonchaotic system

We will consider first the overdamped FK model described by Eq. (3). It is
well known that the standard overdamped FK model with sinusoidal substrate
potential for commensurate structures with integer values of ω reduces to single
particle model where no subharmonic locking exists, while for rational, nonin-
teger ω subharmonic steps do appear, however, their size is so small that they
are hardly visible on the v̄(F̄ ) characteristics [13]. By introducing some form
of deformable potential such as the one in Eq. 1 the whole series of halinteger
and higher order subharmonic steps start to emerge [14].

In Fig. 1, the average velocity as a function of the average driving force is
presented for two values of the ac amplitude. The number and size of Shapiro

Fig. 1. The average velocity v̄ as a function of the average driving force F̄ for K = 4,
ν0 = 0.2, ω = 1

2
r = 0.5, and different values of the ac amplitude Fac = 0.2 and 1.1.

The numbers mark harmonic steps.

steps, which appear on the response function are determined by the amplitude
of the ac force and the extent of deformation of the potential. In Fig. 1,
beside harmonic, only halfinteger steps are clearly visible, however, the high
resolution analysis reveals a devil’s stair case, i.e., an infinite series of higher
order subharmonic steps in between them. In Fig. 2, the high resolution views
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Fig. 2. The high-resolution views of the selected areas in Fig. 1 for Fac = 0.2 in (a)
and 1.1 in (b). The rest of parameters are the same as in Fig. 1

of the selected areas in Fig. 1 are presented. In the devil’s staircase structure,
the steps appear following the continued fraction formula [9,10], which in the
case of the ac driven FK model can be written as:

v̄ =

i± 1

m± 1
n± 1

p±...

ων0, (7)

where i,m, n, p, ... are positive integers. Harmonic steps are presented by the
first-level terms, which involve only i, while the other terms involving other
integers describe subharmonic or fractional steps. Terms involving i and m are
called second-level terms, those with i, m, and n third-level terms, etc. In Fig.
2 (a) and (b) the sequences of the third and fourth level become visible. Our
calculations of fractal dimensions shows that it varies with deformation of the
potential and the ac amplitude, for small deformation it changes around 0.87,
while for higer deformation it decreases depending on the ac amplitude.

Appearance of devil’s staircase in the overdamped FK model might lead
to the conclusion that if it exhibits complete locking, it must also, therefore,
exhibit the chaos. In our search for chaos we applied the largest Lyapunov
exponent (LE) computational technique and extend our examination to a very
high resolution and wider range of parameters, the ac amplitudes in particular.
Regardless of system parameters, no chaos was ever observed. The overdamped
Frenkel-Kontorova model remained entirely non chaotic.

The absence of chaos in the ac driven overdamped FK model can be at-
tributed to the dissipative character of the system and the Middleton no-passing
rule [26,27]. According to this rule which applies on one-dimensional, strictly
overdamped systems, the order of particles must be preserved in dynamics or,
in other words, the particles cannot jump over each other while they move. In
such case, there could be no overlapping of resonances which is the main cause
of the chaotic behavior in frequency locking systems [10,17,16].

1009



4 The appearance of chaos

When the inertial term is present (Eq. 4) and the FK model is underdamped
its behavior changes completely. One of well known inertial effects is the ap-
pearance of subharmonic mode-locking even in the commensurate structures
with integer values of ω [14]. However, the increase of mass in the ac+dc driven
FK model may have much more dramatic effects than just simply inducing sub-
harmonic streps. In Fig. 3, the response function v̄(F̄ ) and the corresponding
Lyapunov exponents (LE) λi are presented for two different values of mass. In

Fig. 3. The average velocity v̄ as a function of the average driving force F̄ and the
corresponding Lyapunov exponents λi for K = 4, r = 0, Fac = 0.2, ν0 = 0.2, ω = 1

2
,

and m = 0.1 and 0.15 in (a) and (b), respectively. On this scale of y axis only the
largest Lyapunov exponent is visible. Numbers mark the harmonic steps.

order to also examine the effect of the mass on the appearance of subharmonic
steps, we consider here the standard FK model with sinusoidal substrate po-
tential (r = 0). As we can see in Fig. 3 (a) since m 6= 0, subharmonic steps
start to appear. As the mass increases in Fig. 3 (b) chaotic behavior starts to
appear indicated by the positive values of the LE.

Further, we will focus on the chaotic regions between the large harmonic
steps, and examine in detail the onset on chaos on subharmonic steps. In
Fig. 4, the staircase structure of the average velocity as a function of the
average driving force v̄(F̄ ) and the corresponding LE for m = 0.2 are presented.
Chaotic behavior appears only in the region of subharmonic steps as we can
see in Fig. 4 (a). As the force increases the response of the system approaches
to the that of the dc driven one. If we further examine the chaotic region,
the high resolution view in Fig. 4 (b) reveals the staircase of subharmonic
steps separated by chaotic windows. Devil’s staircase containing Shapiro steps
separated by self-similar chaotic regions has been observed both in the single
and in the one dimensional stack of Josephson junctions [28,29]. It was shown
that in the current-voltage characteristics of the junctions the staircase with

1010



Fig. 4. (a) The average velocity v̄ as a function of the average driving force F̄ and
the corresponding Lyapunov exponents λi for K = 4,r=0, Fac = 0.2, ν0 = 0.2, ω = 1

2
,

and m = 0.2. Dashed line corresponds to the dc driven system Fac = 0. (b) The
high-resolution views of the selected areas in (a).

chaotic intervals preserves the scaling of the original staircase with the fractal
dimension close to 0.87. In our case, for the fractal dimension D in the region
between the second and third harmonic step, we obtained D=0.8759 with an
uncertainty of ±0.0166.

5 Conclusion

In this work the appearance of devil’s staircase and chaotic dynamics have
been studied in the dc+ac driven Frenkel-Kontorova model. In the overdamped
limit, though entirely non chaotic, the system exhibits the devil’s staircase aris-
ing from the complete mode-locking, where the Shapiro steps appear following
continued fraction formula. In the underdamped limit, on the other hand, the
increase of mass leads to the appearance of the whole series of subharmonic
steps in the staircase of the average velocity as a function of average driving
force in any commensurate structure. At certain values of parameters, the sub-
harmonic steps become separated by chaotic windows while the whole structure
retained scaling similar to the original staircase.

This work could be important for all nonlinear physical systems with com-
peting frequencies from physical to chemical and byological, which exhibit
devil’s staircase and potentially could go under the transition to chaos. Shapiro
steps have been studied for years in Josephson junction systems, which posses
a great potential for technological applications from device building to voltage
standards and detection of Majorana fermions [30], and situations in which the
parameters should be set to produce desired dynamical effects without evoking
chaos are a common engineering problem [31]. In voltage standards or other
applications, both quasiperiodic and chaotic behavior must be avoided; how-
ever, surprisingly, the optimum operating region is actually near the onset of
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chaos. Therefore, further comparative studies of the resonance phenomena in
the Frenkel-Kontorova model and other physical systems, particularly experi-
ments, would be very interesting.
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Abstract. Under specific conditions LED driver circuits can be as susceptible to 

chaotic bifurcations, as conventional boost converters have proven to be. A significant 

relationship between the switching frequency of the boost converter’s transistor and the 
circuit’s nonlinear behaviour is shown. In order to examine such transistor switching 

frequency effects, an open-loop configuration is employed, since a feedback control 

system would obscure these particular nonlinearities. A theoretical method has been 

devised to predict the unstable frequency regions based on certain dependence equations. 
There are particular nonlinear parameters which influence the circuit’s behaviour, such as 

the reverse-recovery time of the boost diode, as well as the collective effect of the 

inductance and the diode’s junction capacitance. The dependence equations prove a 

correlation between these inherent nonlinearities and the switching frequency of the boost 
transistor. Period doublings and transitions to chaos occur for several regions of the 

examined switching frequency range. The theoretical method used for the numerical 

analysis is based on the periodicity of certain voltage waveform peaks, probed at key points 

on the converter. The LED boost driver displays a wealth of nonlinear phenomena and 
detrimental effects on its brightness levels throughout the nonlinear frequency regions.  

Keywords: LED boost converter, chaotic oscillations, nonlinear dynamics, 

bifurcations, lighting circuits. 
 

 

1  Introduction 
 

Plenty of practical applications that employ power conversion circuits would 

benefit from an alternative circuit model, one that takes into account the nonlinear 

nature of the converter’s characteristics. Conventional modelling techniques 

utilized so far, can omit various nonlinear effects and as a result the circuit 

designer might miss certain operating behaviours that may significantly degrade 

a power converter’s performance. Such unpredictable phenomena might arise in 

current-mode DC-DC boost converters [1] or in Power Factor Correction (PFC) 

power supplies in the form of slow-scale instabilities, which can degrade the 

power factor significantly [2]. As a consequence, the linearization approach that 

is still commonly used in the industry can provide inaccurate solutions to 

designers, since nonlinear instabilities that can affect a power converter’s 

response, cannot be easily detected without a certain type of analysis. Such an 

analysis can offer an in-depth view into the behaviour of these nonlinear circuits 

that may embrace specific properties such as subharmonics [3] as well as several 

chaotic phenomena within numerous power converter configurations [4].  
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A diode circuit in the form of a resonator made an early introduction to 

electronics chaos [5]. The inductor and the diode of this simple circuit have 

proven to be highly nonlinear circuit elements as shown in [6] and [7] amongst 

others. When the nonlinear capacitance of the diode’s equivalent circuit is 

combined with a nonlinear resistor at high frequencies chaos emerges [8].  

Diode resonator circuits have also been initially used for the study of the 

period-doubling phenomenon that can lead a system towards chaos. At the course 

of this phenomenon, a signal waveform’s period is doubled successively as a 

control parameter of the circuit is varied, until the time-series finally become 

chaotic and the signal’s period becomes undetectable. The circuit diverges from 

its designated operation, as in the example of rectifiers that employ slow-response 

diodes [9]. Since LED driver circuits are essentially modified DC-DC power 

converters [10], it is important to explore the conditions that could cause chaos in 

such a system. In most published papers though, chaos appears mainly due to 

controller instabilities of the feedback loop in such power converters [11] or as a 

result of slope disturbances [12]. The possibility of chaos is examined without the 

feedback loop, in order to prove that chaos can be possible only due to the inherent 

nonlinear properties of the boost diode and inductor combined.  

 

 

2  Diode physical characteristics 

 

A Light Emitting Diode (LED) forms a special type of diode. A specific 

forward voltage is required in order to switch on an LED, which will then enable 

the nominal operating current through it. LEDs are nonlinear devices, in the sense 

that they do not possess a linear relationship between the voltage applied, and the 

current drawn. Once the forward voltage is reached, the current through the LED 

will rise exponentially, and visible radiation is emitted.  

The equation shown below from the authors’ published work [13], shows that 

the instantaneous current of the diode is linked with an exponential relationship 

to its reverse current,  

 

𝑖(𝑣) =  𝑖0(𝑒
𝑞𝑒𝑣

𝑘𝑇 − 1)  (1) 

 

which is the io term shown above. LEDs will switch on only when they are 

forward-biased with a positive voltage polarity to its anode and a negative voltage 

to its cathode. If this voltage polarity is reversed, current should not normally 

flow, as the diode behaves as an insulator under reverse polarity.  

Under normal current flow, a spontaneous recombination of electrons and 

holes takes place in the PN junction of the diode’s semiconductor material, and it 

is through their interaction that light is generated. Under specific circumstances 

however, a small reverse current might flow. Such an event occurs when the 

temperature is varied and when minority charge carriers move inside the junction. 

The power electronic circuits which drive LED devices can either operate 

under AC or DC voltage, although it is more common to operate LEDs under 

direct current.  
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In the case of the LED boost driver circuit, a DC-DC boost converter is 

utilised. A DC input voltage supplies the converter, while energy is stored in both 

the inductor and its output capacitor. A MOSFET transistor switch controls this 

energy transfer by switching on & off rapidly and the LED is supplied with this 

combined capacitor and inductor voltage. The combined output voltage is higher 

than the input voltage and it should be near the LED’s nominal forward voltage.  

For the purposes of the experiments of this paper, the MOSFET duty cycle 

was set at D=0.5 (50% pulse on-50% pulse off) which should double the input 

supply voltage. For the LED boost driver, this results in an LED output voltage 

of 1.7x2= 3.3 V. This is the calculated LED forward voltage in order to switch on 

the particular power LED module. The average LED current is also estimated in 

the range between 350-450 mA. Two main DC-DC boost converter topologies 

form the basis of the experiments. One open-loop boost converter with a resistive 

load, and one LED boost driver. The circuit in Fig. 1 shows the experimental 

configuration of the LED boost driver. Table 1 shows the experiment settings for 

the resistive boost converter.  

 

 
Fig. 1. LED boost driver experimental circuit schematic 

 

 

Table. 1. Resistive boost driver circuit configuration 

Resistors 
RL = 24 kΩ (Load) 

R1 = 1.2 Ω (Q1-MOSFET source) 

Inductors L1 = 4.48 mH, L2 = 470 μH 

Boost diodes 
D2 = type BYG20J (Cj = 25 pF, τRR = 75 ns) 

D5 = type 1N4007  (Cj = 10 pF, τRR = 5 μs) 

Output capacitor  C = 10 μF (C1//C2) 

DC Voltage source amplitude Vdc = 14 V 

Frequency of pulsed voltage source fsw = 1 kHz to 1 MHz 
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3  Theoretical Analysis 
 

There are certain nonlinear characteristics which influence the diode’s 

operation. One of them is the reverse-recovery time, the time that the diode needs 

to recover the positions of its electrons and holes, when a reverse current goes 

through it.  

 

The resonant frequency which relates the diode’s reverse-recovery time is shown 

below. 

 

𝑓𝜏𝑅𝑅
= 

1

𝜏𝑅𝑅
  (2) 

 

A second nonlinear parameter is the diode parasitic junction capacitance. When a 

reverse current flows through the diode, certain electrical charge is held at the 

junction, due to this capacitance. When the input voltage changes polarity again, 

that is from negative to positive, the inductor tries to maintain this reverse current.  

 

The resonant frequency which relates the parasitic capacitance and the total 

inductance of the circuit is shown below. 

 

𝑓𝐿𝐷 =
1

2𝜋√𝐿𝐶𝑗
  (3) 

 

As a result, two inherent resonant frequencies emerge from these nonlinear 

characteristics, 𝑓𝜏𝑅𝑅
 and 𝑓𝐿𝐷 . A specific method with dependence equations has 

been used in order to derive the unstable switching frequency regions of this 

circuit. These dependence equations have been successfully utilized in resonator 

circuits in the past [14]. This theoretical method is supported by both simulation 

and laboratory experiments, whereby a circuit model has been designed for each 

experiment type. In other published works of Hamill [15] or Dobson [16], a 

different model type predicts the behaviour of generic boost converters. However, 

the model of this paper aims to define the physical principles behind the formation 

of chaos in such boost converter circuits. When these resonant frequencies are 

synchronised with the switching frequency of the transistor, chaos occurs at 

multiples of these resonant frequencies. The dependence equations shown here, 

were used to support this theoretical analysis. 

 

𝑓𝑠𝑤≈𝑓𝐿𝐷   (4) 

𝑓𝑠𝑤≈𝑓𝜏𝑅𝑅
  (5) 

 

In order to examine the reverse recovery effects on the diode’s operation, a 

resonator circuit was initially simulated, built and examined. This original diode 

resonator includes an AC source, an inductor, a diode and a resistor load [5]. 

When the AC voltage changes direction, chaotic oscillations are formed at 

specific frequencies, right at the load’s voltage due to the aforementioned reverse 

current effects.  
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The next experiment involves a pulsed input as the excitation source of the 

diode resonator. A similar nonlinear response to the original diode circuit was 

observed, which proves that chaotic and resonant oscillations under an alternating 

or pulsed signal input are indeed feasible. At a later stage, the resistive boost 

converter was used to test the theoretical model. Finally, the LED boost driver 

was utilised in order to verify these findings in a lighting application circuit. 

For the theoretical analysis, specific voltages on the LED driver were selected, 

and their waveforms have been examined. This theoretical analysis follows an 

iteration sample procedure which examines the periodicity of the waveform 

peaks. The voltage waveforms have been sampled at the same switching 

frequency of the transistor, and if the peaks repeat at the same amplitude and 

shape periodically, then the system is in a stable and linear state. If the peaks show 

period doubling, the waveform peaks appear twice, before the waveforms’ period 

starts again. If the peaks do not show a regular periodic pattern, chaos has been 

reached in the system. The suggested iteration procedure is described below. The 

reader may select the two voltage variables of the system, that is the MOSFET 

drain voltage VL1D and the diode voltage VDL2. The suggested peak analysis 

method involves an iteration algorithm for the two voltages as shown below 

 

𝑉𝐿1𝐷,(𝑛+1)𝑇 = 𝑓(𝑉𝐿1𝐷,𝑛𝑇)      (6) 

𝑉𝐷𝐿2,(𝑛+1)𝑇 = 𝑓(𝑉𝐷𝐿2,𝑛𝑇)       (7)  

 

where T is the switching period and n is the iteration number (n =1, 2, … k), which 

is an independent variable. Typical switching frequencies for most boost 

converters range from tens to hundreds of kHz, but modern LED drivers have 

reached 2-3 MHz. In order to observe such chaotic phenomena in the laboratory, 

Poincaré sections, Fourier transform spectra and phase space XY plots have been 

calculated and displayed as follows (Fig.2-3).  

 

 
Fig. 2. (period-2, fsw=315 kHz): (a) VDL2 voltage Fourier spectra, (b) XY plot, 

(c) Poincaré plot 
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Fig. 3. (chaos, fsw=214 kHz): (a) VDL2 voltage Fourier spectra (b) XY plot, (c) 

Poincaré plot 

 

For the initial experiments with the resistive boost converter, a bifurcation 

diagram has been generated for the entire examined frequency range. Period-

doublings have been witnessed at 315 kHz and chaos at 214 kHz. Both of these 

frequencies were multiples of the resonant frequency that the theoretical model 

predicts for this particular diode type. These results are plotted in phase space 

plots, frequency spectra and Poincare sections.  

For the transistor switching frequency range from 15 kHz up to 350 kHz the 

experimental voltage waveform data was analysed, and the bifurcation diagram 

of Fig. 4 was generated. Linear regions are indicated with single solid lines, and 

the sparse regions indicate strong nonlinear regions with wide voltage differences. 

It should be stressed that in some cases (e.g. near 25 kHz), the inspected diode 

voltage reached almost 80 V, with only 14 V of input voltage. 
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Fig. 4. Bifurcation diagram of VDL2 voltage-as a function of the switching 

frequency 

 

 

4  Illuminance Experiments 
 

Following the experiments with the resistive boost converter, the same 

switching frequency variation procedure was performed, in order to investigate 

the LED boost driver behaviour. For the LED boost driver the following circuit 

configuration has been used.  

 

Table. 2. LED boost driver circuit configuration 

Resistors 
RL = 10 Ω (2W) (Load) 

R1 = 1.2 Ω (Q1-MOSFET source) 

Inductors L1 = 4.48 mH, L2 = 470 μH 

Boost diodes 
D2 = type BYG20J (Cj = 25 pF, τRR = 75 ns) 

D5 = type 1N4007  (Cj = 10 pF, τRR = 5 μs) 

Output capacitor  C = 10 μF (C1//C2) 

DC Voltage source amplitude Vdc = 1.7 V 

Frequency of pulsed voltage source fsw = 1 kHz to 1 MHz 

 

Boost diode-1N4007 (slow-response): Throughout the different switching 

frequencies, periodic behaviour at 50 kHz was recorded, along with relatively 

high brightness levels (230 lx) (Fig. 5-6). At much lower switching frequencies 

the LED illuminance peaks at 460 lx. With the same diode type, a strange attractor 

appears at 80 and 200 kHz (Fig. 7-8), in a similar fashion to the resistive boost 

converter. The illuminance levels drop considerably at these frequencies, due to 

the high nonlinearity of the system. 
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Fig. 5. LED Driver period-1 response, 

50 kHz, Time-domain waveform 

Fig. 6. LED Driver period-1 response, 

50 kHz, Phase plot 

 

  
Fig. 7. LED Driver chaotic response, 

200 kHz, Time-domain waveform 
Fig. 8. LED Driver chaotic response, 

200 kHz 

 
The illuminance data has been processed in order to plot them against the 

switching frequency. The illuminance graph for the slow-response 1N4007 diode 

is shown in Fig. 9.  

 

 
Fig. 9. Illuminance as a function of the MOSFET switching frequency (slow-

response diode)  
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High illuminance is recorded in periodic or relatively stable period-4 or 

period-5 attractors. In the frequencies that the system reached chaos, extremely 

small illuminance levels have been recorded.  
 
Boost diode-BYG20J (fast-response): With the ultra-fast diode, larger areas 

of linear behaviour have been observed, as this diode’s reverse recovery time is 

considerably faster than the 1N4007 diode. A very high illuminance was recorded 

in the periodic regions reaching a maximum of 1353 lx, whilst the illuminance 

falls to just 17 lx in the chaotic attractor regions (Fig. 10). The theoretical method 

predicts these nonlinear resonant frequencies where chaos dominates the system.  
 

 
Fig. 10. Illuminance as a function of the MOSFET switching frequency (fast-

response diode)   

 

The ultra-fast diode exhibits more illuminance peaks at higher frequencies, 

where the slow diode was going through a very unstable region. Still, chaos is 

observed at certain frequencies at the lower peaks of the graph, e.g. at 80, 130 or 

200 kHz.  

 

 

5  High Sensitivity to Initial Conditions 
 

There is a particular type of phenomenon which occurs often in such nonlinear 

systems. Even with the BYG20J ultra-fast diode, a sensitive dependence on the 

initial conditions of the system has been recorded. With only a 100 Hz of 

difference between the switching frequencies of 666.6 kHz and 666.7 kHz, the 

LED driver circuit moves suddenly from an unstable region of almost zero 

illuminance, to a stable region of considerable illuminance (Fig. 11).  
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Fig. 11. Illuminance as a function of the MOSFET switching frequency  

 

 

Conclusions 
 

Two nonlinear resonant frequencies of an LED driver circuit have been 

detected, which influence harmfully its performance. This behaviour manifests 

itself only in the power section of the boost driver, and unlike previous literature, 

chaos occurs without a feedback loop. The synchronisation of these resonant 

frequencies with the transistor switching frequency, steers the LED converter 

towards chaos. The negative effects include a significant degradation in 

illuminance performance, especially at the chaotic regions. The suggested 

nonlinear analysis includes a bifurcation peak-to-peak method, in order to guide 

the interested researcher to avoid such unstable regions. A number of research 

suggestions for further steps of this work can be considered. In this context, the 

resonant response of even faster diodes can be investigated. The interested reader 

can also explore the low-frequency chaos that has been found in such fast diodes. 

Finally, some abrupt transitions to chaos that have been recorded at specific 

frequencies, could be investigated as forms of interior crisis within this nonlinear 

system. 
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Abstract. Here we applied some of concepts of dynamical systems in an experiment 

involving a laser beam injected in a glass cylinder, recording the light patterns from the 

scattering of light from a finite cylinder. We have studied some aspects of the 
representation of dynamical systems in this experiment, along with the observation of the 

existence of a sequence of numbers which characterizes this dynamics, known as Farey 

sequence, due to its connection with trajectories following star polygons. We also report 

the observation of arcs with folds in these light patterns. We studied the case when the 
cylinder change its shape into the case of a foot of a wine glass, and compared some 

solutions of the cylindrical lens with epicycloid dynamics and halo formation, for the 

case of patterns formation based in the observation of relativistic effects. 

Keywords: Relativity, Farey Sequence, Billiards. 
 

1  Introduction 
 

The word halo brings to mind a picture of an optical phenomenon by 

light interaction with ice crystals suspended in the atmosphere, such as the 

circular halo, which is a representative of a family of luminous patterns whose 

main effect is a large ring of light around a point. Here, we consider a halo any 

distribution of a light pattern around a point. The essence of these phenomena is 

somehow related to any property that is capable of bending light from the source 

as the light travels towards the observer. The presence of a halo can therefore 

reveal the extent of the optical properties of the medium where light spreads. 

For example, luminous arcs are present in rainbows (Fig. 1(a)), 22 degrees halo 

around the Sun (Fig. 1(b)) or in relativistic effects such as Einstein rings (Fig. 

1(c)), with the presence of partial or complete circumferences. From these 

examples, we see that there are different types of systems that can present 

formation of luminous halos, based on quite different physical environments. In 

the previous examples, the halos are related to the presence of ice crystals or 

drops in space, deflecting light, in other cases the very constitution of the 

structure of the space-time creates the effect of the curvature of light path, due 

to the presence of massive objects such as quasars, galaxies or black holes. 

Due to the visual appeal of these phenomena in the mankind, this subject has 

been observed and studied intensely by centuries with a significative impact on 

history of science. The study of rainbows, glories and halos helped the 
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development of optics and mathematics [1], and many authors have described 

the aspects of the theory of rainbows and its applications [2], the elementary 

physical features of halos [3], and advanced aspects such as considering a 

rainbow as diffraction catastrophe [4]. The existence of multiple rainbows was 

done using glass rods with normally incident light and for diagonal incidence [5, 

6]. Interesting patterns obtained with cylindrical symmetry in optical systems is 

also related with some studies of dynamical systems and solitons [7]. 

 
Fig. 1. Some halos and luminous arcs found in nature. In (a)  

rainbow observed at Newark, California, USA, in (b) the 22 

degrees halo around the sun formed by the interaction of the sun 
light and ice crystals suspended in the atmosphere, and in (c) the 

gravitational mirage known as Einstein ring obtained with a 

simulation of a gravitational lens. 

 

Stimulated by the observation of some patterns obtained in our experiments, 

we have explored the use of the concepts present in dynamical systems and 

topology to give a new perspective in the comprehension of halo formation. For 

this reason, it is appropriate to discuss the light beams like particles travelling in 

an open billiard, exploring these motions from the point of view of dynamical 
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systems, and this is the aim of this paper. The description of light rays in open 

billiards creating light patterns forming circles was explored in our previous 

works [9-13], as well as the role of the hyperbolic geometry in some light 

pattern formation [15]. In this paper we explore the formation of some of these 

halos and arcs from the point of view of dynamical systems based on some 

concepts of optics using two lenses, a cylindrical one and another with the shape 

of a pseudosphere. We start studying the scattering of rays in a cylinder and 

present a direct analysis of the observed pattern based on the conceptual 

structure of the dynamical systems. After that, we propose a topological 

transformation of the cylinder to a pseudosphere and analyze some properties of 

gravitational lenses. 

 

2  The cylinder as an open billiard 
 

Our first experiment consists of a laser beam hiting a glas rod, as it is shown 

in Figs. 2(a)-(b). The theory of rainbows here is the following. For the case of 

circular section of Fig. 2(c), light reaching the cylinder with angle i = 0, creates 

rainbows for specific angles, due to the formation of caustics. Usually, caustics 

can be defined as the envelope of rays that describes the flow of energy, and this 

energy flow increases significantly on caustics compared to the adjacent space, 

forming more intense light patterns. Lenses with circular sections exhibit the 

formation of caustics similar to those observed in the case of the rainbow, and 

the main ray of the caustics is called Cartesian ray, which can be obtained 

considering the total deviation of a ray for the general case of k-internal 

reflections giving by [16]: 

)1(22180  kk i

o

TRT  ,                                    (1) 

and the incident angle i corresponding to the minimum deviation after k 

internal reflection is the Cartesian ray angle Cr:                                         

)2(

1
arccos)min(

2






kk

n
TRTcr  .                                    (2) 

For the case of values of i different for zero of Fig. 2(d) and i = 0, the laser 

beam hitting the cylinder at distance dsc of the screen will give an image at 

height hk from the axis of the cylinder for the kth point is giving by:                                  

)]}90()[)(1({[ i

o

rk tgtgkddsch   ,                                 (3) 

in which when k is even the projection of this point is at upper part of the 

screen, and when k is odd the point is at the down part of the screen, considering 

the vertical axis perpendicular to the cylinder axis. 

However, the light rays are not always scattered about a cone whose axis is 

in the cylinder axis [17], because the laser hits the cylinder obliquely, as it is 

shown in the diagrams of Fig. 2(e)-(f). For example, one ray that hits the axis of 

the cylinder is associated with one cone, while another ray grazing the cylinder 

surface is associated with another rays’ cone with intermediary impact 
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parameters generate intermediary cone of Fig. 2(f). Basically, this effect of the 

laser hitting the cylinder obliquely causes an optical flattening of the circular 

cross section of the cylinder, creating similar effects of a cylinder with an 

elliptical section, and coupling the radial and longitudinal modes. 

 

 
 

Figure 2 – Two views of a laser hitting a cinder in a tilting angle, 
with the emerging light traveling in space. In (a) we can see the glass 

cylinder at the left side and the scattered light forming a cone on the 

right side. In (b), we have a frontal perspective of this experiment. 

Diagrams of light rays in a cylinder: (c) normal incidence and (d) 
oblique incidence. Diagrams of conical projections in (e) and (f), and 

the angle of Cartesian ray in function of the tilt angle i for a glass 
cylinder with refraction index n = 1.50 in (g). 
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3  Dynamical system optics 
 

Consider a light ray of a laser beam traveling inside a glass plate undergoing 

a sequence of internal reflections on the upper (1) and down sides (2) of this 

plate, like a light ray trapped in a kaleidoscope formed by two parallel mirrors. 

This sequence of reflections can be represented in the sequence of events with 

the reflections “1” evolving in space at the top of this plot and reflections “2” at 

the bottom part of this plate. Considering the sequence of spatial events, we can 

associated a temporal evolution for the trajectory of the light ray for each 

reflection, so that the first reflection in time is closer to the laser source, while 

the most distant ones occurred later. The pattern associated with this dynamics 

in a cylinder is shown by the caustics of Fig. 3(a), and the external pattern of 

Fig. 3(d) for an angle of incidence i = 0. Changing this angle, we obtain the 

patterns of Figs. 3(e)-(f), associated with the caustics of Fig. 3(b)-(c). 

The simplest dynamical system related to the ray tracing described 

previously is the one-dimensional circle map [14]:                                           

)2sin()( 2  
Kf       (mod 1),                                    (4) 

which describes a motion on a three-dimensional torus, characterized by two 

frequencies 1 and 2 given by = 2/1. If the non-linear term K vanishes in 

eq. (4), the ratio of the two frequencies 2/1 = p/q is a rational number, and the 

trajectory is closed after q internal reflections and the motion is periodic. 

Irrational numbers  lead to quasi-periodic internal reflections which creates 

spiral patterns. The case when the ratio of the two frequencies gives a rational 

number is related to a structure in the space of control parameters known as 

Arnold tongues. 

In Fig. 3(g) we can see how these patterns are associated with the 

dynamics of a particle bouncing in a billiard for a period-2 (1,2) and for a 

particle for the case of a period-3 (1, 3), with its respective patterns. From the 

dynamics obtained from equation (4), there is the existence of a closed orbit 

with the shape of a pentagram of Fig. 3(h), which is defined as the Farey 

mediant between the period-2 and period-3, because this period-5 orbit is part of 

a family of star polygons, linked to a special array of rational numbers in the 

unit interval, which is defined by the Farey mediant [14], given the three 

consecutive fractions p1/q1, p2/q2, p3/q3: 
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which is a special addition of fractions. This idea is valid for the flattened case 

of the ellipsis of Fig. 4(a)-(b). In Fig. 4(c) we present the Farey diagram 

associated with the circle map, along with some orbits obtained in our 

experiment.  
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Figure 3 – Observing the flattening of the section of the cylindrical lens due to 

the coupling between the azimuthal and longitudinal modes. A similar 

behavior of flattening can be seen in the caustics from a circle in (a) to an 

ellipse in (b), to another ellipse in (c). In our experiment, the equivalent of a 

circle is shown in (d) (= 0o, = 30o), with the elliptical sections in (e) (= 

7o, = 30o) and (f) (= 12o, = 30o). The dynamics of Farey mediant in (g) 
and luminous pattern formation from a cylinder due the combination of 

different modes in (h). 
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Figure 4 – Elliptical billiards and Farey diagram for star polygons trajectores. 

The dynamics of a circunferece is similar in an elliptical billiard, as is shown 

in (a) the quasiperiodic orbit close to a period-3, and in (b) the quasiperiodic 

behavior close to a period-5, for a ray injected at the point indicated by the red 

arrow. In (c) star polygons and the diagram of the Farey sequence for 

p/qfrom 0 to 1, along with some light patterns obtained from our 
experiment. 

 

4  Caustics-like patterns 

 
In our experiment, we have observed the formation of arcs with fold. 

Considering that the laser beam maintains its shape inside the glass cylinder, for 

some of the rays that escape from its surface, in addition to the divergence 
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projected in the screen there is a fold property, forming these arcs with two 

branches represented in the plot of Fig. 5(a). Looking for a possible explanation 

for these arcs with folds in the literature of optics, we have found an analogy 

with the mechanism of caustics formation and folded wavefront of Fig. 5(b) 

caused by the involutes of Fig. 5(c)-(d) for each branch of the caustics. 

 
Figure 5 – Light arcs and folding light due to caustic formation. In(a) the plot 

of the caustic obtained from the folded wavefront (b) due to the glass 

cylinder. Each side of this caustic (y1 and y2) is associated with the involutes 

shown in (c) and (d). The image of the multiple caustics is projected in a 

screen (e) (= 27o, = 33o). The pattern obtained with green laser (= 18o, 

= 13o) rotates counterclockwise in (f), while the pattern with red laser in (g) 

rotates clockwise (= -18o, = 13o). The longest arc of light is always the 
first reflected ray R of the diagram of Fig. 2(a). 

 

Considering the incident light as a plane wave there is a folding of this wave 

in the cylinder and formation of a caustic [2] as it is shown in Fig. 5. This 

caustic is the involute of the plane wave represented in Fig. 5(c)-(d). The 

projection of these involutes in the screen forms different patterns for different 

values of i and i, and for some projections is possible to observe two arcs of 

Fig. 5(a). According to catastrophe theory each side of this caustic forms an arc 

parametrically modeled by a constant Ct in the following function:                                                
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).( 3/2xCtyn                                                         (6) 

Returning to our experiment and using the same representation for the 

arcs with folds discussed above, we can see some arcs with folds in the pattern 

of Fig. 5(e), analogous to the case of the Fig. 5(a). 

The existence of non-closed orbits is related to quasi-periodic 

dynamics of the laser inside the billiard, such as the spirals shown in Fig. 5(f)-

(g). The rotation orientation of these spirals shows which side of the Farey 

diagram are the orbits in relation to the center of the diagram for the value of  

= ½. The green pattern of Fig. 5(f) rotates in clockwise direction for positive 

values of i, while using a red laser in Fig. 5(g), with a negative value of i, 

these arclets rotate in counterclockwise direction. The patterns of Figs. 5(f)-(g) 

have up to 30 rays each one. The longest arc of light is always the first reflected 

ray R of the diagram of Fig. 2(a), while the brightest point is the laser hitting the 

screen directly. 

 

5  From cylinder to gravitational lens 

The next step in this work of halo dynamics is to remark the association of 

this pattern formation with images like epicycloids, observed in another optical 

system related with gravitational lensing, in which there is the formation of the 

Einstein’s ring, which here we compare with halos. 

First, we can transform a cylinder to a foot of a wine glass with the 

transformation of Fig. 6(a). The realization of this optical lens is shown in Fig. 

6(b). Using the terms of hyperbolic geometry, this foot of a wine glass shape is 

related to the surface of a tractrix curve and the pseudosphere, in our case a half 

pseudosphere. Second, placing this lens of three horizontal parallel lines, we 

have obtained the pattern of Fig. 6(c), which are related with the Möbius 

transformations [15]. 

The transformations associated with this type of geometry is analogous to 

the path traced by a point P on the edge of a circle of radius b rolling on the 

outside of a circle of radius a of the period-2 of Fig. 3, and it is related with the 

caustic of epicycloids of Fig. 3(a), which are given by the parametric equations 

[18]:                                          

 
b

ba
bbax

 )(
coscos)(


 ,                                    (7a) 

 
b

ba
bbay

 )(
sinsin)(


 ,                                    (7b)                                           

in which a, b are the parameters of the epicycloids. In this way, the dynamics of 

the caustics of period-2 of the cylindrical lens is still present in the foot of a 

wine glass lens, considering the profiles of caustics in a cylinder Fig. 3(a) and 

the Möbius transformation of Fig. 6(c) 

Now, we explain why this lens can be associated with a black hole. To 

obtain this lens, we start with the Einstein’s gravity field equations [19]:                                             




T

c

G
gRgR

42
1

8
 .                                           (8) 

1033



The two first terms are related with the space time-curvature, the third term 

is the stress from empty space-time itself, and the last term is the stress from an 

object in space-time. 

 
Figure 6 – Transforming a cylinder in (a) in a foot of wine glass (half 

pseudosphere) shown with yellow surface in the inset. The realization of this lens is 

shown in (b). In (c) we can see the image obtained with the lens with the shape of a 

pseudosphere of three parallel lines, shown in the inset at the top of this image. 

 

One possible solution of these equations is the pseudosphere lens, because 

they can be broken into simpler equations, which are more appropriate to 

understand the gravitational lensing, considering the case of the lens with the 

shape of a foot of a wine glass for a point mass model, and the angle which light 

is deflected by this poit mass is [19, 20]:                                                             

bc

GM
2

4
ˆ  ,                                                      (9) 
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where G is the universal gravitational constant, M is the mass and b is the 

impact parameter. This point mass could be the black hole. 

The images obtained for the solution in Eq. (9) are comparable to the period-

2 observed of Fig. 7(a) with the cylindrical lens and are related with the 

parametric equations of the  epicycloid of Eqs. (7a)-(7b) due to Möbius 

transformations of space-time of Fig. 7(b). The diagrams of Fig. 7(c)-(d) 

describes how the Eq. (9) is related with the image perceived by the observer in 

the point O, from a star source of the light at the distance of some gigaparsecs 

DSfrom this observer, when a massive object L with the size of some 

megaparsecs is at distance DL placed betweem them. When the star source S, the 

massive object L and the observer O are perfectly aligned, there is the possibilty 

of the formation of the ring (halo) of Fig. 9(e), known as Einstein’s ring. Like 

the case of the cylinder acting as a lens, the control parameter here is the 

alignement of the system S-L-O, with the system triggered in the period-2 due to 

the lens configuration. This halo pattern is present in a system which is  

analogous to the case of gravitational lens observed in Fig. 1(c), and we 

observed that it is similar to the dynamics involving Farey diagram of Fig. 4, for 

the case of frequency ½. 

 

 
Figure 7 – The period-2 compared with the gravitational lens model. In (a) the 

period-2 obtained with the cylinfrical lens. The luminous arcs obtained with 

the foot glass. In (c) diagram of the image formation of the gravitational lens. 

The lateral view of the same diagram in (d). Simulation of the Einstein’s ring 

(e) obtained from our experiment is another example of halo dynamics. 

 
One important thing to note for the case of the gravitational lensing is that 

the formation of both arcs occurs simultaniously, suggesting that the dynamics 

of halo formation here is related to a supercritical pitchfork bifurcation [14], as 

it is shown from the images obtained from a point source of Fig. 8 for different 

values of the control parameter b. Multiple images can be present in 

gravitational lensing [19-21], involving a more complex analysis of the halo 
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dynamics, due the presence of multiple lens planes, resmbling the previous case 

of the cylinder with oblique incidence. 

 

Figure 8 – Evolution of arcs using the foot of wine glass lens for a period-2, 

like a supercritical pitchfork bifurcation in a surface of a cylinder for the 

parameter b from 1.1 in (a), 1.0 in (b), 0.8 in (c), 0.6 in (d), 0.4 in (e), and 0.2 

in (f). 

Conclusions 

We have explored the halo formation based in the concepts of rainbow 

ray formation and caustics in parallel with the studies of dynamical systems, 

such as particles bouncing in an open biliard. We have observed the existence of 

pattern formation following the dynamics observed in the Farey Diagram, using 

an approach based in the experiment of a laser beam hitting obliquelly a glass 

cylinder. After that, we investigated the pattern formation when this cyclinder 

suffers deformations until it has the shape of  a foot of a wine glass lens, used to 

study patterns in systems affected by relativistic effects. In our explorations, we 

have found patterns for this system as two light spots, which converges to a halo 

when the light source, the lens and the observer are aligned. 
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Abstract. We are presenting experimental results and simulations of dynamical systems 

using magneto-optics. These light patterns are obtained by the observation of a thin film 

of ferrofluid in the presence of a magnetic in the presence of a magnetic field. 
Keywords: Magnetism, Isoclines, Chiral. 

 

1  Introduction 
 

In our previous work, we have considered the analogy between the general 

properties of vector fields of the phase space of dynamical systems with the 

properties of potential of magnetic charges using magneto-optics [1], as it is 

shown in Fig. 1. 

 
Fig. 1 – (a) Two magnetic charges with the field lines represented by the arrows 

and isopotentials represented by the colored lines and its magneto-optical 

counterpart in (b). 
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We have proposed this representation because the representation of 

both fields is comparable, the existence of two different types of “charges” 

enable us to obtain elliptic points and saddles. Basically, the colored lines 

observed from our magneto-optical system are obtained from the light 

diffraction of light sources in micro-needles aligned with magnetic field. In Fig. 

1 and Fig. 2, we can see that the isopotentials are perpendicular to the lines of 

the magnetic field. 

 
 

Fig. 2 - (a) Three magnetic charges with the field lines represented by the 

arrows and isopotentials represented by the colored lines  and its magneto-

optical counterpart in (b). 

 
It is important to note that the representation of magnetic charges is a 

valid way to represent the magnetic field and this is not incompatible with the 

idea of the Lorentz force, as the same way that a phase space represents states of 

motion, not the motion itself. 

 However, there is an apparent contradiction in this analogy, because 

the representation of isopotentials and the colored lines of our magneto–optical 

is not perfect. A close observation of the light patterns of the experiment shows 

the existence of crossing lines, which could imply in indeterminacy in a 

dynamical system, violating the classical representation of dynamical systems. 

The light patterns mimic the isopotentials, because the light patterns are a 

combination of the magnetic field and the position of the light source. For 

different positions of the light source, we have different diffracted lines, which 

eventually will cross each other. In this way, metaphorically speaking, these 

luminous patterns linked to the isopotentials are equivalent to the representation 

of the nature by the impressionist painters, with emphasis in depiction of light in 

its changing qualities with unusual visual angles. 

Consider now the Hénon conservative map given by: 
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Fig. 3 – In (a) diagram of separatrix chaos. In (b) the diagram of a Henon-

Heyles map with chaotic oscillations. In (c) the concept of chaos in conservative 

systems close of hyperbolic points. 

 

For the case of Hamiltonian systems, we can observe the existence of chaos for 

perturbations close to the separatrix of the system, as it is shown in Fig. 3(a), 

which shows the conditions of the nonlinear resonance on the phase space, in 

which the green line is the unperturbed trajectory. The blue line is the new 

separatrix of the phase oscillations. The classical plot of chaotic behavior can be 

obtained for the Hénon conservative map of the Fig. 3(b) from eq. (1), with 

chaotic behavior given by red region ( = /2-0.228), quasiperiodic behavior in 

green color ( = /2-0.200), and another chaotic region in black ( = /2-

0.250).  

The idea o f chaos in this case can be understood if we follow the stable 

(Ws) and unstable manifolds (Wu) of Fig. 3(c), until their intersection points in 
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red, called homoclinic points HS
1 and HS

2. Applying the perturbation repeatedly 

to Ph
0, we have the sequence of image points Ph

k converging towards hyperbolic 

point for k tending to infinite, and consequently Wu and Ws can only intersect 

after an infinite sequence, and the same is valid for the reversing points Qh
k. The 

result is an extraordinary complex view of intersecting invariant manifolds. One 

example of this behavior is shown in Fig. 4 using the eq. (1), for the case of  

equals to (/2-0.228). (see ref. 2). 

 

Fig. 4 – Chaos close of a hyperbolic point in the Hénon map. 

 
For the case of the magneto-optics in our experiment, we observed that 

the light patterns are oriented by the vectorial product of Fig. 5 [1, 3, 4, 6, 7]. 

 
Fig. 5 - The vector d is the direction of the tangent line of the diffracted lines, 

which is perpendicular to the direction of propagation of the light ray p and the 

orientation of the magnetic field H. 
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This approach is well known in celestial mechanics, demonstration of 

chaotic pendulum, or in electromagnetism, where physicists look for the 

dynamics of particles in magnetic fields. We are investigating in this paper the 

equivalent case of chaotic scenario in magnetostatics interacting with light from 

our experiment involving magneto-optics. We were inspired by the direct 

observation of luminous patterns and properties of magnetic fields. 

 

2  Experimental Apparatus and Modeling Isopotentials 
 

In Fig. 6 we present the experimental apparatus of this system. The 

luminous patterns observed in the thin film of ferrofluid is a direct effect of the 

magnetic field with the iron particles, which take a shape that scatters light in a 

certain shape  for the viewer. In this way we have to use an array of magnets of 

Fig. 7, above the magnets we have a mirror. The device known as Ferrolens of 

Fig. 8, the Hele-Shaw cell containing the ferrofluid, is placed above this 

assembly. We use different light arrays above this setup, which represent the 

ferro-mirror experiment.  The ferrofluid is a stable colloidal dispersion using 

light mineral oil. The nanoparticles are spheres of the order of 10nm in 

diameter. The magneto-optic effect results in the change of some optical 

parameters of the ferrofluid, forming images. For more details see Refs. 1, 3, 5 

and 6. 

 
Fig. 6 - Diagram of the ferro-mirror experiment setup. 

1043



 

 
Fig. 7 - Magnets fixed in a base. 

 

 

 
Fig. 8 – Pattern obtaine with the Ferrolens. 
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The software  Pic2Mag [5] simulates some aspects of magnetic field 

arrangement of a magnet array, such as vector field and isopotentials, like the 

case of two magnets of Fig. 9(a), wich can be compared to a phase space like 

the one in Fig. 9(b), which represents the phase space of a pendulum. 

 
Fig. 9 – Comparison between isopotentials of magnetic field and the phase 

space of a pendulum. The green curves represents the separatrix. 

 

3   The patterns of eyes and Chirality 
 

One interesting phenomenon observed is a magneto-chiral pattern of 

Fig. 10, which there is three magnets to create this pattern, in a three-pole 

configuration formed by south-north-south poles. The pattern resembles three 

eyes arranged in a column-like alignment. Fig. 10(c) is the top view of the light 

pattern, Figs. 10 (a)-(b) is from the same system observed from the right side, 
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and Figs. 10(d)-(e) are perspective obtained from the left. We can see that the 

pattern suffers distortions. However, these patterns cannot be overlapped with 

other in order to be reproduced. One image is a reflection of the other, in such 

way that there is a chiral effect. We can consider that the assembly of 

nanoparticles is somehow affecting these light patterns, because nanoscale 

particles could self-assemble into helical-like structures due to the interplay of 

magnetic dipoles and van der Walls interactions [3, 4, 7]. The consequence of 

this anisotropy is the emergence of optical chiral structures. 

 

 

 

Fig. 10 - Magneto chiral effect. 
 

 

 

4  Hyperbolic points 
 

For the case of Hamiltonian systems, the existence of saddle point is 

the important key to observe the existence of chaos. The stable and unstable 

manifolds are called separatrices, and when a weak perturbation is added, the 

separatrix are destroyed and replaced by a separatrix chaotic layer. The same 

way as the separatrix is obtained numerically by integration of the equations 

with a set of initial conditions in the vicinity of the separatrix, we can explore in 

our system what is happening around the saddle points in our experiment. Let’s 

consider the case of Fig. 11 with a configuration of isopotentials equivalent of a 

torus. Observing the detail of the central area of this image in Fig. 12(a) with the 

experiment in Fig. 12(b), we can see what is happening with the four saddle 

points around the center of the light pattern observed with experiment. The 

colored lines converge to the saddle point and vanish. In contrast, the center 

point of the image, which represents the center point of a dynamical system, the 

colored lines swirls around it, and the central region is dark. 
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Fig. 11 - Simulation of isopotentials in a a torus. 

 

 

 
Fig. 12 - Exploring Center and saddle points: simulation and experiment 

 

 

1047



Fig. 13 was obtained by placing the pattern obtained experimentally on 

the simulation. With this picture, we can observe that the saddle points of the 

simulation is slightly different from the experiment, for example the green cross 

at the right side, at the top of Fig. 14, in which the experiment is the red circle 

A, and simulation is the green circle B. 

 

 
Fig. 13 –Another array of magnets superposed on the simulation of the magnetic 

field and isopotentials.  

 

 

 
Fig. 14 Observing a hyperbolic magnetic point from the previous figure: the 

experiment is the red circle A, and simulation is the green circle B. 
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Conclusions 
 

We have explored some aspects of the analogy between dynamical 

systems and the magneto-optical system formed by a thin film of ferrofluid. 

Magnetic static fields have some general properties of Hamiltonian systems, and 

using different magnetic fields configurations, we look for hyperbolic points and 

observed how the experiment behaves around these regions. The light patterns 

are related to the vectorial product between the ray light p and the orientation of 

the magnetic field H, given locally the tangent vector d. During theses 

explorations of this magneto-optical system, we have found some evidences of 

chiral effects and we suggested that this effect is related to anysitropic 

properties of magnetic nanoparticles. 

 We have observed that the presence of the thin film of ferrofluid affects 

the magnetic field, and the formation of patterns can show the differences 

between the values of the patterns observed experimentally and the computed 

values. 
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Abstract. The interest in hysteresis and magnetism is shared by scientists with an 

impressive variety of backgrounds, such as mechanics, thermodynamics, 

electromagnetism, catastrophe theory, mathematics and dynamical systems, because 
hysteresis loop is a concept at the core of non-linear systems in which the dependence of 

the evolution of the states of these systems are related with their history. In this work we 

present a connection between dynamical systems and hysteresis loops and after that, we 

present some interesting hysteresis loops obtained using the Transverse Magneto-Optical 
Kerr effect (TMOKE), of thin films of sperimagnetic amorphous alloys with rare-earth 

and transition metal. The samples present first and second order transitions. The first 

order transition occurs at the compensation temperature when the total magnetic moment 

or magnetization is minimal. The second one occurs at the transition magnetic field when 
the behavior of the derivative of the signal changes, and it can be spin-reorientation or 

spin-inversion. 

Keywords: Bistable system, Hysteresis loop, Sperimagnetism. 

 

1  Introduction 
 

Magnetism is a property of matter, and we can observe their 

magnetization M under several specific conditions of measurement or geometry 

when some materials are subjected to an external magnetic field H, as it is 

shown in Fig. 1 [1]. 
These curves give us some interesting ideas of the properties of the 

materials, helping to categorize them paramagnetic, diamagnetic, ferromagnetic, 

and so on. The blue curve representing the ferromagnetism presents the 

interesting feature known as hysteresis curve, in which the response of the 

system depends on its history. Ferromagnetism here represents several kinds of 

materials with ferro and antiferromagnetic materials that have exchange 

interactions that align the atomic magnetic moment without external applied 

field. The sperimagnetism is included. 

Systems with hysteresis are in general nonlinear systems, and they are 

common in nature, and the word is used in different contexts to express some 

kind of state of a system that is dependent of its history, with some kind of lag 

between the input or control parameter and the output or state variable, enabling 

to make memory devices, such as magnetic tapes or hard-disks [1]. 

The magnetic field H is the input or control variable and the 

magnetization or total magnetic moment M is the output or state variable. H and 

M are conjugate work variables meaning that their product is work. G is the 

Gibbs free energy of the system and the thermodynamic potential controlling 
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spontaneous transformations. GL is the Landau free energy, after L. D. Landau 

phenomenological theory of phase transitions. G is different of GL, but after 

symmetry arguments and proper approximations, we can consider that Gibbs is 

equal Landau free energy, and search the local minima using the derivatives of 

GL. The lowercases represents some convenient dimensionless form [1]. 

 
Figure 1. Magnetic curves for different magnetic materials. 

 

 (b)  

Figure 2. The system is in the state m of the green dots for the temporal evolution (1, 2, 
3, 4, 5 and 6) of the potential gL(m,h) controlled by the input h in (a). The three different 

functions of gL are represented by red, black, and blue curves. In (b), we have the 

hysteresis loop associated with this bistable system [1]. 

First, we will concentrate on bistable systems [2] and rate independent 

hysteresis, as it is shown in Fig. 2. 

 The potential represented with the black plot in Fig. 2(a) is the free 

energy of the bistable system for h = 0 for the expression [1]: 

gL(m, h) = m4 - 2am2 - hm.                                      (1) 

where a is a positive parameter. 

The hysteresis loop of this bistable system is shown in Fig. 2(b) 

changing the control parameter h. This system always moves towards a 
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minimum value, when h is increased from the saturated state 1, to state 2, jumps 

abruptly in state 3 by a Barkhausen jump, reaching another saturated state 4. 

Reversing the control parameter, the system evolves from state 4 to state 5, a 

different minimum of the bistable potential. After that, there is another 

Barkhausen jump in state 6 the initial saturated state 1. This behavior 

exemplifies how the system can have different values of one variable depending 

on the direction of change of the control parameter. 

 

2  Dynamical Systems 
 

We can observe that the hysteresis is related to a supercritical pitchfork 

bifurcation, with this example. Related with dynamical systems by look the 

derivatives, considering the state variable x, representing the magnetization, that 

will change in time. 

 Stable points have first derivative equal to zero, and a positive second 

derivative. Unstable points have first derivative equal to zero, but a negative 

second derivative. The first derivative is 

f(h,x) = dgL/dx = 4x3 - 4ax - h.                                      (2) 

Changing the magnetic field will change the first derivative f(h,x) and 

one can construct a hysteresis loop. In Fig. 3(a), the system evolves from only 

one stable fixed point to a saddle-node bifurcation, with two new stable fixed 

points, as it is shown in Fig. 3(b). Then, in Fig. 3(c), the hysteresis is seen when 

the system goes back and forth, and just one stable fixed point is visited each 

time, before the Barkhausen jump. The intermediate region between the two 

stable fixed points is unstable, in contrast to the case when the parameter h < 0. 

The pitchfork bifurcation of each branch of the hysteresis cycle is shown in Fig. 

3(d). 
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Figure 3. Relation between hysteresis loop and a supercritical pitchfork bifurcation. In 
(a), the system evolves to only one stable fixed point for a control parameter h < 0. A 

saddle-node bifurcation is shown in (b) as we change the control parameter h. The 

complete hysteresis cycle depends on the history of the initial conditions. The pitchfork 
bifurcation of each branch of the hysteresis cycle is shown in Fig. 3(d). 

3  Sperimagnetism 
 

The samples are thin films made of amorphous alloys contain rare-earth and 

transition metal. They have transition metal cobalt Co and a rare-earth metal as 

gadolinium Gd or holmium Ho. The films were deposited by magnetron 

sputtering in glass and silicon Si substrates cooled to free the atoms and make 

amorphous alloys. We took the loops of the films in glass substrates; the Si ones 

were used the measure the thickness of the layers. In Fig. 4, we represent the 

profile of the films. 

 
Figure 4. The structure of the samples shown in cross section. The Si3N4 are antireflexive 

and protective layers. The axis of easy magnetization (arrow) is on the plane of the film. 

The composition and thickness of the samples are shown in the Table 

1. They were measured by analyzing Rutherford Backscattering Spectrometry 

(RBS) spectra obtained with normal beam incidence of 4He+ de 2.4MeV. We 

used the films with silicon substrates for this analysis. 
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Composition 
of the metallic layer 

Layer thickness (nm) 

Metallic 

layer 
1st Si3N4 2nd Si3N4 

Ho33Co67 108 32 31 

Ho36Co64 116 32 31 

Gd20Co80 153 55 55 

Table 1. Composition and thickness of the samples. 

It is important to note that, in amorphous materials, atoms are frozen in 

random positions and orientations, unlike a crystalline structure, where the 

positions and orientations of atoms, or ions, are periodically ordered. So, in 

amorphous alloys, the direction of anisotropy for each ion is random. The 

interaction responsible for the ordering of spins in the material, and therefore, 

for the existence of spontaneous magnetization, was recognized by Heisenberg, 

in 1926, and called exchange interaction. The type of exchange interaction that 

occurs between two atoms depends on the electronic structure of the interacting 

atoms. 

The antiferromagnetic exchange interaction between gadolinium or 

holmium and cobalt make the magnetization of these two sublattices points to 

opposites sides. This gives rise to a compensation temperature Tcomp, in which 

the total magnetization of the alloy is minimal. 

The sperimagnetism [3] occurs because of two aspects, local or ion 

anisotropy and interaction between the alloy components. The intensity of 

exchange interaction between cobalt and cobalt is one order of magnitude 

greater than the exchange interaction between cobalt and rare-earth, which in 

turn is one order of magnitude greater than the interaction between rare-earth 

ions. So, the cobalt sublattice is well aligned, but the alignment of the rare-earth 

sublattice it is weaker in the struggle against temperature. 

The rare-earth elements have the electronic structure of the most 

energetic layers represented by: 4fN 5s2 5p6 5d1 6s2, where N = 0 to 14, 

corresponding to the elements from La to Lu. For Ho, N = 10, because its 

atomic number is 66, for Gd N = 7 (no orbital angular momentum, L = 0). The 

rare-earth magnetism comes from the unpaired electrons of layer 4f, and in an 

alloy they are usually in the form of a 3+ ion, that is, the electrons of layers 5d 

and 6s are conduction electrons. Layer 4f is said to be deep, as it has an average 

radius of approximately 0.3 Å, while the ionic radius is around 1.8 Å. Thus, the 

superposition of layer 4f of neighboring ions is negligible, and therefore, there is 

no direct exchange interaction between these ions. Its alignment is due to a low 

intensity indirect exchange interaction. Gadolinium ion is spherical, much more 

symmetric than holmium, so the local ion anisotropy is stronger in holmium. 

The exchange interaction between ions of transition metal as Co happens with 

electrons of the 3d that have large volume of superposition, therefor a large 

exchange integral [3]. 
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Figure 5. T = 0. In (a), we have a spatial representation of the amorphous RE-TM alloy 

(rare-earth/transition metal), where we see that the positions and orientations of the ions 
are random, and for RE the local anisotropy is dominant, so the orientations of its spins 

are random. However, for TM the dominant interaction is the exchange interaction, 

which promotes the perfect alignment of the spins of these ions. In (b), we have a 

schematic representation of the directions of the spins, where we see that the average 

magnetic moment of RE is in the opposite direction to that of Co, since there is an anti-

ferromagnetic coupling [3]. 

The sperimagnetism that appears in amorphous rare-earth (RE) alloys 

and transition metal (TM) is a special arrangement of spins, in which the 

directions of the spins corresponding to the rare-earth ions are randomly 

distributed inside a cone or a semi-sphere, while the spins of the transition metal 

are all aligned with the axis of the rare-earth spin cone. This type of 

arrangement is represented in Fig. 5(a), the dark circles represent the rare-earth 

ions, and the light circles, the TM ions. In Fig. 5(b), we have a schematic 

representation of the arrangement, showing the random distribution of the RE 

spins and the TM alignment. This representation corresponds to the fundamental 

state, that is, temperature equal to zero Kelvin. 

During the hysteresis loops, this type of alloy suffers a second order 

phase transition, when the applied magnetic field can turn the direction of the 

magnetization of the sublattices, the transition magnetic field Ht. And it can 

change with the temperature. 

 The phenomenon called spin-reorientation is the change in direction of 

the average magnetic moments of each sublattice, in relation to the direction of 

the applied field [4]. When the applied field is weak, we have sperimagnetic 

arrangements before and after the compensation temperature, this phase 

transition is first order. But if the applied magnetic field is larger than the 

critical field, Hcri, for temperatures close to Tcomp, then the magnetic moments of 

the two sublattices start to have a projection in the direction of the applied field. 

With the hysteresis loops, we identify the Ht.  This phase transition is second 

order. In Fig. 6, before the spin reorientation, we have small shaded regions that 
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correspond to the phases where the transition metal also has a random 

distribution of the spin directions. The dashed lines above Hcri represent the 

behavior of coercivity. The dashed lines below Hcri correspond to the loss of 

stability of the collinear phases. Zvezdin [4] used films with the axis of easy 

magnetization perpendicular to the plane of the film, our samples have it in the plane of 

the film. 

 
Figure 6. Phase diagram for amorphous films of RE-TM, applied magnetic field H versus 

temperature T. The axis of easy magnetization is normal to the film plane. In our case, 
the axis of easy magnetization is in the plane of the film [4]. 

 

4  Thermal Behavior of the Hysteresis Plots 
 

The magnetic signal was measure by vibrating sample magnetometer (VSM) at 

room temperature or SQUID: Superconducting Quantum Interference Device, at 

5 K < T < 300 K. A magnetic hysteresis loop is shown in Fig. 7, where we can 

see the transition magnetic field. 

 
Figure 7. Magnetic hysteresis loop (VSM), where we can see the transition magnetic 
field, Ht. It is a second order phase transition. 
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The magneto-optical signal is the Transverse Magneto-Optical Kerr 

Effect (TMOKE) measured using laser diode.  = 670 nm, at 7 K < T < 300 K, 

angle of incidence: 45° [5] [6]. The Magneto-Optical Kerr Effects are shown in 

Fig. 8. 

 
Figure 8. The three configurations of the Magneto-Optical Kerr Effects. 

 Representing the light by its electric field components with respect to 

the plane of incidence, the material surface is represented by the R matrix: 
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The reflectivity of the component in the plane of incidence (p) is 

*2
. ppppppp rrrR 

                                            (4) 

The TMOKE signal is the relative variation in reflectivity in p 

component. For visible light, TMOKE is sensitive to the component of the 

magnetization of the transition metal sublattice parallel to the applied magnetic 

field: 

                                                  (5) 

The two types of phase transition happen due to the competition 

between the magnetization of the sublattices. This behavior creates variety of 

hysteresis loops, more complex than the bistable system of Fig. 2. 

In the Fig. 8, there are hysteresis loops for six different temperatures 

that we obtained with magneto-optical effect for another composition of 
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amorphous holmium-cobalt alloy. As you can see, the loops are more 

complicated that a bistable system. But it is possible to find out what is 

happening. Before the compensation temperature, the magneto-optical loop is 

inverted, because this signal is sensitive to cobalt, which has less magnetization 

than holmium. The compensation temperature is around 218 K and the main 

thermal behavior is in the signal of saturation. The magneto-optical saturation 

signal increases with increasing temperature. We did not notice thermal 

variation of the transition magnetic field [5].  

Here inverted hysteresis loops have different meaning of those ones 

observed by Ghising, Samantaray, and Hossain [7]. 

 

 
Figure 9. Magneto-optical hysteresis loops for a thin sperimagnetic film of a-Ho33Co67. 

The Tcomp ~ 218 K, and Ht is approximately constant. 
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 We have a superposition of the magnetic and magneto-optical loops 

taken of the sample a-Ho33Co67 in Fig. 10. 
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Figure 10. Magnetic and magneto-optical hysteresis loops for the sample of a-Ho33Co67, 

at 224 K. We can see that the effect of the second order phase transition occurs in the 

same value of the applied field. 

The comparison of magnetic and the magneto-optical loops for a film 

of a-Gd20Co80 is in Fig. 11. The compensation temperature is around 92 K, and 

we can see that the transition field increased with temperature. The magneto-

optical saturation signal is constant, but further analyzes show that the transition 

magnetic field increases exponentially with temperature. 

In Fig. 12, there is the schematic explanation for the phenomena we 

observed in the hysteresis loops. 

For gadolinium-cobalt alloy, the magneto-optical signal has the same 

intensity before and after the transition field, indicating that cobalt sublattice has 

the same component of magnetization in the direction of the field, but in the 

opposite sense. Therefore, we conclude that the second order transition is not a 

spin-reorientation. We call it a spin-inversion because there is no non-collinear 

sublattice situation.  

As gadolinium ion is spherical, so the local anisotropy is less than in 

the case of holmium, which has strong local anisotropy because it has a large 

orbital angular moment. So, it is easier for the ionic magnetic moment (spin) of 

Gd to turn in the direction of the magnetic field than spin of Ho. 
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Figure 11. Superposition of magnetic and magneto-optical hysteresis loops for the 

sample of a-Gd20Co80. The compensation temperature is around 92 K, the transition field 

increased with temperature [5]. 
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Figure 12. The analysis of magnetic and magneto-optical hysteresis loops for the sample 
of a-Gd20Co80 indicates that it has a spin-inversion, and the sample of a-Ho33Co67 has 

spin-reorientation. 

 

Conclusions 
 

We started showing the connections between hysteresis loops and dynamical 

systems. We have presented the complexity of hysteresis loops present in some 

sperimagnetic thin films of Gd-Co and Ho-Co, by looking magnetic and 

magneto-optical signal. Both samples presented a first order phase transition and 

a second order phase transition. The difference in local anisotropy between Gd 

and Ho ions led to different types of second-order phase transition. Ho-Co film 

has a spin-reorientation phase transition (collinear phase to non collinear phase). 

Gd-Co film has a spin-inversion phase transition (collinear phase to opposite 

collinear phase). Despite the complexity, we know the characteristics of the 

transitions, these types of hysteresis loops deserve a more complex bistable 

system model. 
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Abstract. Today the main great treats for existence of all humanity are intensity increasing and including wide scale 

natural and manmade catastrophes and international terrorism (IT). According to forecasts, this negative trend will 

increase over time in the 21st century. And very dangerous COVID -19 was added to them. Here we present the results 

of our IT researches on the results of participation in international thematic events, such as the international scientific 

events of NATO and the ISTC. This is my own report of my work as the member of the International Scientific 

Committee of Chaotic Modeling and Simulation International Conference (CHAOS) and chief of its Special Session: 

“Modeling risk assessment for nuclear, environment and manmade sources”. The special attention is paid to the 

organization and conduct of such events aimed at increasing their effectiveness and implementation. Information is 

provided on new methods of combating IT and preventing its possible acts. 

Keywords: Treat, Terrorism, Environment, NPP, Monitoring, System, Water objects 

 

Today the main great treats for existence of all humanity are wide scale natural and manmade catastrophes, 

international terrorism (IT), in the last year COVID -19 was added. 

Here some thematic IT remarks are presented and discussed. At first I should like shortly present the results of my 

participation with own oral communications in the following events 2002-2011 in the 12-th NATO thematic scientific 

events, held by NANO Scientific Committee: Advanced Study Institutes (ASI), Advanced Research Workshop (ARW), 

Advanced Training Course (ATC) [1-12] and meeting of International Science Technical Centre (ISTC) in France, 

Italy, Russia, Lithuania, Armenia, Georgia, Ukraine and Kazakhstan. Some of them were devoted to the development 

and application of the special high technologies against terrorism. 

NATO scientific events are completely different from ordinary scientific conferences and symposia with a 

large number of participants. The latter today they have already acquired the nature of scientific tourism, in which 

anyone who can often participate, having paid the registration fee in advance and having the desire to visit the country, 

where this event is held, can often participate. 

The time and place of any NATO event is usually tied to a specific significant international political event. 

At all NATO events training of progressive advanced scientific youth. Of the world is carried out by participants, the 

scientists, who have universally recognized their own scientific thematic achievements. 

Scientists report their latest results, give lectures and conduct practical exercises with young people, usually graduate 

students and post docs in highly equipped training centers, such as NATO Center in Erice, Sicilia, Italy [9]. 

Here the right principle is strictly observed and takes place: if you yourself do not study in science, then you 

have no right to teach others the sciences. The maximum number of participants of NATO scientific events is usually 

from the host countries and a wide circle of their students is involved here. Everyone receives certificates of 

participants, which are very significant for their scientific career. 

As for the closed NATO Workshop [3] it was carried out during 300 years St.-Petersburg Celebration, when 45 

Presidents from different countries were honor guests of City. In addition we had to analyzed the attempts and facts of 

different hidings and sheltering of explosives in luggage and at human bodies, their electronic note books, clothes and 

shoes of terrorists, who were and disguised as officially invited guests of St. Petersburg. 

The particular attention was paid to the detectors and techniques for detecting explosives in the baggage, clothes and 

shoes of passengers. Then there were first attempts to hide explosives in shoes. That is why among the participants [3] 

were many participants from the previous [2]. A special technique was used to trap explosives vapors and traces. For 

example, using special vacuum cleaners, especially sensitive detection of traces and vapors of explosives was carried 

out. The numerous latest tools - radiation-nuclear control devices were presented and partially demonstrated in actions 

for the participants at the specially organized exhibition. 

The results of own thematic experience on this very actual and urgent IT problems, including my work as the scientific 

director and manager of ISTC Russian Project No 3269 ”Study of the Radionuclide and Chemical Contamination Level 

and Character and Creation of Radiation and Hydrochemical Monitoring System for the Volga and of Ural River 

Basins“ on the Joint International Program: ”Investigation of Contamination of the Russia, Kazakhstan, Georgia, 

Azerbaijan and Armenia Rivers belonging to the Caspian Sea Basin for transboundary monitoring system” The Caspian 

Sea Basin is the place for intensive hydrocarbon world mining and production of oil and gas. Our Project is supported 

by collaborators from 11 West countries: 

 Sandia National Laboratories / Geosciences and Environment Center – USA; 

 Technical University of Denmark / Kemisk Institut – Denmark; 

 Forschungszentrum Julich / Department of Safety and Radiation Protection – Germany; 

 Alfred Wegener Institute for Polar and Marine Research – Germany; 

 Universita degli Studi di Milano / Dipartamento di Fisica Italy;  

 Universitat Sälzburg / Institute of Physics and Biophysics Austria; 
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 EMonument Belgium; 

 Carleton University Canada; 

 CNRS / Université de Reims / Laboratoire de Geographie Zonale pour le Developpement France; 

 Institute of Dynamic Change USA; 

 Université de Bordeaux 1 / Centre de Développement des Géosciences Appliquées France; 

 Supporters Norwegian Radiation Protection Authority / Statens Stralevern. 

Since 2009 I was the main scientific consultant in another ISTC Project # KR-1678 “Assessment and 

decreasing risks and damages, caused by Tien –Shan mountain lakes outbursts”. This Project was also devoted urgent 

economic and ecological Central Asia (CA) problems, such as monitoring of Kyrgyzstan (KR) numerous uranium 

tailings storages and the environmental situation in the areas of gold mining sites, especially to prevent disasters and 

cataclysms associated with the outbursts of such lakes. 

But its funding of this Project was interrupted for the reasons due to the sharp unsatisfactory political situation 

inside the KR. In particular, due to KR Tudypan revolutions - mass protests against its government in 2005 and 2009. 

In our adopted ISTC Projects some transmission of infections and pathogens in the Caspian Sea and in water 

basin of Naryn, KR largest river, its inflows, artificial reservoirs, high mountains lakes and other have been presented. 

That creates the real reasons for the violation of the sustainable development of the vast industrial and densely 

populated Russian (RF) and CA regions with global widespread irreversible negative consequences for the whole 

Eurasian continent. 

The US Department of Energy (DOE USA) was ISTC Russian Project No 3269 Project initiator and appointed 

Project collaborator, who was the thematic scientist and management from US Sandia National Laboratories. Also DOE 

USA was the sponsor of our International Program in monitoring of the Caspian Sea basins of all large rivers at the 

territories of Caucus (Georgia, Armenia, Azerbaijan) and Central Asia (Kazakhstan, Kyrgyzstan, Tajikistan, 

Uzbekistan). The Eurasian special international ISTC Navrus Program was successfully implemented at CA territory on 

the CA basins of Syr Darya and Amur Darya, CA main rivers for more than 10 years [15, 17, 18] Their main results 

were presented by professor and Navrus scientific leader, professor Vladimir Solodukhin from Kazakhstan Nuclear 

Physics Institute in Almata city. 

The serious obstacles to the thematic projects and programs implementation was the introduction of Crimean 

sanctions, prohibiting the financing of the ISTC Projects and Programs at the whole RF territory, that significantly 

complicated and weakened the fight against IT. 

Now the US and RF scientific-technological collaboration has narrowed down. The US President Trump 

allowed it only in Space and the Arctic, that is also constantly narrowing. That is why the functioning of all 

international funds and programs, such as ISTC, G. Soros, CRDF, TACIS and others. But their important main 

unsolved tasks and problems still remained. As the result, the international situation escalated, that was negatively 

reflected in intensification with IT struggle. 

The constant decline of real living standards in underdeveloped Muslim countries has created the premise of 

creating new IT centers there. 

It was in the Muslim faith that such trends as the Caliphate and Radical Islamism arose and developed. Another 

trend of “Guardians of the Islamic Revolution” actually rules in Ideology, Politics, and the Development of Military 

Power in Iran (Available from: https://deepblue.lib.umich.edu/bitstream/handle/2027.42/64683/afshon_1.pdf). These 

trends lie in Iran ideological IT basis. 

The difference in faiths, for example, the Muslim and Christian Orthodox, creates major absolutely unscientific 

contradictions between the scientists of these countries. For example, Azerbaijan and Armenia, which is clearly 

manifested at international scientific conferences. For example, at the Conferences of the Institute of Nuclear Physics in 

Almaty Kazakhstan. In addition, fighting has been ongoing in the border areas of these countries since 1987 - Nagorno-

Karabakh (Available from: https://en.wikipedia.org/wiki/Nagorno-Karabakh). 

These factors create very negative demographic processes such as intensive population migration from IT-

dominated territories from African and Middle East countries to EU. Today the situation has significantly worsened, as 

part of migrants are carriers of very dangerous COVID-19. 

It is noticed the dangerous distinct tendency for terrorist groups to unite with state structures, that took place 

early and now. For example Alkaida and Islamic State join each others (October 10, 2014 Washington Times). And 

today this often happens in Ukraine.  

Radical Islamism claims that the more his supporter in the attack takes other lives with him, the happier he will 

be in Paradise. And his duty is to commit any global large-scale terrorist attack with mass casualty emergencies and 

victims. That is why special NATO ATC was held in 2011 [12] In addition, this is the significant reason to exclude the 

possession of nuclear weapons of Muslim countries, such as Iran.  

Such centers were disguised there under the guise of sponsorship of educational and religious ones with the 

active participation of the World Muslim countries such as Saudi Arabia, Pakistan, Somalia, Afghanistan and some 

others. In fact, they trained new IT members, that were discovered by intelligence agencies. For example, the Federal 

RF Security Service (FSB) detected them in the so-called "independent" CA countries, formed as the result of USSR 

collapse. The activities of these centers were actively supported in existing and frozen IT centers of Caucasus, such as 

Chechnya, where new IT centers were created, as well as in some RF regions such as Tatarstan, Bashkortarstan, 

including Volga and Moscow regions. Their own highly paid thematic scientists work in such centers to train new 
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terrorists and develop innovative technical means for carrying out terrorist attacks. Note that destroying is always much 

easier than creating and construction useful human objects. The good example of this is the USSR destruction. 

Therefore, scientists of IT centers are really ahead of the normal honest thematic world scientists. 

Some details of the closed ARW. Advanced Techniques against Terrorism: «Bulk detection of explosives» 

(Radium Institute of V. Khlopin of Russian Atom Minister. St. Petersburg, Russia, June 16-21, 2003) [16] are following. 

During my long (45 min) communication in English “Using of Acoustic Techniques for Detection of Explosives in Gas, 

Liquid and Solid Mediums” and the wide 15 minute discussing I was speaking that the terrible IT countenance we have to 

contrast high advanced scientific techniques. This communication has been completely published [16].  

Nerses H. Krikorian professor, Armenian-American chemist and intelligence officer at Los Alamos National 

Laboratory is the real living atomic legend and previously worked with Robert Oppenheimer and Enrico Fermi, the 

creators of the world first atomic bomb, reported about his work as the leader of diagnostics of all-penetrating neutrino 

particles by special detectors, which US located in different parts of the territory of neighboring Israel with Iran. Also 

he is the CIA Lead Analyst. Neutrino particles are intensively generated in different closed regions of Iran, such as 

Bushehr NPP, during the production of weapons-grade plutonium and enriched uranium, and in their spectra are 

different from neutrinos generated by the Sun and reaching our Earth. Trump, US President declares that he fully trusts 

the information of his special services, including the CIA, which was the reason for USA to withdraw from the 

International Agreement on Iran 2015. US policy was in the sharp confrontation with the policies of all other states of 

this Agreement. However, Trump ignored this fact, as the United States was the only country that had reliable 

information about Iran on this issue. Nerses H. Krikorian (born in 1921). He is still working intensively. In addition to 

his scientific work, he is also an expert-analyst of the CIA. Born in Turkey, due to the Armenian Genocide, the family 

fled to Greece, then to Canada and finally to the USA. 64 years ago (until 2007), he began working at the Los Alamos 

National Laboratory (New Mexico state). Nearby is another Sandia National Laboratory. These laboratories are small 

underground cities (30–40 thousand employees) with their own airfields and fighter aircraft. I was there in 1996 under 

the program of J. Soros. Now these laboratories are leading world centers and are closest to solving the problem of 

controlled thermonuclear fusion. But in recent years, these studies have been suspended due to the need to combat 

global terrorism and global widespread catastrophes. Nerses worked there under the leadership of the fathers of the 

world's first atomic bomb, Robert Oppenheimer and Enrico Fermi, created in 1945 (RF bobm was appeared in 1949). 

In 1939, R. Oppenheimer illegally came to the USSR to Beria, the future curator of all Soviet atomic projects, 

with the proposal of joint development of the US Manhattan atomic bomb project. But it's the pity, then they did not 

agree. 

The roots and reasons for the emergence and prosperity of illegal IT groups lie in the unstable political, 

economic and demographic situations in the individual separated regions, where there are military operations, local 

wars and there are large sources of minerals. Syria and Libya are the good demonstrative examples. 

The great disadvantage of the fight against IT is that the intensification of the struggle against terrorism begins 

in the affected countries after the next terrorist attack. While it is much more preferable to constantly combat it and 

implement measures to prevent possible terrorist attacks. The measures to improve the culture of the population and its 

behavior in terrorist attacks are clearly insufficient in all directions. 

As it was for NATO ARW St. Peterbsurg [3] the particular attention was paid to the detectors and techniques 

for detecting explosives in the baggage, clothers and shoes of passengers. Also under consideration [3] were the 

criminal events, when terrorists from Chechnya shot and killed by another methods RF oligarchs, living in their villas in 

France, Spain and Italy, significantly enriched during the war between Russia and Chechnya as early as the beginning 

of the 21st century. 

The subject of NATO scientific schools (NATO ASI) usually refers to the fundamental problems of science, 

where there are already many developments. And on current, acute and global world problems, operational NATO 

Advanced Research Workshops (NATO ARW) Workshop) and NATO Advanced Training Courses (NATO ATC) are 

held. For example, to combat terrorism and disasters, etc. I have already been to such schools and meetings 12 times. I 

am sure on own experience that many persons mistakenly think that NATO is only the hostile militaristic bloc. This is 

not true. Thousands of world scientists successfully working under the programs of the NATO Scientific Committee, 

and grants are provided for particularly relevant research. True, they are given to NATO member countries and its 

partners. Russia is not here. But grants are given to potential partners. For example, Georgia, Armenia, Ukraine, 

Moldova, where NATO often holds its events. Scientists from these countries benefit from the support and financial 

assistance of the OSCE - the Organization for Security and Co-operation in Europe (OSCE). Again, the Russia does not 

apply to them. Russia is also not at all in the List of countries of the world that can be assisted in conducting research by 

the United Nations Development Program (UNDP). In 2013, I myself suffered a lot from this fact. 

The shot contents of some communications of NATO ARW [3] were following. The Victor Luchinin leader of 

thematic researches and professor from the St. Petersburg Electrotechnical University presented his device for remote 

monitoring of passengers person’s pulse. This device was developed and commissioned by the US Department of 

Homeland and Defense Security. It was supposed, and so it turned out, in fact, that the pulse at potential terrorists 

during their pre-flight inspection is speeded due to their internal psychological stress. 

 P. Mostak, M. Stancl professors from Research Institute of Industrial Chemistry Czech Republic informed about their 

long standing experience in preparation and use of service dogs in various regions of our planet with fundamentally 

different climatic conditions (Sweden, South Africa, Japan and others) for the detection of explosives. The work of such 

dogs is very sensitive to climate and regions.  
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Michel Krausa, Fraunhofer Institut for Cytmischer Yechnologie of Phinztal Germany, the head of the 

specialized laboratory in the Institute of Chemical Technology in Carslow, Germany, which is the head of the EU, 

reported on studies on modeling the nose of a service dog when searching for and detecting explosives. For these 

purposes, the dog’s nose was divided into a thousand separate parts and the functioning of each part were analyzed.  

 For example an ordinary mosquito male may detect a female mosquito at 12 km distance. And pigs are even more 

sensitive than dogs, but it’s a pity they are not learning and training. 

The US scientists reported about beer’s using for explosive detect. A bee begins to perform a special dance in 

the air in the presence of odors. But it is impossible to put hives, for example, at metro stations or when boarding an 

airplane airports.  

 RF scientists from the electronic company reported about their special device for detecting electronic devices intended 

for initiating an explosion. For example, when using their device, in Chechnya successfully discovered the place of 

explosive deposit on the railroad tracks and 2 terrorist suicide bombers going to the Kremlin with explosive belts of 

death were remotely blown up. 

The RF Transport Safety Administration introduces the sensitive technology for checking and detecting of 

explosives tracks on passenger’s documents.  

 In recent years, IT has made significant strides in explosive using. For example, terrorists suture explosives into human 

organs, where it is extremely difficult to detect, since the composition of its explosive compositions of C, N, O, H 

elements are closed to the human cells composition. And airport landing control services may not detect the presence of 

explosives in terrorists. For these purposes the special explosive was developed. Then such terrorist in an airplane can 

sit at the porthole and initiates an explosion of explosives by swallow drinks with the certain composition. Then 

depressurization of the cabin during the flight can cause a plane crash.  

 Today the wide complex of special measures to protect against terrorist attacks implemented on the Crimean Russian-

constructed parallel bridges, spanning the Strait of Kerch between the Taman Peninsula of Krasnodar Krai and the 

Kerch Peninsula. 

In the US Los Alamos National Laboratory invented the E-Bomb, the electromagnetic bomb, which, when 

exploded, creates powerful electromagnetic radiation that can damage all computers and other electronic equipment 

with a long range. This E-Bomb was successfully used in Iraq war in 2003. This is not a bulky missile system, the 

transfer of which from the USA to Ukraine will be noticeable. In addition, it is not necessary to transfer the bomb itself. 

It is enough to transfer the technology of its creation. And then it can be easily created on the territory of Ukraine itself, 

where there are already qualified scientific organizations that have successfully used intensive pulsed sources of 

charged particles for more than 20 years, ion and electron accelerators, Here they play the role of microwave guns. 

They also are capable of hitting targets located deep underground (Available from: 

http://www.newsru.com/world/24nov2005/voor.html). 

I’m sure. there is also the US electric shock weapon (another E-bomb)with several kilometers range on the 

base of High Powered Microwave (HPM). And then these two types of "The E-Bomb" paralyze the work of all special 

services for the Crimean Bridge protection (Available from: https://obzor.westsib.ru/article/38229). 

The NATO scientific events, related to IT and transport safety, were attended by directors of security services 

of major world airlines such as Lufthansa, Air France, Delta, Transaero Airlines, Ryanair, Swiss, Aeroflot and 

representatives of related services, for example, the Aviation Security Certification Center of the RF Ministry of 

Transport. Here, these officials stated that they have instructions from their respective governments to primarily 

purchase devices manufactured in their countries. Free market laws do not work here. By the way, they take place in 

numerous US economic sanctions. The growth of the Chinese economy is not due at all to the fact that they are 

developing new advanced technologies. They steal them from high developed countries. Now the Chinese population is 

10 times more than in the RF and 5 times more than US ones. Today orders banning of cooperation China, for example 

using of China electronics in important industrial homeland areas, such as the defense, aviation and cosmic one. 

 In recent decades, very dangerous and pervasive cyber terrorism has appeared. Its implementation is characterized by 

low financial costs and efforts. Enough to have the Internet and computers. Although there are special methods of 

dealing with it, they are not considered here. 

The US National Homeland Security Service acts correctly and decisively in cases of possible terrorist attack. 

 At the beginning of the 21st century, the group of Arab terrorists with atomic bomb drawings were caught in one US 

southern state. 

It was not possible to identify the criminal group ties. Then the circle was drawn with the center in the place of 

capture with the 100 km radius and the entire Arab population was deported without the right to USA re-enter.  

Today there is the actual problem of leakage and theft of nuclear materials to create a low-activity dirty atomic bomb, as 

well as the trafficking of these materials from the places of their production and burial - storage of radioactive waste. 

Although a Dirty Bomb is not able to cause great destruction, but it can cause a huge negative psychological impact in 

the population if used. 

Otherwise, terrorism is called an irregular war. Where absolutely non-standard techniques and actions are 

implemented. But with a definite ultimate goal. Sometimes it may seem like chaos. But this chaos is strictly controlled. 

Therefore, exactly the same methods must be implemented in the fight against it.  

My thematic proposals are the following: 

1. To invite more widely the scientists from such countries in all similar situations. NATO may use its 

possibilities here. For example, Turkey is NATO member. As for Iran this country is greatly closed in plan of 
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international communications, including scientific ones. But I met Iran scientists in Moscow at International 

Conferences on Space technologies in 2003 and 2005 years. The Iran participation in NATO scientific events will 

promote to the successful decision of the important Problems of Nuclear Military Materials and Technologies non 

transferring may be partially resolved by these ways. It will be “the heavy drop” from NATO on decreasing of political 

frictions with Iran and strengthening of peace. 

2. Last years and today too Humanity has faced with such constantly intensive growing global threats, such 

as natural and manmade catastrophes and disasters and of cause IT at first time. There are not special and effective 

methods for struggle against them. In 21 century number of disasters will be constantly increase. The weakly guarded 

borders of Chechnya, Afghanistan and other zones of not only “frozen” conflicts, but also operated ones, can further 

stimulate insurgencies, especially characteristic as the modern waves of an increasing struggle against racism in the 

USA. 

3.  Possible terrorist attacks, including with using of explosives, at European and Asian continents can result 

to global pollution (and may be infections) of river’s basins in the Caspian, Black, Kara Seas, Arctic Ocean and 

consequently, the World Ocean. 

4. These problems are under consideration at another special organizations, where high qualified scientists 

are constantly working. That is why it will be useful to invite some its representatives in the theatrical NATO ARW 

participation. For example, in above mentioned NATO events the organizers and participants were IAEA, ISTC, the 

USA Homeland Security Department and DOE, the Commission on Nuclear Regulation, the Center of Non Profile 

Investigations, the Center of Nuclear Safety, Ministers of Custom and Boundary Protection, European Scientific 

Academy. 

5. The IT organizations have its own scientists, that work in security and mystery at problems of effective 

realization of different terrorism attacks with huge disasters and mass victims. To destroy is more easily than to 

construct. This fact worse greatly the successful decision of problems on struggle against disasters and terrorisms. 

6. As for problem of thematic education for culture-enhancing population, my proposal is the following. In 

some Moscow Universities there are the Departments on preparation of specialists on studying of disasters and 

catastrophes. The mission of NATO Scientific Committee is not only organization of NATO ARW, but also two weeks 

NATO ASI, where scientists, having their own scientific results, realize lectures and practice lessons for effective 

modern education of young scientists from the whole world. Today is the time for such education through NATO ASI. I 

may propose its possible theme: “Some Threats for World Civilization and its prediction/prevention/elimination” for 

provision of stable development” And not only for NATO ASI, but also for NATO ARW. Another title may be the 

following: “Modern methods and technologies in prediction/prevention natural and manmade disasters and in struggle 

against terrorism”. 

7. The important social aspect. In the countries of Former USSR the population consider NATO only as the 

aggressive military Block of non-friendship west states. NATO scientific events, its grants and support of the main 

actual investigations help to create right opinion and vary such negative relations. In addition today there are some 

common programs NATO with Former USSR countries, for example in struggle against IT. 

8. There should be the single administration system of state, which handicrafts the whole country and its key 

industries, regardless of the interest of private companies. For example, if the state of Japan did not follow the entreaties 

of the national “Tepko” energy company, then the Fukushima disasters could have been avoided. In the absence of such 

a rigid management system, IT has more opportunities to achieve its goals. For example, through bribery and 

corruption. 

In 2016 the bribed Egypt Terrorist planted a bomb on the A321 airliner flying from Sharm el-Sheikh to St. Petersburg. 

And it exploded with 224 passengers at 10 thousand meters altitude. Since then, air traffic between the RF and Egypt 

has been discontinued. 

9. Russia is not NATO member and not its panther. In addition Russia is often considered as “sensitive 

country” as the zone of political and terrorist conflicts. But I consider it is not the reason for refuse from Russian 

scientists in participation in the thematic scientific events. Our Nuclear Safety Institute of Russian Academy of Sciences 

(IBRAE RAS) has own experience in these scientific directions (http://www.ibrae.ac.ru). Some of them are the 

following: 

 Comparable analysis on the ecological risks, related to the impact of the radioactive and chemically 

hazardous substances on the environment and population. 

 Emergency response in radiation accidents. Scientific and technical support in decision making on 

protection of population and territories. 

 Analysis of risks, related to the management, transportation and processing of the spent nuclear fuel and 

radioactive waste. Analysis of risks and counter-measures against radiological terrorism. 

 The thematic workshops on the mentioned problems with the participation of the 8-th Big Main Countries 

are often held in our Institute. 

We have own Program, devoted to “Assessments of Risks and Possible Ecological and Economic Damages 

from Large-Scale Natural and Man-Induced Catastrophes in Ecology-Hazard Regions of Central Asia and the 

Caucasus», connected with the development of new methods on prevention of threats and struggle against possible acts 

of ecological terrorism. Some Program aspects have been reflected in of NATO ARW Proceedings. 

The widening of the income gap of the entire population of the world is also characteristic, for example due to 

globalization, which is another reason for the increase in IT. 
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Some our thematic results are presented in our articles of this these Proceedings of this Conference Chaos 2020 

and will be presented in future. 

In conclusion our latest results on nanotechnologies and nanomedicine [15-18] are shortly presented in my oral 

Chaos 2020 communications. Nano is the wonderful unique world with its own laws. It is not simple huge reduction of 

all objects. I guess that this world reflect the plans of the Universal Creator on our Earth creation. And undoubtedly its 

recearch will help the successful fight against Covid - 19. 
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Abstract. Inversive congruential method for generating the uniform pseudorandom
numbers is a particulary attractive alternative to linear congruential generators, which
show many undesirable regularities. In present paper, we investigate the equidistri-
bution of sequences produced by inversive congruential generator of second order by
using the discrepancy bounds of such sequences of pseudorandom numbers (PRN’s).
Also there are obtained the estimates of special exponential sums of these sequences.
Keywords: inversive generator, exponential sum, discrepancy.

1 Introduction

The sequences of random numbers have the various applications in the nu-
merical analysis and cryptography. But in practice instead the sequences of
random numbers we use the pseudorandom sequences, i.e. the sequences which
pass appropriate statistical test on randomness. An assortment of statistical
tests depends on the type solved problem.

Our main point here is to elucidate the motivation for construction the se-
quences of PRN’s with some specific properties that foster their applications
in Quasi-Monte Carlo methods and cryptography. For the numerical analy-
sis there are tests for the uniform distribution in certain region. Such tests
go with success the sequences of linear congruential pseudorandom numbers
(abbr., LCPRN’s) (see, [4]). For cryptographic applications it is essential that
except ”equidistribution” it performs yet a requirement of ”unpredictability”.
But to this requirement the sequence of PRN’s produced by linear congruential
generator does not satisfy.

D. Knuth[3] and Marsaglia[5] proved that LCPRN’s are predictable. This
motivated the creation of the nonlinear congruential pseudorandom sequences
having the unpredictable property.

The inversive congruential generator initiated by I. Eichenauer and I. Lehn
[2] in 1986 make sure the ”equidistribution” and ”unpredictability” of the se-
quence of PRN’s produced by the congruential recursion

yn+1 ≡ ay−1n + b (mod p),
where a, b ∈ Z, p be a prime number, y−1 denotes a multiplicative inverse of y
modulo p, y0 be initial value.

In present paper, we study the sequence of PRN’s {yn} defined by the
congruential recursion

yn+1 = ay−1n−1y
−1
n + b (mod pm). (1)
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This generator of {yn} we call the inversive congruential generator of second
order. We distinguish two type of respective sequences

(I) type: νp(a) = 1, νp(b) = ν ≥ 1;

(II) type: νp(a) = α, νp(b) = 1.
In case of inversive generator of first order (which was studied by Eichenauer,

Lehn, Niederreiter and others) the sequence {yn} of type (II) steadies starting
from a certain index n, and therefore it will not be the uniformly distributed
sequence.

The sequences produced by the congruential generator of kth order
yn+1 ≡ f(yn, yn−1, . . . , yn−k+1) (mod M)

have the least period length τ ≤Mk.
The function f(yn, yn−1, . . . , yn−k+1) ought to choose so as a period {yn}

was as large as possible.
Some results about the period and distribution of inversive congruential

sequences of first order can be found in the survey paper [1].
The inversive generators of first order generate the sequences of PRN’s

which pass the test on ”equidistribution” and ”unpredictability” but they do
not satisfy to requirement of ”security”. Indeed, if we know more than one
sequential values yn, yn+1, . . . , yn+k, we easy can obtain the parameters a and
b of the inversive generator of first order. However, the ”security” of sequence
of PRN’s can be remained if the parameter of shift c change to c+n+pµF (n),
where µ > ν and F (n) is some random polynomial from Z[n] (see, [9]).

In this paper we continue investigation of the inversive generator of second
order of two types.

Our purpose in this work is to show the passing of test on equidistribution
and statistical independence for the sequence {xn}, xn = yn

pm , and hence, the
main point is to show the possibility for such sequences to be used in the
problem of real processes modeling and in the cryptography.

In the sequel we will use the following notations.
Variables of summation automatically range over all integers satisfying the

indicated condition. The letter p denotes a prime number, p ≥ 3. For m ∈
N the notation Zpm (respectively, Z∗pm) denotes the complete (respectively,
reduced) system of residues modulo pm. For z ∈ Z, (z, p) = 1 let z−1 be the
multiplicative inverse of z modulo pm; instead of a

b (mod pm) we will write
a · b−1. We write νp(A) = α if pα|A, pα+1 - A for A ∈ Z. For integer t, the

abbreviation eq(t) = e
2πit
q is used.

Let f(x) be a periodic function with a period τ . For any N ∈ N, 1 ≤ N ≤ τ ,
we denote

SN (f) :=

N∑
x=1

e2πif(x)
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2 Auxiliary results

Let a, b ∈ Z, p ≥ 3 be a prime, and let m > 1 be a positive integer. Let us
consider the transformation Ψ defined on Z∗pm by

Ψ(yn, yn−1, . . . , yn−s+1) = ay−1n · · · y−1n−s+1 + b,

(y0, p) = (y1, p) = 1, 0 ≤ yn < pm.
(2)

We put xn = yn
pm , n = 0, 1, . . .. And then the transformation Ψ we call

the inversive congruential generator of second order of the sequence of pseudo-
random numbers (abbr., PRN’s).

In order that the sequence {yn} exists for any n ∈ Z it is sufficient that
(a, p) = 1, b ≡ 0 (mod p) or a ≡ 0 (mod p), (b, p) = 1. These conditions
generate various of sequences of PRN’s. Henceforth, we call that sequences as
inversive congruential sequences of type I or II.

For example, the inversive congruential sequence {yn} of first order with
a ≡ 0 (mod p), (b, p) = 1 has a period τ = 1, but in the case (a, p) = 1,
νp(b) = ν ≥ 1, the relevant sequence of PRN’s can be a period with τ = 2pm−ν .

In our paper we study the inversive congruential generator of second order,
i.e. s = 2. We will illustrate that the least period length of sequence {yn} can
be equal to 3pm−µ or pm−ν .

We need the following lemmas.

Lemma 1. Let f(x) be a periodic function. For any N ∈ N, 1 ≤ N ≤ τ the
following estimate

|SN (f)| ≤

(
max

1≤n≤τ

∣∣∣∣∣
τ∑
x=1

e2πi(f(x)+
nx
τ )

∣∣∣∣∣
)

log 2τ

holds.

This statement can be derived by inequalities for complete exponential sums
on a usual way.

Lemma 2. Let h1, h2, k, ` be positive integers and let νp(h1 + h2) = α,
νp(h1k + h2`) = β, δ = min (α, β). Then for every j = 2, 3, . . . we have

νp(h1k
j−1 + h2`

j−1) ≥ δ.
Moreover, for every polynomial G(u) = A1u+A2u

2 + ptG1(u) ∈ Z[u] we have
h1G(k) + h2G(`) = A1(h1k + h2`) +A2(h1k

2 + h2`
2) + pt+sG2(k, `),

where s ≥ min (νp(h1 + h2), νp(h1k + h2`)), h1, h2, k, ` ∈ Z, G2(u, v) ∈ Z[u, v].

Proof. By the equality
h1k

j + h2`
j = (h1k

j−1 + h2`
j−1)(k + `)− k`(h1kj−2 + h2`

j−2),
applying the method of mathematical induction, we obtain at once νp(h1k

j +
h2`

j) ≥ δ, j = 2, 3, . . . ut

Lemma 3. Let p > 2 be a prime number, m ≥ 2 be a positive integer, m0 =[
m
2

]
, f(x), g(x), h(x) be polynomials over Z

f(x) = A1x+A2x
2 + · · · , g(x) = B1x+B2x

2 + · · · ,
h(x) = C`x+ C`+1x

`+1 + · · · , ` ≥ 1,
νp(Aj) = λj , νp(Bj) = µj , νp(Cj) = νj ,
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and, moreover,
k = λ2 < λ3 ≤ · · · , 0 = µ1 < µ2 < µ3 ≤ · · · ,
νp(C`) = 0, νp(Cj) > 0, j ≥ `+ 1.

Then the following bounds occur∣∣∣∑
1

∣∣∣ :=

∣∣∣∣∣∣
∑

x∈Zpm
em(f(x))

∣∣∣∣∣∣ ≤
{

2p
m+k

2 if νp(A1) ≥ k,
0 if νp(A1) < k;

∣∣∣∑
2

∣∣∣ :=

∣∣∣∣∣∣
∑

x∈Z∗
pm

em(f(x) + g(x−1))

∣∣∣∣∣∣ ≤ I(pm−m0)p
m
2

∣∣∣∑
3

∣∣∣ :=

∣∣∣∣∣∣
∑

x∈Z∗
pm

em(h(x))

∣∣∣∣∣∣ ≤
{

1 if ` = 1,
0 if ` > 1,

where I(pm−m0) is a number of solutions of the congruence
y · f ′(y) ≡ g′(y−1) · y−1 (mod pm−m0), y ∈ Z∗pm−m0 .

Proposition 1. Let the sequence {yn} be produced by the recursion (2) with
(a, p) = (y0, p) = (y1, p) = 1, νp(b) = ν0 > 0, νp(c) = µ0 > 2ν0. There exist the
polynomials F0(x), F1(x), F2(x) ∈ Z[x] with the coefficient depending on y0, y1,
such that

y3k = A0 +A1k +A2k
2 + pµG0(k, y0, y

−1
0 , y1, y

−1
1 ), (3)

y3k+1 = B0 +B1k +B2k
2 + pµG1(k, y0, y

−1
0 , y1, y

−1
1 ), (4)

y3k+2 = C0 + C1k + C2k
2 + C3k

3 + C4k
4 + pµG2(k, y0, y

−1
0 , y1, y

−1
1 ), (5)

where

A1 ≡ b+ a−1b2y0y1 −
1

2
a−1b2y20 − a−1by20y1 − 2b2y30y

2
1 −

1

2
a−1b2y0y1,

A2 ≡ −a−1b2y0y1 −
1

2
a−1b2y20 + b2y30y

2
1 +

1

2
a−1b2y0y1,

B1 ≡ b
(

1

2
b
(
y−10 − a−1y21

)
+ 1− y−10 y1

)
,

B2 ≡ b2
1

2

(
−y−10 + a−1b2y21

)
,

C1 ≡ b
(

(−ay−20 y−11 + 1)− 1

2
by−11

(
ay−20 y−11 − 1

))
,

C2 ≡ b2
1

2
y−10

(
−1 + a−1y0y

2
1

)
,

µ = min (ν0 + µ0, 3ν0).

(see, [7])

Corollary 1. Let νp(y0 − ay−21 ) = α ≤ ν0 and let τ be a period length of the
sequence {yn} generated by recursion (2) of type (I) with initial values y0, y1.
Then we have

τ = 3pm−ν0−α,

and τ ≤ 3pm−ν0 on all occasions.
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Corollary 2. For k = 3, 4, . . ., we have modulo pµ, µ = min (2ν0, µ0)

y3k =

(
1 + b2

(
a−1y1 +

1

2
a−1ky1 − a−1k2y1 +

1

2
a−1k2y1

))
y0+

+

(
a−1by1 −

1

2
a−1kb2 − 1

2
a−1b2k2

)
y20 +

(
−2ky21b

2 + k2b2y21
)
y30 ,

y3k+1 =
(
1− kby−10

)
y1 +

(
−a−1b2 − a−1bk + a−1k2b2

)
y21 ,

y3k+2 = ay−10 y−11 +

(
1

2
kb2y−10 +

1

2
ab2ky−20 +

1

2
b2k2

)
y−11 −

− 1

2
k2b2y−10 + a−1b2k2y0y

2
1 .

Proposition 1’ Let {yn} be a sequence of PRN’s generated by the recursion
(2) of type (II), and let νp(a) = α > 1, νp(b) = 0. Then for n = 9, . . . the
following representation

yn+1 =
A

(n+1)
0 +A

(n+1)
1 y0 +A

(n+1)
2 y0y1

B
(n+1)
0 +B

(n+1)
1 y0 +B

(n+1)
2 y0y1

(6)

holds,
where

A
(n)
0 = (n− 4)a2bn−5 + ab(n−2), B

(n)
0 = (n− 5)a2bn−6 + abn−3,

A
(n)
1 = (n− 5)a2bn−6 + ab(n−3), B

(n)
1 = (n− 6)a2bn−2 + abn−4,

A
(n)
2 =

(n− 5)(n− 4)

2
a2bn−3+

+ (n− 3)ab(n−4) + b(n−1),

B
(n)
2 =

(n− 7)(n− 6)

2
a2bn−8+

+ (n− 4)abn−5 + bn−2,

Proof. The straightforward computations on congruent recursion (2) allow to
obtain the representations for y7 and y8 modulo p3α:

y7 =
3a2b2 + ab5 + (2a2b+ ab4)y0 + (a2 + 4ab3 + b6)y0y1

2a2b+ ab2 + (a2 + ab3)y0 + (3ab2 + b5)y0y1
,

y8 =
4a2b3 + ab6 + (3a2b2 + ab5)y0 + (3a2b+ 5ab4 + b7)y0y1

3a2b2 + ab5 + (2a2b+ ab4)y0 + (a+ 4ab3 + b6)y0y1

And now by a mathematical induction we at once have the assertion of Propo-
sition 1’. ut

Corollary 1’ The elements of sequence {yn} generated by (1) with νp(a) =
α > 1, νp(b) = 0 can be represented as the following polynomials on n modulo
p3α

yn+1 = A0(y0, y1) + nA1(y0, y1) + n2A2(y0, y1), (7)

where
A0 = by0y1 + a(b−4y0 − 3b−2y0y1) + a2A′0(y0, y1, y

−1
0 , y−11 ),

A1 = −ab−2y0y1 + a2A′1(y0, y1, y
−1
0 , y−11 ),

A2 = −a2b−1(b4 − y0y1) + a3A′2(y0, y1, y
−1
0 , y−11 ),

A′i(y0, y1, y
−1
0 , y−11 ) ∈ Z[y0, y1, y

−1
0 , y−11 ], y0y

−1
0 ≡ y1y−11 ≡ 1 (mod pm).

Proof. Indeed, (6) shows that all summands in denominator of representation
yn+1, except y0, y1, are congruent to zero modulo pα. Thus, using a congruence
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1
c+pαd = c−1(1 − pαc−1d + p2α(c−1d)2) modp2α with (c, p) = 1, we obtain (4)
at once. ut

Corollary 2’ For every sequence of PRN’s produced by (2) with νp(a) = α ≥
1, νp(b) = 0, the least period length is equal to pm−α.

Actually, we have modulo pm

yn+` − yn = −2ab−2y − 0y − 1(1 + aF0(n`)), F0(n, `) ∈ Z[n, `].
So, yn+` ≡ yn (mod pm) if only n ≥ 8 and ` ≡ 0 (mod pm−α).

The following lemmas need to study the exponential sum of special type on
the sequences of PRN’s.

Lemma 4. Let p > 2 be a prime number, b0, b1 ∈ Z, (b0, p) = (b1, p) = 1. We
have for k < m

S1 :=
∑

x∈Zpm
epm

(
a0 + a1p

kx

b0 + b1pkx

)
=

{
0 if a0b1 6≡ a1b0 (mod pm−k)
pm if a0b1 ≡ a1b0 (mod pm−k).

(8)

Proof. In view of 1
b0+b1pk

≡ b−10 (1− b−10 b1p
kx+(b−10 b1)2p2kx2 + · · · ) (mod pm)

we get by Lemma (3)

S1 =
∑

x∈Zpm
epm(b−10 (a0 + a1p

kx)(1− b−10 b1p
kx+ (b−10 b1)2p2kx2 − · · · )) =

=
∑

x∈Zpm
(b−10 + (a1 − a0b−10 b1)pkx+ b−10 (a0b

−2
0 b21 − a1b1b−10 )p2kx2 + · · · ) =

=

{
0 if a0b1 6≡ a1b0 (mod pm−k),
pm if a0b1 ≡ a1b0 (mod pm−k).

ut

Lemma 5. Let ai, bi ∈ Z, (ai, p) = (bi, p) = 1, i = 0, 1; p > 2 be a prime
number, and m, k be positive integers, m ≥ 3k. Then

S2 :=
∑

x∈Zpm
epm

(
a0 + pka1x+ p2ka2x

2

b0 + pkb1x+ p2kb2x2

)
� p

m
2 +k (9)

with the absolute constant in the symbol ”�”.

Proof. First we assume m = 2m0, m0 ∈ N. Let x = y(1 + pm0z). We obtain∑
x∈Zpm

epm

(
a0 + pka1x+ p2ka2x

2

b0 + pkb1x+ p2kb2x2

)
=

=
∑

y∈Zpm0

∑
z∈Zpm0

epm

(
A0 + pk+m0(a1y + pka2y

2)z

B0 + pk+m0(b1y + pkb2y2)z

)
,

where
A0 = a0 + pky + p2ka2y

2,

B0 = b0 + pky + p2kb2y
2.
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It follows
S2 =

∑
y∈Zpm0

epm(A0B
−1
0 )

∑
z∈Zpm0

epm(−A0B
−1
0 (b1y + pkb2y

2)zpk+m1) =

= pm
∑

y∈Zpm0

epm(A0B
−1
0 )

∑
z∈Zpm1

epm1−k(−A0B
−1
0 (b1y + pkb2y

2)z) =

= pm1

∑
y∈Z1

y≡0 (mod pm0−k)

epm(A0B
−1
0 ) =

= pm0

∑
y0∈Zpk

epm((1− pm0b−10 b1y0)(a0 + pm0a1)) =

= pm1e2πi
a0
pm

∑
y0 (mod pk)

epm(a0b
−1
0 b1y0)� pm0+k.

For m = 2m0 + 1 we infer by a similar way
S2 � p

m
2 + k

ut

3 Evaluation of exponential sums over the sequences of
PRN’s

Let {yn} be the sequence of PRN’s produced by the inversive generator of
second order of the first or second type. In the propositions 1 and 1’ it was
received a description of elements yn as polynomials at n that essentially make
easier the construction of estimates for exponential sums. We will consider the
following exponential sums over the sequence {yn} of PRN’s generated by the
recursion (1) of type (I) or (II) with the least period τ .

σk`(h1, h2) :=
∑

y0,y1∈Z∗
pm

epm(h1yk + h2y`), h1, h2 ∈ Z;

SN (h, y0) :=

N−1∑
n=0

epm(hyn), h ∈ N, 0 < N ≤ τ ;

K(h1, h2; pm) :=

τ∑
n=1

epm(h1yn + h2y
−1
n ), (h1, h2 ∈ Z);

G(h, pm) :=

τ∑
n=1

epm(hy2n), (h ∈ Z).

These sums are called σ-sum, S-sum, Kloosterman sum and Gauss sum, re-
spectively.

Theorem 1. Let the sequence {ωk} has the maximal period τ , τ = 2pn−β.
Then the following bound

|Sτ (h, ω)| :=

∣∣∣∣∣
τ−1∑
k=0

epn(hωk)

∣∣∣∣∣ ≤
0 if β + δ < n,

τ if β + δ ≥ n,
holds.
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(see, [7], Th. 3)

Theorem 1’ Let h1, h2 ∈ Z, νp(h1 + h2) = ps, 0 ≤ s ≤ m. Then for the
sequence {yn} of type (II) we have

σk,`(h1, h2) =



0 if k 6≡ ` (mod pm)
and νp(h1 + h2) < m− 1;

p2(m−2)(p− 1)2 if k 6≡ ` (mod pm)
and νp(h1 + h2) = m− 1;

p2(m−1)(p− 1)2 if k≡6≡` (mod pm)

and νp(h1 + h2) = m.

(10)

Proof. By Corollary 1’ we can write
h1yk + h2y` = b(h− 1 + h2)y0y1 + (h1 + h2)pαF (y0, y

−1
0 , y1, y

−1
1 ), (11)

where F (y0, y
−1
0 , y1, y

−1
1 ) is a polynomial with the integer coefficients.

Now we obtain
σk,`(h1, h2) =

∑
y0,y1∈Z∗

pm

epm((h1 + h2)b`1`2 + pk(h1 + h2)F (y0, y
−1
0 , y1, y

−1
1 )) =

=
∑

y0∈Z∗
pm

∑
y1∈Z∗

pm

epm((h1 + h2)by0y1 + pk(h1 + h2)F1(y1, y
−1
1 )) =

=
∑

y1∈Z∗
pm


0 if νp(h1 + h2) < m− 1,
p2(m−2)(p− 1)2 if νp(h1 + h2) = m− 1,
p2m(m−1)(p− 1)2 if νp(h1 + h2) = m.

Here we took into account that for (a, p) = 1∑
x∈Z∗

pm

e2πi
ax
pm =

{
−1 if m = 1,
0 if m ≥ 1.

ut

In Theorem 1’ the initial values y0, y1 run the set Z∗pm independently of
each other. Now we shall assume that y0 = y1.

Theorem 1” Under conditions of Theorem 1’ and the proposal y0 = y1 we
have

|σk,`(h1, h2)| =
{

p
m+s

2 if s < m,
pm−1(p− 1) if s = m.

(12)

Proof. By (11) and y0 ≡ y1 (mod pm) we obtain modulo pm

h1yk + h2y` = b(h1 + h2)y20 + pα(h1 + h2)F1(y0, y
−1
0 ).

Thus Lemma 3 gives

|σk,`(h1, h2)| =

∣∣∣∣∣∣
∑

y0∈Z∗
pm

epm((h1 + h2)by20 + pα(h1 + h2)F1(y0, y
−1
0 ))

∣∣∣∣∣∣ =

=

{
p
m+2

2 if s < m,
pm(p− 1) if s = m.

ut
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Now we will construct the estimates for G- and K-sums.

Theorem 2. Let the sequence of PRN’s is generated by recursion (1) with
νp(a) = 0, 1 ≤ νp(b) = ν ≤ m

3 . Then for G-sum the following estimate

G(h, pm)� p
m+s

2 , s = νp(h, p
m)

holds.

Proof. By Proposition 1 we easy obtain

y23k =
(y0 +A′0p

α) + 2k(by0 +A′1p
2α) + k2(b2(1 + a−1y0y1) +A′2p

3α)

(1 +B′0p
α) + k(by0y1 +B′1p

2α) + k2(b2a−2y20y
2
1 +B′2p

3α)
,

y23k+1 =
(y20y

2
1 +A′0p

α) + 2k(by20y1 +A′1p
2α) + k2(b2y20y

2
1 +A′2p

3α)

(y20 +B′0p
α) + 2k(by0 +B′1p

2α) + k2(b2(1 + a−10 y0y1) +B′2p
3α)

,

y23k+2 =
(1 +A′0p

α) + 2k(by0y1 +A′1p
2α) + k2(b2(ay0 + y20y

2
1) +A′2p

3α)

(y20y
2
1 +B′0p

α) + 2k(by0y1 +B′1p
2α) + k2(b2y20 +B′2p

3α)
,

where A′j , B
′
j are some polynomials from Z[y0, y1, k].

Next, we have

G(h, pm) =

3pm−ν∑
n=1

epm(hy2n) =

=

pm−ν∑
k=1

epm(hy23k) +

pm−ν∑
k=1

epm(hy23k+1) +

pm−ν∑
k=1

epm(hy23k+2)�

� ps−ν
s∑
j=0

∣∣∣∣∣∣
pm−s∑
k=1

epm−s(hy3k+j)

∣∣∣∣∣∣� ps−νp
m−s

2 +ν = p
m+s

2 .

ut
It is similarly investigating the inversive congruential sequence of PRN’s of

second order type (II).

Theorem 2’ The G-sum for the inversive congruential sequence of type (II)
with νp(a) = α estimates by

G(h, pm)� p
m+s

2 , s = νp(h, p
m).

Lemma 5 makes possible to prove the estimates for K-sums.

Theorem 2” Let {yn} be the sequence produced by recursion (1) of type (II)
with νp(a) = α, νp(b) = 0, and let A,B ∈ Z. Then we have

K(A,B; pm) =

pm−α∑
n=1

e2pm(Ayn +By−1n )�
{

0 if 2α ≥ m, (Ab2 +B) = 1,

p
m+α

2 if 2α < m, (Ab2 +B) = 1.

Proof. Using Proposition 1’, we after a simple calculations can obtain

Ayn +By−1n =
Ã0 + Ã1n+ Ã2n

2

B̃0 + B̃1n+ B̃2n2
,

where
Ã0 = (Ab2 +B)ab5(1 + Ã′0p

α)y20y
2
1 ; B̃0 = b3(1 + B̃′0p

α)y20y
2
1 ;

Ã1 = pα2a1b
3(Ab+B)(1 + Ã′1p

α)y20y
2
1 ; B̃1 = pα2a1b

3(1 + B̃′1p
α)y20y

2
1 ;

Ã2 = p2αa21b
−1(Ab2 +B)(1 + Ã′2p

α)y20y
2
1 ; B̃2 = p2αa1(1 + B̃′2p

α)y20y
2
1 ;

Ã′j , B̃
′
j are some polynomials from Z[y0, y1, n].
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It follows thence the assertion of theorem. ut

Similarly, the result is true for the K-sum on the sequence {yn} produced
by inversive congruential generator of second order of type (I) with νp(a) = 0,
νp(b) = ν ≥ 1.

4 Discrepancy bound

To analyze the equidistribution and statistical independence properties of
the investigated sequences of PRN’s {xn}, xn = yn

pm , n = 1, 2, . . . we use the

discrepancy of points x0, x1, . . . , xN−1, . . . and overlapping points X
(s)
N = { xn,

xn+1, ..., xn+s−1 }, n = 0, 1, . . ., with fixed s. For given N points X
(s)
n , the

discrepancy D
(s)
N (X

(s)
0 , . . . , X

(s)
N−1) is defined as

D
(s)
N (X

(s)
0 , . . . , X

(s)
N−1) = sup

∆

∣∣∣∣AN (∆)

N
− vol(∆)

∣∣∣∣ ,
where the supremum is extended over all subrectangles ∆ ⊂ [0, 1)s, AN (∆) is

the number of points among X
(s)
0 . . . , X

(s)
N−1 falling into [0, 1)s, and vol(∆) is

the area of ∆.
If for every s = 1, 2, . . . , S, we have D

(s)
N (X

(s)
0 , . . . , X

(s)
N−1) → 0 with a rise

of N , we will say that the sequence of PRN’s passes s-dimensional test on the
pseudorandomness. In cryptographical applications a penetrations of s-serial
test (s ≥ 2) means that the sequence {xn} is unpredictable.

Beside discrepancy there exists other important criteria for the uniformity
and the independence of PRN’s. We shall restrict our attention to the discrep-
ancy, since it is the most important measure of uniformity and independence
related to PRN’s. For upper estimate of the discrepancy of points we will use
the following inequality from [6].

Lemma 6. Let q > 1 and s be natural numbers and let {Yn}, Yn ∈ {0, 1, . . . , q−
1}s, be a purely periodic sequence with a period τ . Then the points Xn = Yn

q ∈
[0, 1)s, n ∈ {0, 1, . . . , N − 1}, N ≥ τ , have discrepancy

D
(s)
N (X0, X1, . . . , XN−1) ≤ s

q
+

1

N

∑
h0,h1,...,hs

1

h0h1 · · ·hs
|S|, (13)

where the summation runs over all integers h0, h1, . . . , hs for which h0 ∈
(−τ

2 ,
τ
2

]
,

hi ∈
(
− q2 ,

q
2

]
, (i = 1, . . . , s), (h1, . . . , hs) 6= (0, . . . , 0), hi = max (1, |hi|), and

S :=

τ−1∑
n=0

e

(
h ·Xn +

nh0
τ

)
,

where h ·Xn =
s∑
i=1

hix
(n)
i stands for the inner product of h and Xn in Zs.

The following lemma is a special version of Niederreiter’s result [6].

Lemma 7. The discrepancy of N arbitrary points t0, t1, . . . , tN−1 ∈ [0, 1)2

satisfies

D
(2)
N (t0, t1, . . . , tN−1) ≥ 1

2(π + 2)|h1h2|N
·

∣∣∣∣∣
N−1∑
k=0

e(h · tk)

∣∣∣∣∣ (14)
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for any lattice point h = (h1, h− 2) ∈ Z2 with h1h2 6= 0.

Going to the estimates of a discrepancy for the sequence of PRN’s produced
by the generators of second order of type (I) or (II) let us remark here that
required estimates of the exponential sums∣∣∣∣∣

N−1∑
n=0

epm(hyn)

∣∣∣∣∣ ≤

O(m) if N = τ ;

4p
m+δ+ν

2 if N ≤ τ, δ + ν ≤ m, ν = νp(h);
N otherwise.

(15)

we can infer at once from the Corollary 1 or Corollary 1’ and Lemma 3.
We need also some supporting data on upper and lower boundaries for the

discrepancy of points tk = yn
q , yn ∈ Zsq, n = 0, 1, . . . , N − 1; q ∈ N.

Lemma 8. Let Cs(q) be set of all nonzero point h = (h1, . . . , hs) ∈ Zs, − q2 <
hj ≤ q

2 , 1 ≤ j ≤ s. For h ∈ Cs(q), y0,y1, . . . ,yN−1 ∈ Zsq, y ∈ [0, q)s,
n = 0, 1, . . . , N − 1, we have

D
(s)
N (y0,y1, . . . ,yN−1) ≤ s

q
+

1

N

∑
h∈Cs(q)

∑
h0∈(− τ2 ,

τ
2 ]

1

r(h, q)

∣∣∣∣∣
N−1∑
n=0

eq(h · yn)

∣∣∣∣∣ ,
where r(h, q) =

s∏
j=1

r(hi, q), r(h, q) =

{
1 if h = 0,

q sin (π |h|q ) if h 6= 0,

(see, [6])

Lemma 9. The discrepancy of N arbitrary points y0,y1, . . . ,yN−1 ∈ [0, 1)s

suffice to inequality

DN (y0,y1, . . . ,yN−1) ≥ 1

2s−1(π + 2)|h1· · ·hs|
· 1

N

∣∣∣∣∣
N−1∑
n=0

e(h · yn)

∣∣∣∣∣
for any point h = (h1, . . . , hs) ∈ Zs under condition h1 · · · · · h2 6= 0.

(see, [6])
For the sequence {yn} produced by the recursion (2) we easy infer (with

help Lemma 8).

Theorem 3. Let {yn}, n = 0, 1, . . ., be the sequence of PRN’s of second
order type (I) with the maximal period τ = 3pm−ν . Then for discrepancy
DN (x0, . . . , xN−1) of the sequence {xn}, xn = yn

pm ∈ [0, 1)s, the following bound
for N ≤ τ

D
(1)
N (x0, x1, . . . , xN−1) ≤ 1

pm
+

3p
m
2

N

(
1

p

(
2

π
log pm +

7

5

)2

+ 1

)
holds.

Proof. Since {yn} has a maximal period, we have τ = 3pm−ν . Hence by Lemma
(8)

D
(1)
N (x0, x1, . . . , xN−1) ≤

≤ 1

pm
+

1

N

∑
|h|≤ 1

2p
m

∑
|h0|≤ 1

2 τ

(r(h,
1

2
pm)r(h0, τ))−1

∣∣∣∣∣
τ−1∑
n=0

epm

(
hxn +

hx0p
m

τ

)∣∣∣∣∣ ≤
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≤ 1

pm
+

1

N

∑
h

∑
h0

(
r

(
h,

1

2
pm
)
r

(
h0,

1

2
τ

))−1
·
(∣∣∣∑

1

∣∣∣+
∣∣∣∑

2

∣∣∣+
∣∣∣∑

3

∣∣∣)
where ∑

j

=

pm−ν−1∑
k=0

epm
(
hx3k+j + nh0p

ν + n2hp2ν + · · ·
)
, j = 0, 1, 2.

Now in view of the representations of x3k+j , j = 0, 1, 2, and Lemma (3), we
obtain

D1
N (x0, x1, . . . , xN−1) ≤ 1

pm
+

3p
m
2

N

(
1

p

(
2

π
log pm +

7

5

)2

+ 1

)
.

ut

Remark 1. For the case s, 2 ≤ s ≤ 4, we have similarly

Ds
N := D

(s)
N (x

(s)
0 , x

(s)
1 , . . . , x

(s)
N−1) ≤ s

pm
+

1

p
m
2 −ν

(
1 +

1

pν

(
2

π
log pm +

7

5

)s)
.

Theorem 4. For every s ∈ {1, 2, . . . , p−1} we have for the sequence of PRN’s
produced by the inversive generator type (II) of second order the following es-
timates

D(s)
τ (x

(s)
0 , x

(s)
1 , . . . , x

(s)
τ−1) ≤ s

pm
+

3

p
m
2 −ν

(
1 +

1

pν

(
s

π
log pm +

7

5

)s)
hold.

This assertion is a corollary of the representation (7) and Lemmas 3 and 7.

From Theorems 3 and 4 it follows that the sequences of PRN’s {xn} pro-
duced by generator (2) pass the s-dimensional test (s = 1, 2, 3, 4) on the uni-
form distribution and statistical independency (unpredictability). Moreover, if
we add the constant shift b to the variable shift b(n) = b + cn + dF (n) with
νp(c) ≥ max (νp(a), νp(b)) and νp(d) ≥ 2νp(c), then all assertions of Theorems
1-4 will true.

Theorem 5. For the sequences of PRN’s produced by recursion (2) of type (I)
or (II) we have∣∣SN (h)

∣∣ :=

∣∣∣∣∣∣
∑

(y0,y1)∈Z∗
pm

2

N−1∑
n=0

epm(hyn)

∣∣∣∣∣∣ ≤ 12N
1
2 + 12Np−

m−δ
2 ,

where

(h, p) = 1, δ =

{
νp(b) if νp(a) = 0, νp(b) = ν,
νp(a) if νp(a) = α, νp(b) = 0.

Theorem 6. Let the sequence {yn} be produced by (2) with parameters a, b,
y0, y1, (a, p) = (y0y1, p) = 1, νp(b) = pν0 , ν0 ≥ 1. Then for every h ∈ Z,
(h, pm) = µ ≤ m, we have

SN (h) =
1

(ϕ(pm))2

∑
y0,y1∈Z∗

pm

|SN (h, y0, y1)| ≤ 12N
1
2 + 12Np−

m−ν0
2 .
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Proof. Let νp(h) = 0, i.e. (h, p) = 1. By the Cauchy-Schwarz inequality we get∣∣SN (h)
∣∣2 =

1

(ϕ(pm))2

∣∣∣∣∣∣
∑

y0,y1∈Z∗
pm

N−1∑
n=0

em(hyn)

∣∣∣∣∣∣
2

=

=
1

(ϕ(pm))2

∑
y0,y1∈Z∗

pm

N−1∑
k,`=0

em(h(yk − y`)) ≤

≤ 1

(ϕ(pm))2

N−1∑
k,`=0

|σk,`(h,−h)| = 1

(ϕ(pm))2

∞∑
r=0

N−1∑
k,`=0

νp(k−`)=r

|σk,`(h,−h)| =

=
1

(ϕ(pm))2

m−1∑
t=0

N−1∑
k,`=0

νp(k−`)=t

|σk,`(h,−h)|+ 1

(ϕ(pm))2

N−1∑
k=0

|σk,k(h,−h)| =

= N +
1

(ϕ(pm))2

m−1∑
t=0

N−1∑
k,`=0

νp(k−`)=t

|σk,`(h,−h)|.

Using Theorem 1, we obtain∣∣SN (h)
∣∣2 ≤ N +

1

(ϕ(pm))2
×

×
m−1∑
r=0


N−1∑
k,`=0

k 6≡` (mod 3)
νp(k−`)=r

|σk,`(h,−h)|+
N−1∑
k,`=0

k≡` (mod 3)
νp(k−`)=r

|σk,k(h,−h)|

 ≤

≤ N +
1

(ϕ(pm))2
×

×

4pm
m−1∑
r=0

N2

pr
+

 ∑
r<m−ν0

+
∑

m−ν0≤r≤m−1

 N−1∑
k,`=0

k≡` (mod 3)

|σk,`(h,−h)|

 ≤
≤ N +

N

(ϕ(p(m))2
×

×

4Npm +
∑

r<m−ν0

N

pr
pm+ν0+r + pm

∑
r≥m−ν0

N

pr

 ≤
≤ N +N2p−m · 11pν0(m− ν0).

Hence, for (h, p) = 1 we obtain∣∣SN (h)
∣∣ ≤ N 1

2 + 12Np−
m−ν0

2 .
ut
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5 Conclusion

Although the considered sequences produced by inversive congruential gen-

erators of second order do not reach the maximal period length T =
(
pm−1(p− 1)

)2
,

but due to simplicity of construction and cryptographic applicability they merit
attention and further generalization.
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1 Variations on the Fermi-Pasta-Ulam chain,
a survey

Ferdinand Verhulst
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Abstract. We will present a survey of low energy periodic Fermi-Pasta-Ulam chains
with leading idea the ”breaking of symmetry”. The classical periodic FPU-chain
(equal masses for all particles) was analysed by Rink in 2001 with main conclusions
that the normal form of the beta-chain is always integrable and that in many cases
this also holds for the alfa-chain. The implication is that the KAM-theorem applies to
the classical chain so that at low energy most orbits are located on invariant tori and
display quasi-periodic behaviour. Most of the reasoning also applies to the FPU-chain
with fixed endpoints.

The FPU-chain with alternating masses already shows a certain breaking of sym-
metry. Three exact families of periodic solutions can be identified and a few exact
invariant manifolds which are related to the results of Chechin et al. (1998-2005) on
bushes of periodic solutions. An alternating chain of 2n particles is present as sub-
manifold in chains with k 2n particles, k=2, 3, ... The normal forms are strongly
dependent on the alternating masses 1, m, 1, m,... If m is not equal to 2 or 4/3 the
cubic normal form of the Hamiltonian vanishes. For alfa-chains there are some open
questions regarding the integrability of the normal forms if m= 2 or 4/3. Interaction
between the optical and acoustical group in the case of large mass m is demonstrated.

The part played by resonance suggests the role of the mass ratios. It turns out that
in the case of 4 particles there are 3 first order resonances and 10 second order ones;
the 1:1:1:...:1 resonance does not arise for any number of particles and mass ratios.
An interesting case is the 1:2:3 resonance that produces after a Hamilton-Hopf bifur-
cation and breaking symmetry chaotic behaviour in the sense of Shilnikov-Devaney.
Another interesting case is the 1:2:4 resonance. As expected the analysis of various
cases has a significant impact on recurrence phenomena; this will be illustrated by
numerical results.
Keywords: FPU-chain, resonance, periodic solutions, normalisation, chaos, Hamil-
ton-Hopf bifurcation.

1.1 Introduction

Chains of oscillators arise naturally in systems of coupled oscillators and by
discretisation of vibration problems of structures. In physics studying the
Fermi-Pasta-Ulam (FPU) chain has been very influential for a different reason.
The FPU-chain models a one-dimensional chain of oscillators with nearest-
neighbour interaction only; see fig. 1.1. It was formulated to show the thermal-
isation of interacting particles by starting with exciting one mode with the ex-
pectation that after some time the energy would spread out over all the modes.
This is one of the basic ideas of statistical mechanics. In the first numerical
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experiment in 1955, 32 oscillators were used with the spectacular outcome that
the dynamics was recurrent as after some time most of the energy returned
to the chosen initial state. For the original report see Fermi et al. [14] and a
review by Ford [15], recent references can be found in Christodoulidi et al. [10]
or Bountis and Skokos [1]. Discussions can be found in Jackson [22], Campbell
et al. [6] and Galavotti (ed.)[16]. Note that although studies of FPU-chains
are of great interest, as models for statistical mechanics problems they are too
restrictive.

nmass 1 2 3

Fig. 1.1. A Fermi-Pasta-Ulam chain with fixed endpoints.

1.1.1 Formulation

The original FPU-chain was designed with fixed endpoints and choosing the
initial energy small. Later research showed the presence of periodic solutions
and wave phenomena, also larger values of the energy were considered. Another
version of the FPU-chain is the spatially periodic chain where particle 1 is
connected with the last one. In this survey we will focus mainly on the periodic
chain with small initial values of the energy. The Hamiltonian H(p, q) for N
particles is of the form:

H(p, q) =

N∑
j=1

(
1

2mj
p2j + V (qj+1 − qj)

)
, (1.1)

where particle 1 is connected with particle N . The coordinate system has
been chosen so that q = p = 0 is a stable equilibrium. For FPU-chains one
considers usually potentials V (z) that contain quadratic, cubic and quartic
terms. Explicity

V (z) =
1

2
z2 +

α

3
z3 +

β

4
z4.

If β = 0 we call the FPU-chain an α-chain, if α = 0 a β-chain. Physically the 2
chains are different, for an α-chain the forces on each particle are asymmetric,
for a β-chain they are symmetric.
The spatially periodic chain has a second integral of motion, the momentum
integral:

m1q̇1 +m2q̇2 + . . .+mN q̇N = constant. (1.2)

The momentum integral (1.2) enables us to reduce the N dof system to a N−1
dof Hamiltonian system by a symplectic transformation.
For low energy orbits near stable equilibrium one usually rescales p 7→ εp̄, q 7→
εq̄, divides the Hamiltonian by ε2 and drops the bars. For the linearised system
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near stable equilibrium we find:

m1q̈1 + 2q1 − q2 − qN = 0,

m2q̈2 + 2q2 − q3 − q1 = 0,

m3q̈3 + 2q3 − q4 − q2 = 0,

. . . = 0,

mN q̈N + 2qN − q1 − qN−1 = 0.

(1.3)

The quadratic nonlinearities start with ε, the cubic ones with ε2. The spectrum
of the linear operator (the eigenvalues near stable equilibrium) determines the
resonances and the nonlinear dynamics near stable equilibrium. Our survey
is based on papers that make extensive use of normalisation-averaging tech-
niques, see Sanders et al. [28], chs. 2 and 10. This involves near-identity trans-
formations to simplify the equations of motion or the Hamiltonian itself if one
studies such a system. A quadratic Hamiltonian indicated by H2 corresponds
with a linear system of differential equations; for a Hamiltonian with cubic
terms near-identity transformation removes the non-resonant terms to higher
order. Omitting the higher order terms the resulting normalised Hamiltonian
H̄ = H2 + H̄3 contains only the resonant terms H̄3 of the cubic H3 (the index
indicates the power of the polynomials). One can go on with the normalisa-
tion proces by using a near-identity transformation to remove the non-resonant
terms from H4, etc.

In general the normalised (averaged) equations that are truncated at some
level of normalisation will not be integrable, although there are many excep-
tions. For the FPU-Hamiltonian in homogeneous polynomials we have the
notation:

H = H2 + εH3 + ε2H4, and H̄ = H2 + εH̄3 + ε2H̄4.

We will describe a number of prominent cases that show different dynamics
for different choices of the masses. In the original (classical) FPU problem all
masses are equal which seems a natural choice. A second natural choice is
to alternate the masses m,M,m,M, . . . ,m,M ; it is no restriction to assume
0 < m ≤ M . A quite different approach is to look for mass ratio’s that
produce interesting resonances and dynamics. We aim at summarising all these
approaches for low energy chains. Of special interest in the analysis are integrals
corresponding with approximate invariant manifolds of the averaged systems,
periodic solutions, bifurcations and chaos.
An important conclusion will be that the classical FPU-chain contains so many
symmetries that by symmetry breaking it is structurally unstable.

1.1.2 Theoretical background

There exist an enormous amount of papers on the original FPU-chain of Fermi
et al. [14]. A large number of the papers consist of numerical explorations; they
are often inspiring but not always satisfactorily explaining the phenomena.
Apart from normalisation-averaging, symmetry considerations are important
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for the qualitative results. This involves the theory of Hamiltonian systems, see
for an introduction Verhulst [29] and for the more general dynamical systems
context Broer et al. [2]. New results on Hamiltonian systems and symmetry
are found in Bountis and Skokos [1], Efstathiou [13] and Hanßmann [18]. Basic
understanding of recurrence as formulated by Poincaré [24] vol. 3, ch. 26 is
essential.
A systematic study of dynamical systems with discrete symmetry was started
by Chechin and Sakhnenko [7]. The authors introduce the notion of bushes
with a bush comprising all modes singling out an active symmetry group in the
system. A bush corresponds with a lower dimensional invariant manifold (or
approximate invariant manifold in the sense of normalisation) giving insight
in the various dynamical parts that compose the system. The theory is quite
general, it was applied to FPU chains by Chechin et al. in [8] and [9].
Independently the ideas of utilising symmetries were also developed by Rink [26]
and by Bruggeman and Verhulst in [4] and [5].

1.2 The classical periodic FPU-chain

In the original FPU problem one considered the so-called mono-atomic case,
i.e. all masses equal; we call this the classical FPU-chain and put m1 = m2 =
. . . = mN = 1. The recurrence of the classical FPU-chain signalled by Fermi
et al. [14] was surprising at the time as this was before the time of publication
of the KAM theorem (see below).
The linearised system (1.3) has the frequencies ωj of the corresponding har-
monic equations:

ωj = 2 sin

(
jπ

N

)
, j = 1, . . . , N. (1.4)

The implication is that we have many 1 : 1 resonances, N/2 if N is even and
(N−1)/2 if N is odd. Also there exist accidental other resonances like 1 : 2 : 1.
A natural first step is to reduce the system using integral (1.2) to N − 1 dof.
An interesting attempt to solve the recurrence problem was made by Nishida
[23] by proposing to use the KAM theorem; this theorem guarantees under
the right conditions the existence of an infinite number of (N − 1)-tori con-
taining quasi-periodic solutions near stable equilibrium. This would solve the
recurrence problem, but unfortunately the spectrum is resonant and the KAM
theorem can not be applied in a simple way.
The problem was for most cases solved for the spatially periodic FPU chain
by Rink in [26]; his results can also be applied to the chain with endpoints
fixed. We summarise the reasoning. First the system with cubic and quar-
tic terms in the Hamiltonian is transformed by symplectic normalisation (also
called Birkhoff-Gustavson normalisation) to a simpler form. If the resulting
normalised Hamiltonian H̄ is nondegenerate in the sense of the KAM theorem
and if it is integrable i.e containing, in addition to integral (1.2), N − 1 func-
tionally independent integrals that are in involution, then the KAM theorem
applies to the original Hamiltonian H. By the transformation the nonresonant
terms of the cubic and quartic part are shifted to higher order. The original
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system contains various discrete symmetry groups, a rotation symmetry and a
reflection symmetry. These symmetries carry over to the normalised Hamilto-
nian system with the surprising result that the cubic terms in H̄ vanish! From
theorem 8.2 of Rink [26] we have for the classical periodic FPU chain derived
from Hamiltonian (1.1) containing cubic and quartic terms:

H̄3 = 0. (1.5)

The analysis in Rink [26] of H̄ produces furthermore:

1. Assume α 6= 0 and N is odd, then H2 + ε2H̄4 is integrable and nondegen-
erate in the sense of the KAM theorem.

2. Assume α 6= 0 and N is even, then H2 + ε2H̄4 hast at least (3N − 4)/4
quadratic integrals (if 4 divides N) or (3N − 2)/4 quadratic integrals (if 4
does not divides N).

3. The normalised β-chain (α = 0) is integrable and nondegenerate in the
sense of the KAM theorem. Almost all low-energy orbits are periodic or
quasi-periodic and move on invariant tori near stable equilibrium.

4. Similar results can be obtained for the classical FPU-chain with fixed end-
points.

The remaining problem is the integrability of H2 +ε2H̄4 in the case of the even
α-chain. To check this one has to carry out the normalisation to quartic terms
which is quite a lot of work if N is large. We will discuss an example with
α = 1, β = −1.

Example 1.21
Consider a periodic Fermi-Pasta-Ulam chain consisting of four particles of equal
mass m (= 1) with quadratic and cubic nearest-neighbor interaction. Periodic
means that we connect the first with the fourth particle. The Hamiltonian is
in this case:

H(p, q) =

4∑
j=1

(
1

2
p2j + V (qj+1 − qj)), (1.6)

with

V (z) =
1

2
z2 +

1

3
z3 − 1

4
z4.

The corresponding equations of motion were studied Rink and Verhulst [25].
The equations induced by Hamiltonian (1.6) have a second integral of mo-

tion, the momentum integral
∑4

j=1 pj = constant. This enables us to reduce
the 4 dof equations of motion to 3 dof by a canonical (symplectic) transforma-
tion. From Rink and Verhulst [25] we have the reduced system:

ẍ1 + 4x1 = 4x2x3 + 4x31 + 6x1(x22 + x23),

ẍ2 + 2x2 = 4x1x3 + x32 + 3x2(x23 + 2x21),

ẍ3 + 2x3 = 4x1x2 + x33 + 3x3(x22 + 2x21).

(1.7)

We can identify 3 families of periodic solutions, the 3 normal modes in the
coordinate planes. Consider the x2 normal mode that satisfies the equation:

ẍ2 + 2x2 = x32.
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Fig. 1.2. The actions for 3000 timesteps near the unstable x2 normal mode of system
(1.7) with ε = 0.1, initial conditions x1(0) = x3(0) = 0.1, x2(0) = 1 and initial
velocities zero. Left the action I2(t) = 1

2
(ẋ22 + 2x22) starting near zero and increasing

to values near 1; also the nonresonant I1(t) = 1
2
(ẋ21 + 4x21). Right the resonant action

I3(t) = 1
2
(ẋ23 + 2x23)) that exchanges energy with the x2 mode (pictures from [31]).

In general, solutions far from stable equilibrium become chaotic, so we restrict
ourselves to a neighbourhood of the origin by rescaling x1 = εx̄1, x2 = εx̄2, x3 =
εx̄3 and then omitting the bars. Rescale also

√
2t = s. System (1.7) becomes:

d2x1

ds2 + 2x1 = 2εx2x3 + 2ε2x31 + 3ε2x1(x22 + x23),
d2x2

ds2 + x2 = 2εx1x3 + 1
2ε

2x32 + 3
2ε

2x2(x23 + 2x21),
d2x3

ds2 + x3 = 2εx1x2 + 1
2ε

2x33 + 3
2ε

2x3(x22 + 2x21).

(1.8)

The equation for the x2 normal mode was studied in many introductions to
the averaging method, where with initial values x2(0) = a, dx2(0)/ds = 0 we
obtain the approximation:

φ(s) = a cos(s− ε2 3

16
a2s).

We transform x1 = y1, x2 = φ(s) + y2, x3 = y3 in system (1.8) and linearising
we find: 

d2y1

ds2 + 2y1 = 2εφ(s)y3 + 3ε2y1φ
2(s),

d2y2

ds2 + y2 = 0,
d2y3

ds2 + y3 = 2εy1φ(s) + 3
2ε

2y3φ
2(s).

(1.9)

The first and third equations are coupled but there is no resonance because of
the basic frequencies

√
2 and 1; we conclude that the solutions of system (1.9)

are stable. Interestingly, it was proved in [25] that near stable equilibrium the
stability in linear approximation is destroyed by the nonlinearities. See fig. 1.2
for an illustration.

Example 1.22
Other examples
The relatively simple case of 3 particles was discussed by Ford [15]; the system
is identified with the Hénon-Heiles system, a 2 dof Hamiltonian system in 1 : 1
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resonance; for a survey see Rod and Churchill [27]. This is interesting as this
system has an integrable normal form for low energy values. Between the
invariant tori there exists chaos but of exponentially small measure. If the
energy is increased the amount of chaos increases, destroying more and more
tori until the system looks fully chaotic at higher energy. Proofs are available
for this behaviour, see Holmes et al. [20], except that we do not know whether
at ‘’full chaotic behaviour“ there are no tiny sets of tori left, undetected by
numerics.
In Rink and Verhulst [25] the classical system with 4, 5 and 6 particles was
analysed in the cases of α- and β-chains, also for mixed cubic and quartic terms.
In these examples the normal forms are integrable.

1.3 The FPU-chain with alternating masses

Alternating the masses of a FPU-chain produces already a certain symmetry
breaking. It is no restriction to rescale the smallest mass to 1 and have largest
mass m ≥ 1.
So we consider the periodic FPU-chain with N (even) masses that alternate:
1,m, 1,m, . . . , 1,m (the case 0 < m ≤ 1 follows from symmetry considerations).
The chain is related to the formulation in Galgani et al. [17] that analyses the
chain and explores numerical aspects if N is large. In Bruggeman and Verhulst
[5] a general analysis was started, but there are still many open questions; we
summarise a number of results of this paper.
The eigenvalues λj , j = 1, . . . N of system (1.3) are with a = 1/m in the case
of alternating masses:

λj = 1 + a±
√

1 + 2a cos(2πj/N) + a2, j = 1, . . . N. (1.10)

Several observations can be made:

1. One eigenvalue equals 0 corresponding with the existence of the momentum
integral (1.2).

2. If N is a multiple of 4 we have among the eigenvalues the numbers 2(a +
1), 2, 2a.

3. For large masses m (a → 0) the eigenvalue spectrum consists of 2 groups,
one with size 2 +O(a) (the so-called optical group) and one with size O(a)
(the so-called acoustical group). The symplectic transformation to N − 1
dof mixes the modes because of the nearest-neighbour interactions, present
already in the linearised system (1.3). So we cannot simply identify the
dynamics of the optical group with the dynamics of the large masses.

A few qualitative and quantitative results were obtained by Bruggeman and
Verhulst [5]:

1. We can identify three explicit families of periodic solutions characterised by
the frequencies

√
2,
√

2a,
√

2(1 + a). The solutions are either harmonic or
elliptic functions.
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2. In the spirit of Chechin and Sakhenko [7] we can identify bushes of solutions
in the following sense: the dynamics of a system with N particles will be
found as a submanifold in systems with kN particles (k = 2, 3, . . .). This
increases the importance of studying chains with a small number of particles
enormously. Note that the result is valid for large values of N , it also holds
in the classical case m = 1.

3. First order averaging-normalisation (m 6= 1) produces for the α-chain only
non-trivial results if m = 2 and m = 4/3. From the point of view of
normalisation the case of large m (a→ 0) has to be treated separately.

4. An interesting discussion by Zaslavsky [32] deals with the phenomenon of
delay of recurrence in Hamiltonian systems by quasi-trapping. This phe-
nomenon arises for 3 and more dof if resonance manifolds, acting as subsets
of the energy manifold, contain periodic solutions surrounded by invariant
tori. The orbits entering such resonance manifolds may be delayed passage
by staying for a number of revolutions near these tori.
In Bruggeman and Verhulst [5] an explicit analysis and numerics of quasi-
trapping is given for a number of cases with 8 particles. In the case of
large mass m a second order normalisation is necessary; the recurrence is
sensitive to the initial conditions.

5. For the alternating mass m large (small a) we expect different dynamics
for the optical group (eigenvalues near 2) and the acoustical group (eigen-
values O(a)), see Galgani et al. [17]. This raises an old question: can high
frequency modes transfer energy to low frequency modes and vice versa?
The answer is affirmative, see the discussion below and fig. 1.3.

We summarise results for the cases N = 4n and N = 8n.

1.3.1 Chain with 4n particles, n = 1, 2, 3, . . ., [3]

A system with 4 particles is imbedded as an invariant manifold in a system
with 4n particles. The momentum integral (1.2) enables reduction to 3 dof
with frequencies

√
2,
√

2a,
√

2(1 + a). We find no 3 dof first order resonances
in a system with 4 particles. The normal modes are exact periodic solutions
both for the α- and the β-chain. The normal forms are in both cases integrable
to second order. The recurrence of the orbits on an energy manifold depends
on the initial conditions, starting near an unstable periodic orbit lengthens the
recurrence times.
For the case large mass m (a small) see below.

1.3.2 Chain with 8n particles, n = 1, 2, 3, . . ., [5]

A system with 8 particles is imbedded as an invariant manifold in a system with
8n particles. Using integral (1.2) produces reduction to 7 dof with frequencies:

√
2,
√

2a,
√

2(1 + a), 1 + a+
√

1 + a2 (twice), 1 + a−
√

1 + a2 (twice).

The normal forms become much more complex (H4 contains 49 terms) so we
restrict the analysis to α-chains. As expected we recover the invariant manifold
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associated with the first 3 eigenvalues (or frequencies) for the system before
normalisation; we find two more 6-dimensional invariant manifolds of the exact
equations. The 3 invariant manifolds have the normal mode periodic solution
associated with the frequency 2a in common. This mode plays a pivotal part
in the dynamics.
Normalisation produces H̄3 = 0 except if a = 0.5, 0.75 and if a is close to zero
(large mass). The normal form flow in the 3 invariant manifolds is integrable.
In the case a = 0.75 we find instability of the invariant manifolds, the stability
in the other cases can not be decided as the eigenvalues are purely imaginary
(this is a basic stability problem of Hamiltonian systems with more than 2 dof).
A conclusion is that the presence of nested invariant manifolds (bushes) makes
the equipartition of energy rather improbable.

1.3.3 Interactions between optical and acoustical group

Fig. 1.3. Interaction between optical and acoustical group in invariant manifold M
corresponding with 4 particles. The modes x1, x2 are near 1 : 1 resonance. We
have in system (1.11) a = 0.01, x1(0) = x2(0) = 0.5, x3(0) = 0 and initial velocities
zero. The instability of the solution in the optical group is indicated by the action
E1(t) = 0.5(ẋ21+2(1+a)x21) (middle). Although far from resonance, the low-frequency
mode x3 is excited; figs left x3(t) and right E3(t) = 0.5(ẋ23 + 2ax23).

The eigenvalues and frequencies obtained from eq. (1.10) suggest that for
mass m large we have two groups of oscillators, one with frequency size close
to
√

2 and one with size O(
√
a). There are indications in Bruggeman and

Verhulst [3] that in the case of a chain with 4 particles there exists significant
interactions between the 2 groups. It turns out that in α-chains the acoustical
group can be strongly excited by the optical group.
We will clarify this interaction phenomenon in the case of 4n particles using the
4 particles invariant manifold M that consists of the modes with frequencies√

1 + a,
√

2,
√

2a. This submanifold corresponds with the 4 particles system
described above.
As 0 < a � 1 there is actually no need for a scaling by small parameter ε
in this case. The corresponding equations of motion are (see Bruggeman and
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Verhulst [5]): 
ẍ1 + 2(1 + a)x1 = 2

√
a(1 + a)x2x3,

ẍ2 + 2x2 = 2
√
a(1 + a)x1x3,

ẍ3 + 2ax3 = 2
√
a(1 + a)x1x2.

(1.11)

The modes x1 and x2 are in a detuned 1 : 1 resonance when choosing 0 < a� 1
. Consider the general position periodic solution of the 1 : 1 resonance of
the x1, x2 modes, described in Bruggeman and Verhulst [3]. A normal form
approximation is x1(t) = r0 cos(

√
2t + ψ0), x1(t) = ±x2(t); the approximation

is based on the equations for these modes to order O(a):

ẍ1 + 2x1 = 2
√
ax2x3 + a . . . , ẍ2 + 2x2 = 2

√
ax1x3 + a . . .

with x3 varying on a long timescale. The asymptotic approximation with x1 =
x2 leads to a forced, linear equation for x3(t):

ẍ3 + 2ax3 = 2
√
ar20 cos2(

√
2t+ ψ0), (1.12)

with particular solution:

x3(t) =
r20

2
√
a
− r20

8r20 − 2
√
a

cos(2
√

2t+ 2ψ0). (1.13)

To this expression we have to add the homogeneous solution consisting of
cos(
√

2at) and sin(
√

2at). It is remarkable that the particular solution has
a large amplitude, O(1/

√
a), and period π/

√
2. The homogeneous solution

has long period π
√

2/
√
a. We find that the “acoustical mode” x3 is strongly

excited; x1 and x3 are shown in fig. 1.3 in the case of large mass 100.

1.4 Resonances induced by other mass ratio’s

The classical FPU-chain and the chain with alternating masses are natural
models of physical chains. It is clear from dynamical systems theory that
resonances and symmetries play a fundamental part in all these model chains;
see for instance Poincaré [24] or Sanders et al. [28].
Take for instance the classical FPU-chain with N=6; the 6 harmonic frequencies
of system (1.3) are 1,

√
3, 2,
√

3, 1, 0. As we know, both for α- and β-chains
H̄3 = 0 so the 1 : 2 : 1 first order resonance is not effective because of symmetry;
it might appear as a 2 : 4 : 2 resonance at higher order. The

√
3 :
√

3 = 1 : 1
resonance plays a part for β-chains.

A different choice of masses that would make the frequency spectrum of
system (1.3) non-resonant would always have near-resonances as the rationals
are dense in the set of real numbers. This would produce detuned resonances
with behaviour related to exact resonance, so even in this case the analysis of
Nishida [23] would not apply although his idea turns out to be correct. Thus
it makes sense to explore systematically the kind of resonances that may arise
in FPU-chains. As we shall see this leads to various applications.
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The exploration of possible resonances was done by Bruggeman and Verhulst
[4] for the case of 4 particles leading to chains described by 3 dof. In Sanders
et al. [28] ch. 10 a list of prominent Hamiltonian resonances in 3 dof is given
for general Hamiltonians. In general for 3 dof we have 4 first order resonances
(active at H3) and 12 second order resonances (active at H3 +H4). Consider-
ing system (1.3) for the special case of the FPU chains with arbitrary positive
masses, we find that the first order resonance 1 : 2 : 2 does not arise, of the 12
seond order resonances 1 : 1 : 1 and 1 : 3 : 3 are missing. The importance of
the resonances that do arise is partly determined by the size of sets in the pa-
rameter space of masses. We present the results from Bruggeman and Verhulst
[4] where the sets in 3d-parameter space, the mass ratios of (m1,m2,m3,m4),
with active resonance are indicated between brackets:

First order resonance
1 : 2 : 1 (4 points); 1 : 2 : 3 (4 open curves); 1 : 2 : 4 (12 open curves).

Second order resonances

1:1:3 (4 points) 1:2:5 (12 open curves)
1:2:6 (12 open curves) 1:3:4 (4 open curves)
1:3:5 (4 open curves) 1:3:6 (12 open curves)
1:3:7 (12 open curves) 1:3:9 (12 open curves
2:3:4 (2 compact curves); 2:3:6 (2 compact curves)

To determine the possible resonances for FPU chains with more than 4 particles
is a formidable linear algebra and algebraic problem that has not been solved
in generality. A general result from Bruggeman and Verhulst [4] is that for
N ≥ 4 no mass distribution will produce the N dof 1 : 1 : . . . : 1 resonance. We
will discuss some results that are known for the 1 : 2 : 3 and 1 : 2 : 4 resonances
with 4 particles. The second order resonances are largely unexplored for FPU-
chains.

1.4.1 The 1 : 2 : 3 resonance

This resonance is of special interest as in this case for the general Hamiltonian
chaos does not become exponentially small near stable equilibrium as ε → 0
(see Hoveijn and Verhulst [21]). In general the normal form of the 1 : 2 : 3 res-
onance is not integrable; see Christov [11]. However, symmetries may change
the dynamics as is shown in systems with 4 particles, see Bruggeman and Ver-
hulst [4] and below.

The symmetric case of 4 particles α-chains, m1 = m3

Using integral (1.2) and symplectic transformation we find the Hamiltonian:

H(p, q) =
1

2

3∑
j=1

(p2j + ω2
j q

2
j ) + ε(d3q

2
1 + d10q

2
2 + d6q

2
3)q3, (ω1, ω2, ω3) = (3, 2, 1),

(1.14)
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ω=3 ω=3

ω=1 ω=1

ω=2ω=2

HH

Fig. 1.4. The 1 : 2 : 3 resonance with action simplex of the symmetric case m1 = m3

(left) and right a typical case with all masses different. Along the axes the actions form
a triangle for fixed values of H2 which is an integral of the normal forms. The frequen-
cies 1, 2, 3 indicate the 3 normal mode positions at the vertices. The black dots indi-
cate periodic solutions, the indicated stability types are HH (hyperbolic-hyperbolic),
EE (elliptic-elliptic) and C (complex with real and imaginary parts nonzero). The
two (roughly sketched) curves connecting the 2 normal modes in the left simplex cor-
respond for fixed energy with two tori consisting of periodic solutions, respectively
with combination angle χ = 0 and π. The tori break up into 4 general position
periodic solutions if all masses are different.

with coefficients d3, d6, d10 6= 0. The (p1, q1) and the (p2, q2) normal modes are
exact periodic solutions in the 2 coordinate planes. Averaging-normalisation
produces in addition the (p3, q3) normal mode periodic solution. We find 3
integrals of motion of the normalised system so the normal form dynamics
is integrable. The normal form system contains only one combination angle
χ = ψ1−ψ2−ψ3 producing for fixed energy families of periodic solutions (tori)
in general position. This is a degeneration in the sense described by Poincaré
[24] vol. 1, ch. 4.
The stability of the normal modes is indicated in fig. 1.4, left; the normal 2nd
and 3rd modes (ω = 2, 1) are stable with purely imaginary eigenvalues, the
eigenvalues are coincident for the 2nd normal mode (Krein collision of eigen-
values). The first mode (ω = 3) is unstable with real eigenvalues; In Bruggeman
and Verhulst [4] a detailed description is given of the motion of the orbits start-
ing near the unstable normal mode (ω = 3).
We will see that the case m1 = m3 is structurally unstable, the dynamics
changes drastically if all masses are different.

The case of 4 particles α-chains, all masses different
This case presents striking differences from the case with 2 masses equal, the
symmetry is broken. We summarise:

1. The 3rd normal mode (ω = 1) vanishes, the periodic solution shifts to the
2 dof subspace formed by the first and 3rd mode; stability EE.

2. The second normal mode becomes complex unstable (C) by a Hamiltonian-
Hopf bifurcation. In this case two pairs of coincident imaginary eigenvalues
(the case m1 = m3) move into the complex plane.
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3. The presence of a complex unstable periodic solution fits in the Shilnikov-
Devaney scenario leading to chaotic dynamics in the normal form, see De-
vaney [12] and Hoveijn and Verhulst [21]; the normalised Hamiltonian is
not integrable in this case. Establishing chaos involves the presence of a
horseshoe map. As this map is structurally stable, finding chaos in the
normal form, this chaos will persist in the original system.

4. The tori consisting of periodic solutions in the case m1 = m3 break up into
4 periodic solutions at fixed energy.

1.4.2 The 1 : 2 : 4 resonance

Work in progress for the FPU-chain with 4 masses in 1 : 2 : 4 resonance can
be found in Hanßmann et al. [19]; this analysis includes detuning. We mention
some of the results in the case of opposing masses equal, m1 = m3.

1. The case of 2 opposing masses equal induces a Z2 symmetry with as con-
sequence that for both α- and β-chains we have H̄3 = 0.

2. The normal form H2 + H̄4 for the α- and β-chains has 3 normal mode
periodic solutions and is integrable.

3. Normalisation to H6 breaks the symmetry, only 2 integrals of the nor-
malised Hamiltonian could be found.

Interestingly the case of 2 adjacent equal masses produces different results; in
this case H̄3 6= 0, the symmetry mentioned above is broken.
The case of all masses different will be studied in a forthcoming paper.

1.4.3 An application to cell-chains

One can use low-dimensional FPU-chains as cells to form a new type of chain,
see fig. 1.5. This is quite natural when thinking of interactions of molecules
(a small group of connected oscillators) instead of atoms leading to a chain
of connected near-neighbour interacting oscillators. A few examples of such
cell-chains are discussed in Verhulst [30].

9

1

2

3

4
6

7

8 10

11

12

5

Fig. 1.5. A FPU cell-chain with 3 cells.

Consider cells consisting of a FPU-chain with 4 particles. As we have seen
before the dynamics within each cell will strongly depend on the choice of the 4
masses. A second important aspect is how the cells are linked. Connecting cells
by particles where stable periodic solutions dominate is expected to produce
less transfer of energy than connecting by particles with more unstable periodic
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solutions and more active dynamics. Also the linking of cells will detune the
resonances; this effect can be stronger if the FPU-chain is structurally unstable.
We will show a few examples of transfer of energy for the simplest case of two
connected cells. As the systems are Hamiltonian the phase-flow will always be
recurrent but if the recurrence takes a long time this will indicate active but
small transfer of energy between the cells with delayed recurrence.
Hamiltonian (1.15) describes the interaction of 2 cells if c1 6= 0.

H(p, q) =

4∑
j=1

(
mj

2
p2j +

1

2
(qj+1 − q))2)

)
+

8∑
j=5

(
mj−4

2
p2j +

1

2
(qj+1 − qj)2

)
+
ε

2
c1(q2−q6)2+H3,

(1.15)
with

H3 =

8∑
j=1

ε

3
(qj+1 − qj)3.

In the experiments we start with zero initial values in the 2nd cell, qj(0) =
vj(0) = 0, j = 5, . . . , 8. If c1 = 0 we have non-trivial dynamics and correspond-
ing distance d(t) to the initial values only in the first cell. Explicitly:

d(t) =

√√√√ 8∑
j=1

[(qj(t)− qj(0))2 + (vj(t)− vj(0))2]. (1.16)

The distance d(t) can be used to consider recurrence to a δ-neighbourhood of
the initial values. An upper bound L for the recurrence time has been given
in Verhulst [30]. Suppose we consider a bounded Hamiltonian energy manifold
with N dof, energy value E0 and Euclidean distance d(t) of an orbit to the
initial conditions, than we have for the recurrence time Tr to return in a δ-
neighbourhood of the initial conditions an upper bound L with:

L = O

(
E

N−1/2
0

δ2N−1

)
. (1.17)

For one FPU-cell we have with reduction to 3 dof L1 = E
5/2
0 /δ5 and for 2 linked

FPU-cells L2 = E
13/2
0 /δ13. Of course, starting near a stable periodic solution

or if there exist extra first integrals will reduce the recurrence time enormously.

Numerical experiments
We present numerical results for 3 cases with cells consisting of 4 masses: the
classical FPU-chain with equal masses in fig. 1.6 (m = 0.1 to have comparable
timescales), the 1 : 2 : 3 resonance case with symmetry induced by the choice
m1 = m3 in fig. 1.7 and the less-balanced case of the 1 : 2 : 3 resonance where
the dynamics is chaotic, fig. 1.8. In each of the 3 cell-chains we have initial
values q1(0) = 0.05, q2(0) = 0.2, q3(0) = 0.05, q4(0) = 0.05, q5(0) = q6(0) =
q7(0) = q8(0) = 0.0, initial velocities are all zero. So we start in the first cell
near the second normal mode plane.
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As expected the recurrence times increase when adding one cell but most
dramatically in the chaotic case. The inverse masses for fig. 1.7 are a1 =
0.0357143, a2 = 0.126804, a3 = 0.0357143, a4 = 0.301767 (symmetric 1 : 2 : 3
resonance with m1 = m3) and for fig. 1.8 a1 = 0.00510292, a2 = 0.117265, a3 =
0.0854008, a4 = 0.292231 (chaotic 1 : 2 : 3 resonance).
In all these recurrence experiments with for instance δ = 0.1 or δ = 0.05 the
recurrence times are definitely lower than the corresponding upper bound L
given by eq. (1.17).
The numerics used Matlab ode 78 with abs and rel error e−15.

Fig. 1.6. The classical case m = 0.1 with strong recurrence for 1 cell (roughly 100
timesteps if δ = 0.05) and delayed recurrence for 2 cells (roughly 5000 timesteps).

Fig. 1.7. The symmetric 1 : 2 : 3 case m1 = m3; the normal form is integrable, we
have strong recurrence. Left one cell, with δ = 0.01 roughly 800 timestep;, right 2
cells with δ = 0.05 roughly 1600 timesteps.
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Fig. 1.8. The chaotic 1 : 2 : 3 cell-chain with already delayed recurrence in one cell;
with δ = 0.05 left 15000 timesteps; right for 2 cells we have to integrate nearly 90 000
timesteps.
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Chaotic Mixing Experiments at High Temperature:  
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Abstract: The Paraná-Etendeka Magmatic Province (PEMP) is the largest outpour of 
magma on the Earth surface during lower Cretaceous times (~133 Ma). Basalts (~50% 
SiO2, both high-Ti and low-Ti members) predominate over an estimated volume of 7�105 
km3. However, ca. 2.5% of the volcanic products, are chemically more evolved (>63% 
SiO2). Their genesis is still under debate. This work aims a first attempt to experimentally 
reproduce the impact of underplating basaltic melt into a pre-existing continental crust. 
Mixing dynamics is thought to greatly influence the formation/contamination conditions 
of the high-Ti acid member (Chapecó-type). We used a chaotic mixing protocol (Journal 
Bearing System) at 1,350oC and following end-members: KS-700 basalt (high-Ti 
Pitanga-type from PEMP; η1350 = 8.78 Pa.s; ρ1350 = 2.469 g/cm³) and LMC-027 granite 
(syenogranite from Capão Bonito Stock; η1350 = 1.22�105 Pa.s; ρ1350 = 2.292 g/cm³). 
Homogenized glasses from the basalt and the granitic basement were used in an 80/20 
proportion, respectively. The experiment was performed during 212 min in total, i.e., two 
periods of: (i) two clockwise rotations of outer cylinder (35 min); (ii) six anticlockwise 
rotations of inner cylinder (18 min). The independent and non-simultaneous movements 
of the two cylinders guaranteed the chaotic flow. The obtained mixed glass was cut in 
slices of 3 mm perpendicular to the rotation axes and two of the sections reproduced 
Poincaré patterns, which are theoretically expected to be resulted for this kind of dynamic 
mixing. With the development of stretching and folding processes, chaotic 
trajectories are distributed off-centered as lamellar lens-like structures in the mixed 
system. Vortex structures are comparable to those produced by mixing Fe-free silicate 
melts, however with much higher fractal dimension (Df). These sections were 
preliminarily analyzed for the changes in morphology by comparing the Df using binary 
images (ImageJ software). Obtained Df‘s (≈ 1.79) are close to those from similar 
experiments with natural melts, although widespread orbicular structures found along all 
basaltic morphological domains are thought to enhance the complexity. Further 
experiments varying the granitic end-member are planned. Raman, microprobe and LA-
ICP-MS investigations will be performed to compare chemical behavior of major/minor 
oxides and trace elements. Furthermore, numerical simulations will follow. 
Keywords: Magma mixing, chaotic dynamics, journal bearing system at high-T, Paraná-
Etendeka Magmatic Province, Chapecó-acidic type. 
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1 Introduction 
 
The Paraná-Etendeka Magmatic Province (PEMP – Figure 1) is the second 
largest LIP (large igneous province) that occurs on the Earth’s surface with over 
a 1�106 km² of area and 800,000 km³ (Frank et al.[1]) of expelled material. It 
took place about 133 My ago (Piccirillo and Melfi[2]; Janasi et al.[3]; Marzoli et 
al.[4]). Basalts (rocks with SiO2 ≈ 50 wt % in their composition) are the most 
common members found along the province and they are mainly divided in two 
groups: one with low contents of titanium (TiO2 < 2 wt %; LTi), and other one 
with high contents (TiO2 ≥ 2 wt %; HTi). HTi basalts also differ from LTi due to 
the higher contents of P2O5, large-ion lithophile elements (such as Sr, Zr, Ba) 
and rare earth elements (as La, Ce and Lu) in general (Piccirillo and Melfi[2]; 
Marques et al.[5]; Peate et al.[6]). However, approximately 2.5% of the volcanic 
products are chemically more evolved (SiO2 ≥ 63 wt %), named rhyolites, and 
they also can be divided in two further-subgroups, according to the amount of 
TiO2. Each subgroup also presents a geochemical behaviour similar to those 
found in the basalts (Piccirillo and Melfi[2]; Nardy et al.[7]). Despite the genesis 
of the rhyolites from PEMP being still under debate, the most accepted ideas 
consider these evolved members as products of basaltic evolution and 
interaction with other crustal rocks. Therefore, each group of basaltic rocks (LTi 
and HTi) would have originated rhyolites with respective low and high contents 
of titanium. 
Figure 2 shows the underplating model used for Piccirillo and Melfi[2] to 
explain the genesis of Chapecó-type, where a HTi basaltic body is trapped under 
the crust, which is mainly composed by granitic rocks. At some point, the basalt 
has been remelted and interacted with the granitic basement around. 
Petrogenetic models tend to consider the magma chambers as static, so that the 
evolution of magmas is basically linear in time. However, in the last years, 
scientists began to compare the structures observed in volcanic environmental 
with the fractal geometry (De Rosa et al.[9], Perugini et al.[10], Perugini and 
Poli[11]), which is a characteristic of chaotic dynamic processes, and the 
complex dynamics inside the magma chamber started to be considered. Since 
then, fractal analysis and numerical simulations have been used as a tool to 
quantify such processes. Therefore, this work aims to an experimental approach 
of the genesis of high-Ti acid member of PEMP (Chapecó-type). It is a first 
attempt to reproduce the impact of underplating basaltic melt into a pre-existing 
continental crust and investigate the influence of chaotic mixing dynamics in 
their formation/contamination processes. 
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Fig. 1. Map from Paraná-Etendeka Magmatic Province – PEMP. Africa is rotated for 

present position of South America. Insert: TC = Tristan da Cunha island. Modified after 
Nardy et al.[7], Machado et al.[8] and references therein. 

 
In order to investigate the genesis of Chapecó-acidic type, we chose an 
experimental approach, which is based on previously obtained results from 
chaotic mixing experiments with geological materials at high temperatures. 
Therefore, the development and construction of the first experimental apparatus 
succeeded, being able to reproduce the chaotic dynamics according a specific 
protocol of motion at high temperature (De Campos et al.[12]). It mimics the 
processes that would govern the magma chambers, in where the mixing process 
occurs. Results with synthetic end-members showed similar patterns comparing 
to those theoretically expected (e.g.: Poincaré sections). Using the same device, 
Perugini et al.[13] generated a hybrid sample from synthetic end-members and 
correlated the chemical analysis with numerical simulations considering that the 
particles have been submitted to a chaotic field motion. The comparison 
demonstrated that the patterns fit, meaning that a chaotic mixing process could 
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explain what is observed in nature. Finally, Morgavi et al.[14] performed the 
same experiment using natural end-members and finding different geometrical 
patterns compared to those obtained from synthetic end-members. Furthermore, 
the chemical analysis showed that the elementary mobility is different to the 
linear behaviour expected. 
 

 
Fig. 2. Model for the underplating scenario of Chapecó-type genesis. 

 
2 Methods 
 
The chaotic mixing device is based on the Journal Bearing System (JBS; 
Swanson and Ottino[15]) that is able to generate a chaotic flow using a certain 
protocol of motion. Our apparatus scheme is shown in Figure 3. It is basically 
consisted by two independent motors. The lower motor moves a base where an 
Al2O3-rod (alumina: AL23) is fixed and allows positioning the crucible inside 
the hot spot of a high temperature furnace. The upper motor fixes an off-
centered spindle also made from alumina and sheathed by a Pt foil in its 
extremity that will be positioned inside the sample. The geometry of JBS is 
determined basically by: (i) the ratio of the radii of the two cylinders, r = Rin/Rout 
= 1/3; (ii) the eccentricity ratio to the outer cylinder ε = δ/Rout = 0.3, where δ is 
the distance between the centers of the inner and outer cylinders (Rin and Rout). 
The system was designed to enable independent rotations of inner and outer 
cylinders at variable speeds, directions and stirring protocols and to place the 
apparatus in the hot spot region of a well-calibrated high-temperature oven. The 
motors for both (inner and outer) cylinder movements are controlled by a central 
mixing system, which enables independent control of rotation direction, rotation 
speed and number of rotations (De Campos et al.[12]). 
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	Fig. 3. Schematics of the experimental apparatus. Extracted from De Campos et al.[12] 
and Morgavi et al.[14]. 

 
The protocol used to generate the chaotic streamlines is: (i) two clockwise 
rotations of outer cylinder (35 min); (ii) six anticlockwise rotations of inner 
cylinder (18 min); (iii) two clockwise rotations of outer cylinder (35 min); (iv) 
six anticlockwise rotations of inner cylinder (18 min). It totalizes 212 min of 
non-simultaneous and independent movements, which guarantees the chaotic 
flow. This choice was made based on Morgavi et al.[14] that performed the 
experiment during ½, 1 and 2 protocols and demonstrated that the mixing 
efficiency at this time is sufficient to preserve the structures. 
The end-members used in our experiment were: (i) a HTi Pitanga-type basalt 
from PEMP (mafic); (ii) a basement syenogranite from Capão Bonito Stock 
(felsic). The experimental temperature was 1350°C and it was chosen taking in 
to account the lowest value that still allows the interaction between the melts, 
once at low temperatures the viscosity increases and in some point no interaction 
would be possible. Estimated temperatures in nature where this interaction 
happens are lower than that, however there are other factors not considered in 
the experiment such as volatiles content and pressure that may greatly change 
the viscosity. In our case, melts are free of volatiles. At 1350°C, measured 
viscosity and calculated density for basalt was η1350 = 8.78 Pa.s; ρ1350 = 2.469 
g/cm³, while to granite was η1350 = 1.22�105 Pa.s; ρ1350 = 2.292 g/cm³, which 
leads to a viscosity ratio of approximately 1.4�104. For the preparation, the end-
members were pulverized and heated to produce a glass. Melts have been 
homogenized with a viscometer following the procedure described by Morgavi 
et al.[14]. The dry-bubble-free glasses were inserted into a Pt80-Rh20 crucible 
with 25 mm of diameter, 50 mm of length and 1 mm thick in a proportion of 
80% of basalt and 20% of granite. After positioning the crucible in the device, 
the oven is turned on and it heats up during approximately 40 minutes to all 
parts accommodate. During this time the temperature increases gradually until 
1350°C is reached and then the mixing protocol starts. At the end, the chaotic 
mixing device is turned off and hybrid glass is cooled at room temperature. 
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After cooling, the sample was drilled out. The obtained core was cut 
perpendicular to the rotation axis into several pieces with approximately 3 mm 
length for further analysis. It is important to notice that De Campos et al.[12], 
Perugini et al.[13] and Morgavi et al.[14] used the inverse proportion (i.e., 80% 
of felsic end-member with 20% of mafic inside) due to the fact the higher 
viscous material would stabilize the less viscous one at high temperatures. In 
principal, it would avoid any movement of the small cylinder before the protocol 
starts, although during the experiment the interaction expected between the end-
members and the resultant patterns would not have been affected. 
 
3 Results and Discussion 
 
The initial cooling rate observed was approximately 86.5°C/min, which is 
concordant with previous reports (De Campos et al.[12]; Morgavi et al.[14]). 
Two sections of the sample core presented morphological aspects theoretically 
expected and similar to Poincaré sections. These have been polished for 
microscopic further geochemical analysis as shown in Figure 4. 
 

 
Fig. 4. Representative sections of chaotic mixing patterns after one protocol. Dark grey = 

granit; light grey = basalt. 
 
The sections exhibit complex patterns of non-centered lamellar structures 
consisting of alternation of lens-like filaments in the mixed system. Around the 
inner cylinder these filaments are more or less concentric. At the top part it is 
observed a complex morphology composed by filaments strongly stretched and 
folded defining a lobate and banded structure pointing to the right side (4top; 
5bottom is an adjacent face, therefore it points to opposite direction). The left 
side shows the felsic end-member thinning and forming a tail that almost 
connects to the concentric part described before. Comparing the morphology 
with those obtained for synthetic sample experiments the same vortex structures 
are observed (Figure 5). 
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Fig. 5: Previous results by: (a) De Campos et al.[12]; (b,c) Perugini et al.[13]. Dark grey 

= mafic end-member; light grey = felsic end-member. 
 
It is important to notice that synthetic samples prepared by De Campos et al.[12] 
and Perugini et al.[13] are iron free (composition: SiO2, Al2O3, MgO, CaO, 
Na2O and K2O) and their experiments were executed at 1400°C, which 
facilitated the mixing process. At this temperature the authors calculated a 
viscosity of 1.55�103 Pa.s to felsic and 1.4 Pa.s to mafic end-member, 
corresponding to a viscosity ratio of c.a. 1.1�103, and densities of 2.26 and 2.52 
g/cm3 respectively. The same morphological response to mixtures with different 
chemical and physical properties could indicate that this mechanism is 
sufficiently robust. Perugini et al.[13] also numerically simulated the trajectory 
of the particles (Figure 5c) and, despite the differences due to the initial 
proportion (felsic = 65%; mafic = 35%), similar structures appears in the 
simulation such as the off-centered lamellar structures, the lobate and banded 
portion at the top and the concentric filaments around the inner cylinder. The 
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agreement between experiment and numerical results corroborates to the 
importance of this mechanism on the genesis of this rocks. 
Nonetheless, the comparison with natural material from Morgavi et al.[14] 
permits to observe the discrepant patterns (Figure 6). It seems the principal 
mafic body dropped inside the felsic one at the right part, while the upper region 
suffered more influence of stretching and folding processes. Measured viscosity 
of the rhyolite was 5.6�104 Pa.s and of basalt was 7.2 Pa.s, corresponding to a 
viscosity ratio of c.a. 7.8�103, and the calculated densities were 2.33 and 2.98 
g/cm3 respectively. The discrepancies between the final morphology of natural 
and synthetic materials were initially thought to appear due to the presence of 
iron, that plays an important role in the melt structure, especially because of its 
two possible valences (Fe2+ and Fe3+). Nevertheless, there are other factors that 
apparently influence the melt interaction taking into account the physical 
parameters of two experiments using natural samples show no relevant 
differences. 
 

  

Fig. 6. Previous result by Morgavi et al.[14]. 
Dark grey = rhyolite; light grey = basalt. 

Fig. 7. 4top: 8x zoom from Carl Zeiss 
Discovery V8.0 microscope. Object 
field = 2.9 mm. Dark grey = granite; 

light grey = basalt. 
 
One of the most interesting features observed in the mixed glass presented in the 
Figure 7 are the orbicular structures along the two end-members. They are more 
evident on the granitic portion though. It is notice such feature was not reported 
on previous works using synthetic or natural materials (De Campos et al.[12]; 
Perugini et al.[13]; Morgavi et al.[14]). 
In order to estimate the fractal dimension of both sections its photos were 
transformed in binary images using the ImageJ software developed by 
Rasband[16] (Figure 8) and the fractal coefficient Df was calculate using the 
box-counting method, developed by Mandelbrot[17]. Df values are substantially 
sensitive to the input (i.e., the image) once even some blurred portions and 
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anomalous pixels can be interpreted as interest features by the software. 
Therefore, a simple protocol was adopted to provide the best estimative. It 
implicated in changing its brightness to highlight the contrast between the end-
members, transforming in binary images and using tools (Erode and Dilate) to 
remove some anomalous pixels and to highlight the relevant ones. 
 

 
Fig. 8. Binary images used to calculate Df (ImageJ) and respective curves built by box-

counting method. 
 
After this procedure the calculated Df‘s were 1.78 (4top) and 1.80 (5bottom). 
The values are consistently higher than Df = 0.91 obtained by De Campos et 
al.[12], for a mixture composed by synthetic samples, and similar to other 
results obtained to natural occurrences that takes place in the intervals: 1.01 < Df 
< 1.84 (De Rosa et al.[9]); 1.67 < Df < 1.92 (Perugini et al.[10]); 1.39 < Df < 
1.62 (Guimarães et al.[18]). Df’s reported are consider an initial estimative 
indicating the experiment reproduced the patterns expected by a natural chaotic 
dynamic process. More precise calculations will be further obtained improving 
the quality of digitalized sections. 
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4 Conclusions 
 
Chaotic mixing processes are thought to be a sophisticated explanation for 
natural melts interaction that have to be approached carefully. Therefore, at this 
stage is possible to summarize some conclusions: 
 
1. The experiment showed very good primarily results. Compared to the 

morphological features previously obtained by Morgavi et al.[14], results 
from this study are better than expected, with the generation of Poincaré 
sections. It is evident this line of investigation should be maintained; 

2. According to the results, inserting a cylinder of a more viscous material 
(granite) inside a less viscous material (basalt) did not affect the 
experimental stability at high temperatures (1350°C). The heating procedure 
adopted is thought to be vital to this fact and allows to invert the end-
members proportion; 

3. The patterns produced by chaotic dynamics are in concordance with those 
theoretically expected. This was noticed on the appearance of similar 
morphological elements in comparison with numerical simulations 
performed under similar conditions (Perugini et al.[13]); 

4. Orbicular structures were identified for the first time on this type of 
experiment; 

5. The fractal coefficients (Df ≈ 1.79±0.01) are in agreement with those values 
reported. Based on geological cases previous reported (e.g.: De Rosa et 
al.[9], Perugini et al.[10] and Guimarães et al.[18]) this first estimative 
could stand that the chaotic mixing has a role on petrogenesis of Chapecó-
acidic type of PEMP. 

 
Following investigation steps are still under development: 
 
• Geochemical behavior of major/minor oxides and trace elements 

(microprobe and Laser Ablation-ICP-MS analysis); 
• Numerical simulations to compare the theoretical response of the system; 
• Raman analysis of the orbicular structures to study the nature and changes of 

the glass structure; 
• Further chaotic mixing experiments varying the granitic end-member in 

order to test other candidates as contaminants for the Chapecó-type genesis. 
As a consequence, the impact of chemical and physical variations on 
morphological aspects under the same experimental conditions can be 
evaluated (i.e., temperature and duration). 
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Abstract. The subject of research is cyclic processes that arise in recursive nonlinear 
maps under the influence of external probabilistic or stochastic factors. A wide range of 
nonlinear maps are considered, both continuous and containing discontinuity points. It is 
proved that any cyclic trajectory of considerable length always contains fragments with 
chaos properties, which are defined as properties of maps as well as properties of 
numbers from the domain of their definition. The laws are established for the transition 
of a dynamic system from one chaotic state to another chaotic state, depending on the 
properties of nonlinear maps. 
Keywords: nonlinear maps, dynamical systems, self-similarity. 
 
1  Introduction 
 

Emergence of a book by famous authors with the name “Many-sided 
Chaos” is not accidental [1]. There is no doubt that the concept of “chaos” is 
associated with dynamic processes taking place in a certain space. In the 
literature [2], deterministic and stochastic chaos is defined as two general forms. 
However, the systematic use of the term “chaos” often leads to an incorrect 
analysis of its properties [3]. This fact is due to the fact that the nature of all 
chaotic processes is diverse and in some sense has many faces. Despite this, 
chaotic processes of completely different nature are often subject to general 
laws [4]. The study of such universal, in a certain sense, laws of chaotic 
processes of different nature is an actual and interesting problem of modern 
concept of chaos. Despite the fact that the deterministic and stochastic forms of 
chaos are very different from the point of view on mechanisms of its origin, 
from the point of view of their mathematical models it can be stated about 
certain patterns of interweaving of their properties in one frame. 

The stochastic model of chaos is certainly based on the concept of 
randomness. Any random variable 𝜉 , in the simplest case with a uniform 
probability distribution law over a finite interval (𝑎, 𝑏), with a large number of 
tests, potentially allows to get a chaotic sequence of arbitrarily large length. 
Unfortunately, this is only a theoretical possibility. At present moment, random 
generators with a uniform distribution law are absent, and, consequently, with 
any other probability distribution law. Moreover, as shown in [5], none of the 
mathematical models of algorithmic computability makes it possible to obtain a 
binary sequence that could be called random in the exact mathematical sense. 
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The same result was obtained in [6] on the basis of another mathematical 
analysis of algorithms for constructing binary random sequences. It follows that 
absolute non-deterministic chaos, i.e. stochastic chaos at this stage in the 
development of research cannot be obtained by physical methods. 

Assuming that this is “potentially” possible, the question arises as to what 
conditions a numerical sequence must satisfy in order to be considered as 
random. This question also applies to its binary representation. It is proved that 
absolutely random, and therefore chaotic sequence should not have any internal 
predicted structures. When solving problems of dynamical systems modeling 
[7], analyzing and processing data, and especially in the case of Big Data, when 
analyzing random processes [8], non-stationary time series and many other areas 
of pure and applied mathematics, random number generators with a given 
probability distribution law are needed. It follows that algorithmic models of 
random number generators are needed based on the theory of recursive 
functions, which allow us to model “absolute chaos” with maximum 
approximation to a given probability distribution law. 

At present, it is not possible to construct random number generators based 
on the theory of recursive functions that could simultaneously simulate 
"absolute chaos" with a given distribution law. But the condition on the 
distribution law already violates the requirement that there are no internal 
properties in the generated sequences that reduce the level of randomness to 
some extent. It is necessary to construct pseudorandom number generators [9], 
but at the same time one has to admit the existence in the generated sequences 
of numbers of internal controlled patterns that minimize distortion of the results 
of modeling limited chaos. This means that we have to move to deterministic 
chaos [10]. The basis of such mathematical constructions is the theory of 
recursive functions and the theory of effective computability associated with it 
[10]. 

Such class of recursive functions is very extensive. It includes features of 
high computational complexity. Uncontrolled use of the theory of recursive 
functions can lead to a significant limitation on the speed of obtaining 
pseudorandom numbers. Therefore, we have to choose such classes of recursive 
functions that play a dual role. On the one hand, they are models of dynamical 
systems of a certain class, and on the other hand, their cyclic fixe points make it 
possible to generate their trajectories in such a way that they can be used to 
construct pseudorandom number generators. To solve this problem, it is could 
be promising to use maps on the set of integers or rational numbers, which on 
the one hand are models of deterministic dynamical systems, and on the other 
hand, the recursive sequences generate with these maps can be used to construct 
pseudorandom number generators. 

In this regard, it seems perspective to start such studies with maps of the 
“tent” class in symmetric and asymmetric form, logistic map and algebraic maps 
that are based on the theory of residues modulo prime. The use of primes is 
interesting since in modern state of mathematical science there are still major 
blind spots in knowledge of its nature, although their logarithmic distribution 
law is established. 
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𝑙𝑛 𝑡
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+ 𝑂�𝑥𝑒̅𝑐√𝑙𝑛𝑥�, 

where 𝜋(𝑥) is the number of primes 𝑝 ≤ 𝑥, however, the exact behavior of the 
function 𝑓(𝑥) = 𝜋(𝑥) − 𝐿𝑖(𝑥), where 𝐿𝑖(𝑥) = ∫ 𝑑𝑡

𝑙𝑛 𝑡
𝑥
2  not studied. There is an 

assumption that the function 𝑓(𝑥) has a fractal structure. Until now the 
dynamics of changes in the distance between primes is unknown in number 
theory. Estimation of increase in the distance between primes based on the 
following expression: 

𝑝𝑛+1 − 𝑝𝑛 ≥
ln 𝑥 ln ln 𝑥 ln ln ln ln 𝑥

ln ln ln 𝑥
, 

shows that the distance between primes is continuously increasing. However, 
this expression does not at all follow how the properties of adjacent primes 
differ. Despite their simplicity, the properties of 𝑝𝑛+1 − 1 and 𝑝𝑛 − 1 can be 
very different, and this must be taken into account in the modern theory of the 
discrete logarithm, modern cryptography and in the modern theory of 
pseudorandom number generators. 

The answers to these questions can be obtained to a certain extent by 
studying dynamic chaotic processes modeled by simple maps abovementioned 
classes at their cyclic fixed points determined by primes 𝑝 ∈ 𝒫. At the same 
time, it is important to choose such primes from the set of all primes 𝒫 that 
allow obtaining of cyclic trajectories of large length and complex structure. At 
points given by primes 𝑝 ∈ 𝒫, rational numbers of the form 𝑞 𝑝⁄  where 𝑝 and 𝑞  
are primes allow to study the properties of dynamical systems determined on the 
given maps. 
 
2 Self-similar processes inside the trajectories of nonlinear 
chaotic maps 
 

Maps of the set of natural, integer, rational, real, complex numbers onto or 
into itself by means of nonlinear maps are always associated with the 
representation of such maps using recursive, primitively recursive, and therefore 
computable functions. Any such map defines a dynamic system, which is 
usually associated with some dynamic processes of a very different nature. As 
proven by well-known authors mathematical models of such processes can be 
built in arithmetic systems of various levels of complexity. The study of such 
mathematical models always includes an analysis of the trajectories of cyclic 
fixed points. As proved by Sharkovsky, the existence of a cycle of length three 
implies the existence of an iterative cycle in a dynamical system with a 
trajectory of any length, i.e. while the relation: 

3 > 5 > 7 > 9 > ⋯ > 2 ∙ 3 > 2 ∙ 5 > ⋯ > 1. 
It follows that there is an iterative cycle of a fixed point of any length. The 
existence of long cycles leads to the need to analyze their properties, since these 
properties are properties of a dynamical system. Information about the 
properties of iterable maps is important for control of dynamical systems, 
analysis of their properties in order to make decisions aimed at studying the 
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behavior of systems under various conditions. As proven in many monographs, 
scientific articles [10, 12] studies of the properties of dynamical systems based 
on the analysis of their trajectories are associated with significant difficulties 
due to the chaotic properties of the trajectories. The term “chaos” is interpreted 
by different authors in very different ways. This fact is not paradoxical since the 
nature of dynamic systems differs significantly from dynamic processes in 
biology, medicine, and economics. However, it can be assumed that there are 
some properties that are common to any models of dynamical systems. These 
properties are related to the mathematical form of the system representation and 
the properties of numbers, which determine the conditions for the occurrence of 
a cyclic trajectory of a fixed point. 

Let examine the class of algebraic dynamical systems, which is 
surprisingly connected with nonlinear dynamical systems and represented by 
very simple nonlinear maps. Consider the set of all primes 𝒫 and the residue 
group (𝑍/𝑝𝑍) which is a cyclic group associated with each prime 𝑝 ∈ 𝒫. 
Natural numbers 𝑎 are usually called the primitive root of a prime 𝑝 and, 
therefore, the group (𝑍/𝑝𝑍)∗ if the next condition is satisfied:  

�
𝑎𝑝−1 ≡ 1(𝑚𝑜𝑑 𝑝)

𝑎
𝑝−𝑘
𝑘 ≢ 1(𝑚𝑜𝑑 𝑝)

� , (1) 

for any divisor 𝑘 > 1 of numbers 𝑝 − 1 = ∏ 𝑝𝑖
𝛼𝑖𝑛

𝑖=1 . These are necessary and 
sufficient conditions for verifying that 𝑎 is the primitive root of 𝑝 and it follows 
from Fermat's little theorem. The validation of these conditions is based on the 
calculation of a recursive sequence: 

𝑥0 = 1, 𝑥𝑛 = 𝑎𝑥𝑛(𝑚𝑜𝑑 𝑝) (2) 
to those. until the condition 𝑥𝑚 = 𝑎𝑥𝑚−1(𝑚𝑜𝑑 𝑝) = 1 is satisfied at the 𝑚 −th 
step of the iteration. If 𝑚 = 𝑝 − 1, then 𝑎 is the antiderivative root of 𝑝. 
Otherwise, the number 𝑎 is a generating element of the number 𝑝 of some 
subgroup of the group (𝑍/𝑝𝑍). And any number 𝑎 is a classifier of the set of all 
primes 𝒫 into classes: 

𝒫(𝑎, 1),𝒫(𝑎, 2), … ,𝒫(𝑎, 𝑖), …  (3) 
According to condition: 

𝒫(𝑎, 𝑖) = {𝑝|(𝑝 − 1)𝑐𝑎𝑟𝑑𝑎(𝑝) = 𝑖𝑛𝑑𝑎(𝑝) = 𝑖}, 
where 𝑐𝑎𝑟𝑑𝑎(𝑝) is the minimum recursion length (2) at which 1 modulo 𝑝 is 
achieved, since 𝑐𝑎𝑟𝑑𝑎(𝑝) always divides 𝑝 − 1, then 𝑖𝑛𝑑𝑎(𝑝) determines the 
number of adjacency classes of the subgroup of the group (𝑍/𝑝𝑍)∗. Obviously, 
if 𝑐𝑎𝑟𝑑𝑎(𝑝) = 𝑝 − 1, then 𝑎 is the primitive root of the group (𝑍/𝑝𝑍)∗, and if 
𝑐𝑎𝑟𝑑𝑎(𝑝) < 𝑝 − 1, then 𝑎 is a generating element of the cyclic subgroup of this 
group and its order is 𝑐𝑎𝑟𝑑𝑎(𝑝), and the number of adjacency classes is 
𝑖𝑛𝑑𝑎(𝑝). Thus, the set 𝒫(𝑎, 1) contains all primes 𝑝 for which 𝑎 is a primitive 
root, 𝒫(𝑎, 𝑖) contains all primes 𝑝 for which 𝑎 is a generating element with 
index 𝑖𝑛𝑑𝑎(𝑝) = 𝑖. The infinity of the set of all primes 𝒫 determines the 
existence of cyclic recursion (2) of arbitrarily large length for all classes and 
especially for the class 𝒫(𝑎, 1). In this case, four classes of problems arise: 

1. 𝑥 ≡ 𝑎𝑚(𝑚𝑜𝑑 𝑝) - defined 𝑎, 𝑝,𝑚, find 𝑥; 
2. 𝑐 ≡ 𝑎𝑥(𝑚𝑜𝑑 𝑝) - defined 𝑎, 𝑝, 𝑐, find 𝑥; 
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3. 𝑐 ≡ 𝑥𝑚(𝑚𝑜𝑑 𝑝) - defined 𝑐, 𝑝,𝑚, find 𝑥; 
4. 𝑐 ≡ 𝑎𝑚(𝑚𝑜𝑑 𝑥) - defined 𝑎, 𝑐,𝑚, find 𝑥 ∈ 𝒫. 

The first problem is solved relatively simply by the method of repeated 
squaring. The second problem is the discrete logarithm problem, which belongs 
to the class of problems of high complexity, and it is possible that to the class of 
algorithmically unsolvable problems. The third and fourth task is much more 
complicated since the literature does not describe attempts to solve them. 
Closely related to the solution of the second problem is modern cryptography 
and modern methods for constructing pseudorandom number generators [8]. 
And also along with the first problem these problems has relation to the problem 
of chaos analysis. For convenience, we consider the case when 𝑎 is a primitive 
root 𝑝 ∈ 𝒫 and the number 𝑝 has a larger order, for example, 𝑝 > 10200. 
Recursion (2) for any such type is a permutation of the set of numbers 
{2,3, … , 𝑝 − 2}, where the number 𝑝 − 1 is not included since 𝑎𝑝−1 ≡
1(𝑚𝑜𝑑 𝑝). 
 The prime 𝑝 has 𝜑(𝑝 − 1) = ∏ 𝑝𝑖

𝛼𝑖−1(𝑝𝑖 − 1)𝑚
𝑖=1  (Euler function) of 

primitive roots (𝑎1, 𝑎2, … , 𝑎𝜑(𝑝−1} and for each of which there exists a 
permutation in which the order of numbers from 2 to 𝑝 − 2 differs from the 
order of any other primitive root. In order to solve all problems associated with 
the discrete logarithm, it is necessary to possess information at least some 
degree on the order of the placement of numbers in chaos that is generated by 
recursion (2) for each 𝑎𝑖 from the set of all primitive roots. 
Definition. Let 𝑝 ∈ 𝒫 be a prime such that 𝑝 − 1 = ∏ 𝑝𝑖𝑘𝑘

𝑖=1  and 𝑎 is its 
primitive root, then in the trajectory of the recursive function (2) 𝑥𝑛+1 =
𝑎𝑥𝑛(𝑚𝑜𝑑 𝑝) and the index 𝑛 = 𝑘𝑝𝑖  for all 𝑝1, … , 𝑝𝑘 will be called basic indices. 
With respect to the set of indices of trajectories of recursion on the base 𝑎 for a 
prime number 𝑝 ∈ 𝒫 and set of its primitive roots {𝑎1, … , 𝑎𝑞(𝑝−1)} next theorem 
is true. 
Theorem. For any prime number 𝑝 ∈ 𝒫 such that 𝑝 − 1 = ∏ 𝑝𝑖

𝛼𝑖𝑘
𝑖=1  and any 

primitive root of it, the set of all primitive roots {𝑎1, … , 𝑎𝑞(𝑝−1)} at the base 
points of the trajectories (2) there cannot be numbers from the set of all its 
primitive roots. 
The validity of the theorem follows from the fact that during operations at base 
points of primitive roots there cannot be created a conflict situation among them 
in accordance with Fermat’s little theorem and set theory.  
Thus, the structure of the trajectories is constructed to a certain extent, taking 
into account the self-similarity of the trajectories of all primitive roots of a given 
prime number. This theorem confirms that in deterministic chaos, the properties 
of the map functions and the properties of a number from the region of the 
trajectories of recursive fixed points to some extent affect the structure of chaos. 

Consider the case of dynamical system maps that are defined by simple 
functions of the “tent” class [10]. Despite their simplicity, as shown in [12], 
their behavior, both of dynamical systems and of sources of chaos formation, is 
far from simple. Consider two types of maps of this class:  
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𝑥𝑛+1 = �
2𝑥𝑛, 𝑥𝑛 <

1
4

;        (5)

1 − 2𝑥𝑛,
1
2

> 𝑥𝑛 ≥
1
4

. (6)
� 

The graphic representation of these maps is elementary. Consider the behavior 
of these maps on a set of numbers of the form 𝑥 = 1/𝑝 under the condition 
𝑝 ∈ 𝒫. This choice of the set of initial conditions is chosen due to two 
considerations. Firstly, the analysis of dynamic processes and the chaos 
accompanying them can be compared with the algebraic map of residues 
modulo prime (2), and secondly, the study of the properties of dynamic 
processes by elements of such a set of initial values allows us to study their 
dependence on the properties of primes without taking into account 
decomposition 𝑝 − 1 = ∏ 𝑝𝑖

𝛼𝑖𝑘
𝑖=1  and the properties resulting from it. In 

addition, since such a rational number 0 < 𝑚 𝑛⁄ < 1 is expressed through 
decomposition into simple factors, knowing the laws of the influence of the 1/𝑝 
properties on the dynamics and chaos features, we can switch to composite 
numbers of the form 𝑚 𝑛⁄ . 
Maps (5) and (6) were studied in papers where the study of map (2) led to the 
construction of a generalized Artin hypothesis and its solution [8, 9, 11]. Based 
on the results of these studies, interesting conclusions can be drawn. Note that 
the logistic map: 

𝑥𝑛+1 = 4𝑥𝑛(1 − 𝑥𝑛)   (7) 
As an object of numerous studies [10] on a set of numbers of the form 1/𝑝, it 
behaves in a certain sense “similarly” to maps (5) and (6). By analogy it is ment 
the congruence of these maps, which was studied in [13] for maps (5) and (7). 
The congruence of the two mappings 𝑓(𝑥) and 𝑔(𝑥) on the set [0,1] suggests 
that there is a one-to-one correspondence between their cyclic fixed points for 
which the lengths of the cyclic trajectories of the congruent points coincide, but 
the topological structure is different. The author of the congruence method in 
[13] described a method for proving the congruence of maps on a distinguished 
set from the domain of definition of maps. 

Based on the results of modeling the processes of formation of classes 
𝒫(𝑎, 𝑖) for any 𝑎 ≠ 𝑖& ± 1 and 𝑖𝜖{1,2, … ,𝑛, . . }, theorems on congruence of 
maps, analysis of trajectories of maps (2), ( 5), (6) it is not difficult to prove the 
validity of the following statements. 
Statement 1. The map (5) is congruent to the map (2) for 𝑎 = 4 on the set of all 
primes 𝑝 ∈ 𝒫, but for any prime number their trajectories in the chaos structure 
do not coincide. 
This statement means that, on the basis of map (5), we obtain the same system 
of primes in the generalized Artin hypothesis as on the basis of map (2), 
although map (2) is discrete and map (5) is continuous. As shown in [12], the 
display paths (2) represent a sequence of self-similar successive fragments of 
the trajectory located at a regular distance from each other and interconnected 
by successive fragments of chaotic behavior. A fragment of such a structure of 
cyclic trajectories of fixed points 1/𝑝 is shown in Figure 1 where solid line 
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represents sequence fragments with high degree of similarity and dashed line 
represent chaotic behavior of the map. 

 
Fig. 1. Sequence with self-similar successive fragments 

It should be noted that a completely non-algebraic function of the “tent” 
type allows one to solve a problem from number theory related to the discrete 
logarithm problem, modern cryptography and problems of constructing 
pseudorandom number generators, and, on the other hand, stimulates a deeper 
analysis of the trajectories of cyclic fixed points of dynamical systems in order 
to identify areas where chaotic behavior approaches its non-deterministic 
models. A similar analysis of the map (6) allows us to prove the following 
statement. 
Statement 2. The map (6) is congruent to the map (2) with 𝑎 =  2 on the set of 
all primes p∈P, but their trajectories do not coincide in structure for any 𝑝. 
From this statement it follows that map (6) forms a system of classes of primes 
of the form: 

𝒫(2,1),𝒫(2,2), … ,𝒫(2, 𝑖), … 
This means that 𝒫(2,1) = {𝑝𝜖𝒫|(𝑝 − 1) 𝑐𝑎𝑟𝑑2(𝑝)⁄ = 𝑖𝑛𝑑2(𝑝) = 1}, i.e. these 
are all prime numbers for which the number 𝑎 = 2 is their primitive root. The 
class 𝒫(2, 𝑖) consists of the set of all primes 𝑝 for which in the group (𝑍/𝑝𝑍 )∗ 
a subgroup with index 𝑖 has the number 𝑎 =  2 by its generating element. Thus, 
maps of the “tent” type with an appropriate choice of parameter allow to solve 
problems of modern number theory. In addition, it follows from statements 1 
and 2 that the properties of dynamical systems fundamentally depend on the 
properties of the functions that determine them and on the properties of the 
number of some fundamental sequences from the domain of their definition. 
 
Conclusions 
 
An analysis of the chaos structure in the cyclic trajectories of fixed points of 
dynamical systems reveals formation patterns of their trajectories based on the 
properties of the maps that determine the dynamical system. The parameters of 
the maps determine the classification of numbers from the domain of their 
definition whose properties are functions of the properties of parameters. 
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Various studies in this direction allow us to deepen an understanding of the 
mechanisms of chaos formation and its dynamical structure. 
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Abstract. Stabilized restricted three-body problem in which the motion of third
body is planar and circular is presented. The instability region of triangular libration
points is stabilized by feedback control in integral form.
Keywords: Three-body problem, triangular libration points, stabilization, control
function.

1 Introduction

We consider the plane elliptic restricted three-body problem. The differential
equations of this problem in the Nechville coordinates (ξ, η) have the form
[1,3,4]:















ξ′′ − 2η′ = ρ(ξ − µ+ µ−1

(ξ2+η2)
3

2

ξ − µ

[(ξ−1)2+η2]
3

2

(ξ − 1))

η′′ + 2η′ = ρ(η + µ−1

(ξ2+η2)
3

2

η − µ

[(ξ−1)2+η2]
3

2

η)

(1)

where

ρ =
1

1 + ǫ cos t
, µ =

m1

m0 +m1
,

ǫ is the eccentricity of the Keplerian orbit (0 ≤ ǫ < 1), t is the true anomaly, m0

and m1 are the masses of actively gravitating bodies; thus 0 < µ < 1. Those
equations are derived in the appendix.

The system (1) has five constant solutions - libration points: straight-line
L1, L2 , and triangular L4 and L5. In the plane of the variables (ξ, η) of the
system (1), the straight-line libration points lie on the line η = 0, and the
triangular libration points have the coordinates:

L4

(

1

2
,

√
3

2

)

, L5

(

1

2
,−

√
3

2

)

. (2)
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We will be interested in questions related to the stability of triangular libration
points.

Fig.1 [6] describes the regions of stability and instability of the system (1) for
small values of µ. The shaded area corresponds to stability region in parameter
space.

Fig.1 The stability region of triangular libration points.

Here

µ∗ =
1

2
−

√
69

18
= 0.038520...., µ0 =

1

2
−

√
2

3
= 0.028595.... (3)

Numerous studies addressing the regions of stability of the system (1) and the
behavior of the solutions of this system near the boundaries of these regions of
stability are due to the importance of these questions for celestial mechanics.
However, so far no attempts have been made to stabilize system (1) in the
region of instability of the libration point.

We will pass from system (1) to equivalent normal system by introduction
of new variables u1 = ξ, u2 = η, u3 = ξ′, u4 = η′



































u′
1 = u3,

u′
2 = u4,

u′
3 = 2u4 + ρ(u1 − µ+ µ−1

(u2

1
+u2

2
)
3

2

u1 − µ

[(u1−1)2+u2

2
]
3

2

(u1 − 1))

u′
4 = −2u3 + ρ(u2 +

µ−1

(u2

1
+u2

2
)
3

2

u2 − µ

[(u1−1)2+u2

2
]
3

2

u2)

(4)

We thus have a system of the form:

u′ = F (u, ǫ, µ, t), u ∈ R4 (5)

F (u, ǫ, µ, t) is the vector function defined by the right part of system (4). Li-
bration points of system (1) correspond to constant solutions of system (5).
In particular triangular libration points L4 and L5 correspond to following
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constant solutions of system (5)

v4 =









1
2√
3
2
0
0









v5 =









1
2

−
√
3
2
0
0









(6)

The behaviour of system (5) is the same in neighborhoods of libration points v4
and v5. For definiteness we will study behaviour of system (5) in neighborhood
of libration point v4.

Carrying out in (4) the substitution X = u−v4, we arrive at the equivalent
system.

The libration point v4 of the system (5) corresponds to an equilibrium point
X = 0 of the system (7). System (7) can be represented as

X ′ = A(ǫ, µ, t)X + a(X, ǫ, µ, t), X ∈ R4 (8)

in which A(ǫ, µ, t) = F ′
X(0, ǫ, µ, t) is the Jacobi matrix of the vector function

F (X, ǫ, µ, t) calculated at the point X = 0, and a(X, ǫ, µ, t) is a nonlinearity
which begins with terms quadratic in X . At ǫ = 0 (a circular case) the system
(7) is autonomous.
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The matrix A(ǫ, µ, t) is equal to

A(ǫ, µ, t) =















0 0 1 0
0 0 0 1

3

4
ρ 3

√

3

4
(1− 2µ)ρ 0 1

3

√

3

4
(1− 2µ)ρ

9

4
ρ −2 0















(9)

To investigate our problem it suffices to consider the linear equation:

X ′ = A(ǫ, µ, t)X. (10)

Since for 0 ≤ ǫ < 1 the equality

ρ =
1

1 + ǫ cos t
= 1− ǫ cos t+ ǫ2cos2t− ǫ3cos3t+ .... (11)

is correct then the matrix (9) can be represented in the form:

A(ǫ, µ, t) = A0(µ) + (−ǫ cos t)A1(µ) + ... (12)

where

A0(µ) =















0 0 1 0
0 0 0 1

3

4
3

√

3

4
(1 − 2µ) 0 1

3

√

3

4
(1− 2µ)

9

4
−2 0















(13)

and for µ = µ0 = 1
2 −

√
2
3

A0 = A0(µ0) =















0 0 1 0
0 0 0 1

3

4

√

6

2
0 2

√

6

2

9

4
−2 0















, (14)

The linear approximation (10) for the planar case is:

X ′ = A0(µ0)X. (15)

has the following simple eigenvalues:

λ1,2 = ±
1

2
, λ3,4 = ±

√

3

2
(16)

In accordance with the Fig.1, system (7) is not stable at µ = µ0, ǫ = 0 (ρ = 1).
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Fig.2 The phase portrait of the solution of the system (7) for ρ = 0 in the (X,Y )
plane with initial conditions: X(0) = Y (0) = Z(0) = W (0) = 0 for interval

200 ≤ t ≤ 500.

2 Exponential stabilization of triangular libration points

in instability region by feedback delay control in

integral form.

We introduce the feedback delay control V (t) in the form, in which all the
history of the process W(t) is taken into account [5].

V (t) =

t
∫

0

e−β(t−s)W (s)ds, (17)

We apply stabilization by the feedback delay control signal to the system (7)
assuming that the control signal V (t) acts only in the first equation.
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where α and β the parameters needed to achieve the point (X,Y, Z,W ) =
(0, 0, 0, 0) at which the system becomes exponentially stable. In accordance
with the Leibnitz rule for differentiation under the integral sign, of the form
d

dy

∫ b(y)

a(y) f(x, y)dt we get the expression for V ′(t). Thus we can rewrite the

system (18) in a form of the system of ordinary differential equations [2]:
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In the linear approximation, system (19) can be represented as

X ′ = JX, (20)

where J is Jacobi matrix for the right side of the system (19)

J =



















0 0 1 0 −α
0 0 0 1 0

3

4

√

6

2
0 2 0

√

6

2

9

4
−2 0 0

0 0 0 1 −β



















(21)
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det(J − λI) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 0 1 0 −α
0 −λ 0 1 0

3

4

√

6

2
−λ 2 0

√

6

2

9

4
−2 −λ 0

0 0 0 1 −λ− β

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(22)

Characteristic equation is

−

(

λ5 + βλ4 + λ3 +
(

β +

√
6

2
α
)

λ2 +
(

−
3

2
α+

3

16

)

λ+
3

16
β

)

= 0 (23)

According to the Hurwitz criterion for a 6-th order system all roots of the
characteristic equation (23) have negative real parts if and only if

a1 = β > 0
a2 = 1 > 0,

a3 = β +

√

6

2
α > 0,

a4 = −
3

2
α+

3

16
> 0,

a5 =
3

16
β > 0,

a1a2 − a3 = −
√

6

2
α > 0,

(a1a2 − a3)(a3a4 − a2a5)− (a1a4 − a5)
2 =

3

32
α2
(

−24β2 + 8
√
6 + 24α− 3

)

> 0.

(24)

From (24) we obtain:

−
1

24
< α < 0,

√

6

6
−
√

6 + 144α

6
< β <

√

6

6
+

√

6 + 144α

6

(25)

Numerical integration of the system (19) illustrated in Fig.3.
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Fig.3 The phase portrait of the solution of the system (19) for ρ = 0 in the (X,Y )
plane with initial conditions: X(0) = Y (0) = Z(0) = W (0) = V (0) = 0 for interval

200 ≤ t ≤ 500 with control parameters: α = −0.029, β = 0.5.

3 Conclusion

Comparison of figures (2) and (3) show quite clearly the effect of stabilization
on a planetary orbit. The dramatic change from a chaotic orbit to a regular
elliptic orbit is quite apparent. This is achieved by adding an additional degree
of freedom which stabilizes the orbit (see equation (19)), this approach seems
quite general and may be used for many chaotic systems.

Appendix: Derivation of Nechville differential equations

for bounded, restricted three-body problem

We define our problem as follows: Two bodies (M0 and M1) revolve around
their center of mass G under the influence of their mutual gravitational attrac-
tion and a third body M2 which attracted by the previous two but not influence
in their motion, movies on the plane defined by the two revolving bodies (Fig.4).
The restricted problem of three bodies is to describe the motion of this third
body (M2).

The masses of bodies M0 and M1 are arbitrary but these bodies have such
internal mass distributions that they may be considered point masses. The
mass of third body M2 does not influence the motion of M0 and M1.

Fig.4

Let Gξηζ is a coordinate system, in the plane (ξη) in which the point M1

moves.
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The equation of motion of M2 (”zero” mass) in inertial (fixed) rectangular
coordinate system (ξηζ) are

ξ̈ = −
∂U

∂ξ
, η̈ = −

∂U

∂η
, ζ̈ = −

∂U

∂ζ
, (26)

where

U = f
(m0

r0
+

m1

r1

)

, (27)

f is constant of gravitation; m0 and m1 are masses of bodies M0 and M1, and
mutual distances are determined by formulas:











r20 = (ξ − ξ0)
2 + (η − η0)

2 + ζ2

r21 = (ξ − ξ1)
2 + (η − η1)

2 + ζ2

ζ0 = ζ1 = 0,

(28)

where ξ0, η0 and ξ1, η1 are coordinates of points M0 and M1 in the system
Gξηζ.

These coordinates are determined by obvious formulas.

{

(m0 +m1)ξ0 = −m1r cos v, (m0 +m1)η0 = −m1r sin v,

(m0 +m1)ξ1 = +m0r cos v, (m0 +m1)η1 = +m0r sin v.
(29)

Values of r and v are known functions of time defined by the Keplerian motion
formulas. r = M0M1; v is the angle of vector r with the positive direction of
the axis Gξ (the true anomaly).

Orbit of point M1 in the plane Gξη is ellipse with focus at the point M0.
It is determined by the equation.

r =
p

1 + ǫ cos v
(30)

where p is a focal parameter, ǫ is the eccentricity of the Keplerian orbit (0 ≤
ǫ < 1), v is the true anomaly.

The expression for the kinetic energy of the point M2 is

T =
1

2
m2(ξ̇

2 + η̇2 + ζ̇2) (31)

Let us move in equations (26) from the fixed axis system Gξηζ to the
rotating one aroundGζ axis, so that the new abscissa passes through the points
M0 and M1. Denoting the coordinates of the point M2 in the new coordinate
system: x, y, z we have











ξ = x cos v − y sin v,

η = x sin v + y cos v

ζ = z,

(32)
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where v is the same angle as in formula (29), i.e. true anomaly of the Keplerian
movement. Whence by means of differentiation on time one find derivatives











ξ̇ = ẋ cos v − ẏ sin v − v̇(x sin v − y cos v)

η̇ = ẋ sin v + ẏ cos v + v̇(x cos v − y sin v)

ζ̇ = ż.

(33)

The expression for the kinetic energy (31) in the new coordinates will take
the form

T =
1

2
m2(ẋ

2 + ẏ2 + ż2 + (2v̇(xẏ − yẋ) + v̇2(x2 + y2). (34)

Expressions for partial derivatives of kinetic energy take the form


































∂T

∂ẋ
= m2(ẋ− v̇y),

∂T

∂x
= m2v̇(ẏ + v̇x),

∂T

∂ẏ
= m2(ẏ + v̇x),

∂T

∂y
= m2v̇(−ẋ+ v̇y),

∂T

∂ż
= m2ż,

∂T

∂z
= 0.

(35)

Substituting these expressions into the Lagrange equation

d

dt

(

∂T

∂q̇j

)

−
∂T

∂qj
=

∂U

∂qj
, (j = 1, 2, 3). (36)

We will get the equations of motion of a point M2 in the rotating axes


























ẍ− 2v̇ẏ − v̇2x− v̈y =
∂U

∂x

ÿ + 2v̇ẋ− v̇2y + v̈x =
∂U

∂y

z̈ =
∂U

∂z

(37)

where U is defined by (27) but the distances r0 and r1 taking into account (32)
are given by the formulas



























r20 = (x− x0)
2 + y2 + z2

r21 = (x− x1)
2 + y2 + z2

x0 = −
m1r

m0 +m1

x1 = −
m0r

m0 +m1
.

(38)

Further since
r2v̇ = c = const (39)

where c is area integral in the orbit plane, we have

v̇ =
c

p2
(1 + e cos v)2; v̈ = −

2c2e

p4
(1 + e cos v)4 (40)
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In equations (37), we make a transition to a pulsating coordinate of system
Gξ̃η̃ζ̃ using formulas

x = ρξ̃, y = ρη̃, z = ρζ̃ (41)

where

ρ =
r

p
=

1

1 + e cos v
, (42)

and following Nechville [5] we input a new independent variable, namely the
true anomaly v of the body M1.

Then, as is simply to verify, we have

{

ẋ = (ρ′ξ̃ + ρξ̃′)v̇

ẍ = (ρ′′ξ + 2ρ′ξ′ + ρξ′′)v̇2 + (ρ′ξ + ρξ′)v̇v̇′
(43)

(hatchs denote differentiation by variable v). Similarly, we can obtain formulas
for two other coordinates.

Substituting the expressions for the old coordinates and their derivatives
and the expressions for v̇ and v̈ from (40) into equation (37), we obtain as a
result, instead of system (37), the following































ξ̃′′ − 2η̃ =
∂Ω

∂ξ̃

η̃′′ − 2ξ̃ =
∂Ω

∂η̃

ζ̃′′ =
∂Ω

∂ζ̃

(44)

where

Ω = ρ
[

1
2 (ξ̃

2 + η̃2 + eζ̃2 cos v) + p3
(

1−µ
r̃1

+ µ
r̃2

)]

,

r̃1 =
√

(ξ̃ − ξ̃1)2 + η̃2 + ζ̃2, r̃2 =
√

(ξ̃ − ξ̃2)2 + η̃2 + ζ̃2,

ξ̃1 = −pµ, ξ̃2 = −p(1− µ),
µ = m1/(m0 +m1), 1− µ = m0/(m0 +m1).

(45)
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Abstract. The human brain demonstrates electrical oscillations of various frequency 
ranges that are associated with a number of cognitive tasks. Here we will focus on the so-

called weak (clustered) gamma rhythm (20-80 Hz). Typically, in the cortex, gamma 

oscillations appear in neuronal networks consisting of excitatory pyramidal cells and 

inhibitory interneurons. This is the Pyramidal INterneuronal Gamma (PING) rhytm. The 
weak clustered gamma oscillations are a specific case of PING when the pyramidal cells 

fire in several internally synchronous clusters producing a “collective” rhythm by 

alternating the cluster firing. We will analyse how characteristics of the cluster states 

(mainly the number of clusters) depend on the intrinsic ionic currents of the PY cells 
(AHP- and m-currents). Since different number of clusters mean different level of PING 

oscillations coherence, our work links the intrinsic cellular properties of the constitutent 

neurons to the coherence of the gamma rhythm. 

Keywords: PING gamma rhythm, weak gamma rhythm, cluster synchronization, spike 
frequency adaptation, M-current. 

 

1  Introduction 
 

During performance of cognitive tasks, the brain demonstrates electrical activity 

of various frequency ranges (Buzsáki[1]).  One such prominent oscillation is the 

gamma rhythm (20-80 Hz). It is observed during a wide variety of cognitive 

tasks, such as working memory, coding and information processing (Akam et 

al.[2]). In comparison with the other oscillations, gamma has a higher 

frequency, is comparatively much more irregular, sparse and locally distributed 
(Dickson et al.[3]). It is well known that typically this rhythm is generated in the 

networks consisting of two neuronal populations of interneurons (IN) and 

pyramidal (PY) cells (Bartos et al.[4]). There are two basic mechanisms of 

gamma oscillations generation in such networks. The first is INterneuronal 

Gamma (ING) rhythm which are produced in the IN population (Ermentrout and 

Buhl[5]).  In this case the PY population has negligible influence on the IN 

neurons and, in fact, mirrors the IN population activity. In the second 

mechanism, the gamma oscillations are a result of recurrent interactions 
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between both populations. This is so called Pyramidal-INterneuronal Gamma 

(PING) gamma rhythm (Whittington et al.[6]). In addition, it is possible to to 

construct either strong or weak gamma rhythms. In the first case, both 

populations have almost the same firing rate and regularly fire together with a 

small time lag. To take into account the experimental features of the gamma and 

the observed large difference between intrinsic frequencies of the PY cells and 

IN neurons, one potentially likely mechanism is that alternatively firing of 

synchronous PY clusters generates the gamma oscillations (see, for example, 

Börgers and Kopell[7], Kilpatrick and Ermetrout [8] and Krupa et al.[9]). This is 

a weak clustered gamma rhythm. Each PY cell, in this case, fires with the 

frequency, which is lower than gamma frequency, whereas the gamma 

oscillations are formed by collective activity of the PY clusters. The number of 

clusters in a cluster state and the number of PY cells in the each cluster 

determine coherence of the gamma oscillations while making them sparse and 

irregular. In Krupa et al.[9] it was shown that the maximum number of clusters 

dramatically depends on the intrinsic neuronal parameters and coupling strength 

of interpopulation coupling, especially inhibitory ones. In particular, Krupa et 

al. found that the spike frequency adaptation of PY cells has a significant 

influence on the cluster formation process. This was confirmed by parametric 

modulation studies of the network parameters on the changes in cluster states 

(Zakharov et al.[10,11]). For instance, it was shown that modulation of the spike 

frequency adaptation is the most effective in increasing of cluster number under 

an increase of the spike frequency adaptation parameters and a decrease, for a 

negative modulation  of the spike frequency adaptation. The strength of the 

inhibitory interpopulational coupling, in turn, also substantially influenced on 

the cluster modulation. Higher connection strengths stabilized the cluster states 

with a lower number of clusters. 

In this paper, we expand on Krupa et al.[9] and focus in the influence 

of the intrinsic parameters of the PY cells on the cluster formation process in a 

PING network and therefore, on the coherence of the oscillations. In particular, 

we take into account both spike frequency adaptation (AHP-current) and the M-

current. The former is a slow spike-dependent hyperpolarizing current 

(biophysically speaking it is a calcium-dependent slow potassium current), the  

latter is voltage a voltage-dependent slow hyperpolarizing K-current. The M-

current has a significant impact on the dynamics of the PY cells, controls the 

intrinsic cellular excitability and synaptic responses of the pyramidal neurons 

[see, for example, Marrion[12] and Peng et al[13]]. This current is slowly 

activated when the membrane potential is depolarized towards voltage levels 

where the spike producing currents activate, and repolarizes the neuron back to 

the rest state reducing neuronal excitability In addition, the M-current has no 

inactivation and may play a critical role for neuronal excitability, especially near 

the rest state. It was previously shown that the addition of this current even in 

the canonical theta-neuron model with adaptation results in a change of 

excitability type (from 1st type to 2nd one) Gutkin et al.[14]. For the 

hippocampal PY cells it was shown experimentally  and theoretically (within the 

framework of Morris-Lecar equations) that  the M-current, as well as shunting 
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inhibition, can lead to the same change of excitability type and thereby 

significantly change dynamics of the PY cells (Prescott et al.[14-16]).  

 

 

2  Influence of AHP- and M-currents on PY cell activity 
 

To describe the PY neuron activity, we use the modified the Miles-Traub 

equations with adaptation from Krupa et al.[9] with the addition of the M-

current :    

 

 

 

     (1) 

  

,  

 

  

where the first equation is the current balance equation giving the dynamics of  

ve  the membrane potential of a PY cell, [Ca] is the  calcium concentration, n, 

minf,Na, minf,Ca and we are the voltage-dependent gating variables for the various 

cross-membrane currents; Ex are the reversal potentials of the various ionic 

species. This is a biophysical neuronal model containing on the right hand side 

of the first equation a combination of the ionic currents: an applied current Iapp,  

a leak current IL,  a fast potassium current IK, a sodium current INa, calcium 

current ICa, a slow after-hyperpolarization (AHP) current  IAHP, and M-current IM 

respectively. The AHP current is a calcium-activated  slow potassium current  

that effectively results in the spike frequency adaptation of a PY cell. Gating 

functions of the currents describes by the following equations: 

; 

 

 ;  

; 

        (2) 
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. 

We choose the  gAHP and gM as control parameters and fix the other parameters 

of the PY model in the following way:  

Iapp=4 A, gNa=100 ms/cm2, gK=80 ms/cm2, gCa=1 ms/cm2, ENa=50 mV, EK=-

100 mV, ECa=120 mV, EL=67 mV, Ca=80 ms, Ca=0.01 cm2/(ms A). 

 

Our analysis shows that both AHP- and M-currents can effectively 

change the frequency of the PY cell firing but there is a qualitative difference 

between their influence. The M-current changes the bifurcation scenario that 

govern the onset of the repetitive firing (Fig. 1). If the conductance of this 

current is zero, the transition from the rest state (stable equilibrium) to the active 

one (stable limit cycle) is through the bifurcation of saddle-node in invariant 

circle (SNIC, Fig. 1A), whereas for sufficiently large positive values of the 

conductance the limit cycle appears through the saddle-node bifurcation of limit 

cycles (Fig. 1B). In the first case, the limit cycle has zero frequency at the 

bifurcation point. It means that the PY cell has the 1st type of excitability and is 

able to generate spike trains with arbitrary small frequencies.  In the second 

case, it is born with a finite frequency and, thus, the neuron has a minimum 

frequency and can fire only in a certain frequency band. It corresponds to the 2nd 

type of excitability. This is confirmed by the Infinitesimal phase response 

curves (iPRC) which were plotted for both cases in Fig. 2. The AHP-current 

decreases the frequency of the PY cell but keeps iPRC positive (Fig. 2A). The 

M- current also increases the frequency but at the same time changes the iPRC 

to the 2nd type. The change of excitability type can significantly change the 

neurocomputational properties of the PY cells and has influence on their 

synchronization properties.   

 

 
Fig. 1. Infinitesimal phase response curves (iPRC) for the different values of 

gAHP (A, gM=0) and for the different values of gM (B, gAHP=2.5). The frequency 

spike adaptation current keeps the 1st type of excitability (gM=0), whereas the 

M-current  (gM>0) changes it to 2nd type.  
 

Both conductances of the AHP and M-currents decrease the firing rate of the PY 

cell the diagram showing the dependence of the frequency on both parameters 

has a well-expressed diagonal structure (Fig. 3).  The lowest firing rate is 
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observed in the upper right corner. We would like to note that the increase of 

spike frequency adaptation by the AHP does not lead to activity suppression for 

biologically relevant values, making this parameter to be effective for firing rate 

control of the PY cells. In contrast, the PY cells can demonstrate activity only 

for the certain interval of the conductance of the M-current, its increase leads to 

the disappearance of the stable limit cycle through the saddle-node bifurcations 

of limit cycles.  

 

 
Fig. 2. One parametric bifurcation diagrams for gM=0 (A) and gM=1 (B) 

(gAHP=2.5). If gM=0 the stable equilibrium, corresponding the rest state of the 

neuron (the solid black curve), disappears through the SNIC bifurcation. In 

addition, it results in the birth of the stable limit cycle corresponding to the 

active state of the neuron.  For values of the parameter gM>0  the stable 

equilibrium loses stability through the subcritical Andronov-Hopf bifurcation 

(A-H). An unstable limit cycle, which was also born due to the bifurcation, 

disappears flipping to the saddle separatrix loop (Hom, the homoclinic 

bifurcation) and appears once more due to another homoclinic bifurcation for 

the smaller value of I. In contrast to the previous case, the stable limit cycle is 

born by the saddle-node bifurcation of limit cycles.  

 

 

 
Fig. 3. Dependence of the PY cell period on the control parameter plane 

(gAHP,gM) (Iapp=4). The period increases with growth of both control parameters.  
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Increase of gM leads to the disappearance of the stable limit cycle through the 

saddle-node bifurcation (S-N LC). 

 

 

3  Influence of AHP- and M-currents on cluster formation 
 

To describe the generation of the PING rhythm, the network model should 

consist of two interacting populations of neurons of the PY cells and IN 

neurons. Since we do not focus on the intrinsic properties of the interneurons, 

following the approach in Krupa et al.[9], we may describe the population of the 

IN neurons we need a minimal yet relevant model of a spiking neuron. Thus, we 

chose the quadratic Integrate-and-fire (QIF) model:  

      
        (3) 

,   

where vi is a membrane potential of a IN neuron, Iint=0.52 is a parameter 

determining the excitability of the IN neurons. We note that the QIF neuron is 

the canonical model for type I excitability and spike generation (SNIC driven 

spiking). 

In the IN population, the neurons interact with each other and with the 

PY cells via inhibitory synapses (GABA synapse, gamma-aminobutyric acid). 

In contrast,  the PY cells have projections only to the IN neurons via fast 

excitatory synapses (AMPA-synapses, α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid).  All existing couplings have an all-to-all topology. 

Thus, the network model has the following form:  

 

  
        (4) 

 
 

where vi,l and vi,j are the membrane potential of the l-th IN neuron and j-th PY 

cell respectively. The neurons interact through chemical synapses: gie is the 

conductance of the inhibitory synapses located on the PY cells, gei and  gii are 

the conductances of the excitatory and inhibitory synapses located on the IN 

neurons. Parameters Eei
rev,  Eie

rev and Eii
rev determine the reversal potentials of 

the synapses.  The synaptic variables si,k  and se,j have values between 0 and 1. 

They are set to 1 after each spike of the kth IN neuron and the jht PY cell  E-cell 

and decay exponentially with time constant i and e. The parameter gl, that 

controls intrinsic frequency of the PY cells, was uniformly distributed in the 
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interval [0.075,0.125].  As in Krupa et al.[9] the IN population contains 20 IN 

neurons, the PY population has 200 neurons.The coupling parameters were set 

in the following way: gei=0.2, gii=10, i=9, e=2, Eei
rev=-80 mV,  Eie

rev=6.5 and 

Eii
rev=-0.25. 

In agreement with the frequency distribution on Fig. 3, the diagrams on Fig. 4 

have almost the same diagonal structure of the cluster states with different 

number of clusters (Fig. 4). Typically, simultaneous growth of the M-current 

conductance and the spike frequency adaptation AHP parameter leads to greater 

number of clusters. Because of much higher frequency of IN neurons, the PY 

cells split into several alternatively firing clusters and form a cluster state. 

Examples of the different cluster states are presented in Fig. 5. I may be one 

(Fig. 5A), two (Fig. 5B), three (Fig. 5C), four (Fig. 5D) and five cluster states, 

cluster states with “skipping” PY cells activity each three periods of IN neurons 

(Fig. 5E). It is important to note that each point at each diagram in the Fig. 4 is a 

result of network evolution from the randomly generated initial conditions. The 

network is multistable, thus, for the same parameter set but for different initial 

conditions, it is possible to get various cluster state with either the same or the 

different number of clusters. For instance, in the lower right corners of the 

diagrams in Fig 4C,D there is a 2-cluster state  (Fig. 5F) that coexists with some 

2- and 3-cluster states. This is a result of the PING mechanism of gamma 

rhythm generation for which the interaction between the network populations 

can make their frequency multiples and form a state with a number of clusters 

determined by the ratio between the frequencies of IN and PY populations.  

 

 

 
Fig. 4. Number of clusters in the cluster states for the different strengths of the 

interpopulational inhibitory connections. Each point on these diagrams 

corresponds to the number of clusters in a state to which the system has 

evaluated from randomly generated initial conditions. The diagrams 

demonstrate the well-expressed diagonal layered structure according with the 
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changes of the PY cells period (Fig. 3). Simultaneous growth of m-current and 

spike frequency adaptation leads to greater number of clusters. In contrast, 

increasing inhibition results in smaller number of clusters. The black circles in 

the diagrams correspond to the rasterplots in fig. 5. We draw your attention that 

here there is a multistability between different cluster states with either the same 

or the different numbers of clusters. For example in the region labeled 5F it is 

possible to get (depending on initial conditions) either 2, 3 or 4 clusters in the 

cluster state. 

 

Interestingly we note that changing of excitability type of the PY cells 

by the M-current from type I to type II, leads to an increase in region of activity 

of the PY population. At first we note, that an individual PY cell with gL=0.1 

does not fire for the gM>1.7 (see Fig. 3). In the PY population in our network, 

the parameter gL is distributed in the interval [0.05, 0.15]. Thus, it is possible to 

suggest that some PY cells stop to fire before this critical value of gM, the others 

above it. In contrast, all PY cells fire at least for gM which is approximately 

higher two (Fig. 4). Taking into account the absence of excitatory connections 

between the PY cells, it is possible to conclude that such behavior (that cannot 

be predicted directly from single cell analysis) is likely due to inhibitory 

synaptic influence of the IN neurons and a generation of rebound spikes. 

 

 
Fig. 5. Rasterplots showing different possible cluster states in the PY population 

for the different values of conductances of AHP and M-currents: one cluster for 

gAHP=0.5,gM=0.25 (A), two clusters for gAHP=1,gM=0. 5 (B), three clusters for 
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gAHP=1.5,gM=0.75 (C), four clusters for gAHP=3,gM=1.5 (D),  three cluster state 

with “skipping” PY cells activity each three periods of IN neurons for 

gAHP=3.9,gM=1.95 (E) and two clusters for gAHP=3.9,gM=0.1 (F). All panels 

labels coincide with letters titled the points on the diagrams in the Fig. 4A,B. 

 

The inhibitory couplings from the IN neurons to the pyramidal cells 

have a stabilizing effect on the network. Stronger inhibition leads to lower 

numbers of clusters in the cluster states and, thus, increase coherence of the 

gamma. In particular, the size of three and especially four clusters regions 

decreases. It is important for investigation of modulation of such cluster states 

by endogenous neuromodulators (dopamine, acetylcholine and others). For 

example, the positive dopamine modulation can increase the PY cells inhibition 

and decrease the spike frequency adaptation and, vice versa, the negative 

dopamine modulation decreases the inhibitory connections and increases the 

spike frequency adaptation (see, for example, Zakharov et al.[10,11] and cited 

papers).  Depending on initial point in the diagrams in Fig. 4, it is possible to 

control the efficiency of the positive and negative dopamine modulation.  

 

 

Conclusions 
 

In this paper, we consider process of cluster formation in a PING network 

producing the weak (clustered) gamma rhythm. We have shown that the M-

current significantly changes the dynamical properties of the PY cells. The M-

current changes excitability type of the PY cells and decreases the region of 

their activity in the parameter space. In addition, the M-current, as well as AHP-

current, effectively changes the frequency of the neuron and can effectively 

affect the cluster formation. In particular, due to the frequency drop with the 

increase of these currents, the color plots in the Fig 5, showing the dependence 

of number of clusters in the cluster states, have the well-expressed diagonal 

layered structure. By changing PY cell excitability to 2nd type, the M-current 

also promotes the population activity of the PY cells within the PING network. 

In comparison with papers of Prescott et al.[14-16] we used more realistic 

model of the PY cell that also takes into account transport of  Ca2+ ions. It 

allows us to describe spike frequency adaptation more accurately and use this 

model for simulation of action of endogenous neuromodulators in the brain. 

In our previous studies, we have shown that DA modulation of the 

AHP-current can effectively change the cluster number in the cluster states of 

the weak PING networks and thus the coherence of their collective activity that 

can significantly affect information processing and decision-making.   Thus, we 

expect that a joint modulation of AHP- and M-currents will be able to do it more 

efficiently. From the biological point of view, it can happen in the cases of 

simultaneous action of dopamine, which can affect the AHP-current (Pedarzani 

et al.[18]), and acetylcholine, which can decrease the M-current by, for 
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example,  muscarinic receptors (Marrion[12]), or due to acetylcholine 

modulation, which can influence both currents (Nicoll[19]).    
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