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Abstract. In the present paper we study some properties of solutions of biharmonic
problems. Namely, we study the Steklov, Steklov-type and Neumann boundary value
problems for the biharmonic equation. For solving these biharmonic problems with
application, in particular, to radar imaging, we need to solve the Dirichlet, Neumann
and Cauchy boundary value problems for the Poisson equation using the scattering
model. In order to select suitable solutions, we solve the Poisson equation with the
corresponding boundary conditions, that is, some criterion function is minimized in
the Sobolev norms. Under appropriate smoothness assumptions, these problems may
be reformulated as boundary value problems for the biharmonic equation.
Keywords: Biharmonic Operator, Boundary Value Problems, Scattering Model,
Variational Method.

1 Introduction

Let Ω ⊂ Rn, n ≥ 2, be a bounded Lipschitz domain with connected boundary
∂Ω, and Ω ∪ ∂Ω = Ω is the closure of Ω.

In Ω we consider the following boundary value problems for the biharmonic
equation:

∆2u = F, x ∈ Ω (1)

with the Steklov boundary conditions{
u = g1 on ∂Ω,

∆u+ τ ∂u
∂ν = g2 on ∂Ω,

(2)

or the Steklov–type boundary conditions{
∂u
∂ν = h1 on ∂Ω,
∂∆u
∂ν + τ u = h2 on ∂Ω,

(3)
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or the Neumann boundary conditions{
Mu ≡ σ∆u+ (1− σ)∂

2u
∂ν2 = f1 on ∂Ω,

Nu ≡ ∂∆u
∂ν + (1− σ) 1

2 ·
∂
∂tij

(
∂2u
∂ν∂tij

)
= f2 on ∂Ω,

(4)

where ν is the outer unit normal vector to the domain, and T = {tij} various
tangential directions to the Lipschitz boundary ∂Ω, τ ≥ 0, τ 6≡ 0, and τ > 0
on a set of positive (n−1) – dimensional measure on ∂Ω. The coefficient σ is a
constant known as the Poisson ratio, 1

n−1 < σ < 1. A unique solution u (mod-
ulo linear functions) is obtained in the class of solutions with non-tangential
maximal function of the second-order derivatives in Lp(∂Ω). The biharmonic
Neumann problem in Lipschitz domains was studied in detail in [36].

For n = 2, these problems and also the Neumann problem are related to the
study of the transverse vibrations of a thin plate with a free edge and which
occupies at rest a planar region of shape ∂Ω. The coefficient σ represents the
Poisson’s ratio of the material that the plate is made of. For more details on
the physical interpretation of the Neumann problem and on the Poisson’s ratio
σ, we refer, for example, to [4]. Note the paper [5], where the author studies
the dependence of the vibrational modes of a plate subject to homogeneous
boundary conditions upon the Poisson’s ratio 0 < σ < 1

2 , providing also a
perturbation formula for the frequencies as functions of the Poisson’s coefficient.

Elliptic problems with parameters in the boundary conditions are called
Steklov problems from their first appearance in [37]. In the case of the bihar-
monic operator, these conditions were first considered in [3], [10], [33], who
studied the isoperimetric properties of the first eigenvalue.

The standard elliptic regularity results are available in [7]. This mono-
graph covers higher order linear and nonlinear elliptic boundary value prob-
lems, mainly with the biharmonic (polyharmonic) operator as leading principal
part. Underlying models and, in particular, the role of different boundary con-
ditions are explained in detail. As for linear problems, after a brief summary of
the existence theory and Lp and Schauder estimates, the focus is on positivity.
The required kernel estimates are also presented in detail.

In [6] and [7], the spectral and positivity preserving properties for the
inverse of the biharmonic operator under Steklov and Steklov–type boundary
conditions are studied. These are connected with the first Steklov eigenvalue.
It is shown that the positivity preserving property is quite sensitive to the
parameter involved in the boundary condition.

In [34], the dependence of the eigenvalues of the biharmonic operator sub-
ject to Neumann boundary conditions on the Poisson’s ratio σ is studied. In
particular, it is proved that the Neumann eigenvalues are Lipschitz continuous
with respect to σ ∈ [0, 1) and that all the Neumann eigenvalues tends to zero
as σ → 1−. Moreover, is showed that the Neumann problem defined by setting
σ = 1 admits a sequence of positive eigenvalues of finite multiplicity that are
not limiting points for the Neumann eigenvalues with σ ∈ [0, 1) as σ → 1− and
that coincide with the Dirichlet eigenvalues of the biharmonic operator.

Boundary value problems for a biharmonic (polyharmonic) equation and for
the elasticity system in unbounded domains are studied in [12]–[28] in which
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the condition of the boundedness of the following weighted Dirichlet integral
of solution is finite, namely∫

Ω

|x|a|∂αu|2 dx <∞, a ∈ R,

where a ∈ R is a fixed number and |∂αu|2 denotes the Frobenius norm of
the Hessian matrix of u. In particular, in these papers has been studied the
dimension of the space of the solutions to the boundary value problems for a
biharmonic (polyharmonic) equation and for the elasticity system, providing
explicit formulas which depends on n and a. This paper contains complete
proofs of the results, partly presented in [29].

The behavior of solutions of the Dirichlet problem for the biharmonic equa-
tion as |x| → ∞ was considered in [8], [9], where estimates for |u(x)| and
|∇u(x)| as |x| → ∞ were obtained under certain geometric conditions on the
domain boundary.

Notation: C∞0 (Ω) is the space of infinitely differentiable functions in
Ω with compact support in Ω; Hm(Ω) is the Sobolev space obtained by the
completion of C∞(Ω) with respect to the norm

‖u;Hm(Ω)‖ =

∫
Ω

∑
|α|≤m

|∂αu|2dx

1/2

, m = 1, 2,

where ∂α ≡ ∂|α|/∂xα1
1 . . . ∂xαn

n , α = (α1, . . . , αn) is a multi-index, αi ≥ 0

are integers, and |α| = α1 + · · · + αn;
◦
H
m

(Ω) is the space obtained by the

completion of C∞0 (Ω) with respect to the norm ||u;Hm(Ω)||.
◦
H
m

loc (Ω) is
the space obtained by the completion of C∞0 (Ω) with respect to the family of
semi-norms

‖u;Hm(Ω ∩B0(R))‖ =

 ∫
Ω∩B0(R)

∑
|α|≤m

|∂αu|2 dx


1/2

for all open balls B0(R) := {x : |x| < R} in Rn for which Ω ∩ B0(R) 6= ∅.
Finally H1/2(∂Ω) is the usual trace space on the boundary and H−1/2(∂Ω) is
its dual (see, for ex., [1]).

2 Definitions and auxiliary statements

If we set σ = 1, the Neumann boundary conditions reads{
∆u = f1 on ∂Ω,
∂∆u
∂ν = f2 on ∂Ω.

(5)

Note that the differential operator associated with problem (1), (5) is not
a Fredholm operator. We also note that the boundary conditions (5) do not
satisfy the so–called complementing conditions (see [2] and [7] for details),
which are necessary conditions for the well–posedness of a differential problems.
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Definition 1. A solution of the biharmonic equation (1) in Ω is a function
u ∈ H2(Ω) such that, for every function ϕ ∈ C∞0 (Ω), the following integral
identity holds: ∫

Ω

∆u∆ϕdx =

∫
Ω

F ϕdx, F ∈ L2(Ω). (6)

Definition 2. A function u is a solution of the Steklov problem (1),(2) with

g1 = g2 = 0 , if u ∈ H2(Ω)∩
◦
H

1

(Ω) such that for every function ϕ ∈

H2(Ω)∩
◦
H

1

(Ω), the following integral identity holds∫
Ω

∆u∆ϕdx+

∫
∂Ω

τ ∇u∇ϕds = 0. (7)

Definition 3. A function u is a solution of the Steklov-type problem (1),(3)
with h1 = h2 = 0 , if u ∈ H2(Ω), ∂u/∂ν = 0 on ∂Ω, such that for every
function ϕ ∈ C∞0 (Rn), ∂ϕ/∂ν = 0 on ∂Ω, the following integral identity holds∫

Ω

∆u∆ϕdx−
∫
∂Ω

τ uϕ ds = 0. (8)

Definition 4. A function u is a solution of the Neumann problem (1),(5) with
f1 = f2 = 0, if u ∈ H2(Ω) such that the integral identity (6) holds for every
function ϕ ∈ C∞0 (Ω).

3 A scattering model

In the section we derive the mathematical model used for describing the radar
process. In our parametrization the unknown is the height function H. As
will be shown the height function is determined in two steps. In the first step
L(H), with L a certain second-order differential operator, is determined. After
retrieving H the equation L(H) = f must be solved. To a good approximation
the operator L can be replaced by the Laplacian. So the second step simply
consists of solving the Poisson equation over some smooth bounded domain,
usually a rectangular region in the plane. The problem here is that no natural
boundary conditions are available.

Here we will briefly discuss the mathematical inverse problem to be resolved
in order to recover the ground topography height function from radar data.
First cylindrical coordinates (r, ϕ, z) are introduced according to Fig. 1, where
it is understood that the aircraft is flying at a constant speed along the z-axis.
Further r denotes the distance from a point on the ground surface to the z-axis
and ϕ is the angle between radius vector and a horizontal plane through the z-
axis. Then the ground surface may be described by a function H(r, z) through
the equation

H(r, z)

r
− ϕ = 0. (9)

When r is large, H(r, z) is approximately a Cartesian height function. Fig.
2 shows a top view of the same scene. We have also indicated an aspect
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Fig. 1. The ground surface measured at a fixed aircraft position.

Fig. 2. The measuring geometry as seen from above.

vector from the aircraft to some point on the ground, forming an angle θ with
a vertical plane through the aircraft. Normalized to unit length, the aspect
vector is denoted by n̂. Accordingly

n̂ = cos θ r̂(ϕ) + sin θ ẑ. (10)

Here r̂(ϕ) denotes the cylindrical unit basis vector corresponding to the
r-coordinate for the ground point as shown in the Fig. 2. For a point on the
ground surface with coordinates (r, ϕ, z) we obtain, from Eq. (9), the following
expression for the ground surface normal m̄,

m̄ = grad

(
H(r, z)

r
− ϕ

)
=
∂(H/r)

∂r
r̂ +

1

r

∂H

∂z
ẑ − 1

r
ϕ̂. (11)

Let m̂ denote the normalized normal. Then
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Fig. 3. The coordinate system used to describe an infinitesimal surface element, dS.

m̂ ◦ n̂ =

(
r cos θ

∂(H/r)

∂r
+ sin θ

∂H

∂z

)/√
1 + r2

(
∂(H/r)

∂r

)2

+

(
∂H

∂z

)2

.

(12)
Note that (r, ϕ, z) in Eq. (12) are related to the ground surface point and

not to the position of the aircraft.
Let (z0, 0) be a position of the aircraft and R the distance to some point

on the surface. According to Fig. 3 the coordinates (r, z) are then equal to
(R cos θ, z0 + R sin θ). Next, to obtain a scattering model we will assume that
the reflectivity from a ground surface element (see Fig. 4) is

≈ m̂ ◦ n̂
R

dRdθ. (13)

From Fig. 4, where a vertical plane through (z0, 0) (the aircraft) and the
ground point (R cos θ, z0 + R sin θ) is displayed, we conclude that the solid
angle dΩ under which the surface element dS is seen from the antenna is
approximately

dR cosαRddθ

R2
= −m̂ ◦ n̂

R
dRdθ.

In expression (13) we are consequently assuming that the local reflectivity is
proportional to the solid angle occupied by the infinitesimal surface element
dS. The total reflected signal G(R, z0) from all points at a distance R from the
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Fig. 4. The infinitesimal surface element, dS, as it is seen from the aircraft.

antenna may now be obtained by integration over the circle C(R, z0) = {(r, z) :
r2 + (z − z0)2 = R2} in Fig. 3.

G(R, z0)dR = c

∫ π

−π

m̂ ◦ n̂(R sin θ, z0 +R cos θ)

R
dθdR

i.e.

RG(R, z0) = c

∫ π

−π
m̂ ◦ n̂(R sin θ, z0 +R cos θ)dθ. (14)

Assuming that m̂ ◦ n̂ is small Eq. (12) may be replaced by

m̂ ◦ n̂ = r cos θ
∂(H/r)

∂r
+ sin θ

∂H

∂z
.

By inserting this into Eq. (14) we get, after multiplying by R,

R2G(R, z0) = c

∫ π

−π

(
rR cos θ

∂(H/r)

∂r
+R sin θ

∂H

∂z

)
dθ.

Using the parametrization

r = Rcosθ, z = z0 +Rsinθ,

this may be rewritten as a curve integral over C(R, z0), with dz = R cos θdθ
and dr = −R sin θdθ,

R2G(R, z0) = c

∫
C(R,z0)

(
r
∂(H/r)

∂r
dz − ∂H

∂z
dr

)
. (15)

By applying Green’s formula we get

R2G(R, z0) = c

∫∫
D(R,z0)

L(H)(r, z) dz dr, (16)

where D is the disc,

D(R, z0) = {(r, z) : r2 + (z − z0)2 ≤ R2}
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and

L(H) =
∂

∂r

(
r
∂(H/r)

∂r

)
+
∂2H

∂z2
. (17)

The problem of finding the height function H from radar data G(r, z) may
now be divided into two parts:

(i) First solve the integral equation (16) for L(H)(r, z) = f(r, z).
(ii) Next solve the partial differential equation

L(H) = f (18)

for H. We note that if r is large and if m̂ ◦ n̂ is small it is reasonable to make
the approximation

L(H) ≈ ∂2H

∂r2
+
∂2H

∂z2
= ∆H

so that Eq. (18) becomes Poisson’s equation. To consider the first problem (i),
both members in Eq. (16) are differentiated with respect to R. Then we get

1

R

d

dR
(R2G(R, z0)) = c

∫ π

−π
L(H)(z0 +R cos γ,R sin γ) dγ,

where the right-hand side is proportional to the average of L(H) over the circle
C(R, z0). Hence,

L(H)(F,F )(σ, ω) ∼ |ω|
[

1

R

d

dR
{R2G(r, z)}

](F,H0)

(σ,
√
ω2 + σ2). (19)

Here the notation (F, F ) means that we have taken the Fourier transform with
respect to both the variables and (F,H0) means that we have taken Fourier
transform with respect to the first variable and the Hankel-zero transform with
respect to the second. After some calculations Eq. (19) may be rewritten

L(H)(F,F )(σ, ω) ∼ |ω|
√
ω2 + σ2[RG(r, z)](F,H1)(σ,

√
ω2 + σ2). (20)

Formula (20) may now be used in order to recover the function L(H) in
spatial coordinates. Approximating L(H) by ∆H we could rewrite Eq. (20) as

H(F,F )(σ, ω) ∼ |ω| 1√
ω2 + σ2

[RG(r, z)](F,H1)(σ,
√
ω2 + σ2), (21)

where H1 denotes that we have taken the Hankel-one transform with respect
to the second variable. Then we could obtain H directly by a two timensional
Fourier transform. However, our solution might be expected to have errors
caused by, e.g. noisy radar data and errors caused by the particular numerical
implementation of the inversion formula (19) (or (20)) and therefore we would
rather prefer to divide the solution procedure into the two steps described
above and to use the second step, the solution of Poisson’s equation, so that
we perform some kind of regularization of the final solution. Note also that by
using (21) as our solution formula we have tacitly assumed periodic boundary
conditions for the Poisson equation.

In the following we will treat part (ii) of the problem, where we wish to
define a solution H to the equation

∆H = f.
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4 Solution concepts for the Poisson equation

In this section we discuss different possibilities of defining a unique height
function. Essentially our approach consists in minimizing some norm of the
solution provided that it also satisfies the Poisson equation. In particular we
consider the L2- and H1-norms. We also show how these two optimization
problems may be reformulated as boundary value problems for the biharmonic
equation. Note that the corresponding Poisson problem is well-posed unless
σ = 1.

In the domain Ω for the Poisson equation we consider the following bound-
ary value problems

∆u = f, x ∈ Ω (22)

with the Dirichlet boundary condition

u = g on ∂Ω, (23)

or the Neumann boundary conditions

∇u · ν = h on ∂Ω, (24)

and the Cauchy boundary conditions{
u = g on ∂Ω,

∇u · ν = h on ∂Ω,
(25)

where ν is the outer unit normal vector to ∂Ω.
The boundary operators are independent of any particular choice of ori-

entation for the rectangular coordinate systems. Finally, for Ω a rectangular
region in, e.g., the plane

Ω = {(x, y) : a < x < b, c < y < d},

there may be the following boundary conditions

u(a, y) = u(b, y), u(x, c) = u(x, d), (26)

and with the periodic boundary conditions

ux(a, y) = ux(b, y), uy(x, c) = uy(x, d), (27){
u(a, y) = u(b, y), u(x, c) = u(x, d),

ux(a, y) = ux(b, y), uy(x, c) = uy(x, d).
(28)

Provided g is smooth enough boundary conditions (23) define a unique solu-
tion of (22). For (24) and (25) the solution is determined up to a constant. It
is also possible to use different mixtures of these three types of boundary con-
ditions. Note that for cases (24) and (28) the following consistency conditions
must hold, respectively:∫

Ω

f dx =

∫
∂Ω

h ds for (24),

∫
Ω

f dx = 0 for (25).
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We now consider a different way to select a solution to (22). Here we
use a criterion function and optimize this criterion over the set of solutions
to the Poisson equation. Scattering model of Section 3 shows the physical
interpretation of function u(x, y) is a surface function. We need to pick out
the smoothest surface (in some sense) that fulfills (22), using the Sobolev space
norms as criterion functions. Denote by Vf,i the following set:

Vf,i = {u ∈ Hi(Ω) : ∆u = f, f ∈ L2(Ω)}, i = 0, 1, 2, (29)

where H0(Ω) = L2(Ω).
The equality ∆u = f is to be interpreted in the sense of distributions. i.e.,

Definition 5. A solution of the Poisson equation (22) in Ω is a function
u ∈ H1(Ω) such that the following integral identity holds:∫

Ω

u∆ϕdx =

∫
Ω

fϕ dx, ∀ϕ ∈ C∞0 (Ω).

Lemma 1. Vf,i is a closed, convex and nonempty set of Hi(Ω).

Proof. The convexity is due to the linearity of ∆. To verify that Vf,i, i = 0, 1, 2,
is nonempty it suffices to verify that Vf,2 is nonempty.

We assume that Ω ⊂ (0, 2π)n. Extend f by taking f = 0 in (0, 2π)n\Ω.
Then Vf,2 contains the function

u = f0|x|2/(2n)−
∑
m6=0

eimx/|m|2

assuming f =
∑
fme

imx and that m denotes a multi-index. To show that Vf,i
is closed we select a sequence {un}∞1 ⊂ Vf,i, such that un → u in Hi(Ω). Then
un → u in L2 and, by Cauchy’s inequality∣∣∣ ∫

Ω

f ϕ dx−
∫
Ω

u∆ϕdx
∣∣∣ =

∣∣∣ ∫ (un − u)∆ϕdx
∣∣∣ ≤

≤
∫
Ω

|un − u|2 dx
∫
Ω

|∆ϕ|2 dx→ 0, ∀ϕ ∈ C∞0 ,

i.e.
∫
Ω
f ϕ dx =

∫
Ω
u∆ϕdx and u ∈ Vf,i

We recall some facts about Green’s formula and of the normal derivatives
of H1 -functions [1]:

Preposition 1 [1] If v ∈ H1(Ω), ∆v ∈ L2(Ω) (in the sense of distribution),
and ϕ ∈ H1(Ω), then (∇v · ν) ≡ ∂v/∂ν ∈ H−1/2(∂Ω) is defined by(

∂v

∂ν
, ϕ

)
H−1/2(∂Ω),H1/2(∂Ω)

=

∫
Ω

∆v ϕdx+

∫
Ω

∇v∇ϕdx.

This definition is justified by the fact the right hand site of the last above
equality defines a bounded linear functional on H1(Ω) and by the the following
lemma:
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Lemma 2. [1] If v ∈ H1(Ω) and ∆v ∈ L2(Ω), then∫
Ω

∆v ϕdx+

∫
Ω

∇v∇ϕdx = 0 for all ϕ ∈
◦
H

1

(Ω).

Proof. Since C∞0 (Ω) is dense in
◦
H

1

(Ω), it suffices to prove last equality for
all ϕ ∈ C∞0 (Ω). Then by Green’s formula and the definition of distributional
derivatives, we have∫

Ω

∆v ϕdx+

∫
Ω

∇v∇ϕdx =

∫
Ω

∆v ϕdx−
∫
Ω

v ∆ϕdx.

Note also the following well known lemmas for the Dirichlet and Neumann
problems in Ω [11], i.e.

Lemma 3. [11] Suppose g ∈ H1/2(∂Ω), f ∈ L2(Ω). Then there exists a
unique function u ∈ H1(Ω) such that{

∆u = f in Ω,

u = g on ∂Ω.

Lemma 4. [11] Suppose that g ∈ H−1/2(∂Ω), f ∈ L2(Ω) and that

(g, 1)H−1/2(∂Ω),H1/2(∂Ω) =

∫
Ω

f dx.

Then there exists a unique function u ∈ H1(Ω) such that{
∆u = f in Ω (in the sense of distributions),

u = g on ∂Ω (in the sense of Prepos. 1),
∫
Ω
u dx = 0.

Let α be a multi-index and β1 > 0 a given parameter. We consider the
following optimization problems:

I0(u) ≡ min
u∈Vf,0

∫
Ω

|u|2 dx, (30)

and

I1(u) ≡ min
u∈Vf,1

∫
Ω

|u|2 dx+ β1

∫
Ω

∑
|α|=1

|∂αu|2 dx. (31)

Theorem 1. Problems (30) and (31) have unique solutions u0 and u1, respec-
tively.

Proof. The proof follows from Lemma 1 and the fact that we are minimizing
Hilbert norms.

For problems (30) and (31) we have the following results characterizing
the solutions.
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Theorem 2. Let uo = ∆v. For the solution u0 of the problems (30), where

v ∈ H2(Ω, ∂Ω)∩
◦
H

1

(Ω) is the unique solution of the Steklov biharmonic
problem {

∆2v = f in Ω,

v = ∆v + τ ∂v
∂ν = 0 on ∂Ω.

(32)

Proof. By a standard variational method, u0 ∈ L2(Ω) solves problem (30) if
and only if ∆u0 = f and∫

Ω

u0 ϕdx = 0 for all ϕ ∈ L2(Ω), ∆ϕ = 0.

Assume first that u0 solves problem (30). Let v be defined as the unique
solution of the Dirichlet problem,{

∆v = u0 in Ω,

v = 0 on ∂Ω.

If ϕ, v ∈ H1(Ω) and ∆ϕ, ∆v ∈ L2(Ω), we have the Green formula∫
Ω

∆v ϕdx−
∫
Ω

v ∆ϕdx =

∫
∂Ω

(∇v · ν)ϕds−
∫
∂Ω

v (∇ϕ · ν) ds.

Now let ϕ ∈ H1(Ω) be a harmonic function, ∆ϕ = 0. Then we have

0 =

∫
Ω

u0 ϕdx =

∫
Ω

∆v ϕdx =

∫
∂Ω

(∇v · ν)ϕds−
∫
∂Ω

v (∇ϕ · ν) ds+

∫
Ω

v ∆ϕdx,

that is ∫
∂Ω

(∇v · ν)ϕds = 0 for all such ϕ.

Since there exists a unique function u ∈ H1(Ω) such that{
∆u = f, f ∈ L2(Ω) in Ω,

u = g, g ∈ H1/2(∂Ω) on ∂Ω,

and ϕ
∣∣
∂Ω

may be chosen arbitrary in H1/2(Ω), we conclude that 0 = (∇v ·ν) ∈
H−1/2(Ω). We have proved that u0 = ∆v ∈ L2(Ω), where v satisfies the
Steklov biharmonic problem{

∆2v = f in Ω,

v = ∆v + τ ∂v
∂ν = 0 on ∂Ω.

(33)
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On the other hand we claim that (33) cannot have more than one solution
v ∈ H1(Ω) with ∆v ∈ L2(Ω). Indeed assume that (33) is satisfied and consider
the function ψ ∈ L2(Rn) defined by

ψ =

{
v(x) if x ∈ Ω,
0 if x /∈ Ω.

For arbitrary ϕ ∈ C∞0 (Rn) we have∫
Rn

ψ∆ϕdx =

∫
Ω

v ∆ϕdx =

=

∫
∂Ω

v (∇ϕ · ν) ds−
∫
∂Ω

(∇v · ν)ϕds+

∫
Ω

ϕ∆v dx,

i.e. ∫
Rn

ψ∆ϕdx =

∫
Ω

ϕ∆v dx

for all ϕ ∈ C∞0 (Rn).
Let now h ∈ C∞0 (Rn) be dined by

h(x) =

{
∆v if x ∈ Ω,
0 if x /∈ Ω.

We have proved that

∆ψ = h

in the sense of distributions. Using the Fourier transformation it follows that
ψ ∈ H2(Rn). Therefore v ∈ H2(Ω), and v must be the unique solution in

H2(Ω) of (33), being the unique minimizer in
◦
H

2

(Ω) of the coercive quadratic
functional

J(v) ≡
∫
Ω

(1

2
|∆v|2 − fv

)
dx.

The proof is complete.

Theorem 3. Let u1 = ∆v. For the solution u1 of the problems (31), where
v ∈ H2(Ω), (∇v · ν) = 0, is the unique solution of the Steklov-type biharmonic
problem {

∆2v = f in Ω,
∂v
∂ν = ∂∆v

∂ν + τ v = 0 on ∂Ω.

Proof. Assume that u1 solves problem (31). Let v be defined as the unique
solution in the class {ψ ∈ H1(Ω) : ∆ψ ∈ H1(Ω)} of the following biharmonic
problem {

∆2v = f in Ω,

v = β1∆v, ∇v · ν = 0 on ∂Ω.
(34)
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By standard variational method, u1 ∈ H1(Ω) solves problem (31), if and only
if ∆u1 = f and ∫

Ω

(u1 ϕ+ β1∇u1 · ∇ϕ) dx = 0

for all ϕ ∈ H1(Ω) and ∆ϕ = 0 in Ω. Taking ϕ = 1, we observe that∫
Ω

u1 dx = 0.

Let v ∈ H1(Ω) be any solution of the Neumann problem{
∆v = u1 in Ω,

∇v · ν = 0 on ∂Ω.
(35)

Applying Green’s formula we have,

0 =

∫
Ω

ϕ∆v dx+ β1

∫
Ω

∇(∆v)∇ϕdx =

=

∫
Ω

v ∆ϕdx+

∫
∂Ω

ϕ (∇v · ν) ds−
∫
∂Ω

v (∇ϕ · ν) ds+

+β1

∫
∂Ω

∆v (∇ϕ · ν) ds− β1
∫
Ω

∆v∆ϕdx,

i.e. ∫
∂Ω

(v − β1∆v) (∇ϕ · ν) ds = 0

for all ϕ ∈ H1(Ω) and ∆ϕ = 0 in Ω.
Since (∇ϕ · ν) ∈ H−1/2(∂Ω) may be chosen arbitrarily (Lemma 4) apart

from the condition ∫
∂Ω

(∇ϕ · ν) ds = 0,

it follows that, for some C = const, v − β1∆v = C on ∂Ω.
Now the solution v is uniquely defined up to an additive constant. This

constant may be chosen so that C = 0.
We have proved that v defined by (35) satisfies (34), and that v,∆v ∈

H1(Ω). It remains only to prove that the solution v of (34) is unique. To this
end we introduce the function ϕ = β1∆v − v and observe that v satisfies (34)

if and only if (v, ϕ) ∈ H1(Ω)×
◦
H

1

(Ω) satisfies the system{
β1∆v − v = ϕ,

β1∆ϕ+ ϕ = β2
1f − v with (∇v · ν) = 0 on ∂Ω.

(36)

Next assume that v1, v2 satisfy (34), or (v1, ϕ1), (v2, ϕ2) satisfy (36). From
the previous argument it follows that u1 = ∆v1 = ∆v2 is the unique solution
of problem (31) so that ∆(v1 − v2) = 0. From (36) we have{

β1∆(v1 − v2)− (v1 − v2) = ϕ1 − ϕ2,

β1∆(ϕ1 − ϕ2) + (ϕ1 − ϕ2) = v1 − v2.
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This implies, v1 − v2 = ϕ1 − ϕ2 and ∆(ϕ1 − ϕ2) = 0 with ϕ1 − ϕ2 ∈
◦
H

1

(Ω)
whence we conclude that ϕ1 − ϕ2 = 0 and v1 − v2 = 0. The proof is complete.

We conclude this section by a theorem relating the solution of problems
(30) and (31). First we recall the following definition.

Definition 6. Ω ⊂ Rn is called star-shaped, if there exists x0 ∈ Ω such that
for all x ∈ Ω the set {t ∈ R : x0 + t(x− x0) ∈ Ω} is an interval.

Theorem 4. Assume that Ω ⊂ Rn is open, bounded and star-shaped. If
u1,β1

∈ H1(Ω) denotes the solution of problem (31) with the parameter β1 > 0,
and if u0 ∈ L2(Ω) denotes the solution of problem (30), then

u1,β1
→ u0 in L2(Ω) as β1 → 0 + .

Proof. For 0 < λ < 1 and x0 chosen as in the previous definition, we take

Ωλ = {x ∈ Rn : x0 + λ(x− x0) ∈ Ω},

u0,λ(x) = u0(x0 + λ(x− x0)), fλ = f(x0 + λ(x− x0)).

Then [11],

∆u0,λ = fλ in Ωλ, Ωλ ⊃ Ω, u0,λ ∈ H2
loc(Ωλ).

Since H2
loc(Ωλ) ⊃ H2(Ω), it follows that u0,λ ∈ H2(Ω). Further it is rather

easy to see that ∫
Ω

|u0,λ − u0|2 dx→ 0,

and ∫
Ω

|fλ − f |2 dx→ 0 as λ→ 1.

Next define vλ ∈
◦
H

1

(Ω) by

∆vλ = f − fλ in Ωλ.

Then ∫
Ω

|vλ|2 dx ≤ ||vλ||H1(Ω) ≤ C
∫
Ω

|f − fλ|2 dx.

Consequently, taking wλ = u0,λ + vλ, we have first,

wλ ∈ H1(Ω), ∆wλ = f in Ω,

and hence, ∫
Ω

|wλ − u0|2 dx→ 0 as λ→ 1.

Now, if ε > 0 is given, we may choose a λ close enough to 1, so that∫
Ω

w2
λ dx <

∫
Ω

u20 dx+ ε/2.
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Further, by definition,∫
Ω

u21,β1
dx+ β1

∫
Ω

|∇u1,β1
|2 dx ≤

∫
Ω

w2
λ dx+ β1

∫
Ω

|∇wλ|2 dx.

Since

||wλ||H1(Ω) ≤ C
∫
Ω

|f |2 dx

we have, for sufficiently small β1,∫
Ω

u21,β1
dx+ β1

∫
Ω

|∇u1,β1 |2 dx ≤
∫
Ω

u20 dx+ ε.

It follows that,

lim
β1→0+

sup

∫
Ω

|u1,β1 |2 dx ≤
∫
Ω

|u0|2 dx.

Further, for some sub-sequence of β1, we have

u1,β1
→ ũ in L2(Ω) (weakly),

∆ũ = f in Ω,

and ∫
Ω

|ũ|2 dx ≤ lim
β1→0+

inf

∫
Ω

|u1,β1 |2 dx.

But then ∆ũ = f and ∫
Ω

|ũ|2 dx ≤
∫
Ω

|u0|2 dx

which, by definition of u0, implies that ũ = u0. So,

u1,β1
→ u0 in L2(Ω) (weakly).

Next

lim
β1→0+

sup

∫
Ω

|u1,β1
− u0|2 dx =

= lim
β1→0+

sup

∫
Ω

|u1,β1
|2 dx− 2 lim

β1→0+

∫
Ω

u1,β1
u0 dx+

+

∫
Ω

|u0|2 dx ≤
∫
Ω

|u0|2 dx− 2

∫
Ω

|u0|2 dx+

∫
Ω

|u0|2 dx = 0.

Finally, since this strong limit u0 is uniquely defined we may conclude, by a
standard argument that

u1,β1
→ u0 in L2(Ω) as β1 → 0+

without restriction to any subsequence. The proof is complete.

Remark 1. All convex sets are star-shaped. Rectangles Ω appearing in our
applications are thus star-shaped.
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5 Appendix

Many complex engineering structures, such as the rotor blades of wind turbines
and helicopters, are non-prismatic beamlike structures, which may be tapered,
twisted and curved in their reference unstressed state and undergo large dis-
placements of the reference centre-line’s points, as well as in- and out-of-plane
warping of the transverse cross-sections. Continuous efforts to better predict
the mechanical behaviour of such structures, which are aimed at improving the
performance in terms of structural efficiency and costs effectiveness, offer the
opportunity to address some very interesting, challenging problems in the field
of continuum and solid mechanics [30].

An important point in developing rigorous yet application-oriented mathe-
matical models for such structures is an appropriate description of their motion.
In general, a non-prismatic beamlike structure can be considered as a collection
of deformable plane figures (referred to as the transverse cross-sections) along a
suitable three-dimensional curve (called the reference centre-line). Each cross-
sectional point in the reference state can moreover move to its position in the
current state through a global rigid motion on which a local warping motion
can be superimposed. The description of the motion of such structures can
thus be performed by introducing two kinematic maps, herein called RA and
RB , to identify the positions of the points of the mentioned structure in the
reference and current states, as discussed in [30]–[32]. Specifically, the reference
map RB can be defined as follows

RB(zi) = R0B(z1) + xα(zi)bα(z1)

where R0B denotes the position of the centre-line’s points in the reference
state, bα are the vectors of the reference local frame in the plane of the ref-
erence cross-section, xα identify the position of the points in the reference
cross-section relative to the reference centre-line, and finally, zi are three inde-
pendent mathematical variables which do not depend on time. In particular,
z1 is equal to the reference arch-length s, and zα belong to a bi-dimensional
mathematical domain that is used to map the position of the points, xα, of the
cross-sections. Note that in this section α and β assume values 2 and 3, i and
j take values 1, 2 and 3, while repeated indices are summed over their range.

In a similar manner, the current map RA can be defined as follows

RA(zi, t) = R0A(z1, t) + xβ(zi)aβ(z1, t) + wj(z1, t)aj(z1, t)

where t is the considered evolution scalar real parameter (the time, for in-
stance), R0A denotes the position of the centre-line’s points in the current
state, while wj are the components of the warping displacement fields with
respect to the current local frames referred to as aj .

These maps can be used to determine the gradient of transformation be-
tween the current and reference states and, successively, the Green–Lagrange
strain tensor, as discussed in [30]. Given such strain tensor and a constitutive
model, it is thus possible to determine the stress fields in the three-dimensional
structure. The problem unknowns, such as the displacements of the centre-
line’s points and the warping fields, can then be determined as the solution
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of a set of balance equations deduced by a stationary condition of a suitable
energy functional [30]. Specifically, the result of this procedure is a mathemati-
cal problem based on partial differential equations (PDEs) with Neumann-type
boundary conditions the solution of which enables obtaining all unknowns of
the problem, such as the warping fields wk, the displacements of the centre-
line’s points, the Green–Lagrange strain fields and the corresponding stress
fields as well. Further details can be found in [30] and [32].

The results of the article are presented at the 13th International Confer-
ence Chaotic Modeling, Simulation and Applications (CHAOS2020, June 9–12,
2020, Florence, Italy).
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Abstract. We study the properties of generalized solutions in unbounded domains
and the asymptotic behavior of solutions of elliptic boundary value problems at in-
finity. Moreover, we study the unique solvability of the mixed biharmonic problem
with the Steklov and Steklov-type conditions on the boundary in the exterior of a
compact set under the assumption that generalized solutions of this problem has a
bounded Dirichlet integral with weight |x|a. Depending on the value of the parame-
ter a, we obtained uniqueness (non-uniqueness) theorems of this problem or present
exact formulas for the dimension of the space of solutions.
Keywords: Biharmonic Operator, Steklov and Steklov-type Boundary Conditions,
Dirichlet Integral, Weighted Spaces.

1 Introduction

Let Ω be an unbounded domain in Rn, n ≥ 2, Ω = Rn \G with the boundary
∂Ω ∈ C2, where G is a bounded simply connected domain (or a union of
finitely many such domains) in Rn, 0 ∈ G, Ω = Ω ∪ ∂Ω is the closure of Ω,
x = (x1, . . . , xn) ∈ Rn and |x| =

√
x2
1 + · · ·+ x2

n.
In Ω we consider the following problems for the biharmonic equation

∆2u = 0 (1)

with the Steklov boundary condition on Γ1 and the Steklov–type boundary
condition on Γ2

u|Γ1
=

(
∆u+ τ

∂u

∂ν

)∣∣∣∣
Γ1

= 0,
∂u

∂ν

∣∣∣∣
Γ2

=

(
∂∆u

∂ν
+ τ u

)∣∣∣∣
Γ2

= 0, (2)

where Γ 1 ∪ Γ 2 = ∂Ω, Γ1 ∩ Γ2 = ∅, mesn−1 Γ1 ̸= 0, ν = (ν1, . . . , νn) is the
outer unit normal vector to ∂Ω, τ ∈ C(∂Ω), τ ≥ 0, τ ̸≡ 0, and τ > 0 on a set
of positive (n− 1) – dimensional measure on ∂Ω.

Elliptic problems with parameters in the boundary conditions have been
called Steklov or Steklov-type problems since their first appearance in [30].
For the biharmonic operator, these conditions were first considered in [1], [10]
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and [28], whose authors the isoperimetric properties of the first eigenvalue were
studied.

Note that standard elliptic regularity results are available in [4]. The
monograph covers higher order linear and nonlinear elliptic boundary value
problems, mainly with the biharmonic or polyharmonic operator as leading
principal part. The underlying models and, in particular, the role of different
boundary conditions are explained in detail. As for linear problems, after a brief
summary of the existence theory and Lp and Schauder estimates, the focus is
on positivity. The required kernel estimates are also presented in detail.

In [3] and [4], the spectral and positivity preserving properties for the
inverse of the biharmonic operator under Steklov and Navier boundary condi-
tions are studied. These are connected with the first Steklov eigenvalue. It is
shown that the positivity preserving property is quite sensitive to the param-
eter involved in the boundary condition. Moreover, positivity of the Steklov
boundary value problem is linked with positivity under boundary conditions of
Dirichlet and Navier type.

In [2], the boundary value problems for the biharmonic equation and the
Stokes system are studied in a half space, and, using the Schwartz reflection
principle in weighted Lq -space, the uniqueness of solutions of the Stokes system
or the biharmonic equation is proved.

As is well known, if Ω is an unbounded domain, one should additionally
characterize the behavior of the solution at infinity. As a rule, to this end, one
usually poses either the condition that the Dirichlet (energy) integral is finite
or a condition on the character of vanishing of the modulus of the solution as
|x| → ∞. Such conditions at infinity are natural and were studied by several
authors (e.g., [8], [9]).

In the present note, this condition is the boundedness of the weighted Dirich-
let integral:

Da(u,Ω) ≡
∫
Ω

|x|a
∑
|α|=2

|∂αu|2 dx < ∞, a ∈ R.

In various classes of unbounded domains with finite weighted Dirichlet (en-
ergy) integral, one of the author [11]–[24] studied uniqueness (non–uniqueness)
problem and found the dimensions of the spaces of solutions of boundary value
problems for the elasticity system and the biharmonic (polyharmonic) equation.

By developing an approach based on the use of Hardy type inequalities
[6], [8], [9], in the present note, we obtain a uniqueness (non–uniqueness) cri-
terion for a solution of the mixed biharmonic problem with the Steklov and
Steklov-type boundary conditions. To construct the solution, we use a varia-
tional method, that is, we minimize the corresponding functional in the class
of admissible functions.

Notation: C∞
0 (Ω) is the space of infinitely differentiable functions in Ω

with compact support in Ω.

We denote by Hm(Ω,Γ ), Γ ⊂ Ω, the Sobolev space of functions in Ω
obtained by the completion of C∞(Ω) vanishing in a neighborhood of Γ with
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respect to the norm

||u;Hm(Ω,Γ )|| =

∫
Ω

∑
|α|≤m

|∂αu|2dx

1/2

, m = 1, 2,

where ∂α ≡ ∂|α|/∂xα1
1 . . . ∂xαn

n , α = (α1, . . . , αn) is a multi-index, αi ≥ 0 are
integers, and |α| = α1 + · · ·+ αn; if Γ = ∅, we denote Hm(Ω,Γ ) by Hm(Ω).

◦
H

m

(Ω) is the space obtained by the completion of C∞
0 (Ω) with respect

to the norm ||u(x);Hm(Ω)||;
◦
H

m

loc (Ω) is the space obtained by the completion of C∞
0 (Ω) with respect

to the family of semi-norms

∥u;Hm(Ω ∩B0(R))∥ =

 ∫
Ω∩B0(R)

∑
|α|≤m

|∂αu|2 dx


1/2

for all open balls B0(R) := {x : |x| < R} in Rn for which Ω ∩B0(R) ̸= ∅.
Let

(
n
k

)
be the (n, k) - binomial coefficient,

(
n
k

)
=0 for k > n.

2 Definitions and auxiliary statements

Definition 1. A solution of the homogenous biharmonic equation (1) in Ω is
a function u ∈ H2

loc(Ω) such that, for every function φ ∈ C∞
0 (Ω), the following

integral identity holds: ∫
Ω

∆u∆φdx = 0.

Lemma 1. Let u be a solution of equation (1) in Ω such that Da(u,Ω) < ∞.
Then

u(x) = P (x) +
∑

β0<|α|≤β

∂αΓ (x)Cα + uβ(x), x ∈ Ω, (3)

where P (x) is a polynomial, ordP (x) < m0 = max{2, 2 − n/2 − a/2}, β0 =
2 − n/2 + a/2, Γ (x) is the fundamental solution of equation (1), Cα =
const, β ≥ 0 is an integer, and the function uβ satisfies the estimate:

|∂γuβ(x)| ≤ Cγβ |x|3−n−β−|γ|, Cγβ = const,

for every multi-index γ.

Remark 1. As is known [29], the fundamental solution Γ (x) of the biharmonic
equation has the form

Γ (x) =

{
C|x|4−n, if 4− n < 0 or n is odd,
C|x|4−n ln |x|, if 4− n ≥ 0 and n is even.
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Proof of Lemma 1 Consider the function v(x) = θN (x)u(x), where
θN (x) = θ(|x|/N), θ ∈ C∞(Rn), 0 ≤ θ ≤ 1, θ(s) = 0 for s ≤ 1, θ(s) = 1
for s ≥ 2, while N ≫ 1 and G ⊂ {x : |x| < N}. We extend v to Rn by setting
v = 0 on G = Rn \Ω.

Then the function v belongs to C∞(Rn) and satisfies the equation

∆2v = f,

where f ∈ C∞
0 (Rn) and supp f ⊂ {x : |x| < 2N}. It is easy to see that

Da(v,Rn) < ∞.

We can now use Theorem 1 of [7] since it is based on Lemma 2 of [7],
which imposes no constraint on the sign of σ. Hence, the expansion

v(x) = P (x) +
∑

β0<|α|≤β

∂αΓ (x)Cα + vβ(x),

holds for each a, where P (x) is a polynomial of order ordP (x) < m0 =
max{2, 2− n/2− a/2}, β0 = 2− n/2 + a/2, Cα = const and

|∂γvβ(x)| ≤ Cγβ |x|3−n−β−|γ|, Cγβ = const .

Therefore, by the definition of v, we obtain (3). The proof of Lemma 1 is
complete.

3 Main Results

Definition 2. By a solution of the mixed boundary value problem (1), (2)

we mean a function u ∈ H2
loc(Ω)∩

◦
H

1

loc (Ω,Γ1), ∂u/∂ν = 0 on Γ2, such that,

for every function φ ∈ C∞
0 (Rn)∩

◦
H

1

loc (Ω,Γ1), ∂φ/∂ν = 0 on Γ2, the following
integral identity holds:∫

Ω

∆u∆φdx+

∫
Γ1

τ ∇u∇φds−
∫
Γ2

τ uφ ds = 0. (4)

Theorem 1. The mixed problem (1),(2) with the condition D(u,Ω) < ∞ has
n+ 1 linearly independent solutions.

Proof. For any nonzero vector A in Rn, we construct a generalized solution uA

of the biharmonic equation (1) with the boundary conditions

uA(x)
∣∣
Γ1

= (Ax)
∣∣
Γ1
,

(
∆uA + τ

∂uA(x)

∂ν

)∣∣∣∣
Γ1

= τ
∂(Ax)

∂ν

∣∣∣∣
Γ1

,

∂uA

∂ν

∣∣∣∣
Γ2

=

(
∂∆uA

∂ν
+ τ uA

)∣∣∣∣
Γ2

= 0,

(5)
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and the condition

χ(uA, Ω) ≡



∫
Ω

(
|uA|2

|x|4
+

|∇uA|2

|x|2
+ |∇∇uA|2

)
dx < ∞

for n > 4,∫
Ω

(
|uA|2

||x|2 ln |x||2
+

|∇uA|2

||x| ln |x||2
+ |∇∇uA|2

)
dx < ∞

for 2 ≤ n ≤ 4,

(6)

for A, x ∈ Rn, where Ax denotes the standard scalar product of A and x.
Such a solution of problem (1), (5) can be constructed by the variational

method [29], minimizing the functional

Φ(v) =
1

2

∫
Ω

|∆v|2 dx

in the class of admissible functions
{
v : v ∈ H2(Ω), v(x)

∣∣
Γ1

= (Ax)
∣∣
Γ1
,
(
∆v + τ ∂v(x)

∂ν

)∣∣∣
Γ1

=

τ ∂(Ax)
∂ν

∣∣∣
Γ1

, v is compactly supported in Ω
}
.

The validity of condition (6) as a consequence of the Hardy inequality fol-
lows from the results in [8], [9].

Now, for any arbitrary number e ̸= 0, we construct a generalized solution
ue of equation (1) with the boundary conditions

ue

∣∣
Γ1

= e,

(
∆ue + τ

∂ue

∂ν

)∣∣∣∣
Γ1

= 0,
∂ue

∂ν

∣∣∣∣
Γ2

=

(
∂∆ue

∂ν
+ τ ue

)∣∣∣∣
Γ2

= 0, (7)

and the condition

χ(ue, Ω) ≡



∫
Ω

(
|ue|2

|x|4
+

|∇ue|2

|x|2
+ |∇∇ue|2

)
dx < ∞

for n > 4,∫
Ω

(
|ue|2

||x|2 ln |x||2
+

|∇ue|2

||x| ln |x||2
+ |∇∇ue|2

)
dx < ∞

for 2 ≤ n ≤ 4.

(8)

The solution of problem (1), (7) also is constructed by the variational
method with the minimization of the corresponding functional in the class
of admissible functions {v : v ∈ H2(Ω), v

∣∣
Γ1

= e,
(
∆v + τ ∂v

∂ν

)∣∣
Γ1

= 0, v is

compactly supported in Ω}.
The condition (8) as a consequence of the Hardy inequality follows from the

results in [8],[9].
Consider the function v = (uA −Ax)− (ue − e).
Obviously, v is a solution of problem (1), (2):

∆2v = 0, x ∈ Ω,

v
∣∣
Γ1

=

(
∆v + τ

∂v

∂ν

)∣∣∣∣
Γ1

= 0,
∂v

∂ν

∣∣∣∣
Γ2

=

(
∂∆v

∂ν
+ τ v

)∣∣∣∣
Γ2

= 0.
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One can easily see that v ̸≡ 0 and D(v,Ω) < ∞.
To each nonzero vector A = (A0, A1, . . . , An) in Rn+1, there corresponds

a nonzero solution vA = (vA0 , vA1 , . . . , vAn) of problem (1), (2) with the
condition D(vA, Ω) < ∞, and moreover,

vA = uA − ue −Ax+ e.

Let A0, A1, . . . , An be a basis in Rn+1. Let us prove that the corresponding
solutions vA0 , vA1 , . . . , vAn are linearly independent. Let

n∑
i=0

CivAi ≡ 0, Ci = const .

Set W ≡
∑n

i=1 CiAix− C0e. We have

W =

n∑
i=1

CiuAi
− C0ue,∫

Ω

|x|−2|∇W |2 dx < ∞, n > 4,∫
Ω

||x| ln |x||−2|∇W |2 dx < ∞, 2 ≤ n ≤ 4.

Let us show that

W ≡
n∑

i=1

CiAix− C0e ≡ 0.

Let T =
∑n

i=0 CiAi = (t0, . . . , tn), where A0 = −e. Then∫
Ω

|x|−2|∇W |2 dx =

∫
Ω

|x|−2(t21 + · · ·+ t2n) dx =∞, n > 4,∫
Ω

||x| ln |x||−2|∇W |2 dx =

∫
Ω

||x| ln |x||−2(t21 + · · ·+ t2n) dx = ∞, 2 ≤ n ≤ 4,

if T ̸= 0.
Consequently, T =

∑n
i=0 CiAi = 0, and since the vectors A0, A1, . . . , An

are linearly independent, we obtain Ci = 0, i = 0, 1, . . . , n.
Thus, the mixed problem (1), (2) with the condition D(u,Ω) < ∞ has at

least n+ 1 linearly independent solutions.
Let us prove that each solution u of problem (1), (2) with the condition

D(u,Ω) < ∞ can be represented as a linear combination of the functions
vA0

, vA1
, . . . , vAn

, i.e.

u =

n∑
i=0

CivAi
, Ci = const .

Since A0, A1, . . . , An is a basis in Rn+1, it follows that there exists constants
C0, C1, . . . , Cn such that

A =

n∑
i=0

CiAi.
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We set

u0 ≡ u−
n∑

i=0

CivAi
.

Obviously, the function u0 is a solution of problem (1), (2), andD(u0, Ω) < ∞,
χ(u0, Ω) < ∞.

Let us show that u0 ≡ 0, x ∈ Ω. To this end, we substitute the function
φ(x) = u0(x)θN (x) into the integral identity (4) for the function u0, where
θN (x) = θ(|x|/N), θ ∈ C∞(R), 0 ≤ θ ≤ 1, θ(s) = 0 for s ≥ 2 and θ(s) = 1 for
s ≤ 1; then we obtain∫

Ω

(∆u0)
2θN (x) dx+

∫
Γ1

τ |∇u0|2θN (x) ds−
∫
Γ2

τ |u0|2θN (x) ds

= −J1(u0)− J2(u0)− J3(u0),

(9)

where

J1(u0) = 2

∫
Ω

∆u0 ∇u0 ∇θN (x) dx, J2(u0) =

∫
Ω

u0 ∆u0 ∆θN (x) dx,

J3(u0) =

∫
Γ1

u0 ∇u0 ∇θN (x) ds.

By applying the Cauchy–Schwarz inequality and by taking into account the con-
ditions D(u0, Ω) < ∞ and χ(u0, Ω) < ∞, one can easily show that J1(u0) → 0,
J2(u0) → 0 and J3(u0) → 0 as N → ∞. Consequently, by passing to the limit
as N → ∞ in (9), we obtain∫

Ω

(∆u0)
2 θN (x) dx+

∫
Γ1

τ |∇u0|2θN (x) ds−
∫
Γ2

τ |u0|2θN (x) ds → 0.

Using the integral identity∫
Ω

(∆u0)
2 dx+

∫
Γ1

τ |∇u0|2 ds−
∫
Γ2

τ |u0|2 ds = 0,

we find that if u0 is a solution of the homogeneous problem (1), (2), then
∆u0 = 0. Therefore, we have

∆u0 = 0, x ∈ Ω,

u0

∣∣
Γ1

=

(
∆u0 + τ

∂u0

∂ν

)∣∣∣∣
Γ1

= 0,
∂u0

∂ν

∣∣∣∣
Γ2

=

(
∂∆u0

∂ν
+ τ u0

)∣∣∣∣
Γ2

= 0.

Hence, it follows [5, Ch.2] that u0 = 0 in Ω. The relation∫
∂Ω

τ (|∇u0|2 + |u0|2) ds = 0

implies that u0 ≡ 0 on a set of a positive measure on ∂Ω. The proof of the
theorem is complete.
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Theorem 2. The mixed problem (1), (2) with the condition Da(u,Ω) < ∞
has:

(i) the trivial solution for n− 2 ≤ a < ∞, n > 4;
(ii) n linearly independent solutions for n− 4 ≤ a < n− 2, n > 4;
(iii) n+ 1 linearly independent solutions for −n ≤ a < n− 4, n > 4;
(iv) k(r, n) linearly independent solutions for −2r+2−n ≤ a < −2r+4−n,

r > 1, n > 4, where

k(r, n) =

(
r + n

n

)
−

(
r + n− 4

n

)
.

The proof of Theorem 2 is based on Lemma 1 about the asymptotic expan-
sion of the solution of the biharmonic equation and the Hardy type inequalities
for unbounded domains [8],[9]. In case (iv), we need to determine the number
of linearly independent solutions of the biharmonic equation (1), the degree of
which not exceed the fixed number.

It is well know that the dimension of the space of all polynomials in Rn

of degree ≤ r is equal
(
r+n
n

)
[27]. Then the dimension of the space of all

biharmonic polynomials in Rn of degree ≤ r is equal to(
r + n

n

)
−

(
r + n− 4

n

)
,

since the biharmonic equation is the vanishing of some polynomial of degree r−4
in Rn. If we denote by k(r, n) the number of linearly independent polynomial
solutions of equation (1) whose degree do not exceed r and by l(r, n) the
number of linearly independent homogeneous polynomials of degree r, that are
solutions of equation (1), then

k(r, n) =

r∑
s=0

l(s, n),

where

l(s, n) =

(
s+ n− 1

n− 1

)
−
(
s+ n− 5

n− 1

)
, s > 0.

Further, we prove that the mixed problem (1), (2) with the conditionDa(u,Ω) <
∞ for −2r+2−n ≤ a < −2r+4−n has equally k(r, n) of linearly independent
solutions.

4 Appendix

Many complex engineering structures, such as the rotor blades of wind turbines
and helicopters, are non-prismatic beamlike structures, which may be tapered,
twisted and curved in their reference unstressed state and undergo large dis-
placements of the reference centre-line’s points, as well as in- and out-of-plane
warping of the transverse cross-sections. Continuous efforts to better predict
the mechanical behaviour of such structures, which are aimed at improving the
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performance in terms of structural efficiency and costs effectiveness, offer the
opportunity to address some very interesting, challenging problems in the field
of continuum and solid mechanics [25].

An important point in developing rigorous yet application-oriented math-
ematical models for such structures is an appropriate description of their mo-
tion. The description of the motion of such structures can thus be performed
by introducing two kinematic maps, herein called RA and RB , to identify the
positions of the points of the mentioned structure in the reference and current
states, as discussed in [25], [26].

These maps can be used to determine the gradient of transformation be-
tween the current and reference states and, successively, the Green–Lagrange
strain tensor, as discussed in [25]. Given such strain tensor and a constitutive
model, it is thus possible to determine the stress fields in the three-dimensional
structure. The problem unknowns, such as the displacements of the centre-
line’s points and the warping fields, can then be determined as the solution
of a set of balance equations deduced by a stationary condition of a suitable
energy functional [25]. As shown in [25]and [26], the results of this procedure
is a mathematical problem based on partial differential equations (PDEs) with
Neumann-type boundary conditions the solution of which enable obtaining all
unknowns of the problem, such as the warping fields wk, the displacements of
the centre-line’s points, the Green–Lagrange strain fields and the corresponding
stress fields.

The results of the article are presented at the 13th International Confer-
ence Chaotic Modeling, Simulation and Applications (CHAOS2020, June 9–12,
2020, Florence, Italy).
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Prediction of qualitative dynamics in population
models through Holling’s functional responses
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Abstract. Natural ecosystems are complex network of biotic and abiotic inter-
actions of species and their biological, physical and chemical constituents. Over the
century, mathematical models have played primary roles in understanding the mystery
behind the ecosystems processes and interesting dynamics of natural ecosystems. The
di-trophic predator-prey interactions are the basic building blocks for complex food
web models (multiple trophic interactions). The pioneering work of Lotka-Volterra
(1926), explaining the abrupt deviations in species abundance and existence of oscil-
lations in a simple predator-prey interaction. Studies in previous decades, it has been
assumed that the functional responses are the main cause for chaotic and non-chaotic
behavior. In this paper, we investigate how functional responses affect the system
dynamics by using its different combinations in a simple two prey-one predator pop-
ulation model. Based on our present investigation, we concluded that the stabilizing
properties of functional responses dominate oscillatory behavior.

Keywords: Controlling Limit cycles, Two parameter bifurcation comparison, Holling
type Functional Responses, stabilizing property, dominating oscillatory property.

1 Introduction

Food webs in ecosystems play a vital role to regulate species coexistence,
species interactions and carbon, nitrogen cycles in natural ecosystems. They
often assumed to be responsible for species control and ecosystem balance.
The complex networks of biotic (predator-prey) and abiotic interactions in
food webs are ubiquitously exist within trophic levels. Among the biotic inter-
actions, predator-prey interactions exhibit very complex dynamics and hence,
attracted the attention of theoretical, experimental and field ecologists from
the last century. Experiments and field observations are the basis for the de-
velopment of theoretical concepts of ecological process through mathematical
models. These mathematical models interpret the model dynamics using dif-
ferential equations and predict the future happening based on their results [16].
The theoretical development of mathematical modeling assumed to be started
from the pioneering work of Lotka and Volterra (1926) [17,22], which explained
the abrupt deviations in species abundance and predicted the existence of os-
cillations in a simple predator-prey model. The di-trophic predator-prey inter-
actions are the basic building blocks for complex food web models of multiple
trophic interactions [16]. The food-web systems exhibit more complex dynam-
ics (quasi-periodicity, chaos) on increasing the number of species in its chain
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[1–3] which cannot be obtained by di-trophic food chain models [8].
Growth rates (prey increment with time [3,4] and functional responses (the
relationship between prey-capturing by per predator in unit time with prey
density), frequently used in theoretical predator-prey interactions, are the two
important factors to control the overall dynamics of food webs. The term func-
tional response (FR) was first acknowledged by Soloman (1949)[12] and exten-
sively deliberated by C.S. Holling using the Disc equations based on predator’s
handling (capturing, eating and digesting) ability [1–3]. Based on terrestrial
experiments and artificial lab experiments [1–3], C.S. Holling proposed three
types of functional responses namely Holling types I, II and III. Later on,
Holling type IV FR is coined and identified by J.F. Andrews [7] in the cul-
ture of micro-organisms which is nonlinear and density dependent function.
There are several other FRs such as Leslie-Gower, Ivlev etc., which are also
frequently used in predator-prey interactions besides Holling type FR. The
Holling type I (HI) FR is the simplest, in which predator’s capture rate in-
creases directly proportional to prey density till saturation. HIFR has been
used in Lotka-Volterra’s predator-prey model which produced neutral stable
limit cycles [17,22]. Experimentally, it is observed that the sea star’s predation
traits on juvenile scallops in aquatic region are HI [10,11]. It is also used in the
filter-feeding zooplankton harvesting models. It’s mathematical description is
k(x, y) = min(w1x,w1). The Holling type II (HII) is also similar in the sense
that the rate of capture prey increases with increasing prey density but its
saturation reached out slowly in comparison of HI . It is frequently used in the
population estimation of insects and parasitoids [17,6]. It’s mathematical de-
scription is k(x, y) = w1x

1+w1x+w2y
. The Holling type III (HIII) exhibits S-shaped

in which at low prey density, the capture rate exceeds and goes to saturation
gradually like (HII). It is widely used on population estimation of vertebrates

[17,6]. Its mathematical description is k(x, y) = w1x
2

1+w1x2+w2y2
. The Holling type

IV (HIV ) is dome-shaped and non-linear which is further proposed and mod-
ified by Sokol and Howell (1980) [23] and used for the population estimation
on micro-organisms and mice estimations [6]. It’s mathematical description
is k(x, y) = w1x

1+w1x2+w2y2
. The predator behaviour in the natural ecosystem is

strongly associated with prey availability and associated functional response by
which predator predates on prey [3,5,8,14,19,20]. The functional response may
induce oscillations in di-trophic predator-prey interaction (or chaos) in multi-
trophic systems [6,13,21]. In food web systems, the predation rate associated
with prey may vary due to change in physical habitat of species.
Studies of Holling’s FR convey that the HI gives the point stability and extinc-
tion while HII and HIV give periodic solution along with point stability and
extinction with suitable parameter choices. HIII gives stability with persis-
tence throughout parameter choice (see fig 1). We have extended their studies
with the combined effects of different function responses in food web systems.
We consider a simple food web consisting of two bottom prey and one predator
on which combination of different functional responses are applied to infer the
qualitative behaviour. We have studied the following questions: (1) Is the com-
bination of functional responses gives oscillatory solutions with point stability
and extinction? (2) What are the basic properties of this type of model? (3)
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What are the detailed of the dynamical behaviour of these systems? (3) What
are the two-parameter bifurcation analysis of these system?

2 Background (Terminology)

Assuming x and y prey densities and z predator density, a simple food web
model of one predator and two prey can be expressed with the following system
of differential equations:

x′ = xg(x)− zk(x, y)

y′ = yi(y)− zj(x, y)

z′ = h(x, y, z)

(1)

Here, prey x grows logistically in the absence of predator z as follows:

g(x) = (1− x) such that g(0) = 1 > 0, gx = −1,∀x ≥ 0 and g(1) = 0

i(y) = w4(1− y) such that i(0) = w4, iy = −w4,∀y ≥ 0 and i(1) = 0

Where w4 represent the maximum growth coefficient of prey y. The growth
of predator z depends on several factors including prey availability, preda-
tor catching and handling ability, prey searching ability etc. Here, we inves-
tigate the model dynamics when predator grows according to Leslie-Gower
type FR [8,15] h(x, y, z) = s4z(1 − s3z

1+s1x+s2y
). Where s1, s2 and s3 are the

coefficients of environmental carrying capacity which reduce predator pop-
ulation while is the intrinsic growth rate of the predator z. The identical
participation of male and female in the growth of predator [9,18,19] gives
h(x, y, z) = s4z

2(1− s3
1+s1x+s2y

).

3 Model Formulations

The model formulations are described based on the following assumptions:

3.1 Case 1: when both preys have the same functional response:

Using identically HI , HII HIII and HIV FR in both bottom prey and keeping
Leslie-Gower type predator, following food web models are formulated in equa-
tion 2- 5 respectively. Many Authors studies propertise of these FR in their
studies [6,13,21]. The detailed one parameter analysis of functional response
related model 2- 5 is given in Figure 6.

x′ = x(1− x)− w1xz

y′ = y(1− y)w4 − w5yz

z′ = w6z
2(1− w7

1 + w8x+ w9y
)

(2)
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x′ = x(1− x)− w1xz

1 + w2x+ w3y

y′ = y(1− y)w4 −
w5yz

1 + w2x+ w3y

z′ = w6z
2(1− w7

1 + w8x+ w9y
)

(3)

x′ = x(1− x)− w1x
2z

1 + w2x2 + w3y2

y′ = y(1− y)w4 −
w5y

2z

1 + w2x2 + w3y2

z′ = w6z
2(1− w7

1 + w8x+ w9y
)

(4)

x′ = x(1− x)− w1xz

1 + w2x2 + w3y2

y′ = y(1− y)w4 −
w5yz

1 + w2x2 + w3y2

z′ = w6z
2(1− w7

1 + w8x+ w9y
)

(5)

Where parameter w1 & w5 are maximum attack rate at prey x and prey
y respectively by predator z. Parameter w2 & w3 are half-saturation constant
for prey x and prey y in absence of other prey respectively. Parameter w4 is
the distinuished logistic factor for prey y . Parameter w6 is the growth rate for
the predator z. Parameter w7 is reduction in predator in the severe scarcity
of prey x and prey y. Parameter w8 & w9 is prey preferences for predation of
prey x and prey y respectively by the predator.

3.2 Case 2: Different functional responses in preys

Due to different predation behaviour is happened for different prey species for
common predator and also it is documented that if the physical habitat is
changed then the same predator predation rate is altered on the same prey.
Assuming HI and HII in the prey equation, the Model 1 becomes the Model 6.
Similarly, the functional response HI with combination HIII and HIV is taken
then Model 1 becomes Model 7- 8 respectively. The FR HII with combination
HIII and HIV are taken in the Model 1 becomes Model 9- 10 and our last
model 11 has taken combination of the HII and HIV FR .

x′ = x(1− x)− w1xz

y′ = y(1− y)w4 −
w5yz

1 + w3y

z′ = w6z
2(1− w7

1 + w8x+ w9y
)

(6)

x′ = x(1− x)− w1xz

y′ = y(1− y)w4 −
w5y

2z

1 + w3y2

z′ = w6z
2(1− w7

1 + w8x+ w9y
)

(7)
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x′ = x(1− x)− w1xz

y′ = y(1− y)w4 −
w5yz

1 + w3y2

z′ = w6z
2(1− w7

1 + w8x+ w9y
)

(8)

x′ = x(1− x)− w1xz

1 + w2x+ w3y

y′ = y(1− y)w4 −
w5y

2z

1 + w2x2 + w3y2

z′ = w6z
2(1− w7

1 + w8x+ w9y
)

(9)

x′ = x(1− x)− w1xz

1 + w2x+ w3y

y′ = y(1− y)w4 −
w5yz

1 + w2x2 + w3y2

z′ = w6z
2(1− w7

1 + w8x+ w9y
)

(10)

x′ = x(1− x)− w1x
2z

1 + w2x2 + w3x2

y′ = y(1− y)w4 −
w5yz

1 + w2x2 + w3y2

z′ = w6z
2(1− w7

1 + w8x+ w9y
)

(11)

4 Analysis

Theorem 1. All the model formulated in equations 2- 11 are bounded and
dissipative. Further, all models 2- 11 are persistent.

Proof. The proof for individual models models 2- 11 can be expressed on
similar lines. Taking h(x, y, z) explicitly as Leslie Gower type FR, the following
set of differential equations represent the model 1 as:

x′ = x(1− x)− zf(x, y)

y′ = y(1− y)w4 − zg(x, y)

z′ = w6z
2(1− w7

1 + w8x+ w9y
)

(12)

From the above expression, we have x′ ≤ x(1 − x) =⇒ x(t) ≤ 1
1+ke−t ∀t ≥ 0

Here k = 1
x(0) − 1 is the constant of integration. Now, taking t → ∞ yield

limx→∞ x(t) ≤ 1∀t ≥ 0 similarly, we have y′(t) ≤ y(1 − y)w4 =⇒ y(t) ≤
w4

w4+k1exp(−w4t)
∀t ≥ 0 with k1 = w4( 1

y(0) − 1) is the constant of integration.

Now, taking t→∞, limy→∞ y(t) ≤ 1∀t ≥ 0 For predation functional response,

Let φ(t) = x(t)+y(t)+ z(t)
κ3

;φ(0) ≥ 0, Then dφ
dt +k4φ(t) ≤ x(1−x+κ4)+y(1−

y)w4 + ζ(x, y, z) where ζ(x, y, z) = w6z
2(1 − w7

1+w8x+w9y
) + κ4z(t)

κ3
. Using the
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maximum property of function, we get dφ
dt +k4φ(t) ≤ (1+w4)

4 +κ4 + ζ0 provided
w6a > w7 and k3 = ak2

4∀t ≥ 0,

φ(t) =
(1 + w4 + 4κ4 + 4ζ0)

4
− (1 + w4 + 4k4 − φ0)exp(−k4t)

4

=⇒ lim
t→∞

φ(t) =
(1 + w4 + 4κ4 + 4ζ0)

4k4

This implies that solutions of system (12) are uniformly bounded for any ini-
tial value of R+

3. To show the system is dissipative, let there exist such that
(γ1, γ2, γ3) > 0 such that Ω(x0, y0, z0) ⊂ R+

3 = {(x, y, z) : 0 ≤ x ≤ γ1, 0 ≤ y ≤
γ2, 0 ≤ z ≤ γ3} for all (x0, y0, z0) ≥ 0 where Ω(x0, y0, z0) is the omega-limit
set of the orbit initiating at (x0, y0, z0). Thus, the general form of the model 1
is dissipative and bounded. Therefore, for any positive solution of the model 1
can persist for longer time. Hence all models 2- 11 are dissipative and persist.

Equilibrium points & Models Behavior

Theorem 2. All models 2- 11 has the trivial equilibrium point E0(0, 0, 0) and
the axial equilibrium points E1(1, 0, 0), E2(0, 1, 0), and the planar equilibrium
point E3(1, 1, 0). The axial singularity E(0, 0, 1) is biologically unfeasible and
hence doesn’t exist due to absence of prey.

Theorem 3. In the absence of one prey in model 2, the following equilib-

rium points exist: E11(w7−1
w8

, 0, 1−x̄
w1

) & E12(0, w7−1
w9

, (1−ȳ)w4

w5
) and in the pos-

itive octant, the non-trivial equilibrium point E13(x̄, ȳ, z̄) exists, where x̄ =
w7−1−w9ȳ

w8
, ȳ = (1−ȳ)w4

w5
& z̄ = 1−x̄

w1

Theorem 4. In the absence of one prey in the model 3, the following equilib-

rium points exist: E21(w7−1
w8

, 0, 1+w2x̄(1−x̄)
w1

) & E22(0, w7−1
w9

, (1−ȳ)w4(1+w3ȳ)
w5

and
in the positive octant, the non-trivial equilibrium point E23(x̄, ȳ, z̄) exists, where

x̄ = w7−1−w9ȳ
w8

, z̄ = (1−x̄)(1+w2x̄+w3ȳ)
w1

and ȳ can be calculated by a quadratic

equation w3ȳ2 − w3ȳ − (1− ȳ)(1 + w2x̄) + w5z̄
w4

= 0.

Theorem 5. In the absence of one prey in the model 4, the following equi-

librium points exist: E31(w7−1
w8

, 0, 1+w2x̄2(1−x̄)
w1x̄

) & E32(0, w7−1
w9

, (1−ȳ)w4(1+w3ȳ
2)

w5ȳ

and in the positive octant, the non-trivial equilibrium point E33(x̄, ȳ, z̄) exists,

where x̄ = w7−1−w9ȳ
w8

, z̄ = (1−x̄)(1+w2x̄
2+w3ȳ

2)
w1x̄

and ȳ can be calculated by a

quadratic equation w3ȳ
3 − w3ȳ

2 + ȳ(1 + w2x̄
2) + w5z̄

w4
− 1− w2x̄

2 = 0

Theorem 6. In the absence of one prey in the model 5, the following equi-

librium points exist: E41(w7−1
w8

, 0, 1+w2x̄
2(1−x̄)
w1

) & E42(0, w7−1
w9

, (1−ȳ)w4(1+w3ȳ
2)

w5

and in the positive octant, the non-trivial equilibrium point E43(x̄, ȳ, z̄) exists,

where x̄ = w7−1−w9ȳ
w8

, z̄ = (1−x̄)(1+w2x̄
2+w3ȳ

2)
w1

and ȳ can be calculated by a

quadratic equation w3ȳ
3 − w3ȳ

2 − (1− ȳ)(1 + w2x̄
2) + w5z̄

w4
− 1 = 0
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Theorem 7. In the absence of one prey in the model 6, the following equi-

librium points exist:E51(w7−1
w8

, 0, (1−x̄)
w1

) & E52(0, w7−1
w9

, (1−ȳ)w4(1+w3ȳ)
w5

and in
the positive octant, the non-trivial equilibrium point E53(x̄, ȳ, z̄) exists, where

x̄ = w7−1−w9ȳ
w8

, z̄ = (1−x̄)
w1

and ȳ can be calculated by a quadratic equation

w3ȳ
2 + (1− w3)ȳ + w5z̄

w4
− 1 = 0

Theorem 8. In the absence of one prey in the model 7, the following equi-

librium points exist:E61(w7−1
w8

, 0, (1−x̄)
w1

) & E62(0, w7−1
w9

, (1−ȳ)w4(1+w3ȳ
2)

w5ȳ
and in

the positive octant, the non-trivial equilibrium point E63(x̄, ȳ, z̄) exists, where

x̄ = w7−1−w9ȳ
w8

, z̄ = (1−x̄)
w1

and ȳ can be calculated by a quadratic equation

w3ȳ
3 − w3ȳ

2 + w5z̄ȳ
w4

+ ȳ − 1 = 0

Theorem 9. In the absence of one prey in the model 8, the following equi-

librium points exist:E71(w7−1
w8

, 0, (1−x̄)
w1

) & E72(0, w7−1
w9

, (1−ȳ)w4(1+w3ȳ
2)

w5
and in

the positive octant, the non-trivial equilibrium point E73(x̄, ȳ, z̄) exists, where

x̄ = w7−1−w9ȳ
w8

, z̄ = (1−x̄)
w1

and ȳ can be calculated by a quadratic equation

w3ȳ
3 − w3ȳ

2 + w5z̄
w4

+ ȳ − 1 = 0

Theorem 10. In the absence of one prey in the model 9, the following equi-

librium points exist:E81(w7−1
w8

, 0, (1−x̄)(1+w2x̄)
w1

) & E82(0, w7−1
w9

, (1−ȳ)w4(1+w3ȳ
2)

w5ȳ

and in the positive octant, the non-trivial equilibrium point E83(x̄, ȳ, z̄) exists,

where x̄ = w7−1−w9ȳ
w8

, z̄ = (1−x̄)(1+w2x̄)
w1

and ȳ can be calculated by a quadratic

equation w3ȳ
3 − w3ȳ

2 + w5z̄ȳ
w4

+ ȳ − 1 = 0

Theorem 11. In the absence of one prey in the model 10, the following equi-

librium points exist:E91(w7−1
w8

, 0, (1−x̄)(1+w2x̄)
w1

) & E92(0, w7−1
w9

, (1−ȳ)w4(1+w3ȳ
2)

w5ȳ

and in the positive octant, the non-trivial equilibrium point E93(x̄, ȳ, z̄) exists,

where x̄ = w7−1−w9ȳ
w8

, z̄ = (1−x̄)(1+w2x̄)
w1

and ȳ can be calculated by a quadratic

equation w3ȳ
3 − w3ȳ

2 + w5z̄
w4

+ ȳ − 1 = 0

Theorem 12. In the absence of one prey in the model 11, the following equi-

librium points exist:E101(w7−1
w8

, 0, (1−x̄)(1+w2x̄
2)

w1x̄
) & E102(0, w7−1

w9
, (1−ȳ)w4(1+w3ȳ

2)
w5

and in the positive octant, the non-trivial equilibrium point E103(x̄, ȳ, z̄) exists,

where x̄ = w7−1−w9ȳ
w8

, z̄ = (1−x̄)(1+w2x̄
2)

w1x̄
and ȳ can be calculated by a quadratic

equation w3ȳ
3 − w3ȳ

2 + w5z̄
w4

+ ȳ − 1 = 0

The local behaviour of the above equilibrium points are stated in the following
theorems:

Theorem 13. The trivial equilibrium E0(0, 0, 0) in all model 2 - 11 is always
non-hyperbolic and unstable. There exist unstable subspace along xy plane and
center subspace along z plane.

Theorem 14. The axial singularity E1(1, 0, 0) in all model 2 - 11 is non-
hyperbolic and saddle point. The y plane of the system is an unstable subspace,
x plane of the system is stable subspace and z plane of the system is center
subspace.
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Theorem 15. The axial singularity E2(0, 1, 0) in all model 2 - 11 is non-
hyperbolic, saddle point. The x plane of the system is an unstable subspace,
y plane of the system is stable subspace and z plane of the system is center
subspace.

Theorem 16. The equilibrium E3(1, 1, 0) in all model 2 - 11 is non-hyperbolic
and stable. The system has stable subspace along x − y plane and center sub-
space along z plane.

Theorem 17. The equilibrium points E4(x̄, 0, z̄), E5(0, ȳ, z̄) and E6(x̄, ȳ, z̄) are
asymptotically stable in each model 2 - 11 individually, if the Jacobian of each
model at the equilibrium point satisfies the following conditions

A1 = −(A11 +A22 +A33) > 0

A2 = A22A33 +A11A33 +A11A22 −A12A21 −A32A33 −A31A13 > 0

A3 = A11A23A32 +A12A21A33 +A13A31A22 −A11A22A33 −A12A31A23

−A32A21A13 > 0.

(13)

The proofs of the above theorems are quite easy and hence left. Here, proof of
Theorem 17 is stated:

Proof. the general equilibrium point E6(x̄, ȳ, z̄) put in RHS of model 1 and
taking first order differentiation. We found the jacobian matrix Jx,y,z for the
model system (1) is A11 A12 A13

A21 A22 A23

A31 A32 A33


where A11 = 1 − 2x − w1z,A12 = 0, A13 = −w1x,A21 = 0, A22 = w4 −
2w4y − w5z , A23 = −w5y,A31 = w6w7w8z

2

1+w8x+w9z

2
, A32 = w6w7w9z

2

1+w8x+w9z

2
, A33 =

2w6z(1 − w7

1+w8x+w9z
) The characteristic polynomial for the Jacobean Matrix

λ3 +A1λ
2 +A2λ+A3 = 0 where A1, A2, A3 are mentenioned in the equation 13.

The system is asymptotically stable if the eigenvalues are negative and A1 >
0, A2 > 0, A3 > 0 and A1A2 −A3 > 0

5 Numerical Simulations and results

To observe the impact of different functional responses on one prey two predator
interaction model 2 - 11, the same parameters are used in each model simula-
tions. Simulations results suggest that the qualitative behaviour of models are
structurally robust (testing with other various parameter combinations), there-
fore following parameter combinations have been used to observe the global
dynamics:

w1 = 3.6, w2 = 1.7, w3 = 1.8, w4 = 1.5, w5 = 3.2, w6 = 1, w7 = 2.1, w8 = 1.7,

w9 = 1.8

(14)
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6 One-Parameter Bifurcation diagrams

We extensively carried out the numerical simulations and using the continuation
algorithm, we drew one-parameter bifurcation diagrams with respect to the
parameter w4 for model 2 - 11. The model 2 - 4 are studied by many authors
and our findings are in line with them [6,13,21] (see figure 1). We carried out
the simulation of the model 2 - 11 and found non- oscillation properties are
found with persistency along with extinctions. Details bifurcation point and
persistency range of all model are given in table 1.

Fig. 1. One parameter bifurcation diagram for prey x, y and predator z with respect
to the parameter w4 for model 2 - 4 are shown. Here red line is stable equilibrium
point (SEP), green circle is stable limit cycle (SLC), Black colour is unstable equi-
librium point(UEP). BP1= first branch point, BP2= second branch point, Model 2
is HIFR alone, Model 3 is HIIFR alone, Model 4 is HIIIFR alone. Model 3 and
Model 5 have similar qualitaive behaviour. Combination of FR (in Model 6 - 11) are
similar qualitative dynamics like Model 2.

7 Two-Parameter Bifurcation Diagrams

The parameter region for the species coexistence, extinction of prey is observed
in two-parameter bifurcation diagram in figure 2 - 3. Model 4 with HIII FR
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exhibit stabilizing effect on system behaviour and a possibility of avoiding the
extinction of species. The extinction of prey or predator may not be possible
in the Model 4 only which is a significant criterion of using these functional
responses in predator-prey interactions. In the two-parameter bifurcation dia-
gram for the Model 3, there are four regions, two regions are extinction region
where preys are extinct while in between these two regions, all species survive
and co-exists. In the middle of coexists region, a periodic region exists where all
the populations are periodic. Similar behaviour is given by H-IV FR (Model 5)
see in figure 2. While, the Model 2 shows three regions, the first region and
third region gives extinction of one of the prey and center region gives coexis-
tence. Similar behaviour is shown by Model 6, 8, 10. Model 7, 9, 11 give only
two regions one is coexistence and other is extinction.

Model BP1 BP2 HB1 HB2 Persistence range

2 0.3137 2.286 N.A. N.A. (0.3137 - 2.286)

3 0.3138 2.286 0.6805 1.235 (0.3138 - 2.286)

4 N.A. N.A. N.A. N.A. (0 - 4)

5 0.3138 2.286 0.6692 1.233 (0.3138 - 2.286)

6 0.3137 1.088 N.A. N.A. (0.3137 - 1.088)

7 0.8353 N.A. N.A. N.A. (0 - 0.8353)

8 0.3137 1.367 N.A. N.A. (0.3137 - 1.367)

9 0.8354 N.A. N.A. N.A. (0 - 0.8354)

10 0.6588 1.367 N.A. N.A. (0.6588 - 1.367)

11 0.8300 N.A. N.A. N.A. (0.8300 - 4)

Table 1. List of all branch point (First branch point (BP1) and Second branch
point (BP2)), Hopf bifurcation point (First Hopf point (HB1) and Second Hopf point
(HB2)), and persistence range found in the respective model.

8 Discussion and conclusions

For understanding the significant effect of different functional response in two
prey and one predator, we applying a combination of functional response in
the Model 1 and found there are only three significant qualitative behaviours
which are well explained in the result section. We have applied the combi-
nation of functional responses and found co-existence is possible for a wide
range of parameter in every model but care should be taken as some param-
eter combination may lead to the extinction of some species except HIIIFR
(Model 4) . The oscillatory behaviour is observed in HIIFR (Model 3) and
HIV FR (Model 5) with system persistence, species co-existence in the form of
limit cycles and extinction of one of the prey in these systems. We observed
that HIIFR (Model 3) and HIV FR (Model 5) most likely to produce periodic
solution through supercritical or subcritical Hopf-bifurcation. Simple extinc-
tion and coexistence are observed in HIFR (Model 2).
The previous studies on FR in predator-prey models, provide an insight into
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Fig. 2. Two-parameter bifurcation diagram with respect to w8 & w4 (left) and
w9 & w4 right) for the Model 2- 7 respectively. Here, PyE=prey y extinct, PP=
periodic populations,PxE= prey x extinct.
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Fig. 3. Two-parameter bifurcation diagram with respect to w8 & w4 (left) and
w9 & w4 right) for the Model 8- 11 respectively. Here, PyE=prey y extinct, PxE=
prey x extinct.

system dynamics with the individual functional response and many experi-
mental results require the use of multiple FR in their Mathematical Models.
Therefore, it is essential to observe the impact of the combination of func-
tional responses on simple predator-prey models and to compare the results.
So, we have applied the combination of FRs in the same model and found that
other FRs have stabilize the system by dampening the oscillations. Any FR
is combined with HIIFR (or HIV FR), the oscillatory behaviour of the Model
is disappeared and extinction of one of the prey occurred through the branch
point. When HIFR (or HIIIFR) is taken with HIIFR (or HIV FR) then
two threshold value is found with coalescing of both Hopf bifurcation point.
Below the branch point, one prey y is extinct while above the branch point
another prey x is extinct, in between these, species co-existence is found. Some
distinguished differences like Hopf bifurcation points, branch points and spe-
cific population with parameter value are shown in table 1. Here, we observe
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non- linear functional response HIIFR (or HIV FR) alone taken in system,
model dynamics grants oscillations with extinction while the different combi-
nation of FR offering only stability and extinctions with the coalescence of
Hopf bifurcation points. From this argument, we can say that non- linearity
of functional responses are not always giving periodic solutions/ limit cycles.
The FR HI , HII or HIV alone produce two branch point while the combina-
tion with HIIIFR destroy one branch point and enhance the stability of the
system. In overall systems, the prey’s equations are varied through different
functional response and predator’s equations are same but we found the quan-
titative value of predator are varied rather than that of prey. i.e. shaping of
system dynamics is main rooted by FR. FR is also the main cause of a different
range of persistence value.
System equations deliberated above were kept very simple to make the effect
of functional responses easier to analyze. In our two prey and predator model,
we find HI , HII , HIII FR give distinguished qualitative behaviour and HII and
HIV FR dynamical behaviour are similar. The combination of Holling FR in
model produce similar behaviour like Model 2. The combination of different
FR in one model is not studied by others (in my knowledge) but found in ex-
perimental studies and we found non- linear FR have counter their oscillatry
property and the model shows only co-existence and extinction.
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Abstract. As opposed to meandering or channelized fluvial beds, braided rivers are 
characterized by a morphological activity starting at very low flows, since fluxes are 

concentrated in a limited number of small channels. With increasing discharge, more 

channels are involved, up to the situation in which the complete alluvial plain is flooded. 

As a consequence, there is an intermediate range of flows for which pattern complexity is 
maximum and braided indices are highest, representing essential conditions for the 

coexistence of a large variety of habitats and for ecosystems prosperity. In this paper, a 

new methodology for a quantitative assessment of the complexity of braided rivers at a 

reach scale is introduced. It is based on the application of the box-counting algorithm to 
flooded areas identified through a two-dimensional (shallow water) hydrodynamic 

simulation model, in order to derive an estimate of the fractal dimension with varying flow 

rate. The identification of the range of discharges for which the fractal dimension is highest 

is of particular importance in river restoration projects. An application to the River 
Tagliamento (North-East Italy) is illustrated. 

. 

Keywords: Morphodynamics, River restoration, Formative discharge, Box-counting 

algorithm, River Tagliamento. 
 

 

1  Introduction 
 

Braided rivers are complex, non-linear systems characterized by chaotic 

dynamics. Their local properties, such as the solid transport and the number of 

channels in a given section, are spatially and temporally variable, their prediction 

being precluded in the mid-to-long term (Redolfi[16]). 

Among others, the process of bifurcation plays a fundamental role in the 

formation and development of a network of braided channels. Gravel bed rivers 

with small width-to-depth ratio are characterized by stable equilibrium, while 

width-to-depth ratios above a critical threshold trigger an initial formation of 

alternate bars, which determine a sinuous pattern and then a first bifurcation. In 

these last decades, such processes have been investigated with analytical 

approaches, numerical simulations and laboratory experiments (Parker[15]; 

Ikeda[9]; Jaeggi[10]; Colombini et al.[4]; Tubino et al.[21]; Lanzoni[13]). 

In particular, experimental studies have demonstrated the importance of the 

presence of alternate bars in the formation of a braiding pattern (Federici and 

Paola[7]; Bertoldi and Tubino[2]; Jang and Shimizu[11]). 

The morphodynamics of such systems is generally described by a statistical 

approach, which identifies the dependence of some reach-averaged properties 
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(like width, total and active channels, solid transport) on main controlling factors, 

like discharge, bed slope, sediment size and total river width (Ashmore[1]). 

In the definition of reach-averaged properties, the most important issue is the 

identification of a proper scale length. In line with previous research, some 

authors have proposed at least ten times the river width (Egozi and Ashmore[6]), 

which is a value much higher than those related to meandering or channelized 

fluvial beds, typically of the order of the river width (Ikeda[9]; Seminara and 

Tubino[19]; Lanzoni[13]). 

The identification of a characteristic length is difficult due to the fact that there 

are a lot of spatial and temporal scales coexisting together (Sapozhnikov and 

Foufoula-Georgiou[18]). Accordingly, some researchers (Sapozhnikov and 

Foufoula-Georgiou[17]; Walsh and Hicks[23]; Lane[12]) have proposed that 

fluvial patterns in braided rivers resemble those of self-similar fractals (or self-

affine systems, if an isotropic character is not present). 

One problem still open is the quantitative description of the pattern complexity: 

to this end, specific indices have been introduced, like the average number of 

channels in the characteristic length (Egozi and Ashmore[5]). Besides, not all 

channels are simultaneously morphologically active, since solid transport takes 

place only in a fraction of them. Bertoldi et al.[3] have shown that the total number 

of channels is well correlated with the dimensionless discharge, while the number 

of active channel is more dependent on the dimensionless stream power. 

Another important controlling factor is the formation and growth of vegetation, 

whose influence on the planimetric configuration depends on the ratio between 

the growth time and the average interval of morphologically relevant inundations 

(Paola[14]). Gurnell et al.[8] have shown that such role is much more important 

in relatively low energy systems. 

In the present paper we aim at a different approach for a quantitative description 

of such complex fluvial patterns, starting from detailed numerical simulations of 

the flow field and then analyzing the braiding patterns with conventional fractal 

analysis algorithms. An application to the River Tagliamento (North-East Italy) 

is presented. The results show that the values for which the fractal dimension is 

highest correspond to a narrow range of formative discharges. 

 

2  Materials and Methods 
 

2.1 Materials 

The River Tagliamento is located in the North-East part of Italy, with a drainage 

basin of 2780 km2 and a length of 178 km. Its upper part is characterized by the 

most extensive and connected length of dynamic and morphologically intact 

braided pattern within the Alps, leading to the most important braided reference 

system of the Alpine region (Tockner et al.[20]). 

The area under investigation (Figure 1) is between Venzone (where a historically 

relevant gage station is present) and Pinzano gorge (where the corridor width 

shrinks from 1 km down to 130 m), for a total length of 22.5 km and an area of 

nearly 30 km2. The 100-year discharge is 4500 m3/s. 
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Fig. 1. General view of the area under analysis, with color map indicating 

terrain elevations 

 

Lidar data available from Regione Autonoma Friuli Venezia Giulia with a 

resolution of 2 points/m2 have been used for assigning elevations at mesh nodes, 

while aerial photographs (0.2 m resolution) have been analyzed in order to 

determine an estimate of water depths in those areas where water was present at 

the time of survey. It is important to put into evidence that lidar data do not 

actually discriminate between surface water elevation and underlying bottom 

elevation, thus not properly describing the geometry of flooded channels. 

Several field campaigns and investigations allowed to determine local geometric 

characteristics of some defense structures (like groins, jetties and retaining walls) 

as well as bridge piers, which have been included in the computational mesh. 

 

2.2 Methodology 

The software SRH-2D has been adopted for the implementation of the 

hydrodynamic model. The software is free and can be downloaded from 

https://www.usbr.gov/. Last version is 3.2.4 (June 2019). 
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The software SMS (Surface Modeling System, distributed by Aquaveo™) has 

been used for the construction of the mesh, which is formed by 1372586 nodes 

and 1557718 cells, due to the fine discretization of the computational domain (cell 

sides range between 1 and 8 meters). The inflow (upstream) boundary condition 

has been kept constant in each hydrodynamic simulation, and results have been 

saved after a sufficient transient time guaranteed steady-state conditions 

throughout the computational domain. 

The freeware software Fractalyse has been chosen for the fractal analysis of 

simulated flooded areas (downloadable from http://www.fractalyse.org/). In 

particular, the procedure adopted is the well-known box-counting algorithm 

(Turcotte[22]), which allows to determine the fractal dimension of the braided 

patterns. 

The overall methodology can be summarized in the following steps: 

1) Mesh generation and elevation assignment at nodes. 

2) Hydrodynamic simulations with very low discharges (typically 10-20 

m3/s), in order to identify the areas occupied by low flows. 

3) Subdivision of each aerial photograph image in RGB bands, and 

estimation of the water depth, H, obtained as: H = a∙ln(λR/λG), in which 

a is a calibration parameter and λR and λG are the red and green band 

intensities, respectively. 

4) Creation of a ‘mask’ covering only the areas occupied by low flows; in 

this way, mesh nodes affected by new elevation assignments are limited 

to those calculated in step 2 (this step is necessary because the algorithm 

in step 3 identifies fictitious water depths in some dry, vegetated areas). 

5) Assignment of new elevation at mesh nodes identified by the ‘mask’ of 

step 4; this is achieved by subtracting the water depths calculated in step 

3 to the elevation originally present. In this way, only the wet areas as 

obtained by numerical simulations are altered by elevation changes. 

6) Hydrodynamic simulations with updated mesh node elevations and 

varying water discharges (from very low flows up to the condition in 

which the flood plain is flooded). 

7) Analysis of the planimetric flow patterns with box-counting algorithm 

and estimation of the fractal dimension of the flooded areas.  

 

In particular, the calibration parameter a of step 3 has been determined starting 

from measured water depths just upstream a water intake for irrigation purposes 

(managed by Friulian Plain Bureau of Reclamation). 

 

2.3 Box-counting algorithm and derivation of fractal dimension 

In Euclidean geometry, a point is zero-dimensional, a line is one-dimensional, a 

plane is two-dimensional, and so on. The traditional meaning of the dimension of 

an object is that of giving the number of values needed to specify the position of 

a point on the object. Thus, one value needs to be given in order to specify the 

position of a point on a line, two values need to be specified for obtaining the 

position of a point on a plane, and so on. 
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Another meaning of ‘dimension of an object’ can be based on the idea of self-

similarity. Of course, this must reproduce the traditional values when applied to 

classical Euclidean objects such as lines and planes. Consider how to give a self-

similar description of a one-dimensional object, that is, a line segment: one way 

to do this is to say that a line segment of length, ℓ, consists of two copies of itself, 

each characterized by a length ℓ/2. With the same reasoning, a filled-in square can 

be thought as four copies of itself, each having a side of length ℓ/2. 

In this way, two quantities characterize each of the self-similar shapes of the 

examples above: 

- the number of self-similar copies, N; 

- the edge length of the original relative to each copy, ϵ. 

The following formula can be used to define the dimension D of an object: 

 𝐷 =
log𝑁

log 𝜖
 (1) 

Applying eq. (1) to the examples introduced before, in the case of a line segment: 

N = 2, ϵ = 2, D = 1; and for the filled square: N = 4, ϵ = 2, D = 2. 

Equation (1) gives a formula for calculating the dimension also of a fractal object: 

it is sufficient to know the number of self-similar copies, N, and the size of the 

original relative to each copy, ϵ. For complicated objects, like the braiding pattern 

of rivers, the box-counting algorithm can be summarized in the following steps: 

 

1) ‘Cover’ all the points in the object with boxes of edge-length ϵ0, and 

count the number of these boxes, denoted as N(ϵ0). In the case of braiding 

patterns, the boxes are squares. 

2) Repeat step (1) using boxes with edge-length ϵ1 = ϵ0/2. Then repeat again 

using ϵ2 = ϵ1/2, ϵ3 = ϵ2/2, and so on. Obviously, for each ϵi, there is also 

the corresponding N(ϵi). 

3) Theoretically, the dimension D is the number for which  

 lim
𝜖→0

𝑁(𝜖) = 𝐴𝜖−𝐷 (2) 

where A is a constant. In practice, D may be estimated as 

 𝐷 =
log𝑁(𝜖𝑖+1)/𝑁(𝜖𝑖)

log𝜖𝑖/𝜖𝑖+1
 (3) 

 

The only difficulty is in selecting the value of i, and generally it is selected as 

large as possible in order to approximate the limit 𝜖 → 0. However, for real 

objects the boxes cannot be infinitely small, like in the present case, since it is 

inappropriate to make the covering boxes smaller than the size of a computational 

cell. 

 

 

3  Results and Discussion 
 

Several simulations have been run, with the discharge varying from 50 m3/s up to 

3000 m3/s, this last value determining the inundation of all the floodplain and 

adjacent terraces.  
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For each discharge value, the simulation has been carried out for a sufficient time 

in order to establish steady state conditions. Figure 2 shows some results of the 

hydrodynamic model in terms of water depths obtained, respectively, for the 

discharge of 50, 300, 500 and 900 m3/s. 

 

  

  
Fig. 2. Maps representing water depths for different discharge values, 

respectively 50 m3/s (top left), 300 m3/s (top right), 500 m3/s (bottom left) and 

900 m3/s (bottom right) 

 

Some level measurements allowed model calibration in the range of medium-to-

high discharges, considering that a stage-discharge relationship is available at an 

intermediate section of the area under analysis. A previous physical model study 

identified such relationship for a control section where a bridge is present. In this 

way, Manning’s roughness coefficients have been defined in order to reproduce 

the measured water levels within an acceptable tolerance. 
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From Figure 2, it is evident how the number of flooded channels at low flows is 

quite limited, and the morphology of braiding is not very articulated. For higher 

discharges, the fluxes subdivide into more channels, and braiding complexity 

increases accordingly, until it reaches a maximum. The further increase in 

discharge rapidly determines a situation for which all the floodplain is interested 

by waters, and braiding complexity decreases. 

Such behavior is well described by the fractal dimension depicted in Figure 3, as 

a function of river discharge. In this case, the maximum value of nearly 1.29 is 

obtained for 500 m3/s, corresponding to the return period of 4 months. 

 

 
Fig. 3. Fractal dimension calculated through the application of the box-counting 

algorithm, as a function of varying river discharge 

 

Figure 4 shows water depth maps for the southern zone of the area under study. 

The phenomenon described above is clearly captured by detailed two-

dimensional hydrodynamic modelling. 

 

 

Conclusions 
 

The paper has presented a methodology for quantifying the pattern complexity of 

steady-state planimetric configuration of braided rivers. Starting from the results 

obtained from detailed two-dimensional hydrodynamic simulations, the box-

counting algorithm allows to determine the fractal dimension of the braided 

pattern.  

The procedure is relevant for the a-priori evaluation of river management works, 

in particular those aimed at excavation, extraction and widening. The 

maintenance of a range of formative discharges at low-to-medium flows is very 
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important for preserving ecological stability and the possibility of habitat 

evolution, which could be potentially endangered by failures in the restoration 

projects. 

 

 

  

  

  

  
Fig. 4. Water depths for the southern zone of the computational area for varying 

discharges: from top to bottom, left to right: 50 m3/s; 200 m3/s; 300 m3/s; 400 

m3/s; 500 m3/s; 600 m3/s; 700 m3/s; 800 m3/s 
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Abstract. Mechano-electric feedback (MEF) is the mechanism by which mechani-
cal changes in cardiac muscles influence the electrical excitation of the heart (and
vice-versa). It is a fundamental feedback process in normal behaviour, helping to
maintain the heart’s response to the demands placed on it. Indeed, a disruption to
the pattern of electrical signals triggered by pathological conditions in the mechanical
environment, can lead to cardiac alternans and arrhythmia. In this paper, MEF is
investigated using a low-order, lumped-parameter model which incorporates the me-
chanical, electrical and chemical action across both sarcomere (cardiac muscle fibres)
and heart scales. Feedback is simulated by coupling the mechanical model to both
the fast and slow variables of the electrical activity, thereby allowing the effects of
mechanical stress and stretch on electrical patterns to be observed. Although simple,
the model allows significant qualitative behaviour to be observed without significant
cost. It is found that disruption to the MEF causes interesting bifurcations in the
mechanical-electrical system, leading to various pathological conditions such as peri-
odic doubling in heart beats, irregular (quasi-periodicity) frequencies.

Keywords: Nonlinear Dynamics; Multiscale model; Cardiac cycle; Mechano-electric
Effect; Arrhythmias; Feedback; Lumped-parameter Model; Biological Complexity;
Self-organization.

1 Introduction and Background

Regular function of the heart is ensured through several feedback and control
mechanisms, allowing this complex organ to function across multiple scales
and domains; from the macro-scale mechanical regulation down to the micro-
scale electro-chemical activity. Failure of these mechanisms is known to lead
to heart problems and even death. Indeed, heart diseases and failure remain
the leading causes of death worldwide [1]. One of the most important feedback
mechanisms is the mechano-electric feedback (MEF), which is the influence
of the macro-scale mechanical activity on the micro-electric behaviour of the
individual muscle fibres (sarcomere).

The aim of this study is to investigate MEF using a modified form of the
newly proposed model of cardiac function previously described in Kim and
Capoccia [12] and Kim and Capoccia [13]. This low-order, lumped-parameter
model integrates the macro-scale mechanics of the heart and circulation with
the micro-scale electro-chemical behaviour of the sarcomere without reference
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to the time-varying elastance method. The time-varying elastance concept is
often drawn upon by similar low-order models (Sagawa [9], Simaan [10]) to sim-
ulate the heart ventricle pressure-volume relationship, but it’s foundations have
been questioned (Claessens et al. [11]) and is unsuitable for modelling MEF.
As will be shown, this new relatively modest representation yields meaning-
ful qualitative information without the considerable computational expense of
similar models involving far greater detail.

Some examples of previous attempts to model the MEF include the ‘ab-
stract’ analysis by Knudsen et al. [2], who present a low order, lumped param-
eter model, whose excitable system is of Fitzhugh-Nagumo type (Fitzhugh [3]).
This is coupled to an ODE for the ventricular contraction. In contrast, Collet
et al. [4] include spatial dynamics as well as temporal in their one-dimensional
analysis of MEF. Temperature variations are also incorporated. Dysfunction
of cardiac spatial dynamics are known to lead to complex non-linear behaviour
and arrhythmia in many settings (Qu et al. [5], Franzone et al. [6]). Amar et
al. [7] employ their previously developed three-dimensional model of a contract-
ing ventricle, into which an electrophysiological model of sarcomere membrane
potential is introduced. This electrophysiological model is a first order ODE
for the sarcomere membrane potential and describes 13 ionic currents, one of
which is a stretch-activated current (SAC), used to simulate the MEF.

In the next section, our numerical model is described and the governing
equations given. Then, the results of the MEF investigation are presented and
discussed followed by a brief conclusion.

2 Numerical Method

Our model is presented below and as described above, is adapted from Kim
and Capoccia [12,13] and differs, notably in equations (5) and (7) along with
the values of some parameters used.

2.1 Microscale mechano-chemical model

At the micro-scale, the mechano-electric behaviour of the sarcomere is modelled
by adopting the Bestel-Clement-Sorine method (Bestel [14], Sainte-Marie et
al. [16], Bestel et al. [15]). In this approach, the active stress τc, stiffness
kc, strain εc, and velocity vc = dεc

dt , are obtained using the following set of
differential equations:

dvc
dt

= −χτc − ω2
0εc − aτcd0(εc) + b

(√
V

V0
− 1

)
(1)

dεc
dt

= vc (2)

dτc
dt

= kcvc − (al|vc|+ |u|)τc + σ0u+ (3)

dkc
dt

= −(al|vc|+ |u|)kc + k0u+ (4)

d0(ε) = −e−β0(εc−0.12)2 (5)
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where subscript + is used here to denote only positive values of the preceding
variable are used. Otherwise, 0 is used instead. In equation (1), χ, a, b, αl are
positive constants, χvc is a damping force, ω2

0εc is a micro-scale harmonic force
with ω0 the oscillation frequency. aτcd0(εc) is an active force, and b(

√
V/V0−1)

is a passive force. Equation (1) is derived from a simplified cylinder with
constant height; hence, the strain εc and ventricle volume V are related as
εc ∝

√
V . u represents a ‘summary’ for the chemical activity (Bestel [14]) from

which the contractile force derives. d0(ε) is the length-tension relationship of
cardiac muscle cells. Here, a shifted-Gaussian function is used, which differs
from Kim and Capoccia [12] [13] and is more representative of length-tension
relationships observed in experiments. Finally, σ0 and k0 are the maximum
sarcomere tension and elastance, respectively.

2.2 Macroscale Dynamics

For the macroscale dynamics, the ventricular pressure, PV , evolves according
to

PV = γ
V0
V

[d0(εc)τc + σp] (6)

σp =
k2
k1

[exp(k1
√
V/V0)− 1]+ (7)

where σp is the muscle fibre passive stress, k1 and k2 are positive constants
for the passive tension, and γ is the ratio of ventricular left ventricular wall
thickness to radius (for explanation, see Bestel [14]). Here, its value is tuned to
the model rather than be physiologically precise. From equation (6), one can
see how the macroscale is coupled to the microscale. Equation (7) differs from
[12] [13] in that σp is forced to remain positive, making it more realistic.

2.3 Electro-Chemical Activity

The electro-chemical response of the microscale sarcomere to deformation be-
haves as follows:

dp

dt
= 0.1(q − p+ µ1τc) (8)

dq

dt
= 10q(1− q2)− 10(2π)2p+ µ2V+ + 10 cos(2πt) (9)

u = αuq (10)

Equations (8) and (9) are adapted from the Fitzhugh-Nagumo model and de-
scribe the evolution of a slow-electric response p and a rapid-electric response
q. 10 cos(2πt) is an oscillating force given a value of 1 Hz for a normal heart
rate. Equation (10) relates the chemical to the rapid-electrical activity with
a positive proportional constant αu. The mechano-electric feedback is repre-
sented here in the two positive constants µ1 and µ2. It is apparent, then, how
electrical variables q and p are coupled to the mechanical variables τc and V
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directly through these MEF parameters. Kim and Cappoccia [13] discuss the
meaning of these two values in greater detail, but in summary; µ1 represents
the influence of the stress on the action potential (excitation voltage) during
ventricle contraction and is therefore associated with the effect of systolic or
ejection, stretch. µ2 is the effect of stetch during diastole (filling), since it is
only active when the ventricle volume exceeds the reference value V0 (through

+)

2.4 Basic Circulation Model

It is left to represent the macroscale circulation changes resulting from the
above. Two models for the arterial circulation are used: a ‘basic’ and ‘full’.
For a more detailed discussion of the these models, see Kim and Capoccia [12]
and Kim and Capoccia [13]. For the basic model, the system arterial circulation
is ignored, and instead a focus is placed on V , the ventricular volume, and m,
the aortic pressure.

dV

dt
=

1

RM
(PR − PV )+ −

1

RA
(PV −m)+ − δpn (11)

dm

dt
=

1

CSRC
(m−m0) +

(PV −m)+
CARA

+ δp
n

CA
(12)

dn

dt
=
δp

L∗
[PV −m−R∗n+ βω2] (13)

Equation (13) is included to represent the blood flow, n, from a left-ventricular
assist device (LVAD); a pump to assist ventricle function. δp is a pump pa-
rameter and ω the pump frequency. The atrial pressure parameter PR, and
the arterial pressure m0 are taken as constants. Changing these changes the
preload or afterload. RS , RC , RM and RA are the systemic, characteristic,
mitral valve, and aortic valve resistances, respectively, and R∗ the total pump
resistance. CS and CA are the systemic and aortic compliances. L∗ is the total
pump inertance. For further discussion of the above, see [12] and [13].

2.5 Full Circulation Model

In the full circulation model, the arterial circulation from Simaan (2000) is
employed to incorporate the systemic arterial circulation, resulting in the fol-
lowing:

dm

dt
= − Fa

CA
+

(PV −m)+
CARA

+ δp
n

CA
(14)

dFa
dt

=
m− PS
LS

− RCFa
LS

(15)

dPR
dt

=
−PR + PS
RSCR

− (PR − PV )+
CRRM

(16)

dPS
dt

=
PR − PS
RSCS

+
Fa
CS

(17)
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where Equation (12) in the basic model has been simplified. The equations 15
to 17 describe the aortic and artrial pressures Fa and PR respectively, and PS
the aortic flow. The new parameters RS and LS are the vascular resistance
and aortic blood inertance. CR is the atrial compliance.

2.6 Parameter Values and Basic Model Control Case

The MEF parameters µ1 and µ2 were tuned to the values 0.0024 kpa−1 and
0 (s ml)−1 in Kim and Cappoccia [12], which are used here for a control case.
For brevity, variables and parameter values are not provided here but are listed
in tables 1 and 2 in Kim and Cappoccia [12], [13] along with their units and
physiological meaning. Some changes have been made, however: equations (5)
and (7) have been modified and as a result, β0 = 20 2

3 .

3 Results and Discussion

The control case for both the basic and full models employs the values given
in Table 2 in Kim and Capoccia [13] and without pump support (δp = 0).
In what follows, the MEF parameters µ1 and µ2 are changed independently
and the noteworthy cases are described herein. Particular attention is paid
on bifurcations and changes in period. The influence of an axial pump assist
device (δp = 1) on conditions of a failing heart is then investigated.

3.1 MEF in basic model

Starting with the basic model, the results of the control case using the parame-
ter values µ1 = 0.0024 kpa−1, µ2 = 0 (s ml)−1, PR = 9 mmHg, m0 = 70 mmHg,
and initial left ventricular volume V (0) = 0.5V0 are presented in figure 1. Initial
transients in the figure and all figures that follow are removed unless otherwise
stated. From left to right, figure 1 shows the left ventricular pressure-volume
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Fig. 1: Basic model: control case.

(P-V) loop, the time evolution of the aortic pressure m (red) with ventricular
pressure PV (blue), and the time evolution of the slow (red) and rapid (blue)
electrical variables p and q. The P-V loop is an important expression of the
global cardiac pump function. The output stroke volume (SV) is clearly vis-
ible as the difference between End-Systolic volume (ESV) and End Diastolic
volume (EDV).
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3.2 Influence of µ1 (µ2 = 0)
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Fig. 2: Basic model: µ1 = 0.0008 × [9, 17, 21, 31, 100] from top to bottom;
µ2 = 0.

The effect of the MEF parameter µ1 is now investigated in the basic model.
Figure 2 shows µ1 increasing from top to bottom with the same figures given
from left to right as figure 1. In general, an increase in µ1 reduces the stroke
volume of the P-V loop, as the end-systole pressure rises. The last plot in each
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row shows that the slow electrical variable p (red) rises further and more rapidly,
then falls more gradually. The correspondence to Amar et al. [7] and Khol et
al. [17] becomes evident if the slow excitation variable is associated with the
action potential, in that the MEF tends to prolong the action potential through
a slower, late excitation phase of the sarcomere membrane potential. Knudsen
et al. [2] also find an increase in MEF coupling accompanies an increase in action
potential duration. Until decline in action potential is sufficient, a further
excitation cannot take place.

The increase in action potential duration accompanies system bifurcation
in the second row. The ventricular pressure time trace (blue) in that row
shows weaker rises and in some instances, no rise in the aortic pressure occurs
(red trace) resulting in missed beats. These missed beats are caused by the
fall in the peak of the fast electrical activity. By counting the number of
beats in ten seconds and comparing this to the first row, one finds a reduction
in beats overall. Further rises in µ1 sees a transition to quasi-periodic (2 ≥
unequal frequencies) bifurcations. The Fourier spectrum (not shown) shows
strong peaks around multiples of 1/2 and in-between. This is followed by
further reductions in the rapid-electric variable q, triggering reductions in PV
and m, accompanied by missed beats and reduced stroke volume. In the last
row, the reduced value of q is just large enough to trigger contractions. Further
rises in µ1 result in a complete breakdown of the system.

3.3 Influence of µ2 (µ1 = 0.0024)

With µ1 set back to its control case value, the second MEF parameter µ2

is now increased and the results are displayed in figure 3. In the top row,
µ2 = 0.18×0.87 and the system still appears regular. The rapid-electric variable
q, however, shows a slight difference around the minimum value. In the second
row, despite a small change in µ2, the system again becomes quasi-periodic.
Additional, ectopic contractions appear, with 11 beats taking place in the 10
second sample. As argued in Kim and Capoccia [13], these ectopic beats are
caused by additional ‘incommensurate’ frequencies. The extra beats grow in
number as µ2 increases, with 15 contractions clearly visible in the fourth row.
The rapid-electric variable also grows in strength and frequency. The slow
variable, in contrast, shows a slight reduction and a degradation in the stroke
volume, although not as pronounced as that seen above, results.

3.4 MEF in Full Circulation Model

Turning to the full model, the control case behaviour with no pump support and
the initial conditions PR(0) = 10 mmHg, PS(0) = 70 mmHg, m(0) = 70 mmHg,
Fa(0) = 90 mL/s, and V (0) = 0.9V0, is shown in figure 4. Recall, the full model
incorporates the dynamics of the system arterial circulation.

3.5 Influence of µ1 (µ2 = 0)

Keeping µ2 = 0, µ1 is increased and the results are displayed in figure 5. From
top to bottom, figure 5 shows µ1 increasing as µ1 = 0.0008×[15.5, 25, 35, 500, 1100].
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Fig. 3: Basic model: µ1 = 0.0024; µ2 = 0.18 × [0.87, 0.88, 2, 3, 50] from top to
bottom.

As µ1 increases, the P-V loop shifts to the right, though the stroke volume re-
mains roughly the same. When µ1 reaches 0.0008×15.5, period doubling occurs.
A reduction in the rapid-electric activity occurs in a similar way to the basic
model, along with the increase in the slow electric activity peak and a gentler
decline.

As µ1 increases further, period three and four are reached. The changes
noted above for the electric activity continue and as might be expected from
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Fig. 4: Full model: control case.

the experience in the basic model, fewer beats result. Indeed, the changes that
occur in the full model are similar to the basic model, though only qualitatively.
The stroke volume decreases along with a reduction in the ventricular pressure.
The reduction in ventricular pressure is more severe than the basic model.

3.6 Influence of µ2 (µ1 = 0.0024)

With µ1 set back to its control value, µ2 is now increased and the results are
shown in figure 6. In a similar pattern to the basic model, an augmentation of
fast-excitation activity is accompanied by a degradation of slow activity. The
reduction of the slow activity implies that the duration of the action potential
is also reduced, allowing a further excitation cycle to take place sooner. Con-
sequently, as already seen in the basic model, the excitation pace increases and
additional ectopic beats appear, growing in number as µ2 is increased. By the
time µ2 reaches 0.18×10, shown in the bottom row of figure 6, 25 beats take
place in the 10 second sample. The P-V loop representation becomes complex
due to the number of oscillations and the stroke volume falls.

3.7 Introduction of a Pump Device

The introduction of a ventricular pump assist device is a well-established method
of compensating for defective heart function. The ability of a rotary pump to
reverse the conditions seen in the previous sections, where arrythmia result
from abnormal MEF, is now investigated. Starting with the basic model, the
quasi-periodic scenario µ1 = 0.0008× 21, µ2 = 0, shown in the third row of fig-
ure 3, is employed and δp in equation (13) is set to 1. Figure 7 shows the results
using a pump speed ω = 8000 rpm. The results show a restoration of regular
heart rhythm and an improvement in the stroke volume and pumping power of
the heart. The aortic pressure also increases. The number of beats remains low
however, caused by the fast-electric excitations q, half of which remain too small
to generate contraction. Nevertheless, the introduction a heart assist device is
seen to have a positive effect on heart arrythmia, induced through a malfunc-
tion of the MEF. Faster pump speeds were investigated, though conditions are
only marginally improved. Indeed, as pump speeds reach ω = 12 krpm, arry-
thmia return. Introduction of a ventricular pump is now investigated in the
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Fig. 5: Full model: µ1 = 0.0008 × [15.5, 25, 35, 500, 1100] from top to bottom;
µ2 = 0.
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Fig. 6: Full model: µ1 = 0.0024; µ2 = 0.18× [0.85, 0.9, 0.974, 2, 10] from top to
bottom.
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Fig. 7: Basic model with pump support: µ1 = 0.0008 × 21; µ2 = 0, ω =
8000 rpm.

full model. Choosing the scenario shown in the fourth row of figure 5, that is
µ1 = 0.0008× 500, µ2 = 0, the results using a pump speed ω = 13.3 krpm are
shown in figure 8.
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Fig. 8: Full model with pump support: µ1 = 0.0008 × 500; µ2 = 0; ω =
13.3 krpm.

Though the restoration of cardiac function is not as good as in the basic
model, a slight improvement in stroke volume is experienced, the ventricular
volume reduces overall, and the aortic pressure increases. The heart rhythm is
not improved though. Higher pump speeds again, see a return of arrhythmia.

4 Conclusion

MEF has been investigated using a low-order, lumped parameter model which
links the microscale electro-chemical dynamics to the macroscale mechanical
action thereby negating the time-varying elastance concept often relied up to
model the sarcomere compliance. A dysfunction of MEF is seen to lead to
pathological conditions and arrythmia through period doubling bifurcations.
Dysfunction during systolic stretch is found to increase the action potential
duration by increasing the late stage ‘recovery’ of the excitation cycle. The
initial rise in action potential falls, eventually leading to missed contractions.
feedback dysfunction during diastole leads to additional ectopic beats as the
initial rise in action potential increases. Stoke volume and pumping power of
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the heart are reduced in both cases. Systemic conditions can be improved using
a rotary pump of specified frequency.
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Simulations on the peridynamic equation in
continuum mechanics
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Abstract. The peridynamic equation of motion consists in a second order in time
partial integro-differential equation and is largely used in elastodynamics as it is able
to model cracks avoiding the spatial partial derivatives. In this paper, we consider the
linear model of peridynamics in a one-dimensional spatial domain. We review some
numerical techniques to solve this equation and propose some new computational
methods of higher order in space. Several numerical tests are given in order to validate
our results.
Keywords: Peridynamics, Non-local models, Quadrature formula, Trigonometric
scheme.

1 Introduction

Modeling fractures and damages is one of the major issue in the framework of
continuum mechanics. The classical theory uses spatial derivatives to model
the motion of a material subject to elastic stresses. So, it is not able to describe
discontinuous phenomena like cracks and fractures, as partial derivatives are
not defined on discontinuities, and, moreover, it cannot predict where the crack
is located. Therefore, there is the need to develop a non-local theory able to
use a unique equation both on or off a crack, see [14,23,9,8,3].

Recent studies show that differential operators of fractional orders may
be introduced in order to depict the nature of such phenomena, see for in-
stance [6,15,16,18,17,20,19].

The peridynamic theory is a non-local generalization of the elasticity the-
ory introduced by Silling in [34], and has attracted the attention of a growing
number of researchers, as it addresses discontinuous problems. He proposed
to model the motion of a material body using integro-differential partial equa-
tions, without involving spatial derivatives. The main assumption of the theory
concerns the presence of an interacting force f between the particle x and the
particle x̂ belonging to Vx, which represents the peridynamic neighborhood of
x. This basic assumption also suggests that peridynamics could be suitable for
multiscale material modeling ([24,32]).

We fix [0, T ], for some T > 0, as the time domain under consideration, and
let V ⊂ R be the rest configuration of a material body having mass density
ρ : V × [0, T ]→ R+. Then, the peridynamic equation is given by

ρ(x)utt(x, t) =

∫
Vx

f(x̂− x, u(x̂, t)− u(x, t))dx̂+ b(x, t), x ∈ V, T ∈ [0, T ],

(1)
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usually enriched by the initial conditions

u(x, 0) = u0(x), ut(x, 0) = v(x), x ∈ V, (2)

where u is the displacement field and b describes all the external forces acting
on the material body. The integrand f represents the force density that the
particle x̂ exerts on the particle x and is called pairwise force function,
see for instance [10,34]. The interaction between x with all particle in the
peridynamic neighborhood Vx is called bond.

We set
ξ = x̂− x, η = u(x̂, t)− u(x, t),

which denotes the relative position of two particles in the reference configu-
ration and the relative displacement, respectively. Thus ξ + η represents the
current relative position vector, and we can observe that the pairwise force
function f has to satisfy Newton’s third law and the conservation of the angu-
lar momentum:

f(−ξ,−η) = −f(ξ, η), η × f(ξ, η) = 0. (3)

It is reasonable to require the existence of a positive constant δ, called
horizon, such that there are no interactions among particles having relative
distance greater than δ, namely

f(ξ, η) = 0, for |ξ| > δ and for every η.

In what follows, we restrict our attention to the case of an homogeneous
bar of infinite length, and in particular we focus on the linear peridynamic
model

ρ(x)utt(x, t) =

∫ x+δ

x−δ
C(x̂−x) (u(x̂, t)− u(x, t)) dx̂+b(x, t), x ∈ R, t ∈ [0, T ],

(4)
where the function C is a non-negative even function, i.e. C(−ξ) = C(ξ), called
micromodulus function.

In this paper, we survey some numerical techniques for the model and
we propose an accurate spatial discretization accompanied to a trigonomet-
ric scheme for time integration. Additionally, we extend the methods to the
non linear case.

The paper is organized as follows. Section 2 collects the main analytic
results for the problem. In Section 3 we presents some quadrature formula
for the space discretization of the model. Section 4 is devoted to the time
integration techniques. In Section 5 we extend the proposed methods to the
non linear case. Section 6 shows the numerical tests, and, finally, Section 7
concludes the paper.

2 Analytical results

In this section we recall the main theoretical results concerning the peridy-
namic equation. The well-posedness of the non linear model depends on the
assumptions on the pairwise force function f , see [6,10,11].
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Theorem 1 ((see [10])). Assume that u0, v ∈ C(V ) and b ∈ C([0, T ]; C(V )).
If the pairwise force function f : Bδ(0) × Rd → Rd is a continuous function,
such that there exists a nonnegative function ` ∈ L1(Bδ(0)) such that

|f(ξ, η̂)− f(ξ, η)| ≤ `(ξ)|η̂ − η|, for all ξ ∈ Rd and η, η̂ ∈ Rd,

then, the integral operator in (1) is well-defined and Lipschitz continuous,
and the initial-value problem (1)-(2) is globally well-posed with solution u ∈
C2([0, T ]; C(V )).

For a microelastic material (see [34]), it is possible to derive the pairwise
force function f(ξ, η) from a scalar-valued function w(ξ, η) called pairwise
potential function (see [13]), such that

f(ξ, η) = ∇ηw(ξ, η), (5)

and the peridynamic equation (1) follows from the variational problem: find

u = arg min J(u) , J(u) =

∫ T

0

∫
V

e(x, u(x, t), t)dxdt, (6)

where e = ekin − eel − eext is the Lagrangian density, and incorporates the
kinetic energy density, the elastic energy density and the density due to the
external force density, given respectively by

ekin =
1

2
ρ(x) u2t (x, t),

eel =
1

2

∫
V

w(x̂− x, u(x̂, t)− u(x, t))dx̂,

eext = −b(x, t)u(x, t).

In particular, in the one-dimensional linear peridynamic model (4), the
pairwise force function is given by

f(ξ, η) = C(ξ) η, (7)

and the potential function is given by

w(ξ, η) =
1

2
C(ξ)η2. (8)

The following well-posedness result holds.

Theorem 2 ((see [13])). Let u0, v ∈ C0(R) be the initial conditions. If
the micromodulus function C belongs to C2(R), then, for any T > 0, the ini-
tial value problem (4)-(2) is well-posed and the unique solution u belongs to
C2([0, T ]; C(R)).

Moreover, if b is autonomous, namely b(x, t) ≡ b(x), we can prove the
conservation of the total energy of the system.
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Theorem 3. If the external force b does not depend on time, the total energy
associated to (4), given by

E(t) =
1

2

∫
V

ρ |ut(x, t)|2 dx+
1

2

∫
V

∫
V

w(x̂− x, u(x̂, t)− u(x, t))dx dx̂, (9)

is preserved, namely
d

dt
E(t) = 0.

Proof. We set ξ = x̂− x. Then, using (3) and (1) we have

d

dt
E(t) =

∫
V

ρ ut(x, t)utt(x, t) dx+
1

2

∫
V

∫
V

f(ξ, u(x, t)− u(x− ξ, t))ut(x, t) dx dξ

− 1

2

∫
V

∫
V

f(ξ, u(x, t)− u(x− ξ, t))ut(x− ξ, t) dx dξ

=

∫
V

ρut(x, t)utt(x, t) dx+
1

2

∫
V

∫
V

f(ξ, u(x, t)− u(x+ ξ, t))ut(x+ ξ, t) dx dξ

− 1

2

∫
V

∫
V

f(ξ, u(x, t)− u(x− ξ, t))ut(x− ξ, t) dx dξ

=

∫
V

ρut(x, t)utt(x, t) dx+
1

2

∫
V

∫
V

f(ξ, u(x, t)− u(x− ξ, t))ut(x, t) dx dξ

+
1

2

∫
V

∫
V

f(ξ, u(x, t)− u(x− ξ, t))ut(x, t) dx dy

=

∫
V

ut(x, t)

(
ρutt(x, t) +

∫
V

f(ξ, u(x, t)− u(x− ξ, t)) dξ
)
dx = 0.

The following result is related to the case of non autonomous external force.

Theorem 4 ((see [13])). If the external force is not autonomous, then, the
Lagrangian density associated to the linear problem (4) satisfies the following
inequality

ekin(t) + eel(t) + ν

∫ t

0

eν(t−s)eext(s)ds

≤ eνt(ekin(0) + eel(0)) +
1

2ν

∫ t

0

∫ ∞
−∞

eν(t−s)

ρ
|b(x, t)|2dxds,

for all ν > 0 and t > 0.

Additionally, in [6], the authors proved the well-posedness of the nonlinear
peridynamic equation assuming very general constitutive assumptions in the
framework of fractional Sobolev spaces.

Moreover, we can think to the linear one-dimensional peridynamic equa-
tion (4) as a non local version of the classical linear one-dimensional wave equa-
tion, (see for instance [12,4]). Indeed, if we choose u0(x) = U exp[(−x/L)2],
v(x) = 0, with U and L suitable constants, as initial conditions and the follow-
ing micromodulus function

C(x̂− x) = 4E exp[−(x̂− x)2/l2]/(l3
√
π), x̂, x ∈ R , (10)
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where E denotes the Young modulus, and l > 0 a length-scale parameter, then
for l→ 0, (4) becomes the wave equation of the classical elasticity theory:

ρ utt(x, t) = Euxx(x, t) + b(x, t), x ∈ R, t ≥ 0 , (11)

As a consequence, the parameter l can be seen as a degree of non locality.

3 Spatial discretization of the peridynamics

In this section we discretize in space the equation (4) by means of a quadrature
formula.

Let N > 0 be an even integer and ∆x > 0 be the spatial step size. We
discretize the spatial domain R by a compact set [−D,D], for some positive
large constant D, and such interval by means of the points xj = −D + jh =
−D + j 2DN , for j = 0, . . . , N . We consider a quadrature formula of order s on
these points:∫ ∞
−∞

C(x̂− x)(u(x̂, t)− u(x, t))dx̂ ≈ ∆x
N∑
j=0

wj C(xj − x) (u(xj , t)− u(x, t)) ,

(12)
where wj are the weights of the formula.

Then, at the collocation points x = xi for i = 0, . . . , N , we approximate the
equation (4) by

ρutt(xi, t) ≈ h
N∑
j=0

wjC(xj − xi)(u(xj , t)− u(xi, t)) + b(xi, t), t ≥ 0. (13)

We define the stiffness matrix K = (kij), for i, j = 0, . . . , N by

kij = αiδij − wjCij ,

where Cij = C(xj − xi), αi =
∑N
k=0 wkCik, and δij is the Kronecker Delta.

The stiffness matrix K is not symmetric, in general, unless the weights are
constant with respect to j, namely wj = w for every j = 0, . . . , N . In this
case we obtain the composite midpoint rule: we approximate the spatial
domain (−∞,∞) by the interval [−(N + 1)h/2, (N + 1)h/2] and the points of
the discretization xMR

j are taken as the midpoints of the sub-intervals [−(N +
1)h/2 + jh,−(N − 1)h/2 + jh], for j = 0, . . . , N . For sufficiently smooth
assumptions on C and u, this formula is of the second order of accuracy in
space and the constant weights are equal to 1, (see for instance [13,33]).

The composite Gauss two points formula is of the fourth order of
accuracy and provides a symmetric stiffness matrix K. We fix M > 0 and
consider a partition of the interval [−D,D] given by the sequence x̃j = −D +
j∆x for j = 0, . . . ,M , where ∆x = 2 D/M = (x̃M − x̃0)/M . Then on each
sub-interval [x̃j−1, x̃j ], the formula uses two points where the function ψ(x) is
evaluated: ∫ x̃M

x̃0

ψ(x)dx ≈ ∆x

2

M∑
j=1

[
ψ(m−j ) + ψ(m+

j )
]
, (14)

719



where

mj =
x̃j−1 + x̃j

2
, m−j = mj−

∆x

2
√

3
, m+

j = mj+
∆x

2
√

3
, j = 1, . . . ,M.

Setting

xj =

m
−
j+1
2

, if j is even,

m+
j+1
2

, if j is odd,
j = 0, . . . , N,

with N = 2M − 1, then we can rewrite the quadrature formula (14) in the
following way∫ xM

x0

ψ(x)dx ≈ ∆x

2

M∑
j=1

[
ψ(m−j ) + ψ(m+

j )
]

=
∆x

2

N∑
j=0

ψ(xj),

so, in this case the constant weights wj are equal to 1
2 , for j = 0, 1, . . . , N .

Remark 1. Using the composite midpoint rule, or the composite Gauss two
points formula, the stiffness matrix K is a positive and semi-definite with non-
negative eigenvalues. In general K is not sparse because of the infinite horizon,
however, in case of finite horizon δ > 0 (see [5,33]), that is C(x− x̂) = 0, when
|x̂− x| > δ, then K has a banded structure, and, in particular, the size of the
band r depends on the horizon δ and on the space step ∆x and is given by
r = bδ/hc.

3.1 The semidiscretized problem

Let xj be the spatial nodes for j = 0, . . . , N and

U(t) = [U0(t), U1(t), . . . , UN (t)],

be an approximation of the solution, where Uj(t) ≈ u(xj , t) for j = 0, . . . , N .
We set

B(t) =
1

ρ
[b(x0, t), . . . , b(xN , t)]

T .

Then, we can approximate the peridynamic equation (4) by the following sec-
ond order differential system

U ′′(t) +Ω2 U(t) = B(t), (15)

with Ω2 =
∆x

ρ
K (or Ω2 =

∆x w

ρ
K ′, for K ′ depending only on the micro-

modulus function C), where K is a positive semi-definite matrix, and with the
initial conditions

U0 = [u0(x0), . . . , u0(xN )]T and V0 = [v(x0), . . . , v(xN )]T .

The system (15) is equivalent to the following first order differential system(
U ′

V ′

)
=

(
0 I
−Ω2 0

)(
U
V

)
+

(
0

B(t)

)
, (16)
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where V = U ′, with the initial conditions U0 and V0. Therefore, we can write
the exact solution of (16) as(

U(t)
V (t)

)
= exp(tA)

(
U0

V0

)
+

∫ t

0

exp[(t− s)A]

(
0

B(s)

)
ds, (17)

with A =

(
0 I
−Ω2 0

)
.

Remark 2. In order to avoid computational problems, particularly, when we
will consider trigonometric schemes where the square root Ω of Ω2 is required
or the inverse of Ω is necessary, we can regularize the matrix Ω2 by adding a
diagonal matrix of the form (∆x)s I, where s is the order of accuracy of the
quadrature formula used. In this way, the matrix Ω2 is symmetric and positive
definite, so it admits a unique symmetric and definite-positive square root Ω.

4 Time discretization of the peridynamics

In this section we consider the time discretization of the semidiscretized sys-
tem (16) obtained by applying a quadrature formula to the original problem.
Let ∆t > 0 be the time step and tn = n∆t be the partition of the time in-
terval [0, T ], for n = 0, . . . , NT , where NT =

⌊
T
∆t

⌋
, and let Un ≈ U(tn) and

Vn ≈ U ′(tn).
We describe standard time discretization schemes, such as the Störmer-

Verlet scheme, the implicit midpoint method, and a new procedure based on a
trigonometric approach.

4.1 Störmer-Verlet scheme

This is a symplectic, second order in time, explicit scheme:
Vn+ 1

2
= Vn + ∆t

2 [−Ω2Un +B(tn)],

Un+1 = Un +∆t Vn+ 1
2
,

Vn+1 = Vn+ 1
2

+ ∆t
2 [−Ω2Un+1 +B(tn+1)].

(18)

Because of its geometric properties, Störmer-Verlet method is widely used in
the context of partial differential equations of wave propagation or peridynamic
problems, (see [7,25,36]).

In [30], the authors perform the von Neumann analysis to study the stability
of the Störmer-Verlet scheme.

Theorem 5 ((see [7])). Let ∆x, ∆t > 0 be the space and the time steps,
respectively, and let N > 0, even, be the points’ number used to discretize in
space the linear model (4). If

∆t <

√
ρ

∆x
∑N/2
j=−N/2

Cij , (19)
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where Cij = C(xi − xj), then the Störmer-Verlet method (18) is numerically
stable.

4.2 Implicit Midpoint scheme

This is a symplectic implicit second order scheme:Un+1 = Un + ∆t
2 (Vn+1 + Vn),

Vn+1 = Vn + ∆t
2 [−Ω2(Un+1 + Un) + (B(tn) +B(tn+1))].

(20)

Since this scheme is implicit, it allows us to consider larger time step values,
and, as a consequence, it is linearly unconditionally stable.

4.3 Trigonometric schemes

Thanks to the Variation of Constants formula, the solution in (17) can be
rewritten as

U(t) = cos(tΩ)U0 + t sinc(tΩ)V0 +

∫ t

0

(t− s)sinc((t− s)Ω)B(s)ds,

V (t) = −Ω sin(tΩ)U0 + cos(tΩ)V0 +

∫ t

0

cos((t− s)Ω)B(s)ds,

(21)

where Ω is the unique positive definite square root of Ω2, see Remark 2, and
sinc(x) = sin x

x .

Therefore, applying a discretization of the Variation of Constants formula
to the system (21), we find the following explicit numerical procedure
Un+1 = cos(τΩ)Un + τ sinc(τΩ)Vn +

∫ τ

0

(τ − s) sinc((τ − s)Ω)B(tn + s)ds,

Vn+1 = −Ω sin(τΩ)Un + cos(τΩ)Vn +

∫ τ

0

cos((τ − s)Ω)B(tn + s)ds,

(22)
enriched by the initial conditions U0 and V0.

The scheme (22) requires the computation of the matrix functions cos(τΩ)
and sinc(τΩ). The evaluation of cos(τΩ) can be done by using a MATLAB
routine, while, the computation of the sinc(τΩ) matrix funtion is more delicate.
A way to overcome this difficulty is to employ the series expression for sinc(τΩ)
but this could be too expensive or inaccurate [22]. So, one can try first to
diagonalize the matrix function. Moreover, the computation of products of
functions of matrices by vectors could be efficiently done by means of Krylov
subspace methods, (see for instance [26,27,21]).

In [7], the authors show that the trigonometric method is unconditionally
stable.
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5 The one-dimensional non linear peridynamic model

We propose a numerical approach to study the one-dimensional non linear
model (1) for an homogeneous bar of infinite length. This approach allows
us to extend to the non linear case the numerical methods proposed in the
previous sections.

For an isotropic material, the general form of the pairwise force function
is given by

f(ξ, η) = c s(|ξ|, |η|) η

|η|
, (23)

where c is a positive constant depending on the material and the horizon. The
function

s(|ξ|, |η|) =
|η| − |ξ|
|ξ|

,

describes the relative change of the Euclidean distance of the particles. Since f
is discontinuous in the first argument, the order of accuracy of the implemented
numerical schemes will reduce.

In order to apply the results of the previous sections, we assume that
|η| << 1 and f(ξ, η) is sufficiently smooth. We consider the integral form
of the function f(ξ, ·):

f(ξ, η) = f(ξ, 0) +

∫ η

0

∂f(ξ, s)

∂η
(η − s)ds,

and then we apply an accurate quadrature formula

f(ξ, η) ≈ f(ξ, 0) +

m∑
r=1

wr
∂f(ξ, sr)

∂η
(η − sr),

where wr are the weights while sr are the nodes of this formula. In general this
approach leads to implicit methods, in fact, if we use the trapezoidal formula

f(ξ, η) ≈ f(ξ, 0) +
η

2

[
∂f(ξ, 0)

∂η
+
∂f(ξ, η)

∂η

]
, (24)

we derive a second order implicit method. Instead, if f(ξ, η) is sufficiently
smooth, we can derive an explicit scheme by using a Taylor expansion

f(ξ, η) ≈ f(ξ, 0) + C1(ξ)η + . . .+ Cs(ξ)η
s, (25)

where

Ci(ξ) =
∂if(ξ, 0)

∂ηi
, i = 1, . . . , s.

6 Simulations

In this section we present some numerical tests to confirm our results. We start
with the linear model (4), assuming that the material body is not subject to
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external forces, namely b(x, t) = 0. For simplicity, we consider the case of a
constant density ρ(x) = 1. We take (10) as micromodulus function and we

choose u0(x) = e−(x/L)
2

x ∈ R and v = 0 as initial conditions.

The choice of this micromodulus function is justified by the fact that its
decay at infinity makes possible to consider a bounded computation domain.
Moreover, in this setting the exact solution for (4) is given by

u∗(x, t) =
2√
π

∫ ∞
0

exp (−s2) cos (2sx) cos
(

2t
√

1− exp (−s2)
)
ds, (26)

see for instance [35].

We denote by u∗(t) = (u∗(x0, t), ..., u
∗(xN , t))

T the exact solution vector at
time t and at the points of the spatial discretized domain.

Fig. 1. With reference to Test 1: the numerical solution obtained by the MSV method.
The parameters for the simulations are ∆x = ∆t = 0.1, N = 200, NT = 300.

To order to perform an error study and to show the orders of accuracy of
the decribed methods, we define ek as

ek = ‖u(tk)− u∗(tk)‖∞ := max
{
|u(xi, tk)− u∗(xi, tk)| : i = 0, . . . , N,

}
,

and then, for each method, we take the maximum error in the time interval
[0, T ], namely

||e||∞ := max {ek : k = 1, . . . , NT } .

We denote by MT, MSV, MMI and GT the methods consisting of the
Midpoint+Trigonometric method, the Midpoint+Störmer-Verlet method, the
Midpoint+Implicit Midpoint method and the Gauss two points+Trigonometric
method, respectively.
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6.1 Test 1: Comparison between MT, MSV, MMI and GT
methods

In this section we study the performance of the MT, MSV, MMI and GT
methods, by varying the time and space steps, by computing the error between
the exact and the numerical solution and studying the rate of convergence.

Figure 1 shows the numerical solution computed by MSV method, while
Table 1 summarizes the errors of the different methods by varying the spatial
and time discretization steps. The term Rn denotes the ratio between the errors
corresponding to ∆x and ∆x/2, thus, log2 (Rn) represents the convergence
order of the methods. The last column of Table 1 confirms that the methods

Methods ∆x = ∆t N NT ||e||∞ log2 (Rn)

0.100 200 30 1.2911× 10−3 -

MSV 0.050 400 60 3.2340× 10−4 1.9971

0.025 800 120 8.0821× 10−5 2.0004

0.100 200 30 5.9276× 10−3 -

MT 0.050 400 60 1.1126× 10−3 2.3959

0.025 800 120 2.1350× 10−4 2.3992

0.100 200 30 2.5754× 10−3 -

MMI 0.050 400 60 6.4621× 10−4 1.9946

0.025 800 120 1.6106× 10−4 2.0043

0.100 400 30 1.4940× 10−4 -

GT 0.050 800 60 9.3380× 10−6 3.9998

0.025 1600 120 5.8300× 10−7 4.0015

Table 1. With reference to Test 1: the comparison among MSV, MT, MMI and GT
methods by varying ∆x, ∆t, N and NT .

MSV, MT, MMI are of the second order of accuracy while GT is of the fourth
order.The method MSV is computationally less expensive than the others, but
it has a bounded stability region, see Table 2.

6.2 Test 2: Comparison between MSV and MMI in the nonlinear
case

Now we focus on the non linear case. In particular, we assume that f has the
following form

f(ξ, η) =

{
c |ξ+η|−|ξ||ξ|

ξ+η
|ξ+η| , if 0 < |ξ| ≤ δ,

0, if |ξ| > δ,
c > 0,

which has a singularity in ξ = 0. One can find an exact solution for this
problem in [29].
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Methods ∆x ∆t N NT ||e||∞

0.100 0.100 200 300 1.0543

MSV 0.050 0.200 400 150 2.6300× 10168

0.025 0.400 800 75 4.3600× 10131

0.100 0.100 200 300 1.0941

MT 0.050 0.200 400 150 1.1081

0.025 0.400 800 75 1.2987

0.100 0.100 200 300 1.0923

MMI 0.050 0.200 400 150 1.0925

0.025 0.400 800 75 8.2060× 10−1

Table 2. With reference to Test 1: the maximum error for the methods MSV, MT
and MMI for different choices of ∆x, ∆t, N and NT .

Table 3 depicts the maximum errors by varying the spatial and time dis-
cretization steps. We can see how all methods reduce their order of accuracy
to 1. The reason of such reduction relies on the singularity of the pairwise force
function f .

Methods ∆x ∆t N NT ||e||∞ log2 (Rn)

0.1000 0.0100 10 1000 5.4590× 10−2 -

MSV 0.0500 0.0050 20 2000 2.7285× 10−2 1.0007

0.0250 0.0025 40 4000 1.3605× 10−2 1.0007

0.1000 0.0100 10 1000 5.3895× 10−2 -

MMI 0.0500 0.0050 20 2000 2.7281× 10−2 0.9819

0.0250 0.0025 40 4000 1.3603× 10−2 1.0036

Table 3. With reference to Test 2: the comparison among the performance of MSV
and MMI methods in the nonlinear case by varying ∆x, ∆t, N and NT .

7 Conclusions and perspectives

In this paper, we have reviewed numerical spatial discretization of higher or-
der together with time integration techniques applied to a linear peridynamic
model. Moreover, we have extended such techniques to the nonlinear model.

In future we would apply spectral techniques to both the linear and the
nonlinear model following the results obtained in [7,25] and we will extend the
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results to space domains of dimension greater than 1, using finite element or
volume methods or mimetic finite difference methods, see [28,1,31,2].
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 Abstract. The paper proposes a deterministic mechanism for the formation of Brownian motion. The movement of molecules, 

even under equilibrium conditions, leads to a constant displacement of the center of inertia, which creates a moment and leads to 

the emergence of additional force. The result is a possible accumulation of molecules in separate areas. Having arisen as a result 

of collisions of slower molecules than average ones, they are forced to move together for some time, m6ellely no changing their 

position. The action of the moment manifests itself in all known processes. In the kinetic theory based on the Lagrange and 

Liouville equations, the motion of the axis of inertia in the process of rearrangement and motion of particles is neglected. The 

concept of a derivative in terms of finite values of such quantities as the mean free path, time between collisions, etc. has 

features. At small mean free paths, the motion of the center of inertia contributes to the equation of state. A new algorithm is 

proposed for calculating the force entering the Langevin equation and the equation of state for a liquid. The listed issues are 
Keywords: Conference, CHAOS, Chaotic Modeling, CMSIM Style  

 
1.  Introduction. 

 
Fluctuations are called random deviations of physical systems from their equilibrium state (or physical processes - 

from their steady flow). Fluctuations exist both in no equilibrium states and in unsteady processes; in their absence, 

relaxation would be a "smooth" process and they could be described by single-valued functions of time. The 

presence of thermal fluctuations causes random deviations of real processes from such a "smooth" flow [1-7]. 

Diffusion and Brownian motion occur due to the chaotic thermal motion of molecules, and as a result are described 

by similar mathematical rules. 

The difference between them is that during diffusion, a molecule always moves in a straight line until it collides 

with another molecule, after which it changes its trajectory. A Brownian particle does not “fly free”, but undergoes 

very small and frequent, as it were, “tremors”, as a result of which it randomly moves here and there. Fluctuation 

effect was first explained by A. Einstein and   then by M. Smolukhovsky. The theoretical studies of M. 

Smoluchowski, which differed from the works of A. Einstein only by a slightly less rigor, but greater clarity. It 

consisted in the fact that the diffusion force should be equal to the viscous value Stokes drag force. 

                            
np Fs

cs
 = DE

∂np

∂x
 

 Here 𝐹𝑠   force,  𝑛𝑝 - particle concentration, 𝑐𝑠 - mass concentration, 𝐷𝑒 =
𝑘𝑇

(6𝜋𝜂2𝑅0)
 , 𝑅0 − 

- particle radius, 𝜂2—viscosity. Later the theory was developed on the basis of the Langevin and Fokker-Planck 

equations. The evolution of a Brownian particle (fluctuation) is determined by its interaction with the environment, 

which is always collective. In the kinetic representation, the evolution of a system of Brownian particles is described 

by a nonlocal equation for the n-particle distribution function.  Now the Langevin and Fokker-Planck equations are 

obtained from the Liouville equation for specially selected models of integral kernels using of phenomenological 

conservation laws [6,7].   The Langevin and Fokker – Planck equations refer to the stochastic approximation of 

particle motion. Since the equation contains a resistance force arising during the translational individual movement 

of particles, then the speed of movement of the particle in time τ will change. The visible part of the particle motion 

will depend on the characteristics of the instruments. In addition, collective effects will play a major role. Like the 

Liouville equation, the Langevin equation does not take into account particle collisions. The possibilities of 

calculating the motion of particles by these equations are limited.  

 In the general case, the connection between macroscopically observable quantities and fluctuations of the 

corresponding dynamical variables is established by solving the dynamic Liouville equation. However, the equation 

does not take into account possible dissipative processes associated with particle collisions. At the macrolevel, 

equations are more consistently obtained for the distribution function (the Fokker-Planck and Boltzmann equations). 

 In the kinetic theory based on the Lagrange and Liouville equations, the motion of the axis of inertia in the process 

of rearrangement and motion of particles is neglected. This means that the contribution of the angular momentum 

(force), which leads to collective processes, is not taken into account [8-13} The influence of the moment is 

confirmed by the work [14], which is devoted to the calculation of the conductivity of a nonideal fully ionized 

plasma under the assumption that there are no straight sections of the electron trajectory. The experimental data 

turned out to be possiblesatisfy for the velocity correlator only with the involvement of the angular momentum. 

The exact molecular theory, which gives results that are in satisfactory agreement with experiment, can be 
applied only in the special case when the potential corresponding to the force arising from the interaction of 
neighboring molecules depends only on the distance between them. But this assumption is valid only for 
liquids consisting of monoatomic molecules. 
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  In recent years, the molecular modeling method has been widely used [7,15,16]. The main version of modern 

theory is random disturbances. The theory of Brownian motion is approximate.  And although in most practically 

important noted that cases the existing theory gives satisfactory results, in some cases it may require refinement. It 

should be the classical Boltzmann equation does not comply with the law of conservation of angular momentum as 

and another equations of kinetic theory and statistic mechanics. This is clearly seen if we multiply equation of speed 

on radius-vector of the particle to get angular momentum. Even with central interaction we get different values for 

the non-equilibrium conditions. In numerical calculations by the difference   scheme using the grid pitch  that is 

smaller the mean free path and with  the ideology of a closed volume  not obtain the influence of the angular 

momentum due to the absence of collisions.  A mechanism for the occurrence of fluctuations has not been proposed. 

The work is limited to the case of “simple” media, by which we mean gases and liquids, consisting of point 

molecules that do not contain internal degrees of freedom. Now we suggest the reason of  fluctuation effect. 

 

2. Lagrangian function for the collective interaction 

 
In classical mechanics, kinetic theory and statistical mechanics, the role of the angular momentum and, therefore, 

the moment of force is underestimated. Let us consider three interacted among themselves (Fig.1) particles 

𝒓𝒄 =  
𝒎𝟏𝒓𝟏 + 𝒎𝟐𝒓𝟐 + 𝒎𝟑𝒓𝟑

𝒎𝟏 +  𝒎𝟐 +  𝒎𝟑
 

 

𝑟𝑐+∆𝑐 =  
𝑚1(𝑟1 + 𝑟1̇∆𝑡) + 𝑚2(𝑟2 + 𝑟2̇∆𝑡) + 𝑚3(𝑟3 + 𝑟3̇∆𝑡)

𝑚1 +  𝑚2 +  𝑚3
 

At the next moment in time, the position will change under the action of the force arising in connection with the new 

position of the center of inertia. Thus, the new position of the molecules will create a new force. The same result can 

be obtained by counting the angular momentum, from which to determine the effective force and speed of the center 

of inertia. 

At equilibrium, or at small strains, but under no equilibrium thermodynamic effects and perturbations lead to an 

uneven distribution of the physical parameters and the role of collective effects, that determined by the growing 

influence of the angular momentum. In addition, when these strains change position of the center of mass of 

elementary volume, that is sign for changing Lagrangian function 

 

 
dL

dt
= ∑ [

𝜕𝐿

𝜕𝑞𝑖
𝑞

𝑖
̇ +

𝜕𝐿

𝜕𝑞�̇�
𝑞

𝑖
̈  ]𝑖 + ∑ [

𝜕𝐿

𝜕(𝑞𝑖−𝑎)
(𝑞

𝑖
̇ − �̇�) +

𝜕𝐿

𝜕(𝑞�̇�−�̇�)
 (𝑞

𝑖
̈ − �̈�)]𝑖 , 

 

𝒂 = ∑
𝑚𝑖 𝒓𝑖 

𝑚𝑖
𝑖  ,   for electrical interaction 𝒂 = ∑

𝑒𝑖 𝒓𝑖 

𝑒𝑖
𝑖 .   𝑞𝑖 – generalized coordinate, 

𝑞�̇� –generalized speed. The classical Liouville equation 
𝑑 

𝑑 𝑡
 

𝜕𝐿

𝜕𝑞�̇�
− 

𝜕𝐿

𝜕𝑞𝑖
 = 0       (𝑖 = 1,2 … ),    𝐿 = 𝐿 ( 𝑞𝑖, 𝑞�̇� , 𝑡) –  Lagrange function. The whole theory is developed for 

a force of the form  𝐅 =  − 
𝛛𝐔

𝛛𝐑
 , 𝑼 = 𝑼 (𝑹 ).  𝑹  - radius vector 

 
                     Fig. 1 Interaction of three parts 

 

  In view of the time we are invited to consider force formula 

𝑭 =  𝑭𝟎  + 𝛻 (( 𝑹 −  𝒂) ×  
𝝏𝑼

𝝏𝑹
), 𝑹 – the current radius. This formula is transformed with the permutability 

derivatives and directions of forces in the formula 

𝑭 =  𝑭𝟎 +  𝛻 (( 𝑹 −  𝒂) ∙  
𝝏U

𝝏𝑹
).   

For the N partial distribution function, it was [7] 
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𝜕𝐹𝑁

𝜕𝑡
+  ∑ 𝜉�̇�

𝑁
𝑖=1 ∙  

𝜕𝐹𝑁

𝜕𝑥𝑖
 + 

1

𝑚
 ∑

𝜕

𝜕𝜉𝑖
∙ ( 𝑋𝑖

𝑁
𝑖=1 𝐹𝑁) = 0.    Now 

𝜕𝐹𝑁

𝜕𝑡
+  

𝝏𝑳

𝝏𝒂
 �̇� +  ∑ (𝝃�̇�

𝑁
𝑖=1  −  �̇�) ∙  

𝜕𝐹𝑁

𝜕(𝑥𝑖−𝒂)
 + 

1

𝑚
 ∑

𝜕

𝜕(𝜉 𝑖−𝒂 )̇
∙ ( 𝑋𝑖

𝑁
𝑖=1 𝐹𝑁) = 0.  

Usually, however, such as the Hamiltonian system of two interacting molecules after separation of the center of 

mass is represented as the sum of the Hamiltonians of isolated molecules 𝐻0 =  𝐻𝐴 +  𝐻𝐵  operator and their 

electrostatic interaction [17] 

𝐻 = 𝐻0 + 𝐻𝐵 

𝐻𝐵 =  −  ∑ ∑
𝑍𝑎

𝑟𝑎𝑗

𝑁𝐵

𝑗=1

𝑛𝐴

𝑎=1

− ∑ ∑
𝑍𝑏

𝑟𝑏𝑗

𝑁𝐵

𝑗=1

𝑛𝐵

𝑏=1

 + ∑ ∑
1

𝑟𝑖𝑗

𝑁𝐵

𝑗=1

𝑁𝐴

𝑖=1

 +  ∑ ∑
𝑍𝑎𝑍𝑏

𝑅𝑎𝑏

𝑛𝐵

𝑏=1

𝑛𝐴

𝑎=1

  , 

where the indices A, B numbered core indices i, j - the electrons of molecules A, B, respectively, the atomic units. In 

the rarefied gas unusual situation arises when for describing the derivatives we use the limit of the ratio of the 

increment function to the increment argument. It turns out that for recording the time derivative of the final terms. 

We have mean free path (rarefied gas) taking into account only the high-speed components, as slow collisions do 

not have time to occur.  

It is interesting to compare the derivatives for discrete and continuous descriptions. First, consider the relaxation 

process (in time). 

 Here and  then 𝝃𝒊 is the velocity of the molecule, u is the velocity of the elementary volume 𝒑𝒊 = 𝝃𝒊 − 𝒖  , is the 

intrinsic velocity of the molecule, r is the coordinate. The velocity 𝝃𝒊 of molecules is included in the definition of the 

Boltzmann equation and in the calculations for the models used as an independent variable.  

𝑓 = 𝑓 (𝑡, 𝒓(𝑡), 𝝃(𝑡)).   We represent the distribution function as  

𝑓 =  
∑ 𝛿(𝒓𝒊 –𝒓)    𝑛

𝑖=1

∑ 𝛿(𝒓𝒊 –𝒓)𝑁
𝑖=1

,   that is 

𝑓 =  
𝑛

𝑁
 ,   where n is the number of molecules in an elementary volume, N is the number of molecules in a 

perturbed volume. We consider 𝑛 ≤ 𝑁. Then 

𝜕𝑓

𝜕𝑡
|

𝒓=𝑐𝑜𝑛𝑠𝑡
  =

𝜕

𝜕𝑡
 
∑ 𝛿(𝒓𝒊 –𝒓)    𝑛

𝑖=1

∑ 𝛿(𝒓𝒊 –𝒓)𝑁
𝑖=1

 .  

Let us consider the dependence 𝛿(𝒓𝒊 – 𝒓)- on t only as (𝒓𝒊 – 𝒓). 
  Consideration gets more complicated when there are cross-border flows 

If there are no streams 

𝑭𝟏

𝑭𝟑 
−

 𝑭𝟐

𝑭𝟒
=

∑ 𝛿(𝒓𝒊 – 𝒓) + ∑ ∆𝑡
𝜕𝛿(𝒓𝒊 – 𝒓)

𝜕𝑡
𝑛
𝑖   + ⋯ 𝑛

𝑖=1

∑ 𝛿(𝒓𝑖 – 𝒓)𝑁
𝑖=1 + ∑ ∆𝑡

𝜕𝛿(𝒓𝑖 – 𝒓)
𝜕𝑡

𝑁
𝑖 + ⋯

 − 
∑ 𝛿(𝒓𝒊 – 𝒓)    𝑛

𝑖=1

∑ 𝛿(𝒓𝒊 – 𝒓)𝑁
𝑖=1

≈ 

≈ (
∑ 𝛿(𝒓𝒊 – 𝒓) + ∑ ∆𝑡

𝜕𝛿(𝒓𝒊 – 𝒓)
𝜕𝑡

𝑛
𝑖   + ⋯ 𝑛

𝑖=1

∑ 𝛿(𝑟𝑖 – 𝑟)𝑁
𝑖=1

 ( 1 −
∑ ∆𝑡

𝜕𝛿(𝒓𝒊 – 𝒓) 
𝜕𝑡

 + ⋯    𝑁
𝑖

∑ 𝛿(𝒓𝒊 – 𝒓)𝑁
𝑖=1

 )  

− 
∑ 𝛿(𝒓𝒊 – 𝒓)    𝑛

𝑖=1

∑ 𝛿(𝑟𝑖 – 𝒓)𝑁
𝑖=1

) ≈  
∑ ∆𝑡

𝜕𝛿(𝒓𝒊 – 𝒓)
𝜕𝑡

𝑛
𝑖 +  𝑂 ((∆𝑡)2

∑ 𝛿(𝒓𝒊 – 𝒓)𝑁
𝑖=1

 . 

 Thus, when solving the Boltzmann equation, we obtain the dependence of the time derivative only through the 

derivatives of the macroparameters. This hypothesis is used in the theory of rarefied gas when constructing a 

solution to the Boltzmann equation by the Chapman-Enskiy method. 

 

2.Taking into account flows across the border. We have 

 𝑭𝟏

𝑭𝟑 
−

 𝑭𝟐

𝑭𝟒
= 

∑ 𝛿(𝒓𝒊 –𝒓)+∑ ∆𝑡
𝜕𝛿( 𝒓𝒊 –𝒓)

𝜕𝑡
𝒏
𝒊 +∑

𝒑𝒋

𝒎𝒋 𝛿 (𝒓𝒋  –𝒓)+∑
𝒑𝒋

𝒎𝒋 ∆𝑡
𝜕𝛿 (𝒓𝒋  –𝒓)

𝜕𝑡
+⋯ 𝒏

𝒊=𝟏

∑ 𝛿(𝒓𝒊 –𝒓)𝑵
𝒊=𝟏 +∑ ∆𝑡

𝜕𝛿(𝒓𝒊 –𝒓)

𝜕𝑡
𝑵
𝒊 +∑

𝒑𝒋

𝒎𝒋 𝛿 (𝒓𝒋 –𝒓)+∑
𝒑𝒋

𝒎𝒋 ∆𝒕
𝝏𝛿 (𝒓𝒋  –𝒓)

𝝏𝒕
+⋯

−
∑ 𝛿(𝒓𝒊 –𝒓)    𝑛

𝑖=1

∑ 𝛿(𝒓𝒊 –𝒓)𝑁
𝑖=1

. 

 
1/Δt, the time derivative begins to prevail. Thus, the role of borders is increasing. The distribution function does 

not provide correct parameter values. Here, only the molecular dynamics method with a very small time step is 

correct. 

3.  Calculate the derivatives with respect to space in a rarefied gas 
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(𝐹(𝑡 + ∆𝒕) − 𝑭(𝒕))/∆𝒕 ≈ 

≈
−𝒅𝒊𝒗 (∑

𝒑𝒋

𝒎   𝜹(𝒓𝒊 – 𝒓)𝒏𝟐
𝒋=𝟏  + ∑

𝒑𝒋

𝒎
𝒏
𝒊=𝟏  𝜹(𝒓𝒊 – 𝒓)   + ⋯ )  

(∑ 𝜹(𝒓𝒊 – 𝒓)𝑵
𝒊=𝟏 + ∑

𝒑𝒋

𝒎
 ∆𝒌𝜹 (𝒓𝒋(𝒕)– 𝒓) + ⋯ )

𝑵𝟏
𝒋=𝟏

. 

∑ 𝜹(𝒓𝒋 – 𝒓)𝒏+∆𝒏
𝒊=𝑵  )  =  −𝒅𝒊𝒗 ∑

𝒑𝒋

𝒎
 𝜹(𝒓𝒋 – 𝒓)

𝒏𝟐
𝒋=𝟏 . 

3.Effect of Angular Momentum for a Discrete Environment. 
 

Knowledge of virial coefficients is necessary in various practical problems [25]. In previous works, the effect of 

angular momentum on physical parameters in the kinetic theory and continuum mechanics was discussed. It can be 

assumed that density fluctuations are associated with inhomogeneity of the velocity distribution at temperatures 

greater than zero Kelvin degrees, which in turn is associated with the movement of the inertia axis of elementary 

volumes. Here we consider the algorithm for calculating the additional force associated with the action of the 

angular  momentumin a discrete medium. The formula for determining the center of gravity of the system of 

material points. 

𝒓𝒄 =  
∑ 𝒎𝒊𝒓𝒊

𝒌
𝒊=𝟏

∑ 𝒎𝒊
𝒌
𝒊=𝟏

 . 

 Center of inertia at different times for identical molecules in an elementary volume 

          
∑ 𝒎 𝜹(𝒓𝒊 –𝒓𝒄) 𝒓𝒊  𝒏

𝒊=𝟏

𝑵𝒎
 =  𝒓𝒄 ,    

∑ 𝒎 𝜹(𝒓𝒊+∆𝒓𝒊 –𝒓𝒄+ ∆𝒓𝒄) (𝒓𝒊+∆𝒓𝒊 )   𝒏
𝒊=𝟏

(𝑵+∆𝑵) 𝒎
 ≈  𝒓�̃� . 

                        
Angular momentum is 

 

𝒑
�̃�

× (𝒓𝒊 + ∆𝒓𝒊 − 𝒓�̃� ) − 𝒑𝒊 × 𝒓𝒊 = 𝑳𝒊 ,      
(𝒑

𝒊
+ ∆𝒑

𝒊
) × (𝒓𝒊 + ∆𝒓𝒊 − 𝒓𝒄 − ∆𝒓𝒄 ) − 𝒑

𝒊
× (𝒓

𝒊
− 𝒓𝒄)

∆𝒕
  =  

𝒅𝑳𝒊

𝒅𝒕
. 

𝒅𝑳

𝒅𝒕
 = 𝑴,    𝑭 =  

𝒅𝑴

𝒅𝒓
 . 

𝒅𝑴𝒊

𝒅𝒓
=

𝒅

𝒅𝒓

𝒑𝒊(∆𝒓𝒊−  ∆𝒓𝒄)   

∆𝒕
=  

𝒅

𝒅𝒓
  𝒑𝒊(∆𝒑𝒊 − ∆𝒑𝒄 ). 

Then we get an additional force 

𝑭𝒊
𝒂𝒅 ≈   

∑ ((∆𝒓𝒊−∆𝒓𝒄)
𝝏𝜹 

𝝏𝒓
𝒓𝒊   + 𝒏

𝒊=𝟏 ∆𝒓𝒊 𝜹(𝒓𝒊 –𝒓𝒄)𝒓𝒊)

𝑵
,            ∆𝒑𝒊

𝒌 =  𝑭𝒊
𝒂𝒅∆𝒕. 

 𝒑
𝒊
𝒌𝟐∆𝒕𝟐 + 𝒑

𝒋
𝒌𝟐∆𝒕𝟐 ≤ (𝒓 + 𝝈)

𝒊
𝒌𝟐 − (𝒓 + 𝝈)

𝒋
𝒌𝟐

 .  The number of molecules that form dimers. 

𝒑
𝒊
𝒌𝟐∆𝒕𝟐 + 𝒑

𝒋
𝒌𝟐∆𝒕𝟐  ≥ 𝑬.  The number of dimers formed. 

  

Here  𝒑𝒋
𝒌 is the contribution of the component 𝑘. Here we determine the number of dimers that form equilibrium 

conditions. Pressure 

 

∑
(𝒑𝒊+∆𝒑𝒊)𝟐

𝒎
𝒏
𝒊=𝟏 + ∑

𝒑𝒊
𝟐

𝒎
𝒏+∆𝒏
𝑵   = p. 

The first term is responsible for the usual thermodynamic pressure, taking into account the change in speed from the 

action of the moment, the second term is responsible for the pressure caused by dimers. From this it can be seen that 

the pressure change is non-monotonic. Langevin equation taking into account the influence of the  angular 

momentum is 
𝑑𝑉

𝑑𝑡
 =  − 

𝜁ѷ

𝑚
 V +  

1

𝑚

𝑑𝑀

𝑑𝑟
 ,   where  𝜁ѷ  - coefficient of friction of the selected particle, 𝑚 is the mass of the particle, 𝑀 is 

the moment of force acting on the particle.   

The classical Langevin equation for one particle  

𝑑𝑉

𝑑𝑡
 =  − 

𝜁ѷ

𝑚
 V+

1

𝑚
𝐹(𝑡) ,    where 𝐹 (𝑡) is a random force. 
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 A Markov Gaussian process is considered with the condition that the average for an ensemble of particles ⟨F = 0. In 

our version, this condition is fulfilled by virtue of the fulfillment of the theorem on the conservat ion of the moment 

in a closed volume. For equallibrium condition, this is true. 

In conclusion, we note that in the construction of statistical theories of an equilibrium liquid in the Clausius theory, 

for pressure,  

𝑝 − 𝑛𝑘𝑇 =  −  
1

6
 𝜌2 ∫ 𝑣(𝒓)  𝑔(𝒓 )𝑑𝒓 , 

where 𝑣(𝑟) is the power of the intermolecular interaction force  ( 𝑑𝜑(𝑟))𝑑𝑙𝑛(𝑟)  ,  𝜑(𝑟) −potential, 

  𝑔(𝑟 ) =   𝑑𝜑 (𝑟) / (𝑑𝑙𝑛 (𝑟)), and 𝑔(𝑟 ) is the pair distribution function; i.e.  the value of the same structure  

(dimensional) as the term in the equations with allowance for the angular momentum, that is  𝑀 = (𝑟 −  𝑟0) × 
 𝑑𝜑(𝒓)

𝑑𝑟
 , 𝑟0.  center of mass position.  So 

𝑝 − 𝑛𝑘𝑇 =  −  
1

6
 𝜌2 ∫(𝑣(𝒓) + 𝑟

𝑑𝑀

𝑑𝑟
) 𝑔(𝒓 )𝑑𝒓 . 

The theoretical calculation of the binary correlative function for liquids by the methods of statistical mechanics is 

associated with great difficulties that have not yet been overcome. Calculation based on experimental studies of X-

ray scattering is also possible only for a small circle of simple liquids, the molecular structure of which has been 

well studied. Nevertheless, using the existing relations of the statistical theory of fine-structure fluctuations and the 

results of X-ray studies of simple liquids, one can get an idea of a number of features that distinguish fine-structure 

concentration fluctuations from thermodynamic ones.  

Additional force should contribute at high temperatures. For inert gases at medium and low temperatures, the 

contribution is negligible. For rarefied gas the angular momentum is value of first order.  For the water molecules 

we have the potential for interaction of dipole and  so it have some maximum and minimum, but angular momentum 

is main correlation effect   for point molecules and another interaction is values of smaller.  Then it seems probable 

that for pressure is to be sufficient if liquefied gases are simple, for example Ar, of two virial coefficients and binary 

interaction of particles. The effect of a small distortion of circular orbits will be small due to the incommensurability 

the time of the rotation and displacement times of the molecules. For water, additional components will arise in 

connection with the asymmetry of the molecules and the perturbation of the basic potential by the interaction of the 

hydrogen parts with each other and with the nucleus of the second molecule. 

 

4.Boltzmann kinetic equation  

 
 For nonequilibrium states, the Boltzmann kinetic equation is widely used. The equation is derived in two ways. One 

- based on conservation laws, for the second, the starting point is a chain of coupled equations proposed by 

Bogolyubov [18]. As a first approximation, the Boltzmann equation is obtained. In this case considering 

fluctuations, it is theoretically possible to take into account both collisions between particles and collisions between 

particles and gas molecules, considering a mixture of two components: particles and gas. Solving the equation even 

for a gas presents significant difficulties. In addition, the equilibrium distributin function does not satisfy the 

equation [19] and it does not preserve the angular momentum [9]. The latter is verified by vector multiplication of 

the moment for the velocity equation by the radius vector. 

The classical derivation of the Boltzmann equation consists in recording the balance of particles through the relation 

for the single-particle distribution function 

 

𝑓(𝑡 + 𝑑𝑡, 𝒓 + 𝝃𝒋 𝑑𝑡, 𝝃𝑗 + 𝑭𝒋𝑑𝑡)drdξj = 𝑓(𝒓, 𝝃𝒋, t )𝑑𝒓 𝑑𝝃𝒋 + (
𝜕𝑓

𝜕𝑡
)

𝑐𝑜𝑙𝑙
 𝑑𝑡.                

  Often the latter is written in the form 

𝑓(𝑡 + 𝑑𝑡, 𝒓 + 𝝃𝒋 𝑑𝑡, 𝝃𝒋 +  𝑭𝒋𝑑𝑡)𝑑𝑟𝑑𝜉𝑗 = f(𝒓, 𝝃𝒋, t ) + (
∂f

∂t
)

coll

̃
 dt.     

   That is  𝑟, the radius vector; 𝑥- coordinate of the point; ξ- the velocity of the point, 𝑚 - the molecular weight, and, 

according to the definition of the distribution function 𝑓𝑁, the probability of finding the system at the points (𝑥, 𝜉) in 

the intervals 𝑑𝑥𝑖 𝑑 𝜉𝑖 is 

𝑓
𝑁 

 (𝑡, 𝑥1 , … , 𝑥𝑁 , 𝜉
1
 , , 𝜉

𝑁
) 𝑑𝑥1 … 𝑑𝑥𝑁  𝑑𝜉

1
… 𝑑𝜉

𝑁
.  

  The new Boltzmann equation can be written as follows with momentum 
𝑑𝑓

𝑑𝑡
=     

𝜕𝑓

𝜕𝑡
+ 𝝃

𝑖
∙ [ 

𝜕𝑓

𝜕𝒓𝒊
 ] + 𝝃

𝒊
∙

𝜕

𝜕𝒓𝒊
[ 𝒓𝒋

𝜕𝑓

𝜕𝒓𝒋
 ] - 

𝐹

𝑚

𝜕𝑓

𝜕𝝃𝒊
 = 𝐼.                                                               

Where (
𝜕𝑓

𝜕𝑡
)𝑐𝑜𝑙𝑙, (

𝜕𝑓

𝜕𝑡
)𝑐𝑜𝑙𝑙

̃
− are the collision integrals that record in different phase spaces. Externally, these equalities 

are identical, but the second relation is satisfied on the interaction times of the molecules and all interactions are 

correlated. For gas dynamic problems, the characteristic length of an elementary volume for which equality is 

written is equal to10−8 cm, and the requirement of a large number of particles in an elementary volume is not 
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satisfied for altitudes of 120-300 km in the terrestrial atmosphere. Indeed, the required minimum size is 10−3cm. 

Since,𝑁 =  𝜋𝑅2 ∙ 𝜉 ∙ 𝜏 ∙ 𝑛 where 𝑅is the radius of the cylinder of elementary volume; 𝜏 is the mean time of free 

movement, then for statistical independence the number𝑁 of particles must be at least 100.cm. Then 𝜋𝑅2 ∙ 104 ∙
1012 ∙ 10−5 =  102, that is 𝑅 = 10−3 cm. 

Functionally, the Boltzmann equation is invariant with respect to the choice of macro parameters of the distribution 

function. It is necessary to compare the equilibrium distribution function with macroparameters taken from the Euler 

and Navier-Stokes equations. The difference will give us a small increment functions. We find that for the Euler 

equations (zero approximation of the Chapman-Enskog) the difference is zero. There are differences to the first 

approximation. The first approximation is responsible for the tangential component (𝑝𝑖𝑗 tensor of viscous stresses). 

Euler equations are obtained with the use of locally-equilibrium distribution function. Consequently, they are 

responsible for the normal component of the velocity values regardless of macroparameters. Upon receipt of the first 

order correction of the terms included in the final decision of the Chapman-Enskog leave only after integration over 

the phase velocity ξ. The integrals are taken from f function, i.e. for (ρu). Consider 

 

  
𝐷𝑓0

𝑑𝑡
= 

1

𝑛
 𝑓

0

𝜕𝑛

𝜕𝑡
 +

3

2

1

𝑇
𝑓

0

𝜕𝑇 

𝜕𝑡
 + 

𝑚𝑐2

2𝑘𝑇2 𝑓
0

𝜕𝑇

𝜕𝑡
 + 𝑓

0
(

𝑚

𝑘𝑇
( 𝝃 − 𝒖)

𝜕𝒖

𝜕𝑡
) +  𝝃 ∙ {

1

𝑛
 𝑓

0
 
𝜕𝑛

𝜕𝑥
 +  (−

3

2
 )

1

𝑇
𝑓

0

𝜕𝑇

𝜕𝑥
  +

 
𝑚𝑐2

2𝑘𝑇2 𝑓
0

 
𝜕𝑇

𝜕𝑥
  + 𝑓

0
 (

𝑚

𝑘𝑇
( 𝝃 − 𝒖)

𝜕𝒖

𝜕𝑥
)} = 

=2𝐽(𝑓0, 𝑓0𝜑𝑘) = ∫ 𝑓0𝑓1
0  ( 𝜑1

(𝑘)′

 +  𝜑(𝑘)′
− 𝜑1

(𝑘)
− 𝜑(𝑘)) 𝑔 𝑏 𝑑𝑏𝑑 𝜖𝑑𝜉1𝜉 = 0. 

  In classic case    
𝜕𝑓0

𝜕𝑡
⃒

𝑡=0
=  𝑓

0
{

𝑚

𝑘𝑇
 (𝑐𝑖𝑐𝑗 −

1

3
𝑐2𝛿𝑖𝑗)  

𝜕𝑢𝑖

𝜕𝑡
 + 

1

2𝑇
 
𝜕𝑇

𝜕𝑡
 𝑐𝑖 [(

𝑚

𝑘𝑇
) 𝑐2 −  5]}. 

The Boltzmann equation was wrote for full function and have the local equilibrium function and addition item. The 

tangent velocity component is obtained because off ξ have arbitrary direction of velocity relative position of 

coordinate axes 

∫ 𝒏 ∙ (𝝉 ∙ 𝑓𝝃 )𝒅𝒔 𝒅 𝝃  = ∫ 𝑑𝑖𝑣 (𝝉 ∙ 𝑓𝝃 )𝒅𝒙 d𝝃  

   τf  give us addition item.  Besides local equilibrium function  𝑓0 we have addition item 
𝒑𝒊𝒋

𝟐𝒑
 (

𝒎

𝟐𝑻
 ) 𝒄𝒊 𝒄𝒋 −

 
𝒒𝒊

𝒑
 (

𝒎

𝒌𝑻
 ) (𝟏 −  

𝒄𝟐

𝟓

𝒎

𝒌𝑻
 ) 𝒄𝒊] .    Main   account gives derivatives of local equilibrium function. These items definite   the 

self-diffusion and thermo-diffusion which were foretold by S. V. Vallander [20].  The second derivative is result 

item ci ∙  
∂f

∂ri
. 

Examples from kinetic theory a) the problem of kinetic theory. Gas in stationary force field with potential φ 

(analogue of the problem [21]): 

ξ
i

∂f

∂xi

 +  ξ
i
  

∂

∂xi

 xi

∂f

∂xi

−  
1

m
 
∂φ

∂xi

 
∂f

∂ξ
i 

= J(f, f). 

 
ξi the phase velocity of the coordinates x, y. z; f - distribution function, J(f, f) −  the collision integral. Classic 

distribution is f = A(x)e−B(x)ξ2
. In this case, we have the old results, B = Const. For A (x) we have the equation 

dA

dxi
+

d

dxi
 xi

dA

dxi
+ 2

A∙B

m

∂φ

∂xi
= 0. 

 Then we have   f =  n0  (
m

2πkT
)3/2 e−

φ

kT e−
m

2kT
ξ2

. 

General Maxwell distribution has the form. f = n (
m

2πkT
)

3

2
exp {−

m

2kT
c2}  ,    c = ξ − u.  

The modified Boltzmann equation  

ξ
i

∂f

∂xi

+ ξ
i
  

∂

∂xi

 xi

∂f

∂xi

−  g
i

∂f

∂ξ
i 

= J(f, f).    

  g =
X

m
− acceleration  of molecules     

Apply to the solution of the old algorithm lnf = γ0 +  γiξi +  γ4ξ2. . 
Then we get the equation of the old and the new 

equation. 
∂γ

0

∂t
+  g

i
γ

i
= 0, 

∂γ
i

∂t
+  2g

i
γ

4
+

∂γ
0

∂xi 

+
∂γ

0

∂xi 

+
1

2
xi

∂γ
0

∂xi
2

2

+  
∂

∂xi

xi

∂γ
0

∂xi 

= 0, 

∂γ
4

∂t
 δij +  

1

2
(

∂γ
i

∂xj 

+  
∂γ

j

∂xi

) +
1

2
(

∂γ
i

∂xj 

+  
∂γ

j

∂xi

) + 

734



+ 
1

2
∗  

1

2
(xi +  xj) (

∂γi

∂xj 
+  

∂γj

∂xi
)

∂γ0

∂xi 
+

1

2
(xi +  xj) 

1

2
 (

∂

∂xj 
(

∂γi

∂xj 
+  

∂γj

∂xi
) +

∂

∂xi 
(

∂γi

∂xj 
+  

∂γj

∂xi
)) = 0,  

 as    before    
   ∂γ4

∂xi
= 0, T = const.  

Thus, an exact solution of the modified Boltzmann equation was received. 

 

5.Conclusion 
Brownian motion (fluctuations) is a consequence and evidence of the existence of thermal motion and is involved in 

many physical processes. The mathematical theory of describing such a motion is currently probabilistic in nature 

and says nothing about the causes and mechanism of the phenomenon. Now we account for reason this effect. On 

the example of the interaction of three particles, a new position of the center of inertia is established. It is proposed 

to calculate the corresponding driving force using the moment, which makes it possible to apply the procedure for 

calculating the force in the interaction of many particles. A model is proposed for including this force to calculate 

the virial coefficient and to calculate the force in the Langevin equation. 
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Abstract. Chaotic maps have been proved to be efficient in the design of pseudo-
random number generator (PRNG). However, the great majority of chaotic maps use
real numbers. Due to the high sensitivity of chaos and the finite precision nature
of digital device, when a PRNG based on real numbers is numerically implemented,
quantization and round-off errors may occur and consequently lead to security breach.
Besides, initial conditions and parameters of chaotic maps constitute the seed of a
PRNG and pseudo-chaotic behavior has to be guaranteed for all initial conditions.
Logistic map and skew tent map are supposed to exhibit good chaos with well defined
parameters, but in some particular initial conditions, their trajectories will be trapped
into fixed points and lose the chaos quality. For this, we analyze logistic and skew
tent map from the perspective of inverse maps in order to find all these unexpected
seeds (fixed points and their preimages). To overcome the drawbacks caused by real
numbers, a robust PRNG scheme based on a smart coupling of integer chaotic maps
over a 32−bit finite field is proposed in this paper. The coupling method can improve
the nonlinear dynamics and enhance the randomness efficiently. Simulation results
have demonstrated that the proposed PRNG can produce pseudo-random numbers
and this PRNG is suitable for encryption systems or other engineering applications.
Keywords: Chaotic map coupling, Logistic map, Skew tent map, Finite field, Pseu-
do-random number, Encryption.

1 Introduction

Pseudo-random number generators (PRNGs) are vital components for a plethora
of applications, from noise simulation in statics and control, to secure informa-
tion transmission and cryptography[1].

The pseudo-random feature implies that randomness is combined with per-
fect reproducibility. The seed of a PRNG determines uniquely its output se-
quence, and guarantees its reproducibility: the same seed will generate the
same output sequence, and a different seed is supposed to generate another
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C. H. Skiadas (Ed)

c© 2020 ISAST

737



uncorrelated sequence with features close to true random numbers[2]. This
property is crucial for most applications and it makes the PRNG appear on
the list of the most used tools in engineering, economics and physics, etc. As
an example, considering the application in control domain, the PRNG can be
used to simulate erroneous sensor measurements (external noise), un-modeled
dynamics (internal noise). The robustness of different control laws should be
compared for identical ”noise” provided by the PRNG, otherwise the obtained
results may be biased and eventually unreliable. Equivalently, in cryptography,
decryption must use the identical key stream (pseudo-random numbers) as the
encryption in order to recover the same original message.

Numerical methods used in PRNG design are considered to be insecure
and have heavy calculation burden[3]. Nowadays, the good news is that the
deterministic feature, random-like behavior combined with the extreme sensi-
tivity to the initial conditions have rendered chaotic maps perfect candidates
for PRNG design[4]. The initial conditions and parameters constitute the seed
of a PRNG.

Designing a chaotic PRNG requires a careful and wise choice of the indi-
vidual chaotic maps. One-dimensional (1-D) chaotic maps have advantages of
good chaos with simple structure and lower computational cost[5]. But they
cannot be used alone as PRNG owing to their not long enough periods, attain-
able map functions and uneven distributions, etc. Also, in digital devices, it
is inevitable that finite precision will cause dynamical degradation in chaotic
systems. Hence, an efficient algorithm to make the most use of the chaotic
maps to design PRNGs is another important issue. In the open literature,
based on multiple chaotic maps, some effective methods have been proposed
to overcome the dynamical degradation and enhance the chaos property, such
as coupling different chaotic maps [6,7], integrating chaotic maps[4,8], multi-
plexing mechanism[9,10], permutation approaches[1,11], linear feedback shift
register operations[12].

However, most of the proposed PRNGs are defined by floating-point no-
tation, which have the defects of slow data transfer and inefficient resource
utilization from a hardware perspective[3]. Furthermore, because of the high
sensitivity of the chaotic systems to the initial conditions and parameters, the
chaos properties are also strongly affected by the data type of the chaotic sys-
tems when applied to hardware implementation. Therefore, due to the finite
nature of the machine number set, these systems may lose the chaotic charac-
teristics because quantization, truncation or round-offs are required when they
are numerically realized under a finite precision[13]. Thus, they are not reliable
enough to be applied into practical situations.

To overcome these drawbacks, Elmanfaloty and Abou-Bakr[3] brought out
a solution of using fixed-point precision notation and proposed a binary chaotic
PRNG with 32-bit fraction length. Considering the integer arithmetic with re-
duced resources utilization is more hardware friendly than the decimals arith-
metic, we aim to design PRNG using finite integer numbers.

Pseudo-random numbers play an important role in cryptosytems which de-
mand not only the randomness, but also a high sensitivity to its seed (secret
key for a cryptosystem), especially in the stream cipher whose security depends
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mainly on its key stream (pseudo-random numbers provided by a PRNG)[14].
Thus, we will propose a new PRNG from the perspective of cryptosystem, but
note that the PRNG is not limited to this kind of application.

In our previous works, we have proposed reliable PRNGs based on the 1-D
integer chaotic maps for stream cipher and block cipher cryptosystems[15,16].
They all have avoided the degradation security problem and have achieved high
security and reliability. They also can be used in other engineering applications.

In this paper, to pursue a new efficient and general coupling method to im-
prove the randomness of the 1-D logistic map and skew tent map, we introduce
a smart coupling algorithm based on integer chaotic maps and design a robust
PRNG scheme over an N-bit (N=32) integer finite field. It is known that a
chaotic attractor possesses an infinity of unstable dense periodic orbits[17,18].
In particular, the fixed points may represent a problem if the ”randomly cho-
sen” initial conditions coincide with a periodic point, even though the latter is
unstable. This is clearly the case, if starting from any point of the unstable or-
bit, the trajectory will remain locked at the same periodic point. Both logistic
and skew tent maps are non invertible maps. But to overcome this unexpected
case and ensure pseudo-chaotic behavior for all initial conditions in PRNG de-
sign, we can analyze their inverse maps just to reveal all the possible initial
conditions and their preimages that lead to the fixed points. Then, based on
this analysis, the logistic map and the skew tent map over an N-bit integer
finite-state space are reformulated. After that, a coupling matrix, the kernel
of the PRNG design, is applied to break the original orbits of the 1-D chaotic
maps for avoiding undesirable dynamic behavior and enhancing the scheme
complexity. Finally, statistical and security tests are applied to evaluate the
cryptographic properties of the PRNG.

The paper is organized as follows. Section 2 analyzes the logistic map
and skew tent map from the inverse function point of view, reformulates their
expressions over an N-bit integer field and briefly investigates their qualities
for PRNG design. The proposed PRNG and the coupling performance are
discussed in Section 3. Section 4 analyzes the cryptographic properties of the
proposed PRNG. Section 5 gives the conclusion.

2 1-D chaotic map over integer finite field

2.1 Logistic map

Logistic map is a well-known classical chaotic map defined over a real number
domain ranging from 0 to 1, which is given as below:

x(n+ 1) = µx(n) (1− x(n)) (1)

where {x(n), n = 1, 2, 3...} represents the iteration state and x(0) ∈ (0, 1) is
the initial condition; the parameter µ ∈ (0, 4] controls the chaotic behavior.
The Lyapunov exponent is the largest when µ = 4, indicating the logistic map
reaches the complete chaos.

The delayed phase space of the logistic map when µ = 4 is shown in Fig.1
(in blue), where the solid red line means x(n+1) = x(n). The intersections are
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Fig. 1. Delayed phase space and preim-
ages of logistic map over a real domain
(µ = 4)

0 0.25 0.5 0.75 1

x(0)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x(
n)

(0.75,0.75)(0.25,0.75)

(1,0)(0,0) (0.5,0)

Fig. 2. Iterations x(n) of logistic map
versus its initial conditions x(0) over a
real domain (µ = 4)

two unstable fixed points: 0, µ−1
µ , which are 0 and 3

4 when µ = 4. If the initial

value is 3
4 , even though the parameter µ equals 4, all the following iterations

will be trapped into the fixed point 3
4 . This is an undesirable case when one

intends to use the chaos features to design PRNG or encryption purposes. In
addition to this, preimages (backward iterates) of the fixed points can cause the
fixed point problem as well, which can be seen from Fig.1. The preimages of 0
are 0, 12 and 1, while the preimages of 3

4 are 1
4 and 3

4 . These values all lead to
the fixed points. It also can be observed from Fig.2, which plots 800 iterations
x(n) (n = 1, 2, ...800) versus the different initial conditions x(0): for specific
x(0)(0, 0.25, 0.5, 0.75, 1), the corresponding iterations are locked into the fixed
points, thus there exists no chaos even for µ = 4. To unearth all preimages of
the fixed points, we analyze the inverse map.

In the literature, plenty of papers have investigated the logistic map, but
very few of them analyze the inverse map. However, it is very important to
ascertain chaotic behavior so that the trajectories don’t get locked into the
fixed point. Because the unstable fixed points for the iterated map behave as
stable fixed points by the inverse map. In other words, the preimages of the
unstable fixed points converge towards the fixed points under forward itera-
tions. Therefore, not only the fixed points, but also their preimages have to be
avoided as a seed in order to guarantee chaotic behavior for µ = 4.

The preimages of logistic map can be obtained by Eq.(2)

x(n− 1) =
µ±

√
µ2 − 4µx(n)

2µ
(2)

The preimages (x(n− 1), x(n− 2), . . . ) of the fixed points (x(n) = 0, 34 ) are
summarized in Table 1. We can find that, if ignoring the irrational numbers in
the range of (0, 1), the initial conditions to be avoided are 1

4 , 12 and 3
4 .

Logistic map redefined over the N-bit integer finite filed when µ = 4 is given
by Eq.(3).
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x(n) x(n− 1) x(n− 2) x(n− 3) · · ·

0

0

0
0 · · ·
1 · · ·

1
1
2

· · ·
1 · · ·

1

1
2

2±
√
2

4
(irrational value) -

1
1
2

· · ·
1 · · ·

3
4

1
4

2±
√
3

4
(irrational value) - -

3
4

1
4

2±
√
3

4
(irrational value) -

3
4

1
4

· · ·
3
4

· · ·
Table 1. Preimages of the fixed points of logistic map

Fig. 3. Delayed phase space and preimages of logistic map over the 32-bit integer
field (µ = 4)

X(n+ 1) =


2N − 1, X(n) = 3

4 × 2N or 2N⌊
X(n)×(2N−X(n))

2N−2

⌋
, otherwise

(3)

where {X(n), n = 1, 2, 3...} is the produced chaotic sequence by iterations
and all values are integers ranging in

[
1, 2N − 1

]
; symbol b·c means that each

element in it rounds to the nearest integer less than or equal to the element.

The delayed phase space of Eq.(3) is displayed in Fig.3, where there obvi-
ously exist two unstable fixed points: X(n) = 0, 34×2N . Similar to the analysis
of Fig.1, the preimages of the fixed points in the range of [1, 2N −1] are 1

4 ×2N ,
1
2 × 2N and 3

4 × 2N that should be avoided carefully. Considering 1
4 × 2N

produces 3
4 × 2N after one iteration, Eq.(3) just needs to deal with the value

3
4 × 2N .
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2.2 Skew tent map

Skew tent map is derived from the classical tent map but it achieves better
statistical performances. Skew tent map defined in real domain (0, 1) is given
by Eq.(4).

x(n+ 1) =


x(n)
p , 0 < x(n) < p

1−x(n)
1−p , p 6 x(n) < 1

(4)

where {x(n), n = 1, 2, 3...} represents the iteration state and p ∈ (0, 1) is the
control parameter.
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Fig. 4. Delayed phase space of skew tent
map over a real domain
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Fig. 5. Delayed phase space of skew tent
map over the 32-bit integer field

The delayed phase space diagram of the skew tent map is shown in Fig.4
where the solid red line reveals the unstable fixed points: 0 and 1

2−p . From
the inverse function point of view, the preimages have the following iteration
relation:

x(n− 1) = {p× x(n), 1− (1− p)x(n)} (5)

The skew tent map over the N-bit integer field is given by Eq.(6):

X(n+ 1) =


⌊
2N × X(n)

P

⌋
, 0 < X(n) < P⌊

2N × 2N−X(n)
2N−P

⌋
, P < X(n) < 2N

2N − 1, otherwise

(6)

where the iterated state is X(n) ∈ N+ and X(n) ∈ [1, 2N − 1]; P ∈ N+ is the
control parameter and P ∈ [1, 2N − 1].

The unstable fixed point 0 does not belong to the region of definition, while
the other fixed point in the mapping shown in Fig.5 must satisfy one condition:

the equation of Xfixedpoint = 2N × 2N−Xfixedpoint

2N−P should have integer solutions
Xfixedpoint. It is a bit complicated to analyze the preimages of the fixed point
without restricting the parameter P . We analyze the parameter P in the range
of [1, 232 − 1] in turn and find when using specific P , there exist preimages
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that can lead to the fixed point, for instance, if P = 262140, Xfixedpoint =
2147549185. In order to prevent the trajectory from being trapped into the
fixed point, although this rarely happens, we add the following statement in
the algorithm:

X(n+ 1) = X(n+ 1)− 1, if X(n+ 1) = X(n) (7)

2.3 Analysis for encryption purposes

Lyapunov exponent The Lyapunov exponent characterizes the stability of
a chaotic motion by measuring the average exponential divergence between
two nearby trajectories. If the Lyapunov exponents have a positive value, the
chaotic map shows chaotic behavior and the larger this value is, the better the
chaotic performances are[19].

The Lyapunov exponent of the logistic map (µ = 4) is 0.6931. Fig.6 demon-
strates that the estimated Lyapunov exponents of the skew tent map are al-
ways positive for the range of interest of parameter P , exhibiting the maximum
0.6939 for P = 1

2 × 2N . At this parameter value, the chaoticity of skew tent
map is equivalent to that of the logistic map.
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Fig. 6. Estimated Lyapunov exponents of skew tent map

Histogram Histograms of the chaotic maps Eq.(3) and Eq.(6),(7) defined over
32-bit integer field are plotted in Fig.7 and Fig.8 in 1000 classes, where 2× 106

values are generated for each map but the first 106 are considered transient
and removed; the red lines mean the average values in every 10 classes.

Uniformity is one of the important criteria for randomness. According to
Fig.7 and Fig.8, we can observe that the piece-wise linear map (skew tent map)
shows much better uniform distribution features than the logistic map.
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Fig. 7. Histogram of logistic map Fig. 8. Histogram of skew tent map

Key space contribution In encryption applications, a large secret key space
of PRNG is necessary to resist the brute-force attack and it is considered to be
secure if the key space is greater to 2128[20]. Unlike the statistical and security
performances, which only can be tested after completing the design of PRNG,
key space needs to be taken into account when we are conceiving a new PRNG
scheme for cryptosystems.

Initial conditions and parameters form the key space. For logistic map, only
N-bit initial value can be taken into the key space, while for the skew tent map,
besides the N-bit initial value, N-bit parameter P can be counted into the key
space as well. From this point of view, skew tent is able to provide N more bit
of key space than the logistic map.

3 Proposed PRNG

In this section, we first give the proposed PRNG scheme whose core is a smart
coupling structure. This coupling is inspired by the idea of weak coupling over a
real number domain in our previous work[21,22]. Then, we analyze the coupled
effect using logistic map and skew tent map. Considering the key space issue
in encryption system, two skew tent maps are chosen to construct the PRNG.

3.1 Proposed PRNG scheme

The proposed PRNG scheme is shown in Fig.9.

Fig. 9. The proposed PRNG scheme
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It mainly contains two operations: first, a new proposed smart chaotic maps
coupling is used to break the original chaotic orbits, enhance the complexity
and improve the chaotic property; the alternate output control aims to mix the
coupled numbers and increase the unpredictability.

The coupling matrix A is defined as follows:

A =

[
17− e e

2e 31− 2e

]
(8)

e ∈ [1, 24 − 1] is a coupling control parameter.
The coupling process is described as below:[

X1 (n)
X2 (n)

]
= A×

[
F [X1 (n− 1)]
F [X2 (n− 1)]

]
(9)

where F represents the chaotic functions and it can be a similar type of chaotic
map or two different kinds of maps; X1(n− 1)and X2(n− 1) are the previous
states of the current states X1(n)and X2(n).

The final output chaotic sequence X is controlled by selecting the interme-
diate outputs X1 and X2 alternately (another switching law is also possible):

X (n) =

{
X1 (n) , when mod (n, 2) = 1
X2 (n) , when mod (n, 2) = 0

(10)

3.2 Coupling performance

The behavior of the final output sequence depends highly on the coupling
performance. Here, we first couple two different maps: logistic map (Eq.(3))
and skew tent map (Eq.(6),(7)), and analyze the coupling performance in terms
of the statistical histogram distribution and delayed phase space behavior.

Fig. 10. Histogram of X1 Fig. 11. Histogram of X2

From the histograms of intermediate outputs X1 and X2 with length of
3125000 (distributed in 1000 classes) shown in Fig.10 and Fig.11, we can ob-
serve that the sequence after the coupling algorithm is able to achieve a uniform
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Fig. 12. Delayed phase space of X1 Fig. 13. Delayed phase space of X2

distribution. According to the delayed phase space diagrams shown in Fig.12
and Fig.13, the coupling matrix can hide the generating function effectively,
which is required for most applications in security.

If logistic map and skew tent map are used to design the PRNG, the key
space contains the initial values of these two maps (each is in 32 bits), a pa-
rameter P (32 bits) for the skew tent map and a control parameter e (4 bits)
for the coupling matrix A. Thus, the key space is 2100 in total, which is not
large enough for encryption purposes. Hence, this coupling combination can
be used to design PRNG, but needs to parallel the coupling scheme to expand
the key space for encryption applications.

Skew tent map contributes more key space than logistic map. Apart from
this advantage, the skew tent map has an approximately uniform distribution,
which outperforms most of the well-known chaotic maps. Thus, we use two
skew tent maps to design the PRNG for cryptosystem.

The secret key of this PRNG contains the initial conditions (Xs1(0), Xs2(0)),
the parameters (P1, P2) for skew tent maps, and the coupling control param-
eters e. Thus, the key size is :

|K| = |Xs1 (0)|+ |P1|+ |Xs2 (0)|+ |P2|+ |e| = 132 bits (11)

where |Xs1 (0)| = |P1| = |Xs2 (0)| = |P2| = 32 bits and |e| = 4 bits.
Therefore, the key space of this proposed PRNG is 2132, which is large

enough to make the brute-force attack infeasible if the PRNG is used for cryp-
tography.

The coupling performances of X1,X2 when using skew tent maps are as
good as when coupling the logistic map and skew tent map. The final output
is the one which will be exploited, so in the following analyses, we just give the
performance test results of the final output chaotic sequence X.

4 Performance analysis

The seed and the output of the PRNG are also called secret key and key stream
respectively in encryption applications. To guarantee high security, the key
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stream must be random enough to ensure no statistical information is exposed
to hackers so that unauthorized ones cannot deduce the inner states or even
recover the secret key. Thus, the PRNG should have random statistical perfor-
mance and good security property. This section analyzes these performances
by delayed phase space graph, histogram and χ2 test, key sensitivity and NIST
test. In these tests, each test sequence has 3125000 values (3125000 × 32 bits
= 100 × 106 bits). All simulations are conducted in MATLAB (R2017b) and
each secret key is randomly created.

4.1 Delayed phase space

The delayed phase space of the final output sequence X has been drawn in
Fig.14, where 3125000 values are generated and the last 106 values are plot-
ted. Contrary to the easily identified mapping function of the original chaotic
map shown in Fig.5, the final output sequence is distributed randomly in the
delayed phase space and shows more complex dynamical behavior thanks to
the coupling and alternate output control operations. Thus, it is impossible for
potential attackers to analyze the iteration trajectory and they cannot find a
hint of which chaotic map we use in the PRNG.

Fig. 14. Delayed phase space of X Fig. 15. Histogram of X

4.2 Histogram

A basic requirement for a robust PRNG is that the generated chaotic sequence
have a uniform distribution. The histogram of the chaotic sequence X with
length of 3125000 is drawn in Fig.15 in 1000 classes, which shows visually that
the generated sequence is uniformly distributed in the whole definition field.
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4.3 χ2 test

To analyze the uniformity more precisely, the χ2 test is applied. The experi-
mental value χ2

exp is calculated by Eq.(12):

χ2
exp =

K−1∑
i=0

(Oi − Ei)2

Ei
(12)

where K = 1000 is the number of classes, Oi is the number of observed values
in the i − th class and Ei is the expected number in a uniform distribution.
The theoretical value χ2

theo(K,α) equals to 1073.64 which is obtained for a
threshold α = 0.05. If χ2

exp < χ2
theo(K,α), the test sequence can be considered

to have a uniform distribution.

Here, we use 100 different secret keys to produce 100 chaotic sequences.
Each contains 3125000 values, hence, Ei = 3125000/1000. χ2

exp is calculated
for each sequence. The average χ2

exp = 1004.49 that is smaller than χ2
theo(K,α).

Thus, χ2
exp test has confirmed the uniformity of the output chaotic sequence.

4.4 Key sensitivity

The generated chaotic sequence should show high sensitivity to the secret key
(seed). This property is necessary and important for resisting differential attack
and chosen-plaintext attack. The key sensitivity can be measured by Hamming
Distance (HD) given as follows:

HD (X,Y ) =
1

Nb
×

Nb∑
k=1

(X (k)⊕ Y (k)) (13)

where X and Y are two output chaotic sequences from the proposed PRNG
whose secret keys are just one bit (randomly chosen) different; Nb is the bit
length in a sequence and ⊕ represents the XOR operator.

Here, we use 100 different secret keys to produce 100 pairs of X and Y .
Then, 100 HDs are computed by Eq.(13). The average HD is 49.9989 which is
very close to the optimal HD value 50% (bit change probability). This result
means the high secret key sensitivity is achieved.

4.5 NIST test

NIST (National Institute of Standard and Technology) test is a suite of tests
which is widely used to measure sequences for randomness. We apply the NIST
test on the produced sequence (3125000∗32 bits = 100×106 bits). The results
in Table 2 have demonstrated that the generated chaotic sequence has passed
the NIST test successfully, which has verified the output sequence of the PRNG
is pseudo-random.
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Test P-value Proportion Results

Frequency test 0.798 99.000 Passed
Block-frequency test 0.290 97.000 Passed
Cumulative-sums test 0.765 98.500 Passed
Runs test 0.679 99.000 Passed
Longest-run test 0.494 99.000 Passed
Rank test 0.475 100.000 Passed
FFT test 0.658 100.000 Passed
Nonperiodic-templates 0.502 98.973 Passed
Overlapping-templates 0.924 97.000 Passed
Universal 0.658 99.000 Passed
Approximty entropie 0.964 100.000 Passed
Random-excursions 0.441 98.182 Passed
Random-excursions-variant 0.328 98.788 Passed
Serial test 0.906 99.500 Passed
Linear-complexity 0.154 99.000 Passed

Table 2. Results of NIST test

5 Conclusion

In this paper, a smart coupling based on the reformulated logistic and skew
tent maps has been proposed to design a robust PRNG. These two maps have
been redefined using integers over the 32-bit finite field. On one hand, this
has avoided the iteration states being locked into a fixed point (or its preim-
ages), and on the other hand, this can solve the security problems caused by
applying the real domain defined chaotic maps into finite precision hardware
implementations. In addition, the smart coupling has overcome the dynamical
degradation existed in chaotic maps with finite precision. Composed of the
coupling and the output control operation, the proposed PRNG structure can
enhance the nonlinear dynamics and increase the complexity effectively.

Conducted simulations results have demonstrated that the proposed PRNG
is able to produce pseudo-random numbers with good randomness and crypto-
graphic properties. Therefore, this PRNG can be used in the design of cryp-
tosystems or any other pseudo-random generator required applications.
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Abstract. We study information measures and synchronization in complete dynam-
ical networks of maps, with local identical chaotic dynamical systems. The network
topologies are regular ring lattices which are characterized by circulant matrices and
the conditional Lyapunov exponents are explicitly determined. For discontinuous
local dynamics, some properties of the mutual information rate and the Kolmogorov-
Sinai entropy are established, depending on the topological entropy of the individual
chaotic nodes and on the synchronization interval. It is proved that as large as the
network topology is, measured by its network topological entropy and directly re-
lated with the network order, the information measures studied increase or decrease,
according to the network order in relation to the synchronization interval. Some nu-
merical studies are included.
Keywords: Mutual information rate, Kolmogorov-Sinai entropy, synchronization,
complete networks, discontinuous dynamics, Lyapunov exponents, topological order,
circulant matrix.

1 Introduction

In the last decades, several authors have dedicated their investigation to the
study of the information theory and its applications. The amount of infor-
mation produced by a network may be measured by the mutual information
rate. This measure together with the Kolmogorov-Sinai entropy are expressed
in terms of the conditional Lyapunov exponents. On the other hand, it is well
known that chaotic systems can be synchronized. The recognized potential
for communications systems has driven this phenomenon to become a distinct
subfield of nonlinear dynamics.

Information theory and synchronization are directly related in a network.
Motivated by the theoretical and practical connection between the information
measures and the phenomenon of synchronization, our purpose in this paper is
to analyze the relations between the mutual information rate, the Kolmogorov-
Sinai entropy and the synchronization in a space of complete dynamical network
of maps of order N ∈ N \ {1}. The discontinuous local dynamics considered
at each node establish the topological, metrical and chaotic complexity of the
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network that is being studied. Discontinuous dynamical systems are recur-
rently found in physical systems, which are also used in various applications
in engineering, economic, biological and ecological models, among others, see,
for example, [1], [9] and [16]. The study of discontinuous dynamics in synchro-
nization phenomena has also attracted the attention of several researchers, see
[10] and the other works of this same volume and issue.

The paper is organized as follows: In Sec.2 are presented preliminar defini-
tions and results. We start Sec.3 with the analysis of the case where the local
dynamics are given by discontinuous piecewise linear maps with slope s > 1. We
obtain explicit expressions for the synchronization interval and for the parallel
and transversal Lyapunov exponents. For this case it is proved that to stabi-
lize the synchronized states, it suffices to require that the transversal Lyapunov
exponent is negative. Some properties of the mutual information rate and the
Kolmogorov-Sinai entropy, depending on the slope s and the synchronization
interval are established. We also study the approach to a topological invariant
associated with the dynamics between the nodes of the complete network: the
network topological entropy. In this context is established a topological order:
it is proved that as large as the network topology, measured by its network
topological entropy and directly related with the network order, the informa-
tion measures studied increases or decreases, according to the network order in
relation to the synchronization interval. Numerical simulations are performed
to obtain more information and complement the theoretical results presented.
Finally, in Sec.4, we discuss our work and provide some conclusions.

2 Preliminars

An active channel is usually described by an active network constructed using
N ∈ N \ {1} elements that have some intrinsic dynamics and can be char-
acterized by classical dynamical systems, such as chaotic oscillators, neurons,
phase oscillators, and so on. Throughout this work we will consider a family of
complex networks of chaotic dynamical systems defined by complete networks

of order N with N(N−1)
2 edges and discontinuous local dynamics. These net-

works of N identical chaotic dynamical oscillators or units, are described by a
connected and unoriented graph G = (V,E), where V represents the vertices
(nodes), and E the edges of G, with no loops and no multiple edges, where
every vertex of G has degree N−1. The space of complete dynamical networks
with N nodes will be denoted by KN .

Consider A the adjacency matrix of KN and D = diag(N − 1, . . . , N − 1),
then L = [lij ] = A −D represents the laplacian matrix of the complete graph
and is written in the following form,

L =









−(N − 1) 1 1 . . . 1
1 −(N − 1) 1 . . . 1
. . . . . . . . . . . . . . .
1 1 . . . 1 −(N − 1)









.
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The dynamics of these N coupled oscillators can be expressed by the following
system of differential equations,

ẋi = f(xi) + σ

N
∑

j=1

lijxj , (1)

where f is a vector-valued map describing the dynamics of the nodes, σ > 0 is
the coupling strength or parameter and i = 1, 2, ..., N .

However, the state equations of the complex network given by Eq.(1), can
be rewritten in the discretized form as,

xi(k + 1) = f(xi(k)) + σ

N
∑

j=1

lijf(xj(k)), (2)

which is also known as a complex dynamical network of maps, see, for example,
[8] and [12]. Let f ′ be the derivative of f , then the jacobian matrix of this
dynamical network KN is written as follows,

J =









f ′ − (N − 1)σf ′ σf ′ . . . σf ′

σf ′ f ′ − (N − 1)σf ′ . . . σf ′

. . . . . . . . . . . .
σf ′ σf ′ . . . f ′ − (N − 1)σf ′









.

Every matrix associated with a complete network KN has a certain regu-
larity, so we are able to determine its spectra and the associated eigenspaces.
Let µ1 < µ2 ≤ . . . ≤ µN and λ1 < λ2 ≤ . . . ≤ λN be the eigenvalues of
the laplacian and the jacobian matrices of KN , respectively. Notices that the
matrices A, L and J are irreducible matrices.

1. Both matrices L and J are circulant matrices, so they are diagonalizable
and have the same eigenspaces. Let x(N) = (1, 1, . . . , 1), this is an eigen-
vector of every circulant matrix, and it is associated with the eigenvalue
µ1 = 0 and λ1 = f ′, respectively, that is equal to the row sum of each
matrix.

2. The other eigenvectors of a circulant matrix.
Let ωN = exp

2πi

N be one of the N -th complex roots of 1. It is known that,
for 1 ≤ k ≤ N ,

x(k) =
(

ω0k
n , ω1k

n , . . . , ω
(N−1)k
N

)

is an eigenvector of every circulant matrix C where every row has the ele-
ments {c1, . . . , cN}. In particular, if k = N we obtain x(N) = (1, 1, . . . , 1).
Moreover, the eigenvalue associated with x(k), considering the regularity of
C and ωk

N , is equal to
∑N

j=1 cjω
jk
N .

Let us recall an important property of the sum of the N complex roots of
the unit, i.e.,

N
∑

j=1

ωjk
N =

{

N, if k ≡ 0 (mod N)

0, otherwise
.
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We can also state that, the laplacian matrix L has exactly two eigenvalues µ1 =
0, a simple root, and µ2 = −N , with multiplicity N−1, and the jacobian matrix
J has also two eigenvalues λ1 = f ′, also a simple root, and λ2 = f ′(1 − Nσ),
with multiplicity N −1. Notice that, in the context of the study of information
measures, the eigenvalue λ1 measures the exponential divergence of nearby
trajectories in the direction of the synchronization manifold and the eigenvalue
λ2 measures the exponential divergence of nearby trajectories in the direction
transversal to the synchronization manifold, see [2] and [3].

In an active network, every pair of elements form a communication chan-
nel and the rate with which information is exchanged between these elements,
a transmitter Si and a receiver Sj , is given by the mutual information rate,
represented by IC(Si, Sj) = λ+

‖ −λ+
⊥, where λ

+
‖ denotes the positive Lyapunov

exponents, associated to the synchronization manifold, and λ+
⊥ denotes the

positive Lyapunov exponents, associated to the transversal manifold, see [2].
The Kolmogorov-Sinai entropy, denoted by HKS , gives a suitable way of ob-
taining the entropy production of a dynamical system. It also provides a global
measure of the amount of information that can be simultaneously transmitted
among the network. For systems with a measurable (the trajectory is bounded
to a finite domain) and ergodic (average quantities can be calculated in space
and time) invariant (with respect to time translations of the system and to
smooth transformations) natural measure, that is smooth along the unstable
manifold, the Kolmogorov-Sinai entropy is obtained by the sum of the positive
Lyapunov exponents, see [2], [3], [6] and [13]. Regarding the case of complete
network KN , where every node is connected with all the others, each node is
only one connection apart from any other and there is just one single transver-
sal Lyapunov exponent. Thus, according to the dynamical network given by
Eq.(2) and [3], we have the following definitions for the information measures
analyzed in this paper,

IC =

{

λ‖ − λ⊥, if λ⊥ > 0

λ‖, if λ⊥ ≤ 0
(3)

and

HKS =

{

λ‖ + λ⊥, if λ⊥ > 0

λ‖, if λ⊥ ≤ 0
. (4)

Other central point of our investigation is related with the synchronization
in the space of complete networks KN and its relations with the information
measures IC and HKS , just mentioned in Eqs.(3) and (4), respectively. Follow-
ing the results presented in [8], a dynamical network given by Eq.(2), having
in each node identical chaotic nodes (χ(f) > 0), synchronizes in the following
interval,

σ1 =
1− e−χ(f)

|µ2|
< σ <

1 + e−χ(f)

|µN |
= σ2, (5)

where 0 = µ1 < |µ2| ≤ . . . ≤ |µN | are the eigenvalues of the laplacian matrix
L and χ(f) is the Lyapunov exponent of each individual n-dimensional node,
see also [5] and [6]. Notice that, if each local dynamical node is chaotic, then
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the Lyapunov exponent χ(f) is positive. Throughout this work, the synchro-
nization interval of KN will be denoted by Iσ =]σ1, σ2[.

3 Local dynamics: discontinuous piecewise linear maps

with slope s > 1

In this section we consider the space of all the complete dynamical network of
maps KN , given by Eq.(2), where the local dynamics in each node is defined by
a discontinuous piecewise linear one-dimensional (1D) map, f : I = [b1, b2] ⊂
R → I, with |I| = 1 represents the amplitude of the interval I, such that there
exist points b1 = d0 < d1 < . . . < dp < dp+1 = b2, where f has constant slope
s > 1 everywhere in each subinterval Ii =]di, di+1[, i = 0, . . . , p. Generally, the
discontinuous piecewise linear map is defined by,

f(x) = s x+ ai (mod 1), ∀x ∈ Ii and ai ∈ R. (6)

In this context the map f has p−1 discontinuity points: d1, d2, . . . , dp, see Fig.1.
Thus, throughout this section we consider the following parameters space,

Σ+ =
{

(N, s, σ) ∈ R
3 : N ∈ N \ {1} , s > 1, σ > 0

}

. (7)

Since each complete dynamical network KN has identical chaotic nodes and
|µ2| = |µN | = N , then the synchronization interval is nonempty, for all s > 1.
Moreover, from Eq.(5), the synchronization interval may be expressed in terms
of the topological entropy of f , i.e., the chaoticity of the dynamics of the node
map f is measured by htop(f) = χ(f) = log |s|, see [5] and [11].

Property 1. Consider the (KN , Σ+) space of complete dynamical networks,
given by Eq.(2). Let f be the discontinuous piecewise linear map with slope
s > 1 everywhere, given by Eq.(6). The synchronization interval ofKN , defined
by Eq.(5), is given by,

σ1 =
s− 1

Ns
< σ <

s+ 1

Ns
= σ2, ∀s > 1. (8)

Consequently, if the dynamics of the individual nodes, defined by f , of the
complete dynamical network KN are fixed, then the amplitude of the syn-
chronization interval |Iσ| decrease, as larger is the order N of the complete
dynamical network.

3.1 Synchronization and information measures

Establishing that the local dynamics f is a discontinuous piecewise linear map
with slope s > 1 everywhere, given by Eq.(6), we have noticed that the jacobian
matrix J has only two distinct eigenvalues, λ1 = s and λ2 = s(1 −Nσ), with
multiplicity N − 1. So, the parallel Lyapunov exponent is given by,

λ‖ =

∫

I

ln |λ1| dµ̄ = ln(s), (9)
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Fig. 1. Graphics of discontinuous piecewise linear 1D map f(x) = 4x+ ai, x ∈ [0, 1].
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where |I| = 1 represents the amplitude of the interval I and µ̄ is a measurable
and ergodic invariant natural measure. The transversal Lyapunov exponent is
given by,

λ⊥ =

∫

I

ln |λ2| dµ̄ = ln |s(1−Nσ)| . (10)

Notice that for each complete dynamical networkKN , there is a single transver-
sal Lyapunov exponent.

The following proposition stablishes that to stabilize the synchronized states,
it suffices to require that the transversal Lyapunov exponent is negative, with
piecewise linear maps f with slope s > 1 as local chaotic dynamics.

Proposition 1. Consider the (KN , Σ+) space of complete dynamical networks,
given by Eq.(2). Let f be the discontinuous piecewise linear map with slope
s > 1 everywhere, given by Eq.(6), Iσ be the synchronization interval, given
by Eq.(8), and Iλ−

⊥

be the interval where λ⊥ < 0, with λ⊥ given by Eq.(10).

∀s > 1, it is verified that:

(i) Iσ ≡ Iλ−

⊥

6= ∅;

(ii) there exists σ > 0 such that the synchronized states of Eq.(2) stabilize
exponentially, i.e., x1(k) = x2(k) = . . . = xN (k) → s(k), as k → ∞.

Proof. Consider (N, s, σ) ∈ Σ+ and λ⊥ ∈ Iλ−

⊥

, according to Eq.(10) we have

that,

ln |s(1−Nσ)| < 0 ⇔ |s(1−Nσ)| < 1 ⇔

−1 ≤ s(1−Nσ) < 1 ⇔
s− 1

Ns
< σ <

s+ 1

Ns
, ∀s > 1.

Thus, from Property 1 the result of item (i) is proved, see Fig.2.
Given that the chaoticity of the node map f is measured by χ(f) = log(s) >

0, ∀s > 1, from condition given by Eq.(5), it follows that the inequality

1− e−χ(f)

|µ2|
<

1 + e−χ(f)

|µN |
⇔

s− 1

Ns
<

s+ 1

Ns

should be satisfied for the existence of a coupling strenght σ > 0. In this

context can be defined a ratio
1

R
:= µ2−µN

µ1−µ2

, where 0 = µ1 < |µ2| ≤ . . . ≤ |µN |

are the eigenvalues of the laplacian matrix L, which measures the distance from
the first eigenvalue to the main part of the spectral density ρ(µ) normalized
by the extension of the main part, see [8]. From straightforward and simple
calculations it is proved that,

2e−χ(f)

1− e−χ(f)
>

1

R
⇔

2

s− 1
> 0, ∀s > 1.

Thus, considering the previous conditions, we can state that for all s > 1 there
exists a coupling strenght σ > 0 such that the synchronized states of Eq.(2)
stabilize exponentially. Proposition 1 is thus proved. �
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(i) N = 10, s = 2 and Iσ =]1/20, 3/20[
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Fig. 2. Numerical simulation for Propositions 1 and 2, where to stabilize the syn-
chronized states of the dynamical network, given by Eq.(2), it suffices to require that
all transversal Lyapunov exponents be negative.
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The results in Proposition 1 bring up to the discussion the complete syn-
chronization versus the negativity of the conditional or transversal Lyapunov
exponents. For more details on this classic discussion, see, for example, [6],
[7], [8], [12], [15] and references therein. The negativity of the conditional Lya-
punov exponents is a necessary condition for the stability of the synchronized
state, see also [4]. To illustrate these results see the numerical cases shown in
Fig.2.

Taking into account the expressions of the parallel Lyapunov exponent and
the transversal Lyapunov exponent, given by Eqs.(9) and (10), respectively,
the information measures defined by Eqs.(3) and (4) are explicitly written by
the following expressions:

IC =

{

ln
(

1
|1−Nσ|

)

, if λ⊥ > 0

ln(s), if λ⊥ ≤ 0
(11)

and

HKS =

{

ln
(

s2|1−Nσ|
)

, if λ⊥ > 0

ln(s), if λ⊥ ≤ 0
. (12)

The next proposition establishes some properties of the mutual informa-
tion rate and the Kolmogorov-Sinai entropy, depending on the synchronization
interval Iσ.

Proposition 2. Consider the (KN , Σ+) space of complete dynamical networks,
given by Eq.(2). Let f be the discontinuous piecewise linear map with slope
s > 1 everywhere, given by Eq.(6), Iσ be the synchronization interval, given
by Eq.(8), and Iλ−

⊥

be the interval where λ⊥ < 0, with λ⊥ given by Eq.(10).

∀s > 1, it is verified that:

(i) if σ ∈ Iσ, then IC = HKS;
(ii) if σ /∈ Iσ and σ < σ1, then IC increases and HKS decreases;
(iii) if σ /∈ Iσ and σ > σ2, then IC decreases and HKS increases.

Proof. Considering the definitions of IC and HKS , given by Eqs.(11) and (12),
respectively, it is verified that IC = HKS if and only if λ⊥ ≤ 0. On one hand,
we have proved, in Proposition 1 (i), that Iσ ≡ Iλ−

⊥

6= ∅, ∀s > 1. Thus, item

(i) is proved.
The result of item (ii) is a consequence of the previous argumentation,

i.e., if σ /∈ Iσ and σ < σ1, then follows that IC 6= HKS , ∀s > 1. In this
region, considering the monotony of logarithmic function, we also have that

IC = ln
(

1
|1−Nσ|

)

increases, for all coupling strenght σ > 0 under the conditions

required by hypothesis, and HKS = ln
(

s2|1−Nσ|
)

decreases, for all σ under
the same conditions. This proves the claim (ii).

The proof of item (iii) is similar to the proof of item (ii), the monotony of
IC and HKS follows as discussed above, ∀σ /∈ Iσ and σ > σ2. See also Fig.2.
This completes the proof of Proposition 2. �

Under the conditions of Proposition 2, we can establish that IC ≤ HKS ,
∀σ > 0, see also [2].
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3.2 Topological order and information measures

To end this section we will approach a topological invariant associated with
the dynamics between the nodes of the complete dynamical network KN : the
network topological entropy. In this work we use the network topological en-
tropy concept used in [13] and [14]. Let G be the connected and unoriented
graph associated to the complete dynamical network KN of order N ∈ N\{1}.
Considering that the adjacency matrix A of the complete dynamical network
KN is irreducible, then the Perron-Frobenius Theorem states that the network
topological entropy of KN is given by,

htop(KN ) = htop(G) = ln(λA) = ln(N − 1), (13)

where λA is the Perron eigenvalue of A. Clearly, the topological entropy of a
complete dynamical network KN is characterized by its order N .

Proposition 3. Let (KN , Σ+) be the space of complete dynamical networks,
given by Eq.(2), with a fixed local dynamics given by a discontinuous piecewise
linear map f with slope s > 1 everywhere, given by Eq.(6). It is verified that if
the network topological entropy htop(KN ) increases, such that σ /∈ Iσ, then:

(i) the mutual information rate IC increases;
(ii) the Kolmogorov-Sinai entropy HKS decreases.

Proof. Consider that the local dynamics of two complete dynamical networks
KN and KN+1 are fixed, i.e., χ(f) = log(s) > 0 is constant, ∀s > 1 . Consid-
ering the definition of the mutual information rate IC , given by Eq.(11), with

σ /∈ Iσ, let uN = ln
(

1
|1−Nσ|

)

, with N ∈ N \ {1}. The following statements

holds,

uN+1 − uN = ln

(

1

|1− (N + 1)σ|

)

− ln

(

1

|1−Nσ|

)

= ln

∣

∣

∣

∣

1−Nσ

1− (N + 1)σ

∣

∣

∣

∣

> 0.

This means that the mutual information rate IC increases, if the network topo-
logical entropy htop(KN ) increases. Now under the same assumptions, if we
consider the definition of the Kolmogorov-Sinai entropy HKS , given by Eq.(12)
with σ /∈ Iσ and let vN = ln

(

s2|1−Nσ|
)

, with N ∈ N \ {1}. It can be easily
verified that,

vN+1 − vN = ln
(

s2|1− (N + 1)σ|
)

− ln
(

s2|1−Nσ|
)

= ln

∣

∣

∣

∣

1− (N + 1)σ

1−Nσ

∣

∣

∣

∣

< 0.

This proves that the Kolmogorov-Sinai entropy HKS decreases, when the net-
work topological entropy htop(KN ) increases. Thus, the desired results are
proved. �

It is interesting to note that this result is related with the structural com-
plexity of the dynamical network analyzed, this means that as larger as the
network topology is, measure by its network topological entropy htop(KN ) and
directly related with the network order N ∈ N \ {1}, the mutual information
rate IC and the Kolmogorov-Sinai entropy HKS increases or decreases, accord-
ing to order N in relation to σ /∈ Iσ.
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Fig. 3. Numerical simulation for Proposition 3: blue points are htop(KN ), red squares
are IC , green lozenges are HKS , where it is considered s = 2 and N ∈ {2, 3, . . . , 50}.

Remark 1. Under the conditions of Proposition 3 and according to Property
1, we can establish that the amplitude of the synchronization interval |Iσ|
decrease, as larger is the network topological entropy htop(KN ) of the complete
dynamical network.

4 Conclusion and Discussion

In this paper we have considered the space of complete dynamical networks
KN , an extreme case of a ring lattice with maximal degree, of identical chaotic
dynamical oscillators or nodes, in which each oscillator is coupled linearly and
symmetrically with their neighbours, see Eq.(2). The topology of the net-
works KN is characterized by a circulant matrix of order N ∈ N \ {1}, which
provides a certain regularity in the network. Furthermore, we consider discon-
tinuous local dynamics: piecewise linear maps f with positive slope s > 1. The
chaoticity of the local dynamics is measured by the topological entropy of f ,
i.e., htop(f) = log |s|. Several measures have been considered in the field of
information theory. In our paper we have considered the mutual information
rate and the Kolmogorov-Sinai entropy. However, the synchronization is vital
for modern methods of digital communication that rely on the synchronous
operation of many subsystems. So, our main concern was to determine explicit
expressions for these measures, properties between them and relations with the
synchronization interval Iσ. The results presented in Propositions 1 and 2 fully
serve this purpose. Finally, in Proposition 3 it is addressed the structural com-
plexity of the complete dynamical networks KN , using the network topological
entropy htop(KN ). We proved that as large as the network topological entropy
htop(KN ) is, the mutual information rate IC and the Kolmogorov-Sinai en-
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tropy HKS increase or decrease, according to the network order N in relation
to σ /∈ Iσ. Therefore, a topological order was established regarding the studied
information measures.

Clearly, with the fixed coupling topology in the networks KN and variation
of the discontinuous local dynamics f in the nodes, the complexity of our
analysis increases due to measure theory issues. For future work, on one hand
we would like to generalize our study for the case where |s| > 1 dependening
on the amplitudes of the subintervals with slope s > 1 and slope s < −1.
On the other hand, we would like to analyze this problem in other networks
of regular lattices rings, starting with the minimal degree, the cycles of order
N . In this context, we finish this work with some open questions: There are
sufficient conditions to guarantee the negativity of the conditional Lyapunov
exponents, for different slopes of f? Under what conditions the chaotic signals
transmitted through filters produce an output with higher dimension, due to
the appearance of a fractal set?
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How chaotic dynamics drive a vintage
grill-room spit
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Abstract. In 1943 Yves Rocard published an amazing book entitled “Dynamique
Générale des Vibrations”. Among a collection of mechanical devices that are studied
with great care in the book, the so-called Bouasse-Sarda’s “tournebroche” (rotary
grill spit) is a fascinating two degrees of freedom device. What makes it interesting
is that it stylises a wide class of forced parametric oscillators exhibiting a rich range
of complex dynamical behaviours including fully deterministic chaos, a dynamic con-
cept not popular in the forties and hence not yet discussed in the Y. Rocard’s book.
Today’s numerical tools offer a new possibility to revisit this amazingly simple but
rich dynamical system.
Keywords: Nonlinear coupled mechanical systems, Stability analysis, “Wash-
board”-like dynamics, Bistability, Chaotic dynamics, Feigenbaum cascade, Period–
doubling bifurcations, Antimonotonicity.

Highlights: In the present paper, we propose an extensive, didactical and
updated investigation of the nonlinear dynamical system studied by Y. Rocard
more than 75 years ago.

1 Preliminary

Our study starts in the Spring of 2006 on a sunny Saturday, when one of the
authors (MOH) rambled through Geneva’s flea market. Among a chaotic pile
of secondhand books, suddenly a well-stocked pile of scientific and engineer-
ing publications stuck out. The bookseller was so happy to get rid of such
“boring material” that the whole stock was purchased for virtually nothing.
Among them, “Optique Géométrique Supérieure” by H. Bouasse (1917), a ver-
sion of the “Vibration Problems in Engineering” by S. Timoschenko (1937)
and a remarkable contribution entitled “Dynamique Générale des Vibrations”
by Y. Rocard published in Laval (Mayenne, France) 1943, during the French
occupation. In Rocard’s opus, we discovered a truly intriguing two degrees of
freedom device called the “tournebroche” (i.e. rotating spit) de Bouasse-Sarda.
More than 75 years after Rocard’s publication, we revisit this pretty fascinat-
ing “tournebroche” dynamics and show how it naturally offers the possibility
to exhibit chaotic evolution.

765



2 Introduction

The dynamic response of mechanical devices driven by external energy sources
is often discussed under the implicit assumtion that the energy source itself
is fully insensitive to behaviour of the driven device. It is assumed that the
energy source is large enough to ensure that all feedback response of the driven
system to the source are negligible. While such approximation is fully legitimate
when a clear energy-scale distinction between the system itself and its driver
can be made1, in many other circumstances the system-driver’s retro-actions
may generate complex and unsuspected responses that cannot be ignored. The
suggestive Bouasse-Sarda (B-S) “tournebroche” device sketched in Figure 1
which is also called the B-S regulator offers a rich and intuitive illustration
of the underlying complexity of the clear and consistent distinction between a
system and its driving unit. From Figure 1, we may view the spring as the
driven system and the mass m together with the pulley as playing the role of
an energy source driving the oscillatory mechanism. Depending on the size
of the crankshaft a in the B-S device, there is a simple way to continuously
increase the spring-pulley retro-action and hence infer the resulting evolution.
As we shall discuss, this a-priori deceptively simple system uncovers a very
rich variety of dynamical behaviours which include limit cycles, bistability, the
now famous Feigenbaum cascade with period-doubling bifurcations ultimately
leading to a fully developed deterministic chaos and antimonotonicity.

Fig. 1. The Bouasse-Sarda’s rotary spit drawn by Y. Rocard in his 1943 book entitled:
“Dynamique Générale des Vibrations”.

1 As a paradigmatic illustration, you may invoke the thermodynamic model of someone
diving into a pool: the diver’s body temperature is lowered by the pool’s environment,
yet one usually neglects the temperature increase of the pool’s content. From a me-
chanical perspective, this idea of the interaction between a system and the force acting
on it, is studied in Roseau[17], and as an illustration to the theoretical framework,
the B-S regulator is used.
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3 Equations of the motion

The dynamical system sketched in Figure 1 consists of a shaft or a rotating
spit with, on one side, a crank of radius a and, on the other side of the shaft, a
drum of radius ρ with inertial moment I. A cable is fastened around the drum
on which suspends a mass m. A mass M is attached to a spring with stiffness
K. The spring is then fixed to the crank. For this two degrees of freedom device
(θ(t), x(t)) ∈ R2, the Lagrangian L = T (θ̇, ẋ)− V (θ, x) is given by:

T (θ̇, ẋ) = (I +mρ2)
θ̇2

2
+ M

ẋ2

2
,

V (θ, x) = −(mgρθ + Mgx) +
K(x− a sin(θ))2

2
,

(1)

leading to the time evolution2:{
(I +mρ2)θ̈ + hθ̇ = mgρ+ K(x− a sin(θ))a cos(θ),

Mẍ+ fẋ = Mg − K(x− a sin(θ)).
(2)

Eq.(2) involves a set of nine positive control parameters
(I,m,M, ρ,K, f, h, g, a), with gravitational acceleration g. Energy dissi-
pation is implemented via a couple of viscous damping mechanisms adjusted
by the parameters f ≥ 0 and h ≥ 0. We emphasise that in Y. Rocard’s
book Rocard[15], the dynamical system involves only friction on the spring
(i.e. h = 0). The second equation in Eq.(2) is simply a θ(t) forced harmonic
oscillator for which the response is explicitly calculable provided that signal
θ(t) itself is given. In particular, for small damping parameter f , one expects
a resonance peak at frequency ω0 :=

√
K/M, which arises whenever ω0 belongs

to the Fourier spectrum of the signal θ(t).

To proceed, we rewrite Eq.(2) in terms of the (dimensionless) coordinate
x(t) = au(t) + (Mg/K) and obtain:

Jθ̈ + hθ̇ = g(Ma cos(θ) +mρ)︸ ︷︷ ︸
=:H

(1)
a (θ)

+Ka2(u− sin(θ)) cos(θ),︸ ︷︷ ︸
=:H

(2)
a (θ,u)

Mü+ fu̇ = −K(u− sin(θ)),

(3)

with J := I +mρ2.

Note that for vanishing crankshaft (i.e. a = 0), the system Eq.(3) de-
generates into a couple of independent one degree of freedom dynamics. For
a small crankshaft a & 0 (i.e. up to first order in a and thus omitting the

H
(2)
a (θ, u) term), the (θ, u) variables are partially coupled. Indeed, we have

a special two degrees of freedom system for which the θ(t) evolution can be
calculated independently of u(t). Observe that up to first order in a, the θ(t)

2 For detailed calculations, see Appendices 7.1 and 7.2.
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evolution describes either the dynamics of a point particle evolving inside a
tilted washboard potential or, alternatively, an anharmonic pendulum subject
to a constant external torque. Finally, for general a, the action of the feedback

type term H
(2)
a (θ, u) drastically modifies the evolution. The u variable now

affects the driving mechanism θ(t) itself in Eq.(3).

4 Study of the dynamics

4.1 Static equilibrium and associated stability issues

The fixed points P∗ := (θ∗, u∗) of the dynamics Eq.(3) read:

(θ∗, u∗) =
(

cos−1(−mρMa ), sin(cos−1(−mρMa ))
)
,

=
(

cos−1(−mρMa ),
√

1− (mρMa )2
)
,

(4)

and hence Ma > mρ is required for the existence of P∗. Observe that P∗ does
not depend on g.

Stability of P∗: The stability of P∗ is studied via the linearisation of the
dynamics in the P∗-neighbourhood. By adding a couple of conjugate variables
(η, v) := (θ̇, u̇), we rewrite the coupled second-order differential system Eq.(3)
as an equivalent set of four first-order differential equations, and hence the first
variational equation is:

ε̇θ
ε̇η
ε̇u
ε̇v

 =


0 1 0 0

−J−1(Mgas∗ + K(ac∗)2) −J−1h J−1Ka2c∗ 0
0 0 0 1

M−1Kc∗ 0 −M−1K −M−1f


︸ ︷︷ ︸

:=DF (θ∗,u∗)


εθ
εη
εu
εv

 (5)

with c∗ := cos(θ∗) and s∗ := sin(θ∗) and perturbations εθ, εη, εu, εv around
(θ∗, 0, u∗, 0). The characteristic polynomial P (λ) relevant to infer the stability
property of P∗ is given by:

P (λ) := Det [DF (θ∗, u∗)− λI4] = 0, (6)

with I4 standing for the (4× 4) identity matrix. A direct calculation yields:

P (λ) = λ4 + (J−1h+ M−1f)λ3+
(J−1M−1hf + M−1K−DF2,1(θ∗, u∗))λ2+

(J−1M−1hK−M−1fDF2,1(θ∗, u∗))λ+
J−1Kga sin(θ∗).

Note that all coefficients of P (λ) are positive. Provided we have:

(J−1h+ M−1f) > 0,

direct application of the Routh-Hurwitz criterion shows that all real parts of
the eigenvalues of the linearised dynamics around P∗ are negative and hence
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P∗ is stable.

In summary, when Ma > mρ, a fixed point P∗ given by Eq.(4) exists and
its stability (i.e. stable focus) is ensured by the viscous dampers (and this even
if only a single damper is active).

4.2 Dissipation free dynamics - Harmonic undamped oscillations

In the absence of dissipation (i.e. f = h = 0), the characteristic polynomial
P (λ) is bi-quadratic, yielding a couple of eigenfrequencies (ν−, ν+):

ν± = 1
2

[
r1 ±

√
(r21 − 4r2)

]
,

r1 = M−1K−DF2,1(θ∗, u∗),

r2 = J−1Kga sin(θ∗).

(7)

and the fixed point P∗ is a center. For large inertial moment J (i.e. J >> M
and J >> K), one verifies that r2 → 0, and we obtain in this limiting case
an oscillation with frequency ν+ ∼=

√
K/M of M, together with a very low

frequency ν− ∼= 0 oscillation of m around the stationary point P∗ 3.

4.3 “Washboard”-like dynamics

For a small crankshaft parameter a, we may approximately neglect H
(2)
a (θ, u)

in Eq.(3), which is of order a2. In this subsection, h > 0. The resulting
dynamics for the variable θ(t) describes a classical particle evolving with friction
inside a tilted washboard potential. Alternatively, it can also be viewed as an
anharmonic pendulum subject to constant external torque Coullet et al.[4]:

θ̈(t) +
h

J
θ̇(t) =

Mag

J
cos(θ(t)) +

mgρ

J
. (8)

The time rescaling τ(t) :=
√

Mag
J t together with the phase shift φ(τ(t)) :=

θ(t)− π
2 enable us to write:

φ′′ + βφ′ + sin(φ) = γ, (9)

where ′ now stands for the τ -derivative and β := h√
JMag

and γ := mρ
Ma . The dy-

namical system given by Eq.(9) is currently discussed in the context of Joseph-
son’s junctions dynamics4.

3 Remember that the linearising assumption is valid only for motions close to P∗ =
(θ∗, u∗). For arbitrary J,K,M,m, the resulting 2-D harmonic system may enter into
resonance, thus precluding the possibility to use linear approximations.

4 See, for example, the recent review Blackburn et al.[1].
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In particular, the trade-off between the damping factor β and the external
torque γ is summarised in Figure 2 5. Note that in Eq.(9), one has explicitally
γ = mρ

Ma and this is coherent with the condition for the existence of P∗) (i.e.
1 > mρ

Ma ). Hence, when γ > 1, only periodic solutions exists, consistent with
the fact that are no fixed points.

We emphasise that since Eq.(9) describes a single degree of freedom system,
then up to first order in a (i.e. small crankshafts), no chaotic behaviour can
possibly be observed for the θ(t)-evolution. As a consequence, the u(t)-motion
itself, which describes the evolution of a forced harmonic oscillator with damp-
ing, does not exhibit a chaotic behaviour either. This follows from the fact
that the θ(t) motion results from simple quadratures6. Summarising, for small
crankshafts a, the two degrees of freedom (θ, u) system does not exhibit chaotic
behaviour. As a consequence, up to first order in a, the largest Lyapunov
exponent always remains negative.

Fig. 2. Evolution regimes as a function of the damping β and the external torque
γ: A = only the stationary solution is stable, B = both the stationary and the
periodic solution are stable, C = only the periodic solution is stable. This diagram
is reproduced from Coullet et al.[4].

4.4 The Rocard’s quasi-uniform regime

We now focus on the general situation (i.e. also considering the influence of

the retro-action H
(2)
a (θ, u)). We follow the lines originally drawn by Y. Rocard

himself and note that this quasi-uniform regime has been later re-discussed in
Panovko and Gubanova[14] for h = 0 and in Blekhman and Dzhanelidze[2],
Colombo[3], Roseau[17], Fridman[6], Fridman[7] for h > 0. Rocard assumed

5 Figure 2 is directly reproduced from Figure 6 in Coullet et al.[4].
6 See, for example, chapter 2 in Lakshmanan and Rajasekar[11].
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that θ(t) ∼= ωt, and so the u(t)-motion follows the permanent regime of an
harmonically driven linear oscillator, namely:

u(t) =
K
M sin(ωt+ϕ)√

( K
M−ω2)2+( fM )2ω2

=: A sin(ωt+ ϕ), (10)

with tan(ϕ) =
− fMω
K
M−ω2 . The pulsation7 ω (i.e. the dominant frequency at which

both drum and spring oscillate) is determined by solving the polynomial equa-
tion explicitly given by:

2M2(mgρ− hω)

f(Ka)2
=

ω

( K
M − ω2)2 + ( fM )2ω2

. (11)

For the sake of completeness, Eq.(11) is re-derived in Appendix 7.3. The solu-
tions to Eq.(11) are the roots of a polynomial of degree 5 (for h > 0) or degree
4 (for h = 0), namely

for h > 0 : 0 = hω5 −mgρω4 + h(p2 − 2q)ω3 − (p2 − 2q)mgρω2

+(q2(h+ a2f
2 ))ω − q2mgρ,

and

for h = 0 : 0 = ω4 + (p2 − 2q)ω2 − q2a2f
2mgρ ω + q2,

(12)

with p = f
M and q = K

M . Depending on the value of a > 0, Eq.(11) may have
up to three real solutions for h > 0, or two for h = 0. To see this, start with
the RHS of Eq.(11) and define the function

α(ω) :=
f(Ka)2

2M2

( ω

( K
M − ω2)2 + ( fM )2ω2

)
(13)

for positive ω. As such, the function α is positive and exhibits a resonance-like
curve shape: it takes on the value zero at ω = 0, increases to its maximum value

at ω = ω0 (in the neighbourhood of
√

K
M ), and then, as ω increases further,

converges asymptotically to zero. The solutions of Eq.(11) are the intersections
between the curve given by α and the line mgρ− hω (i.e. a decreasing line for
h > 0 or a straight line, parallel to the ω-axis, for h = 0). See, for example,
Figure 3 (a) (for h > 0) and Figure 3 (b) (for h = 0). One still needs to prove
that there is only one point of inflection after α attained its maximum. This
is done in Appendix 7.4.

For small values of a, there is only one real root for h > 0 and only complex
roots for h = 0. As a increases, there exists a particular value of a for which
the line mgρ − hω intersects α not far from its maximum value. In the case
h = 0, the intersection is at the maximum value of α itself. This a0 and the
corresponding ω0 are explicitly given by

a0 =

√
2mgρ

fq2
(
4ω3

0 + 2(p2 − 2q)ω0

)
,

7 Adopting Rocard’s terminology (the French-English translation is the authors’).
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with ω0 =
(−(p2−2q)+√(p2−2q)2+12q2

6

) 1
2 . See Appendix 7.5 for details. Table 1

(for h > 0) and Table 2 (for h = 0) present a summary of the different possible
real roots for the polynomial in Eq.(12) according to the value of a.

a = 0 ω3 = mgρ
h
∈ R

]0, a1[ ω3 ∈ R
a = a1 ω1 = ω2

ω3 6= ω1, ωj ∈ R, j = 1, 2, 3

]a1, a2[ ω1 6= ω2, ω2 6= ω3,
ω3 6= ω1, ωj ∈ R, j = 1, 2, 3

a = a2 ω1 6= ω2

ω2 = ω3, ωj ∈ R, j = 1, 2, 3

]a2,+∞[ ω1 ∈ R
Table 1. Real roots of the polynomial in Eq.(12) for h > 0 with respect to a > 0 and
for positive parameters m,M, ρ,K, f and g.

[0, a0[ no real roots

a = a0 ω0 = ω1 = ω2 ∈ R
]a0,+∞[ ω1 6= ω2, ωj ∈ R, j = 1, 2

Table 2. Real roots of the polynomial in Eq.(12) for h = 0 with respect to a > 0 and
for positive parameters m,M, ρ,K, f and g.

Having determined how many real solutions Eq.(11) has with respect to a,
the next question is: under Rocard’s assumption, towards which solution of
Eq.(11) does the B-S system converge?

(a) (b)

Fig. 3. In black, function α as defined in Eq.(13) with respect to ω. The red dashed
line is mgρ− hω. In Figure (a) a = 0.05 and in Figure (b) a = 0.04, while the values
of the other parameters are those of the first line in Table 4 for Figure (a) and the
third line in Table 4 for Figure (b).

772



To answer this question, let us focus on the case h = 0 and follow Rocard’s

reasoning (here a > a0). For this, let ω1 <
√

K
M and ω2 >

√
K
M be the two real

solutions of Eq.(11). Since ω1 solves Eq.(11), we have α(ω1) = mgρ. On the
other hand, from Eq.(3), the quasi-uniform assumption θ(t) ∼= ωt implies:

Jθ̈ ∼= 0 = mgρ+ gMa cos(θ(t)) +H(2)
a (θ(t), u(t)),

with u(t) given by Eq.(10) and θ(t) ∼= ωt, so that:

−α(ω1) = −mgρ = gMa cos(θ(t)) +H(2)
a (θ(t), u(t)).

Hence,
Jθ̈ ∼= 0 = mgρ− α(ω1),

that is, the drum’s angular acceleration is approximately mgρ−α(ω1). Suppose
now that the drum is slightly accelerated (i.e. ω1 → ω1+δ, with δ > 0). By the
shape of the “resonance” curve α, we have α(ω1) < α(ω1 + δ), implying that
mgρ − α(ω1 + δ) < 0, and therefore Jθ̈ ∼= mgρ − α(ω1 + δ) < 0. This implies
that the angular velocity decreases and so the nominal pulsation ω1 tends to
be recovered. The same reasoning holds when the drum is slightly decelerated.
A similar analysis for the solution ω2 can be performed. Table 3 summarises
the results for the four possibilities.

ω1 + δ α(ω1 + δ) ↑ Jθ̈ ∼= mgρ− α(ω1 + δ) < 0 ω1 recovered

ω1 − δ α(ω1 − δ) ↓ Jθ̈ ∼= mgρ− α(ω1 − δ) > 0 ω1 recovered

ω2 + δ α(ω2 + δ) ↓ Jθ̈ ∼= mgρ− α(ω2 + δ) < 0 ω2 not recovered

ω2 − δ α(ω2 − δ) ↑ Jθ̈ ∼= mgρ− α(ω2 − δ) > 0 ω2 not recovered

Table 3. Summary of the perturbation analysis on the theoretical pulsations ω1 and
ω2.

Therefore, the pulsation ω1 persists under slight perturbations, which is
not the case for ω2. A similar analysis is also presented in Panovko and
Gubanova[14]. When h > 0 and depending on the initial conditions, the dy-
namical system may converge towards two different pulsations ω, thus allowing
for bistability. See Roseau[17] for further details.

4.5 Route to chaotic evolution - Feigenbaum cascade of
period-doubling bifurcations

In the general case where not only the H
(2)
a (θ, u) retro-action is active but

also θ(t) 6= ωt, the previous Rocard’s quasi-uniform regime becomes unstable
itself. Therefore, further discussions are to be based on numerical solutions,
i.e. an impossible approach at Y. Rocard’s time8. As will be shown in the

8 For an overview of historical events concerning chotic dynamical systems see chapter
4 in Lorenz[12], chapter 2.5 in Skiadas[18] or in chapter 10.4 in Ginoux[8].
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next section, for a whole range of control parameters, the B-S dynamics may
exhibit a deterministic chaotic evolution, a behaviour obviously not presented
in Rocard’s 1943 opus. Specifically, we shall numerically unveil that for a se-
quence of critical crankshaft values ak for k = 1, 2, 3, . . . , a nowadays classic
Feignebaum’s cascade of period-doubling bifurcations emerge from the dynam-
ics. The sequence of {ak} converges to an accumulation point a∞ with the
Feigenbaum’s universal constant F :

F := lim
k→∞

ak−1 − ak−2
ak − ak−1

∼= 4.6692 . . . . (14)

5 Numerical Simulations

All simulations numerically integrate Eq.(2) with initial conditions:

x(0) = A sin(ϕ) + Mg
K ẋ(0) = ωA cos(ϕ)

θ(0) = 0 θ̇(0) = ω
(15)

with A =
Ka
M√

( K
M−ω2)2+( fM )2ω2

, tan(ϕ) =
− fMω
K
M−ω2 , and ω the smallest real solution

of Eq.(11), if not otherwise stated. These initial conditions correspond to Ro-
card’s approximated solution in Eq.(10), expressed here in the coordinates for
Eq.(2). The values for the parameters are in Table 4.

I [kg][m]2 m [kg] M [kg] ρ [m] K [N]/[m] f h g [m]/[s]2

0.03 0.1 0.02 0.01 12.5 0.15 0.000125 9.8

0.0001 0.5 0.5 0.1 50 0.01 0.03 9.8

0.0001 0.1 0.03 0.016 2.5 0.2 0 1.625

Table 4. Numerical values of the parameters for different numerical experiments.

Parameter a [m] is given according to the numerical experiment. The value
of g = 1.625 corresponds to the gravity acceleration on the moon.

5.1 Numerical analysis of the quasi-uniform regime

We investigate how θ̇ behaves with respect to a once the B-S system converges
to its equilibrium state. For this, the value of the parameters are as in the first
line of Table 4 and for each a ∈ { 6j

1000 |j = 0, . . . , 50} (i.e. 51 equidistant point
in the interval [0, 0.30]), we run the numerical simulation for a time length of
T = 500. The max, min and mean value of θ̇ for the last 50 time unites are
calculated. The results are presented in Figure 4: the 51 equidistant values of
a (on the x-axis) are plotted with their corresponding mean value of θ̇ (dots
in red), and max and min values (dots in gray). The underlying black line is
the predicted pulsation, calculated by Rocard’s method (i.e. solving Eq.(11)).
In Figure 4 (a), the smallest real solution of Eq.(11) is taken for the initial
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conditions in Eq.(15). On the other hand, in Figure 4 (b), the largest real
solution of Eq.(11) is taken for the initial conditions, as long as Eq.(11) has
three real solutions, and then, as a increases, the smallest real solution is used
to determine the initial conditions.

One can clearly appreciate the precision of Rocard’s method to predict the
pulsation ω, and this even for the case h > 0. The prediction is accurate
before “l’accrochage” (i.e. for small a) and still valid for a large range of
frequencies (form approximately 20 to 5). As a increases, θ̇ oscillates with
increasing amplitude around the mean value, hence the increasing difference
between max and min values of θ̇. For a larger than approximately a = 0.26,
the B-S stops oscillating. Hence the red dots with value zero for both plots in
Figure 4. Here, the predicated pulsation is no longer valid.

5.2 Period-doubling bifurcations with h > 0

We chose here the crank’s length a as control parameter and observe the period-
doubling bifurcations on variable x. This case h > 0 has the advantage that
one can clearly visualize period-doubling bifurcations with variables x and ẋ.
With parameter values as in the second line of Table 4, Figure 5 shows, in its
first column (Figures (a), (c), (e) and (g)), the last 7 time units of the nu-
merical integration on [0, 40] for the variables x and ẋ. The second column in
Figure 5 (Figures (b), (d), (f) and (h)) displays (also for the last 7 time units)
variables x in black and sin(θ) in dashed blue (with an appropriate amplitude
and additional constant for comparison’s sake). For both columns, each plot
shows a specific value of a. Clearly, as a increases, the x variable bifurcates:
for a = 0.06, x is qualitatively similar to a sin curve and the pair (x, ẋ) con-
verges towards a limit cycle (i.e. a closed curve without any intersection on the
x− y plan). For a = 0.07, the variable x bifurcates to a period-two oscillating
regime: the pair (x, ẋ) converges towards a closed curve in R2 with one inter-
section. This continues for a = 0.08 with a period-four oscillating regime, and
for a = 0.081 with a period-eight oscillating regime, and so on. Note that in
Figure 5 (a), the variable θ is already in a period-two oscillating regime.

As a increases further, the system becomes chaotic. This is numerically
shown in Figure 6 when a = 0.083. The numerical integration is also on [0, 40]
but, in order to appreciate the non-periodicity of this regime better, the last
14 time units are shown.

In Figure 7 (a), the Feigenbaum’s cascade of period-doubling bifurcation is
displayed for the B-S system with h > 0. The different values of the crank a
are shown on the x-axis, while the y-axis shows the x values (when ẋ = 0) for
which the B-S converges to (for the corresponding crank value a). Figure 7 (b)
shows a zoom out from Figure 7 (a), so one can observe how the x variable
(basically the amplitude) depends on a.
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(a)

(b)

Fig. 4. Mean (red dots) and max & min (gray dots) of θ̇ against parameter a and
predicted pulsation (black line) with parameters as in the first line of Table 4. The
black line is the pulsation determined by solving Eq.(11).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. Time evolution of the x − y representation and of variables x (black) and
sin(θ) (dashed blue), with parameter value a = 0.06 (Figures (a) & (b)), a = 0.07
(Figures (c) & (d)), a = 0.08 (Figures (e) & (f)) and a = 0.081 (Figures (g) & (h)).
The numerical values of the parameters are those of the second line in Table 4.
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(a) (b)

Fig. 6. Time evolution of the x−y representation and of variables x (black) and sin(θ)
(dashed blue), with parameter value a = 0.083 (Figures (a) & (b)). The numerical
integration is also on time t ∈ [0, 40] but, in order to appreciate the non-periodicity
of this regime better, the last 14 time units are shown. The numerical values of the
parameters are those of the second line in Table 4.

5.3 Period-doubling bifurcations with h = 0

As in Section 5.2, period-doubling bifurcations may also appear for B-S with
h = 0. We again chose here the crank’s length a as control parameter and
observe the period-doubling bifurcations on variable x. Figure 8 (a) shows yet
another Feigenbaum’s cascade of period-doubling bifurcation, and here for a
B-S system with h = 0 as given in Y. Rocard’s book Rocard[15]. The numerical
values of the parameters are those of the third line in Table 4. As in Figure
7, the different values of the crank a are shown on the x-axis, while the y-axis
shows the x values (when ẋ = 0) for which the B-S converges to (for the corre-
sponding crank value a). To the best of the authors’ knowledge, this is the first
observation of deterministic chaos in a B-S system for h = 0. Period-doubling
bifurcations in the case for h > 0 (as discussed in Section 5.2) have already
been observed in Rodriguez[16].

Figure 8 (b) zooms out from Figure 8 (a) and one can see how the vari-
able x depends on a, suggest an antimonotonicity behaviour: the creation and
annihilation of periodic orbits. This feature is further developed in the next
section.

5.4 Antimonotonicity with h = 0

The phenomenon of antimonotonicity, as reported in the seminal works of Kan
and Yorke[9], Dawson et al.[5] and Kan et al.[10]), is observed for a B-S with
parameter values as in the third line of Table 4, and for which the inertia
I is taken as the second control parameter. In Figure 9, similar bifurcation
diagrams as in Figure 8 are presented, while here each plot has a different
value for I. Figure 9 (a) has the largest I value and one can see a period-
two bifurcation being created and then annihilated as parameter a gets larger.
Further decreasing the value of I shows, in Figure 9 (b), yet another period-two
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(a)

(b)

Fig. 7. In Figure (a), x (when ẋ = 0) is plotted against parameter a. Figure (b) is
a zoom out to show the dynamical behaviour before the the period-doubling cascade
(i.e. for smaller values of a). The numerical values of the parameters are those of the
second line in Table 4.
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(a)

(b)

Fig. 8. In Figure (a), x (when ẋ = 0) is plotted against parameter a. Figure (b) is a
zoom out to show the dynamical behaviour beyond the period-doubling cascade (i.e.
for larger values of a). The numerical values of the parameters are those of the third
line in Table 4.
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bifurcation: that is, the x variable goes from a period-one, to a period-two, to
a period-four and then back to a period-two and finally to a period-one, as a
increases in value. This phenomenon continues on as I decreases as shown in
Figures 9 (b) and (c).

(a) (b)

(c) (d)

Fig. 9. In all four Figures, x (when ẋ = 0) is plotted against parameter a. In Figure
(a): I = 0.000115, in Figure (b): I = 0.000109, in Figure (c): I = 0.0001078 and in
Figure (d): I = 0.000107. The other numerical values for the parameters are those
of the third line in Table 4.

5.5 Numerical estimation of Feigenbaum’s universal constant

In our numerical experiments, we numerically determine the locations of the
first six bifurcations thresholds. These are presented in Table 5 (when h > 0
and for parameter values as in the second line of Table 4) and in Table 6 (when
h = 0 and for parameter values as in the third line of Table 4).

6 Conclusions

Yves Rocard used to say: “La physique c’est toujours un petit peu faux”9.
Indeed, Rocard’s idea to determine the pulsation being an approximation is “a

9 See, for example, Lurçat[13]. In English: “Physics is always a bit wrong”.
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n Period Bifurcation parameter (an) Ratio
ak−1−ak−2

ak−ak−1

1 2 0.06367045 -

2 4 0.07569875 -

3 8 0.08059755 2.455356

4 16 0.08106015 10.589710

5 32 0.08115485 4.884900

6 64 0.08117475 4.758794

7 128 0.08117895 4.738095

Table 5. Numerically determined bifurcation points for parameter a for Figure 7 (a)
(when h > 0 and for parameter values as in the second line of Table 4)

n Period Bifurcation parameter (an) Ratio
ak−1−ak−2

ak−ak−1

1 2 0.04009785 -

2 4 0.04123185 -

3 8 0.04151235 4.042781

4 16 0.04157945 4.180328

5 32 0.04159425 4.533784

6 64 0.04159745 4.625000

7 128 0.04159815 4.571429

Table 6. Numerically determined bifurcation points for parameter a for Figure 8 (a)
(when h = 0 and for parameter values as in the third line of Table 4)

bit wrong” - however, one must recognise that Rocard’s method is remarkably
accurate over a wide range of parameters! Let us emphasise that Rocard had
the right intuition despite the fact that numerical simulations were not avail-
able in his time. Today’s tools not only enable us to confirm Rocard’s result,
but allow us to study the dynamical system when one relaxes the assumption
θ(t) ∼= ωt.

In this contribution, we have numerically shown that the B-S system ex-
hibits period-doubling bifurcations when increasing the values of parameter a
and this, even when h = 0. Furthermore, we have shown that for small a, the
B-S follows “washboard”-like dynamics, implying that it will converge only to-
wards a periodic regime. Only once a is large enough may the B-S have chaotic
behaviour.

There are several questions that could be treated as follow up: 1) for what
value of a do both systems (drum and spring) converge towards a common
pulsation ω for arbitrary initial conditions, and, 2), how does the accuracy of
the predicated pulsation ω depend on the inertia I, in particular, in what way
does friction h influence the quality of Rocard’s method to predict ω.

Acknowledgements: The authors would like to thank Dr. M. Anderegg for
his constructive remarks that were very helpful to this contribution.
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7 Appendix

7.1 Euler-Lagrange equations

Applying the Euler-Lagrange equations to L(θ, x, θ̇, ẋ) = T (θ̇, ẋ)− V (θ, x)

d

dt
(
∂L

∂θ̇
) =

∂L

∂θ
,

d

dt
(
∂L

∂ẋ
) =

∂L

∂x
,

we have

∂L
∂θ̇

(θ, x, θ̇, ẋ) = ∂T
∂θ̇

(θ̇, ẋ) = (I +mρ2)θ̇,
∂L
∂ẋ (θ, x, θ̇, ẋ) = ∂T

∂θ̇
(θ̇, ẋ) = Mẋ,

∂L
∂θ (θ, x, θ̇, ẋ) = −∂V∂θ (θ, x) = −

(
−mgρ+ K(x− a sin(θ))(−a cos(θ))

)
,

∂L
∂x (θ, x, θ̇, ẋ) = −∂V∂x (θ, x) = −

(
K(x− a sin(θ))−Mg

)
,

and so the dynamical system is given by

(I +mρ2)θ̈ + hθ̇ = mgρ+ K(x− a sin(θ))a cos(θ),

Mẍ+ fẋ = −K(x− a sin(θ)) + Mg.

7.2 Deriving the equations of motion

We assume the reader is familiar with the modelling of a spring of stiffness K
on which a mass M is attached to it:

Mẍ+ fẋ = −Kx+ Mg,

and the modelling of a drum on which a constant torque mgρ is applied on it:

(I +mρ2)θ̈ + hθ̇ = mgρ.

To derive the equations of motion of the B-S regulator, we must adapt the
force of the spring and add an additional torque to the drum, both terms ac-
counting for the coupling. Figure 10 shows the radius of the crank a on to
which the spring is attached. The referential for the spring’s position is given
for θ = 0 (i.e. the doted line for which, by definition, x = 0). By definition,
upwards from the referential line is considered as a negative displacement and
downwards from the referential line is a positive displacement. For θ, clockwise
direction is defined as positive. As one can see, for different values of θ, one
mus readjust x’s reference position. Accordingly, the force of the spring on the
mass M is given by −K(x− a sin(θ)).

The drum (viewing the flat surface of the cylinder) is sketched in Figure 11.
The force of the spring on mass M acts on the drum. The component of this
force that acts on the drum as a torque is determined by elementary geometry,
as shown in Figure 11. In Panovko and Gubanova[14], a similar derivation is
presented.
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Fig. 10. Determining the force of the spring on mass M according to the value of θ.

Fig. 11. The additional torque acting on the drum.

7.3 Deriving Eq.(11)

We here derive Eq.(11). By hypothesis, in this regime θ(t) ∼= ωt, then θ̈(t) ∼= 0,
enabling us write:

0 = H(1)
a (ωt) +H(2)

a (ωt, u(t))− hω.

Since we are in a stationary regime, the dissipation due to damping has to be
counterbalanced by the potential energy delivery over one cycle. Accordingly,
over a a full cycle, we have:
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0 =

∫ 2π
ω

0

H(1)
a (ωt) +H(2)

a (ωt, u(t))− hωdt,

=

∫ 2π
ω

0

H(1)
a (ωt) +H(2)

a (ωt, u(t))dt− (hω)
2π

ω
.

For the two other integrals, we have

∫ 2π
ω

0

H(1)
a (ωt)dt =

∫ 2π
ω

0

g(Ma cos(ωt) +mρ)dt,

= g
(
Ma [

sin(ωt)

ω
]
2π
ω
0︸ ︷︷ ︸

=0

+mρ
2π

ω

)
,

= mgρ
2π

ω
.

∫ 2π
ω

0

H(2)
a (ωt, u(t))dt =

∫ 2π
ω

0

Ka2
(
A sin(ωt+ ϕ)− sin(ωt)

)
cos(ωt)dt,

= Ka2
( ∫ 2π

ω

0

A sin(ωt+ ϕ) cos(ωt)dt−
∫ 2π

ω

0

sin(ωt) cos(ωt)dt︸ ︷︷ ︸
[
sin(ωt)2

2ω ]
2π
ω

0 =0

)
,

= AKa2
∫ 2π

ω

0

sin(ωt+ ϕ) cos(ωt)dt,

= AKa2
∫ 2π

ω

0

sin(ωt) cos(ϕ) cos(ωt) + cos(ωt)2 sin(ϕ)dt,

and so we have:

AKa2 cos(ϕ)

∫ 2π
ω

0

sin(ωt) cos(ωt)dt = AKa2 cos(ϕ)[
sin(ωt)2

2ω
]
2π
ω
0 = 0,

and

AKa2 sin(ϕ)

∫ 2π
ω

0

cos(ωt)2dt = AKa2 sin(ϕ)[
t

2
+

sin(2ωt)

4ω
]
2π
ω
0 ,

= AKa2 sin(ϕ)
2π
ω

2
.
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Therefore, we have

(hω −mgρ)
2π

ω
= AKa2 sin(ϕ)

2π
ω

2
,

(hω −mgρ) =
1

2
AKa2 sin(ϕ) =

(Ka)2

M sin(ϕ)

2
√

( K
M − ω2)2 + ( fM )2ω2

,

2M(hω −mgρ)

(Ka)2
=

sin(ϕ)√
( K
M − ω2)2 + ( fM )2ω2

.

At this stage, let us note that for the above equation to be consistent (i.e.
so that sin(ϕ) is defined), one must satisfy (for given m, M, ρ, K, f , h, g, a and
ω) ∣∣∣2M(hω −mgρ)

(Ka)2

√
(
K

M
− ω2)2 + (

f

M
)2ω2

∣∣∣ 6 1.

Now, since

sin(ϕ) =
− f

Mω√
( K
M − ω2)2 + ( fM )2ω2

,

we finally end with

2M2(mgρ− hω)

f(Ka)2
=

ω

( K
M − ω2)2 + ( fM )2ω2

.

7.4 Point of inflections analysis

For ω > 0, the function to analyse is (see Eq.(13))

α(ω) =
f(Ka)2

2M2

( ω

(q − ω2)2 + p2ω2

)
with p = f

M > 0, q = K
M > 0 and a > 0. Proving that there is only one point

of inflection after α attained its maximum is equivalent to showing that the
function α′′ changes sign only once in ]ω0,+∞[, where ω0 is the unique positive
number such that α(ω0) is the maximum value of α in R>0.

The first derivative of α with respect to ω is

α′(ω) =
f(Ka)2

2M2

(−3ω4 −
(
p2 − 2q

)
ω2 + q2(

(q − ω2)2 + p2ω2
)2 )

and with the substitution ω(s) :=
√
sq (i.e. sq = ω2) and r = p2

q , we have

α′(ω(s)) =
f(Ka)2

2M2q2

(−3s2 − (r − 2)s+ 1

(s2 + (r − 2)s+ 1)2

)
.
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Define the function β as β(s) := α′(ω(s)) as well as βn(s) := −3s2−(r−2)s+1
and βd(s) := s2 + (r − 2)s+ 1 so that

α′(ω(s)) = β(s) =
f(Ka)2

2M2q2
βn(s)

βd(s)2
.

Differentiating the above expression with respect to s leads to

d
(
α′(ω(s))

)
ds

= α′′(ω(s))ω′(s) = β′(s)

where α′′ is the second derivative with respect to ω, and ω′ and β′ are, respect-

fully, the first derivative with respect to s. Since ω′(s) =
√
q

2
√
s

and

β′(s) =
f(Ka)2

2M2q2

(
βd(s)β

′
n(s)− 2βn(s)β′d(s)

)
βd(s)3

=
f(Ka)2

2M2q2

(6s3 + 3(r − 2)s2 + ((r − 2)2 − 10)s− 3(r − 2)

(s2 + (r − 2)s+ 1)3

)
then the second derivative of α with respect to ω is

α′′(ω(s)) =
(2
√
s

√
q

)f(Ka)2

2M2q2

(6s3 + 3(r − 2)s2 + ((r − 2)2 − 10)s− 3(r − 2)

(s2 + (r − 2)s+ 1)3

)
.

With theses calculations, we show that α has a unique maximum for ω > 0.
Setting the first derivate of α to equal zero (i.e. α′(ω) = 0) and with the
substitution x := ω2, we have

0 = 3x2 + (p2 − 2q)x− q2 (16)

giving the two roots

x1,2 =
−(p2 − 2q)±

√
(p2 − 2q)2 + 12q2

6
.

Since ω > 0, we are only interested in the positive root, namely:

ω0 :=
√
x1 =

(−(p2 − 2q) +
√

(p2 − 2q)2 + 12q2

6

) 1
2

We still need to show that α′′(ω0) < 0. For this, let s0 such that ω(s0) =
ω0. Then β(s0) = 0 and by Eq.(16), βn(s0) = 0. This leads to s0 =
−(r−2)+

√
(r−2)2+12

6 . Therefore,

β′(s0) =
f(Ka)2

2M2q2
β′n(s0)

βd(s0)2

and since β′n(s) = −6s− (r − 2), then β′n(s0) = −
√

(r − 2)2 + 12 < 0. Hence,
the function α has one maximum for ω > 0.
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We now analyse the inflections points. For this we need to analyse the signs
of α′′(ω) for ω > 0. This means, we need to study the signs of β′(s). There are
two cases for r − 2 to investigate. For both cases s > 0.

Case: r > 2. Here the denominator of β′ is strictly positive because (r− 2)
is positive (i.e. s2 + (r − 2)s + 1 > 0). According to Descartes’ rule of signs,
the numerator of β′ has only one positive root. Therefore, β′ changes sign only
once in R>0. Since the function α has a its maximum attained by ω0 > 0
and has 0 as asymptote when ω tends towards +∞, then this unique change
of sign for β′ corresponds to the one point of inflection of α taking place after ω0.

Case: 0 < r < 2. Here the denominator of β′ is strictly positive because it
has no real roots: the discriminant of s2 + (r − 2)s + 1 is (r − 2)2 − 4 < 0.
According to Descartes’ rule of signs, the numerator of β′ may either have

a) two positive roots or

b) no roots at all.

Case b) is not possible, since the function α possesses a maximum and has 0
as asymptote (i.e. the function α must have at least one inflection point since
α′ is zero at ω0, decreases in value and then converges to zero when ω tends
towards +∞). In case a), since there are two positive roots, these must be on
either side of ω0 (the positive number that maximises the value of of α), since
at ω0, the function α′′ is strictly negative (i.e. α′′(ω0) < 0) and the sign of
the dominant term of the polynomial in the numerator is positive. Hence, one
point of inflection after ω0 (i.e. after attaining the maximum of α).

7.5 Determining the particular a0 with h = 0

From Appendix 7.4, we know that the function α (see Eq.(13)) attains its
maximum value for

ω0 =

√
−(p2 − 2q) +

√
(p2 − 2q)2 + 12q2

6
.

Substituting the values a0 and ω0 in Eq.(11), leads to:

2mgρK2

f(Ka0)2
=

ω0

ω4
0 + (p2 − 2q)ω2

0 + q2
,

2mgρK2
(
ω4
0 + (p2 − 2q)ω2

0 + q2
)

= ω0(fK2)a20,

a20 =
2mgρ

fq2
(ω4

0 + (p2 − 2q)ω2
0 + q2

ω0

)
.
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Since 3ω4
0 + (p2 − 2q)ω2

0 − q2 = 0 (see Eq.(16)), then

a20 =
2mgρ

fq2
(ω4

0 + (p2 − 2q)ω2
0 +

(
3ω4

0 + (p2 − 2q)ω2
0

)
ω0

)
,

=
2mgρ

fq2
(4ω4

0 + 2(p2 − 2q)ω2
0

ω0

)
,

=
2mgρ

fq2
(
4ω3

0 + 2(p2 − 2q)ω0

)
.

Therefore, the critical crankshaft is

a0 =

√
2mgρ

fq2
(
4ω3

0 + 2(p2 − 2q)ω0

)
,

with ω0 =
(−(p2−2q)+√(p2−2q)2+12q2

6

) 1
2 .
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Localized waves in silicates. What we know from
experiments?

F. Michael Russell, Juan F.R. Archilla, and Santiago Medina-Carrasco

Abstract Since the latest review about solitary localized waves in muscovite, called
quodons, [FM Russell, Springer Ser. Mater Sci. 221 (2015) 3] there have been many
developments, specially from the point of view of experiments, published in several
journals. The breakthrough hypothesis that was advanced in that review that dark
tracks were produced by positive electrical charge moving in a localized wave, ei-
ther transported by swift particles or by nonlinear localized waves, has been con-
firmed by experiments in muscovite and other silicates. In this paper we review
the experimental results, some already published and some new, specially the phe-
nomenon of charge transport without an electric field, called hyperconductivity. We
also consider alternative explanations as phase transitions for other tracks. We also
attempt to describe numerical simulations that have confirmed the order of magni-
tude of quodons energy and calculations underway to determine more properties of
electron and hole transport by quodons.
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1 Introduction

The existence of localized waves in silicates layers were first proposed in 1994 [12].
This was an important step in a long story of research about the nature of tracks in
muscovite mica since 1967 [23, 24]. A scientific review [32] and a longer histor-
ical review [31] were published in 2015. The hypothesis that quodons, i.e., quasi
on-dimensional lattice excitations, transport electric charge was proposed in those
reviews but not developed.

This hypothesis was a fundamental change that led to new theory, new interpre-
tation of previous results about tracks in muscovite, and specially to experiments
that confirmed and modified the theory. Therefore, we have thought that it was time
for a new review that provided a comprehensive and brief summary of the state of
knowledge and the challenges in front of the research.

The research can be divided in three stages that are interconnected.

1. Tracks: Tracks by swift particles.
2. Quodons: Tracks by lattice excitations or quodons.
3. Hyperconductivity: Quodons with electric charge and hyperconductivity.

Here we present the beginning and end of the three stages and some of the high-
lights. Later, we will explain in detail some key aspects.

1.1 Tracks by swift particles

This stage starts in 1967 with the observation in mica of dark tracks of charged
particles from neutrino interactions [23] and finishes in 1993 with an explanation
of track formation by release of lattice energy [40] and the description of semi-
transparent tracks in mica related with positron dark tracks [42]. Dark tracks are
made out of magnetite and some shorter semi-transparent tracks are made out of the
mineral epidote.

Note that tracks are also the result of experiments similar to particle tracks in
a bubble chamber. They are experiments that nature has made and have been con-
served as a fossil in muscovite crystals. They have been done at temperatures, pres-
sure and specially time scales outside of the possibilities of physicists.

1.2 Tracks by lattice excitations or quodons

From the very beginning [23] it has been observed that only 0.1% of the dark tracks
in muscovite were produced by swift particles, while the rest lie along the close-
packed direction within the cation layers and therefore are related with the crys-
tal structure. This second stage starts with the calculation of nonlinear forces be-
tween potassium ions and using them to obtain an approximate KdV equation for
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lattice displacements. The KdV equation supports soliton solutions [18], therefore
the majority dark lines in muscovite could be produced by lattice-solitons. These
results were presented at a conference in 1994 [12] and extended the following
year [35, 36].

Interestingly, in the same year 1994, it was attempted to observe lattice-solitons
by bombarding silicon with 0.8 MeV Ar+ and detecting the ejection of an atom [41].
The experiment failed, perhaps among other reasons because it used silicon which is
not layered and have a complicated structure for soliton propagation as the nearest
neighbours do not form straight lines.

These lattice excitations were named qodons in 1995 [36] and later quodons in
1998 [21]. This was an acronym for quasi one-dimensional excitations, a descriptive
term which also recognized that the actual type of excitation was not well known.
It is worth noting that the term lattice-soliton was changed to breather. Breathers
differ from solitons in having an internal vibration and smaller energy and were
starting to be thoroughly studied [20, 17].

The highlight of this stage is probably the success of another experiment in
2007 [37] similar in design to the previous one [41]. In this case a mica monocrys-
tal was bombarded with alpha particles and it was possible to detect the ejection of
atoms at the opposite side of the sample along the direction of close-packed lines
within the cation layers.

This stage finishes in 2015 with two comprehensive reviews, a shorter and sci-
entifically oriented one [32] and a longer historical review oriented to the non-
specialist [31]. But in these two reviews the next stage is also hinted.

1.3 Quodons with electric charge and hyperconductivity

It was well known that most tracks in muscovite were produced by the recoil of
potassium atoms after beta decay [26]. In 2015, a thorough analysis of the decay
modes of 40K [4, 11, 22] showed that 90% of decays left a charge behind, and this
charge was positive except in 0.001% of positron decays, when it was negative.
Then, it was realized that dark tracks by swift particles were produced only by pos-
itive particles and that the thickness of, for example, positron tracks, at sonic speed,
when they were about to stop, were similar to quodon tracks. These two observa-
tions led to the deduction that quodons have electric charge, and dark tracks, positive
charge [30]. This hypothesis was already introduced at the previous reviews and it
was later extended in Ref. [6].

This profound change in the quodon concept provided something to measure eas-
ily, electric current, when quodons were excited by particle bombardment without an
electric field, a phenomenon called hyperconductivity. Experiments were successful
and also were able to explain new properties of quodons [34, 39] in muscovite and
other layered silicates.
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Fig. 1 A sheet of mica muscovite showing many majority tracks due to lattice excitations within
the hexagonal structure of the cation layer and a muon track in an unrelated direction

2 Important points

In this section we concentrate in some important points which illustrate either fossil
tracks or experimental results or experiment setup.

2.1 First encounter with dark tracks in muscovite

It is important to emphasize that the main author of this research F.M. Russell has
been all his career dedicated to high energy physics, first at Harwell Laboratory1,
then at Oak Ridge National Laboratory (ORNL) in the U.S.A, and thereafter at the
Rutherford Appleton Laboratory (RAL) in the U.K. In this way, when in 1963 at a
museum in North Caroline2, he found himself in front of a specimen of muscovite

1 Atomic Energy Research Establishment near Harwell, Oxfordshire, U.K.
2 Museum of North Carolina Minerals, Spruce Pine, North Caroline, U.S.A.
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with abundant dark tracks, he recognized the striking similarity with the tracks of
swift particles in bubble chambers. A similar sheet is presented in Fig. 1.

2.2 How were the swift particles identified?

There were different methods, but perhaps the clearest is the kinkiness of those dark
tracks. Charged swift particles when entering in matter experience scattering with
the matter ions. The probability of scattering at a given angle can be calculated by
Rutherford law and the angles can be can be seen and measured with a microscope
and the results compared with given particles. An example can be seen in Fig. 2,
comparing the second difference, basically the scattering angle, of some track in
mica with positrons in photographic film [43], taking into account the difference in
mass and density of the scattering ions.

Fig. 2 Probability of scatter-
ing at given angles for tracks
corresponding to positrons in
muscovite [+], compared with
positrons in photographic
film [4] and by Wolfendale’s
group [◦]. The results fit
closely to the Rutherford Law,
thus strongly supporting the
hypothesis that the lines are
tracks of charged particles.
Data from Refs. [43, 13, 26]
for VP, CMW and FMR, re-
spectively. Reproduced with
permission from: Russell,
F. M. (1988)[26] Copyright
c© 1988, Elsevier
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2.3 Which particle tracks were identified?

The particles that produce dark tracks in muscovite and could be identified were
positive muons, i.e., antimuons, which are the particles that can be produced deep
underground after neutrino interaction [23, 24, 25, 26], positrons from 40K decay
and antimuon decay [26, 27, 29, 28, 42]. Protons can be recognized by the short
length of the tracks corresponding to non-relativistic speed [38, 32]. Also, alpha
particles can be discriminated from the multiple scattering events, proof of their
large energy and mass [25, 32].

The remarkable fact that all the particles that produce dark tracks were positive
was used in 2015 to recognize that the large majority of quodons that produce dark
tracks have also positive charge [30, 32, 31].

2.4 How were the tracks produced?

There is not enough energy to produce the dark tracks, this means that the source of
energy is already in the lattice, in the form of a metastable state [29, 28, 41, 36].

Natural crystals of muscovite mica contain various impurities, especially iron,
incorporated during their growth. It has been found that this can lead to a unique
situation, as a crystal cools following growth, during which minute perturbations of
the crystal can be recorded and stored indefinitely. Although muscovite is a com-
mon mineral in rocks, large crystals grow only in pegmatites associated with mag-
mas at temperatures of about 500◦C and under high pressure at about 5 km under-
ground [14]. Inevitably, large single crystals of good quality are rare but they are
of special interest because of the information they have been found to contain. A
common feature of micas is their ease of cleavage, in the (001)-plane. The black
material forming the patterns is the iron oxide mineral magnetite, so named because
it is ferro-magnetic.

As a crystal cools slowly at high temperature it tries to reach a lower energy state
by expelling the magnetite at the weakest part of the lattice, the cleavage plane. The
magnetite grows epitaxially, centred in the potassium sheet and grows in the di-
rections of structural weakness. These are the principal crystallographic directions,
which are easily determined by percussion figures [31]. This has been confirmed by
both optical and electron microscopy. In fact, the distortion of the lattice is readily
seen by observing the of the intrusive magnetite by reflected light or by surface in-
terferometry. Contrary to the basic assumption in of global bi-stability of structure
there is no evidence for this in the observed patterns involving magnetite.
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2.5 Two different recording processes

It has been found that there are two different recording processes leading to the
observed patterns, involving different impurities. The dominant process leading to
magnetite is triggered by passage through the crystal of a positive charge in the
vicinity of the potassium sheets. This can result from a positively charged, high-
energy, muon created in a neutrino interaction within the Earth or by direct penetra-
tion of a cosmic ray. Another source is from electron-positron showers arising from
a high-energy gamma interaction. The flight-paths of these particles are influenced
by channelling and diffraction scattering due to the pronounced layered structure of
muscovite [26]. The most informative source, however, is from the rare decay chan-
nel of 40K creating positrons [42]. Study of the fossil tracks of these positrons has
shown that the origin of the nucleation sites for triggering magnetite growth does
not involve ionization of the lattice. For relativistic positrons from this source a fos-
sil track results even when the rate of energy loss is less than 1 eV per 10,000 atoms
along the flight path. The rate of energy loss increases as a positron slows down,
leading to an increase in the amount of magnetite formed. Due to anisotropy of the
mechanical properties of the layered structure this increase shows as a widening
of the magnetite ribbon delineating the flight-path. This suggests that the recording
process is of a chemical nature, with the probability for an impurity ion migrating to
the flight path increasing as the positron’s speed decreases.The dominant source of
the long ribbons of magnetite arising from moving positive charges is the dominant
decay channel of 40K, in which an electron is emitted. These energetic electrons
do not initiate fossil magnetite tracks. However, they leave a positive charge at the
decay site that can be trapped and carried by a mobile lattice excitation arising from
the recoil motion of the decayed nucleus. These mobile, non-dissipative, highly lo-
calized excitations move at slightly sub-sonic speed, leading to magnetite ribbons of
width of similar width to those due to nearly stopped positrons [32]. The last known
source of swift positively-charged ions is from atomic cascades arising from nuclear
scattering of relativistic particles.

The second and much rarer recording process involves formation of the mineral
epidote, which requires an excess of calcium during crystal growth. These fossil
tracks arise from the emission of a positron, leaving a negative charge at the decay
site, which is trapped and transported by the mobile recoil excitation. This leads
to a ribbon of transparent epidote that is not intrusive in the potassium sheets [42].
The formation process of the epidote is poorly understood and might involve a bi-
stable crystal state [19]. It is hoped that this explanation of the origin of the fossil
magnetite-ribbon tracks might encourage study of the formative process for the fos-
sil epidote tracks, as this has the potential for ballistic, low-loss, transport of elec-
trons in layered insulators [34, 42, 33, 39].
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Fig. 3 Left: Setup of the quodon experiment. A: alpha source, M: mica monocrystal, ECM: elec-
tron channel multiplier, G: grid, B: alternative position for the alpha source. Right: Outcome of the
quodon experiment: Plot of the angular dependence of the ECM count rate. T: test, S: sputtering
from the front face, E: peak from ejected atoms at the rear face in the [0 1 0] direction. Reproduced
with permission from: Russell, F.M. and Eilbeck, J.C. [37]. Copyright c© 2007, EPLA.

3 How was the experiment in lattice-excitations or quodons
done?

The highlight of the research on lattice excitations, sometimes called lattice-solitons,
breathers or quodons in this context was the experiment in 2007 [37]. Alpha particles
were sent at an angle with the muscovite sheet and therefore with the potassium
layer to prevent the possibility of transmission and it was detected at the other side
of the monocrystal corresponding to low Miller indexes, the ejection of an atom
from the surface. The atom was detected because it was ionized by an electric field
and the charge detected. Ejection of atoms from a silicate surface needs energies of
7-8 eV, however, it is not necessary that a quodon had that energy as the passage of a
vibrational energy in the vicinity of the surface is enough to increase the probability
of ejection [16]. Both the setup and the outcome can be seen in Fig. 3.

4 How it was demonstrated hyperconductivity, i.e., that quodons
carry charge?

Hyperconductivity is defined as the transport of charge in absence of an electric
field. The charge is transported by nonlinear excitations which have their own en-
ergy and momentum from the cause that created them. Due to the combination of
nonlinearity and discreteness they travel long distances in atomic terms with little
attenuation.
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Fig. 4 Left: Plot of the hyperconductivity current, the time intervals marked in black at the top
correspond to the opening of the alpha gate. Right: Hypercurrent as a function of the accumulated
time of alpha exposure, showing an exponential decrease corresponding to the depletion of the
charge reservoir from 40K beta decay. Reproduced with permission from: Russell, F.M. et al. [34].
Copyright c© 2017, EPLA.

An experiment was set up quite similarly to the previous ones. The way to excite
lattice excitations or quodons was also by sending alpha particles, due to its sim-
plicity. The hypothesis was that alpha particles would produce many quodons and
some proportion of them would propagate to the other side of the sample and in this
way a current could be measured. Muscovite is a very good insulator but there was
the possibility that the surface and certainly the ionized air would transport charge.
To discard this effect the two sides of the sample were connected and therefore the
potential difference among both contacts would be zero and also the electric field
would be zero. Lattice excitation or quodons would travel due to their initial energy
and momentum.

The experiment was a success but with some unexpected results. Instead of a
steady current after the alpha gate was open, the current showed a peak, but then
it would diminish to a small limiting value. The phenomenon was soon explained:
there are not free carriers in muscovite band structure, the available charge is the
one obtained after beta decay of 40K, mainly positive after β−, i.e., the emission of
an electron is the dominant branch, but also some negative charge after β+ positron
emission. This reservoir is depleted in some minutes, and the remaining current is
exactly the flux of electric charge brought by the alpha flux [34]. The current peaks
and their decrease can be seen in Fig. 4.

5 What properties of hyperconductivity and quodons were
deduced from experiments?

More experiments in hyperconductivity [39] were able to deduce a number of facts:
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Fig. 5 Plot of the hypercurrent corresponding to two intervals of alpha exposure in a previously
depleted crystal. Left: Crystal of lepidolite of good quality. Note the soft decay of the hypercurrent
after the alpha flow is stopped. Right: Crystal of phlogopite of bad quality. Note the abrupt decrease
of the hypercurrent after alpha irradiation is stopped. Reproduced with permission from: Russell,
F.M. et al. [39]. Copyright c© 2019, EPLA.

• Other layered silicates as lepidolite, phlogopite, chrysolite and both natural and
synthetic fluorphlogopite supported hyperconductivity and thus the propagation
of quodons. However, a layered silicate as biotite with similar structure does not
support it. It was not found in unrelated materials that could be used in quodon
technology as PTFE, quartz, borosilicate glass and epoxy resin.

• Hyperconductivity is not sensitive to minor crystal defects and can even anneal
some of them. It can also pass through some interfaces.

• Hyperconductivity is not affected by magnetic fields up to 1.1 T.
• Quodons have very long flight paths, this can be deduced by comparing the drop

in hypercurrent when the alpha bombardment is stopped. In a good crystal the hy-
percurrent continues to flow some seconds, while in a crystal with many defects,
the hypercurrent stops almost immediately as can be seen in Fig. 5

6 What types of quodons are there?

There is no clear information from the experiments, however from the fossil tracks
as seen in Fig. 6, it can be deduced:

• There are positive quodons, negative quodons and probably neutral quodons.
Negative quodons can be seen as an epidote track in exactly the opposite direc-
tion from a positron track and therefore corresponding to the recoil of the nucleus
of 40K after β+ decay. Neutral quodons can be deduced from intermittent dark
tracks, which seem like quodons loosing an regaining positive charge.

• There are some more energetic quodons that produce straighter and thicker dark
tracks and some less energetic quodons because they appear often as weaker

800



Localized waves in silicates. What we know from experiments?

Fig. 6 A sheet of mica muscovite showing a quodon primary track and many secondary tracks
scattered from it. Also it is possible to see the intermittency in the secondary tracks along the
close packed direction of the cation layer. This is interpreted as a quodon loosing and regaining a
positive charge. Reproduced with permission from: Russell, F.M. and Eilbeck, J.C. [38]. Copyright
c© 2011, AIMS.

dark tracks scattered from a primary track. As both types are dark, it is deduced
that both have positive charge. They might have different nature, maybe primary
tracks could be crowdions or kinks as they transport charge in an ionic crystal and
have large energies of 20-30 eV [15, 4, 9, 5, 7]. Secondary tracks, could be inter-
preted as breathers, because they have good mobility in mica models with little
or no radiation, with energies of 0.2-0.3 eV [21, 8, 2] and recently they have been
shown to scatter in different close-packed directions [10]. However, breathers do
not transport charge and if they couple to a charge their properties and physical
description change completely. Certainly, breathers could correspond to neutral
quodons. A model for lattice excitations coupled to a hole or electron has been
constructed for muscovite, but the properties of localized excitations using it are
still under study [1, 3].

7 Alternative explanations of tracks

There have not been many alternative explanations of tracks in muscovite. It was
suggested that the majority of dark lines corresponds to dislocations because they
lie in the close-packed directions, but without further proof [13]. Arguments against
dislocations are that they should appear along crystal fractures, which does not oc-
cur [26] and that dark tracks do not continue to the edge of the crystal specimen as
it should occur with dislocations [32]. Recently an interesting explanation based on
phase transition in a bistable lattice has been proposed [19]. The research was based
in the observation3 that the pitch of the on-site potential and the equilibrium distance
of the interatomic potential should be different in a real material. This bring about
the existence of different stable configurations, and the authors found a switching

3 J.F.R. Archilla, private communication (2019).
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wave between configurations that propagates longitudinally along the direction of
atomic chains. They used a Frenkel-Kontorova 2D system with morse interaction
potential. There was no attempt to relate their findings with physical magnitudes
and to explain the coloration of lines or the kinkiness of the swift particle tracks.
Also, the hyperconductivity experiments were not explained and the charge of the
ions in the cation layer were not taken into account as explained in the article. Nev-
ertheless, it opens a new path to understand some of the phenomena observed in
muscovite and other layered silicates, particulary epidote tracks, which are not pro-
duced by swift particles.

8 Summary

In this article we have tried to present an updated review of the research in nonlinear
waves in layered silicates, particularly, but not only, in mica muscovite. We have at-
tempted to make clear for the non specialist which are the main experimental facts
and their interpretation, leaving many details to the references. The main results are
that some dark tracks in muscovite can be related to swift positive particles, that
many other tracks along atom chain direction of the cation layers can be interpreted
as lattice excitations, called quodons. Most quodons carry positive charge although
some may have negative charge or none. This was demonstrated by hyperconduc-
tivity experiments, that is, the transport of charge in the absence of an electric field.
Variants of hyperconductivity experiments allowed for the deduction of many prop-
erties of quodons. Other interpretations of dark tracks may be complementary and
be useful to understand some of the tracks.
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Abstract. Circuit realization of the inductance equivalent that contains two operational 
amplifiers, one capacitor, and four resistors is presented. The mathematical equation that 
allow convert inductor value to resistance of potentiometer is shown. Computer modeling 
results of the algorithm for calculate inductance was realized in the modern software 
LabView. Experimental results of realization of the equivalent of inductance are 
presented. The designed layout was applied for chaotic Chua’s generator. 
Keywords: Chaos, Equivalent Inductance, LabView, Chua’s Generator. 
 
1  Introduction 

 
Chaotic theory used in many areas, such as biology [1-3], ecology [4, 5], 
economy [6-8], optics [9], mathematics [10, 11], memristor [12, 13], security 
communication systems [14, 15], etc. Many different electronics circuits 
generated chaotic oscillations [16-29]. One of the circuit element must be used 
inductor. However, there are many problems with product or buying inductor 
with non-standard nominal values. 
In Fig. 1 shows electrical scheme that allows change inductor to operational 
amplifier realization. 
The equation that allow convert equivalent inductance can be computed as 

                                                ,
2

1431
R

CRRRLeq =                                         (1) 

where R1-R4 – values of resistances, C1 – value of capacitance. 
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Fig. 1. Operational amplifier realization of simulated inductor 

 
In this work, by using the Laboratory Virtual Instruments Engineering 
Workbench (LabVIEW), we developed an algorithm that automatically convert 
value of inductance to value of resistance of potentiometer R4. 
The paper is organized as follows. In Sect. 2, algorithm that realize inductance 
equivalent, LabView software interface and practical realization are presented. 
In the following section, the result of experimental investigation is presented. 
Inductor-free simplified Chua’s chaotic circuit is easily extended, and similar 
dynamical behaviors are exhibited through the corresponding numerical 
simulations and hardware experiments. The conclusionsare summarized in the 
last section. 
 
2  Software and Practical Realization of theEquivalent of 
Inductance 
 
Algorithm of equivalent of inductance was realized in LabView. This is a 
graphical programming platform that helps engineers implement all stages of 
development of large and small projects: from prototype creation to final 
testing. In this development environment, the best integration of software and 
hardware components with the latest computer technologies is combined today. 
LabView contains all the tools for solving currentand upcoming challenges with 
enormous potential forinnovation, future success and effectiveness. 
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LabView includes powerful multi-function tools forconducting any types of  
measurements and development of any applications. With these tools, 
engineersand scientists can work in the widest range of applications and spend 
much less time developing. Thanks to this, LabView is a development 
environment for solving a wide range of research, performance 
enhancementsand innovations. 
Fig. 2 demonstrate algorithm of equivalent of inductance that was realized in 
LabView 

 
Fig. 2. Software realization of algorithm 

 
Fig. 3 shows program interface for calculate of resistance of resistor R4. 
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Fig. 3. Software interface for calculate of resistance of resistor R4 

 
For  example, we have next values of components:R1 = R2 = R3 = 1000 Ohm, 
capacitor C = 10 nF, L = 18 mH. These values we inserted in special windows 
of L-EQ calculator and get value for resistor R4 = 1800 Ohm. Practical 
realization and results are shown in Fig. 4., i.e. inductance Leq = 17.9 mH and 
R0 = 0.23 Ohm. Voltage source – 12 V. For power supply of the circuit was 
used laboratory DC power supply Hantek HT3003PB. For measurementof 
inductance was used LCR meter UNI-T. 
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Fig. 4. Practical realization of the equivalent of inductance (L = 17.9 mH) 

 
If we changed resistance of resistor R4, we get inductance equivalent equal 20 
mH. This experimental result shows in Fig. 5. 

 
Fig. 5. Practical realization of the equivalent of inductance (L = 19.92 mH) 
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3  Experimental Investigation of the Equivalent of Inductance 
 
After the advent of Chua’s chaotic circuit, numerous works have been reported 
on different realization schemes of this circuit. We consider a realization of the 
double scroll chaotic Chua’s attractor given by the following set of (rescaled) 
three coupled ODEs: 

                                         

( )( )















−=

+−=

−−=

,

,

,

y
dt
di

zyx
dt
dy

xgxy
dt
dx

L β

α

                                      (2) 

where α = 10, β = 14.87, g(x) – piecewise linear function. 
The circuit realization of the above is displayed in Fig. 6, with component 
values: capacitors C1 = 100 nF, C2 = 10 nF, DA1 – operational amplifier 
TL082, powered by a 12 V, GB –voltage source, inductor L1 = 18 mH, resistors 
R1 = 1.71 kΩ, R2 = 47 kΩ, R3 = R4 = 3.3 kΩ, R5 = 47 kΩ, R6 = R7 = 290, R8 
= 1.2 kΩ, diodes VD1, VD2 – 1N4148. 

 
Fig. 6. The classical chaotic Chua’s generator 

 
The experimental results are captured by TektronixTDS 1002 digital 
oscilloscope. 
Fig. 7 and Fig. 8 shows chaotic attractor and timeseries that was realized 
practically. 
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Fig. 7. Chaotic attractor 

 

 
Fig. 8. The x-signal (upper) and the y-signal (lower) timeseries realized 

practically. Their non-periodic nature is evident. 
 
Fig. 9 and Fig. 10 shows spectra of the classical chaotic Chua’s generator. 
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Fig. 9. The spectral distribution of VC1 

 

 
Fig. 10. The spectral distribution of VC2 

 
 
Conclusions 
 
Designed L-EQ calculator allows convert of inductance values to resistance 
using some algorithm. Circuit realization of the inductance equivalent that contains 
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two operational amplifiers, one capacitor, and four resistors is presented. The 
mathematical equation that allow convert inductor value to resistance of potentiometer is 
shown. Computer modeling results of the algorithm for calculate inductance was realized 
in the modern software LabView. Experimental results of realization of the equivalent of 
inductance are presented. The designed layout was applied for chaotic Chua’s generator. 
Chaotic attractor, timeseries and s spectral distributions are also presented. 
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Abstract. In this article the authors investigate the dynamics of an oligopoly game in 

which, they consider a nonlinear Bertrand-type duopoly game with differentiated goods 

and heterogeneous expectations. In this study the case, where managers have a variety of 
attitudes toward relative performance that are indexed by their type is investigated. In 

this game they suppose a linear demand and cost functions. The game is modeled with a 

system of two difference equations. Existence and stability of equilibria of the system are 

studied. It is revealed that the models gives more complex, chaotic and unpredictable 
trajectories, as a consequence of change in the parameter k of speed of the player’s 

adjustment, the parameter d of the horizontal product differentiation and the relative 

profit parameter μ. The chaotic features are justified numerically via computing 

Lyapunov numbers and sensitive dependence on initial conditions. 
. 

Keywords: Bertrand duopoly game; Relative profit maximization; Discrete dynamical 

system; Nash equilibrium; Stability; Bifurcation diagrams; Lyapunov numbers; Strange 

attractors; Chaotic Behavior. 
 

 

1  Introduction 
 

An Oligopoly is a market structure between monopoly and perfect competition, 

where there are only a few number of firms in the market producing 

homogeneous products. The dynamic of an oligopoly game is more complex 

because firms must consider not only the behaviors of the consumers, but also 

the reactions of the competitors i.e. they form expectations concerning how their 

rivals will act. Cournot, in 1838 has introduced the first formal theory of 

oligopoly. In 1883 another French mathematician Joseph Louis Francois 

Bertrand modified Cournot game suggesting that firms actually choose prices 

rather than quantities. Originally Cournot and Bertrand models were based on 

the premise that all players follow naive expectations, so that in every step, each 

player (firm) assumes the last values that were taken by the competitors without 

estimation of their future reactions. However, in real market conditions such an 

assumption is very unlikely since not all players share naive beliefs. Therefore, 

different approaches to firm behavior were proposed. Some authors considered 
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duopolies with homogeneous expectations and found a variety of complex 

dynamics in their games, such as appearance of strange attractors (Agiza, 1999, 

Agiza et al., 2002, Agliari et al., 2005, 2006, Bischi, Kopel, 2001, Kopel, 1996, 

Puu, 1998, Sarafopoulos, 2015, Zhang , 2009). Also models with heterogeneous 

agents were studied  (Agiza, Elsadany , 2003, 2004, Agiza et al., 2002, Den 

Haan , 20013, Fanti, Gori, 2012, Tramontana, 2010, Zhang , 2007).  

In the real market producers do not know the entire demand function, though 

it is possible that they have a perfect knowledge of technology, represented by 

the cost function. Hence, it is more likely that firms employ some local estimate 

of the demand. This issue has been previously analyzed by Baumol and Quandt, 

1964, Puu 1995, Naimzada and Ricchiuti, 2008, Askar, 2013, Askar, 2014. 

Bounded rational players (firms) update their strategies based on discrete time 

periods and by using a local estimate of the marginal profit. With such local 

adjustment mechanism, the players are not requested to have a complete 

knowledge of the demand and the cost functions (Agiza, Elsadany, 2004, 

Naimzada, Sbragia, 2006, Zhang et al, 2007, Askar, 2014).  

In this paper we study the dynamics of a Bertrand- type duopoly with 

differentiated goods where each firm behaves with heterogeneous expectations 

strategies. We show that the model gives more complex chaotic and 

unpredictable trajectories as a consequence of change in three parameters, the 

speed of players’ adjustment, the parameter of horizontal product differentiation 

and the relative profit parameter. The paper is organized as follows: In Section 

2, the dynamics of the duopoly game with heterogeneous expectations, linear 

demand and cost functions for two players are analyzed. We set first player as 

bounded rational and the second as a naïve player. The existence and local 

stability of the equilibrium points are also analyzed. In Section 3 numerical 

simulations are used to verify the algebraic results of Section 2 plotting the 

bifurcation diagrams of the game’s system and to show the complex dynamics 

via computing Lyapunov numbers, and sensitive dependence on initial 

conditions. 

 

 

2 The game 

 

2.1 The construction of the game 

 
In this study we assume that in the two companies there is a separation between 

ownership and management, so there is a possibility that the managers who 

make decisions for the company to decide at the expense of their company 

trying to increase the profits of the competitor. Also, we consider heterogeneous 

players and more specifically, we consider that the Firm 1 chooses the price of 

its product in a rational way, following an adjustment mechanism (bounded 

rational player), while the Firm 2 decides with naïve way by selecting a price 

that maximizes its output (naïve player). We consider a simple Bertrand-type 

duopoly market where firms (players) produce differentiated goods and offer 
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them at discrete-time periods on a common market. Price decisions are taken at 

discrete time periods t = 0, 1, 2,… At each period t, every firm must form an 

expectation of the rival’s strategy in the next time period in order to determine 

the corresponding profit-maximizing prices for period t+1. We suppose that q1 , 

q2 are the production quantities of each firm. Also, we consider that the 

preferences of consumers represented by the equation: 

     2 2
1 2 1 2 1 2 1 2

1
U q ,q q q q q 2dq q

2
                               (1) 

where α is a positive parameter (α > 0), which expresses the market size and 

 d 1,1   is the parameter that reveals the differentiation degree of products. 

For example, if d 0  then both products are independently and each firm 

participates in a monopoly. But, if d 1  then one product is a substitute for the 

other, since the products are homogeneous. It is understood that for positive 

values of the parameter d the larger the value, the less diversification we have in 

both products. On the other hand negative values of the parameter d are 

described that the two products are complementary and when d 1   then we 

have the phenomenon of full competition between the two companies. The 

inverse demand functions (as functions of quantities) coming from the 

maximizing of (1) are given by the following equations: 

 1 1 2 1 2p q ,q q dq             and          2 1 2 2 1p q ,q q dq          (2) 

The direct demand functions (as functions of prices): 

 
  1 2

1 1 2 2

1 d p dp
q p ,p

1 d

   



    and   

  2 1
2 1 2 2

1 d p dp
q p ,p

1 d

   



  (3) 

In this work we suppose that both players follow the same linear cost function, 

which is described by the following equation: 

 i i iC q c q                                                  (4) 

and c > 0 is the same marginal cost for two firms.  

 

With these assumptions the profits of the firms are given by: 

     
  1 2

1 1 2 1 1 1 1 1 2

1 d p dp
p ,p p q C q p c

1 d

   
     


           (5) 

and 

     
  2 1

2 1 2 1 1 2 2 2 2

1 d p dp
p ,p p q C q p c

1 d

   
     


         (6) 

Then the marginal profits at the point of the strategy space are given by: 

  1 21
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1

1 d c 2p dp

p 1 d

    


 
   ,    

 11

2
2

d p c

p 1 d




 
               (7) 

and 
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1 d c 2p dp
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d p c
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               (8) 
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As it is noticed both managers care about the maximization of a utility function 

that contains a percentage of opponent company’s profits (generalized relative 

profit function), which is given by: 

i i i i i j i i jU (1 ) ( )                               (9) 

where  0,1  is the percentage that the player i takes into account the 

opponent company’s prifots. So, the marginal utility of the player i is given by 

the following equation: 

ji i
i

i i i

U

p p p

 
  

  
                                       (10) 

and the marginal utilities for each player are: 

     1 21

2
1

1 d c 1 d 2p d 1 pU

p 1 d

      


 
                          (11) 

and  

     2 12

2
2

1 d c 1 d 2p d 1 pU

p 1 d

      


 
                          (12) 

The first player is characterized as bounded rational player. According to the 

existing literature it means that he decides his price following a mechanism that 

is described by the equation: 

   

 
1 1 1

1 1

p t 1 p t U
k

p t p

  
 


 ,  k > 0                                  (13) 

Through this mechanism the player increases his level of adaptation when his 

marginal utility is positive or decreases his level when his marginal utility is 

negative, where k is the speed of adjustment of player, it is a positive parameter 

(k > 0), which gives the extend variation of price of the company 1, following a 

given utility signal. 

The second player chooses this price that maximizes his utility function (naïve 

player). So, his strategy is given by the equation: 

      2 2 1 2
y

p t 1 arg max U p t ,p t                                (14) 

The dynamical system of the players is described by: 

     

 
       

1
1 1 1

1

1
2

U
p t 1 p t k p t

p

1 d c 1 d d 1 p t
p t 1

2


     


      

 

                     (15) 

We will focus on the dynamics of this system to the parameter k, d and μ. 

 

2.2 Dynamical analysis 
 

The dynamical analysis of the discrete dynamical system involves finding 

equilibrium positions and studying them for stability. The ultimate goal of this 

algebraic study is to formulate a proposition that will be the stability condition 
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of the Nash Equilibrium position. Finally, these algebraic results are verified 

and visualized doing some numerical simulations using the program of 

Mathematica. 

 

2.2.1 The equilibrium positions 
 

The equilibriums of the dynamical system (15) are obtained as the nonnegative 

solutions of the algebraic system: 

     

* 1
1

1

*
1*

2
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p 0
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1 d c 1 d d 1 p
p

2


  


      



                           (16) 

which is obtained by setting :     *
1 1 1p t 1 p t p    and     *

2 2 2p t 1 p t p    . 
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 then the following system is obtained: 

     

     

* *
1 2

* *
2 1

1 d c 1 d 2p d 1 p 0

1 d c 1 d 2p d 1 p 0

       

       

                      (18) 

and the nonnegative solution of this algebraic system will give the Nash 

Equilibrium position  * *
* 1 2E p ,p  where: 

     

 

* *
1 2 22

2 d d 1 d c 1 d
p p

4 d 1

        
 

 
                       (19) 

 

2.2.2 Stability of equilibrium points 
 

To study the stability of the equilibrium positions we need the Jacobian matrix 

of the dynamical system Eq.(15) which is the matrix: 

  1 2

1 2

p p* *
1 2

p p

f f
J p ,p

g g

 
  
  

                                            (20) 

where: 
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1
1 2 1 1

1

1
1 2

U
f p ,p p k p

p

1 d c 1 d d 1 p
g p ,p

2


   



      


                 (21) 

and as a result the Jacobian matrix of game’s discrete dynamical system Eq.(15) 

is the following matrix: 

 
 

2 2
* *1 1 1
1 12

* * 1 1 21
1 2

U U U
1 k p k p

p p pp
J p ,p

d 1
0

2

    
            

 
 

  

               (22) 

For the 1E  the Jacobian matrix becomes as: 

 
   

1

1

U1 A 1 k
p

1
1

d 1
B

2

U
1 k 0

0p
J E     

B 0d 1
0

2


  



 


 
     

   
    
 
 

                        (23) 

with Tr    and Det 0 .  

From the characteristic equation of  1J E  , we find the nonnegative eigenvalue: 

1
1

1

U
r Tr 1 k

p


   


                                             (24) 

it’s clearly seems that 1r 1  and the 1E  equilibrium is unstable. 

 

For the *E  the Jacobian matrix becomes as: 

 
   

 

* *
1 1

*

1 2k 1 c q k 1 q

J E 1
0

2 1 c

        
 

   
  

                         (25) 

with 

  *
1Tr 1 2k 1 c q             and       

 

 

2

*
1

1
Det k q

2 1 c


   


               (26) 

To study the stability of Nash equilibrium we use three conditions that the 

equilibrium position is locally asymptotically stable when they are satisfied 

simultaneously: 

(i) 1 Det 0

(ii)   1 Tr Det 0

(iii) 1 Tr Det 0

 

  

  

                                          (27) 

It’s easy to find that the first condition (i) is always satisfied: 
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22
*
1 2

d 1
1 Det 0    1 k p 0

2 1 d

 
      


                          (28) 

Also, the condition (ii) gives: 

 

 

22

*
1 2

4 d 1
1 Tr Det 0    k p 0

2 1 d

   
 

      


               (29) 

and it’s always satisfied because 
 

 

22

2

4 d 1
0

2 1 d

   
 




. 

Finally, the condition (iii) becomes as: 

 

 

22

*
1 2

4 d 1
1 Tr Det 0    k p 2 0

2 1 d

   
 

       


           (30) 

Proposition: 

The Nash equilibrium of the discrete dynamical system Eq.(15) is locally 

asymptotically stable if: 

 

 

 

22

*
1 2

4 d 1
k p 2 0

2 1 d

   
 

   


 

where 

     

 

*
1 22

2 d d 1 d c 1 d
p

4 d 1

        


  
 

 

 

3 Numerical simulations 

 

3.1 Stability spaces 

 
At first the 3D stability space (Fig.1) is made including the main three 

parameters we will focus on, the parameters k (speed of adjustment), the 

parameter d (product’s differentiation degree) and μ (relative profit parameter). 

This three-dimensional space is obtained by the stability condition that is 

described above in Proposition, setting specific values for the other parameters 

5   and c 1 . Also, the two-dimensional stability region for a couple of these 

three parameters are presented that is resulted setting specific values of for one 

of the three main parameters. Specifically, the stability regions between the 

parameters k and μ (Fig.2) also, between the parameters d and μ (Fig.3) and 

between the parameters k and d (Fig.4) are presented. A useful result using the 

Fig.2 is that for small values of the parameter k (speed of adjustment) there is a 
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locally asymptotically stable Nash Equilibrium for every value of the parameter 

μ (relative profit parameter) into the interval [0,1]. It means that for these values 

of the other parameters α, c, d and k the parameter μ cannot destabilize the 

economy. 

 

  
Fig. 1. Three-dimensional stability space 

between the parameters k, d and μ for      

α = 5 and c = 1.  

Fig. 2. Two-dimensional stability region 

between the parameters k (horizontal axis) 

and μ (vertical axis) for α = 5, c =1 and       

d = 0.50. 

 

 

  
Fig. 3. Two-dimensional stability region 

between the parameters μ (horizontal axis) 

and d (vertical axis) for α = 5, c = 1 and     
k = 0.315. 

Fig. 4. Two-dimensional stability region 

between the parameters k (horizontal axis) 

and d (vertical axis) for α = 5, c = 1 and    
μ = 0.20. 
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3.2 Focusing on the parameter k 

 
In this section some numerical simulation including bifurcation diagrams, 

strange attractors, Lyapunov numbers graph and Sensitive dependence on initial 

conditions are presented focusing on the parameter k when the other parameters 

are fixed taking the values: α = 5, c = 1, μ = 0.30 and d = 0.50. At first, the Nash 

Equilibrium for the values of these parameters becomes as: 

   * * * *
1 2 * 1 2 *p p 2.21 E p ,p E 2.21,2.21                                 (31) 

and for the stability condition it means that the parameter k must take values 

into the interval: 

 k 0,0.32                                                     (32) 

This algebraic result is verified by the bifurcation diagrams of *
1p  (Fig.5) and 

*
2p  (Fig.6) with respect to the parameter k. As it seems there is a locally 

asymptotically stable orbit until the value of 0.32 for the parameter k and after 

this value doubling period bifurcations are appeared and finally, for higher 

values of the parameter k the system’s behavior becomes chaotic and 

unpredictable.  

 

  
Fig. 5. Bifurcation diagram with respect to 

the parameter k against the variable 
*
1p  

with 400 iterations of the map Eq.(15) for 
α = 5, c = 1, d = -0.50 and μ = 0.30. 

Fig. 6. Bifurcation diagram with respect to 

the parameter k against the variable 
*
2p  

with 400 iterations of the map Eq.(15) for 
α = 5, c = 1, d = -0.50 and μ = 0.30. 

 

 
Fig.7 The two previous bifurcation diagrams of Fig.5 and Fig.6 in one. 
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This chaotic trajectory can create strange attractors (Fig.8) for a higher value of 

the parameter k like 0.47, outside the stability space. Also, computing the 

Lyapunov numbers (Fig.9) for this value of the parameter k and setting the same 

fixed values for the other parameters α, c, μ and d it seems that they are getting 

over the value of 1 as an evidence for the chaotic trajectory.  

 

  
Fig. 8. Phase portrait (strange attractor) 

of the orbit of (0.1,0.1) with 8000 

iterations of the map Eq.(15) for α = 5, 

c = 1,  d = -0.50, μ = 0.30 and k = 0.47. 

Fig. 9. Lyapunov numbers of the orbit of 

(0.1,0.1) with 8000 iterations of the map 

Eq.(15) for α = 5, c = 1,  d = -0.50, μ = 0.30 

and k = 0.47. 

 

This chaotic trajectory makes the system sensitive on initial conditions, which 

means that only a small change on a coordinate may change completely the 

system’s behavior. For example, choosing two different initial conditions 

(0.1,0.1) (Fig.10) and (0.101,0.1) (Fig.11) with a small change at the                
*
1p -coordinate and plotting the time series of system it seems that at the 

beginning the time series are indistinguishable, but after a number of iterations, 

the difference between them builds up rapidly. 

 

  
Fig. 10. Sensitive dependence on initial 

conditions for 
*
1p -coordinate plotted 

against the time: the orbit of (0.1,0.1) of 

the system Eq.(15) for α = 5, c = 1,            
d = -0.50, μ = 0.30 and k = 0.47. 

Fig. 11. Sensitive dependence on initial 

conditions for 
*
1p -coordinate plotted 

against the time: the orbit of (0.101,0.1) of 

the system Eq.(15) for α = 5, c = 1,            
d = -0.50, μ = 0.30 and k = 0.47. 
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3.3 Focusing to the parameter d 
 

Using the stability region of Fig. between the parameters μ (horizontal axis) and 

d (vertical axis) for α = 5, c = 1 and k = 0.315, it seems that when the parameter 

d takes values into a close interval there is a stable Nash equilibrium for every 

value of the parameter μ. For example, setting the value of 0.20 to the parameter 

μ, a stable Nash Equilibrium is appeared into the interval (-0.20,0.55) for the 

parameter d. This indication is verified by the following bifurcation diagrams of 

*p1  (Fig.12) and *p2  (Fig.13) with respect to the parameter d. 

 

  
Fig. 12. Bifurcation diagram with respect 

to the parameter d against the variable 
*
1p  

with 400 iterations of the map Eq.(15) for 
α = 5, c = 1, k = 0.30 and μ = 0.20. 

Fig. 13. Bifurcation diagram with respect to 

the parameter d against the variable 
*
2p  

with 400 iterations of the map Eq.(15) for α 
= 5, c = 1, k = 0.30 and μ = 0.20. 

 

 
Fig.14 The two previous bifurcation diagrams of Fig.12 and Fig.13 in one. 

 

Setting large and small values to the parameter d, strange attractors (Fig.15, 

Fig.19) and Lyapunov numbers (Fig.16, Fig.20) higher than the number of 1 are 

appeared showing the chaotic trajectories and unpredictable behavior of the 

system of Eq.(15) for these values of the parameter d = 0.79 and d = -0.50 

outside the stability space. Finally, for these values of the parameter d the 

system becomes sensitive on initial conditions a result that is revealed by the 

sensitive dependence on initial conditions with a small change at the first 

coordinate and plotting the time series of system of Eq.(15) for d = 0.79 (Fig.17, 

Fig.18) and for d = -0.50 (Fig.21, Fig.22). 
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Fig. 15. Phase portrait (strange attractor) 

of the orbit of (0.1,0.1) with 8000 
iterations of the map Eq.(15) for α = 5, c 

= 1,  k = 0.30, μ = 0.20 and d = 0.79. 

Fig. 16. Lyapunov numbers of the orbit of 

(0.1,0.1) with 8000 iterations of the map 
Eq.(15) for α = 5, c = 1,  k = 0.30, μ = 0.20 

and d = 0.79. 

 
 

  
Fig. 17. Sensitive dependence on initial 

conditions for 
*
1p -coordinate plotted 

against the time: the orbit of (0.1,0.1) of 

the system Eq.(15) for α = 5, c = 1,            

k = 0.30, μ = 0.20 and d = 0.79. 

Fig. 18. Sensitive dependence on initial 

conditions for 
*
1p -coordinate plotted 

against the time: the orbit of (0.101,0.1) of 

the system Eq.(15) for α = 5, c = 1,            

k = 0.30, μ = 0.20 and d = 0.79. 

 

 

  
Fig. 19. Phase portrait (strange attractor) 

of the orbit of (0.1,0.1) with 8000 

iterations of the map Eq.(15) for α = 5, c 

= 1,  k = 0.30, μ = 0.20 and d = -0.50. 

Fig. 20. Lyapunov numbers of the orbit of 
(0.1,0.1) with 8000 iterations of the map 

Eq.(15) for α = 5, c = 1,  k = 0.30, μ = 0.20 

and d = -0.50. 
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Fig. 21. Sensitive dependence on initial 

conditions for *
1p -coordinate plotted 

against the time: the orbit of (0.1,0.1) of 

the system Eq.(15) for α = 5, c = 1,            

k = 0.30, μ = 0.20 and d = -0.50. 

Fig. 22. Sensitive dependence on initial 

conditions for *
1p -coordinate plotted 

against the time: the orbit of (0.101,0.1) of 

the system Eq.(15) for α = 5, c = 1,            

k = 0.30, μ = 0.20 and d = -0.50. 

 

3.4 Focusing to the parameter μ 
 

Using the same methods of numerical simulations focusing to the parameter μ 

(relative profit parameter) it is shown that small values of this parameter can 

destabilize the economy through doubling bifurcation diagrams (Fig.23, Fig.24, 

Fig.25) and strange attractors (Fig.26) and Lyapunov numbers (Fig.27) higher 

than the number of 1 are appeared. Also, the system of Eq.(15) becomes 

sensitive on small changes of initial conditions for small values of the parameter 

μ (μ = 0.05) and it is revealed by the Fig.28 and Fig.29 of time series at first 

setting to the system the initial conditions of (0.1,0.1) and secondly of 

(0.101,0.1). As it seems, at the beginning the time series are indistinguishable, 

but after a number of iterations, the difference between them builds up rapidly. 

 

  
Fig. 23. Bifurcation diagram with respect 

to the parameter d against the variable 
*
1p  

with 400 iterations of the map Eq.(15) for 
α = 5, c = 1, k = 0.315 and d = 0.74. 

Fig. 24. Bifurcation diagram with respect to 

the parameter d against the variable 
*
2p  

with 400 iterations of the map Eq.(15) for  
α = 5, c = 1, k = 0.315 and d = 0.74. 
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Fig.25. The two previous bifurcation diagrams of Fig.23 and Fig.24 in one. 

 

  
Fig. 26. Phase portrait (strange attractor) 

of the orbit of (0.1,0.1) with 8000 

iterations of the map Eq.(15) for α = 5,  

c = 1, k = 0.315, d = 0.74 and μ = 0.05. 

Fig. 27. Lyapunov numbers of the orbit of 
(0.1,0.1) with 8000 iterations of the map 

Eq.(15) for α = 5,  c = 1, k = 0.315, d = 0.74 

and μ = 0.05. 

 

 

  
Fig. 28. Sensitive dependence on initial 

conditions for 
*
1p -coordinate plotted 

against the time: the orbit of (0.1,0.1) of 

the system Eq.(15) for α = 5, c = 1,           

k = 0.315, d = 0.74 and μ = 0.05. 

Fig. 29. Sensitive dependence on initial 

conditions for 
*
1p -coordinate plotted 

against the time: the orbit of (0.101,0.1) of 

the system Eq.(15) for α = 5, c = 1,             

k = 0.315, d = 0.74 and μ = 0.05. 
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Conclusions 
 

In this paper we analyzed the dynamics of a differentiated Bertrand duopoly 

with heterogeneous expectations, linear demand and cost functions. By 

assuming that at each time period each firm maximizes its expected relative 

profit under different expectations, a discrete dynamical system was obtained. 

Existence and stability of equilibrium of this system are studied. We showed 

numerically that the model gives chaotic and unpredictable trajectories. The 

main result is that a lower and higher degree of product differentiation relative 

may destabilize the Bertrand–Nash equilibrium. Also, this instability can be 

appeared for higher values of the speed of adjustment and lower values of the 

relative profit parameter. Finally, we showed also that for lower values of the 

speed of adjustment the equilibrium is stable for each value of the relative profit 

parameter. 
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Abstract. In this paper, a Cournot duopoly model with homogeneous goods is examined 
with uncertain cost function. A random linear cost function is introduced in this model 

for the first player. The case of homogeneous expectations is studied. The existence and 

uniqueness of the equilibrium are obtained. The asymptotic behavior of the equilibrium 

point is also investigated. Complete stability and bifurcation analysis are provided. The 
obtained theoretical results are verified by numerical simulations. 

. 

Keywords: Cournot duopoly game; Cost uncertainty; Relative profit maximization; 

Discrete dynamical system; Nash equilibrium; Stability; Bifurcation diagrams; Lyapunov 
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1  Introduction 
 

An Oligopoly is a market structure between monopoly and perfect competition, 

where there are only a few number of firms in the market producing 

homogeneous products. The dynamic of an oligopoly game is more complex 

because firms must consider not only the behaviors of the consumers, but also 

the reactions of the competitors i.e. they form expectations concerning how their 

rivals will act. Cournot, in 1838 has introduced the first formal theory of 

oligopoly. In 1883 another French mathematician Joseph Louis Francois 

Bertrand modified Cournot game suggesting that firms actually choose prices 

rather than quantities. Originally Cournot and Bertrand models were based on 

the premise that all players follow naive expectations, so that in every step, each 

player (firm) assumes the last values that were taken by the competitors without 

estimation of their future reactions. However, in real market conditions such an 

assumption is very unlikely since not all players share naive beliefs. Therefore, 

different approaches to firm behavior were proposed. Some authors considered 

duopolies with homogeneous expectations and found a variety of complex 

dynamics in their games, such as appearance of strange attractors (Agiza, 1999, 

Agiza et al., 2002, Agliari et al., 2005, 2006, Bischi, Kopel, 2001, Kopel, 1996, 

Puu, 1998, Sarafopoulos, 2015, Zhang , 2009). Also models with heterogeneous 

agents were studied  (Agiza, Elsadany , 2003, 2004, Agiza et al., 2002, Den 

Haan , 20013, Fanti, Gori, 2012, Tramontana, 2010, Zhang , 2007).  
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In the real market producers do not know the entire demand function, though 

it is possible that they have a perfect knowledge of technology, represented by 

the cost function. Hence, it is more likely that firms employ some local estimate 

of the demand. This issue has been previously analyzed by Baumol and Quandt, 

1964, Puu 1995, Naimzada and Ricchiuti, 2008, Askar, 2013, Askar, 2014. 

Bounded rational players (firms) update their strategies based on discrete time 

periods and by using a local estimate of the marginal profit. With such local 

adjustment mechanism, the players are not requested to have a complete 

knowledge of the demand and the cost functions (Agiza, Elsadany, 2004, 

Naimzada, Sbragia, 2006, Zhang et al, 2007, Askar, 2014).  

In this paper we study the dynamics of a Cournot-type duopoly with 

homogeneous goods where each firm behaves with homogeneous expectations. 

We show that the model gives more complex chaotic and unpredictable 

trajectories as a consequence of change in the speed of players’ adjustment. The 

paper is organized as follows: In Section 2, the dynamics of the duopoly game 

with homogeneous expectations, linear demand and cost functions and relative 

profit functions for two players are analyzed. A cost uncertainty is introduced 

into first player’s utility function. We set both players as bounded rational 

players. The existence and local stability of the equilibrium points are also 

analyzed. In Section 3 numerical simulations are used to verify the algebraic 

results of Section 2 plotting the bifurcation diagrams of the game’s system and 

to show the complex dynamics via computing Lyapunov numbers, and sensitive 

dependence on initial conditions. 

 

 

2 The game 

 

2.1 The construction of the game 

 
In this study we assume that in the two companies there is a separation between 

ownership and management, so there is a possibility that the managers who 

make decisions for the company to decide at the expense of their company 

trying to increase the profits of the competitor. Also, we consider homogeneous 

players and more specifically, we consider that both firms choose the quantity of 

their productions in a rational way, following an adjustment mechanism 

(bounded rational players). We consider a simple Cournot-type duopoly market 

where firms (players) produce the same good and offer it at discrete-time 

periods on a common market. Production decisions are taken at discrete time 

periods t = 0, 1, 2,… At each period t, every firm must form an expectation of 

the rival’s strategy in the next time period in order to determine the 

corresponding profit-maximizing prices for period t+1. We suppose that q1 , q2 

are the production quantities of each firm. Also, we consider that the 

preferences of consumers represented by the equation: 

     2 2
1 2 1 2 1 2 1 2

1
U q ,q q q q q 2dq q

2
                               (1) 
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where α is a positive parameter (α > 0), which expresses the market size and 

 d 1,1   is the parameter that reveals the differentiation degree of products. 

For example, if d 0  then both products are independently and each firm 

participates in a monopoly. But, if d 1  then one product is a substitute for the 

other, since the products are homogeneous. It is understood that for positive 

values of the parameter d the larger the value, the less diversification we have in 

both products. On the other hand negative values of the parameter d are 

described that the two products are complementary and when d 1   then we 

have the phenomenon of full competition between the two companies. The 

inverse demand functions (as functions of quantities) coming from the 

maximizing of (1) are given by the following equations: 

 1 1 2 1 2p q ,q q q             and          2 1 2 2 1p q ,q q q          (2) 

In this work we suppose that the first player’s cost function contains an 

uncertainty by which the marginal cost (linear cost function) is equal to the 

combination between the parameters: c ,c 01 2  , which is described by the 

following equation: 

    1 1 1 2 1C q p c 1 p c q                                       (3) 

where  p 0,1 , is the positive uncertainty cost parameter. 

On the other hand the second player uses a simple linear cost function that its 

marginal cost is equal to c 01   and it is described by the equation:  

 2 2 1 2C q c q                                                  (4) 

With these assumptions the profits of the firms are given by: 

      1 1 2 1 1 1 1 1 2 1 2 1q ,q p q C q q q p c 1 p c q                (5) 

and 

     2 1 2 2 2 2 2 1 1 2 2q ,q p q C q c q q q                     (6) 

Then the marginal profits at the point of the strategy space are given by: 

 1
1 2 1 2

1

p c 1 p c 2q q
q


       


   ,        1

1
2

q
q


 


               (7) 

and 

2
1 1 2

2

c q 2q
q


    


   ,                               2

2
1

q
q


 


              (8) 

As it is noticed both managers care about the maximization of a utility function 

that contains a percentage of opponent company’s profits (generalized relative 

profit function), which is given by: 

i i i i i j i i jU (1 ) ( )                               (9) 

where  0,1  is the percentage that the player i takes into account the 

opponent company’s prifots. So, the marginal utility of the player i is given by 

the following equation: 

ji i
i

i i i

U

q q q

 
  

  
                                       (10) 
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and the marginal utilities for each player are: 

   1
1 2 1 2

1

U
p c 1 p c 2q 1 q

q


         


                          (11) 

and  

 2
1 1 2

2

U
c 1 q 2q

q


     


                                      (12) 

Both players are characterized as bounded rational players. According to the 

existing literature it means that they decide their productions following a 

mechanism that is described by the equation: 

   

 
i i i

i i

q t 1 q t U
k

q t q

  
 


 ,  k > 0                                  (13) 

Through this mechanism the player increases his level of adaptation when his 

marginal utility is positive or decreases his level when his marginal utility is 

negative, where k is the speed of adjustment of player, it is a positive parameter 

(k > 0), which gives the extend variation of production quantity of the each 

company, following a given utility signal. 

The dynamical system of the players is described by: 

     

     

1
1 1 1

1

2
2 2 2

2

U
q t 1 q t k q t

q

U
q t 1 q t k q t

q


     


     

 

                                   (14) 

We will focus on the dynamics of this system to the parameter k. 

 

2.2 Dynamical analysis 
 

The dynamical analysis of the discrete dynamical system involves finding 

equilibrium positions and studying them for stability. The ultimate goal of this 

algebraic study is to formulate a proposition that will be the stability condition 

of the Nash Equilibrium position. Finally, these algebraic results are verified 

and visualized doing some numerical simulations using the program of 

Mathematica. 

 

2.2.1 The equilibrium positions 
 

The equilibriums of the dynamical system (14) are obtained as the nonnegative 

solutions of the algebraic system: 

* 1
1

1

* 2
2

2

U
q 0

q

U
q 0

q


  


  

 

                                           (15) 

which is obtained by setting :     *
1 1 1q t 1 q t q    and     *

2 2 2q t 1 q t q   . 
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 If * *
1 2q q 0   then the boundary equilibrium position is the point:  

 0E 0,0                                                       (16) 

 If *
1q 0  and 2

2

U
0

q





 then: * 1

2

c
q

2


  and the equilibrium position is 

the point:  

1
1

c
E 0,

2

  
  
 

                                                  (17) 

 If *
2q 0  and 1

1

U
0

q





 then: 

 1 2*
1

p c 1 p c
q

2

     
  and the 

equilibrium position is the point:  

 1 2
2

p c 1 p c
E ,0

2

     
  
 

                                  (18) 

 

 If 1 2

1 2

U U
0

q q

 
 

 
 then the following system is obtained: 

   

 

* *
1 2 1 2

* *
1 1 2

p c 1 p c 2q 1 q 0

c 1 q 2q 0

          

      

                      (19) 

and the nonnegative solution of this algebraic system will give the Nash 

Equilibrium position  * *
* 1 2E q ,q  where: 

     

 

1 2*
1 2

1 1 2p c 2 1 p c
q

4 1

       


 
                       (20) 

and 

       

 

1 2*
2 2

1 2 p p c 1 p 1 c
q

4 1

           


 
                  (21) 

This means that: 

     1 21 1 2p c 2 1 p c 0                                  (22) 

and 

       1 21 2 p p c 1 p 1 c 0                               (23) 

 

2.2.2 Stability of equilibrium points 
 

To study the stability of the equilibrium positions we need the Jacobian matrix 

of the dynamical system Eq.(15) which is the matrix: 

  1 2

1 2

q q* *
1 2

q q

f f
J q ,q

g g

 
  
  

                                            (24) 
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where: 

 

 

1
1 2 1 1

1

2
1 2 2 2

2

U
f q ,q q k q

q

U
g q ,q q k q

q


   




   



                                   (25) 

and as a result the Jacobian matrix of game’s discrete dynamical system Eq.(14) 

is the following matrix: 

 

2 2
* *1 1 1
1 12

1 1 21* *
1 2

2 2
* *2 2 2
2 2 2

2 1 2 2

U U U
1 k q k q

q q qq
J q ,q

U U U
k q 1 k q

q q q q

    
            

  
    

             

        (26) 

For the 0E  the Jacobian matrix becomes as: 

 

1

1

2

2

U1
A 1 k

q
1

0
U2

B 1 k
q

2

U
1 k 0

q 0
J E     

U 0 B
0 1 k

q


  




  



 
            

 

                 (27) 

with Tr B   and Det A B  .  

From the characteristic equation of  0J E  , we find the nonnegative 

eigenvalues: 

1
1

1

U
r A 1 k

q


   


    and    2

2
2

U
r B 1 k

q


   


                   (28) 

it’s clearly seems that 1 2r , r 1  and the 0E  equilibrium is unstable. 

For the 1E  the Jacobian matrix becomes as: 

 

 

1

1

*
2

U
C 1 k1 q

11

E 1 2k q* *
2 2

U
1 k 0 C 0

qJ E     
D E

k 1 q 1 2k q


  



  

 
       

       

              (29) 

with Tr C E   and Det C E  .  

From the characteristic equation of  1J E  , we find the nonnegative eigenvalue: 

     1 2
1

1 1 2p c 1 p c
r C 1 k

2

        
                     (30) 

it’s clearly seems that 1r 1 , because: 

     1 21 1 2p c 2 1 p c 0           Eq.(22) and the 1E  equilibrium is 

unstable. 

For the 2E  the Jacobian matrix becomes as: 
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  *

1

2

2

* *
1 1 F 1 2k q

2 2
U

H 1 k
2 q

1 2k q k 1 q
F G

J E     U
0 H0 1 k

q

  


  



     
  

         

              (31) 

with Tr F H   and Det F H  .  

From the characteristic equation of  2J E , we find the nonnegative eigenvalue: 

       1 2
2

1 2 p p c 1 p 1 c
r H 1 k

2

           
               (32) 

it’s clearly seems that 2r 1 , because: 

       1 21 2 p p c 1 p 1 c 0              Eq.(23) and the 2E  

equilibrium is unstable. 

 

For the *E  the Jacobian matrix becomes as: 

 

2 2
* *1 1
1 12

1 21
* 2 2

* *2 2
2 2 2

2 1 2

U U
1 k q k q

q qq
J E

U U
k q 1 k q

q q q

  
     

  
  

      
    

                         (33) 

with 
* *
1 2Tr 2 2k q 2k q                                          (34)    

and 

  
2* * 2 * *

1 2 1 2Det 1 2k q 2k q 4 1 k q q           
 

                  (35) 

To study the stability of Nash equilibrium we use three conditions that the 

equilibrium position is locally asymptotically stable when they are satisfied 

simultaneously: 

(i) 1 Det 0

(ii)   1 Tr Det 0

(iii) 1 Tr Det 0

 

  

  

                                          (36) 

The condition (i) gives: 

   
2* * 2 * *

1 2 1 21 Det 0    2k q q 4 1 k q q 0           
 

       (37) 

It’s easy to find that the first condition (i) is always satisfied: 

 

 
2 2 * *

1 21 Tr Det 0    4 1 k q q 0 0           
 

               (38) 

because:  
2

4 1 0   
 

. 

Finally, the condition (iii) becomes as: 

   2 * * 2 * *
1 2 1 21 Tr Det 0    4 1 q q k 4 q q k 4 0              

 
   (39) 
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Proposition: 

The Nash equilibrium of the discrete dynamical system Eq.(15) is locally 

asymptotically stable if: 

 

   
2* * 2 * *

1 2 1 22k q q 4 1 k q q 0        
 

 

and 

   2 * * 2 * *
1 2 1 24 1 q q k 4 q q k 4 0          

 
 

 

 

3 Numerical simulations focusing on the parameter k 

 
From the condition (i) focusing on the parameter k we take the following  

inequality:                                                       

 
 

 

* *
1 2

2 * *
1 2

2 q q
0 k

4 1 q q


 

    
 

                                         (40) 

The condition (iii) is the following: 

   2 * * 2 * *
1 2 1 24 1 q q k 4 q q k 4 0          

 
 

And its discriminant is positive: 

   
2 2* *

1 216 q q 1 0
 

     
  

                                     (41) 

so the condition (iii) is satisfied if :  

   1 2k 0,k k ,                                           (42) 

where: 

 
 

* *
1 2

1,2 2 * *
1 2

4 q q
k

2 4 1 q q

  


    
 

                                             (43) 

are its two positive roots.  

To provide some numerical evidence for the chaotic behavior of the system 

Eq.(14), as a consequence of change in the parameter k (the speed of 

adjustment), we present various numerical results here to show the chaoticity, 

including its bifurcations diagrams, strange attractors, Lyapunov numbers and 

sensitive dependence on initial conditions. 

In order to study the local stability properties of the equilibrium points, it is 

convenient to take specific values for the other parameters: α = 5 , c1 = 1,        

c2 = 0.5 and p = μ = 0.5. So, as a result we find that 
*
1q 1.73 and                     

*
2q 1.57 and the stability condition becomes as: 

0 k 0.48                                                        (44) 
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This algebraic result is verified by the bifurcation diagrams of *
1q  (Fig.1) and 

*
2q  (Fig.2) with respect to the parameter k. As it seems there is a locally 

asymptotically stable orbit until the value of 0.48 for the parameter k and after 

this value doubling period bifurcations are appeared and finally, for higher 

values of the parameter k the system’s behavior becomes chaotic and 

unpredictable.  

 

  
Fig. 1. Bifurcation diagram with respect to 

the parameter d against the variable 
*
1q  

with 400 iterations of the map Eq.(15) for α 

= 5, c1 = 1, c2 = 0.50, p = 0.50 and μ = 0.50. 

Fig. 2. Bifurcation diagram with respect 

to the parameter d against the variable 
*
2q  

with 400 iterations of the map Eq.(15) for 

α = 5, c1 = 1, c2 = 0.50, p = 0.50 and μ = 

0.50.. 

 

 

 
Fig.3. The two previous bifurcation diagrams of Fig.1 and Fig.2 in one. 

 

This chaotic trajectory can create strange attractors (Fig.4) for a higher value of 

the parameter k like 0.675, outside the stability space. Also, computing the 

Lyapunov numbers (Fig.5) for this value of the parameter k and setting the same 

fixed values for the other parameters α, c1, c2, p and μ it seems that they are 

getting over the value of 1 as an evidence for the chaotic trajectory.  
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Fig. 4. Phase portrait (strange attractor) 

of the orbit of (0.1,0.1) with 8000 

iterations of the map Eq.(15) for α = 5, 

c1 = 1, c2 = 0.50, p = 0.50, μ = 0.50 and                 

k = 0.675.  

Fig. 5. Lyapunov numbers of the orbit of 

(0.1,0.1) with 8000 iterations of the map 

Eq.(15) for α = 5, c1 = 1, c2 = 0.50, p = 0.50,    

μ = 0.50 and k = 0.675. 

 

 

This chaotic trajectory makes the system sensitive on initial conditions, which 

means that only a small change on a coordinate may change completely the 

system’s behavior. For example, choosing two different initial conditions 

(0.1,0.1) (Fig.6) and (0.101,0.1) (Fig.7) with a small change at the 
*
1q -

coordinate and plotting the time series of system it seems that at the beginning 

the time series are indistinguishable, but after a number of iterations, the 

difference between them builds up rapidly. 

 

 

  
Fig. 28. Sensitive dependence on initial 

conditions for 
*
1q -coordinate plotted 

against the time: the orbit of (0.1,0.1) of 

the system Eq.(15) for α = 5, c1 = 1,           

c2 = 0.50, p = 0.50, μ = 0.50 and                 
k = 0.675. 

Fig. 29. Sensitive dependence on initial 

conditions for 
*
1q -coordinate plotted 

against the time: the orbit of (0.101,0.1) of 

the system Eq.(15) for α = 5, c1 = 1,           

c2 = 0.50, p = 0.50, μ = 0.50 and k = 0.675. 
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Conclusions 
 

In this paper we analyzed the dynamics of a differentiated Cournot duopoly with 

homogeneous expectations, linear demand and cost functions. An uncertainty of 

the first firm’s cost function is introduced. By assuming that at each time period 

each firm maximizes its expected relative profit under the same expectations, a 

discrete dynamical system was obtained. Existence and stability of equilibrium 

of this system are studied. We showed numerically that the model gives chaotic 

and unpredictable trajectories. The main result is that higher values of the speed 

of adjustment may destabilize the Cournot–Nash equilibrium. 
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Abstract. The possibility that large amplitude, localized vibrational excitations can exist 

in periodic physical lattices with nonlinear intersite forces was discovered over thirty 

years ago. The energy profiles of these intrinsic localized modes (ILMs) resemble those 
of localized vibrational modes at defects in a harmonic lattice. Described here are a 

variety of experiments on driver locked ILMs for two soft nonlinear lattices: an atomic 

spin array and an electrical nonlinear transmission line. CW locked ILMs in the quasi-1D 

antiferromagnet (C2H5NH3)2CuCl4 have been found at frequencies below the 
antiferromagnetic resonance by employing four-wave mixing emission. A discrete step 

structure is observed in the emission signal as well as repeatable nonlinear ILM 

switching and hysteresis. These findings are compared with locked ILMs and large 

amplitude lattice spatial modes (LSMs) that have been measured for a driven 1-D 
nonlinear cyclic electric transmission line, where the nonlinear element is a saturable 

capacitor. Interestingly, by tuning the driver frequency away from the modal spectrum an 

LSM can be continuously converted into ILMs and vice versa. As a consequence, the 

resultant electrical energy distribution for the experimental soft nonlinear cyclic array 
can be either balanced or unbalanced. 

Keywords: Intrinsic Localized Mode, Lattice Spatial Mode, Spin Wave, Electric 

Transmission Line, Soft Nonlinearity 
 
 

 

1  Introduction 

 
Although vibrational impurity modes in lattices have a long history[1], a major 

advance in the subject of excitations in discrete nonlinear lattices was the 

discovery that, even in the absence of impurities, some localized vibrations can 

be stabilized by lattice discreteness[2]. These excitations which, like impurity 

modes, extend only over the lattice constant scale are generically called 

“intrinsic localized modes” (ILMs) since they involve no disorder but come in 

many different shapes[3]. They are also called “lattice solitons”[4] or “discrete 

breathers”[5] because of similarities to some exact soliton solutions in nonlinear 

continuum theories. These excitations have been formalized in terms of a 

number of useful existence and stability criteria[6]. Both theory and a variety of 

experiments have been reviewed in the literature[7, 8] with experiments on 

microscopic antiferromagnetic lattices[9-14] and macroscopic electrical 
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nonlinear transmission lines (ENTL)[15-21] playing important roles. At first 

glance experiments on these two kinds of nonlinear systems would appear to be 

unrelated since the antiferromagnet is a quantum system while the ENTL is a 

classical one, but in certain cases both can be treated with classical equations of 

motion. The resulting dynamics is that both systems transmit energy over 

specific frequency bands. For the antiferromagnet it is spin wave energy that is 

transmitted, while for the ENTL it is electromagnetic. With regard to nonlinear 

properties of the two dynamical systems they can be designed to match as well. 

For the antiferromagnetic lattice both the spin exchange energy and the 

magnetic anisotropy energy have soft intersite and onsite nonlinearities so that 

the uniform antiferromagnetic resonance mode frequency decreases with 

increasing spin amplitude. By introducing a soft nonlinear capacitor in each cell 

of the ENTL, such as MOS-FETs, the low frequency uniform electromagnetic 

mode of this band pass filter will also decrease in frequency with increasing 

driving amplitude.  

 The purpose of this review is to examine the observed ILM findings for 

two driven, soft nonlinear lattices with damping, one a magnetic crystal with a 

microscopic lattice constant and the other an ENTL with a macroscopic one. 

From these very different experimental techniques on different systems come 

ILM findings that are remarkably similar. 

 

2 Observation of driven antiferromagnetic ILMs 
 

2.1 Spin wave dynamics of (C2H5NH3)2CuCl4 
How can an antiferromagnetic spin 1/2 system be compatible with a classical 

dynamical description? Below a Neél temperature of TN=10.2K the spin 1/2 

Cu2+ ions of (C2H5NH3)2CuCl4 are oriented along the a-crystal axis, in alternate 

sheets of strong ferromagnetically coupled spins with weak antiferromagnetic 

 

 

 

 

 

 

 

 
Fig. 1 Lattice and spin structure of 

(C2H5NH3)2CuCl4. Circles denote 

Cu2+ ions and arrows indicate the 

spin configuration within the 
antiferromagnetic state. Only Cu2+ 

ions are shown for this layered, 

face centered, orthorhombic 

compound. The easy, second easy, 
and hard spin axes are labeled the 

a, b, and c crystal directions, 

respectively. [12] 
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coupling between adjacent sheets as illustrated in Fig. 1.[12] At 1.4 K the ratio 

of the interlayer spin exchange field to the intralayer one is 1.5´10-3  so the 

spins in a given layer are strongly aligned in the same direction, thus the low 

frequency spin dynamics can be approximated by a 1D two sublattice 

antiferromagnet with each layer represented by a macroscopic classical spin. 

Due to the easy axis anisotropy and the weak antiferromagnetic interaction 

between these classical spins the lower and upper frequency antiferromagnetic 

resonance (AFMR) modes are polarized along the c- and b- crystal axes, 

respectively.  

 The classical equation of motion for the normalized spin S
n
 at the nth 

sheet site, including damping and driving terms, is[9] 

  

d

dt
S

n
= -g S

n
´ H

n
-glS

n
´ S

n
´ H

n( ) (1) 

where g  is the gyromagnetic ratio and l  the Landau damping parameter. The 

magnetic field acting on the nth macroscopic spin is 

H
n

= -2J S
n-1

+ S
n+1( ) - 2A×S

n
+ h

c0
ê

c
coswt  (2) 

with J  the nearest neighbor antiferromagnetic exchange constant,   A  the 

anisotropy field tensor, and h
c0

 the amplitude of the ac driving field along the c 

axis crystal direction. For this easy plane anisotropy case the two small 

amplitude dispersion curves are shown in Fig. 2 with the resulting uniform 

mode frequencies in the GHz range. 

 

 

 

Fig. 2 Spin-wave dispersion curve 

for the antiferromagnet 
(C2H5NH3)2CuCl4. Upper and 

lower branches along the c axis. 

The inset shows the uniform mode 

spin motion for the lower AFMR 

mode, which has a net ac 

magnetization only along the c 

axis. ILMs may be expected to 

occur below the minimum 
frequency of the dispersion curve. 

[12] 

 
The insert shows the polarization of the lowest frequency AFMR mode with a 

linearly polarized transverse ac moment generated in the 1-3 direction but not in 

the 2-4 direction. It is the rod-shaped sample that has been studied in pulse and 

CW experiments. 

 

2.2 Experimental procedure 
In magnetic solids with the AFMR involving spins on the order of  1022  per cc 

the question is how to distinguish ILM dynamics from this background? The 
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answer is not to rely on a linear experimental technique but, since ILMs are 

nonlinear, to make use of a detection technique that involves a nonlinearity. 

Both pulse and CW four-wave techniques have been used to observe magnetic 

ILMs in this antiferromagnet[11-14]. The CW technique is outlined here. To 

illustrate the experimental approach, consider the AFMR absorption spectra 

shown in Fig. 3. 

 

 

Fig. 3 Pulling the AFMR 

absorption frequency and 

capturing ILMs with a cw 

driver. (a) Initially the AFMR 

absorption line is at 1.38 GHz 

and the driver, 1.325 GHz, is 

switched on at t= 0. The 

frequency gap, Df , between 

them continuously changes 

over a 15-ms time interval. (b) 

In this case f  is now small 

enough so that the change in 

the AFMR frequency now 

occurs over 3 ms. (c) Here f   

is sufficiently small that the 

AFMR mode becomes 

unstable and ILMs are 
transferred to the driver 

frequency. [22] 

 

A weak probe with frequency f
p
 is swept across the AFMR absorption line, 

which occurs at about 1.38 GHz at 0t  . Next the powerful driver with 

frequency f
D

 nearby is switched on as shown in Fig. 3(a). This driver pulls the 

absorption line to lower frequencies. The closer the driver frequency is to the 

AFMR the larger the effect as shown in Fig. 3(b). Figure 3(c) illustrates the 

point where the AFMR becomes unstable. So far all we see is the linear 

absorption spectrum. To access the nonlinearity associated with the ILM a four-

wave mixing technique was employed. The resulting power emitted by the ILM 

alone, P
ILM

(3) , is detected at the spectrum analyzer frequency f
sp

= 2 f
D

- f
p

. 

Further analysis shows that among other elements[12] 

P
ILM

(3) µ n
ILM

P
D
 (3) 

where n
ILM

 is the number of ILMs emitting and P
D

 is the driving power. 

Because n
ILM

 has integer values this relation will identify steps in the square 

root of the emitted power as the ILMs appear and disappear. 

 Figure 4 illustrates the turn on of the emission when the AFMR 

becomes instable. Both the absorption spectrum and the emission spectrum are 

superimposed on the same figure. Here the breakup of the absorption pattern 
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occurs at around 9 ms while simultaneously the emission grows rapidly in 

strength, as ILMs become locked at the driver frequency[14]. 

 

 
Figure 4 illustrates the turn on of the emission when the AFMR becomes instable. Both 

the absorption spectrum and the emission spectrum are superimposed on the same figure. 

Here the breakup of the absorption pattern occurs at around 9 ms while simultaneously 
the emission grows rapidly in strength, as ILMs become locked at the driver 

frequency[14]. 

 

2.3 Observing steady state magnetic ILMs 
A time sweep of the emission spectrum does not have sufficient resolution to 

pick out individual ILMs so a more refined technique is required. With ILMs 

locked to the driver it is also possible to change the frequency gap, Df , between 

the AFMR and the driver, by changing the AFMR frequency. Described here is 

the technique of tuning by changing the sample temperature. Since the 

anisotropy energy depends on the sublattice magnetization it depends on the 

temperature so both positive and negative manipulation of the frequency gap 

Df  is possible by simply sweeping the sample temperature.  

 By monitoring the four-wave emission as a function of sample 

temperature variation one finds the data shown in Fig. 5(a). It maps out two 

hysteresis loops, each for a single ILM[14]. Slowly increasing the sample 

temperature decreases the sublattice magnetization, decreases Df  and generates 

a locked ILM as shown by the dotted curve (arrow pointing to the right). 

Increasing the sample temperature produces the solid curve, arrow to the left, 

ending with the destruction of the ILM. In Fig. 5(a) the results for three different 

driver power levels are displayed with the lowest temperature emission steps up 

and down for a 50 mW driver. Figure 5(b) presents an expanded view of the 

lowest temperature sweep described in (a). Superimposed on that trace is the 

amplitude pattern for the switching of a nonlinear oscillator model to qualify the 

hysteretic switching that that has been observed. Interestingly it is found that the 

step heights do not change significantly as the power of the locking driver is 

changed. 
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Fig. 5 Observation of locked 

ILM switching by tuning 

sample temperature. (a) 
Increasing the temperature 

decreases the frequency gap, 

 Df  (dotted lines for three 

different driving powers). 

Solid lines are for decreasing 
temperatures. (b) Comparison 

of the 50 mW data with those 

expected for a driven 

nonlinear oscillator (thick 
solid line). [14] 

 

 

3 Electric lattice with soft, saturable, nonlinearity 

3.1 Experimental setup 
Figure 6(a) shows the components within a unit cell of a 32 element electric 

nonlinear transmission line (ENTL). The nonlinear capacitor consists of two 

anti-paralleled N-channel MOS-FETs (IRFU-120). When the gate is negatively 

biased, holes in a P-semiconductor (for the N-channel FET) are accumulated 

below the gate between an oxide and semiconductor, and the boundary works as 

a conductive sheet. The capacitance between the gate and source electrodes is 

large with its value limited by the thickness of the oxide. When the gate is 

positively biased, the semiconductor is inverted to N-type and the boundary 

layer forms a conductive sheet. The capacitance between the drain and the gate 

is again large with its value limited by the thickness of the oxide. The two anti-

paralleled capacitances together, identified as C(V), are plotted as 1/C versus the 

applied DC bias in Fig. 1(b). Since the capacitance increases with absolute 

voltage, the resonance frequency decreases with increasing amplitude (soft 

nonlinearity); however, the decrement saturates abruptly when the voltage 

becomes large[23, 24]. One might consider a drawback of the MOS-FET to be 

its saturation property; however, we suggest that such behavior gives rise to an 

electrical analogue of a well studied mechanical nonlinear system containing 

piecewise linear springs in which the restoring force has a change in slope. 
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Fig. 6(a) Design of the nonlinear element for ENTL. Two MOS-FETs (IRFU-120) equal 

a nonlinear capacitor together with coil L1(200 mH ) to form a resonant circuit. L2(200 

mH ) provides coupling to the next element. The driver for each element is via coupling 

capacitor Cd(70pF). (b) Inverse versus capacitance of the element illustrating the 

nonlinearity. Small AC voltage applied together with the DC bias voltage. 

 

For this cyclic ENTL with an onsite capacitive nonlinearity C V
n( )  the 

dynamical equation of motion for the lattice voltage nV  as a function of time 

becomes 

C V
n( ) + C

d( )
d 2V

n

dt2
+

dC V( )
dV

V
n

dV
n

dt

æ

è
ç

ö

ø
÷

2

+
V

n

L
1

+
L

1
w

0

Q

dV
n

dt
+

1

L
2

2V
n

-V
n+1

-V
n-1( ) = C

d

d 2

dt2
V

d
 (4) 

where Q is the quality factor and C V
n( )  is the differential capacitance 

C V( ) = dq dV  and q  is the stored charge. The other parameters are defined in 

Fig. 6(a).  

Figure 7 shows the linear band frequencies as a function of wave 

number. Because of the soft nonlinearity, an ILM can be generated below the 

bottom of the extended wave band. This shape is similar to that of the lower 

spin wave dispersion curve shown in Fig. 2. 

 

 

 
 

 

 
 

 

 

Fig. 7 Linear dispersion curve 
for the ENTL lattice. The 

circuit contains the element in 

Fig. 6(a). ILMs are expected 

below the minimum frequency 
of the dispersion curve. 
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3.2 Experimental results 
Figure 8 shows the driver frequency dependence of two kinds of nonlinear 

excitations: large amplitude lattice spatial modes[25] (LSMs) and ILMs for the 

soft nonlinear lattice containing the nonlinear element of Fig. 6(a). At each 

driver frequency, a snap shot of the spatial voltage pattern at the maximum 

voltage versus time was captured. Those snapshots were ordered as a function of 

frequency resulting in Figs. 8(a)-(d). Arrows indicate sweep direction of the 

 

 
Fig. 8 Measured frequency dependence of driver locked LSMs and ILMs for the soft 
saturable 32 element nonlinear lattice. Four panel sweeps illustrate conversions. Driver 

frequency decreases in panels (a) and (b), and increases in panels (c) and (d). Snap shots 

at a moment when voltage is the maximum are mapped as a function of the driver 

frequency. Panel (e) displays maximum voltage as a function of frequency. Single 
excitation profiles such as in panel (a) 265-255 kHz, and (c) 255-317 kHz are due to 

ILMs. Other strip patterns at higher frequencies are due to LSMs. 
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driver frequency. Panel (e) demonstrates how the amplitude increases with 

decreasing driving frequency. At a frequency larger than 350 kHz in panels (a) 

and (b), a noisy pattern is observed. As the frequency is lowered, a 4 peak-LSM 

appears, followed by a noisy pattern, then a 3 peak-LSM, a 2 peak-LSM, and 

finally a single ILM is observed. LSM patterns are made from a few cyclic 

component waves, so that their peaks are mostly equidistance.  

 In addition, the LSM widths are observed to increase with decreasing 

frequency. This width dependence is causes by the saturable nonlinearity. 

Because of the lattice discreteness, the widening accompanies symmetry change 

of the peak from cite-center to bond-center or vise-versa. For example, the 

transition from cite-centered to bond-centered shapes is observed at 297.5 kHz. 

Panel 8(b) shows a sequential measurement. Similar patterns to those in 8(a) are 

observed. 

 Panels 8(c) and 8(d) display scan-up measurement results starting from 

the single ILM state. Hysteresis is observed for ILM and LSM generation. 

Panels (c)-(d) indicate that a single ILM is stable at frequencies around 255-317 

kHz, while an LSM is stable at frequencies larger than 317 kHz. At a frequency 

below 317 kHz, there may be a stable two ILM state. Two peaks in panels (a)-

(b) at these frequencies may be an LSM seeded ILM array. 

 The noisy pattern and 4-peaked LSM are very similar between Figs. 

8(a)-(d). This signature indicates that the wave position is strongly influenced 

by lattice irregularity, because the wave samples the entire lattice.  On the other 

hand, the single ILM position shifts, because the ILM feel only nearby 

impurities. 

 

3.3 Analysis 
To illustrate how the LSM is generated the multi-channel oscilloscope voltage 

data has been transformed in (time, space) domain into the (frequency, 

wavenumber) domain. Figure 9(a, b, c) show the results for driver frequencies 

indicated by the horizontal arrows in the panels and also identified by the three 

vertical arrow heads at bottom of Fig. 8(a). The 2D-FT log amplitude is 

displayed (gray-scale), where darker indicates larger amplitude. The solid 

curves (red) in frame (a)-(b) represent the superimposed linear dispersion curve. 

Excitation point is at k=0 (uniform mode) in this wavenumber-frequency space. 

Because of the low Q of the system it is not necessary that this frequency and 

the driver frequency be coincident. In addition, the nonlinearity and uniformly 

excited lattice ensures that the rest of the dispersion curve is shifted down as 

well. All other displayed intensities come from this one driving source. In 

panels (a) and (c), a faint gray intensity curve is apparent across the 
  

k,w( )  range 

(dashed red curve in (a) is a guide to eye). This intensity display is from the 

shifted nonlinear dispersion curves, excited by the noisy pattern displayed in Fig. 

8(a). The two dark spots that appear on the dashed curve at the driver frequency 

in Fig. 9(a) are from secondary excitation waves generated by a four-wave 

mixing process 2(k = 0,W)Þ (k
+
,W) + (k

-
,W) . This determines the number of LSM 

peaks in real space. For example, the spot locations are at 
  
k = ±4 ´ 2p / 32( )  in panel 
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(a), producing a 4 peak-LSM by mixing with the k=0 uniform excitation, where 

2p / 32( ) is the k-space unit for the N=32 lattice. All other spots are excited by 

successive nonlinear wave generation processes. 

 

 
Fig. 9 2D-Fourier transform maps of voltage records for the ENTL system. 32 channel 

oscilloscope data from Fig. 8(a) are transformed into the frequency and wavenumber 
domain by time- and spatial-Fourier transform. Three panels are identified by driver 

frequencies: (a) 380 kHz, (b) 343.8 kHz and (c) 340 kHz. (See horizontal arrows.) Same 

driver frequencies are also identified at the bottom of Fig. 8(a). Log amplitude is 

displayed to emphasis small signals. Solid curves (red) in panels (a)-(b) are the 
superimposed linear dispersion curve. In panel (a) and (c), intensity from shifted 

dispersion curve is faintly observed. (Dashed red in (a) is a guide to the eye.) Because of 

random excitation in Fig. 8(a) at those frequencies, normal modes on the cyclic 

dispersion curve are excited and observed in this 2D-FT figure. In panel (b), the shifted 
nonlinear dispersion curve is not seen, since there are no such random noise vibrations. 

The wave number spots are produced by LSM formation at the driver frequency. Such 

wavenumber spots are seen also in panels (a) and (c). 
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 In panel 9(b), the intensity spots are only at the driver frequency. In 

real space, a clean 4 peak-LSM is found. Here it is hard to identify a nonlinearly 

shifted dispersion curve in the absence of the noisy pattern. The secondary spot 

positions are the same as those in panel (a). In panel (c), the secondary spots are 

shifted to k = ±3´ 2p / 32( ). These are for 3-peaked LSM. A clean 3-peaked LSM is 

observed at the slightly lower frequency 330kHz. 

 The number of LSM peaks decreases with decreasing driver frequency, 

because the shift of the nonlinear dispersion curve relative to the driver 

frequency becomes smaller, and two secondary spot spacing in k-space becomes 

smaller. With a large number of lattice elements the transition from an LSM to 

an ILM array could happen at a still lower frequency, as the interaction 

decreases between neighboring peaks. In this case, many ILMs may remain. In 

Fig. 8, because of the saturation of the nonlinearity the peak widths become 

wider as the frequency decreases. To maintain the driver excitation, the 

frequency difference between the LSM (or ILMs) and the driver must be 

compensated by the nonlinearity. 

 The number of LSM peaks is roughly lattice size divided by 

wavelength determined by the secondary excitation wave. The maximum 

number of LSM peaks depends on the largest wavenumber of the four-wave 

mixing process, that is, the larger the wavenumber, the more peaks. The rule of 

thumb is the larger the spectral band width, the smaller the secondary wave 

number, if the frequency shift remains the same. 

 

4. Discussion and conclusions 

Both soft nonlinear lattices described here, the antiferromagetic and the electric 

transmission line, are essentially simple 1D systems, one with a microscopic 

lattice constant and the other with a macroscopic one. Although in each case the 

experimental techniques used to observe and explore the properties of ILMs 

have been quite different fundamentally similar results have been observed. In 

both systems the experiments consisted of frequency locking an ILM to a driver.  

For the magnetic system, because these excitations are strongly nonlinear, four-

wave mixing emission spectroscopy is an ideal way to enhance the ILM signal 

over that produced by the more numerous plane wave spin excitations. The 

result is countable ILMs for an atomic spaced system. Experimentally, it is 

easiest to keep track of the difference between the AFMR and driver frequency 

as the important ILM parameter, since one had the flexibility to vary either the 

AFMR frequency, via the sample temperature, or to vary directly the driver 

frequency. Precision measurements allow the properties of single ILMs to be 

studied and their hysteresis curves to be measured. Surprisingly the step heights 

do not change significantly with locking driver power. 

 More extensive information about the general dynamic properties of a 

soft nonlinear 1D lattice has been obtained by studying a cyclic ENTL where 

each lattice element is monitored. Such a driven nonlinear transmission line, 

with periodic boundary conditions and elements that contain a saturable 

nonlinear capacitor, has been used to generate ILMs below the modal spectrum. 
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An ILM switching hysteresis signature, similar to that observed for the 

antiferromagnet, is a natural feature. An additional finding is the observation of 

LSMs within the spectrum. The most dramatic feature is that by simply 

changing the driver frequency the spectrum can evolve continuously from an 

LSM pattern distributed around the ring, with a successive decrease in the 

number of LSM-peaks, to multiple ILMs localized on a few sites, and finally to 

a single ILM. A four-wave mixing process plays a key role in determining the 

resulting LSM signature. As a consequence, the resultant AC energy distribution 

for the experimental soft nonlinear cyclic array can either be balanced or 

unbalanced. 
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Abstract. In nonparametric statistics the tilting techniques are sustainably used for
adjusting an empirical distribution by replacing uniform distribution of weights by
general multinomial distribution. In this paper a tilting approach has been used for
minimizing ”the distance” to an infinite order (IO) regression estimator, a comparator
regression function estimator. We also provide the simulation study results illustrat-
ing the tilted version of the Nadaraya-Watson (N-W) estimator performs better than
its classical analog (the N-W estimator) in terms of Median Integrated Squared Error
(MISE). In addition, the performance of the tilted N-W regression function estimator
has been examined using the Italy’s COVID-19 deaths data.
Keywords: Nadaraya-Watson estimator, Tilted Nadaraya-Watson estimator, Infi-
nite order estimator, Kernel estimator, Trapezoidal kernel, Cross-validation function,
MISE, ISE..

1 Introduction

Let the regression model be

Yi = r(Xi) + εi, 1 ≤ i ≤ n,

where (Y1, X1), (Y2, X2), . . . , (Yn, Xn), are the data pairs, the design variable
X ∼ fX , X and ε are independent, εi’s are independent and identically dis-
tributed (iid) errors with zero mean E(ε) = 0 and variance E(ε2) = σ2. The
regression function r(x) is unknown. The kernel, local polynomial regression
and orthogonal series methods are commonly used for estimating an unknown
regression function. The kernel and local polynomial regression function esti-
mators are also known as smoothers, see Wasserman [1], Fan and Gijbels [2],
Hall and Racine [18] and the references within.

In this paper, we propose a tilting method which represents an optimised
modification of Nadaraya-Watson estimator. An estimator r̂n of r is a linear
smoother if

l(x) = (l1(x), ..., ln(x))T
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and
r̂n = l(x)TY =

∑n

i=1
li(xi)Yi,

where li are weights and for all x,
∑n

i=1li(x) = 1. The li(x) for Nadaraya-
Watson estimator is defined as

li(x) =
K(Xi−x

h )∑n
j=1K(

Xj−x
h )

, h > 0. (1)

In (1), K is the weighting function that assigns the values to the design points
Xi according to proximity to x. The Nadaraya-Watson (N-W) estimator, which
is the kernel estimator, depends on the bandwidth parameter h > 0, so-called
smoothing parameter. As the bandwidth increases the kernel estimator tends
to a flat function, due to this property the N-W estimator is often referred to
as the locally constant estimator.

In the tilting approach, the empirical distribution is being adjusted by re-
placing the equal weights 1/n by pi, where pi ≥ 0 and

∑n
i pi = 1, [4]. The

tilting method is sustainably used for an unknown density function estimation.
Grenander [5] proposed tilting-based method by imposing some restrictions
on density estimators. The empirical likelihood-based methods and distance
measure approach are used for estimation of tilting parameters within regres-
sion function estimators. The empirical likelihood-based method is a semi-
parametric method that allows to find a parameter through estimating equa-
tions. Owen [6] was the first who proposed the empirical likelihood method as
an alternative to likelihood ratio tests. Chen [7], Zhang [8], Mülle et al. [9] used
the empirical likelihood-based methods for estimating tilting parameters. In
the distance measure approach, the tilted estimator is obtained by minimizing
some distance, subject to constraints. Hall and Presnell [10], Carroll et al. [11],
Doosti and Hall [12], Doosti et al. [13] used various distance measures for es-
timating density functions. Namely, in Doosti et al. [13] have introduced a
cross-validation function tailored to this estimation problem. They had shown
that the proposed density function estimator performs better than the conven-
tional kernel-based estimators.

The aim of this study is to introduce the tilted nonparametric N-W re-
gression function estimator which is obtained by minimizing the distance to a
comparator estimator. In this paper, an infinite order flat-top kernel estimator
is selected as the comparator estimator. The infinite order flat-top kernel es-
timator, also known as the trapezoidal kernel, can be defined through Fourier
transform which is flat near the origin and is infinitely differentiable.

2 Notation and preliminary results

Definition 1. Let λ be the Fourier transform of kernel K, and we select g (g
is not unique) to make λ(s), λ2(s), ans sλ(s) integrable. For a fixed constant
c > 0

λ(s) =

{
1, | s |≤ c
g(| s |), | s |> c

.
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The flat-top kernel is

K(x) =
1

2π

∫ ∞
−∞

λ(s)e−isxds. (2)

The infinite order regression estimator was introduced by McMurry and Politis
[14] in the form of linear smoother

řn =
∑n

i=1
ľi(xi)Yi,

ľi(x) =
KIO(Xi−x

h )∑n
j=1KIO(

Xj−x
h )

.

KIO refers to any kernel which fulfils the definition 1. The idea behind using
an infinite order kernel for estimating rn is that these type of kernels reduce
the bias asymptotically at the rate O(hk), [14]. The trapezoidal kernel satisfies
definition 1

KT (x) =
2(cos(x/2)− cos(x))

πx2
.

The Fourier transform of the trapezoidal kernel KT is

λ(s) =


1 | s |≤ 1/2,

2(1− | s |) 1/2 <| s |≤ 1,

0 | s |> 1.

We denote r̂n(.|θ), the tilted estimator, where θ = (h, p) is the vector of un-
known parameters. Our objective is to estimate θ by minimizing the distance
measure between r̂n(.|θ) and ř. For preserving the convergence rate of řn, in
this paper, we use the L2-metric as the distance between these two estima-
tors, [12].

3 Numerical study

This section contains the results of the numerical study carried out for analysing
the performance of the tilted N-W estimators. The exponential regression
function, r(x) = x+ 4exp(−2x2)/

√
2π, has been used with the uniform design

density and normally distributed error terms for generation of 500 data sets.
The relative performance of the tilted N-W estimator has been assessed with
respect to varying sample sizes and standard deviation levels. The assessment
has been made by comparing the Median Integrated Squared Error (MISE)
and ISE, the latter belonging to [-2,2]. The cross-validation function method
has been employed for an optimal bandwidth selection for Nadaraya-Watson
estimator, [1]. For an infinite order estimator, the bandwidths were selected
using the rule of thumb introduced by Politis in [14] which is available form
R-package ’iosmooth’. In fact, the bandwidth for tilted N-W estimator has
been estimated within the proposed numerical procedure.
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In table 1, we provides the MISEs for the simulated data. Evidently, for
fixed sample size, as the variance increases the tilted N-W estimators perform
better than others. For larger sample sizes, in contrast, the N-W estimator,
outperforms the tilted N-W estimator. However, for smaller sample sizes and
the moderate standard deviation levels, the tilted N-W estimator remains, at
some extent, superior to the conventional estimators.

n σ IO NW NW p4 NW p10

60 0.3 0.1559 0.0663 0.1308 0.1529
0.5 0.1980 0.1398 0.1724 0.1953
0.7 0.2515 0.2152 0.2316 0.2492
1 0.3588 0.3697 0.3418 0.3650

1.5 0.6530 0.6281 0.6197 0.6520
2 1.0524 0.9892 0.9871 1.0597

100 0.3 0.1195 0.0442 0.1034 0.1191
0.5 0.1432 0.0914 0.1253 0.1426
0.7 0.1781 0.1443 0.1607 0.1766
1 0.2490 0.2324 0.2305 0.2469

1.5 0.4165 0.4366 0.4041 0.4144
2 0.6487 0.6780 0.6107 0.6371

200 0.3 0.0991 0.0232 0.0891 0.0997
0.5 0.1089 0.0470 0.0993 0.1086
0.7 0.1256 0.0822 0.1172 0.1253
1 0.1577 0.1299 0.1533 0.1589

1.5 0.2401 0.2542 0.2386 0.2416
2 0.3568 0.3878 0.3464 0.3534

1000 0.3 0.0801 0.0058 0.0776 0.0800
0.5 0.0823 0.0125 0.0790 0.0825
0.7 0.0853 0.0207 0.0801 0.0845
1 0.0922 0.0356 0.0830 0.0917

1.5 0.1080 0.0716 0.0972 0.1074
2 0.1294 0.1286 0.1209 0.1308

Table 1. MISE for the Infinite Order (IO) estimator with the trapezoidal kernel,
N-W estimator and tilted N-W estimator with 4 (p4) and 10 (p10) weighting nodes.

4 Real data

In this section, the tilted N-W estimator along with two other kernel-based
estimators are being used for a curve fitting to real data. We shall apply the
tilted N-W estimator approach to Italy’s COVID-19 daily deaths data from 23
February 2020 to 6 May 2020 downloaded from https://www.ecdc.europa.eu.

The interest in COVID-19 death rate modelling among scientists is growing
rapidly since the outbreak of the pandemic began [15], [16], [17]. Along with
the tilted N-W estimator, we applied the N-W, and IO estimators. The tilted
N-W estimator performed the best in terms of the Mean Square Errors (MSE).
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Table 2 provides the MSE for each estimator. In terms of minimising the MSE,
the tilted N-W estimator ranked first, followed by N-W and IO estimators
resulting in the relative improvement of 3% and 4%, respectively. Slightly,
improved performance of the tilted N-W estimator is attributed to the lower
MSE components at the edges versus other kernel-based regression function
estimators which are generally known for so-called ”edge effect”, [19].

Fig. 1. Fitting N-W, IO, and tilted N-W regression curves to the logarithm of the
COVID-19 deaths data.

infinite order estimator Nadaraya-Watson estimator tilted Nadaraya-Watson estimator

MSE 3819.803 3778.425 3667.398

Table 2. MSEs for Nadaraya-Watson, infinite order, and tilted Nadaraya-Watson
estimators.
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Abstract. Recent studies using the classical Lorenz model and generalized Lorenz
models present abundant features of both chaotic and oscillatory solutions that may
change our view on the nature of weather as well as climate. In this study, the math-
ematical universality of solutions in different physical systems is presented. Specifi-
cally, the main goal is to reveal mathematical similarities for solutions of homoclinic
orbits and solitary waves within a three-dimensional non-dissipative Lorenz model
(3D-NLM), the Korteweg-de Vries (KdV) equation, and the Nonlinear Schrodinger
(NLS) equation. A homoclinic orbit for the X, Y , and Z state variables of the 3D-
NLM connects the unstable and stable manifolds of a saddle point. The X and Z
solutions for the homoclinic orbit can be expressed in terms of a hyperbolic secant
function (sech) and a hyperbolic secant squared function (sech2), respectively. Inter-
estingly, these two solutions have the same mathematical form as solitary solutions
for the KdV and NLS equations, respectively. After introducing new independent
variables, the same second order ordinary differential equation (ODE) and solutions
for the Z component and the KdV equation were obtained. Additionally, the ODE
for the X component has the same form as the NLS for the solitary wave envelope.
Finally, how a logistic equation, also known as the Lorenz error growth model, and
an improved error growth model can be derived by simplifying the 3D-NLM is also
discussed. Future work will compare the solutions of the 3D-NLM and KdV equation
to understand the different physical role of nonlinearity in their solutions, and the
solutions of the error growth model and the 3D-NLM, as well as other Lorenz models,
in order to propose an improved error growth model to better represent linear and
nonlinear error growth for both oscillatory and non-oscillatory solutions.

Keywords: Homoclinic Orbits, Solitary Waves, Lorenz Model, KdV Equation,
Logistic Equation, Error Growth Model, Homoclinic Bifurcation.
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1 Introduction

After the pioneering studies by Prof. Lorenz (Lorenz, 1963a, 1972; Gleick,
1987; Anthes, 2011), the chaotic nature of weather with a finite predictability
has been well recognized. Our current understanding of chaotic nature is indeed
largely derived from the analysis of the chaotic and unstable solutions of Lorenz
models (e.g., Lorenz, 1963a and 1969a). On the other hand, with a goal of re-
vealing the true nature of weather, a recent comprehensive literature review on
Lorenz models and high-dimensional Lorenz models (e.g., Curry, 1978; Curry
et al., 1984; Faghih-Naini and Shen, 2018; Howard and Krishnamurti, 1986;
Hermiz et al., 1995; Thiffeault and Horton, 1996; Musielak et al., 2005; Reyes
and Shen, 2019; Roy and Musielak, 2007; Moon et al., 2017; Felicio and Rech,
2018; Shen 2014-2019a) suggests a need for taking other types of solutions into
consideration. For example, in addition to three types of solutions that include
steady-state, chaotic, and limit cycle solutions (e.g., Sparrow, 1982; Pedlosky
and Frenzen, 1980; Ghil et al. 2010), Shen and colleagues discussed two kinds
of attractor existence using newly developed high-dimensional Lorenz models
(e.g., Reyes and Shen, 2019; Shen, 2019a, b; Shen et al., 2019). The first kind
of attractor coexistence consists of chaotic and steady-state solutions, while
the second kind of attractor coexistence includes limit cycle and steady-state
solutions. While everything centers around periodic solutions prior to Lorenz
studies and while great attention has been paid to non-periodic solutions follow-
ing Lorenz studies, a refined view on the dual nature of chaos and order (i.e.,
non-periodic and periodic solutions) is suggested for weather (Shen 2019a,b;
Shen et al., 2020).

Prior to Lorenz’s chaotic solutions in the 1960s, the occurrence of a nonlin-
ear periodic solution (i.e., limit cycle) in the atmosphere was indeed illustrated
using so-called dishpan experiments in the laboratory in the 1950s (Fultz et al.
1959; Hide 1953). Based on the experiment, three types of solutions were dis-
covered, including: (1) steady state solutions, (2) irregular chaotic solutions,
and (3) vacillation (Lorenz 1963b; Ghil and Childress 1987; Lorenz, 1993).
Using a model with 14 ODEs (e.g., Lorenz, 1963b) that is different from the
well-known 1963 Lorenz model, Prof. Lorenz discussed symmetric vacillation
(SV), unsymmetric vacillation (UV), and their transition. The vacillations are
closed orbits within the phase space. Although Lorenz (1963b) documented the
transition between the two types of vacillations (Figure 5 of Lorenz, 1963b),
he did not discuss the condition under which the transition occurred. Later,
Ghil and Childress (1987) suggested a hypothetical role for the homoclinic orbit
in connection with the transition from the UV to SV regime (e.g., Figure 5.6
of Ghil and Childress, 1987). In the 1970s, studies suggested that amplitude
vacillation may be viewed as a limit cycle solution (e.g., Pedloksy 1972; Smith
1975; Smith and Reilly 1977). As a result, improving our understanding of ho-
moclinic orbits and nonlinear oscillatory solutions has the potential to address
the transition between UV and SV.

Although the Lorenz 1963 model with 3 ODEs originally came from the
Saltzman model with 7 ODEs (e.g., Saltzman, 1962; Lorenz, 1993), the Lorenz
model with simplicity has been used as a powerful tool for revealing various
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types of solutions, as discussed above. Additionally, the Lorenz 1963 model
also produces other types of solutions under certain conditions. For example,
the three-dimensional non-dissipative Lorenz model (3D-NLM), that represents
the original three-dimensional Lorenz model (3DLM) with sufficiently large
heating parameters, was studied in order to reveal two types of oscillatory
solutions with small and large cycles, and homoclinic orbits (Shen, 2018). The
two types of oscillatory solutions are not isolated and, thus, are not the same as
the limit cycle within the dissipative system. A homoclinic orbit that connects
stable and unstable manifolds at the saddle point may be viewed as the limiting
case of periodic solutions. The homoclinic orbit is also viewed as a separatrix
that separates periodic solutions with small and large cycles. Recently, related
approaches have been applied for deriving non-dissipative 5D and 7D Lorenz
models in order to examine quasi-periodic solutions that include additional
incommensurate frequencies (Shen and Faghih-Naini, 2017; Faghih-Naini and
Shen, 2018). To obtain better predictability within numerical models, detecting
non-chaotic processes that include periodic, quasi-periodic, and steady-state
solutions based on observations and model simulations is recommended (e.g.,
Shen et al., 2020).

In a recent study (e.g., Shen, 2019a), the 3D-NLM was compared to the orig-
inal Lorenz model and simplified Lorenz models, including the so-called Lorenz
geometric model (Guckenheimer and William, 1979; Smale, 1998; Tucker, 2002;
Hirsch et al. 2013) and the (nonlinear) limiting equation (e.g., Sparrow, 1982)
in order to reveal the role of a saddle point and nonlinear terms (referred
to as the nonlinear feedback loop in Shen, 2014) in creating chaotic responses.
Within the 3D-NLM, a homoclinic orbit that is associated with the appearance
of periodic orbits is not orbitally stable, and its presence tends to introduce
irregular behavior associated with chaos (Guckenheimer and Holmes, 1983).
Such a feature is presented in Appendix A. Therefore, improving our under-
standing of the dynamics of homoclinic orbits may be helpful for determining
the conditions under which large predictability may be present.

Researchers often analyze the homoclinic orbit within a 2D or higher di-
mensional space and focus on its association with the saddle point, as well
as homoclinic points where stable and unstable manifolds intersect. On the
other hand, individual components for the homoclinic orbit within the 3D-
NLM also possess interesting dynamics. For example, analytical solutions for
the time varying X and Z components can be expressed in terms of the hyper-
bolic secant function sech and the hyperbolic secant squared function sech2,
respectively. As a result, they appear as a solitary pattern in temporal space,
providing motivation for comparing the mathematical solutions of homoclinic
orbits and so-called solitary waves, showing the mathematical universality of
solutions in different physical systems.

In addition to chaotic behavior, a major focus of nonlinear dynamics has
been on nonlinear wave systems that have analytical solutions. One such non-
linear system is the Korteweg-de Vries (KdV) equation (e.g., Boussinesq, 1877;
Koreweb and deVries, 1895). The KdV equation with quadratic nonlinear-
ity governs the dynamics of weakly dispersive, weakly nonlinear water waves
(Miles, 1981). The system possesses a family of periodic solutions that can
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be written in terms of the Jacobi elliptic function (e.g., cn; Whitham, 1974;
Baines, 1995). Waves with cn functions are referred to as cnoidal waves. One
limit of the cn function is a hyperbolic secant function. Such a limiting solu-
tion does not represent a periodic wave but moves as a single isolated ’hump’
with a unchanging pattern (Lighthill, 1978). The solution, that appears as a
result of the balance between nonlinearity and dispersion, is called a solitary
wave or soliton (e.g., Zabusky and Kruskal, 1965; Zabusky and Porter, 2010;
Balmforth, 1995; Boyd, 2015).

The first observed solitary wave was documented one hundred and sev-
enty years ago (e.g., Russell, 1844). In the atmosphere, Lin and Goff (1988)
documented observations of a long-lived mesoscale wave that persisted for ap-
proximately 9 hours and its wavelength was approximately 185 km. These
authors suggested that the observed wave may be viewed as a solitary wave,
while Rottman and Einaudi (1993) pointed out that a wave ducting mechanism
associated with a critical level at approximately 8 km may also be important
in trapping wave energy (e.g., Rottman and Grimshaw, 2002).

To evaluate the performance of weather forecasting models, a logistic equa-
tion has been used for describing the evolution of the root mean square (rms)
average forecast error for ensemble runs (Lorenz 1969b, 1982, 1996; Nicolis
1992; Kalnay, 2003; Zhang et al. 2019). The logistic equation is also known as
the Lorenz error growth model, and its solution with an initial positive value
is a sigmoid function that is a monotonically increasing function with non-
negative growth rates. Specifically, given an initial error with a small, positive
value, errors that are described by the sigmoid function grow at an initial larger
growth rate, then at a nonlinear smaller growth rate, and eventually approach
a constant defined as a saturated error that has a zero growth rate. Earlier
efforts were made to show how a logistic equation with a linear and a quadratic
term was derived (e.g., Nicolis 1992). Here, how the 3D-NLM can be simplified
to yield the Lorenz error growth model and an improved error growth model
is briefly discussed.

The paper is organized as follows. In Section 2, a review of the 3D-NLM
and its solutions for homoclinic orbits is provided. Equations and solutions
of the 3D-NLM, NLS, and KdV are then compared in order to reveal math-
ematical similarities for solutions of the homoclinic orbits and solitary waves.
A derivation of the Lorenz error growth model and the improved error growth
model from the 3D-NLM is also presented. Concluding remarks are provided at
the end. Appendix A discusses the sensitive dependence of solutions on initial
conditions that are close to a homoclinic orbit and homoclinic bifurcation using
the 3D-NLM with additional positive and negative dissipative terms. A brief
review on the so-called Lorenz error growth model is provided in Appendix B.

2 The 3D-NLM, KdV, and Logistic Equations

In this section, a review and additional analysis for the 3D-NLM, as well as a
comparison to the NLS and KdV equations, are provided. How to simplify the
3D-NLM to yield a logistic equation, which is known as a Lorenz error growth
model, is then discussed.
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2.1 The 3D-NLM and its Homoclinic Orbits

The 3D-NLM and its solutions for homoclinic orbits are presented below. As
discussed in Shen (2018), as well as in Appendix A, the equations of the
3D-NLM and its two conservation laws can be written, as follows:

d2X

dτ2
+

(

X2

2
− (σr +

C1

Co

)

)

X = 0, (1)

KE + PE = Co

(

X2

2
− σZ

)

= C1, (2)

KE + APE =
Co

2

(

X2 − σ

r
(Y 2 + Z2)

)

= C2. (3)

Here, X, Y , and Z are the state variables. The two time-independent pa-
rameters are the Prandtl number (σ) and the normalized Rayleigh number
(r), also referred to as a heating parameter. KE, PE, and APE represent
the domain-averaged kinetic energy, potential energy, and available potential
energy, respectively (e.g., Blender and Lucarini, 2013; Shen, 2014). Co, C1,
and C2 are constants, indicating energy conservation (e.g., Shen, 2014). Eqs.
(2)-(3) are related to the two Nambu Hamiltonians (Nambu, 1973; Nevir and
Blender, 1994; Roupas, 2012). See details in Shen (2018).

For the homoclinic orbit that begins and ends at the saddle point (i.e., the
origin), both C1 and C2 are zero and remain zero forever. Thus, Eqs. (1-3)
lead to:

d2X

dτ2
+

(

X2

2
− σr

)

X = 0, (4)

X2

2
− σZ = 0, (5)

X2 − σ

r
(Y 2 + Z2) = 0. (6)

To facilitate discussions, two non-trivial turning points, Xt, are defined
when the second derivative of X becomes zero (i.e., X2/2−σr = 0 in Eq. (4)),
yielding Xt = ±

√
2σr. Equations (5-6) lead to:

Y 2 =
1

σ2

(

σrX2 − X4

4

)

. (7)

Since Y 2 ≥ 0, we have |X| ≤ Xmax = 2
√
σr. As a result, when Y = 0, |X| =

Xmax, and Z = 2r from Eq. (5). The special point (X,Y, Z) = (2
√
σr, 0, 2r)

is used as the initial condition in order to obtain an analytical solution of
the homoclinic orbit. Without a loss of generality, unless stated otherwise,
the positive X component for the intervals [0, Xt] and [Xt, Xmax] are mainly
analyzed. By plugging Y = σ−1dX/dτ (i.e., Eq. 3 of Shen 2018) into Eq. (7),
we have:

(

dX

dτ

)2

− σrX2 +
X4

4
= 0, (8a)

yielding:

dX

dτ
= ±

√

σrX2 − X4

4
. (8b)
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The term X4 is associated with a nonlinear feedback loop that consists of two
nonlinear terms (−XZ and XY ). Without this term, the system in Eq. (4)
becomes linear. As discussed in Shen (2018), the ”contracting component”
of the homoclinic orbital solution for τ ∈ [0,∞), with an initial condition of
(X,Y, Z) = (2

√
σr, 0, 2r), can be written as follows:

X(τ) =
4
√
σr

e
√
σrτ + e−

√
σrτ

= 2
√
σrsech(

√
σrτ), (9a)

Y (τ) = −4r
e
√
σrτ − e−

√
σrτ

(

e
√
σrτ + e−

√
σrτ

)2
= −(2r)tanh(

√
σrτ)sech(

√
σrτ), (9b)

Z(τ) =
X2(τ)

2σ
= (2r)sech2(

√
σrτ). (9c)

As a result of the property for the hyperbolic secant function, the derivatives of
the X component, as well as the Z component, are non-positive (e.g., dX/dτ ≤
0) for τ ∈ [0,∞). Eqs. (9a) and (9c) are referred to as the monotonically
decreasing component of the homoclinic orbit. Since Y is not a monotonic
function for τ ∈ [0,∞), the term ”contracting component” is used to describe
the solution in the X−Y phase space. Such a component begins at (X,Y, Z) =
(2
√
σr, 0, 2r) for τ = 0 and approaches the origin for τ → ∞. The time τt,

when the second derivative of X is zero (i.e., at X = Xt =
√
2σr), can be

determined by sech(
√
σrτt) =

√
2/2 in Eq. (9a), yielding τt = 0.881/

√
σr.

Therefore, for the decreasing component of X within τ ∈ [0,∞), d2X/dτ2 is
negative in association with stronger nonlinearity for τ ∈ [0, τt) and is positive
for association with weaker nonlinearity for τ ∈ (τt,∞).

Note that the solution of Z at τt (Z(τt)) is equal to r, which is half of
its maximum (Zmax = 2r). The interval [−τt, τt] is then used to define a
”pulse width” (or ”temporal pulse width”) within which the Z component is
greater than or equal to half of the maximum. As a result, the pulse width is
determined by the Rayleigh parameter (r) and the Prandtl parameter (σ), while
its amplitude is solely determined by the heating parameter r. In other words,
the heating parameter determines both pulse width and amplitude. Below,
this feature is compared to the nonlinear solitary wave solutions of the KdV
equation.

Since the system is invariant under τ → −τ and Y → −Y (e.g., Strogatz,
2015), the solution (X(τ),−Y (τ), Z(τ)) in backward time τ ∈ (−∞, 0] repre-
sents the expanding component of the homoclinic solution. The solution begins
at the origin for τ → −∞ and then moves to the point (X,Y, Z) = (2

√
σr, 0, 2r)

for τ = 0. The corresponding X and Z components are referred to as the
monotonically increasing components. Similarly, for the increasing component
within τ ∈ [(−∞, 0], solutions within τ ∈ (−τt, 0) have a stronger nonlinearity
than those within τ ∈ (−∞,−τt).

Figure 1 displays the solution of the homoclinic orbit for τ ∈ [−1, 1], with
σ = 10 and r = 10. Such a choice leads toX(τ = −1) = 20sech(−10) = 0.0018,
which is close to 0, and allows us to effectively analyze solutions within a finite
interval instead of an infinite interval τ ∈ (−∞,∞). In panels (a)-(c), blue
lines display the contracting components for X, Y , and Z for τ ∈ [0, 1], as
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described by Eqs. (9a)-(9c). Red lines show the expanding components for
τ ∈ [−1, 0], as discussed above. Panel (d) plots the homoclinic orbit within the
X-Y space. The blue curve for the monotonically decreasing component begins
at (X,Y, Z) = (2

√
σr, 0, 2r) and moves forward in time towards the origin.

The red curve represents the monotonically increasing component moving from
the origin at τ = −1 to (X,Y, Z) = (2

√
σr, 0, 2r) at τ = 0. Although the

homoclinic orbit connects the stable and unstable manifolds of the saddle point,
the trajectory ”takes forever” to reach the saddle point (as t → ∞) and is,
therefore, not a periodic solution. Alternatively, the homoclinic orbit may be
viewed as a special periodic solution with a period of infinity. In Figure 1,
vertical lines are plotted at τ = ±τt or X = Xt, where d2X/dτ2 = 0. At
τ = τt, Z(τt) = Zmax/2. As a result, a pulse width is determined by [−τt, τt].

2.2 A Comparison of the 3D-NLM with the NLS and KdV

Equations

Previously, Shen (2018) showed that the 3D-NLM represents a special form of
the Duffing equation whose solutions are Jacobi elliptic functions (e.g., cn).
Below, it is additionally shown that the equation for (dX/dτ)2 in Eq. (8a)
shares the same mathematical form as the NLS equation for the amplitude of
a traveling wave (h(x, τ)), defined as follows:

(

dh

dx

)2

+ δh2 +
γ

2
h4 = 0. (10)

Here, the lower case x represents the distance in physical space. Parameters
δ and γ are negative and positive, respectively (e.g., Haberman, 2013). As
documented, the solution to Eq. (10) is a hyperbolic secant function, which is
also the solution of X, as shown in Eq. (9a). Table 1 lists the above equations.

Below, an ODE for the Z of the 3D-NLM is first derived in order to perform
a comparison with the KdV equation. By differentiating both sides in Eq. 5
and making a square, we obtain:

(

dZ

dτ

)2

=
1

σ2
X2(

dX

dτ
)2. (11)

By using Eq. (8a) to replace dX
dτ

in Eq. (11), we have:
(

dZ

dτ

)2

=
1

σ2

(

σrX4 − X6

4

)

. (12)

Applying Eq. (5) to replace the above X4 and X6 leads to:
(

dZ

dτ

)2

= 4σrZ2 − 2σZ3. (13)

By differentiating Eq. (13) and dividing it by dZ/dτ , we can obtain an equation
for the second derivative of Z, as follows:

d2Z

dτ2
+ 3σZ2 − 4σrZ = 0. (14)

873



For a comparison below, the independent variable is rescaled by introducing
ζ =

√
στ with a different time scale, turning Eq. (14) into:

d2Z

dζ2
+ 3Z2 − 4rZ = 0. (15)

Next, the KdV equation for comparison with the 3D-NLM is presented.
Well documented is the fact that the KdV contains a family of periodic solutions
within a three parameter space (e.g., Lighthill, 1978; Whitham, 1974). These
three parameters include a wave’s amplitude, wavelength, and water depth.
Two non-dimensional parameters can be defined by the ratio of amplitude to
water depth and the ratio of water depth to wavelength. The periodic solutions
can be written in terms of the Jacobi elliptic function (e.g., cn; Whitham, 1974;
Baines, 1995), referred to as cnoidal waves. One limit of the cn function is a
hyperbolic secant function, which is the solitary wave solution with one non-
dimensional parameter. The solitary wave solution is discussed below. The
KdV equation is written as follows:

∂u

∂t
+ 6u

∂u

∂x
+

∂u3

∂x3
= 0. (16)

By introducing a traveling-wave coordinate ξ = (x− ct) and assuming f(ξ) =
u(x, t) (e.g., Sprott 2010), we can turn Eq. (16) into:

d2f

dξ2
+ 3f2 − cf = A, (17)

where c is a parameter and A is an integration constant that is determined as
A = 0 when solutions satisfy:

lim
ξ→±∞

f(ξ) = 0 lim
ξ→±∞

df(ξ)

dξ
= 0. (18)

As a result, Eq. (15) of the 3D-NLM and Eq. (17) of the KdV equation are
idential when c = 4r. A solitary wave solution of the KdV in Eq. (17) is a
hyperbolic secant squared function, as follows:

u(x, t) =
c

2
sech2

(√
c(x− ct)

2

)

. (19)

The solution has one dimensionless parameter c that is a ratio between wave
amplitude and water depth (Baines, 1995). By replacing (c) and (x − ct) by
(4r) and (ζ) (that is equal to

√
στ), respectively, the above is identical to Eq.

(9c).
As summarized in Table 1, the above discussions indicate that the govern-

ing equations for the Z and X components of the homoclinic orbit within the
3D-NLM have the same mathematical form as the KdV and NLS equations,
respectively. Their corresponding solutions also have the same function form.

2.3 A Logistic Equation from a Simplified 3D-NLM

The so-called Lorenz error growth model that is indeed a logistic equation has
been used in the error analysis of numerical solutions for decades. Although
derivations for a one-variable, two-parameter model in the form of a stochasti-
cally driven logistic equation have been provided, (e.g., Nicolis, 1992), a consis-
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tent approach for improving the error growth model is still needed (e.g., Zhang
et al., 2019). Another goal of this study is to propose an error growth model
that can represent the evolution of errors for both chaotic and non-chaotic
solutions. Here, the Lorenz error growth model whose solution is a sigmoid
function is first derived through simplification of the 3D-NLM. The sigmoid
function with an initial small positive value is also a monodically increasing
function with non-negative growth rates and is viewed as an approximated so-
lution, while the monotonically increasing components of the homoclinic orbit
is treated as a true error solution for verifications of the approximated solu-
tion. Simply speaking, a comparison of the sigmoid function and the increasing
component of the homoclinic orbit is made to understand the condition under
which the derived error growth model may represent the original system.

Applying a Taylor series expansion, Eq. (8a) can be approximated as fol-
lows:

dX

dτ
≈ ±

√
σrX

(

1− X2

8σr

)

, (20a)

which can be written:
dE

dτ
≈ ±2

√
σrE

(

1− E

8σr

)

, (20b)

after introducing E = X2. Eq. (20b) is a typical logistic equation that has
been used as an error growth model (Lorenz, 1969b, 1982). A saturated value
is defined when dE/dτ = 0, leading to E = 8σr and X = 2

√
2σr. Here,

the saturated value of X is greater than the maximum Xmax = 2
√
σr for the

homoclinic orbit. The solution of Eq. (20a) is a sigmoid function, written as
follows:

E =
Be2

√
σrτ

1 + B
8σr

e2
√
σrτ

, (21a)

yielding:

X = ±
√
E. (21b)

The integration constant, B, is determined by E(τ = −1) = X2(τ = −1) using
Eq. (9a). Figure 2 shows that the solution of Eq. (21b) captures the evolution
of the increasing component ofX reasonably well at linear and weakly nonlinear
stages. The weakly nonlinear stage is defined in intervals where X is close to
Xt but smaller than Xmax. However, the sigmoid function cannot represent
the solution at fully nonlinear stages near X = Xmax and overestimates values
in this interval. By comparison, for τ ≈ 0, a sech function that represents
the homoclinic orbit can be approximated with a cosine function, as shown
in Figure 2. The result additionally indicates that the non-monotonicity near
Xmax for the homoclinic orbit cannot be represented by a monotonic sigmoid
function. Note that the term ”fully nonlinear stage” should not be confused
with the term ”weakly nonlinear system” for the KdV equation. The latter
simply indicates limited nonlinearity in the partial differential equation of the
KdV system.

The above analysis suggests that a self-consistent, improved error growth
model can be obtained when higher order terms are included in the Taylor series
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expansion. For example, an improved, three-parameter error growth model is
written as follows:

dX

dτ
≈ ±

√
σrX

(

1− X2

8σr
− X2

36σ2r2

)

, (22a)

which can be written:
dE

dτ
≈ ±2

√
σrE

(

α− βE − γE2
)

, (22b)

where E = X2, α = 1, β = 1/(8σr), and γ = 1/(36σ2r2). Compared to
the original logistic equation (e.g., Eq. 20b), the above equation includes an
additional parameter γ. The specific value of γ = 1/(36σ2r2) was selected
to produce a smooth transition towards the saturated value at the nonlinear
stage, as compared to the true solution of the homoclinic orbit (Figure 3).

3 Concluding Remarks

In this study, the mathematical similarities for the solutions of homoclinic orbits
and solitons within the 3D-NLM, NLS, and KdV equations were presented.
The simplification of the 3D-NLM into the so-called error growth model and
an improved error growth model was also discussed. As shown, the X and Z
components of the homoclinic orbit, which are a hyperbolic secant function
(sech) and a hyperbolic secant squared function (sech2), respectively, have the
same mathematical form as solutions for the solitary wave envelope of the NLS
equation and the solitary wave of the KdV equation, respectively. Specifically,
the same second order ODE for the Z component and the KdV, and the same
solitary pattern solutions for both systems were obtained. Table 1 provides a
summary.

A comparison of the 3D-NLM and KdV equation suggests that the heating
parameter (r) determines the amplitude and pulse width of the Z component
for the homoclinic orbit and that the phase speed (c) plays the same mathemat-
ical role in the solitary wave of the KdV equation. Within the 3D-NLM, the
Prandtl parameter (σ) only impacts the pulse width of the Z component, and
both the pulse width and amplitude of the X component. Since homoclinic
orbits and solitary waves represent the limiting case for oscillatory solutions
within their systems, their existence may indicate the potential presence of
periodic solutions (e.g., cnoidal waves), as discussed in Appendix A. Periodic
solutions should have a higher predictability than chaotic solutions. On the
other hand, homoclinic bifurcation, as discussed in Appendix A, and tangling
may also appear in association with the presence of homoclinic orbits. Such
features are less predictable, in particular, in higher dimensional dissipative
or non-dissipative Lorenz models. To understand predictability in real world
systems, all of these features will be the subject of a future study.

Additionally, a future study will compare the aforementioned solutions to
improve our understanding of the physical role of nonlinearity in the solutions.
For example, the homoclinic orbit and oscillatory orbits of the 3D-NLM appear
as a balance of nonlinearity and heating. While heating acts as a forcing,
nonlinearity plays a role as a restoring force. By comparison, a balance between
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nonlinearity and dispersion is found within the solitary waves of the KdV.
The steepening effect of nonlinearity prevents energy dispersion, yielding an
unchanged shape for the solution. Although both homoclinic and solitary wave
solutions share the mathematical similarities, the physical role of nonlinearity
is not necessarily the same in the 3D-NLM and the KdV equation.

How the 3D-NLM can be simplified into a Lorenz error growth model with
a sigmoid function as a solution was also illustrated. Related derivations were
applied to propose an improved error growth model whose solution was ”veri-
fied” against the analytical solution of the homoclinic orbit. A comparison of
the sigmoid function and the monotonically increasing component of the ho-
moclinic orbit suggests that the former can reasonably represent the latter at
linear and weakly non-linear stages. In comparison, solutions of the improved
error growth model may provide a smoother transition towards the fully non-
linear stage with better representation for the saturated value. However, the
solutions of the original and improved error growth models cannot represent
the homoclinic orbit at full nonlinear stages, including the transition from a
monotonically increasing component to a monotonically decreasing component.
Such a transition can be captured using a cosine function that is a good ap-
proximation to the sech function at fully nonlinear stages (i.e., X ≈ Xmax or
τ ≈ 0). To understand the error dynamics of oscillatory solutions, which is
currently being examined for a future publication, features of the transition
should be included in error growth models.
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Appendix A: Homoclinic Bifurcation

Here, I first discuss the sensitive dependence of solutions on initial conditions
that are close to the homoclinic orbit. I then illustrate how the three- and
higher- dimensional non-dissipative Lorenz models (NLMs) may be used to
illustrate homoclinic bifurcation. The 3D NLM (3D-NLM) with an additional
dissipative term (ǫY ) is written as:

dX

dτ
= σY, (A1)

dY

dτ
= −XZ + rX − ǫY, (A2)

dZ

dτ
= XY. (A3)

The above with ǫ = 0 represents the 3D-NLM. Equations (A1)-(A3) can be
transformed into the following equation for X:

d2X

dτ2
+ ǫ

dX

dτ
+

(

X2

2
− (σr +

C1

Co

)

)

X = 0. (A4)
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Here, it should be noted that Equation (A4) is mathematically different from
the so-called Burgers-KdV equation for traveling solitary wave solutions (e.g.,
Eq. 9 of Feng and Meng, 2007). If we simply consider the case with C1 = 0
that may represent an orbit beginning or ending at the saddle point, Eq. (A4)
illustrates homoclinic bifurcation with ǫ < 0, ǫ = 0, and ǫ > 0 (e.g., Jordan
and Smith, 2007), as discussed below.

Equations (A1)-(A3) were solved using the numerical methods that were
discussed in Shen (2014, 2019). For the numerical solutions, σ = 10.0 and
r = 100.0 are used. Since the 3D-NLM (i.e., Equations A1-A3 with ǫ = 0)
is conservative, it cannot produce the classical chaotic solutions that appear
in the original dissipative 3DLM. On the other hand, as a result of the ap-
pearance of the homoclinic orbit, two nearby orbits with starting points near
the homoclinic orbit may significantly diverge, showing the dependence on
initial conditions. Such can be shown using 10 orbits with starting points
at (X,Y, Z) = (2

√
σr, δ, 2r), here δ is a small number. Selected frames at

τ = 0.5, 0.9, and 1.18 are provided in Figure A1, while the corresponding ani-
mation can be found at https://goo.gl/EUiFX1. All of the initial conditions
are shown on the top left of the panels. These solutions display sensitive de-
pendence on initial conditions but are not the classical chaotic orbits (which
should be dense in the phase space). As illustrated below, they may become
more complicated when dissipations are added.

The top panels in Figure A2 display an oscillatory solution with a large
cycle, homoclinic orbits, and an oscillatory solution with a small cycle, respec-
tively, within the 3D-NLM. The first and third types of solutions have initial
conditions of (X,Y, Z) = (0, 5, 0) and (X,Y, Z) = (5, 0, 0), respectively. Ho-
moclinic orbits were plotted using the analytical solutions provided in Eqs.
(9a) and (9b). Within Eqs. (A1)-(A3) (i.e., the 3D-NLM with one dissipa-
tive term), the bottom panels reveal the so-called homoclinic bifurcation with
negative (ǫ = −0.1), zero (ǫ = 0), and positive (ǫ = 0.1) dissipative terms,
respectively. The approach with the inclusion of the dissipative term (ǫY ) will
be applied to study the homoclinic bifurcation, as well as the dynamics of ho-
moclinic orbits using 5D- or higher-dimensional NLMs (e.g., Faghih-Naini and
Shen, 2018; Shen and Faghih-Naini, 2017) in a future study.

Appendix B: A Brief Review of the Lorenz Error Growth

Model

Here, I provide a brief review on the error growth model to discuss how a
nonlinear quadratic term may be included and how additional terms may be
introduced to improve the error growth model.

The so-called error growth model, in the form of the logistic equation with
two parameters, was first proposed in Lorenz (1969b). When Lorenz (1982)
presented the model, he stated that the inclusion of the nonlinear quadratic
term in the error growth model is reasonable but not readily verifiable. Since
then, while the error growth model has been used to analyze the errors in real
world numerical models, continual efforts have been made to provide justifi-
cation for the inclusion of the nonlinear quadratic term. For example, Nicolis
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(1992) provided derivations for a stochastically driven logistic equation with
two parameters.

Recently, Zhang et al. (2019) proposed a revised logistic equation with two
parameters that can better describe the errors of numerical simulations ob-
tained from the state-of-the-art weather models. However, such a revised error
growth model is empirical, lacking justifications for both mathematical and
physical consistency between the empirical model and the data. To mitigate
uncertainties, below, I first discuss major features of the solutions within the
logistic model (e.g., ”error saturation”) in order to verify the solutions of an
improved error growth model, as proposed in the main text.

Since the 1960s, a logistic equation (e.g., Eq. 20b) has been used for describ-
ing the evolution of root mean square (rms) average forecast error for ensemble
runs (e.g., Lorenz 1969b, 1996; Nicolis 1992; Kalnay 2003; Zhang et al. 2019).
Given initial conditions with small positive values, the solution of Equation
(20b), that may represent the rms averaged error for ensemble runs, possesses
the following features:

(1) it grows linearly in association with the linear term;

(2) its growth is suppressed by the nonlinear term when the error becomes
relatively large; and

(3) it becomes saturated and remains at a constant value of 8σr with a zero-
growth rate; 8σr is conventionally defined as saturated error.

The above features indicate three different stages: linear growth, nonlinear
growth, and saturated stages, which appear in many nonlinear simulations with
different nonlinear (dissipative) models, including: the ECMWF Integrated
Forecast System (IFS) and the U.S. Finite-Volume Global Forecast System
(FVGFS) (e.g., Zhang et al. 2019), the NCAR Whole Atmosphere Community
Climate Model, (e.g., Liu et al. 2009), the Lorenz (1963) model (e.g., Ding and
Li 2007), and the Lorenz (1984) model (Nicolis 1992), etc. Here, it should be
noted that while error saturation may appear in association with the chaotic
solutions of a dissipative system, such a feature may also be found in systems
that display sensitivity to initial conditions. For example, as shown in Figure
A1, the 3D-NLM also displays error saturation for the ensemble runs that begin
close to the homolinic orbit. A system with computational chaos is another
example (e.g., Lorenz, 1989).

The aforementioned features additionally illustrate a transition from an
unstable point with initial positive growth rates to a stable point with zero
growth rates, displaying the so-called heteroclinic dynamics (e.g., Balmforth,
1995). The features may also be found in the ensemble runs of the 3D-NLM, as
discussed in Appendix A. As a result, a future task is to understand why a single
orbit displays chaotic or homoclinic dynamics but rms error of ensemble runs
reveals heteroclinic dynamics. In the main text, I discuss how an improved
error growth model can be obtained by including higher order terms in the
Taylor series expansion.
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Table 1: A comparison of the 3D-NLM, Duffing, NLS, KdV, and Logistic
equations. cn, sech, and Sig represent the Jacobi elliptic, hyperbolic secant,
and sigmod functions, respectively. See details in the main text.

3D-NLM Other Models Solutions

The Equation for X ′′ The Duffing Equation
d
2X

dτ2 − (σr + C1

Co

)X + X3

2
= 0 d2X

dτ2 + δ dX
dτ

+ αX + βX3 = γcos(ωτ) cn

δ = 0, γ = 0, α = −(σr + C1
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), β = 1/2

The Equation for (X ′)2 The Nonlinear Schrodinger Equation
(

dX
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)2 − σrX2 + X4

4
= 0

(

dh
dx

)2

+ δh2 + γ

2
h4 = 0 sech

δ < 0, γ > 0

The Equation for Z′′ The Korteweg-de Vries Equation
d2Z
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+ 3Z2 − 4rZ = 0 d2f
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+ 3f2 − cf = 0 sech2

ζ =
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στ c = 4r

The Equation for X ′ The Logistic Equation
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√

1− X2

4σr
dE
dτ

≈ ±2
√
σrE
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)
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Figure A1: Sensitivity to initial conditions within the 3D-NLM. Ten orbits begin at (X,Y, Z) = (2
√

σr, δ, 2r),
here δ is a small number. Panels (a)-(c) display selected frames at τ = 0.5, 0.9, and 1.18, respectively. The
corresponding animation can be found at https://goo.gl/EUiFX1.
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Figure A2: Top panels display two types of oscillatory solutions (a, c) and homoclinic orbits (b) within the
3D-NLM. Bottom panels (d)-(f) illustrate homoclinic bifurcation using Eqs. (A1)-(A3) with negative, zero, and
positive dissipations, respectively. Panels (a, d) display numerical solutions with the same initial condition of
(X,Y, Z) = (0, 5, 0), while panels (c, f) use the same initial condition of (X,Y, Z) = (5, 0, 0). Panels (b, e) display
analytical solutions depicted in Eq. (9).
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Figure 1: Solutions of the homoclinic orbit for X (a), Y (b), and Z (c) within the 3D-NLM for σ = r = 10.
The homoclinic orbit in the X − Y space is shown in panel (d). Blue and red lines represent the monotonically
decreasing and increasing components of X (as well as Z) for the homoclinic orbit, respectively. Thin vertical
lines are plotted at τ = ±τt = ±0.0881 or X = Xt = 14.14, where d2X/dτ2 = 0. Pulse width is determined by
[−τt, τt].
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Figure 2: A comparison of the homoclinic orbit (in blue), a sigmoid function (in red), and a cosine function (in
orange), showing the non-negative growth rates and the non-monotonic features of the homoclinic orbit. Two
vertical lines indicates the time (τt) when X = Xt =

√
2σr. Note that d2X/dτ2 < 0 appears in association with

stronger nonlinearity for X ∈ (Xt, Xmax), i.e., τ ∈ (−τt, τt).
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Figure 3: A comparison of the homoclinic orbit (in blue) with approximated solutions, a sigmoid function of the
logistic equation (in red), and a solution of the three-parameter error growth model (in orange).
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Abstract.  
 
The pioneering study of Lorenz in 1963 and a follow-up presentation in 1972 changed our 
view on the predictability of weather by revealing the so-called butterfly effect, also known 
as chaos. Over 50 years since Lorenz’s 1963 study, the statement of ``weather is chaotic’’ 
has been well accepted. Such a view turns our attention from regularity associated with 

Laplace’s view of determinism to irregularity associated with chaos. Here, a refined 
statement is suggested based on recent advances in high-dimensional Lorenz models and 
real-world global models. In this study, we provide a report to: (1) Illustrate two kinds of 
attractor coexistence within Lorenz models (i.e., with the same model parameters but with 
different initial conditions). Each kind contains two of three attractors including point, 
chaotic, and periodic attractors corresponding to steady-state, chaotic, and limit cycle 
solutions, respectively. (2)  Suggest that the entirety of weather possesses the dual nature 
of chaos and order associated with chaotic and non-chaotic processes, respectively. 

Specific weather systems may appear chaotic or non-chaotic within their finite lifetime. 
While chaotic systems contain a finite predictability, non-chaotic systems (e.g., dissipative 
processes) could have better predictability (e.g., up to their lifetime). The refined view on 
the dual nature of weather is neither too optimistic nor pessimistic as compared to the 
Laplacian view of deterministic unlimited predictability and the Lorenz view of 
deterministic chaos with finite predictability. 
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1  Introduction 
 

Is weather chaotic? A view that weather is chaotic was proposed and is recognized 

based on the pioneering work of Lorenz (1963a) who first introduced the concept 

of deterministic chaos.  Defined as aperiodic solutions that display sensitive 

dependence on initial conditions (ICs), chaos is also known as the butterfly effect. 

In a follow-up conference presentation in 1972 (Lorenz 1972), the concept of 

sensitivity to ICs was further discussed by addressing whether a butterfly’s flap 

may lead to a chain of responses that remotely generates a tornado. Since then, 

the butterfly effect has come to be known as a metaphor for indicating the huge 

impact of a tiny perturbation on the formation of a tornado. The original Lorenz 
1963 study and the 1972 presentation, as well as his 1969 study (Lorenz 1969a), 

laid the foundation for chaos theory that is viewed as the third scientific 

achievement in the 20th century, after relativity and quantum mechanics, 

inspiring numerous studies in multiple fields, including earth science, 

mathematics, philosophy, physics, etc. (Gleick 1987). 

 

While periodic solutions were a main focus until the Lorenz (1963) study, non-

periodic solutions have increasingly received attention over the past fifty years.  

Lorenz’s discovery has led to the statement of “weather is chaotic” and to a 

paradigm shift in the view of finite predictability from the Laplacian view of 

unlimited deterministic predictability. The idea of finite predictability for chaotic 
weather has prompted a search for the upper limit of predictability that was 

determined as two weeks based on the analyses of unstable solutions from 

simplified models and data (e.g., Lorenz 1969a). With the above being said, our 

current view on the chaotic nature of weather and a predictability limit of two 

weeks are based on the understanding of chaotic (as well as unstable) solutions 

obtained from elegant but simple models. To facilitate discussions, we define two 

kinds of predictability, including (1) intrinsic predictability that is dependent only 

on flow itself and (2) practical predictability that is limited by the imperfect initial 

conditions and/or (mathematical) formulas (Lorenz 1963b; Shen 2014). 

 

Chaotic solutions are just one type of solution that occurs over finite intervals of 

time-independent parameters within the Lorenz model. To reveal the true nature 
of weather, we should take into consideration other types of solutions within 

original Lorenz models and newly developed generalized Lorenz models 

(Guckenheimer and Williams 1979; Sparrow 1982; Pielke and Zeng 1994; Smale 

1998; Tucker 2002; Musielak et al. 2005; Roy and Musielak 2007; Yang and 

Chen 2008; Sprott et al. 2013; Moon et al. 2017, 2019; Felicio and Rech 2018; 

Macek 2018; Faghih-Naini and Shen 2018; Reyes and Shen 2019; Shen 2014-

2018, 2019a). For example, in addition to chaotic solutions, two types of non-

chaotic solutions indeed appear over different intervals of parameters within the 

Lorenz model (Sparrow 1982). Furthermore, recent studies using a generalized 

high-dimensional Lorenz model (e.g., Shen 2019a; Shen et al. 2019; Reyes and 

Shen 2019) showed that chaotic and non-chaotic solutions may coexist within the 
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same model parameters but for different ICs (e.g., Sprott et al. 2005; Sprott and 

Xiong 2015). Thus, it is important to understand whether or not and how other 

types of solutions and their coexistence may help illustrate a more comprehensive 

view on the nature of weather, and improve our understanding of predictability 
associated with different types of solutions. Specifically, we may ask whether the 

statement of ``weather is chaotic’’ that exclusively considers chaotic solutions is 

scientifically precise.  

 

To address the above, here, we first provide a review of major solutions using the 

Lorenz model (LM), including three types of solutions or three attractors in 

Section 2. In this study, a specific type of solution is referred to as an ``attractor’’, 

defined as the smallest attracting point set that cannot be decomposed into two or 

more subsets with distinct regions of attraction (e.g., Sprott et al. 2013). We then 

summarize our recent findings for two kinds of attractor coexistence (i.e., with 

the same model parameters but with different initial conditions) using a newly 

developed, generalized, high-dimensional LM (GLM) (e.g., Shen 2019a) in 
Section 3. Section 4 is presented in order to support the findings for two kinds of 

attractor coexistence using the original LM with different parameters. Based on 

an analysis of the LM and the GLM, we suggest a refined view on the dual nature 

of weather in Section 5. Additional support for this view is also presented by the 

review of prior studies. Concluding remarks are provided in Section 6.  

 

2. The Lorenz 1963 Model 

 

In his 1963 study, Prof. Lorenz presented an elegant system of three ordinary 

differential equations (ODEs) derived from the governing equations for the 

Rayleigh-Benard convection (e.g., Saltzman 1962; Lorenz 1963a). The system 
describes the time evolution of three variables, X, Y, and Z, as follows: 

��

��
= �� − ��,																																										(1) 

��

��
= −�� + �� − �,																														(2) 

��

��
= �� − ��.																																									(3) 

Here,	τ	is the dimensionless time. Three time-independent parameters include the 

Prandtl number (σ), the normalized Rayleigh number (r),	also called the heating 

parameter, and a function of the ratio between the vertical and horizontal scales 

of the convection (b).  (X, Y, Z)		represent the amplitudes of the three Fourier 

modes for dynamic and thermodynamic variables. The system contains three 

types of physical processes, including buoyancy/heating terms (represented by σY 

and rX), dissipative terms (represented by – σX, −Y, and – bZ), and nonlinear 

processes (indicated by −XZ and XY). With the exception of the heating parameter 

(r), the following parameters are kept constant: σ = 10 and b = 8/3. Control and 

parallel runs are performed in order to reveal the difference (or divergence) of 

two solutions. The only difference between control and parallel runs is that a 
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parallel run includes tiny perturbations (∈= 10@AB) or finite perturbations (∈	=

−0.9)	in initial conditions.  

 

Using the state variables X, Y, and Z as coordinates, a phase space can be 

constructed for an analysis of solutions. An orbit or a trajectory is defined as the 
time varying components of solutions within the phase space. The dimension1 of 

the phase space is equal to the number of time-dependent variables or to the 

number of ODEs. Thus, equations (1)-(3) with three variables are referred to as a 

three-dimensional Lorenz model (3DLM). High-dimensional LMs contain more 

than three variables.  

 

Lorenz’s Chaotic and Non-Chaotic Attractors 

 

Depending on the competitive or collective impact of nonlinear processes and 

linear buoyancy/heating and dissipative processes, various types of solutions (i.e., 

different attractors) appear within the Lorenz model. Historically, the dependence 

of their appearance on the strength of heating measured by the parameter (r) has 
been a focus. Steady-state, chaotic, and nonlinear oscillatory solutions have been 

shown to occur under conditions of weak, moderate, and strong heating, 

respectively (e.g., Sparrow 1982; Drazin 1992)2. In Fig. 1., the three different 

types of solutions are shown using r = 20, 28, and 350, respectively. The top 

panels display solutions for control runs within the X-Y space, while bottom 

panels display the time evolution of the Y components for both control and 

parallel runs. For a steady-state solution, its orbit eventually approaches a single 

point, that is, a non-trivial equilibrium point within the X-Y space (Fig. 1a), 

appearing as a point attractor; and its amplitude remains constant over time after 

arriving at the equilibrium point. Mathematically, equilibrium points, also called 

critical points, are defined as solutions of the time-independent nonlinear system 
(e.g., no time derivatives in Eqs. (1)-(3), Guckenheimer and Holmes 1983)3. 

When the heating parameter exceeds the critical value of rc = 24.74, the 3DLM 

with r = 28 displays the so-called chaotic solution or a chaotic attractor with 

irregular oscillations. The solution’s boundary within the X-Y space appears as a 

                                                
1 The term “dimension” is conventionally used for a system of ODEs (e.g., Hirsch 

et al. 2013; Thompson and Stewart 2002). In this study, the 5DLM, 7DLM, and 

9DLM are referred to as high-dimensional or high-order Lorenz models (e.g., 

Moon et al. 2017).  
2 Similar findings for the dependence of various solutions (i.e., chaotic and limit 

cycle solutions) on the strength of heating were also reported using a two-layer, 

quasi-geostrophic model that describes the finite-amplitude evolution of a single 

baroclinic wave by Pedlosky and Frenzen (1980). 
3 In our 5D-, 7D-, and 9D LMs, we can obtain closed form solutions of trivial 

and non-trivial equilibrium points and use them to verify the numerical solutions 

of equilibrium points.  
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tilted “8” pattern.  Interestingly, when heating becomes larger (e.g., r = 350), the 

system produces a nonlinear periodic solution known as a limit cycle solution or 

a periodic attractor, as shown in Figs. 1c and 1f. Additional details on the 

characteristics of nonlinear oscillatory solutions may be found in earlier studies 
(e.g., Shimizu 1979; Sparrow 1982; Strogatz 2015) and/or recent studies (e.g 

Reyes and Shen 2019; Shen 2019a, b). Below, the impact of a tiny initial 

perturbation on three attractors, including a point attractor, a chaotic attractor, and 

a periodic attractor, is further discussed.  

 

Parallel runs with a tiny initial perturbation (∈= 10@AB) are compared to control 

runs in order to reveal the difference of initial, nearby trajectories within the phase 

space. For steady-state and nonlinear oscillatory solutions, control and parallel 

runs produce almost identical results, only appearing in red, for example, in Figs. 

1d and 1f. The runs indicate insignificant impacts by a tiny initial perturbation. In 

other words, steady-state and nonlinear oscillatory solutions are insensitive to a 

tiny change in ICs. In comparison, within the chaotic regime, two solution orbits 

whose starting points are very close to each other display very different time 
evolutions, as clearly shown in blue and red in Fig. 1e.  The phenomenon is called 

the sensitive dependence of solutions on ICs and only appears within a chaotic 

solution.  

 

Boundedness and Divergence of Chaotic Trajectories  

 

Within the chaotic regime, a sensitive dependence of solutions on ICs is referred 

to as the butterfly effect (BE, e.g., Lorenz 1993, 2008). As shown in Fig. 2a, the 

term ``butterfly’’ was partly used due to its geometric pattern within the Y-Z space 

(e.g., Lorenz 1993). A butterfly pattern with a finite size and varying curvatures 

within the phase space also qualitatively suggests an important feature of solution 

boundedness. Therefore, BE means that a tiny change in an IC can produce a very 
different time evolution of a solution for three variables (X, Y, Z). However, the 

separation (or divergence) of two orbits should be bounded by the size of a 

butterfly pattern.  

 

The average separation rate (i.e., an average rate of divergence) of nearby 

trajectories has been quantitatively measured using the Lyapunov exponent (LE, 

Wolf et al. 1985; Zeng et al. 1991, 1993). A positive LE suggests an exponential 

rate in the averaged separation of two infinitesimally nearby trajectories over an 

infinite period of time (e.g., Eqs. (25)-(26) of Shen 2014). Chaotic solutions 

within the 3DLM, as well as high-dimensional LMs, have a positive LE. Since 

the LE is defined as a long-term averaged separation, researchers often 
misinterpret the divergence of two nearby, but finitely separated, chaotic 

trajectories within the 3DLM as continuing over time and lasting forever. The 

misunderstanding also makes people believe that an unconstrained solution is due 

to the divergent nature of chaos (e.g., Hilborn 2000). In fact, in addition to a 

positive LE, solution boundedness is another major feature of a chaotic system.  
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Due to solution boundedness, a trajectory should recurve within the phase space 

(e.g., Hilborn 2000). Therefore, time-varying (local) growth rates along a chaotic 

orbit are observed (e.g., Zeng et al. 1993) and may become negative, as indicated 

by a negative finite time LE (e.g., Nese 1989; Eckhardt and Yao 1993; Ding and 
Li 2007; Bailey 2011). In other words, the infinite-time limit in the definition of 

an LE does not imply a monotonically increasing separation between two nearby 

trajectories over a long period of time. Two initial nearby trajectories can quickly 

separate and reach the bound of their separation.  

 

3. The Generalized Lorenz Model  

 

The 3DLM produces three different attractors and each attractor exclusively 

appears within the phase space, depending on the interval of system parameters. 

The 3DLM with a single-type solution suggests that either chaos or order 

exclusively exists.  By comparison, two different solutions may coexist and 

dominate system dynamics in a separate region (i.e., a different subspace) within 
the phase space within the same model, and with the same parameters, but with 

different ICs. Attractor coexistence has mainly been studied using conservative 

Hamiltonian systems (e.g., Hilborn 2000), but can also be found in the forced 

dissipative 3DLM (e.g., Yorke and Yorke 1979; Drazin 1992; Ott 2002). Below, 

we first discuss two kinds of attractor coexistence using the GLM, and then apply 

the GLM to understand the whether the 3DLM can also possess two kinds of 

attractor coexistence.  

 

Based on our recent studies (e.g., Shen, 2014-2019a), we successfully developed 

a GLM that: (1) is derived based on partial differential equations for the Rayleigh-

Benard convection4; (2) allows a large number of modes, say M modes, where M 
is an odd number greater than three; and (3) produces aggregated negative 

feedback5 that is accumulated from the feedback of various smaller-scale 

processes, yielding a larger effective dissipation in higher dimensional LMs (Shen 

2019a; Shen et al. 2019). As a result of aggregated negative feedback, a higher-

dimensional LM requires a larger critical value for the Rayleigh parameter (rc) 

for the onset of chaos. For example, the rc for the 5DLM, 7DLM, and 9DLM are 

42.9, 116.9, and 679.8, respectively, as compared to a rc of 24.74 for the 3DLM 

(Shen 2019a). Fig. 2 displays chaotic solutions obtained from the 3D, 5D, 7D, 

and 9D LMs with different heating parameters. Therefore, an intial tiny 

perturbation with the same strength may play a different role within the GLM 

with a different value of M. Such a  feature shows a dependence on the number 

                                                
4 By comparison, chaotic models in Lorenz (1996/2006, 2005) were not derived 

from physics-based partial differential equations.  
5 Negative feedback can be found within the so-called Lorenz-Stenflo system that 

extends the 3DLM with one additional ODE containing one additional mode that 
takes rotation into consideration (e.g., Xavier and Rech 2010; Park et al. 2015, 

2016).  
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of selected modes. Namely, it depends on the degree of spatial complexity 

associated with a various number of modes of the GLM.   

 

Two Kinds of Attractor Coexistence  

 

The GLM with M = 5 or M = 7 (i.e., 5DLM or 7DLM) also produces three 

different types of solutions, including a steady-state, chaotic, and limit 

cycle/torus6. More importantly, the GLM with M = 9 (i.e., 9DLM) displays two 

kinds of attractor coexistence, each with two different attractors. For the first kind 

of coexistence, both chaotic and steady-state solutions occur concurrently using 

the same model and the same parameters. The only difference is their ICs. Such 

a coexistence shares properties similar to that of the 3DLM but appears over a 

wider range of the Rayleigh parameter (e.g., 679.8 < r < 1,058), as compared to 

the small interval (e.g., 24.06 < r < 24.74) for the 3DLM.  

 

 In addition to the first kind of attractor coexistence, the 9DLM is able to produce 
the second kind of attractor coexistence, consisting of nonlinear, periodic (i.e., 

limit cycle) orbits, and steady-state solutions at large Rayleigh parameters (e.g., r 

= 1,600). The new kind of coexistence was recently documented in Shen (2019a), 

Shen et al. (2019), and Reyes and Shen (2019). Additionally, coexisting two 

periodic solutions were documented using the 9DLM with r = 1120 (e.g., Shen 

2019a).  As a result, when system parameters change at a large time scale (e.g., 

at climate time scales), different kinds of attractor coexistence may alternatively 

or concurrently appear, leading to complexities that better resemble real weather 

and climate.  

 

Two Kinds of IC Dependence and Final State Sensitivity  

 

Depending on system parameters, ICs and the dimension of the model (say the 

value of M within the GLM), a modeling system may contain one or more 

attractors7 within the phase space. Since different attractors coexist, we expect 

different kinds of solution dependence on ICs, as illustrated using the 9DLM with 

r = 680 that produces the coexistence of chaotic and non-chaotic orbits. Control 

runs apply three sets of ICs at different locations within the phase space: close to 

the non-trivial equilibrium point, near the origin (i.e., a saddle point), and at point 

(100, 100, 100, 100, 100, 100, 100, 100, 100). For parallel runs, a finite-amplitude 

perturbation (∈	= -0.9) is added into the ICs. In Fig. 3, solutions of the control 

runs are shown in blue, while results of parallel runs are displayed in green, red, 
or orange.  Top panels display the time evolution of the Y components, while 

bottom panels present solutions within the X-Y space. The model with r = 680 

                                                
6 A torus is defined as a composite motion with two (or more) oscillatory 

frequencies whose ratio is irrational (e.g., Faghih-Naini and Shen 2018).  
7 The coexistence of chaotic and quasi-periodic orbits has been recently 

documented in a modified Lorenz system by Saiki et al. (2017).  
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produces the coexistence of steady-state and chaotic orbits, displaying a 

dependence on ICs. For the first case (Figs. 3a and 3d) with the IC that is close to 

the non-trivial equilibrium point, the orbit moves toward the equilibrium point, 

producing steady-state solutions. Since the orbit spirals into the non-trivial 
equilibrium point within the X-Y space, it is also called a spiral sink solution. For 

the second case (Figs. 3b and 3e) where an IC is close to a saddle point at the 

origin but away from the non-trivial equilibrium point, solutions still approach 

the same non-trivial equilibrium point as a steady-state solution, while initially 

displaying a different time evolution as compared to the first case. On the other 

hand, for the third case (Figs. 3c and 3f), the model produces a chaotic solution, 

different from the steady-state solution. A comparison between control and 

parallel runs suggests that an initial perturbation only has a short-term impact on 

the initial transient evolution of steady-state solutions but can lead to a very 

different evolution for chaotic solutions8.  

When coexisting chaotic and regular attractors from 256 different initial 

conditions are plotted within the X-Y phase space, Figure 4 clearly shows that 
chaotic and non-chaotic orbits occupy two different regions (or two different 

subspaces). Additional details on the spatial distribution of 256 initial conditions 

may be found in Shen et al. (2019). As a result of the different regions of attraction 

for coexisting attractors, final state sensitivity may appear (e.g., Grebogi et al. 

1983) when ICs begin near the boundary of two different attractors. Such a 

sensitivity creates a different challenge for prediction.   

 

Finite and Deterministic Predictability  

 

The rate of a growing initial error with time has been used to determine 

predictability, suggesting a finite predictability in chaotic (or unstable) systems. 
Such a growth rate is proportional to the divergence of two nearby trajectories 

measured using a Lyapunov exponent. Within chaotic regimes of the 3DLM, as 

well as within the GLM that contains one positive LE and solution boundedness, 

time-varying divergence and convergence of nearby trajectories yields time-

varying growth rates and, thus, time-varying predictability. Estimated 

predictability over a short period should display a dependence on various initial 

states9. By comparison, when non-chaotic (i.e., steady-state or nonlinear periodic) 

solutions appear as a single type of solution or coexist with another type of 

solution, their predictability should be deterministic (unlimited). Stated 

conservatively, the non-chaotic solution should remain predictable until it is 

changed by time varying parameters that represent heating or dissipations.   As a 

                                                
8 Such a dependence on initial conditions, close to (or away from) the non-

trivial equilibrium point, can be shown by the following YouTube video for a 

double pendulum (between 1:00-1:20): 

https://www.youtube.com/watch?v=LfgA2Auyo1A.  
9 As a result, we agree with Prof. Arakawa that the predictability limit is not 

necessarily a fixed value (Lewis 2005). 

898



 9 

result, very different intrinsic predictability may appear and depend on ICs within 

a system that possesses the coexistence of chaotic and non-chaotic attractors.  

 

4. Attractor Coexistence within the 3DLM  

 

Within chaotic solutions of the 3DLM that has no stable equilibrium points, a tiny 

perturbation can always lead to a very different time evolution.  Stated 

alternatively, within the chaotic regime, the system, in the absence of energy sinks 

for steady-state solutions, does not have a mechanism for completely removing 

the impact of a tiny perturbation on state variables. By comparison, within the 

GLM with M = 9, or higher, that possesses coexisting chaotic and steady-state 

solutions, a tiny initial perturbation may play a very different role. A tiny 

perturbation may have no long-term impact when it appears to be associated with 

a steady-state solution that approaches one of stable equilibrium points, 

suggesting that the perturbation eventually dissipates. On the other hand, a tiny 

perturbation may lead to a large impact on the time evolution of the chaotic 
solution. As a result, the 9DLM with a dual role for a tiny initial perturbation over 

a wide range of the heating parameter, as well as other features such as 

hierarchical scale dependence,  is more realistic than the classical 3DLM with 

typical parameters. On the other hand, we may ask whether the 3DLM with 

different parameters may also produce two kinds of attractor coexistence, 

providing additional support to the findings of the GLM.   

 

Next, we first discuss the coexistence of the 3DLM with typical parameters that 

include � = 10.		We then address the question of whether � = 10 is a magic 

choice. As simply shown in the animation, https://goo.gl/scqRBo, the 3DLM with 

the same parameters, including r = 24.4, � = 10, and b = 8/3, but with different 

ICs, produces two types of solutions that include chaotic or steady-state solutions, 

yielding the first kind of attractor coexistence. However, such a coexistence only 

appears over a very small range of r, giving the length of an interval less than 0.7 

(i.e., 24.06 < r < rc = 24.74), and, thus, its characteristics and potential role in 

revealing the nature of weather has not been well appreciated. 

 

For the past 50 years, although various types of solutions for Lorenz (1963) have 

been documented, chaotic solutions have been the main focus. As discussed in 

the main text, since chaotic solutions appear over a finite range of parameters, 

their applicability in revealing the nature of weather depends on the realism of 
not only the models employed but also model parameter values.  In his book in 

1993, Lorenz humbly expressed that it may not have been possible for him to 

discover the butterfly-pattern solution if a realistic value of � = 1	was used, as 

shown below: 

`` 

I was lucky in more ways than one. An essential constant of the model is the 

Prandtl number -- the ratio of the viscosity of the fluid to the thermal conductivity. 

Barry had chosen the value 10.0 as having the order of magnitude of the Prandtl 
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number of water. As a meteorologist, he might well have chosen to model 

convection in air instead of water, in which case he would probably have used 

the value 1.0. With this value the solutions of the three equations would have been 

periodic, and I probably would never have seen any reason for extracting them 
from the original seven. 

‘’ 

Therefore, one may wonder how fortunate Prof. Lorenz was and whether a 

realistic value of � = 1 may have influenced our view on the nature of weather. 

We make an attempt of addressing the question by analyzing a GLM with M = 9 

and examining a 3DLM with	� = 1. As discussed in Shen (2019a), the GLM with 

M = 9 has stable, non-trivial equilibrium points for all � > 1 when � = 10 and b 

= 8/3. To have stable, non-trivial equilibrium points for � = 1	within the 3DLM, 

we chose b = 2/5.	 Such a choice leads to two kinds of attractor coexistence, a 

unique feature first identified within the 9DLM (Shen 2019a). With � = 1 in the 

3DLM, the first kind of coexistence includes chaotic and steady-state solutions at 

a moderate heating parameter (e.g., r = 170, as shown in Fig. 5). Table 1 lists 

initial conditions for the results provided in Fig. 5. Thus, chaotic solutions may 

still appear within the 3DLM for a realistic value of � = 1,	but they coexist with 

steady-state solutions. The appearance of chaotic solutions depends not only on 

the range of the heating parameter but also on the ICs. Additionally, the second 

kind of coexistence that consists of a limit cycle and a steady-state solution 

appears  at a large heating parameter (e.g., r = 250, not shown). 
 

Both traditional and new model configurations with (�, �) = (10, 8/3) and 
(1, 2/5), respectively, can produce chaotic solutions. For the traditional 

configuration that has been well applied in numerous studies since Lorenz 

(1963a), all three equilibrium points are unstable when � > 24.74. The stability 

of the three equilibrium points for � = 10, as well as for � = 1, is illustrated in 

Fig. 6. The non-existence of stable equilibrium points within the chaotic regime 

makes it easier to obtain chaotic solutions. However, no tiny, initial perturbation 

can completely lose its impact within the chaotic regime. We may interpret this 
as a finding that a tiny, initial perturbation cannot completely dissipate (before 

leading to a large impact). By comparison, for the new configuration of � = 1, 

while the origin is still a saddle point, the two, non-trivial equilibrium points are 

stable (Fig. 6b). The existence of stable equilibrium points enables the 

coexistence of chaotic and steady-state solutions, the latter of which has no long-

term memory regarding a tiny, initial perturbation.  

 

As a result of coexistence for � = 1 within the 3DLM, a proper choice of initial 

conditions is required in order to simulate a chaotic solution. Without knowing 
this, Prof. Lorenz thought it may have been impossible to obtain a “strange’’ 

solution if � = 1 was first used in the Saltzman (1962) model, giving no 

motivation for him to work on the 3DLM. In other words, the value of � = 10 

used in the original study (e.g., Saltzman 1962) was indeed a “fortunate” choice 

so that an unexpected irregularly oscillatory solution could be revealed, inspiring 
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Prof. Lorenz to develop the 3DLM in order to discover interesting chaotic 

features.  However, on the other hand, we now understand that such a 

configuration can only depict a partial picture for the nature of weather. Based on 

our results and analysis, a realistic system should include physical processes for 
(some of) the tiny disturbances in order to completely dissipate.  Since it produces 

the coexistence of chaotic and steady-state solutions and since the steady-state 

solution has no long-term memory of tiny perturbations, the 3DLM with the new 

configuration of � = 1 satisfies the objective.  Such a system, which is similar to 

the 9DLM that produces two kinds of coexisting attractors, provides a more 

realistic view on the true nature of weather than the original 3DLM with a typical 

configuration. The above results support the idea that two kinds of attractor 

coexistence should be taken into consideration to reveal the nature of weather.  

 

 

5. A Refined View on the Nature of Weather 

 

 

Within the forced dissipative 3DLM, chaotic solutions appear within a finite 

range of parameters (e.g., heating parameter), bounded on one side by stable, 

steady-state solutions and on the other side by nonlinear periodic solutions. Since 

climate and weather involve open systems (e.g., McGuffie and Henderson-Sellers 

2014), an assumption of constant parameters within numerical simulations using 

the 3DLM, as well as high-dimensional LMs, is not realistic (e.g., Daron and 

Stainforth 2015). Time varying parameters that lead to different attractors should 

be used in models for realistic climate or weather (Shen et al. 2020, in 

preparation). For example, when a moderate heating becomes weaker (or 
stronger), a steady-state solution (or a limit cycle) may appear. Since regular and 

chaotic solutions may alternatively appear, chaotic solutions alone may not be 

able to represent the entirety of weather.  

 

 

Additionally, our results show that chaotic and non-chaotic solutions may coexist 

and two kinds of attractor coexistence may alternatively appear within the 9DLM 

using time varying parameters. The analysis suggests a need to refine our view of 

weather by taking the dual nature associated with attractor coexistence into 

consideration. To this end, we suggest, contrary to the traditional view that 

weather is chaotic, that weather is, in fact, a superset that consists of both chaotic 

and non-chaotic processes, including both order and chaos. 
 

Vacillation, Coexisting Two LCs, and Coexisting Two Time-scale Orbits 

 

The (potential) occurrence of a regular nonlinear periodic solution (i.e., limit 

cycle) in the atmosphere was first illustrated by laboratory experiments using 

dishpans. Based on experiments by David Fultz (Fultz et al. 1959) and Raymond 

Hide (Hide 1953), Lorenz (1993) suggested three types of solutions, including: 
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(1) steady state solutions, (2) irregular chaotic solutions, and (3) vacillation. 

“Amplitude vacillation” is defined as a solution whose amplitude grows and 

periodically decays in a regular cycle (Lorenz 1963c; Ghil and Childress 1987; 

Ghil et al. 2010). Studies by Pedlosky (1972), Smith (1975), and Smith and Reilly 
(1977) found that amplitude vacillation can be viewed as a limit cycle solution. 

By conducting a study for observational characteristics of low-frequency 

variability, Ghil and Robertson (2002) suggested that 40-day, intra-seasonal 

oscillations may arise from a bifurcation off the blocking flow and may be 

represented by a limit cycle with a period of 40 days. 

 

As discussed earlier, we showed that the 3DLM with a realistic value of � = 1 

also generates two kinds of attractor coexistence. Additionally, the coexistence of 

two stable limit cycle solutions was documented using the Lorenz 1984 model 

(Lorenz 1984, 1990; Masoller et al.  1992; Pielke and Zeng 1994; Veen 2002a, b; 

Wang et al. 2014) that also contains three types of solutions, including steady 
state, periodic solutions, and chaotic solutions. Using a seasonally varying forcing 

term with a time scale of 12 months, Lorenz (1990) showed that chaos appears 

during winter (within a specific range of parameters) and two coexisting LCs 

during summer (within a different range of parameters). Such numerical results 

also support the view of the dual nature of chaos and order that alternatively 

appear. The above results suggest that once summer begins and has been 

observed, a better predictability for a limit cycle solution may be expected during 

each cycle of the solution in summer, as compared to that in winter. More 

recently, Lucarini and Bodai (2019) applied a multistable system with coexisting 

attractors to reveal the bistability of the climate system with both positive and 

negative feedback (e.g., Garashchuk et al. 2019; Lucarinii and Bodai 2019). 
 

Coexisting solutions at two time scales, that are not the same as the coexisting 

attractors discussed above, have also been documented within the scientific 

literature.  Related studies additionally support the refined view on the nature of 

weather. For example, co-existence of fast and slow manifolds has been discussed 

by Lorenz (1986, 1992), Lorenz and Krishnamurthy (1987), and Curry et al. 

(1995).  Both types of solutions in Lorenz (1986) are non-chaotic. By comparison, 

fast and slow “variables” that are chaotic may also coexist within coupled systems 

(e.g., Pena and Kalnay 2004; Mitchell and Gottwald 2012). In fact, an analysis 

using a singular perturbation method (Bender and Orszag 1978) indicates that the 

GLM also possesses the coexistence of slow and fast variables that correspond to 

large and very small spatial modes (e.g., Eq. (2) and Eq. (4) of Shen 2019a in a 
high-dimension phase space).  A current trend is to include time-varying 

parameters to increase the complexities of low order systems (e.g.,   Lucarini 

2019). It can be shown that a higher dimensional Lorenz model (e.g., 7DLM) can 

be viewed as a lower-dimensional Lorenz model (e.g., 5DLM) with a period 

forcing, suggesting that the complexities of spatial mode-mode interaction may 

lead to the temporal complexities.  
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Error Saturations and Computational Chaos 

 

In real-world weather models, the appearance of (fully) chaotic solutions may be 

indicated by error saturations, defined as follows. A logistic equation has been 
used to describe the evolution of root mean square (rms) average forecast error 

for ensemble runs (Lorenz 1969b, 1996; Nicolis 1992; Kalnay 2003; Zhang et al. 

2019). Given an initial condition with a small value, the solution of the logistic 

equation has time varying, non-negative growth rates (e.g., growing at an initial 

larger growth rate, then at a nonlinear smaller growth rate, and eventually 

approaching a constant defined as a saturated error that has a zero growth rate).  

The occurrence of error saturation at a fully nonlinear stage indicates a 

comparable number of members with positive and negative error growth rates at 

a given time. Such a result is consistent with the features of a positive LE and 

solution boundedness associated with a specific chaotic solution.  

 

The error growth model with non-negative growth rates may describe the 
statistical behavior of the system within which the majority of small errors tends 

to grow. By comparison, the error growth model cannot accurately represent the 

initial, transient evolution of the rms averaged forecast error associated with 

large ensemble members with periodic or decaying components whose growth 

rates are small. For periodic solutions such as vacillation (Lorenz 1969b), an 

ensemble averaged error may grow (or decay) with time when a large (or small) 

ensemble number of growing errors and a small (or large) ensemble number of 

decaying errors are averaged. As a result, when oscillatory waves were simulated, 

their rms errors may oscillate with time rather than become saturated. For 

example, oscillatory rms errors appeared after 40-day simulations in Figure 5 of 

Liu et al.  (2009) who performed global simulations using the Community 
Atmosphere Model (Collins et.  al. 2004). An additional example can be found in 

30-day simulations of multiple African Easterly Waves (AEWs) using a global 

mesoscale model that produced oscillatory correlation coefficients (Shen 2019b).  

 

On the other hand, it should be noted that error saturations may appear in 

association with computational chaos that is a numerical artifact. For example, 

Lorenz (1989) presented several cases in order to show that while differential 

equations of a model may possess nonlinear limit cycle solutions, the 

corresponding discrete version of the model with large time steps produces a 

sensitive dependence of solutions on the initial condition, referred to as 

computational chaos. As a result, the appearance of error saturations (as well as 

positive LE) that appear within numerical models does not necessarily represent 
the chaotic nature of weather. Due to the appearance of computational chaos, an 

estimate of a practical predictability limit using saturation errors should be 

interpreted with caution, as it does not necessarily represent an intrinsic 

predictability limit for real weather.   
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5. Concluding Remarks  

 

The statement of “weather is chaotic” has been introduced to indicate the chaotic 

nature of weather with a finite intrinsic predictability.  The statement has also 
been cited to embrace a practical predictability limit of two weeks.  The finite 

intrinsic and practical predictability are indeed largely derived from the chaotic 

and unstable solutions of Lorenz models (e.g., Lorenz 1963a, 1969a). In other 

words, the current view of “weather is chaotic” does not take into consideration 

other types of solutions within original Lorenz models and new types of solutions 

within newly developed generalized Lorenz models.  

 

In this study, we first applied the aforementioned models in order to reveal three 

types of solutions and two kinds of attractor coexistence, indicating different 

intrinsic predictability for different solutions. We then suggested a refined view 

on the dual nature of chaos and order in weather. In contrast to the current view 

that focuses on chaotic solutions with a predictability limit (of two weeks), our 
refined view suggests that coexisting chaotic and non-chaotic systems can have 

different intrinsic predictability. The refined view may unify the theoretical 

understanding of different predictability within Lorenz models with recent 

numerical simulations of advanced global models that can simulate large-scale 

tropical waves beyond two weeks (e.g., Shen 2019b; Judt 2020).  

 

 The refined view with a duality of chaos and order is fundamentally different 

from the Laplacian view of deterministic predictability and the Lorenz view of 

deterministic chaos. The refined view that is not too optimistic nor too pessimistic 

suggests both potential and challenges. For non-chaotic processes with steady-

state or nonlinear periodic solutions, their intrinsic predictability is deterministic 
(e.g., up to the lifetime of a dissipative solution or the time scale of the forcing) 

and their practical predictability can be continuously increased by improving the 

accuracy of the model and the initial conditions. For limit cycle solutions that may 

be associated with computational chaos, accurate simulations with better 

predictability, as compared to chaotic solutions, can be obtained by increasing 

temporal resolutions and/or removing redundant dissipations.  To reveal longer 

predictability or better estimates on predictability in model and observation data, 

we will focus on developing schemes for the detection of chaotic and non-chaotic 

solutions (e.g., Sprott and Xiong 2015; Reyes and Shen 2019) and examining the 

roles of butterfly effects in multiscale simulations using high-resolution global 

models. 

 
In addition to the chaotic nature of weather with a finite predictability, another 

major influential impact of the 3DLM is that the sensitive dependence on initial 

condition, referred to as the butterfly effect of the first kind, has been inaccurately 

metaphorized to indicate the ability of a butterfly flap in creating a tornado, 

referred to as the butterfly effect of the second kind (Shen 2014). To understand 

their roles in reality and numerical models, the two different kinds of butterfly 
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effects are being analyzed based on a comprehensive review of historical 

literature and recent understanding of chaos dynamics. 
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Table 1: Initial conditions (ICs) for revealing the coexistence of two attractors for σ = 1,
b = 0.4, and r = 170 within the 3DLM. Xc = Yc =

√

b(r − 1) and Zc = (r − 1). The six
rows provide the ICs for Fig. A1.

X Y Z
Xc Yc + 1 Zc

-Xc −Yc + 1 Zc

0 1 0
-76.72346293 37.62433028 -146.96230812
-27.75526885 167.67883615 3.66782724
136.44623635 99.45689394 -19.76741851
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Figure 1: Three types of solutions within the 3DLM. Left, middle, and right panels display steady-state, chaotic,
and limit cycle solutions at small, moderate, and large heating parameters (i.e., r = 20, 28, and 350), respectively.
The solutions are categorized into a point attractor, a chaotic attractor, and a periodic attractor, respectively.
Top panels show orbits within the X − Y space and bottom panels depict the time evolution of Y. Blue lines
provide solutions from control runs. To display results from parallel runs, red lines are added in the bottom
panels. Sensitive dependence on initial conditions is shown in panel (e) with two visible lines. Two panels, (b)
and (e), are reproduced from Shen (2019b).
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Figure 2: Chaotic solutions in the X − Y −Z phase space within the 3D, 5D, 7D, and 9D Lorenz models (LMs).
Panels (a)-(c) use the same initial conditions with Y = 1 and the remaining as zero, while panel (d) uses an IC
with 100 for all variables. Variables (X, Y, Z) are normalized by 2

√

r − 1, 2
√

r − 1, and (r − 1) , respectively. A
larger heating parameter is required for the onset of chaos in a higher-dimensional LM. Also see detailed analysis
of solutions in Shen (2016) and Shen (2019a).
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Figure 3: Solutions of the GLM with M = 9 and r = 680. Initial conditions for the three cases
are placed near the non-trivial critical point (a,d), the origin (i.e., trivial critical point) (b,e), and at
(100, 100, 100, 100, 100, 100, 100, 100, 100) (c,f). Top panels show the time evolution of Y for t ∈ [0, 2.5], while
bottom panels display the corresponding solutions t ∈ [0, 10] within the X − Y space. Control and parallel runs
are denoted by ’C’ and ’P’, respectively. A finite-amplitude perturbation (ǫ = −0.9) is added into the parallel
runs. Two panels, (c) and (f), are reproduced from Shen (2019a).
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Figure 4: Coexistence of chaotic and non-chaotic orbits starting with 256 different initial conditions(ICs) for
τ ∈ [0.625, 5]. Chaotic orbits recurrently return back to the saddle point at the origin. Non-chaotic orbits
eventually approach one of two stable critical points as shown in large blue dots. Chaotic and non-chaotic orbits
occupy different regions of attraction within the phase space.
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Figure 5: A co-existence of chaotic (c, d) and non-chaotic (a, b, e, f) solutions using the same parameters for
σ = 1, b = 0.4, and r = 170 within the 3DLM. Blue and red lines display solutions from the control and parallel
runs, respectively. Initial conditions for the results in six panels are listed in Table 1.

915



Figure 6: Local behavior near the two non-trivial critical points for the 3DLM with σ = 10 (a) and σ = 1 (b).
Lighter blue dots indicate the locations of orbits at earlier times. A red dot indicates the origin, which is a saddle
point. Orbits in panel (a) spiral away from the non-trivial critical points while orbits in panel (b) spiral toward
the non-trivial critical points.
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