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Preface 
13th Chaotic Modeling and Simulation  

International Conference  
 

9 – 12 June 2020 
 

It is our pleasure to welcome the guests, participants and contributors to 

the 13th International Conference (CHAOS2020) on Chaotic Modeling, 

Simulation and Applications. We support the study of nonlinear systems 

and dynamics in an interdisciplinary research field and very interesting 

applications will be presented. We intend to provide a widely selected 

forum to exchange ideas, methods, and techniques in the field of 

Nonlinear Dynamics, Chaos, Fractals and their applications in General 

Science and in Engineering Sciences.  

The principal aim of CHAOS2020 International Conference is to expand 

the development of the theories of the applied nonlinear field, the 

methods and the empirical data and computer techniques, and the best 

theoretical achievements of chaotic theory as well.  

Chaotic Modeling and Simulation Conferences continue to grow 

considerably from year to year thus making a well established platform 

to present and disseminate new scientific findings and interesting 

applications.  

We thank all the contributors to the success of this conference and 

especially the authors of this Proceedings Volume. Special thanks to the 

Plenary, Keynote and Invited Presentations, the Scientific Committee, 

the ISAST Committee, Yiannis Dimotikalis and Aris Meletiou and the 

web supporting team, the Conference Secretary Eleni Molfesi and all the 

members of the Secretariat. 

 

November 2020             

 

Christos H. Skiadas,  

Conference Chair 
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Higgs boson and Higgs field in fractal models of the 

Universe: active femtoobjects, new Hubble constants, 

solar wind, heliopause 
 

Valeriy S. Abramov 

 
Donetsk Institute for Physics and Engineering named after A.A. Galkin, Ukraine 
(E-mail: vsabramov2018@gmail.com) 
 
Abstract. Theoretically the relationship between the main parameters of active 

femtoobjects and the Higgs boson in fractal models of the Universe was investigated. To 
describe the structure of the solar wind, heliopause, new Hubble constants are proposed. 

Estimates of the main parameters are conformed with the experimental data obtained by 

the Planck space observatory (based on Fermi-LAT and Cerenkov telescopes), UTR-2 

and URAN-2 radio telescopes, Parker Solar Probe, Voyager 2 and Voyager 1. Within the 
framework of the anisotropic model, a description of the main characteristics of the 

model femtoobject and its relationships with the parameters of the Higgs boson and the 

Higgs field was performed. To take into account the stochastic behavior of the 

parameters of a model femtoobject (an active object with dimensions of the order of the 
classical electron radius), random variables are introduced. Using the example of a 

hydrogen atom, we estimated the radius of a proton, its mean square deviation, and 

compared it with an experiment. Estimates of the anomalous contributions to the 

magnetic moments of leptons based on the lepton quantum number are obtained. 
Keywords: model femtoobject, Higgs boson and Higgs field, fractal models of the 

Universe, Hubble constants, structure of the solar wind, heliopause, hydrogen atom, 

proton and electron radii, magnetic moments of leptons. 

 

1  Introduction 
 

To describe fractal cosmological objects (using binary black holes and neutron 

stars as an example), the model was proposed in [1, 2] that takes into account 

the relation between the parameters of the Higgs boson and relict photons, 

gravitons. Within the framework of this model, the possibility of radiation of 

gravitational waves from such cosmological objects in the superradiation regime 

is shown [2]. Higgs field accounting made it possible to propose an anisotropic 

model of fractal cosmology, within the framework of which it is possible to 

describe the effect of accelerated expansion of the Universe [3]. In this case, a 

transition to the description of atomic defects, active nanoobjects, and neutrinos 

is possible [4, 5]. Active objects in fractal quantum systems have their own 

characteristic features of behavior [6 - 8]. In this case, superradiative states of 

active objects may appear [7]. When describing various physical fields 

(gravitational, electromagnetic, neutrino, deformation, stress) in fractal quantum 

systems, it is necessary to take into account the ordering effect of the 
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corresponding operators [8]. Coherent laser spectroscopy methods and the 

modern development of nanotechnology make it possible to study active 

femtoobjects (protons, neutrons, atomic and muon hydrogens, leptons) in fractal 

quantum systems. Estimates of the characteristic sizes for the proton radius and 

Rydberg constant in atomic and muon hydrogens were obtained in [9–11]. Note 

that active femtoobjects such as leptons have anomalies in magnetic properties 

[12 - 14]. For neutrinos, the effect of oscillations (mutual transformations of the 

electron, muon neutrino and τ-neutrino into each other) is observed [13]. 

The relationships between the Higgs boson parameters and active nanoelements 

in fractal systems were studied in [15–17]. Features of the behavior of coupled 

states of a vortex–antivortex pair were considered in [16]. In [17], the 

description of the relations of the Higgs boson parameters with cosmological 

objects in the Universe was proposed. For the accelerated expansion of the 

Universe, within the framework of this model [17], the relationships of the 

Hubble constant (old value) with the parameters of the Higgs boson and relict 

radiation were obtained. The experimental data on the attenuation of gamma 

rays against an intergalactic background, obtained by the Planck space 

observatory (based on Fermi-LAT and Cerenkov telescopes), made it possible to 

determine new values of the Hubble constant and the density of matter in the 

Universe [18]. The authors explain these new values by the interaction of γ rays 

with relic photons. In this case, it becomes necessary to agreement the old and 

new values of the Hubble constants both within the framework of our model and 

with the cosmological model ɅCDM (plane cosmology). On the other hand, 

experimental data on the compound, structure, and behavior of the solar wind 

(flows of various particles) near the Sun [19 – 24], Earth [25] and in interstellar 

space (near the heliopause) [26 – 30] should also be associated with new values 

of the Hubble constant, the expansion rate, and the density of matter in the 

Universe. 

The aim of this work is to describe the main characteristics of active 

femtoobjects, the solar wind, heliopause and their relationships with the 

parameters of the Higgs boson and the Higgs field in fractal models of the 

Universe. 

 

2  Description of model femtoobject 
 

The compound of the solar wind may include active nanoobjects [4 - 7] and 

femtoobjects. Based on the results of [1, 2, 4 - 7], we introduce the main parameters 

2 p , 0A , pr   of a model femtoobject 

2 0 / 1 / ( )p F pn N N      ;   0 0 0/A A e Hn E E  ;   2 / ( )p e Fr r z n ,     (1) 

which are related with the known parameters of quantum electrodynamics 

2 2
0/( )e er e m c ;  0 0c e e  ;  0 0e e   ;  

2
0 0/c e  ;  

2 2
0 /e e eE m c e r  ; 

2
0 / /p e e p pr m r m e E  ; 

2 2
0 0/p p pE m c e r  ; /2B ee m  ; /2N pe m  .  (2) 

2



Here er  and 0 pr , em  and pm , eE  and pE  are classical radii, rest masses, rest 

energies for electron and proton, respectively; 0c  is limited speed of light in 

vacuum;  is Planck's constant; e  is electron charge; 0  is fine structure constant; 

0e  is renormalized electron charge; B  is Bohr magneton; N is nuclear 

magneton. Next we will use the numerical values 0.51099907МeVeE  , 

/ 1836.152701p em m  , 938.2723226МeVpE  , 2.81794092fmer  , 

0 1.534698568аmpr  . Note that in this work, model femtoobjects are active 

objects with sizes of the order of the classical electron radius er . Model attoobjects 

with sizes of the order of the classical proton radius 0 pr  describe the internal 

structure of nucleons (the presence of a core and scalar, vector clouds [12]). In 

fractal quantum systems (such as atomic and muon hydrogen), model attoobjects 

can lead to a change in the main parameters (1), anomalies in magnetic properties 

(2) and stochastic behavior [8] of model femtoobjects and leptons. In our model, the 

main parameters of the model femtoobject are related to the resting energy of the 

Higgs boson 0HE , the main parameter 0An  for black holes [1, 2], the number of 

quanta Fn , Fn  of the fermionic field ( 1F Fn n  ) from the anisotropic model 

(taking into account the presence of the Higgs field) [3], and the cosmological 

redshift z  [1, 2], the effective susceptibility 0  in the absence of the Higgs field 

[4–7] and the effective number N  in the Dicke superradiation model [2]. The 

numerical values of these parameters are: 0 125.03238GeVHE  , 

0 58.04663887An  , 0.945780069Fn  , 0.054219931Fn  , 7.18418108z  , 

0 0.257104198  , 17.0073101N . Using formulas (1), we find the numerical 

values of the main parameters of the model femtoobject 2 4.741876161p  , 

6
0 237.232775 10A

   , 0.829458098fmpr   and 17.21819709pN   . 

To take into account the stochastic behavior of the parameters of the model 

femtoobject, we introduce a random variable ˆ
rp  with two possible values 1p , 

2 p  and their corresponding probabilities 1pP , 2 pP , and expected value 

ˆ( ) 1rpM   . Based on the parameters 2 p , 0A  from (1) we find the probabilities 

1pP , 2 pP , possible value 1p , variance ˆ( )rpD  , standard deviation ˆ( )rp   

1 2 2 0/ ( )p p p AP    ;   2 0 2 0/ ( )p A p AP    ;   1 2 1p pP P  ; 

1 2 2 1(1 )/p p p pP P   ;  
2

2 1 1 2
ˆ( ) ( )rp p p p pD P P    ;  

1/2ˆ ˆ( ) ( )rp rpD   .   (3) 

The values of these parameters from (3) are equal: 1 0.999949973pP  , 

6
2 50.02710pP   , 1 0.999812796p  , 

6ˆ( ) 700.49510rpD    , ˆ( ) 0.026466865rp   . 
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Next, we introduce a random variable ˆˆp p rpr r    with two possible values pr , er


 

and their corresponding probabilities 1pP , 2 pP . If pr  is a constant value, then the 

possible values pr , er


, expected value ˆ( )pM r , variance ˆ( )pD r , standard 

deviation ˆ( )pr  are found by the formulas 

1p p pr r ;   2e p pr r ;   1 2ˆ( )p p p e p pM r r P r P r    ; 

2
1 2ˆ( ) ( )p e p p pD r r r P P   ;   

1/2ˆ ˆ( ) ( )p pr D r  .                         (4) 

The numerical values are equal: 0.82930282fmpr
 , 3.933187582fmer

 , 

6 2ˆ( ) 481.936 10 (fm)pD r   , ˆ( ) 0.021953046fmpr  . Our calculated value of 

the proton radius pr  almost coincides with the new experimental value of 

0.8293 fm for the proton radius in the hydrogen atom, obtained by 2S-4P 

spectroscopy (based on quantum interference) [11]. 

Based on the anisotropic model [1, 2, 4], we find the relationship of the radii pr , pr  

with other characteristic parameters pr , px , py , pr  , pr 
 , pr   

p p pr r x   ;   sn( ; )p px r u k  ;   cn( ; )p py r u k  ;   
2 2 2
p p px y r  ; 

3( )p p p pr y r r    ;   p p Fr r n  
  ;   1 22 (1 ) 4( )p p u u p pr r S S r r

     .    (5) 

The parameter sn( ; ) sin 0.057234291u k     is related to the angle   [1, 2]; 

quantum numbers 0.950987889Fn   , 1F Fn n   
 
are related with the lepton 

quantum number 
2( ) 0.002402187L Fn     from [5]; parameters 

1| | 0.046741575uS  , 2 0.033051284uS   defined in [4]. Further, based on 

expressions (5), we find the numerical values of the characteristic parameters: 

0.876931544fmpr  , 0.047473446fmpx  , 0.828098429fmpy  , 

0.876478321fmpr   , 0.833520268fmpr 
  , 0.841841587fmpr  . Our 

calculated values pr  and pr   practically coincide with the values of 0.8768 fm 

(the CODATA value) and 0.84184 fm (determined on the basis of fine and ultrafine 

splitting in the framework of quantum electrodynamics) [9], respectively. Our 

calculated value pr 


 practically coincides with the value of 0.8335 fm for muonic 

hydrogen [10]. Our anisotropic model [1, 2, 4] also makes it possible to estimate the 

measurement error pr , pr   using the formulas 

32 sn( ; )[1+sn( ; )]p p pr r r u k u k        ;   112 / ( )p e Fr r z n   ; 

2p d ur r S   ;   | |d ef Fr r  ;   F F pr n r   .                              (6) 

4



Taking into account 
11
χ 0.181800122 , 

32
χ 0.010405201 , | | 0.250425279ef   

from [1, 2] and expressions (6) we find estimates of measurement errors 

0.009124649fmpr  , 0.006902512fmpr   , which do not disagree the 

experimental estimates of 0.0091 fm from [11], 0.0069 fm from [9], respectively. In 

this case, the calculated value of the radius 0.208842481fmdr    in our model is 

near the mean square radius of the electric charge distribution in the core of nucleons 

equal to 0.21 fm [12]. The radius 0.833951278fmFr    is related with the 

characteristic radii Fr  , Lr  and the value 0.97597813L   by the expressions 

F F pr n r    ;   
2 2 2( ) ( ) ( )F L pr r r    ; 

2 2( )L L pr r    ;   1 (1 )L L F Fn n         .                          (7) 

The values of these radii are equal: 0.042980266fmFr   , 0.866334751fmLr  . 

Anomalies in the magnetic moments of leptons can be determined by the influence 

of CMB radiation. In this case, relict radiation can lead to effects of renormalization 

of the initial parameters: fine structure constant 0 , electron charge e , limiting 

speed of photon propagation in vacuum 0c ; rest masses em , m , m  and 

magnetons B , / 2e m   , / 2e m    for electron, muon,  -lepton, 

respectively. The magnetic moments of leptons ˆe  , ˆ  , ˆ   for an 

electron, muon,  -lepton, respectively, are determined by the expressions 

ˆ2 (2 )e e B    ;   ˆ2 (2 )      ;   ˆ2 (2 )      .    (8) 

Anomalous contributions to magnetic moments and renormalization effects are 

described by parameters e ,  ,   for electron, muon,  -lepton, 

respectively, based on the lepton number L  

e L HL     ;   0/HL HL HE E  ;   3HL H eE n E ;   17.21088699N   ;   (9) 

L NL      ;   0/NL NL HE E   ;   NL eE N E  ;   0( ) FN N n    ;   (10) 

0.5( )L HL GL       ;   0/GL GL HE E  ;   GL G eE n E .                    (11) 

Additional contributions HL , NL , GL  are determined based on the energies 

HLE , NLE  , GLE  and the resting energy of the Higgs boson 0HE . From (9) - (11) 

it follows that these additional energies are determined by the numbers of quanta 

3Hn , N  , Gn  and the rest energy of the electron eE . Wherein 

3 3 0/ (1 )H Hn n    ;   
2 2 2

0 01 1 ( ) 1 ( ) χF pn N N         ;       (12) 

3 3 2 3 00.5H H h H An Q n Q n  ;   0 ( 1) /A Q gn z z n n     ;   2Q Gn n .      (13) 

Here 8gn  , 6Qn  , ˆ ˆ 3G G Gn c c   and ˆ ˆ 2G G Gn c c  
 

can be 

5



interpreted as the numbers of quanta of the gluon, quark, excited, and ground states 

of the gravitational fields, respectively; neutrino density 0ν 0.002939801   [4]. 

Based on (13) we find 3 20.33926863Hn  . Further, taking into account (12), (10), 

we obtain 3 20.27965049Hn  , 0.052340473Fn  . Based on equations (9) - (11) 

we find the energies 10.36288254 MeVHLE  , 8.794747246 MeVNLE  , 

1.53299721MeVGLE  ; additional contributions 
682.88159067 10HL

   , 

670.33975716 10NL
   , 

612.26080164 10GL
   . The found parameters 

6/ 2 1159.652705 10e
   , 

6/ 2 1165.92362110
   , 

6/ 2 1177.307902 10
    

coincide with the data [14] for anomalies of the magnetic moments of leptons. 

 

3  New Hubble Constants 
 

The parameters of active nanoobjects and femtoobjects are related with 

cosmological parameters. To describe accelerated expansion of the Universe in 

model I [17] and the anisotropic model [1, 2, 4], the Hubble constants 01H , 02H , 

0H , characteristic distances 01L , 02L , 0L , speeds 01 , 02 , 0  were introduced
 

01 0 01 01 0/ /H c L L  ;   02 0 02 02 0/ /H c L L  ;   0 0 0/H L .        (14) 

The values 0 1MpcL  , 
-1 1

01 73.2 km s МpcH    , 01 4.0954948GpcL   

(distance to supernova type 1a), 
-1

01 73.2 km s    and 02 4.2574359GpcL   

(event horizon), 
-1 1

02 70.415674 km s МpcH    , 
-1

02 70.415674 km s    were 

obtained on the basis of the analysis of supernova type 1a [3] and measurements by 

Cepheids, respectively. The Hubble constant 
-1 1

0 67.83540245km s МpcH    , 

velocity 
-1

0 67.83540245km s    were introduced in [1, 2, 4] to describe the 

radiation of gravitational waves, relict photons from binary black holes, neutron 

stars based on the expression 

0 01/ tH   ;  0 01| |tH HQ S    ;  0 01 02 01 02 02 01/ / H /HQ H L L    .  (15) 

Here are 0 1.039541282HQ  , 01| | 0.039541282S   . New experimental data on 

the attenuation of γ-rays against an intergalactic background [18] make it 

possible to introduce a new Hubble constant 0H
, velocity 0


, and matter 

density m  based on expressions 

0 0 0/H L  ;   0 01 / tH    ;   012tH tH S   ;   012 01 02| |S S S   .   (16) 

Here is 02 0.03409S   . The numerical values of 
-1 1

0 67.49443576kms МpcH    , 

-1
0 67.49443576km s   , 1( ) / 2 0.141145722m F cn      (the parameter 

1 0.228071512c   is related to the gap in the energy spectrum of relict 

6



photons) are close to the experimental data from [18]. From [16] it follows the 

connection of parameters 01H , 01  for the accelerated expansion of the 

Universe with new parameters 0H
, 0


. Our parameters 0H , 0  and new 

parameters 0H
, 0


 are close to the main parameters 0H  , 0   of the model 

ɅCDM (plane cosmology). In our model 0H  , 0   are defined by expressions 

0 0 0/H L  ;   0 01/ tH    ;   0 0 0/tH tH g A An n
      .       (17) 

Values 
-1 1

0 67.30995226km s МpcH    , 
-1

0 67.30995226km s   are close to 

the parameters of the planar cosmology model. 

 

4  Solar wind and heliopause 
 

The Sun is the source of solar wind (flows of photons and various particles) [19]. 

Photons achieve the Earth after 8 min, and high-energy particles arrive with a delay 

of 100 min [20]. To estimate the characteristic distances and times, we use 

0 0 0/ES ES H ES H ESL L Q c t t    ;   
2 2 2 2

0 0 01 01 02(1 | |) /H Hn Q S      ,   (18) 

where 
2 2

0 0 0/H Hc n  . Taking into account the numerical values of the distance 

from the Earth to the Sun 
81au 1.495995288 10 kmESL    , the limiting speed of 

light in a vacuum 
5 -1

0 2.99792458 10 kmsc   , we find estimates of the refractive 

index of the medium 0 1.080646077Hn  , the speed of photon propagation in the 

medium 
5 -1

0 2.883891801 10 kmsH   , the distance 0.961962759auESL  , and 

the times of arrival of photons to the Earth from the Sun in vacuum 

480.0293392sESt   and in the medium 499.0103147sESt  . 

To estimate the delay time 0mt  of particles, arriving on the Earth from the Sun, we 

use the expressions 

0 0 02 lnm mt N ;   0 0 0/ n    ;   
1

0 0  


 ;   
2

0 01.5 | |Hn    ; 

0 0 0ln 2 lnmN n N  ;   2 0 10.5H c FQ N n     ;   0 0 0/H AN  .   (19) 

Expressions (19) were obtained in the framework of the Dicke theory of 

superradiance and describe the main parameters 0 , 0mt  of the superradiance 

pulse in a medium from a state with the number of particles 0mN . 

Based on the numerical values 
5

0 3.557716045 10AN   , 0 50.182731HzH  , 

2
0| | 0.181800122H  , 2 1/ 3HQ  , 0.049012111Fn    we find estimates of the 

frequency 0 141.0532217μHz  , relaxation time 0 118.1587096 min  , 

fractal parameter 0 1.681800122n   , coherent spontaneous relaxation time 

0 70.25728449 min  , effective numbers of active particles 0 2.331250869N   
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and 0 17.23047995mN  , delay time 0 100.0101199 minmt  . 

To estimate the characteristic parameters for the region near the boundary of the 

heliopause, we first find the relationships between the rest energies 0EE  and 0HE , 

rest masses EM  and 0Hm , the gravitational radii of Schwarzschild GER  and 0HR  

for the Earth and the Higgs boson, respectively, by the formulas 

0 0 0 0 0/ / /E a H E a H GE a H EE N E M N m R N R n   ;   
2

0 0 0H HE c m ; 

2
0 0 0 / 2H H am c R GN ;   0GE G ER A E ;   

4
0 0 0/ 2 /G H H aA R E GN c  ; 

0 0GE GE ES E a HR N L n N R  ;   
275.977 10 gEM   .                        (20) 

Based on (20) we find the parameters of the theory 
10.960836162fm(eV)GA  , 

0 73.87419814En  , 
185.347530124 10 kmGER   , 

103.574563481 10GEN   . 

Taking into account (18) in the framework of the anisotropic model [4] we find the 

characteristic velocities hS , hS , distances hSL , hSL , time of arrival of the signal 

from the heliopause to the Earth hSt  from the expressions 

0 01| |hS H hS efQ      ;   hS hS ESL N L ;   hS hS ESL N L  ;   0/hS hS HL L Q  ; 

0hS H hSN n N  ;   
2 2

0/ /hS GE hSL R c ;   / /hS ES hS ESL L t t .         (21) 

Based on (18) - (21), the values | | 0.250425279ef   from [4], we find the 

estimates 
-1

02| | 17.63386481kmshS ef    , 123.6734916hSN  , 133.6472735hSN   , 

101.850149607 10 kmhSL   , 16.49080679 hourhS ES hSt t N  . The speed hS  is 

close to the speed 
-1

V2 17.5kms   of the V2 probe; the distance 118.9692932auhSL   

is near the distance to the heliopause boundary V2 119auL   from [26]. 

To describe the transition region near the boundary of the heliopause, we introduce 

the times 1t , 2t , 3t , distances 1L , 2L , 3L . Next, we find the characteristic time 

intervals 31t , 21t , 32t  by the formulas 

31 3 1 311/t t t    ;   31 02 0 2 0(1 ) /H u AS N    ;   21 2 1 31t t t t P   ; 

32 3 2 31t t t t P   ;   1P P   ;   031/ (2 )P S   .                  (22) 

Using the parameters 02 0.984494334  , 03 0.460458718S    from [4], we obtain 

numerical values: frequency 31 0.072287263μHz  ; probabilities 0.593571722P  , 

0.406428278P ; time intervals 31 160.1122188dayt  , 21 95.03808539dayt  , 

32 65.07413336dayt  . The obtained values of the intervals 21t  and 32t  practically 

coincide with the time intervals of 95 days and 65 days for the transition region near 

the heliopause boundary from [26, Fig. 1a]. 

The characteristic distance 3L  for interstellar space (outside the heliopause at 
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3 2L L ) is determined from the expressions 

3 3L ESL N L ;   3 2(1 )L hL u hSN S N   .                                 (23) 

Using the parameters 0.000118617hL   from [4, 5], hSN  from (21), we find the 

value 3 119.5712542LN   and the estimate of the distance 3 119.5712542auL  . 

To estimate the distance 1L  (inside the heliosphere for 1 2L L ), we use the 

characteristic distances eL , L , L  for e ,  ,  -leptons, respectively, 

determined by the expressions 

             e e ESL N L  ;   e e hSN n N  ;   1(2 ) (1 )e e un S     ; 

             ESL N L  ;   hSN n N  ;   1(2 ) (1 )un S     ; 

ESL N L  ;   hSN n N  ;   1(2 ) (1 )un S     .         (24) 

Using the parameters e ,  ,   from (9) - (11), based on (24) we find the 

estimates of distances 118.1796344aueL  , 118.1811855auL , 

118.1840014auL  . For search of the characteristic distance 2L  (as the 

heliopause boundary), we consider a random variable 2L̂  with two possible values 

3L  from (23), 1 eL L  from (24) and their corresponding probabilities 01P , 

01P . For expected value 2
ˆ( )M L , variance 2

ˆ( )D L , deviation 2
ˆ( )L , we have 

2 01 3 01 2
ˆ( ) eM L P L P L L     ;   

2
2 3 01 01

ˆ( ) ( )eD L L L P P    ;   
1/2

2 2
ˆ ˆ( ) ( )L D L  ; 

01 01 1P P   ;   01 01 03 01/ (1 )P S      ;   01 1.015268884  .       (25) 

The numerical values of the distance 2 119.0005661auL   and space intervals 

32 3 2 0.57068813auL L L   , 21 2 0.8209317aueL L L    practically coincide 

with the characteristic values of 119 au, 0.57 au, 0.82 au, respectively, from [26, 

Fig. 1a]. Based on (22), (25), we find the average values of the velocities 21  

(inside the heliosphere), 32  (outside the heliopause), the jump in velocities 21  

(at the heliopause) and the ratio of velocities 32 21/   

21 21 21 31 01 31/ /L t L P t P    ;   32 32 32 31 01 31/ /L t L P t P     ;   31 3 1L L L  ; 

21 32 21    ;   32 21 01 01 0 01 0/ / /H HE        .              (26) 

The numerical values are equal: 
-1

21 14.95635805kms  , 
-1

32 15.18472495kms  , 

-1
21 228.366896ms  . We note, that the probabilities 01P  and P  are coupled 

through a conditional probability P , and the ratio of the velocities and the jump in 

velocities allow us to introduce probabilities P , P  using expressions of the type 
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01P P P   ;   03 03 01 01(2 ) / (1 ) 1/ (1 )P S S n        ;   1P P   ; 

01 21 321/ /P     ;   21 32/P    ;   01 01 03( 1) / (2 )n S    .        (27) 

From (27) it follows, that 01n  is a function of two arguments 01  and 03S  . If the 

Higgs field is absent ( 01 1  ), then from (27) we obtain: 01 0n  ; probabilities 

1P  , 01P P  , 1P  , 0P  ; jump in speed 21 0   and equality of 

speeds 21 32  . The presence of the Higgs field ( 01 1  ) leads to the 

appearance of a velocity jump, when crossing the heliopause boundary. Replacing 

the parameter 03S   in (27) with other parameters 0xS  , xuS  ( 1,2,3,4x  ) of the 

energy (frequency) spectra leads to a change in the probabilities and stochastic 

behavior of the velocities 21 , 32 . 

The anisotropic model [4] and expressions (1), (4) allow us to obtain relationships of 

velocities 32 , 21  with characteristic velocities u , eu  (active nanoobjects, 

femtoobjects that are part of the solar and galactic wind) of the type 

32 0 01 21F u eun         ;   2u p eu   ;   2 /p e pr r  .     (28) 

Based on (28) we find the velocity estimates 
-159.04358906kmseu  , 

-1279.9773874 kmsu  . On the other hand, the characteristic solar wind velocity 

u  is related to the Hubble constants 01H  and 02H , 0H , 0H
, 0H  , velocities 

01  and 02 , 0 , 0


, 0   for models from (14), (15), (16), (17), respectively, by 

expressions of the type 

02 0 00.5 2u A W q A          ;   01 02 022q W        ; 

01 02 0 02 0 02 0 02W tH tH tH                      ;   0 0 0/A Ac N  .   (29) 

Values of speeds are equal: 
-1

0 0.84265426kmsA  , 
-1143.615674 kmsW  , 

-12.784326kmsq  . 

The velocity hS  from (21) is related to the characteristic velocities of relict photons 

ra , ra  and the velocities 02 , 0


, 0 , W , h  by expressions of the type 

022 hS ra ra    ;   0 /ra rac N  ;   2 | |ra ef ra    ; 

0 0ra ra     ;   
2 2 2

0W h     ;   1041.293475raN  .         (30) 

Values of speeds are equal: 
-1287.9039053kmsra  , 

-1144.1968316kmsra  , 

-1
0 134.7596298kms  , 

-149.65182785kmsh  . 

The experimental data obtained by the Wind probe (the interval of solar wind speed 

changes of 600–300 km s-1, Fig. 6 from [25]), on the UTR-2, URAN-2 radio 
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telescopes (Fig. 5 from [25]) showed, that the solar wind in orbit and beyond the 

Earth’s orbit consists of a set of particle flows with different velocities and densities. 

The structure of these flows depends on time and solar activity [19, 20]. An analysis 

[25] of intermode (intramode) interactions of particles of different flows was 

performed by the interplanetary scintillation method based on the behavior of space 

and time correlation functions for radiation intensity. The velocities 02  , u  

and ra  are close to the characteristic velocities of 270, 280 and 290 km s-1 of 

separate solar wind modes from [25]. The detailed analysis of the multimode 

structure of the solar wind in our model is possible based on spectra of type 

2ux u xuS    and 2rax ra xuS  . From (30) it follows that the velocities 0  

and h  can be interpreted as both the radial and transverse components of the total 

velocity W . The presence of transverse components h  of the solar wind near 

the Sun is confirmed by experimental data collected by the Parker Solar Probe [21 - 

24]. The behavior of the transverse component (Fig. 2 from [22]) is stochastic and 

varies in the range from 50 to –50 km s-1. In [24], such a behavior of the slow solar 

wind is associated with the presence of equatorial coronal holes in the Sun. A fast 

solar wind with speeds 02   occurs near the poles of the Sun. 

In our model, it is also possible to describe the multimode structure of the solar and 

galactic winds at the crossing of the heliopause based on the velocities eu  from 

(28), W  from (29), ra  from (30) and the corresponding velocity spectra. The 

experimental data (Fig. 4d from [27], Fig. 2 from [29]) confirm the stochastic 

behavior and change in the velocity of solar wind particles when the heliopause 

crosses from 150 km  s-1  to 100 km s-1. The complex dynamic behavior of the 

plasma components (Fig. 3, 4 from [29]) with velocities near eu , 2 eu  inside the 

heliosphere indicates the presence of a boundary layer near the heliopause. 

To estimate the characteristic energies 0A , 0AE , A , effective wavelength A , 

effective number 0nN  of particles, we use expressions of the type 

0 0 0 0/ /H A A G AE E E N   ;   0 0 0 0/ /H A A G nE E E N  ; 

0 0 0/H G HG n AE E N N N  ;   
2

0 0 0A A A H GE E E   ;   /A Aa   .   (31) 

Taking into account 
5

0 3.557716045 10AN   , 
161.031830522 10HGN   , a  from [6] 

we find the estimates: 0 351.4400206 keVA  , 0 4.311073329eVAE  , 

1.230887363keVA  , 1.007114093nmA  , 
10

0 2.900261036 10nN   . 

The presence of a multimode structure of the solar and galactic wind, the Higgs field 

leads to the replacement A , A  by A


, A


 by the formulas 

A rc bb    ;   / 2A A Aa R      ;   /A A GE R A  ; 

0 1 2(| | )bb A u uS S   ;   0 01 02 1 02 22 / ( ) /rc rc A u uE S S       .   (32) 
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The values are equal: 28.042404 keVbb  , 0.04420725rc  , 95.290347 meVrc  , 

1.239677565 keVA
  , 0.999972933nmA

 , 0.520365996МeVAE  . The 

energy AE  (for solar wind particles inside the heliosphere) is associated with the 

energy LE  (for galactic wind particles behind the heliopause) 

0( )A L g G LE n E      ;   0 0 11.5G A c FN n      ; 

2 2 2
0 4rc A rcE E   ;   

2 2 2
0( ) 4rc A rcE E    .                          (33) 

The numerical values are equal: 
6

0 4.99501253 10G
   , 213.0772532МeVLE  , 

4.306858745eVrcE  , 4.315283797eVrcE  . The energy estimates bb , LE  

obtained in our model are consistent with the energies of 28 keV, 213 MeV from 

[26], and the energy AE  is consistent with the energy of 0.5 MeV from [28]. 

The magnetic characteristics of solar and galactic wind particles have features of the 

behavior at the intersection of the heliopause: a jump in the magnetic field from 0.42 

to 0.68 nT is observed (Fig. 1a from [27]); components of the magnetic field can 

have different signs (Fig. 3 from [27]); the presence of a magnetic barrier (Fig. 4a 

from [27]); a change in the direction of the magnetic field components (Fig. 6b, c 

from [27]). In our model, to estimate the components of magnetic fields y xB  , 

y xB 


 we use frequency spectra of the type 

0/ 2 2y x n y x y xB S        ;   / 2 2y x n y x y uxB S        ;   0,1,2y  ; 

0 /y y raN  ; 2 1 2 1 012/ (1.5 )zgB B n S 
    ; 00 0H  ; 02 02 0H   .  (34) 

Here we use the well-known nuclear gyromagnetic ratio / 2 0.6535МHz/kOn    

for the deuteron (2H) [12], 0.114317037zgn   [4]. Based on (34) we find estimates: 

frequencies 2 1 4.4353480mHz   ; jump of magnetic fields from 2 1 0.4190147 nTB    

to 2 1 0.6787067 nTB 
   at the intersection of heliopause. The numerical values of 

the fields deviations of the type 0 1 0 2 0.0804015nTB B B     , 

0 1 0 2 0.2019195nTB B B        and the sum of the deviations 

0.282321nTB B     are characteristic of the stochastic behavior of the 

magnetic field on time inside the heliosphere (consistent with data Fig. 6 from [27]). 

 

Conclusions 
 

In fractal quantum systems the model femtoobjects, as active objects with sizes 

of the order of the classical electron radius, are considered. The main parameters 

of the model femtoobject, which are coupled with the known parameters from 

quantum electrodynamics and the Higgs boson, are introduced. To take into 
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account the stochastic behavior of the parameters, random variables with two 

possible values and the corresponding probabilities are introduced. It was 

shown, that the obtained estimates of the proton radius, measurement errors 

using the example of the hydrogen atom, and estimates of the anomalies in the 

magnetic moments of leptons are consistent with the experimental data. 

The parameters of active nanoobjects and femtoobjects are coupled with 

cosmological parameters, with new values of the Hubble constants. These active 

objects can determine the compound, structure and behavior of the solar wind 

(flows of various particles) near the Sun, Earth and in interstellar space (near the 

heliopause). The relationships of such active objects with the parameters of the 

Higgs boson and the Higgs field are determined. Estimates of the main 

parameters are conformed with the experimental data, obtained by the Planck 

space observatory (based on Fermi-LAT and Cerenkov telescopes), UTR-2 and 

URAN-2 radio telescopes, Parker Solar Probe, Voyager 2 and Voyager 1. 

The results can be used to find a solution to the problem associated with the Covid-

2019 virus (based on active femtoobjects and nanoobjects), in cosmic medicine. 
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Abstract: By the method of numerical simulation, the behavior of the deformation field 
of both separated and related model fractal structures of a cylindrical type was 

investigated. It is shown, that for the considered structures, the behavior of the 

deformation field essentially depends on the choice of stochastic processes (realized 

during iterations) and on the states of the qubit in the perpendicular plane to the axis of 
the cylinder. It is shown that the structure of the complex deformation field for a circular 

(elliptical) cylinder essentially depends on the initial basic, superposition states of the 

qubit. Due to the presence of various qubit states for coupled (using the example of 

circular and elliptic cylinders) fractal structures, the appearance of random matrices 
during iterations is characteristic. There is a need to use commutators and anti-

commutators, products of separate deformation field operators. At this, the structure of 

the complex deformation field has own characteristic features of behavior. 

Keywords: fractal structure, qubits, random matrices, complex deformation field, 
ordering of operators, quantum chaos. 

 

1  Introduction 
 

Earlier in [1–3], to describe the total deformation field of coupled fractal 

structures in an iterative process, the sum of the displacement field operators of 

separate fractal structures was used. The deformation field of the coupled 

structure essentially depends on the sequence of separate operators of 

displacement fields in the iterative process. On the examples of quantum dots 

[4], elliptic [1, 2] and circular [3, 5] cylinders the influence of the ordering of 

separate operators of displacement fields on the total deformation field of the 

coupled structure was shown. The presence of variable semiaxes and variable 

moduli leads to stochastic behavior of the complex deformation field of such 

structures. Based on pairs of same fractal structures with opposite orientations 

of the deformation fields, complex zero operators were introduced [3. 5]. It is 

shown that changes in the order of the sequence of separate operators in the zero 

operator for a coupled structure leads to the appearance of a nonzero complex 

deformation field. At the same time, noise tracks appear on the background of 

stochastic peaks. The noise track is a stochastic ring, the inside region of which 

is regular region. 

For describe quantum chaos random matrices are used [6]. Elements of random 

matrices can be formed as a result of an iterative process. In this case, the need 

arises for the use of commutators and anti-commutators, products of separate 

15

mailto:oabramova@ua.fm


operators, qubit states [7, 8] of the deformation field. Quantum computers [9 -

 12] encode information in qubits. The physical systems that realise qubits can 

be any objects having two quantum states. Different nanostructures and 

metamaterials [13] can be chosen as active objects. These active objects can be 

in superposition qubit states and exhibit stochastic properties, quantum 

entanglement. 

The aim of this work is to describe the deformation fields of fractal coupled 

structures consisting of two separate structures (circular and elliptical cylinders) 

with different qubit states. In this case, the deformation fields of coupled 

structures are considered as the sum and product (scalar and matrix) of the 

deformation fields of separate structures. 

 

2  Description of the deformation field of separate fractal 

structures in various qubit states 
 

We consider a model fractal structure (circular or elliptical cylinder), located in 

a bulk discrete lattice 1 2 3N N N  , whose nodes are given by integers , ,n m j . 

By analogy with [1 – 3, 5] nonlinear equations for the dimensionless 

displacement function u  of the lattice node are 

2 2
0(1 2sn ( , ))u uu k u u k    ;                                      (1) 

2 (1 ) /uk Q  ;   2 1/2
  (1 )u uk k   ;   0 1 2 3p p p n p m p j    ;      (2) 

2 2 2 2 2 2
1 0 2 0 3 0( ) / ( ) / ( ) /c c cQ p b n n n b m m m b j j j       .           (3) 

Here 0u  is the constant (critical) displacement; a  is the fractal dimension of the 

deformation field u  along the axis Oz  ( [0,1]a Î ); variable modules uk , uk   are 

functions of indices n , m , j  nodes of the bulk discrete lattice. The choice of the 

positive sign of the module uk   is associated with the choice of the second 

branch of the displacement function u  [14]. Function Q  determines the form of the 

fractal structure, the type of attractors and take into account the interaction of the nodes of 

both in the main plane of the discrete rectangular lattice 1 2N N´  as well as 

interplane interactions. The parameters 1b , 2b , 3b , 0n , cn , 0m , cm , 0j , cj  

characterize different fractal structures. The choice of function p  depends on 

the choice of parameters ip , 0,3i  . In this paper, we are limited to 

consideration of qubit states with 1 0p  , 2 0p  , 3 0p   and shift 0 0p  . 

The iterative procedure on index n  for equations (1) - (3) simulates stochastic 

processes on a rectangular discrete lattice with dimensions 1 2N N . 

By numerical modelling, it was assumed that 1 240N  , 2 240N  , 0.5 , 

0 29.537u  , 0 1.0423p  , 1 2 1b b  , 0 121.1471n  , 0 120.3267m  , 
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0 31.5279j  , 11.8247cj  , 3 0b  . For a circular cylinder, the semiaxes were 

equal 57.4327c cn m  , and for an elliptical cylinder they were as follows 

55.2537cn  , 14.9245cm  . 

To describe the deformation field of an separate circular (elliptical) cylinder, the 

basic states of the qubit and their superposition in the plane nOm  are 

introduced. The various states of the qubit in the plane nOm  are described by 

nonzero coefficients for linear terms in the functions p , Q . 

The initial state of an separate circular (elliptical) cylinder is the state (0,0) with 

the coefficients 1 0p  , 2 0p  . 

The basic states of a qubit are states (1,0), (0,1), (-1,0), (0, -1) with the 

coefficients 1 0p   or 2 0p  . So for state (1,0) are 1 0.00423p  , 2 0p  ; for 

state (0,1) are 1 0p  , 2 0.00572p  ; for state (-1,0) are 1 0.00423p   , 

2 0p  ; for state (0,-1) are 1 0p  , 2 0.00572p   . 

For superpositional states of qubits, we have, respectively: 

                            state (1,1) are 1 0.00423p  , 2 0.00572p  ; 

                            state (1,-1) are 1 0.00423p  , 2 0.00572p   ; 

                            state (-1,1) are 1 0.00423p   , 2 0.00572p  ; 

state (-1,-1) are 1 0.00423p   , 2 0.00572p   .                  (4) 

Fig. 1 shows the behavior of the cross sections of the deformation field u  for 

elliptical (Fig. 1a, d) and circular (Fig. 1b, e) cylinders in the initial state (0,0) 

and basis states of qubits. 

Fig. 1c, f, g, h, i, j, k, l shows the behavior of the cross sections of the 

deformation field u  for a circular cylinder in the basic states of qubits: Reu  

(Fig. 1c, g, h, i), Im u  (Fig. 1f, j, k, l). In this case, the peak amplitudes and the 

variation range Reu , Im u  for the elliptical cylinder are smaller than for the circular 

one. 

For the initial (0,0) and basic states (1,0), (0,1) of qubits the regular behavior 

Reu  in the inner region is characterized (Fig. 1b, c, g). 

By changing qubit states, the features of behavior of the deformation field is 

observed: the concave part of the inner region (Fig. 1b) changes to the convex 

(Fig. 1c) and then to the convex-concave (Fig. 1g). Such behavior allows the 

interpretation of the inner region as a membrane with the possible alteration of 

its states due to a change in the states of qubits. 

The regular behavior of the inner region Reu  is limited by the stochastic 

boundary (stochastic ring). The outer region Reu  is characterized by wave-like 

behavior, which is explained by the presence of variable modules uik , uik   (2) 

in expressions (1). Localized in the region of boundary rings with 

discontinuities (Fig. 1e, f, j) the stochastic behavior is characteristic for Im u , 

while Im 0u   is characteristic in the inner and outer regions of the rings. 
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a) state (0,0) b) state (0,0) c) state (1,0) 

   
d) state (0,0) e) state (0,0) f) state (1,0) 

   
g) state (0,1) h) state (-1,0) i) state (0,-1) 

   
j) state (0,1) k) state (-1,0) l) state (0,-1) 

 

Fig. 1. The behavior of the cross sections u  (top view) depending on the states of 

qubits of separate structures: Re [ 1;1]u   - (a, b, c, g h, i); Im [ 1;1]u   - (d, e, f, j, k, 

l). The initial states of qubits (0,0) for elliptical (a, d) and circular (b, e) cylinders.  

The basic states of qubits for a circular cylinder (c, f, g - l). 

 
For the other basic states (-1.0), (0, -1) of qubits characteristic stochastic 

behavior Reu  in the inner region and wave-like behavior in the outer region 

(Fig. 1h, i), that indicates a significant alteration of the structures. 

For these states Im u  has a stochastic structure, localized in the inner region of 

the cylinder (Fig. 1k, l), and outside the region Im 0u  . The imaginary part 
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Imu  indicates the presence of an effective damping. By changing these basis 

states, the character of damping changes. 

 

   

a) state (1,1) b) Re [ 1;1]u   c) Im [ 1;1]u   

   

d) state (-1,-1) e) Re [ 1;1]u   f) 
9 9Im [ 10 ;10 ]u     

 

Fig. 2. Superpositional states of qubits of a separate structure (circular cylinder). 

Behavior Reu  (a, d) and cross sections (top view) (b, c, e, f)  

in the states: (1,1) - (a, b, c); (-1, -1) - (d, e, f). 

 
The presence of superpositional states of qubits in separate structures leads to a 

change in the behavior of the complex deformation field. As an example, Fig. 2 

shows the behavior Reu  (Fig. 2a, d) and cross sections (Fig. 2b, c, e, f) of an 

separate structure (circular cylinder)  in  superposition states of qubits (1,1)  and 

(-1, -1). The characteristic features of the behavior of the deformation field for 

state (1.1) (Fig. 2b, c) are close to state (0,0) (Fig. 1b, e). The characteristic 

features the cross sections behavior of deformation field for the state (-1, -1) 

(Fig. 2e, f) are close to the states (-1,0) (Fig. 1h, k), (0, -1) (Fig. 1i, l). 

However, the behavior Reu  for the superposition state (-1, -1) (Fig. 2d) differs 

significantly from the characteristic behavior Reu  of all other superposition 

states of qubits (1,1) (Fig. 2a), (1, -1), (-1,1). Instead of a structure such as a 

circular stochastic dislocation (Fig. 2a), a structure like a stochastic funnel 

(Fig. 2d) arises. In this case, the amplitudes Reu  and Im u  for the state (-1, -1) 

are significantly smaller than the amplitudes for other states of qubits. 

 

3  Fractal coupled structures with initial states of qubits of 

separate structures 
 

Consider the model fractal coupled structures (I,II), (II,I), consisting of two 
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separate structures (I) and (II) with the same initial qubit states (0,0). By 

analogy with (1) – (3) nonlinear equations for the dimensionless complex 

displacement function u  of the lattice node are 

2

1
Ri

i

u u



 ;   
2 2

0(1 2sn ( , ))Ri i ui i uiu R k u u k    ;                              (5) 

2 (1 ) /ui i ik Q  ;   
2 1/2

  (1 )ui uik k   ;  0 1 2 3i i i i ip p p n p m p j    ;      (6) 

2 2 2 2 2 2
1 0 2 0 3 0( ) / ( ) / ( ) /i i i i ci i i ci i i ciQ p b n n n b m m m b j j j       .      (7) 

Here, all parameters have the same meaning as for expressions (1) – (3). 

Parameters iR  ( =1,2i ) determine the orientation of the deformation fields of 

separate structures in a coupled system. For separate structures (I) and (II), the 

deformation fields 1Ru u  and 2Ru u  correspond to the matrices 1RM  and 

2RM , whose elements are found independently from each other by the iteration 

method. In this case, the iterative procedure on index n  for equations (5) - (7) 

simulates two independent stochastic processes on a rectangular discrete lattice 

with dimensions 1 2N N . Earlier in [5], ordered operators of displacement 

fields of a coupled structure were introduced as the sum of the operators of 

separate structures. Here, for the sum of the matrices 1RM , 2RM  the relation is 

fulfilled 

1 2 2 1R R R R  M M M M .                                   (8) 

The deformation fields for the coupled structures (I,II), (II,I) correspond to the 

ordered operators 

(I,II) 1 2R Ru u u u   ,   (II,I) 2 1R Ru u u u                        (9) 

and matrices (I,II)M , (II,I)M , whose elements are found by the iteration 

method. The iterative procedure on index n  for equations (5) – (7) simulates 

two other independent stochastic processes for matrices (I,II)M , (II,I)M . In this 

case, the relations are fulfilled 

(I,II) 1 2 2 1 (II,I)R R R R    M M M M M M ;    (I,II) (II,I) 0 M M .     (10) 

To describe the deviation of the deformation field of the coupled structures (I,II) 

and (II,I), we introduce the ordered operator 

1 2 2 2 1 1( ( )) ( ( ))R R R Ru u f u u f u     ,                         (11) 

which corresponds to the matrix M . An iterative procedure on index n  

simulate stochastic process for a matrix M , which does not coincide with 

stochastic processes for matrices (I,II)M , (II,I)M , 1RM , 2RM . In this case 
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(I,II) (II,I)  M M M ;   0 M .                               (12) 

From (12) follows, that stochastic processes for matrices (I,II)M , (II,I)M  

become dependent. If in (11) assume 2 2 2( )R Rf u u , 1 1 1( )R Rf u u , then 

(I,II) (II,I)M M , what confirms the independence conditions for stochastic 

processes (10). Attractors of the deformation field of the coupled fractal 

structure are located on the surface, the core of which is determined from the 

condition 

1 2 0Q Q  .                                                   (13) 

By numerical modeling, it was assumed, that: 0.5i  , 0 29.537iu  , 

0 1.0423ip  , 1 2 1i ib b  , 0 121.1471in  , 0 120.3267im  , 1 1 57.4327c cn m  , 

0 31.5279ij  , 11.8247cij  , 1 2 3 0i i ip p p   , 3 0ib  . In this case, in fractal 

coupled structures (I,II) and (II,I), the structure (I) is a circular cylinder and the 

structure (II) is an elliptical cylinder with variable semi-axes 2 2,c cn m . The 

variable semiaxes were chosen so that the cross-sectional area of the ellipse 

2 2c cS n m  did not change and was equal to the cross-sectional area of the 

circular cylinder 824.6316S   from [2, 3]. For an elliptical cylinder (II), the 

semiaxes 2 2,c cn m  were defined as follows: 

variant 1 are 2 43.0746cn  , 2 19.1443cm   (the elliptical cylinder is inside the 

circular cylinder); 

variant 2 are 2 55.2537cn  , 2 14.9245cm   (the elliptical cylinder approaches 

to the circular cylinder along the axis On ); 

variant 3 are 2 119.9327cn  , 2 6.8758cm   (the elliptical cylinder extends 

beyond the boundaries of the circular cylinder along the axis On ). 

Fig. 3 shows the behavior of attractors for all three variants of fractal structures 

(I,II) and the complex deformation field (I,II)u . The different behavior of 

attractors (Fig. 3a, b, c) and cross sections of the complex deformation field 

(Fig. 3d - i) confirm the stochastic nature of the deformation field of the 

structure (I,II) and its dependence on the semiaxes of the elliptic cylinder (II). 

The behavior of the deformation field of the structure (II,I) in this paper is not 

given. However, completed researches performed make it possible to estimate the 

deviations (12) 
9Re 10

M , 
25Im 10

M , which indicates to the dependence 

of stochastic processes in (11). 

As a result of the iterative process, elements of random matrices are formed, 

which depend on various qubit states of separate structures in a coupled 

structure. Random matrices are used to describe quantum chaos [6]. In this case, 

there is a need to use commutators and anti-commutators, products of separate 

operators of the deformation field. Next, we consider fractal coupled structures 
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(III) and (IV), the deformation fields of which 3u  and 4u  are described by the 

product of the deformation fields of separate structures (I) and (II) with the same 

initial qubit states (0,0). The deformation fields of structures (III) and (IV) 

correspond to the matrices 3 1 2R R M M M  and 4 2 1R R M M M . Here, the dot 

symbol describes the operation of ordinary matrix multiplication. Fig. 4 shows the 

behavior of the complex deformation field for structures (III) and (IV). In this case, 

structure (II) parameters were chosen corresponding to variant 2. The attractors of 

structures (III) and (IV) coincide with the attractor from Fig. 3b. Cross sections 

(Fig. 4b, e), projections onto the plane nOu  (Fig. 4a, d) confirm the stochastic and 

fractal behavior of the deformation field of structure (III), which differs significantly 

from the behavior of the deformation field of structure (IV) (Fig. 4c, f). This 

confirms the non-commutativity the operation of ordinary matrix multiplication 

3 4 1 2 2 1 0R R R R     M M M M M M . 

 

   

a) variant 1 b) variant 2 c) variant 3 

   

d) variant 1 e) variant 2 f) variant 3 

   

g) variant 1 h) variant 2 i) variant 3 

 

Fig. 3. The behavior of attractors (a, b, c) and the deformation field u  of coupled 

structure (I,II): (d, e, f) – (I,II)Re [ 1;1]u   , (g, h, i) – (I,II)Im [ 1;1]u    cross 

sections (top view). 
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a)  b) Re [ 1;1]u   c) Re [ 1;1]u   

   

d)  e) Im [ 1;1]u   f) Im [ 1;1]u   

 

Fig. 4. Deformation fields of structures (III), (IV): 3u u  (a, d) – projections 

onto the plane nOu , (b, e) – cross sections (top view); 

4u u  (c, f) – cross sections (top view). 

 

Changing the operation of ordinary matrix multiplication on the scalar 

multiplication of complex deformation fields leads to the replacement of the 

coupled structures (III) and (IV) on structures (V) and (VI). In this case, the 

iterative procedure on index n  simulates the coupled (dependent) stochastic 

processes of the initial independent stochastic processes for separate structures 

(I) and (II) with the same initial qubit states (0,0). 

The deformation fields of structures (V) and (VI) are described by the functions 

5 1 5 2( )R Ru u f u  and 6 2 6 1( )R Ru u f u , to which the matrices 5M  and 6M  

correspond. If by modeling we use independent iterative processes for structures 

(I) and (II), then 

5 2 2( )R Rf u u ;   6 1 1( )R Rf u u ;   5 1 2 2 1 6R R R Ru u u u u u   ;   5 6M M .  (14) 

Matrix equality confirms the independence of iterative processes. 

Fig. 5 shows the behavior of the complex deformation field for structures (V) and 

(VI). In this case, structure (II) parameters were chosen corresponding to variant 2. 

The attractors of structures (V) and (VI) coincide with the attractor from Fig. 3b. 

Cross sections (Fig. 5b, e), projections onto the plane nOu  (Fig. 5a, d) confirm 

another (compared to Fig. 4) stochastic and fractal deformation field behavior of the 

structure (V), which also differs significantly from the deformation field behavior of 

the structure ( VI) (Fig. 5c, f). This is due to the dependence of the stochastic 

processes ( 5 6M M ). 
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a)  b) Re [ 1;1]u   c)  

   

d)  e) Im [ 1;1]u   f)  

 

Fig. 5. Deformation fields of structures (V), (VI): 5u u  (a, d) – projections 

onto the plane nOu , (b, e) – cross sections (top view); 

6u u  (c, f) – projections onto the plane nOu . 

 

4 Fractal coupled structures with various superpositional 

qubits states of separate structures 
 

Next, we consider the superpositional qubits states of fractal coupled structures (V) 

and (VI). The deformation fields of these structures are described by functions 

5 1 5 2( )R Ru u f u  and 6 2 6 1( )R Ru u f u  with the corresponding matrices 5M  and 

6M , where the scalar multiplication of complex deformation fields of separate 

structures (I), (II) is realized. In this case, the iterative procedure on index n  

simulates coupled (dependent) stochastic processes for the initial independent 

stochastic processes for structures (I) and (II), the deformation fields of which 

are described by the functions 1Ru u  and 2Ru u . As an example, Fig. 6 

shows the behavior of the complex deformation field for structure (V). In this case, 

the separate structure (I) is a circular cylinder with parameters as for Fig. 1, and the 

parameters of a separate structure (II) (elliptical cylinder) correspond to variant 2 

(the elliptical cylinder approaches the circular cylinder along the axis On ). In the 

coupled structure (V), the separate structures (I), (II) have the same 

superposition qubit states (1,1) (Fig. 6a, b, d, e) and (-1, -1) (Fig. 6c, f). The 

behavior of the deformation field of the coupled structure (V) with the same 

initial qubit states (0,0) is given on Fig. 5a, b, d, e. The presence of same 

superpositional qubit states (1,1) of separate structures in a coupled system 
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(Fig. 6a, b, d, e) leads to a change in the complex deformation field compared to 

Fig. 5a, b, d, e: the decrease amplitudes of peaks, the shift of peaks (Fig. 6a, b), 

the change of structure (Fig. 6d, e) are observed. An original feature of the 

deformation field behavior of the coupled structure (V) with the same 

superpositional states (-1, -1) of separate structures is the absence of the 

imaginary part of the displacement function in all region ( 5Im 0u  ), that 

indicates the absence of effective attenuation. This makes it possible to interpret 

the coupled structure (V) with the same superpositional states (-1, -1) of the 

separate structures (I), (II) as a memory cell. For 5Reu  the presence of a 

broadened stochastic peak up is characteristic (Fig. 6c). In this case the cross-

sectional structure (Fig. 6f) for state (-1, -1) differs from the cross-sectional 

structure (Fig. 6d) for state (1,1). 

 

   

a) 3Re 10u   b) 3Im 10u   c) Reu  

   

d) Re [ 1;1]u   e) Im [ 1;1]u   f) Re [ 1;1]u   

 

Fig. 6. The behavior of the displacement u  of the fractal coupled structure (V): 

separate structures (I) and (II) have the same superposition qubit states: (1,1) - 

(a, b, d, e); (-1, -1) - (c, f). 

 

By changing the superposition qubit states of separate structures (I), (II), one 

can change and control the behavior of the complex deformation field of the 

coupled structure (V). As an example, Fig. 7 shows the behavior of cross 

sections 5Reu  of the fractal coupled structure (V), when changing 

superposition qubit states of separate structures (I), (II). If structure (I) is in state 

(1,1), and the qubit states of structure (II) change (Fig. 7a, b, c), then the 

complex deformation field of structure (V) changes significantly compared to 

Fig. 6d, e: for sections 5Reu , the effect of mixing of separate trajectories in the 
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inner region, a change in behavior 5Im u  are observed. If structure (I) is in the 

state (-1, -1), and the qubit states of structure (II) change (Fig. 7d, e, f), then the 

complex deformation field of structure (V) in comparison with Fig. 6c, f (where 

5Im 0u  ) arises. In this case, an alteration of the structure of the inner region 

with the formation of stochastic boundary rings, the effect of mixing of 

individual trajectories for the cross sections Reu  are observed. Using 

additional (external or internal) action the transitions of separate structures from 

one qubit state to another can be realized. 

 

   

a) (I):(1,1), (II):(-1,1) b) (I):(1,1), (II):(-1,-1) c) (I):(1,1), (II):(1,-1) 

   

d) (I):(-1,-1), (II):(-1,1) e) (I):(-1,-1), (II):(1,1) f) (I):(-1,-1), (II):(1,-1) 

 

Fig. 7. The behavior of the cross sections Re [ 1;1]u   (top view) for fractal 

coupled structure (V). Separate structures (I) and (II) have different 

superpositional states of qubits. 

 

Similarly, the behavior of the deformation field of the coupled structure (VI), 

depending on the qubit states of separete structures (II), (I) was studied. In the 

general case, the deformation field of the coupled structure (VI) is complex. In this 

case, the conditions 

6 5 2 6 1 1 5 2( ) ( ) 0R R R Ru u u f u u f u    ,   6 5 0 M M ,                (15) 

are satisfied, that is connected with the dependence of this stochastic processes. This 

indicates, that the displacement field operators of the separate structures (II), (I) and 

(I), (II) do not commute in the coupled structures (VI) and (V). As for structure (V), 

a feature of the deformation field behavior of the coupled structure (VI) with the 

same superposition states (-1, -1) of separate structures is the absence of 

effective attenuation in all region ( 6Im 0u  ). For 6Reu  the presence of the 
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broadened stochastic peak with a structure close to the peak 5Reu  (Fig. 6c) is 

also characteristic, but 6 5Re Re 0u u  . 

 

Conclusions 
 

By the numerical modelling method the behavior of the deformation field of the 

coupled fractal structures (circular and elliptical cylinders) in various (initial, 

basic, superpositional) qubit states was investigated. It is shown, that when the 

qubit states change, features of the behavior of the complex deformation field of 

a separate structure are observed. The regular behavior of the inner region Reu  

is limited by the stochastic boundary (stochastic ring), wherein the concave part 

of the inner region changes to convex and then to convex-concave. The wave-

like behavior for outer region Reu  is characteristic. Such behavior allows the 

interpretation of the inner region as a membrane with the possible alteration of 

its states due to the change of qubit states. The stochastic behavior for Im u , 

localized in the region of boundary rings with discontinuities is characteristic, 

wherein in the inner and outer regions of the rings Im 0u  . 

For fractal coupled structures with initial states of qubits of separate structures, 

the behavior of attractors and the complex deformation field is considered. It is 

shown, that the behavior of the deformation field essentially depends on the 

choice of stochastic processes realized during iterations. As examples, the 

features of the behavior of the deformation fields resulting from the sum, scalar 

and matrix products of independent and dependent stochastic processes are 

investigated. 

Fractal coupled structures with various superpositional states of qubits of 

separate structures are considered. It is shown, that the presence of same 

superpositional qubit states of separate structures in the coupled system leads to 

the change in the complex deformation field: there is the decrease in peak 

amplitudes, peak displacement, and the change in structure. The original feature 

of the behavior of the deformation field of the coupled structure with the same 

superpositional states (-1, -1) of separate structures is the absence of effective 

attenuation ( Im 0u  ), which allows one to interpret the such structure as the 

memory cell. 

By changing the superpositional qubit states of separate structures, one can 

change and control the behavior of the complex deformation field of the coupled 

structure. In this case, for the cross sections Reu , the alteration of the inner 

region structure with the formation of stochastic boundary rings, the effect of 

mixing of separate trajectories is observed. Using additional (external or 

internal) action transitions of separate structures from one qubit state to another 

can be realized. 

In the general case, the operators of the displacement field of coupled structures 

depend on the qubit states of separate structures and do not commute. 

The results can be used to describe neural networks with variable parameters, in 

medicine when modeling blood vessels, for quantum information processing. 
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Abstract. Applying a fractal method of analyzing the dynamics of the structural
units of any complex system, a mathematical concept is built, namely that of fractal
atomicity. The construction of such a concept involves defining dynamic variables in
the form of fractal functions, defining scale resolutions, defining a principle of scale
covariance as a fundamental principle of motion, equations of evolution, etc. Finally,
some specific mathematical properties of the fractal atom are also established.
Keywords: Fractal atomicity, Complex systems dynamics, Fractal functions, Holo-
graphic atom.

1 Introduction

The notion of non-atomicity for set functions plays a key role in Measure Theory
and its applications and extensions. For classical measures taking values in
finite dimensional Banach spaces, it guarantees the connectedness of range.
Even just replacing σ-additivity with finite additivity for measures requires
some stronger non-atomicity property for the same conclusion to hold.

Because of their multiple applications in game theory or mathematical eco-
nomics, the study concerning atoms and non-atomicity for additive, respec-
tively, non-additive set functions has developed. Particularly, (non)atomic
(purely) measures have been studied in different forms due to their special
form and their special properties (Chiţescu [8,9], Cavaliere and Ventriglia [7],
Gavriluţ and Agop [13], Gavriluţ and Croitoru [15,17,19], Gavriluţ [14,16,18],
Gavriluţ, Iosif and Croitoru [20], Khare and Singh [31], Li et al. [32, 33], Pap
[43-45], Pap et al. [46], Rao and Rao [48], Suzuki [58], Wu and Bo [59] and
many others). Modifications of non-additive Measure Theory (Pap [44,45]) led
to Quantum Measure Theory (Gudder [22-26], Salgado [49], Sorkin [51-54],
Surya and Waldlden [55]. In these papers, an extended notion of a measure
has been introduced and certain applications to interference, probability have
been highlighted (Schweizer and Sklar [50]). In fact, Quantum Measure Theory
(introduced by Sorkin [51-54]) represents a generalization of Quantum Theory,
where physical predictions are computed from a matrix known as decoherence
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functional. Quantum measures are an useful tool to describe Quantum Mechan-
ics and its applications to Quantum Gravity and Cosmology (Hartle [27,28],
Phillips [46]).

Despite the continuous efforts of numerous scientists, reconciling General
Relativity with Quantum Theory remains one of the most important open
problems in Physics. The framework of General Relativity suggests that one
promising approach to such a unification will be by means of a reformulation of
Quantum Theory in terms of histories rather than states. Following this idea,
Sorkin [51-54], has proposed a history-based framework, which can accommo-
date both standard Quantum Mechanics as well as physical theories beyond
the quantum formalism.

As we shall prove in this paper, in such framework, Schrödinger’s equation
from Quantum Mechanics can be identified with a particular type of geodesic of
the fractal space. In consequence, fundamental concepts of Quantum Mechan-
ics can be extended to similar concepts, but on fractal manifolds. In this paper,
we extend the concept of atoms/pseudo-atoms to the concept of fractal minimal
atom/fractal pseudo-atom, respectively. We also give characterizations from a
mathematical viewpoint to these new concepts and we make explicit certain
physical implications. The notion of a fractal minimal atom as a particular
case of fractal atom is also discussed. In this framework, we are looking for
certain physical correspondences in the Quantum Mechanics context.

The present paper is organized as follows. After an Introductory part,
Section 2 contains some results concerning the properties of different types of
atoms, introduced from the Quantum Measure Theory mathematical perspec-
tive. Certain physical implications and interpretations are provided. In Section
3, elements of Fractal Mechanics are provided in order to build the background
for extending the notions that are specific to atomicity, to those involving frac-
tal atomicity. From this perspective, new concepts as that of a fractal minimal
atom is introduced and some of its properties are discussed in Section 4.

2 Types of atoms in the mathematical approach

In what follows, T denotes an abstract nonvoid set and C a ring of subsets of
T . Suppose (V,+, ·) is a real linear space, with the origin 0.

If p ∈ N∗, then by i = 1, p we usually mean i ∈ {1, 2, ..., p}.
Definition 2.1 (Gavriluţ and Agop [13]) Let m : C → V be a set function,

with m(∅) = 0. m is said to be:

(i) finitely additive if m(
n
∪
i=1
Ei) =

n∑
i=1

m(Ei), for any arbitrary pairwise

disjoint sets (Ei)i∈{1,2,...,n} ⊂ C, n ∈ N∗;
(ii) null-additive1 if m(E ∪ F ) = m(E), for every disjoint E,F ∈ C, with

m(F ) = 0;
(iii) null-additive2 if m(E ∪F ) = m(E), for every E,F ∈ C, with m(F ) =

0;
(iv) null-null-additive if m(E ∪ F ) = 0, for every E,F ∈ C, with m(E) =

m(F ) = 0;
(v) null-equal if m(E) = m(F ), for every E,F ∈ C, with m(E ∪ F ) = 0;
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(vi) diffused if m({t}) = 0, whenever {t} ∈ C.
Definition 2.2 (Gavriluţ et al. [20]) If V is, moreover, a Banach lattice,

a set function m : C → V , with m(∅) = 0, is said to be:

(i) null-monotone if for every E,F ∈ C, with E ⊆ F , if m(F ) = 0, then
m(E) = 0;

(ii) monotone (or, fuzzy) if m(E) ≤ m(F ), for every E,F ∈ C, with E ⊆
F ;

(iii) a submeasure (in the sense of Drewnowski [11]) if m is monotone and
subadditive, i.e., m(E ∪ F ) ≤ m(E) + ν(F ), for every (disjoint) E,F ∈ C;

(iv) σ-additive (or, a (vector) measure) if m(
∞
∪
n=1

En) = lim
n→∞

n∑
k=1

m(Ek),

for every pairwise disjoint sets (En)n∈N∗ ⊂ C, with
∞
∪
n=1

En ∈ C.
Definition 2.3 If A is an arbitrary σ-algebra of T and if m : A → R+ is

a measure on A, with m(T ) = 1, then:

(i) The space (T,A,m) is said to be a sample space and m is said to be a
probability measure;

(ii) The elements of T are called sample points or outcomes and the ele-
ments of A are called events.

In this case, for every E ∈ A,m(E) is interpreted as the probability of the
event E to occur.

Remark 2.4 (i) The notion of a null-equal-measure has the following phys-
ical interpretation (Gavriluţ and Agop [13]): in the situation involving destruc-
tive interference, in order for two waves to produce complete destructive in-
terference, thereby “cancelling out” each other, their original amplitudes must
have been equal.

(ii) If m(T ) > 0, then one can immediately generate a probability measure
by means of a normalization process.

Remark 2.5 I) (i) One observes that a set function m : C → V is diffused if
the measure of any singleton of the space is null. This means in the construction
of a physical theory, the vacuum condition of the matter should be considered
as its complement.

(ii) Shannon’s entropy is a subadditive real-valued set function [5].

(iii) If V is a Banach lattice, T = {t1, t2, ..., tn}, n ∈ N∗, is an arbitrary
finite metric space and m : P(T )→ V (or, more general, if T is a T1-separated
topological space, B is the Borel σ-algebra of T generated by the lattice of all
compact subsets of T and m : B → V ) is null-additive and diffused, then
m(T ) = 0 (i.e., the space T is composed of particles which annihilate one each
other).

II) If m : C → V is null-monotone, then:

(i) m is null-additive1 if and only if it is null-additive2. In this case, m
will be simply called null-additive.

(ii) If m is null-null-additive, then it is null-equal.

Definition 2.6 (Gavriluţ and Croitoru [15,17,19]) Let m : C → R+ be a
set function, with m(∅) = 0.
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(i) A set E ∈ C is said to be an atom of ν if m(E) > 0 and for every
F ∈ C, with F ⊆ E, we have m(F ) = 0 or m(E\F ) = 0 (in a certain sense,
an atom can be interpreted as being a black hole);

In consequence, an atom is a measurable set which has positive “measure”
and contains no set of smaller positive “measure”. In fact, the main examples
of atomsare singletons that have positive “measure”.

(ii) m is said to be non-atomic (or, atomless) if it has no atoms (i.e., for
every E ∈ C with m(E) > 0, there exists F ∈ C, F ⊆ E, such that m(F ) > 0
and m(E\F ) > 0);

(iii) A set E ∈ C is called a pseudo-atom of ν if m(E) > 0 and F ∈ C,
F ⊆ E implies m(F ) = 0 or m(F ) = m(E);

(iv) m is said to be non-pseudo-atomic if it has no pseudo-atoms (i.e., for
every E ∈ C with m(E) > 0, there exists F ∈ C, F ⊆ E, such that m(F ) > 0
and m(E) 6= m(F ));

(v) m is said to be finitely purely atomic if there is a finite family (Ei)i∈{1,2,...,n}

of pairwise disjoint atoms of m so that T =
n
∪
i=1
Ei (in this case, the space T

is a finite collection of pairwise disjoint atoms).
I is well-known that the Lebesgue measure on the real line has no atoms.

It is also that the entropy of a non-atomic measure must be infinite, while the
entropy of an atomic measure vanishes. The following statements easily follow:

Proposition 2.7 Suppose m : C → R+ is so that m(∅) = 0.
(i) If m is finitely additive, then E ∈ C is an atom of m if and only if E

is a pseudo-atom of m.
(ii) Any {t} ⊆ T , provided {t} ∈ C and m({t}) > 0, is an atom of m.
(ii) If m is null-additive1, then every atom of m is also a pseudo-atom.

The converse is not generally valid.
Example 2.8 Let T = {t1, t2} be a finite abstract space composed of two

elements.
(i) We consider the set function m : P(T ) → R+ defined for every E ⊂ T

by m(E) =

 2, E = T
1, E = {t1}

0, E = {t2} or E = ∅.
.

Then T is an atom and it is not a pseudo-atom of m.

(ii) We define m : P(T )→ R+ by m(E) =

{
1, E 6= ∅
0, E = ∅ , for every E ⊂ T.

Then m is null-additive and T = {t1, t2} is a pseudo-atom of m, but it is
not an atom.

(iii) Let be T = {1, 2, ...10} and m : P(T )→ R+, m(A) = cardA, ∀A ⊆ T .
Then each of the singletons {i}, i ∈ {1, ..., 10} is an atom.

(iv) Let T be a countable set, A = {A ⊆ T ; A is finite or T \ A is finite }
and m : A → R+,

m(A) =

{
0, A is finite
1, T \A is finite

,∀A ∈ A.

Then every set A ∈ A so that T \A is finite is an atom of m.
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(v) On T = R, let be the algebra A = {∅, T} and m : A → R+, m(∅) = 0,
m(R) = 1. Then R is an atom and obviously it is not a singleton set.

Proposition 2.9 If m : C → R+ is null-monotone and null-additive and
if E ∪ F is an atom of m, then E,F are m-compatible that is, the following
property holds: m(E∪F )+m(E∩F ) = m(E)+m(F ) (thus, any two components
of an atom must be compatible).

Proof. 1. If m(E) = 0, then m(E ∩ F ) = 0 and m(E ∪ F ) = m(F ), so the
conclusion follows.

2. If m(E) > 0, then by Proposition 2.7 - (i) E is an atom, too and
m((E ∪ F )\E) = m(F\E) = 0. Since F = (F\E) ∪ (F ∩ E), then m(F ) =
m(E ∩ F ) and since E ∪ F = E ∪ (F\E), we get m(E ∪ F ) = m(E).

In what follows, let K be the lattice of all compact subsets of a locally
compact Hausdorff space T and B be the Borel σ-algebra generated by K. In
such framework, the following definition is consistent:

Definition 2.10 (Pap [43-45]) m : B → R+ is said to be regular if for
every E ∈ B and every ε > 0, there exist K ∈ K and an open set D ∈ B such
that K ⊂ E ⊂ D and m(D\K) < ε.

Theorem 2.11 (Pap [43-45]) Suppose m : B → R+ is a monotone null-
additive regular set function. If E ∈ B is an atom of m, there exists only one
point e ∈ E so that m(E\{e}) = 0 (and so, m(E) = m({e}).

Remark 2.12 The previous theorem has the following physical interpreta-
tion: in an atom, the entire ”information” is concentrated in each of its points.

3 Fractal Theory of Motion

As a rule, the classical models used in the description of the dynamics of the
systems are based on the assumption, otherwise unjustified, of the differentia-
bility of the variables that describe them. The success of these models must
be understood gradually / sequentially, on “”domains” in which the differen-
tiability and integrability are still valid. But the differentiable and integrable
mathematical procedures “suffer” when we want to describe the dynamics of
the systems, because only these ones “support” and “operate” with nonlinear-
ities and chaoticities.

In order to describe dynamics, while still being dependent on the differ-
entiable and integrable mathematical procedures, it is necessary to explicitly
introduce the scale resolution in the expressions of the physical variables that
describe them and implicitly in the expressions of the fundamental equations
that govern these dynamics. This means that any variable, used in describing
the dynamics of the systems, dependent in the classical sense, both on the
spatial and time coordinates, depends, in the context mentioned above, on the
scale resolution. In other words, instead of “operating” for example with a sin-
gle variable described by a strictly non-differentiable mathematical function,
we will “operate” only with approximations of this mathematical function ob-
tained by mediating it at different scale resolutions. Consequently, any variable
designed to describe system dynamics will “function” as the limit of a family of
mathematical functions, this being non-differentiable for a zero-scale resolution
and differentiable for a non-zero scale resolution.
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This way of describing the dynamics of the systems, where any “explici-
tation” of dynamics is done at finite scale resolution, obviously implies both
the development of a new geometrical structure and of models conforming to
these geometrical structures for which the laws of motion, invariant to spatial
and temporal transformations, are ” integrated ” with scale laws invariant to
transformations of scale resolution. In our opinion, such a geometric structure
can be based on the concept of fractal, and the corresponding physical model,
the Multifractal Theory of Motion in the form of Scale Relativity Theory with
arbitrary and constant fractal dimension [36].

Let us suppose that on a fractal space-time manifold the motions of systems
take place on fractal curves. Then:

Remark 3.1. Any fractal curve is explicitly scale resolution dependent
(which will be referred as δτ). Its length tends to infinity when its proper time
interval, ∆τ , tends to zero (an extension of the Lebesgue theorem on a fractal
space-time manifold).

Remark 3.2. In the limit ∆τ → 0, a curve in a fractal space-time man-
ifold is a zig-zagged as one can imagine. Thus, it exhibits the property of
self-similarity in all its points of a fractal space-time manifold, which can be
translated into an extension property of holography (every part of a fractal
space-time manifold reflects the whole of the same space-time manifold).

Remark 3.3. The differential proper time reflection invariance of any
variable is broken. Then every variable Q(τ) is replaced by the fractal vari-
able Q(τ, dτ) explicitly dependent on the proper time resolution interval whose
derivative is undefined only in the limit, ∆τ → 0. As a consequence, two
derivatives of every fractal variable as explicit functions of τ and dτ will be
defined. For example, the two derivatives of the 4-coordinate Xµ(τ,∆τ) takes
the form:

d+X
µ

dτ
= lim
∆τ→0+

Xµ(τ +∆τ,∆τ)−Xµ(τ,∆τ)

∆τ

d−X
µ

dτ
= lim
∆τ→0−

Xµ(τ,∆τ)−Xµ(τ −∆τ,∆τ)

∆τ
(1)

The sign + corresponds to the forward process and the sign − to the back-
wards one.

Remark 3.4. The differential of 4-coordinate dXµ(τ,∆τ) can be expressed
as the sum of two differentials, one not scale dependent, d±x

µ(τ)), and other
scale dependent, d±ξ

µ(τ, dτ)), i.e.,

d±X
µ(τ,∆τ) = d±x

µ(τ) + d±ξ
µ(τ, dτ); (2)

Remark 3.5. d±ξ
µ satisfies the equation

d±ξ
µ(τ, dτ) = λµ±(dτ)1/f(α) (3)

where λµ± are constant coefficients whose statistical significance will be given
in what follows, f(α) is the singularity spectrum of order α, α is the singularity
index and DF is the fractal dimension of the motion curves from the fractal
space-time manifold.
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Remark 3.6. There are many modes and thus various selection of defini-
tions of fractal dimensions: fractal dimension in the Kolmogorov sense, fractal
dimension in the Hausdorff-Besikovici sense etc. Selecting one of these defini-
tions and operating with it in the dynamics of systems, the value of the fractal
dimension must be constant and arbitrary: DF < 2 for correlative processes,
DF > 2 for non-correlative processes etc. In such conjecture we can identify not
only the “areas” of the dynamics of the system that are characterized by a cer-
tain fractal dimension, but also the number of “areas” whose fractal dimensions
are situated in an interval values. Moreover, through the singularity spectrum
we can identify “classes of universality” in the dynamics of the system, even
when strange attractors have various aspects.

Remark 3.7. The differential proper time reflection invariance is recovered
by combining the derivatives d+/dτ and d−/dτ in the fractal operator (Cresson
procedure):

d̂

dτ
=

1

2
(
d+ + d−
dτ

)− i

2
(
d+ − d−
dτ

) (4)

Applying, for example, the fractal operator to the 4-coordinate Xµ yields
the 4-complex velocity:

V̂ µ =
d̂Xµ

dτ
=

1

2
(
d+X

µ + d−X
µ

dτ
)− i

2
(
d+X

µ − d−Xµ

dτ
) = V µ − iUµ (5)

with

V µ =
1

2
(vµ+ + vµ−), Uµ =

1

2
(vµ+ − v

µ
−), vµ+ =

d+x
µ + d+ξ

µ

dτ
, vµ− =

d−x
µ + d−ξ

µ

dτ

The real part V µ is scale resolution independent, while the imaginary one
Uµ is scale resolution dependent.

Remark 3.8. An infinite number of geodesics can be found relating any
pair of points of a fractal space-time manifold, and this is true on all scale reso-
lutions of the physical system dynamics. Then, in the fractal space-time mani-
fold, all the entities of the system are substituted with the geodesics themselves
so that any external constraint can be interpreted as a selection of geodesics in
the same fractal space-time manifold.

Remark 3.9. The infinity of geodesics in the bundle, their multifractal-
ity, the two values of the derivative etc., imply a generalized statistical fluid-
like description (fractal fluid). Thus, one provides the multifractalisation type
through stochastic processes. For example, we can choose the average of d±X

i

in the form
< d±X

i >≡ d±xi (6)

which by (2) implies
< d±ξ

i >= 0

Theorem 3.10. The transition from the dynamics of the Special Relativity
to the dynamics of Multifractal Theory of Motion in the form of Scale Relativity
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Theory on a fractal space-time manifold can be described through the scale
covariant derivative:

d̂

dτ
= ∂τ + V̂ µ∂µ +

1

4
(dτ)(2/f(α))−1Dµνaµaν (7)

where
Dµν = dµν − idµν

dµν = λµ+λ
ν
+ − λ

µ
−λ

ν
−, d

µν
= λµ+λ

ν
+ + λµ−λ

ν
−

(8)

Proof. The proof of the above statements is given in [3].
Remark 3.11. If the multifractality of the motion curve is achieved

through Markov type stochastic process

λµ+λ
ν
+ = λµ−λ

ν
− = −ληµν (9)

where ηµν is the Minkowski metric, then the scale covariant derivative (8) takes
the form

d̂

dτ
= ∂τ + V̂ µ∂µ + i

λ

2
(dτ)(2/DF )−1∂µaµ (10)

Remark 3.12. Applying the scale covariant operator to the complex ve-
locity (5), the geodesics equation on a fractal space-time is obtained:

d̂V̂ µ

dτ
= ∂τ V̂

µ + V̂ ν∂ν V̂
µ +

1

4
(dτ)(2/f(α))−1Dαβ∂α∂βV̂

µ ≡ 0 (11)

Remark 3.13. Through separation of motions on scale resolutions (the real
part from the imaginary one) on a fractal space-time, the geodesics equation
in real terms becomes:

d̂V µ

dτ = ∂τV
µ + V ν∂νV

µ − Uν∂νUµ + 1
4 (dτ)(2/f(α))−1dαβ∂α∂βV

µ−
− 1

4 (dτ)(2/f(α))−1d
αβ
∂α∂βU

µ = 0
d̂Uµ

dτ = ∂τU
µ + V ν∂νU

µ + Uν∂νV
µ + 1

4 (dτ)(2/f(α))−1dαβ∂α∂βU
µ+

+ 1
4 (dτ)(2/f(α))−1d

αβ
∂α∂βV

µ = 0

(12)

Theorem 3.14. Choosing the 4-complex velocity from (5) in terms of a
scalar complex field Ψ,

V̂ µ = iλ(dτ)(2/f(α))−1∂µ lnΨ (13)

the geodesics of a fractal space-time manifold in the case of multifractalisation
by means of Markovian stochastic processes, for a null value of the integration
constant takes the form of the generalized Schrödinger type equation

λ2(dτ)(4/f(α))−2∂µ∂
µΨ + iλ∂τΨ = 0 (14)

Remark 3.15. For non-relativistic dynamics in 3D space on Peano type
curve, f(α) ≡ DF = 2, at Compton scale resolution, λ = ~/2m0, with ~ the
Planck reduced constant and m0 the rest mass of the particle, from (13) it
results the standard Schrödinger equation

~2

2m0
∂i∂

iΨ + i~∂τΨ = 0 (15)
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4 From the standard mathematical atom to the fractal
atom by means of a physical procedure

Let T be an abstract nonvoid set, G a lattice of subsets of T and m : G → R+ an
arbitrary set function with m(∅) = 0. Evidently, one can immediately generalize
the notions of a pseudo-atom / minimal atom, respectively, to this context when
G is only a lattice and not necessarily a ring.

Example 4.1. (i) It T is a nonempty metric space, then the Hausdorff
dimension dimHaus : P(T )→ R (Mandelbrot [34]) is a monotone real function.
Evidently, dimHaus(∅) = 0.

(ii) For every d ≥ 0, the Hausdorff measure Hd : P(T )→ R is a submeasure.
Remark 4.2. (i) The union of two sets E and F having the fractal dimen-

sions DE , respectively, DF , has the fractal dimension DE∪F = max{DE , DF };
(ii) The intersection of two sets E and F having the fractal dimensions DE ,

respectively, DF has the fractal dimension DE∩F = DE + DF − d, where d is
the embedding Euclidean dimension (Iannaccone and Khokha [29]).

The following definition is then consistent:
Definition 4.3. A pseudo-atom/minimal atom, respectively, E ∈ G of m

having the fractal dimension DE is said to be a fractal pseudo-atom/fractal
minimal atom, respectively.

Therefore, we can give:
Proposition 4.4. If E,F ∈ G are fractal pseudo-atoms of m and if m(E ∩

F ) > 0, then E ∩ F is a fractal pseudo-atom of m and m(E ∩ F ) = m(E) =
m(F ).

Conclusions

The main conclusions of the present paper are the following:
i) (Pseudo)-atomicity is treated from the Quantum Measure theory math-

ematical perspective and several physical applications are given;
ii) Minimal atomicity in correspondence with Quantum Measure Theory is

also discussed. In such context, some physical applications are provided;
iii) The concept of atomicity (and, particularly, that of minimal atomicity)

is extended in the form of fractal atomicity, respectively, fractal minimal atom-
icity. Some mathematical properties of fractal minimal atomicity are given. In
such approach, an inverse method with respect to the common developments
concerning the atomicity concept has been used, observing that Quantum Me-
chanics identifies as a particular case of Fractal Mechanics for a given scale
resolution. Precisely, we talk about a fractality through Markov type stochas-
tic processes, in which case the standard Schrödinger equation identifies with
the geodesics of a fractal space for motions of a complex system structural units
on Peano type curves at Compton scale resolution.

The concept of fractal atomicity introduces a minimal code which could
correspond to the DNA that is specific to each person. In this paper, we intro-
duced the basis for a multivalent logic, which could open new perspectives in
genomics for instance, in the decipher of the intimate mechanisms at biostruc-
tures level.
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20. A. Gavriluţ, A. Iosif, A. Croitoru, The Gould integral in Banach lattices, Positiv-
ity, Vol. 19, 1 (2015), 65-82.
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Abstract. In this paper, we propose statistical methods and nonlinear dynamics for 

analyzing brain activity in epileptic patients, using the PhysioNet database. Thus, the 

analysis by statistical methods (the time variation of the standard deviation of the 
component signals of the electroencephalogram, the time variation of the signal variance, 

the time variation of the skewness, the time variation of the kurtosis, the construction of 

the recurrence maps corresponding to both normal functioning of the brain, as well as of 

the pre-crisis period, respectively of the crisis, the evolution in time of the spatial-
temporal entropy, the variations of the Lyapunov coefficients, etc.) allows us to 

determine not only the epilepsy time based on a specific strange attractor but also that the 

entry into the epileptic seizure can be determined at least twenty minutes in advance. 

Finally, utilyzing elements of nonlinear dynamics and chaos, one builds in the states 
space certain attractors corresponding to a wide ‘’class’’ of signals of encephalographic 

type. These classes dictate the normal or the abnormal functioning (the epileptic one) of 

the brain so that a possible classification of the types of epilepsy can be given. 

Keywords: Brain activity, Epilepsy, Electroencephalogram, Fractal model, Signal, 

Skewness, Kurtosis. 
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1 Introduction 

 
Epilepsy is a group of long-term neurological disorders characterized by 

one or more epileptic seizures. Epileptic seizures are the result of 

excessive or abnormal activity of nerve cells in the cortex in the brain. 

Epilepsy cannot be cured, but seizures can be controlled with medication 

in about 70% of cases. In cases where seizures do not respond to 

medication, surgery, neurostimulation, or dietary changes may be 

considered. Normally, the electrical activity of the brain is not 

synchronous. In the case of epileptic seizures, due to structural or 

functional problems in the brain, a group of neurons discharges in an 

abnormal, excessive and synchronized manner. Crisis prediction can 

play a particularly important role and refers to the attempt to predict 

epilepsy seizures based on EEG. Our work is in this direction. 

 The scope of the present paper is to develop a ‘’procedure’’ 

through which not only the prediction but also the type of epilepsy can 

be established. 

Although the first electroencephalograms (EEG) were recorded 

143 years ago, progress in interpreting them is extremely slow. So far, 

there is no classification of the structures that appear in the EEG, so that 

there is a correspondence between them and the activity of the brain. The 

clinical interpretation of electroencephalograms is mainly performed by 

visual recognition of certain structures and by associations made by the 

specialist physician (West B. J., 2013). The Fouriér analysis cannot be 

applied because the signals associated with the electroencephalograms 

are not stationary. The signals are extremely weak, in the domain of 

microvolts, "submerged in high noise" (Layne S. Pet al., 1986). For this 

reason, special attention must be paid to the quality of the electrodes 

used and their positioning. Also, the identification and analysis of 

artifacts should not be underestimated, as they may occur due to slight 

movements of the electrodes, or contraction of the muscles below the 

electrodes. The analyzed electroencephalograms were downloaded from 

the PhysioNet database 

(https://physionet.org/physiobank/database/chbmit/,2018), (Figure 1). 

This allows all researchers to access a free collection of physiological 

signals (PhysioBank), recorded from a wide range of patients, as well as 

specialized software for viewing and analyzing them. It is supported by 

the National Institute of General Medical Science (NIGMS) and the 

National Institute of Biomedical Imaging and Bioengineering (NIBIB), 

and free access is made in accordance with ODC Public Domain 

Dedication and License v1.0. Existing resources are made available to 
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stimulate current research in the domain of studying complex biomedical 

and physiological signals. 

 

 
Fig.1 - Interface of PhysioNet database 

 

 

2. Statistical and nonlinear procedures 

 

In the present paper we analyzed an EEG recorded from an epileptic 

patient aged 11 years using the statistical and nonlinear procedures 

(standard deviation and variance, spatianl-temporal entropy, Lyapunov 

exponents etc). The characteristics of this EEG are as follows: 

- the signals were collected on 23 channels; 

- the resolution of each signal was 16 bit; 

- the sampling time of 4 ms; 

- the duration of the signal was 60 min; 

- the duration of the epileptic crisis was of 40 seconds. 

Figure 2 graphically shows the signal recorded on channel FP1-

F7. It can be observed that neuronal activity does not have regular 

dynamics. The brain's operating period can be divided into four areas of 

interest: 

- the normal activity area of the brain (range 0-1800 s), which is 

characterized by a chaotic dynamic, with a relatively high signal 

amplitude; 

- the pre-crisis area (range 1800-3000 s), characterized by a decrease in 

signal amplitude; 

- the epileptic crisis zone (range 3000-3040 s), in which the amplitude of 

the signal reaches its maximum value in a very short period of time, 

having a more regular behavior due to the synchronization of the neurons 

activity; 

- the post-crisis zone (range 3040-3600 s), where the signal amplitude 

decreases to a relatively small value, but increases to the value 

corresponding to the area of normal neuronal activity. 
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Fig. 2- Graphical representation of the signal recorded on channel FP1-F7 

 

In Figures 3-6 the EEG corresponding to the four areas 

described above are represented. The corresponding signals were 

analyzed with a series of statistical methods and nonlinear dynamics and 

only those results that allowed to extract some information of interest are 

described. The graphical representation of the standard deviation (Figure 

7) shows that, before the pre-crisis, its value drops sharply 

(approximately until second 1800) and then remains approximately 

constant until near the crisis (second 3000). During the epileptic crisis, 

the standard deviation presents an accentuated maximum. Since the 

standard deviation is an indicator of data dispersion, the fact that it 

remains at a small, approximately constant value, during the pre-crisis 

period, denotes that the recorded potentials have small, relatively equal 

values, so the nerve impulses at the neuron level are of small amplitude 

and with a "quiet" dynamic. During the crisis the values of the potentials 

deviate strongly from the average value. 

The same result, but much better outlined, with smaller errors, is 

obtained from the graphical representation of the variance in time 

(Figure 8). 

 
Fig. 3- Electroencephalogram corresponding to the normal functioning of the 

brain 
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Fig. 4- Electroencephalogram corresponding to the pre-crisis period 

 

 
Fig. 5- Electroencephalogram corresponding to the period of epileptic crisis 

 

 
Fig. 6 - Electroencephalogram corresponding to the post-crisis period 

 

 
Fig. 7- Variation in time of the standard deviation of the component signals of 

the electroencephalogram 
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Fig. 8- The variation in time of the variance of the component signals of the 

electroencephalogram 

 

Figures 9 and 10 show the time variations of skewness and 

kurtosis, parameters that indicate the deviation from a normal Gaussian 

distribution. Figure 9 it can observed that skewness has an average value 

close to zero, with the exception of pronounced positive maxima that 

appear in the pre-crisis and crisis regions, but only on a few channels 

(FP1-F7 and FP1-F3), which it is an indication that the epileptic crisis is 

most likely a focal one, located in the part of the brain that is in the 

immediate vicinity of the FP1 electrode. 

 
Fig. 9- The variation in time of the skewness, calculated for the component 

signals of the electroencephalogram 

 

Regarding kurtosis, it has positive average values, but lower than 

3, except for high maximum of high values on channels FP1-F7, FP1-F3 

and FP2-F4, correlated with the maximum observed for skewness.  The 

behavior of this parameter confirms that, most likely, we are dealing 

with a focal epileptic crisis. The recurrence map will give us global 

information about the dynamics of the brain and, for this reason, we will 

not get information about the focal or global character of the epileptic 

crisis. The recurrence maps for the signal recorded on channel FP1-F7, 

corresponding to the normal functioning of the brain, the pre-crisis 

period and, respectively, the crisis period in Figures 11 - 13 are 

represented. These were obtained with the Visual Recurrence Analysis 
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v.4.7 free application, developed by Eugene Kononov, 

(http://web.archive.org/web/20070131023353/http://www.myjavaserver.

com/~nonlinear/vra/download.html, 2018). 

 

 
Fig. 10 - Variation in time of kurtosis, calculated for the component signals of 

the electroencephalogram 

 

 
Fig. 11- The recurrence map corresponding to the normal functioning of the 

brain 

 

 
Fig. 12- The recurrence map corresponding to the pre-crisis period 

 

 
Fig. 13- Recurrence map corresponding to the epileptic crisis 
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The lack of homogeneity of the maps indicates the existence of a 

non-stationary signal, and the single points, isolated, indicate strong 

fluctuations in the system. During the epileptic crisis, the regular 

component of the system dynamics is much more evident, in agreement 

with previous observations. 

For a more detailed quantitative analysis, the variation in time of 

the spatio-temporal entropy for 5 channels in Figure 14 is represented. 

There is a decrease of this until the beginning of the pre-crisis period, 

when it shows a rapid growth, remaining at a high value throughout the 

pre-crisis and crisis period. On some channels (FP1-F7, FP1-F3 and F7-

T7) the existence of several minimums is observed, the spatial - temporal 

value of entropy decreasing to values close to the regularity limit. This is 

best evidenced by the evolution of the signal corresponding to channel 

FP1-F7, represented in Figure 15. In this case, the decrease in the 

entropy value occurs exactly during the epileptic crisis. 

 

 
Fig. 14- Evolution in time of the spatial-temporal entropy for 5 component 

signals of the electroencephalogram 

 

Figure 16 shows the time variation of the largest Lyapunov 

exponent, calculated for 10 channels of the electroencephalogram using 

the subroutine "Largest Lyapunov exponent" from the Santis application. 

It is found that the largest Lyapunov exponent is positive, with an 

average value of about 0.09. This means that the brain dynamics are 

chaotic. During the crisis and the pre-crisis, the largest Lyapunov 

exponent shows some sharp decreases to values close to zero, i.e. to the 

regularity limit. 

48



 
Fig. 15- Spatial-temporal entropy variation for the signal corresponding to 

channel FP1-F7 

 

 
Fig. 16- Variation of the largest Lyapunov exponent corresponding to the 10-

channel signals of the electroencephalogram 
 

 

 

3. Nonlinear dynamics procedures 

 
In this section, we analyzed wide ‘’classes’’ of signals corresponding 

both to the functioning of the normal brain but also to the brain affected 

by epilepsy, based on the EEGs generated by the same database 

PhysioNet. Then the analysis of these signals allowed us the construction 

of the attractors in the states space, see Figs 17 a-n. One observes that to 

each class of signals, it corresponds a specific attractor and this enables 

us to conclude that to each type of epilepsy, in the states space it could 

correspond a specific attractor. Moreover, one could give a classification 

of the types of epilepsy based on the type of the specific attractor. 

 

 

49



 
 

 
 

 

 

 
 

 

 
 

 

 

50



 

 
 

 

 
 

 

 

 
 

 

 

51



 
 

 

 
 

 

 
 

 

 

 

52



 
 

 

 

4. Conclusions 
 

The analyzes performed on the signals corresponding to the 

electroencephalogram of an epileptic patient show that some statistical 

parameters, such as standard deviation or variance, as well as the spatial-

temporal entropy, can be used to predict in advance (about 20 minutes 

before the electroencephalogram investigated here) the onset of the 

epileptic crisis. To do this, these parameters (or at least one of them) 

need to be monitored permanently, and the warning system must be 

coupled to a system of automatic intervention on the patient, by drug or 

electrophysiology, so that the onset of the crisis is prevented. Thus, the 

basis of a functional electronic device, which can be carried and 

controlled permanently by the epileptic patient, can be laid (as soon as a 

sensor notices the occurrence of a dynamic behavior of a pre-crisis type, 

a treatment that avoids the onset of the epileptic crisis). 

In the future, statistical analysis should be extended to other 

types of electroencephalograms, in which multiple epileptic crises occur 

at short intervals. Also, methods for analyzing more complex signals, 

specific to non-stationary signals, such as wavelet transform or Hilbert-

Huang transform, must be tried. 

Concerning the analysis of nonlinear dynamics and chaos, they 

showed to us that the type of the strange attractor form the states space 

could allow us to distinguish between the diverse types of epilepsy. Such 

result could be of very much help for the doctor in establishing the 

diagnosis accurately. 
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Abstract. We consider a discrete-time network of a single neuron as the discrete
dynamical system

xn+1 = βxn − g(xn), n = 0, 1, ..., (1)

where β > 1 and an internal decay rate, g is a step signal function given by a piecewise
constant function which consists of five steps in the form

g(x) =


b, x ≥ α
a, α > x > 0
0, x = 0

−a, 0 > x > −α
−b, −α ≥ x

, b > a > 0, α > 0. (2)

The considered model is quite simple as a mathematical expression, but with
complex dynamics of its solutions. The model is highly sensitive to initial conditions
and parameters. Small differences in an initial value and parameters yield widely
diverging outcomes for the model, giving a great amount of different periodic orbits.
Periodic orbits have been discussed according to the different rage of β. We can find
some values of parameters such our considered model has the chaotic behaviour.
Keywords: Nonlinear difference equation, discrete dynamical system, periodic or-
bits, chaotic maps.

1 Introduction and Preliminaries

We are inspired by works of May, Wu, Zhou, Huang, Zhu ([14], [20], [21], [22],
[23]), where had been considered a discrete-time model of neurons with different
signal functions. Typical signal functions are step functions, piecewise linear
functions and sigmoid functions. Models involving a step signal function are
referred as McCulloch-Pitts models. A sigmoid function is the most common
form of a signal function. It is defined as a strictly increasing smooth bounded
function satisfying certain concavity and asymptotic properties. Our major
question is: whether we are able to describe the behaviour of these simple single
neuron models with different kinds of signal functions, would it be possible
to do similar research with more complex models - describing two or more
neurons network with more complicated characteristics of function f is the
fundamental motivation of the present work. We expect that our investigation
in the future bring us to more general results in neuron science, perhaps giving
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the importance of modelling more realistic neuron models describing by discrete
dynamical systems. In [2] we have already obtained some results about the
periodicity of a neuron model (1) with parameter 0 < β ≤ 1 and a signal
function (2). Also in [3] we had analysed model (1) with a different step signal
function - a step function with two thresholds. In [4], [5] is considered model
(1) with periodic internal decay rate.

We conclude that the model (1) with the signal function (2) describes more
general situation as considered in [21] (also [6], [18], [19], [22], [23]).

For the general theory of difference equations, one can refer to the mono-
graphs of Elaydi [9], Holmgren [11], Kulenovic [12], as well as Zhou [21] article,
where have been mentioned basic concepts which are necessary for studies of
periodic points, periodic orbits and their stability. Before the discussion of our
results we give an overview of theory recalling some definitions which will be
used in our research.

Consider a first-order difference equation

xn+1 = f(xn), n = 0, 1, ..., (3)

where f : R→ R is a given function. A solution of equation (1) is a sequence
(xn)n∈N satisfying equation (1) for all n = 0, 1, .... If an initial condition
x0 ∈ R is given, then the orbit O(x0) of a point x0 is defined as a set of points

O(x0) = {x0, x1 = f(x0), x2 = f(x1) = f2(x0), x3 = f(x2) = f3(x0), ...}.

Definition 1. A point xs in the domain of f is said to be a fixed point of the
map f defined by (1) (or an equilibrium or a stationary state) if f(xs) = xs.

Note that for a stationary state xs the orbit consists only of the point xs.

Definition 2. A stationary state xs of (1) is stable if

∀ε > 0 ∃δ > 0 ∀x0 ∈ R ∀n ∈ N |x0 − xs| < δ ⇒ |fn(x0)− xs| < ε.

Otherwise, the stationary state xs is called unstable.

Definition 3. A stationary state xs of (1) is asymptotically stable if it is stable
and attracting, i.e., it is stable and if there exists ν > 0 such that |x0−xs| < ν
implies lim

n→∞
fn(x0) = xs.

Definition 4. An orbit O(x0) of the initial point x0 ∈ R, is said to be even-
tually stationary state to xs if

∃N ∀n ≥ N xn+1 = xn = xs.

Definition 5. An orbit O(x0), x0 ∈ R, is said to be asymptotically stationary
state to xs if lim

n→∞
fn(x0) = xs.

Definition 6. An orbit O(x0) of the initial point x0 of equation (1) is said to
be periodic of period p ≥ 2 if

xp = x0 and xi 6= x0, 1 ≤ i ≤ p− 1.
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So, we say that equation (1) has a p-periodic orbit.

Definition 7. A periodic orbit O(x0) = {x0, x1, x2, ..., xp−1, ...} of period p
is stable if each point xi, i = 0, 1, ..., p − 1, is a stable stationary state of the
difference equation xn+1 = fp(xn). A periodic orbit of period p which is not
stable is said to be unstable.

Definition 8. A point z is said to be a limit point of O(x0) if there exists a
subsequence (xnk

)k=0,1,2,... of O(x0) such that lim
k→+∞

|xnk
− z| = 0. The limit

set L(x0) of the orbit O(x0) is a set of all limit points of the orbit.

Definition 9. An orbit O(x0) is said to be asymptotically periodic if its limit
set is a periodic orbit. An orbit O(x0) such that xn+p = xn for some n ≥ 1
and some p ≥ 2 is said to be eventually periodic.

2 Stationary points

We consider equation(1) with β > 1. We find periodic orbits of period 2, 4 and
others and discuss equilibrium points for the model (1) with the signal function
(2), which arises from iterating the function

h(x) =


βx− b, x ≥ α
βx− a, α > x > 0

0, x = 0
βx+ a, 0 > x > −α
βx+ b, −α ≥ x

, b > a > 0, α > 0. (4)

x

hHxL

b

Β-1

-
b

Β-1

a

Β-1

-a

Β-1

0

 y = x

Fig. 1. Stationary states

x

hHxL

b

Β-1

-
b

Β-1

0

 y = x

Fig. 2. Existence of at least 3 stationary
states

To find stationary states (fixed points of function (4)) of (1) we solve the
equation h(x∗) = x∗ (or graphically find intersections with y = x line). It is
possible that there are 5 or only 3 stationary states depends on parameters α,
β, a, b. Zero is always a stationary point of (1). If a

β−1 < α < b
β−1 , then there

are 5 stationary states of (1): 0,± a
β−1 ,±

b
β−1 (see Fig.1), otherwise for every

difference equation (1) exists at least 3 stationary states: 0,± b
β−1 or 0,± a

β−1
(see Fig.2).
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If all points of orbit belong to external parts of the graphic of the function (4)

we can get a set { bβ ,
b(1+β)
β2 , ..., b(1+β+β

2+...+βn)
βn+1 , ...}, which consists of points,

which are eventually stationary state to 0 and in this case in the previous iter-

ation we always get xn = b
β , n = 0, ..., n and inequalities b

β
1+β+β2+...+βn

βn >
b
β ≥ α hold. Analogy is in a situation when the points lie on the negative

external line of function (4), namely, the points that are obtained from the
equation h(x) = βx + b. In such way we can obtain those points which are
eventually stationary state to zero, for example, considering situations when
all points lie on internal segments and other combinations.

3 Periodic Orbits of Period 2

Let us consider equation (1) with the signal function (2). Here we find all
periodic orbits of given initial point of period 2. Depends on parameters α, β
and a, b the following inequalities are satisfied. Six different cases are possible
1) If a+bβ

β2−1 ≥ α and βa+b
β2−1 < α, then {a+bββ2−1 ,

βa+b
β2−1} is a periodic orbit of period

2.
2) If −a+bββ2−1 ≥ α and −α < b−βa

β2−1 < 0, then {−a+bββ2−1 ,
b−βa
β2−1} is a periodic orbit

of period 2.
3) If α ≤ b

β+1 , then { b
β+1 ,−

b
β+1} is a periodic orbit of period 2.

4) If a
β−1 < α, then { a

β+1 ,−
a

β+1} is a periodic orbit of period 2.

5) If 0 < βa−b
β2−1 < α and a−βb

β2−1 ≤ −α, then {βa−bβ2−1 ,
a−βb
β2−1} is a periodic orbit of

period 2.
6) If −α < −βa−b

β2−1 < 0 and −a−βb
β2−1 ≤ −α, then {−βa−bβ2−1 ,

−a−βb
β2−1 } is a periodic

orbit of period 2.
There are possible various combinations of these periodic orbits with the

same values of parameters α, β, a, b. These combinations depend on fulfilment
of following inequalities:

a+ bβ

β2 − 1
>
−a+ bβ

β2 − 1
>

b

β + 1
≥ α > a

β + 1
>
−b+ aβ

β2 − 1
> 0 >

−b− aβ
β2 − 1

> −α

−βb− a
β2 − 1

<
a− βb
β2 − 1

< − b

β + 1
≤ −α < − a

β + 1
<
b− βa
β2 − 1

< 0 <
b+ βa

β2 − 1
.

For example, if βa > b and a
β+1 < α ≤ b

β+1 , then there exists 4 periodic or-

bits of period 2, i.e., {−a+bββ2−1 ,
b−βa
β2−1}, {

b
β+1 ,−

b
β+1}, {

a
β+1 ,−

a
β+1}, {

βa−b
β2−1 ,

a−βb
β2−1}

and we have an arrangement

−a+ bβ

β2 − 1
>

b

β + 1
≥ α > a

β + 1
>
−b+ aβ

β2 − 1
> 0

a− βb
β2 − 1

< − b

β + 1
≤ −α < − a

β + 1
<
b− βa
β2 − 1

< 0.

As an example, if β = 2, a = 2, b = 3, α = 0.8, then we have 4 periodic orbits
of period 2: { 43 ,−

1
3}, {1,−1}, { 23 ,−

2
3}, {

1
3 ,−

4
3} (see Fig.3).
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Fig. 3. Periodic orbits of period 2

If additionally a condition β > 2b
b−a is assumed it is possible to obtain six

different periodic orbits of period 2 together, e.g., choosing β = 8, a = 2, b = 3,
α = 0.32, we obtain periodic orbits of period 2: { 2663 ,

19
63}, {

22
63 ,−

13
63}, {

1
3 ,−

1
3},

{ 29 ,−
2
9}, {

13
63 ,−

22
63}, {−

26
63 ,−

19
63}.

4 Periodic Orbits of Period 4

Now we demonstrate some periodic orbits of period 4 of the difference equation
(1). There are many different options of orbits which can be obtained depend-
ing on parameters α, β and a, b. We consider some of them
1) {x0 = aβ+a

β2+1 , x1 = aβ−a
β2+1 , x2 = −aβ−a

β2+1 , x3 = −aβ+a
β2+1 } is a periodic orbit of pe-

riod 4. In this case it is necessary that α > x0 > x1 > 0 > x3 > x2 > −α.
For example, if we choose parameters β = 3, a = 2, b = 5, α = 1, we obtain a
periodic orbit { 45 ,

2
5 ,−

4
5 ,−

2
5} (see Fig.4).

2) {x0 = bβ−a
β2+1 , x1 = −aβ−b

β2+1 , x2 = −bβ+a
β2+1 , x3 = aβ+b

β2+1} is a periodic orbit of
period 4. In this case it is necessary that x0 ≥ α > x3 > 0 > x1 > −α ≥ x2.
For example, if we choose parameters β = 3, a = 1, b = 8, α = 1.5, we obtain
a periodic orbit { 2310 ,−

11
10 ,−

23
10 ,−

11
10} (see Fig.5)

-3 -2 -1 1 2 3

x

-3

-2

-1

1

2

3

hHxL

Fig. 4. Periodic orbits of period 4 of
cases 1), 3), 4)
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Fig. 5. Periodic orbits of period 4 of
cases 2)

3) {x0 = bβ+a
β2+1 , x1 = aβ−b

β2+1 , x2 = −bβ−a
β2+1 , x3 = −aβ+b

β2+1 } is a periodic orbit of
period 4. In this case is necessary that x0 ≥ α > x1 > 0 > x3 > −α ≥ x2.
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For example, if we choose parameters β = 3, a = 2, b = 5, α = 1, we obtain a
periodic orbit { 1710 ,

1
10 ,−

17
10 ,−

1
10} (see Fig.4).

4) {x0 = bβ+b
β2+1 , x1 = bβ−b

β2+1 , x2 = −bβ−b
β2+1 , x3 = −bβ+b

β2+1 } is a periodic orbit of
period 4. In this case is necessary that x0 > x1 ≥ α > 0 > −α ≥ x3 > x2.
For example, if we choose parameters β = 3, a = 2, b = 5, α = 1, we obtain a
periodic orbit {2, 1,−2,−1} (see Fig.4).

5) {x0 = bβ3+bβ2+bβ−b
β4−1 , x1 = bβ3+bβ2−bβ+b

β4−1 , x2 = bβ3−bβ2+bβ+b
β4−1 ,

x3 = −bβ3+bβ2+bβ+b
β4−1 } is a periodic orbit of period 4. In this case is necessary

that x0 > x1 > x2 ≥ α > 0 > −α ≥ x3. If we take β = 3, a = 4, b = 6 and
α = 1, we get a periodic orbit { 5720 ,

51
20 ,

33
20 ,−

21
20} (see Fig.6).

6) {x0 = bβ3+bβ2+bβ−a
β4−1 , x1 = bβ3+bβ2−aβ+b

β4−1 , x2 = bβ3−aβ2+bβ+b
β4−1 , x3 =

−aβ3+bβ2+bβ+b
β4−1 } is a periodic orbit of period 4. In this case is necessary that

x0 > x1 > x2 ≥ α > 0 > x3 > −α. If we take β = 3, a = 4, b = 6 and α = 1,
we get a periodic orbit { 238 ,

21
8 ,

15
8 ,−

3
8} (see Fig.6).

7){x0 = −bβ3−bβ2−bβ+a
β4−1 , x1 = −bβ3−bβ2+aβ−b

β4−1 , x2 = −bβ3+aβ2−bβ−b
β4−1 , x3 =

aβ3−bβ2−bβ−b
β4−1 } is a periodic orbit of period 4. In this case is necessary that

α > x3 > 0 > −α ≥ x2 > x1 > x0. If we take β = 3, a = 4, b = 6 and α = 1,
we get a periodic orbit {− 23

8 ,−
21
8 ,−

15
8 ,

3
8} (see Fig.6).

8) {x0 = −bβ3−bβ2−bβ+b
β4−1 , x1 = −bβ3−bβ2+bβ−b

β4−1 , x2 = −bβ3+bβ2−bβ−b
β4−1 , x3 =

bβ3−bβ2−bβ−b
β4−1 } is a periodic orbit of period 4. In this case is necessary that

x3 ≥ α > 0 > −α ≥ x2 > x1 > x0. If we take β = 3, a = 4, b = 6 and α = 1,
we get a periodic orbit {− 57

20 ,−
51
20 ,−

33
20 ,

21
20} (see Fig.6).

9) {x0 = aβ3+aβ2+aβ−a
β4−1 , x1 = aβ3+aβ2−aβ+a

β4−1 , x2 = aβ3−aβ2+aβ+a
β4−1 , x3 =

−aβ3+aβ2+aβ+a
β4−1 } is a periodic orbit of period 4. In this case is necessary that

α > x0 > x1 > x2 > 0 > x3 > −α. For example, if we choose parameters
β = 3, a = 2, b = 5, α = 1, we obtain a periodic orbit { 1920 ,

17
20 ,

11
20 ,−

7
20} (see

Fig.7).
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Fig. 6. Periodic orbits of period 4 of
cases 5), 6), 7), 8)
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Fig. 7. Periodic orbits of period 4 of
cases 9), 10), 11), 12)

10) {x0 = aβ3+aβ2+aβ−b
β4−1 , x1 = aβ3+aβ2−bβ+a

β4−1 , x2 = aβ3−bβ2+aβ+a
β4−1 , x3 =

−bβ3+aβ2+aβ+a
β4−1 } is a periodic orbit of period 4. In this case is necessary that
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α > x0 > x1 > x2 > 0 > −α ≥ x3. For example, if we choose parameters
β = 3, a = 2, b = 5, α = 1, we obtain a periodic orbit { 7380 ,

59
80 ,

17
80 ,−

109
80 } (see

Fig.7).

11){x0 = −aβ3−aβ2+aβ+a
β4−1 , x1 = −aβ3−aβ2+aβ−a

β4−1 , x2 = aβ3−aβ2−aβ−a
β4−1 , x3 =

aβ3−aβ2−aβ−a
β4−1 } is a periodic orbit of period 4. In this case is necessary that

α > x3 > 0 > x2 > x1 > x0 > −α. For example, if we choose parameters
β = 3, a = 2, b = 5, α = 1, we obtain a periodic orbit {− 19

20 ,−
17
20 ,−

11
20 ,

7
20} (see

Fig.7).

12){x0 = −aβ3−aβ2−aβ+b
β4−1 , x1 = −aβ3−aβ2+bβ−a

β4−1 , x2 = −aβ3+bβ2−aβ−a
β4−1 , x3 =

bβ3−aβ2−aβ−a
β4−1 } is a periodic orbit of period 4. In this case is necessary that

x3 ≥ α > 0 > x2 > x1 > x0 > −α. For example, if we choose parameters
β = 3, a = 2, b = 5, α = 1, we obtain a periodic orbit {− 73

80 ,−
59
80 ,−

17
80 ,

109
80 }

(see Fig.7).

5 Periodic Orbits of Period 2k

In this section the sufficient conditions for existence or periodic 2k-periodic
orbit are obtained. But we can construct periodic orbits of an arbitrary period.
We show in the next two theorems this construction when all points of the orbit
belong to external lines of the function (4), i.e., points of the orbit are greater
or equal to α or less or equal to −α.

Theorem 1. If there exists a positive integer k such that

b(β2k − 2β2k−2 + 1)

(β2k − 1)(β + 1)
≥ α (5)

then the difference equation (1) has a periodic orbit of period 2k. So more each
periodic orbit is unstable.

Proof. We construct a periodic orbit O(x0) of period 2k. Let us take

x0 > α, x1 ≥ α, x2 < −α, x3 < −α,
(−1)ixi > α for i = 4, ..., 2k − 1,
x2k = x0.

(6)

Then

x0 > α,
x1 = βx0 − b ≥ α,
x2 = β2x0 − bβ − b < −α,
x3 = β3x0 − bβ2 − bβ + b < −α,
x4 = β4x0 − bβ3 − bβ2 + bβ + b > α,
x5 = β5x0 − bβ4 − bβ3 + bβ2 + bβ − b < −α,
x6 = β6x0 − bβ5 − bβ4 + bβ3 + bβ2 − bβ + b > α,
...
x2k−1 = β2k−1x0 − bβ2k−2 − bβ2k−3 + bβ2k−4 + bβ2k−5 − bβ2k−6+

+bβ2k−7 − ...+ bβ − b < −α,
x2k = β2kx0 − bβ2k−1 − bβ2k−2 + bβ2k−3 + bβ2k−4 − bβ2k−5+

+bβ2k−6 − bβ2k−7 + ...+ bβ2 − bβ + b = x0 > α.
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Since x2k = x0, then

x0 =
b(β2k−1 + β2k−2 − β2k−3 − β2k−4 + β2k−5 − β2k−6 + ...− β2 + β − 1)

β2k − 1
,

(7)
therefore

x0 =
b(β2k + 2β2k−1 − 2β2k−3 − 1)

(β2k − 1)(β + 1)
. (8)

Then by (5) and (8)

x1 = βx0 − b = b(β2k+1+2β2k−2β2k−2−β)
(β2k−1)(β+1)

− b
= b(β2k+1+2β2k−2β2k−2−β−β2k+1−β2k+β+1)

(β2k−1)(β+1)
= b(β2k−2β2k−2+1)

(β2k−1)(β+1)
≥ α.

We show that
min{x0, x1, x4, x6, ..., x2k−2} = x1 ≥ α

or
α ≤ x1 < x0 and α ≤ x1 < x4 < x6 < ... < x2k−2.

At first we notice that

x1 =
b(β2k − 2β2k−2 + 1)

(β2k − 1)(β + 1)
<
b(β2k + 2β2k−1 − 2β2k−3 − 1)

(β2k − 1)(β + 1)
= x0.

It is true because for all k = 2, 3, ... and β > 1

2(β2k−1 − β2k−3 + β2k−2 − 1) > 0.

Further we show that x1 < x4. We notice that x4 = β3x1−β2b+βb+ b. Then

x1 < x4 = β3x1 − β2b+ βb+ b
⇔ 0 < (β3 − 1)x1 − β2b+ βb+ b

⇔ 0 < b(β2k−2β2k−2+1)(β3−1)
(β2k−1)(β+1)

− β2b+ βb+ b

⇔ 0 < β2k+3 − 2β2k+1 + β3 − β2k + 2β2k−2 − 1− β2k+3 + β2k+2 + β2k+1−
−β2k+2 + β2k+1 + β2k + β3 − β2 − β + β2 − β − 1

= 2β2k−2 + 2β3 − 2β − 2 = 2β(β2k−3 − 1) + 2(β3 − 1)

because β > 1 and k ≥ 2. Finally we show that x2m−2 < x2m, 3 ≤ m < k.
Indeed

x2m−2 = β2m−2x0 − bβ2m−3 − bβ2m−4 + bβ2m−5 + bβ2m−6 − bβ2m−7+
+bβ2m−8 − ...− bβ + b

< x2m = β2mx0 − bβ2m−1 − bβ2m−2 + bβ2m−3 + bβ2m−4 − bβ2m−5+
+bβ2m−6 − ...− bβ + b

⇔ 0 <(β2m−β2m−2)x0−bβ2m−1−bβ2m−2+2bβ2m−3+2bβ2m−4−2bβ2m−5

⇔ 0 < β2m−2(β2−1)b(β2k+2β2k−1−2β2k−3−1)
(β2k−1)(β+1)

−
−bβ2m−1 − bβ2m−2 + 2bβ2m−3 + 2bβ2m−4 − 2bβ2m−5

= 2bβ2m−5

β2k−1 (β3 − β2 − β + 1).

(9)
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The function β3 − β2 − β + 1 is strictly increasing in the interval ]1,+∞[. If
β = 1, the function β3 − β2 − β + 1 is equal to 0 but if β > 1 it is greater than
0. Hence we get

2bβ2m−5

β2k − 1
(β3 − β2 − β + 1) > 0.

We show that

x2 < −α and max{x3, x5, x7, ..., x2k−1} = x2k−1 < −α.

Since (5) holds, then b(2β2k−2−β2k−1)
(β2k−1)(β+1)

≤ −α. At first we show that x2 < −α:

x2 = β2x0 − bβ − b = β2b(β2k+2β2k−1−2β2k−3−1)
(β2k−1)(β+1)

− b(β + 1)

= b(−β2k−2β2k−1+2β+1)
(β2k−1)(β+1)

= b(2β2k−2−β2k−1−2β2k−2−2β2k−1+2β+2)
(β2k−1)(β+1)

≤ −α− 2b(β2k−2+β2k−1−β−1)
(β2k−1)(β+1)

< −α.

By the construction x2k−1 = x0−b
β , then

x2k−1 = b(β2k+2β2k−1−2β2k−3−1)
(β2k−1)(β+1)β

− b
β

= b(2β2k−1−2β2k−3−β2k+1)
(β2k−1)(β+1)β

= b(2β2k−2−2β2k−4−β2k)
(β2k−1)(β+1)

= b(2β2k−2−β2k−1+1−2β2k−4)
(β2k−1)(β+1)

≤ −α− b(2β2k−4−1)
(β2k−1)(β+1)

< −α,

because β > 1 and k ≥ 2. Similar as (9) it is possible to show that x2m−3 <
x2m−1 for all 3 ≤ m ≤ k.

If assumptions of Theorem 1 holds, the orbit O(x0) where x0 is defined by
(8), satisfies (6). Thus equation (1) has 2k-periodic orbit O(x0).

6 Periodic Orbits of Period 2k − 1

The following theorem give the sufficient conditions for existence of an arbitrary
odd periodic orbit of equation (1).

Theorem 2. If there exists a positive integer k such that

b(β2k+1 − 2β2k−1 − 1)

β2k+1 − 1
≥ α, (10)

then the difference equation (1) has a periodic orbit of period 2k + 1. This
periodic orbits are unstable.

Proof. We will construct a periodic orbit O(x0) of period 2k + 1 such that

x0 ≥ α, x1 < −α, x2 < −α,
(−1)ixi < −α for i = 3, ..., 2k,
x2k+1 = x0.

(11)
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Then

x0 ≥ α,
x1 = βx0 − b < −α,
x2 = β2x0 − bβ + b < −α,
x3 = β3x0 − bβ2 + bβ + b > α,
x4 = β4x0 − bβ3 + bβ2 + bβ − b < −α,
...
x2k = β2kx0 − bβ2k−1 + bβ2k−2 + bβ2k−3 − bβ2k−4 + bβ2k−5−

−bβ2k−6 + ...+ bβ − b < −α,
x2k+1 = β2k+1x0 − bβ2k + bβ2k−1 + bβ2k−2 − bβ2k−3 + bβ2k−4−

−bβ2k−5 + bβ2k−6 + ...+ bβ2 − bβ + b = x0 > α.

Since x2k+1 = x0, then

x0 =
b(β2k − β2k−1 − β2k−2 + β2k−3 − β2k−4 + β2k−5 − ...− β2 + β − 1)

β2k+1 − 1
,

therefore

x0 =
b(β2k+1 − 2β2k−1 − 1)

(β2k+1 − 1)(β + 1)
. (12)

Since (10) holds, then x0 ≥ α.
We show that

α ≤ x0 < x2k−1 < x2k−3 < ... < x5 < x3.

At first we show that

x0 < x2k−1 = β2k−1x0−bβ2k−2+bβ2k−3+bβ2k−4−bβ2k−5+bβ2k−6−...−bβ+b.

Because (12) holds we prove that

0 <
(β2k−1−1)b(β2k+1−2β2k−1 − 1)

(β2k+1 − 1)(β + 1)
− bβ2k−2+bβ2k−3 + bβ2k−4− ...− bβ + b.

The right side of the last inequality by the algebraic transformations is equal
to

b(2β2k−1 − 2β2k−3)

(β2k+1 − 1)(β + 1)
=

2bβ2k−3(β − 1)

β2k+1 − 1
,

which is greater than 0 since β > 1 and k ≥ 2.
Secondly we show that x2m−1 < x2m−3, 3 ≤ m < k. Indeed

(x2m−1 = β2m−1x0 − bβ2m−2 + bβ2m−3 + bβ2m−4 − bβ2m−5 + bβ2m−6−
−bβ2m−7 − ...− bβ + b

< x2m−3 = β2m−3x0 − bβ2m−4 + bβ2m−5 + bβ2m−6 − bβ2m−7 + bβ2m−8−
−bβ2m−9 − ...− bβ + b)

⇔ 0 <(β2m−3−β2m−1)x0+bβ2m−2−bβ2m−3−2bβ2m−4+2bβ2m−5

⇔ 0 < β2m−3(1−β2)b(β2k+1−2β2k−1−1)
(β2k+1−1)(β+1)

+

+bβ2m−2 − bβ2m−3 − 2bβ2m−4 + 2bβ2m−5

⇔ 0 < 2bβ2m−5(β−1)
β2k+1−1 .

(13)
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Since β > 1 and m ≥ 3, the last inequality holds.
Now we need to show that

max{x1, x2, x4, ..., x2k} < −α.

In this case it is possible to prove that x1 < x2k < x2k−2 < ... < x2 < −α.
From (12) follows that

x1 = βx0 − b =
bβ(β2k+1 − 2β2k−1 − 1)

(β2k+1 − 1)(β + 1)
− b. (14)

By the construction

x2k =
x0
β
− b

β
=
bβ(β2k+1 − 2β2k−1 − 1)

β(β2k+1 − 1)(β + 1)
− b

β
.

Inequality x1 < x2k is fulfilled, if the following inequalities holds

β2(β2k+1−2β2k−1−1)
(β2k+1−1)(β+1)

− β < β(β2k+1−2β2k−1−1)
(β2k+1−1)(β+1)

− 1

⇔ β2k+3−2β2k+1−β2−β2k+3−β2k+2+β2+β
(β2k+1−1)(β+1)

< β2k+1−2β2k−1−1−β2k+2−β2k+1+β+1
(β2k+1−1)(β+1)

⇔ 0 < 2β2k1 (β2−1)
(β2k+1−1)(β+1)

.

The last inequality holds since β > 1 and therefore x1 < x2k.
Now we show that x2 < −α. We note that from (10) follows that

b(2β2k−1 − β2k+1 + 1)

(β2k+1 − 1)(β + 1)
≤ −α. (15)

Then (considering (14) and (15))

x2 = βx1 + b = bβ2(β2k+1−2β2k−1−1)
(β2k+1−1)(β+1)

− bβ + b

= b(β2k+3−2β2k+1−β2−β2k+3+β2k+1+β2−1)
(β2k+1−1)(β+1)

= b(−β2k+1−1)
(β2k+1−1)(β+1)

= b(2β2k−1−β2k+1+1−2β2k−1−2)
(β2k+1−1)(β+1)

≤ −α− 2b(β2k−1+1)
(β2k+1−1)(β+1)

< −α.

Similar as (13) it is possible to show that x2m < x2m−2 for all 2 ≤ m ≤ k.
If assumptions of Theorem 2 hold, the orbit O(x0) where x0 is defined by

(12), satisfies (11) and is periodic orbit of period 2k + 1 for (1).

We illustrate Theorem 1 and 2 with the following example. Let us take
k = 3. If β = 2, a = 23, b = 63, α = 10 then by Theorem 1 the point x0 = 37
gives a periodic orbit of period 6 {37, 11,−41,−19, 25,−13} (see Fig.8) and if
β = 2, a = 23, b = 127, α = 11 by Theorem 2 the point x0 = 21 gives a
periodic orbit of period 7 {21,−85,−43, 41,−45, 37,−53} (see Fig.9). We can
observe that the values of points of these orbits are greater or equal to α or
less or equal to −α, that is, the points belong to external lines of the function
h.

We remark that these theorems find just some periodic orbits but not all. It
is possible to construct periodic orbit if all points of orbit belong to internal lines
of the function (4), i.e., points of orbits are in the set ]−α;α[\{0}. Furthermore
we remark that in the case β > 1 there exist infinitely many eventually periodic
orbits.
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Fig. 8. Periodic orbits of period 6 with
α = 10
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Fig. 9. Periodic orbits of period 7 with
α = 11

7 Chaotic behaviour

The fact that the difference equation (1) has periodic orbits of any period is one
of the indicators of its complicated dynamics. One more important reflection
of this complexity is sensitive dependence on initial conditions, which is the
hallmark of chaos. In this part we discuss chaotic behaviour of (4).

Sharkovsky’s Theorem (see for example, [8], [9], [11], [17]) is the basis of
the Li and Yorke proof ([13], (1975)). This Theorem shows that any one-
dimensional system which exhibits a regular cycle of period three will also
display regular cycles of every other length under assumption that used function
is continuous. By Theorem 2 we can find some values of parameters such that
our model has a periodic orbit of period 3 for β > 1. But the function in our
model (1) is not continuous. There are known the another definitions of chaotic
snapping in the case that function f is not a continuous one. Frequently in
literature is used the following definition given by Devaney ([7]).

Let (X, ρ) be a metric space.

Definition 10. The function f : X → X is chaotic if
a) the periodic points of f are dense in X,
b) f is topologically transitive,
c) f exhibits sensitive dependence on initial conditions.

Also mappings with one property - sensitive dependence on initial conditions -
frequently are considered as chaotic (see [10]).

Definition 11. The function f : X → X exhibits sensitive dependence on
initial conditions if

∃δ > 0 ∀x ∈ X ∀ε > 0 ∃y ∈ X ∃n ∈ N : ρ(x, y) < ε & ρ(fn(x), fn(y)) > δ.

Definition 12. The function f : X → X is topologically transitive on X if

∀x, y ∈ X ∀ε > 0 ∃z ∈ X ∃n ∈ N : ρ(x, z) < ε & ρ(fn(z), y) < ε.

Definition 13. Let A,B ⊆ X and A ⊆ B. Then A is dense in B if for each
point x ∈ B and each ε > 0, there exists y ∈ A such that ρ(x, y) < ε.
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In particular case if a = 0, then, for example, with parameters β = 2, b = 6,
α = 3 in interval [0; 6] our function is a doubling map which is chaotic [1], [15],
[16], [17]. This particular situation is shown in Fig.10 a).

In our case we use theorem from the book by Robinson [17].

Theorem 3. Assume that
1) f is a function defined on a closed interval [a, b] ⊂ R with k discontinuities,
2) f([a, b]) ⊂ [a, b],
3) the map f is differentiable at all points x different from the discontinuities
points, with a derivative that satisfies |f ′(x)| > 1 at all these points, with x
different from the discontinuities points.
Then f is a chaotic mapping.
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Fig. 10. Chaotic functions

Therefore we can formulate a following theorem.

Theorem 4. There exists parameters β, α, b and a such that the function

h(x) =


βx− b, α ≤ x,
βx− a, 0 < x < α,
0, x = 0,
βx+ a, −α < x < 0,
βx+ b, x ≤ −α

is a chaotic mapping in some interval.

For example in case if b
β−1 = a = βα − a the interval is

[
− b
β−1 ,

b
β−1

]
. If

β = 3, a = 3, b = 6, α = 2 and the function h(x) is chaotic in the interval
[−3, 3] (see Fig.10 b)).
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Abstract. We review our recent work on ellipsoidal M2-brane solutions in the large-
N limit of the BMN matrix model. These bosonic finite-energy membranes live inside
so (3) × so (6) symmetric plane-wave spacetimes and correspond to local extrema of
the energy functional. They are static in so (3) and stationary in so (6). Chaos ap-
pears at the level of radial stability analysis through the explicitly derived spectrum of
eigenvalues. The angular perturbation analysis is suggestive of the presence of weak
turbulence instabilities that propagate from low to high orders in perturbation theory.

Keywords: Dynamical systems, chaos, M-theory, BMN matrix model, relativistic
membranes.

1 Introduction

M-theory By the end of the first superstring revolution (1984-1994), five seem-
ingly different 10-dimensional superstring theories had emerged:

Types I, II (IIA, IIB), Heterotic (so(32), E8 × E8).

During the subsequent second superstring revolution (1994-2003), it was found
that the 5 superstring theories are connected via a web of dualities (T-duality,
S-duality, U-duality, mirror symmetry). What is more, it was realized that
the five 10-dimensional superstring theories were just limiting cases of an 11-
dimensional theory. This theory was called ”M-theory”; it is obtained in the
strong-coupling limit (gs → ∞) of IIA superstring theory. The letter ”M”
stands for ”magic, mystery and matrix” according to one of its founders, E.
Witten [1]. Others have associated the letter ”M” with ”membranes” [2].

Relativistic membranes The idea behind the theory of relativistic membranes
is simple: replace 1-dimensional lines (strings) with 2-dimensional surfaces
(membranes), much like lines/strings replace 0-dimensional points/particles in
the passage from quantum field theory to string theory. Like point particles

13thCHAOS Conference Proceedings, 9 - 12 June 2020, Florence, Italy
C. H. Skiadas (Ed)

© 2020 ISAST
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and strings, membranes are Poincaré invariant objects that can be supersym-
metrized. It has been proven that supermembranes can only be defined consis-
tently in 11 spacetime dimensions. Higher-dimensional extended supersymmet-
ric objects (Mp-branes) can be defined in an analogous fashion. Nonetheless,
there are reasons to believe that supermembranes (or ”M2-branes”) are the
fundamental objects of the 11-dimensional M-theory, just like strings are the
fundamental objects of 10-dimensional string theory.

Matrix models According to the matrix theory conjecture of Banks, Fischler,
Shenker and Susskind (BFSS) [3], a theory of matrix-discretized supermem-
branes provides a realization of M-theory in flat spacetime. In the language of
matrix models, membranes are fuzzy objects that are represented by N × N
matrices. In the limit of very large matrix dimensions (N →∞), these matrix
models are known to reduce to supermembrane theories.

In 2002, Berenstein, Maldacena and Nastase (BMN) [4] proposed a refor-
mulation of the BFSS matrix model on a particular type of a background that
consists of a weakly curved spacetime that is known as a plane-wave, supported
by a constant (4-form) field strength:

ds2 =−2dx+dx− −

µ2

9

3∑
i=1

xixi +
µ2

36

6∑
j=1

yjyj

 dx+dx+ +

3∑
i=1

dxidxi+

+

6∑
j=1

dyjdyj , F123+ = µ. (1)

Briefly, the BMN matrix model is a deformation of the BFSS matrix model by
mass terms and a flux (aka Myers) term. In the large-N limit it is again known
[5] that the BMN matrix model reduces to a theory of supermembranes in the
11-dimensional plane-wave background (1). Interestingly, M(atrix) theory has
quite recently been applied to the study of chaotic phenomena that take place
on the horizons of black holes.

Black holes Black holes (BHs) are regions of spacetime where the force of grav-
ity is so strong that nothing (not even light) can escape. The 2-dimensional
surface beyond which it is (classically) impossible for matter or information to
escape the gravitational pull of a BH is known as the BH’s event horizon. In
1974 Stephen Hawking predicted that it is (quantum-mechanically) possible for
BHs to emit thermal radiation and thus slowly evaporate. Because Hawking’s
radiation is purely thermal, all the information that is stored in BHs seems to
get lost.

To resolve the ensuing BH information paradox we ultimately need to un-
derstand the mechanisms with which information is being stored and processed
in BHs. One such mechanism is known as fast scrambling or ultra-fast thermal-
ization [6]. More generally, it is widely believed that chaotic phenomena are a
dominant feature of BH horizons. Because it is inherently nonlocal, M(atrix)
theory turns out to be a valuable tool in the study of information processing
by BHs. More precisely, M(atrix) theory can be used to model the dynamics
of the microscopic degrees of freedom that are present on BH horizons [7,8].
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M-theory as a dynamical system 3

2 General setup

Our starting point is the Hamiltonian of a bosonic relativistic membrane in the
11-dimensional maximally supersymmetric plane-wave background (1). The
Hamiltonian reads, in the so-called light-cone gauge x+ = τ [5]:

H =
T

2

∫
d2σ

[
π2
i +

1

2
{xi, xj}2 +

1

2
{yi, yj}2 + {xi, yj}2 +

µ2x2

9
+
µ2y2

36
−

−µ
3
εijk {xi, xj}xk

]
. (2)

From now on the indices of the coordinates xi will implicitly be taken to run
from 1 to 3, while those of the coordinates yj will run from 1 to 6.1 In (2) T
stands for the membrane tension and

π2
i ≡

3∑
i=1

ẋiẋi +

6∑
j=1

ẏj ẏj , x2 ≡
3∑
i=1

xixi, y2 ≡
6∑
j=1

yjyj . (3)

The definition of the Poisson bracket {f, g} that we will be using is

{f , g} ≡ εrs√
w (σ)

∂rf ∂sg =
1√
w (σ)

(∂1f ∂2g − ∂2f ∂1g) , (4)

where d2σ =
√
w (σ) dσ1 dσ2 is the spatial volume element of the worldvolume

and εrs is the 2-dimensional Levi-Civita symbol. In a flat worldvolume it’s
w (σ) = 1 and the usual definition of the Poisson bracket is retrieved.

The Lagrangian equations of motion for the spatial coordinates x and y
corresponding to the Hamiltonian (2) are:

ẍi = {{xi, xj} , xj}+ {{xi, yj} , yj} −
µ2

9
xi +

µ

2
εijk {xj , xk} (5)

ÿi = {{yi, yj} , yj}+ {{yi, xj} , xj} −
µ2

36
yi. (6)

The coordinates x and y can also be shown to obey the Gauss law constraint:

3∑
i=1

{ẋi, xi}+

6∑
j=1

{ẏj , yj} = 0. (7)

3 The spherical ansatz

Let us make the following ansatz for the spatial coordinates x and y [9,10]:

xi ≡ x1i = x̃1i (τ) e1 (σ) , i = 1, . . . , q1 (8)

xq1+j ≡ x2j = x̃2j (τ) e2 (σ) , j = 1, . . . , q2 & q1 + q2 + q3 = 3 (9)

xq1+q2+k ≡ x3k = x̃3k (τ) e3 (σ) , k = 1, . . . , q3 (10)

1 Note also that there’s no distinction between upper and lower indices, so that these
will be henceforth used interchangeably.
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and

yi ≡ y1i = ỹ1i (τ) e1 (σ) , i = 1, . . . , s1 (11)

ys1+j ≡ y2j = ỹ2j (τ) e2 (σ) , j = 1, . . . , s2 & s1 + s2 + s3 = 6 (12)

ys1+s2+k ≡ y3k = ỹ3k (τ) e3 (σ) , k = 1, . . . , s3. (13)

The ansatz (8)–(13) splits the coordinates x and y into three groups

xai = x̃ai (τ) ea & ybj = ỹbj (τ) eb, (14)

where i = 1, . . . , qa, j = 1, . . . , sb, a, b = 1, 2, 3. Going over to spherical
coordinates, (σ1, σ2)→ (θ, φ), we define:2

(e1, e2, e3) = (cosφ sin θ, sinφ sin θ, cos θ), φ ∈ [0, 2π), θ ∈ [0, π] (16)

{ei, ej} = εijk ek,

∫
ei ej d

2σ =
4π

3
δij . (17)

Note that the Gauss law constraint (7) is automatically satisfied by the ansatz
(8)–(13). Now consider the following solutions:

x̃1 (τ) = eΩx1τ · x̃10, x̃2 (τ) = eΩx2τ · x̃20, x̃3 (τ) = eΩx3τ · x̃30 (18)

ỹ1 (τ) = eΩy1τ · ỹ10, ỹ2 (τ) = eΩy2τ · ỹ20, ỹ3 (τ) = eΩy3τ · ỹ30. (19)

As in the case of flat space (worked out in [11]) it can be shown that the radii

r2
x1 ≡ x̃2

1 =

q1∑
i=1

x̃10ix̃10i, r
2
x2 ≡ x̃2

2 =

q2∑
j=1

x̃20j x̃20j , r
2
x3 ≡ x̃2

3 =

q3∑
k=1

x̃30kx̃30k (20)

r2
y1 ≡ ỹ2

1 =

s1∑
i=1

ỹ10iỹ10i, r
2
y2 ≡ ỹ2

2 =

s2∑
j=1

ỹ20j ỹ20j , r
2
y3 ≡ ỹ2

3 =

23∑
k=1

ỹ30kỹ30k (21)

of the ansatz (18)–(19) can be determined (for all the antisymmetric matrices
Ωx1, Ωx2, Ωx3, Ωy1, Ωy2, Ωy3) in terms of the conserved angular momenta

(`x1)ij ≡ ˙̃x1ix̃1j − x̃1i
˙̃x1j , (`y1)ij ≡ ˙̃y1iỹ1j − ỹ1i

˙̃y1j (22)

(`x2)ij ≡ ˙̃x2ix̃2j − x̃2i
˙̃x2j , (`y2)ij ≡ ˙̃y2iỹ2j − ỹ2i

˙̃y2j (23)

(`x3)ij ≡ ˙̃x3ix̃3j − x̃3i
˙̃x3j , (`y3)ij ≡ ˙̃y3iỹ3j − ỹ3i

˙̃y3j , (24)

by minimizing the corresponding effective potential of the membrane. This is
completely equivalent to plugging the ansatz (18)–(19) into the equations of
motion (5)–(6) and determining the relation between the radii rx1, rx2, rx3,
ry1, ry2, ry3 and the components of the matrices Ωx1, Ωx2, Ωx3, Ωy1, Ωy2, Ωy3

(which in turn always combine to form the conserved angular momenta `x1,
`x2, `x3, `y1, `y2, `y3).

2 We use the volume element in (θ, φ) space which implies that
√
w (σ) = sin θ should

be used in the definition (4) of the Poisson bracket. For alternative parametrizations
such as

(e1, e2, e3) = (cn (φ|m) sn (θ|n) , sn (φ|m) sn (θ|n) , sn (θ|n)), (15)

where φ ∈ [0, 4K (m)) and θ ∈ [0, 2K (n)], the corresponding volume element is√
w (σ) = sn (θ|n) dn (θ|n) dn (φ|m).
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4 Effective potentials

The energy of the membrane (2) becomes:

E =
2πT

3

[
˙̃x2
1 + ˙̃x2

2 + ˙̃x2
3 + ˙̃y2

1 + ˙̃y2
2 + ˙̃y2

3 + x̃2
1x̃

2
2 + x̃2

2x̃
2
3 + x̃2

3x̃
2
1 + ỹ2

1 ỹ
2
2 + ỹ2

2 ỹ
2
3+

+ỹ2
3 ỹ

2
1 + x̃2

1

(
ỹ2

2 + ỹ2
3

)
+ x̃2

2

(
ỹ2

3 + ỹ2
1

)
+ x̃2

3

(
ỹ2

1 + ỹ2
2

)
+
µ2

9
x̃2+

+
µ2

36
ỹ2 − 2µ εijk x̃1ix̃2j x̃3k

]
. (25)

We now proceed to the following decomposition of the coordinates:

˙̃x2
1 ≡ ˙̃x1i

˙̃x1i = ṙ2
x1 +

`2x1

r2
x1

, ˙̃y2
1 ≡ ˙̃y1j

˙̃y1j = ṙ2
y1 +

`2y1

r2
y1

(26)

˙̃x2
2 ≡ ˙̃x2i

˙̃x2i = ṙ2
x2 +

`2x2

r2
x2

, ˙̃y2
2 ≡ ˙̃y2j

˙̃y2j = ṙ2
y2 +

`2y2

r2
y2

(27)

˙̃x2
3 ≡ ˙̃x3i

˙̃x3i = ṙ2
x3 +

`2x3

r2
x3

, ˙̃y2
3 ≡ ˙̃y3j

˙̃y3j = ṙ2
y3 +

`2y3

r2
y3

. (28)

Plugging (20)–(21) and (26)–(28) into (25), we find that the energy of the
membrane becomes

E =
2πT

3

[
ṙ2
x1 + ṙ2

x2 + ṙ2
x3 + ṙ2

y1 + ṙ2
y2 + ṙ2

y3 +
`2x1

r2
x1

+
`2x2

r2
x2

+
`2x3

r2
x3

+
`2y1

r2
y1

+
`2y2

r2
y2

+

+
`2y3

r2
y3

+ r2
x1r

2
x2 + r2

x2r
2
x3 + r2

x3r
2
x1 + r2

y1r
2
y2 + r2

y2r
2
y3 + r2

y3r
2
y1+

+r2
x1

(
r2
y2 + r2

y3

)
+ r2

x2

(
r2
y3 + r2

y1

)
+ r2

x3

(
r2
y1 + r2

y2

)
+
µ2

9
(r2
x1+

+r2
x2 + r2

x3) +
µ2

36

(
r2
y1 + r2

y2 + r2
y3

)
− 2µ εijkx̃1ix̃2j x̃3k

]
, (29)

so that the corresponding effective potential reads

Veff =
2πT

3

[
`2x1

r2
x1

+
`2x2

r2
x2

+
`2x3

r2
x3

+
`2y1

r2
y1

+
`2y2

r2
y2

+
`2y3

r2
y3

+ r2
x1r

2
x2 + r2

x2r
2
x3 + r2

x3r
2
x1+

+r2
y1r

2
y2 + r2

y2r
2
y3 + r2

y3r
2
y1 + r2

x1

(
r2
y2 + r2

y3

)
+ r2

x2

(
r2
y3 + r2

y1

)
+

+r2
x3

(
r2
y1 + r2

y2

)
+
µ2

9

(
r2
x1 + r2

x2 + r2
x3

)
+
µ2

36

(
r2
y1 + r2

y2 + r2
y3

)
−

−2µ εijkx̃1ix̃2j x̃3k

]
. (30)

The above potential (30) contains four different kinds of terms, either re-
pulsive or attractive: (1) kinetic/angular momentum terms (repulsive), (2)
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quartic interaction terms (attractive), (3) mass terms (attractive), and (4) a
cubic Myers flux term (repulsive). The last two kinds of terms (i.e. the mass
terms (3) and the Myers term (4)) are µ-dependent and so they drop out in the
µ → 0 limit (flat space) that was studied in [11]. In both cases (either µ = 0
or µ 6= 0), it is the equilibration of attractive and repulsive forces that deter-
mines the extrema of the potential. The two extra repulsive/attractive terms
for µ 6= 0 (induced by the plane-wave background) increase the complexity of
the resulting dynamical system, as it will become apparent below.

There are three ways to distribute the so (3) coordinates xi (i = 1, 2, 3) into
the three groups that are specified by the units ei in (16), so that we can gener-
ally distinguish three main types of membrane configurations. The first two of
them (labelled types I and II below) describe rotating membranes (tops) that
are point-like (collapsed) in one or two so (3) directions and have a vanishing
Myers flux term. The third type (III) is probably the most interesting one as
it contains all four kinds of repulsive and attractive terms that we described
above and extends into the full geometric background of so (3)× so (6). Let us
now introduce these three types of configurations.

4.1 Type I: q1 = 3, q2 = q3 = 0

For q1 = 3, q2 = q3 = 0 we have

rx ≡ rx1, rx2 = rx3 = 0 & `x ≡ `x1, `x2 = `x3 = 0 (31)

and the flux term vanishes. The effective potential (30) of the membrane
becomes:

Veff =
2πT

3

[
`2x
r2
x

+
`2y1

r2
y1

+
`2y2

r2
y2

+
`2y3

r2
y3

+ r2
y1r

2
y2 + r2

y2r
2
y3 + r2

y3r
2
y1 + r2

x

(
r2
y2 + r2

y3

)
+
µ2r2

x

9
+
µ2

36

(
r2
y1 + r2

y2 + r2
y3

) ]
. (32)

Apart from the completely symmetric (single-radius) configuration r = rx =
ry1 = ry2 = ry3, ` = `x = `y1 = `y2 = `y3, the radii and the momenta of the
effective potential (32) may be grouped into 5 different axially symmetric (2-
radii) configurations and 4 more configurations with 3 different radii. Each of
these potentials possesses a local minimum that corresponds to a stationary top
solution with time-independent radius and nonzero total angular momentum.
There are no static solutions (i.e. having constant radius and zero angular
momentum) in this case.

4.2 Type II: q1 = 2, q2 = 1, q3 = 0

For q1 = 2, q2 = 1 and q3 = 0,

rx3 = 0 & `x2 = `x3 = 0 (33)
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and the flux term vanishes again. The effective potential (30) becomes:

Veff =
2πT

3

[
`2x1

r2
x1

+
`2y1

r2
y1

+
`2y2

r2
y2

+
`2y3

r2
y3

+ r2
x1r

2
x2 + r2

y1r
2
y2 + r2

y2r
2
y3 + r2

y3r
2
y1+

+r2
x1

(
r2
y2 + r2

y3

)
+ r2

x2

(
r2
y3 + r2

y1

)
+
µ2

9

(
r2
x1 + r2

x2

)
+

+
µ2

36

(
r2
y1 + r2

y2 + r2
y3

) ]
. (34)

Although again this case does not lead to any static configuration (with con-
stant radius and zero angular momentum), we may construct one single-radius
(r = rx1 = rx2 = ry1 = ry2 = ry3, ` = `x1 = `y1 = `y2 = `y3) solution, 13
axially symmetric (2-radii) tops and 21 tops with 3 different radii.

For example let us consider a type II configuration with all the so (6) vari-
ables set equal to zero:

x1 = x (τ) · e1, x2 = y (τ) · e1, x3 = z (τ) · e2, yi = 0, i = 1, . . . , 6, (35)

where the time-dependent part has the form (18). In this case the effective
potential (34) becomes:

Veff =
2πT

3

[
`2

x2 + y2
+
(
x2 + y2

)
z2 +

µ2

9

(
x2 + y2 + z2

) ]
, (36)

after setting `x1 = ` for simplicity. The corresponding extremisation condition
∇Veff = 0 implies

x z2 +
µ2x

9
− x `2

(x2 + y2)
2 = y z2 +

µ2y

9
− y `2

(x2 + y2)
2 = z

(
x2 + y2

)
+
µ2z

9
= 0,

which is solved by

x2 + y2 =
3`

µ
& z = 0. (37)

Complying with (18), we can choose e.g.:

x (τ) =

√
3`

µ
cos

µ τ

3
, y (τ) =

√
3`

µ
sin

µ τ

3
, z (τ) = 0. (38)

Equivalently we could have directly plugged (35) into the equations of mo-
tion (5)–(6):

ẍ · e1 = −x z2 · e1 −
µ2x

9
· e1 + µ y z · e3 (39)

ÿ · e1 = −y z2 · e1 −
µ2y

9
· e1 + µx z · e3 (40)

z̈ · e2 = −z
(
x2 + y2

)
· e2 −

µ2z

9
· e2. (41)

It is easily seen that any solution of the type (18) will again satisfy (37).
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4.3 Type III: q1 = q2 = q3 = 1

For q1 = q2 = q3 = 1, we write:

x1 = rx1e1, x2 = rx2e2, x3 = rx3e3 & `x1 = `x2 = `x3 = 0. (42)

Note that rx1, rx2, rx3 are not radii anymore, but coordinates. The effective
potential (30) of the membrane can be written as:

Veff =
2πT

3

[
`2y1

r2
y1

+
`2y2

r2
y2

+
`2y3

r2
y3

+ r2
x1r

2
x2 + r2

x2r
2
x3 + r2

x3r
2
x1 + r2

y1r
2
y2 + r2

y2r
2
y3+

+r2
y3r

2
y1 + r2

x1

(
r2
y2 + r2

y3

)
+ r2

x2

(
r2
y3 + r2

y1

)
+ r2

x3

(
r2
y1 + r2

y2

)
+

+
µ2

9

(
r2
x1 + r2

x2 + r2
x3

)
+
µ2

36

(
r2
y1 + r2

y2 + r2
y3

)
− 2µrx1rx2rx3

]
. (43)

By combining the various radii (along with the corresponding angular mo-
menta) into groups of one, two or three, we obtain 30 different top configu-
rations, one of which corresponds to a completely symmetric top, 9 to axially
symmetric (2-radii) tops and 10 to tops that have 3 different radii.

5 Simple type III solutions

The so (3)× so (3)× so (3) ⊂ so (3)× so (6) invariant ansatz

xi = ũi (τ) ei, yj = ṽj (τ) ej , yj+3 = w̃j (τ) ej , i, j = 1, 2, 3 (44)

was studied in [12]. The ansatz (44) is obviously of the form (42) (type III)
and it describes rotating and pulsating membranes of spherical topology. The
corresponding Hamiltonian

H =
2πT

3

(
p̃2
u + p̃2

v + p̃2
w

)
+ U, (45)

is obtained by integrating out the worldvolume coordinates θ and φ. The
potential energy U reads

U =
2πT

3

[
ũ2

1ũ
2
2 + ũ2

2ũ
2
3 + ũ2

3ũ
2
1 + r̃2

1 r̃
2
2 + r̃2

2 r̃
2
3 + r̃2

3 r̃
2
1 + ũ2

1

(
r̃2
2 + r̃2

3

)
+

+ũ2
2

(
r̃2
3 + r̃2

1

)
+ ũ2

3

(
r̃2
1 + r̃2

2

)
+
µ2

9

(
ũ2

1 + ũ2
2 + ũ2

3

)
+

+
µ2

36

(
r̃2
1 + r̃2

2 + r̃2
3

)
− 2µũ1ũ2ũ3

]
, r̃2

j ≡ ṽ2
j + w̃2

j , j = 1, 2, 3. (46)

The manifest so (2)×so (2)×so (2) symmetry of the Hamiltonian (45)–(46)
with respect to the so (6) coordinates ṽi and w̃i implies that any solution of
the equations of motion preserves three so (2) angular momenta `i (i = 1, 2, 3).
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The kinetic terms of the Hamiltonian (45) can be expressed in terms of the
conserved angular momenta `i as

p̃2
v + p̃2

w =

3∑
i=1

(
˙̃r2
i +

`2i
r̃2
i

)
, (47)

leading to the effective potential

Veff = U +
2πT

3

(
`21
r̃2
1

+
`22
r̃2
2

+
`23
r̃2
3

)
. (48)

5.1 The so (3) symmetric membrane

Let us now consider the simplest possible subsystem of (44) where the so (6)
variables ṽi and w̃i are set to zero [12]:

ṽi = w̃i = 0, i = 1, 2, 3. (49)

Scaling out the mass parameter µ by setting

t = µτ, ũi = µui (50)

leads to the form

Veff =
2πTµ4

3

[
u2

1u
2
2 + u2

2u
2
3 + u2

1u
2
3 +

1

9

(
u2

1 + u2
2 + u2

3

)
− 2u1u2u3

]
(51)

of the membrane effective potential (48) and the Hamilton equations of motion,

u̇1 = p1, ṗ1 = −
[
u1

(
u2

2 + u2
3

)
+
u1

9
− u2u3

]
(52)

u̇2 = p2, ṗ2 = −
[
u2

(
u2

3 + u2
1

)
+
u2

9
− u3u1

]
(53)

u̇3 = p3, ṗ3 = −
[
u3

(
u2

1 + u2
2

)
+
u3

9
− u1u2

]
. (54)

The effective potential (51) is a particular instance of the generalized 3-dimensional
Hénon-Heiles potential that was introduced in [13],

VHH =
1

2

(
u2

1 + u2
2 + u2

3

)
+K3 u1u2u3 +K0

(
u2

1 + u2
2 + u2

3

)2
+

+K4

(
u4

1 + u4
2 + u4

3

)
, (55)

with K3 = −9, K0 = −K4 = 9/4. The critical points of the effective potential
(51) are:

u0 = 0, u1/6 =
1

6
· (1, 1, 1) , u1/3 =

1

3
· (1, 1, 1) . (56)

6 more critical points can be obtained by flipping the sign of exactly two ui’s.
This is consistent with the manifest tetrahedral (Td) symmetry of the potential
(51). The extrema u0 (point-like membrane) and u1/3 (Myers dielectric sphere)
are global degenerate minima of the potential while u1/6 is a saddle point:

Veff (0) = Veff

(
1

3

)
= 0, Veff

(
1

6

)
=

2πTµ4

64
. (57)
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Radial spectrum [12] By radially perturbing the 9 critical points u0
i in (56) as

ui = u0
i + δui (t) , δui (t) =

6∑
k=1

cke
iλtξik, (58)

we may confirm the above conclusion by examining the corresponding Hessian
matrix. It turns out that u0 and u1/3 are global minima (positive-definite
Hessian) and u1/6 is a saddle point (indefinite Hessian). These results are
summarized in the following table 1.

critical point eigenvalues λ2 (#) stability

u0
1
9

(3) , 1
36

(6) center (S)

u1/6 − 1
18

(1) , 5
18

(2) , 1
12

(6) saddle point

u1/3
1
9

(1) , 4
9

(2) , 1
4

(6) center (S)

Table 1. Radial spectrum of the so (3) symmetric membrane.

Angular spectrum [14] We may also perform more general (angular/multipole)
perturbations of the following form:

xi (t) = x0
i + δxi (t) , i = 1, 2, 3, (59)

where δxi is expanded in spherical harmonics Yjm (θ, φ) as

xi (t) = µui (t) ei, x0
i ≡ µu0

i ei, δxi (t) = µ ·
∞∑
j=1

j∑
m=−j

ηjmi (t)Yjm (θ, φ) . (60)

For the critical points u0, u1/6, u1/3 we find the eigenvalues [12]:

u0 : λ2
P = λ2

± =
1

9
, λ2

θ =
1

36
(61)

u1/6 : λ2
P = 0, λ2

+ =
1

36
(j + 1) (j + 4) , λ2

− =
j (j − 3)

36
,

λ2
θ =

1

36

(
j2 + j + 1

)
(62)

u1/3 : λ2
P = 0, λ2

+ =
1

36
(j + 1)

2
, λ2
− =

j2

9
, λ2

θ =
1

36
(2j + 1)

2
, (63)

with multiplicities dP = 2j + 1, d+ = 2j + 3, d− = 2j − 1 and dθ = 6 (2j + 1),
respectively.

The critical point u0 (point-like membrane) is obviously stable. u1/3 has
a zero mode of degeneracy 2dP while all its other eigenvalues are stable for
j = 1, 2, . . . u1/6 has one 2dP -degenerate zero mode for every j and a 10-fold
degenerate zero mode for j = 3. It is unstable for j = 1 (2-fold degenerate) and
j = 2 (6-fold degenerate). The above results were first obtained by [5] from the
matrix model. In the flat-space limit (µ→ 0), we recover the results of [15,16].
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5.2 The so (3) × so (3) × so (3) symmetric membrane

Similar perturbative analyses can be carried out in the so (3)× so (6) sector. A
solution of the corresponding equations of motion is given by

u0
i = u0, v0

j (t) = v0 cos (ωt+ ϕj) , w0
j (t) ≡ v0

j+3 (t) = v0 sin (ωt+ ϕk) , (64)

where (u0, v0) are the critical points of the axially symmetric potential

V ≡ Veff

2πTµ4
= u4+2u2v2 + v4 +

u2

9
+
v2

36
− 2u3

3
+
`2

v2
(65)

and `µ3 ≡ `1 = `2 = `3. It can be proven that the critical points (u0, v0) always
lie within the interval:

1

6
≤ u0 ≤

1

3
& 0 ≤ v0 ≤

1

12
. (66)

Radial spectrum [12] To obtain the radial spectrum we set

ui = u0
i + δui (t) , vi = v0

i (t) + δv′i (t) , wi = w0
i (t) + δw′i (t) , (67)

finding six zero eigenvalues and four nonzero ones (quadruply and doubly de-
generate):

λ2
1± =

5u0

2
− 1

9
±
√

1

92
− u0

9
− 5u2

0

12
+ 4u3

0 (68)

λ2
2± =

5u0

2
− 5

18
±
√

52

182
− 35u0

18
+

163u2
0

12
− 20u3

0. (69)

The plots of these eigenvalues can be found in the following figure 1.

u0 =
1

6
u0 =

1

3
ucrit

0.10 0.15 0.20 0.25 0.30 0.35
u0

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

λ2(u0)

Fig. 1. Radial spectrum of the so (3)× so (6) symmetric membrane.

Angular spectrum [14] Going further, we again set out to perform angular/multipole
perturbations of the form:

xi = x0
i + δxi, i = 1, 2, 3 & yk = y0

k + δyk, k = 1, . . . , 6, (70)
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where the δxi, δyk are expanded around the classical solution,

x0
i = µu0ei, i = 1, 2, 3, y0

i = µv0
i (t) e1, i = 1, 2 (71)

y0
k = µv0

k (t) e2, k = 3, 4 (72)

y0
l = µv0

l (t) e3, l = 5, 6, (73)

in spherical harmonics Yjm (θ, φ):

δxi = µ ·
∑
j,m

ηjmi (τ)Yjm (θ, φ) , δyk = µ ·
∑
j,m

εjmk (τ)Yjm (θ, φ) (74)

δyl = µ ·
∑
j,m

ζjml (τ)Yjm (θ, φ) , (75)

for i = 1, 2, 3, k = 1, 3, 5, l = 2, 4, 6. We find that one of the eigenvalues always
vanishes, two others are given by the following analytic expression

λ2
P =

1

2

(
j2 + j + 2

)
u0−

1

18

(
1 + j (j + 1)±

±3
√

144 (j2 + j − 2)u3
0 − 12 (j2 + j − 14)u2

0 − 24u0 + 1

)
, (76)

while 6 more eigenvalues λ± are also known in closed forms but are too compli-
cated to be included here. The corresponding multiplicities of the eigenvalues
are dP = 2j + 1, d+ = 2j + 3, d− = 2j − 1. For j = 1 four eigenvalues vanish,
while two others coincide with the eigenvalues (68)–(69) that were found from
radial perturbations:

λ2
P = 4u0 +

1

3
, λ2

+ =
5u0

2
− 1

9
±
√

1

92
− u0

9
− 5u2

0

12
+ 4u3

0 (77)

λ2
− =

5u0

2
− 5

18
±
√

52

182
− 35u0

18
+

163u2
0

12
− 20u3

0. (78)

For j = 2 there’s one zero eigenvalue while λP > 0. We can also plot the j = 2
eigenvalues of λ± (figure 2):

0.10 0.15 0.20 0.25 0.30 0.35
u0

0.5

1.0

1.5

2.0

λ2(u0)

0.10 0.15 0.20 0.25 0.30 0.35
u0

-0.5

0.5

1.0

1.5

2.0

λ2(u0)

Fig. 2. λ2
± for j = 2 as a function of u0.

• The squared nonzero j = 1 eigenvalues are all positive/stable in the interval
(66), except λ2

−(−) which is positive/stable only for ucrit < u0 < 1/3, where

ucrit ≡ 1
60

(
11 +

√
21
)
.
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• For j = 2, the λP , λ+ and one of the λ− squared eigenvalues are pos-
itive/stable in the interval (66). The remaining λ2

− eigenvalue is nega-
tive/unstable in the interval 1

6 ≤ u0 ≤ 0.207245 < ucrit.

• For j ≥ 3 all the squared eigenvalues are non-negative inside the interval
(66) and so the system is stable .

Here’s a summary of the angular/multipole spectrum (table 2):

eigenvalues j = 1 j = 2 j ≥ 3 degeneracy

λ2
P 0, 0,+ 0,+,+ 0,+,+ dP = 2j + 1

λ2
+ 0,+,+ +,+,+ +,+,+ d+ = 2j + 3

λ2
− 0,+, {0,±} +,+, {0,±} +,+,+ d− = 2j − 1(positive for

u0 > ucrit

) ( positive for
u0 > 0.207245

)
Table 2. Angular spectrum of the so (3)× so (6) symmetric membrane.

Higher-order perturbations [17] Beyond linearized perturbation theory (always
inside the interval (66)), we anticipate a cascade of instabilities that originates
from the j = 1, 2 multipoles and propagates towards all higher modes (j =
3, 4, . . .). The perturbative expansion becomes

xi =

∞∑
n=0

εnδxni = x0
i +

∞∑
n=1

εnδxni , i = 1, 2, 3 (79)

yi =

∞∑
n=0

εnδyni = y0
i +

∞∑
n=1

εnδyni , i = 1, . . . , 6. (80)

It follows that any given mode j at any given order n in perturbation theory
couples to all the modes of the previous orders 1, . . . , n−1 through an effective
forcing term that emerges in the corresponding system of fluctuation equations.
The perturbations are expanded in spherical harmonics as

δxni = µ ·
∑
j,m

ηnjmi (τ)Yjm (θ, φ) , ηnjmi (0) = 0, i = 1, 2, 3 (81)

δyni = µ ·
∑
j,m

θnjmi (τ)Yjm (θ, φ) , θnjmi (0) = 0, i = 1, . . . , 6. (82)

For example it can be shown that the (n = 1, j = 1, 2) instabilities we found
above couple to every mode (j = 1, 2, . . .) of the second order (n = 2) in
perturbation theory.
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Hopf bifurcation analysis for the
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Abstract. The Fitzhugh-Nagumo model, which describes a pulse transmission ac-
tivity in a neuron, is first called the Bonhoeffer-van der Pol model since it is originally
transformed from the well-known van der Pol model. The complexity of the neural
dynamical models consist of multi-parameter nonlinear systems often allow studying
only a particular case for some given values of parameters and prevent obtaining gen-
eral results. In this study, we present general parameter regions for the existence and
the stability of Hopf bifurcation for the Fitzhugh-Nagumo model.
Keywords: Fitzhugh-Nagumo model, Limit cycle, Stability, Periodic solutions.

1 Introduction

Neurons, the smallest members of the brain, transmit information between
each other through electrical activities. The electrical activities of a single neu-
ron can be modeled and analyzed by dynamical systems. The communication
among neurons observed as firing or spikes occurs as an oscillation formation
or loss around a singular point of the dynamical system, i.e., Hopf bifurcation,
when a parameter exceeds a threshold value.

The Fitzhugh-Nagumo model, which was proposed by R. Fitzhugh in 1961
and simulated by J. Nagumo et al. in 1962, is governed by the ODE system

dx

dt
= x(x− a)(1− x)− y = F (x, y),

dy

dt
= ε(x− γy) = G(x, y),

(1)

where state variables x(t) and y(t) represent the change in the membrane volt-
age (action potential) and the change in the number of open potassium channels
on the membrane of a single neuron, respectively, over time. In this model, the
voltage passes the threshold value a; spiking occurs, then it starts to decrease
and stabilizes at the neuron membrane’s resting potential. The parameter ε
denotes the speed of the change in the number of open ion channels. The
parameter γ states how strongly y depends on x. All system parameters are
assumed to be positive, except for the parameter a, which can be negative.

2 Dynamics of the Fitzhugh-Nagumo model

The eigenvalues of the Jacobian matrix can be calculated at the singular points
to determine whether the system is stable or unstable at that point. The in-
vestigation of the stability for a dynamical system is important because by
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this analysis it is then possible to know if all nearby trajectories approach that
point of singularity. If the real parts of the eigenvalues of the system’s Jaco-
bian matrix are all negative at that point, the system is stable at this point of
singularity; otherwise, it is unstable at that point[8]. If the real parts of the
eigenvalues of the Jacobian matrix are a pair of pure imaginary values, then
the phenomenon called Hopf bifurcation occurs at that point, which implies
that at that point, the system is oscillating, that is, this singularity point is
an oscillatory solution of the system. The limit cycle can be either stable or
unstable, depending on the behaviour of the system. If all nearby trajectories
approach the limit cycle inward and outward, it is a stable limit cycle. In order
to determine the parameter regions for the existence of a stable limit cycle, we
calculate the first Lyapunov coefficient[4]. This study contributes to the com-
prehension of the electrical activities of neurons by using the dynamical analysis
methods since the spikes in the communication of neurons are mathematically
stable oscillatory solutions.

Proposition 1. System (1) has three singular points E0 = (0, 0),

E− = (
1

2
(1 + a−

√
(a− 1)2 − 4

γ
),

1

2γ
(1 + a−

√
(a− 1)2 − 4

γ
)),

and

E+ = (
1

2
(1 + a+

√
(a− 1)2 − 4

γ
),

1

2γ
(1 + a+

√
(a− 1)2 − 4

γ
)).

2.1 System dynamics at E0

At E0, the membrane voltage is zero, and the ion channels are all closed. The
eigenvalues of the Jacobian matrix at E0, which is at the resting potential, are

λ1,2 =
1

2
(−a− εγ ±

√
(a− εγ)2 − 4ε). (2)

Proposition 2. The singular point E0 is a stable singular point when the sys-
tem parameters a, ε, and γ are all positive or

−γε < a ≤ 0.

Theorem 1. According to the eigenvalues given in (2), system (1) exhibits
Hopf bifurcation when

a < 0, ε > a2, a = −εγ. (3)

Proof. To investigate Hopf bifurcation at E0, we accept conditions (3) and
calculate the first Lyapunov coefficient at this point. We look for a Lyapunov
function of the form

h(x, y) = αx2 + βxy + σy2 + h.o.t.

that satisfies

∂h

∂x
F (x, y) +

∂h

∂y
G(x, y) = g1(x2 + y2)2 + .... (4)
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By solving (4) together with (1), we obtain

α =
βε

2a

and

σ = − β

2εγ
.

The quadratic form

4ασ − β2 = −4 +
4

εγ2

is positive-definite when we choose β = 2 because of condition (3) which reduces
to

ε > 0, 0 < γ <

√
1

ε

in this case. We calculate the first Lyapunov coefficient as

g1 =
6 + 2γ(εγ(1− 2εγ)− 2)

γ(3 + ε(2 + ε(3 + 4γ2)))
. (5)

Stable oscillations are indicated by a negative first Lyapunov coefficient. There-
fore, we study the case g1 < 0 together with the conditions given in (3) and we
conclude in the following Theorem.

Theorem 2. System (1) exhibits supercritical Hopf bifurcation when one of
the following cases are satisfied:

(i)0 < γ < 1,
1

4γ
+

1

4

√
−3(

(5γ − 8)

γ3
) < ε <

1

γ2
,

(ii)1 < γ ≤ 3

2
,

1

4γ
+

1

4

√
−3(

5γ − 8

γ3
) < ε <

1

γ2
,

(iii)
3

2
< γ ≤ 8

5
, 0 < ε <

1

4γ
− 1

4

√
−3(

5γ − 8

γ3
),

(iv)
3

2
< γ ≤ 8

5
,

1

4γ
+

1

4

√
−3(

5γ − 8

γ3
) < ε <

1

γ2
,

(v)γ >
8

5
, 0 < ε <

1

γ2
.

(6)

Example 1. To demonstrate supercritical Hopf bifurcation at the origin we
choose the parameter set (a, ε, γ) = (−1.75, 0.5, 3.5). The eigenvalues of the
Jacobian matrix are λ1,2 = ±0.661438i. In Fig. 1, we illustrate that system
(1) exhibits stable oscillatory regime, i.e. limit cycle. The trajectories outside
and inside approach to the limit cycle. In Fig. 1. (a) we have two initial points,
one at the outside, and one at the inside of the limit cycle. This is clearly ob-
vious since the first Lyapunov coefficient at this point is g1 = −0.0127119, as
we obtain by (5). In Fig. 1. (b), we choose ten different initial points.
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Fig. 1. (a) The supercritical Hopf bifurcation of system (1) when (a, ε, γ) =
(−1.75, 0.5, 3.5) around the origin. (b) The trajectories moving towards the limit
cycle from ten different initial points outside.

2.2 System dynamics at E− and E+

In this section, we investigate the local dynamics of system (1) at the singu-
lar point E−. However, same results are obtained for the singular point E+.
First, we make assumption that the state variables and parameter values to
be real numbers to represent realistic values, which means that the expressions
in the root must be nonnegative. For this reason, we assume the square root
terms in the singular points are positive or at least zero. Hence, we begin our
investigation for Hopf bifurcation at E± by accepting the condition

∆ = (a− 1)2γ − 4 ≥ 0. (7)

The eigenvalues of the Jacobian matrix at E− are

λ1,2 =
1

4γ
(2−∆− 2εγ2 + (1 + a)

√
γ∆

± 1

2

√
−32εγ2(∆− (1 + a)

√
γ∆) + 4(2−∆− 2εγ2 + (1 + a)

√
γ∆)2).

(8)
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Proposition 3. E− is a stable singular point under one of the following cases:

i.a < 1, ∆ = 0, ε >
2−∆
2γ2

,

ii.a < 1, ∆ > 0, ε >
2−∆+

√
γ∆(1 + a)

2γ2
,

iii.a > 1, ∆ = 0, ε >
2−∆
2γ2

,

iv.a > 1, ∆ > 0, ε >
2−∆+

√
γ∆(1 + a)

2γ2
.

(9)

Example 2. As an example of Proposition (3), we consider the parameters
(a, ε, γ) = (−1, 0.32, 1.31). For this parameter set, system (1) is rewritten
as

dx

dt
= x− x3 − y,

dy

dt
= 0.32x− 0.4192y.

(10)

The singular points of system (10) are E− = (−0.486458,−0.371342), E0 =
(0, 0), and E+ = (0.486458, 0.371342). The eigenvalues of the Jacobian matrix
at E− and E+ are λ1,2 = −0.0645618 ± 0.440717i. Since the real parts of the
eigenvalues are negative, E− and E+ are stable singular points. The origin is a
saddle point with a positive, λ1 = 0.718807, and a negative, λ2 = −0.138007,
real eigenvalue. The phase portrait for this parameter set is given in Fig. 2.
The solid lines indicate the voltage, x(t), and the dashed lines indicate the
number of open channels, y(t). We observe that the state variables end up at
E− and E+, after little fluctuations.

Hopf bifurcation indicates the birth or death of a periodic solution at a
singular point under a small perturbation of a parameter. Hopf bifurcation
occurs when a complex conjugate pair of eigenvalues of the Jacobian matrix at
a singular point becomes pure imaginary. In this case, a limit cycle, which is
a stable (unstable) isolated periodic orbit, exists, and the bifurcation is called
supercritical (subcritical) Hopf bifurcation.

Considering assumption (7), we find the conditions for the real part of (8)
to be zero and the the expression inside the root to be negative so that the
eigenvalues (8) are pure imaginary.

Theorem 3. System (1) undergoes Hopf bifurcation at E− when a = −1 if

1 < γ <
3

2
, ε =

3− 2γ

γ2
. (11)

Moreover, the Hopf bifurcation at E− is always supercritical (i.e. there exists
a stable limit cycle.).

Proof. To investigate the existence and the stability of Hopf bifurcation, we
apply a change of variables to move E− to the origin by the linear transforma-
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Fig. 2. (a) Stable spiral foci at E− = (−0.486458,−0.371342), and E+ =
(0.486458, 0.371342) for system (10). (b) Time series plots for the case given in
(a). (c) The case given in (a) for different initial points. (d) Time series plots of (c).

tion

x = u+
1

2
(1 + a−

√
∆

γ
),

y = v +
1

2γ
(1 + a−

√
∆

γ
),

and obtain the following system:

dx

dt
=

1

2γ
((2−∆+ (1 + a)

√
γ∆)x+ (−(1 + a)γ + 3

√
γ∆)x2 − 2γx3 − 2γy),

dy

dt
= ε(x− γy).

(12)
System (12) has Hopf bifurcation at the origin when a = −1. The eigenval-

ues of the Jacobian matrix at the singular point at the origin are

λ1,2 =
1

2γ
(3− γ(2 + εγ) +

√
9 + γ(−12 + γ(4 + ε(2 + γ(−4 + εγ)))). (13)

The eigenvalues given in (13) are pure imaginary if

1 < γ <
3

2
, ε =

3− 2γ

γ2
. (14)
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Hence, system (12) exhibits Hopf bifurcation. Under these conditions, we have
positive definite quadratic form.

We observe that when ∆ = 0, there is no Hopf bifurcation at the system.
Hence, we consider ∆ > 0. We also consider a 6= 1 for the system to be defined.

Calculating the first Lyapunov coefficient at this point we have

α =
βεγ

−2−∆− (1 + a)
√
γ∆

ε =
2−∆+ (1 + a)

√
γ∆

2γ2

σ = − be

2εγ

We assume the coefficient as β = 2. Then, we obtain

g1 = − 24(−1 + γ)γ3

27 + γ(−36 + γ(54 + γ(−52 + 19γ)))
(15)

for the first Lyapunov coefficient of system (1) at E−. When g1 given in (15)
is negative, then there exists a supercritical Hopf bifurcation for system (1).
When we solve

g1 < 0

and

1 < γ <
3

2
, ε =

3− 2γ

γ2

together, we obtain again condition (14). Therefore, if there is Hopf bifurcation
at E− and E+, it is a supercritical Hopf bifurcation. Hence, there exists a stable
limit cycle.

We explain Theorem (3) with the following numerical example.

Example 3. As an example for Hopf bifurcation, we choose parameter values
(a, ε, γ) = (−1, 0.32, 1.25), satisfying (3). In this case, system (1) can be written
as

dx

dt
= x− x3 − y,

dy

dt
= 0.32x− 0.4y.

(16)

System (16) has the singular points E− = (−0.447214,−0.357771), E0 =
(0, 0), and E+ = (0.447214, 0.357771). System (16) possesses Hopf bifurcation
at the singular points E− and E+, which are located symmetrically on the
trajectory plot. This result is due to the eigenvalues of the Jacobian matrix,
which are λ1,2 = ±0.4i. The stability of Hopf bifurcation is determined by
the first Lyapunov coefficient is g1 = −1.04639 as calculated from (15). At
the origin, E0 is a saddle point represented by a positive (λ1 = 0.712311) and
a negative (λ2 = −0.112311) real eigenvalues. The stable limit cycle for this
example is illustrated in Fig. 3. In Fig. 3. (a), the blue star is at (−0.9, 0.19)
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and the red star is at (0.5,−0.2). The trajectories initiating from the blue and
the red star approach towards the limit cycle. In Fig. 3. (b), the voltage, x(t),
is represented by a solid line, and the number of open ion channels, y(t) is
represented by a dashed line. For the two initial points, the blue and the red
star, we see the oscillations in x(t) and y(t) for the phase portrait given in Fig.
3. (a). In Fig. 3. (c), two points move along the limit cycle. In Fig. 3. (d),
we observe the oscillations of the state variables for the phase portrait given in
Fig. 3. (c).

-1 -0.5 0 0.5 1

x

-0.5

0

0.5

y

(a)

0 100 200 300

t

-1

-0.5

0

0.5

1

x,
 y

(b)

-1 -0.5 0 0.5 1

x

-0.5

0

0.5

y

(c)

0 100 200 300

t

-1

-0.5

0

0.5

1

x,
 y

(d)

Fig. 3. (a) The stable limit cycle for Example 3 when (a, ε, γ) = (−1, 0.32, 1.25)
around E+ = (0.447214, 0.357771) and E− = (−0.447214,−0.357771). (b) The oscil-
lations in the state variables, i.e. the voltage and the number of open channels given
in (a). (c) The trajectories moving towards the limit cycle. (d) The oscillations in
the state variables, i.e. the voltage and the number of open channels given in (c).
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Abstract. Dynamical systems contribute to the mathematical modeling of chemical
reactions of biological or ecological phenomena producing limit cycle oscillations.
In this study, we present a computational approach to examine the bifurcations of
limit cycles of the two-dimensional simple chemical reaction model known as the
Schnakenberg model. With our approach, we obtain conditions on parameters of
the system of the chemical reaction model which gives Hopf bifurcation. Using the
Lyapunov function we show the stability of Hopf bifurcation. We illustrate the results
with a numerical example.
Keywords: Schnakenberg, Limit cycle, Chemical reaction, Lyapunov function.

1 Introduction

During biochemical reactions, which are the transformations of molecules to
other molecules inside the cell, enzymes play roles of biological catalysts and
change concentration rates[10]. Biochemical reactions enable cell functions such
as digestion and respiration to reproduction and contribute to maintaining the
life processes of living organisms. The biochemical reaction, named glycolysis,
which is the destruction of glucose to enzymatic acid with enzymes to generate
energy, happens in all living organisms. Moreover, in all living organisms, the
same enzymes act in this reaction. The fluctuations in the concentrations of the
substances lead to glycolytic oscillations, which depend on the concentration
rates. The glycolytic oscillations were first observed experimentally by Duysens
and Amesz[2]. This phenomenon is known as a fascinating biochemical reac-
tion represented mathematically by a generalized version of the Schnakenberg
model[13].

2 The Schnakenberg model

In 1978, J. Schnakenberg introduced the simple chemical reaction system with
a limit cycle behaviour, the so called Schnakenberg model, an autocatalytic
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chemical reaction model with oscillatory behaviour. This model is characterized
by the following three chemical reactions that involve two chemical components
and two chemical resources:

A
 X,B → Y, 2X + Y → 3X.

The dynamical system for this chemical reaction is obtained by considering the
state variables x and y as the concentrations at a given time of the chemical
substances X and Y which leads to the following system of ordinary differential
equations:

dx

dt
= x2y − x+ b,

dy

dt
= −x2y + a.

(1)

Here, the parameters a > 0 and b > 0 denote the concentration rates of the
chemical resources A and B, respectively.

To demonstrate the oscillations in this model, Hwang et al. [4] showed that
the dimensionless system of the Schnakenberg model possesses at most one
limit cycle in R2

+. The nonexistence and existence of a positive non-constant
steady-state solution to the Schnakenberg system are studied by Li, in 2011
[6]. In this paper, we investigate Hopf bifurcation for the Schnakenberg model
by computing the Lyapunov function[12].

System (1) has one unique singular point at E = (a + b, a
(a+b)2 ), with the

eigenvalues of Jacobian matrix given as

λ1,2 =
−1

2
(1 + (a+ b)2 ±

√
k(a, b)), (2)

where
k(a, b) = (−a+ b+ (a+ b)3)2 − 4(a+ b)4. (3)

It is obvious that these eigenvalues are pure imaginary if

1 + (a+ b)2 = 0, k(a, b) < 0, a, b > 0,

which simplifies to the condition 0 < a < 1 and (a + b)3 = a − b. In this case
the singularity at E can either be a center (all trajectories are closed), or a
focus (all trajectories are spirals)[11]. When the condition

(a+ b)(1 + (a+ b)2) 6= 0

is satisfied, the singular point at E is a focus, if (a + b)(1 + (a + b)2) < 0
all trajectories in a neighborhood of E are moving towards the singularity E
(stable focus) and if (a+ b)(1 + (a+ b)2) > 0 all trajectories in a neighborhood
of E are moving away the singularity at E. For instance, Figure 1(a) shows
stable limit cycle of the system (1) with a = 0.6 and b = 0.17037459017229974
and eigenvalues are λ1,2 = −0.0178966 ± 0.77016668i and Figure 1(b) shows
stable limit cycle of the system (1) with a = 0.6 and b = 0.15037459017229974
and eigenvalues are λ1,2 = 0.01806962± 0.75015699i.[9].
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Fig. 1. (a) Stable and (b) Unstable foci of system (1).

3 The existence of Hopf bifurcation

To study Hopf bifurcation for system (1), we first move the singular point E
to origin by the linear transformation

x→ X + (a+ b) and y → Y +
a

(a+ b)2
, (4)

and obtain

ẋ =
1

a+ b
((a+ b)x2y + ax2 + +2(a+ b)2xy + (a− b)x+ (a+ b)3y) = F (x, y)

ẏ =
−1

a+ b
((a+ b)x2y + ax2 + +2(a+ b)2xy + 2ax+ (a+ b)3y) = G(x, y),

(5)
where X is rewritten as x, and Y as y. The necessary condition for the existence
of Hopf bifurcation at the origin for system (5) is when the trace of the linear
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approximation of system (5)

a− b
a+ b

− (a+ b)2,

is zero. This condition also satisfies that the real part of the eigenvalues is zero.
The second necessary condition is for k(a, b) given in (3) to be negative. These
two conditions, with additional two on parameters a and b for the chemical
system, a, b > 0, form the following system of semi-algebraic equations:

(a > 0) ∧ (b > 0) ∧ ((a+ b)3 − a+ b = 0) ∧
(((a+ b)3 − a+ b)2 − 4(a+ b)4 < 0).

(6)

System (16) can be solved using Mathematica routine Reduce [8] and we obtain

0 < a < 1 and (a+ b)3 = a− b. (7)

A commonly used approach for the determination of Hopf bifurcation is the
computation of normal forms. However, in this work, we adopt an approach
employing the Lyapunov function which we describe now. For a system

ẋ = −y + P (x, y) = P1(x, y),

ẏ = x+Q(x, y) = Q1(x, y),
(8)

we can always find a function of the form

Ψ(x, y) = x2 + y2 +
∑
j+k=3

ψjkx
jyk,

such that

∂Ψ

∂x
P1(x, y) +

∂Ψ

∂y
Q1(x, y) = g1(x2 + y2)2 + g2(x2 + y2)3 + . . . . (9)

Based on the Lyapunov Theorem of asymptotic stability [7], we determine
the type of the focus stability by using the first nonzero coefficient gi of the
extension of

∂Ψ

∂x
P1(x, y) +

∂Ψ

∂y
Q1(x, y).

Then, a focus is stable if gi is negative, and unstable if gi is positive[1].
If the system is of the form

ẋ = a1x+ b1y + P (x, y) = P1(x, y),

ẏ = c1x− a1y +Q(x, y) = Q1(x, y),
(10)

for which the trace of the linear approximation matrix is zero, the resulting
expressions involve radicals. To avoid this, we search for a positive-definite
Lyapunov function of the form

Ψ(x, y) = αx2 + βxy + γy2 +
∑
j+k=3

ψjkx
jyk
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which satisfies (9). This is the case if the conditions

α = −c1β
2a1

, γ =
b1β

2a1
(11)

hold, and it is known that the quadratic form

αx2 + βxy + γy2 (12)

is positive-definite if α > 0 and 4αγ−β2 > 0. Inserting (11) into the expression

4αγ − β2, (13)

we obtain 4αγ − β2 =
−β2(a21+b1c1)

a21
, and when the origin is a center or a focus

for system (10), the quadratic form (12) is positive-definite [14].

Theorem 1. The singular point at the origin (or at E) of system (5) (or (1))
satisfying conditions (7) is a stable focus.

Proof. When (16) are satisfied, the eigenvalues of the linear approximation
matrix of system (1) are

λ1,2 = ±
√
−4(a+ b)4 + (−a+ b+ (a+ b)3)2

2(a+ b)
.

We look for a Lyapunov function up to degree 8,

Ψ8(x, y) =

8∑
k+s=2

ψksx
kys (14)

satisfying the equation

∂Φ8

∂x
F (x, y) +

∂Φ8

∂y
G(x, y) = g1(x2 + y2)2 + g2(x2 + y2)3 + g3(x2 + y2)4. (15)

One can see that

α =
aβ

a− b
and γ =

β

2
.

This condition can be determined by equating the coefficients of the same
monomials on both sides of equation (15).

Let β = 2, then α = 2a
a−b , γ = 1, and 4αγ−β2 = 4(a+b)

a−b > 0. For a > b, the
quadratic form (12) of (14) is positive-definite.

97



The first nonzero coefficient gi is

g1 = 4a(a+ b)2(12a14 + 168a13b+ b6(1 + b2)(2b2 − 5)(1 + 2b2)(1 + 3b2)+

+ 2a12(546b2 − 1) + 6a11b(728b2 − 5) + 7a9b(5− 110b2 + 3432b4)+

+ 2a10(1− 99b2 + 6006b4) + a7(−57b+ 300b3 − 3564b5 + 41184b7)+

+ a5b(−3 + 167b2 − 966b4 − 4356b6 + 24024b8) + ab3(3 + 5b2 − 123b4−
+ 325b6 − 90b8 + 168b10) + a3b(9− 2b2 + 13b4 − 1860b6 − 1430b8 + 4368b10)+

+ a8(−17 + 33b2(5− 60b2 + 1092b4)) + a6(6 + b2(−13 + 924b4(−5 + 39b2)))+

+ a4(−3 + b2(−25 + 3b2(75− 630b2 − 990b4 + 4004b6)))+

+ a2b2(−9 + b2(24 + b2(−167 + 42b2(−25− 11b2 + 26b4)))))/

((a− b)(2a6 + 12a5b+ b2(2 + b2)(1 + 2b2) + a4(30b2 − 3) + a3(−4b+ 40b3)+

+ a2(2 + 6b2 + 30b4) + 4ab(−1 + 3(b2 + b4)))(3a12 + 36a11b+ b6(1 + b2)(3 + b2)

(1 + 3b2) + 10a9b(13 + 66b2) + a10(13 + 198b2) + 12a7b(9 + 130b2 + 198b4)+

+ a8(17 + 585b2 + 1485b4) + 2ab5(3 + 42b2 + 65b4 + 18b6)+

+ 4a3b3(5 + 113b2 + 390b4 + 165b6) + a2b4(5 + 248b2 + 585b4 + 198b6)+

+ a6(11 + 304b2 + 2730b4 + 2772b6) + a5(38b+ 508b3 + 3276b5 + 2376b7)+

+ 3a4(16 + 5b2(3 + 38b2 + 182b4 + 99b6)))).

The semi-algebraic system

(g1 ≥ 0) ∧ (a > 0) ∧ (b > 0) ∧ ((a+ b)3 − a+ b = 0) ∧
(((a+ b)3 − a+ b)2 − 4(a+ b)4 < 0).

(16)

is an unsolvable system (checked with Reduce of Mathematica). Since g1 < 0,
the derivative with respect to a vector field is negative-definite. Hence the focus
is stable[5].

Next theorem summarizes the conditions for the existence of Hopf bifurca-
tion in system (1).

Theorem 2. For the parameters, a and b, that satisfy the conditions given
in (7), Hopf bifurcation can occur at the singular point E = (a + b, a

(a+b)2 ) of

system (1). The bifurcation is always supercritical, i.e., a stable limit cycle is
born from E.

Proof. As demonstrated in the proof of the Theorem 1, the singular point that
satisfies conditions (7) is a stable focus. By slightly varying the parameter b,
we slightly perturb the system (1), changing the real parts of the eigenvalues
(2) to positive. Hence, point E becomes an unstable focus, and the results is a
stable limit cycle[3].

3.1 Numerical example

To show the existence of stable limit cycles, we choose parameters a and b as
a = 0.6 and b = 0.16037459017229974. The corresponding system (1) has sin-
gular point at E = (0.760375, 1.03776), the eigenvalues given in (2) are λ1,2 =
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±0.760375i and the coefficient g1 of (15) is negative, g1 = −0.17187 < 0. As we
can see in Fig. 2. (a), the trajectories move towards the singular point E, i.e. E
is stable focus. Now, we perturb b slightly as b = 0.16037459017229974− 1

100 =
0.150375. Then, eigenvalues become λ1,2 = 0.0180689±0.750157i with positive
real parts. When we choose initial point (0.7, 1.05), we see that the trajectory
moves away from singular point E, on the other hand, the second trajectory
plotted from another initial point (0.6, 0.6) moves towards the singular point
E. Both trajectories approach to the limit cycle as seen in Fig. 2. (b).

Note that if the eigenvalues are pure imaginary, the local phase portrait
in the neighbourhood of the singularity can not be a center, since g1 6= 0 for
positive values of a and b for system (1).

Fig. 2. (a) Stable focus for parameter values a = 0.6 and b = 0.16037459017229974.
(b) A supercritical Hopf bifurcation appearing for system (1) with a = 0.6 and b =
0.150375.
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Abstract 

In this chapter influence of fractality on solution of the two-dimensional in-

ternal Dirichlet problem is analyzed. Two different situations are considered 

namely the first of them deals with fractal boundary condition on the unit disk. In 

this case exact solution of the Laplace equation proves to obey to some analog of 

the de Rham functional equation. Also norm and the Dirichlet integral for this so-

lution has been estimated. In the second situation boundary condition is supposed 

to be regular but boundary of the domain is fractally perturbed. For clarification 

of this case both approximate conformal mapping technique and the Potapov con-

cept of physical fractals has been applied.   
 

Abbreviations 

 

IDP – the internal Dirichlet problem. 

WF – the Weierstrass function. 

TWF – the truncated Weierstrass function. 
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2.1 The internal Dirichlet problem and fractality 

of boundary condition  
 

In this section we discuss the internal Dirichlet problem (IDP) on the unit 

disk 0 .  

First of all let us consider the two-dimensional Laplace equation: 

,0
11

2

2

22

2


















u

rr

u

rr

u
            ,1r   (2.1) 

where r  and   are polar coordinates on this disk; 

),( ru
 
is unknown function. 

Further equation (2.1) ought to be provided by boundary condition: 

            ).(),1(  Wu    (2.2) 

A peculiarity of our point of view on IDP (2.1)-(2.2) is in consideration of 

fractality of its boundary condition. 

As a model of fractal boundary condition we take the well-known Weier-

strass function (WF):    

,)cos()(
1







n

nn baW   (2.3) 

where a  and b are its parameters. 

To provide 2π-periodicity of this function over polar angle   one is 

obliged to choose function parameter  ,4,3,2b .  

If these parameters obey to inequalities 10  a  and  1ba
 
then WF 

(2.3) is a continuous but nowhere differentiable function (see [1] and references 

there in). Moreover in this case WF possesses by the following fractal dimension: 

.
ln

ln
2

b

a
DF   (2.4) 

Formula (2.4) demonstrates that one can vary fractal dimension of WF un-

der fixed b  continuously from 1FD  to 2FD  by means of changing of its pa-

rameter a
 
from ba /1

 
to 1a . That is why we choose WF as the model of 

fractal boundary condition for IDP (2.1)-(2.2). 

General solution of the Laplace equation (2.1) without singulatity in the 

center of the unit disk is equal to [2]: 

)).sin()cos((),(
0

 




mBmArru mm

m

m   (2.5) 

Substituting 1r  into series (2.5) and comparing the result with WF (2.3) 

it is easy to find that exact solution of IDP (2.1)-(2.3) is equal to: 

.)cos(),(
1







n

nbn braru
n

   (2.6) 

In particular in the center of the disk 0),0( u . 
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Moreover one can check that function (2.6) obeys to the next functional 

equation: 

),,()cos(),(   bruabraru bb   (2.7) 

expressing its self-similarity.  

Substituting 1r  into functional equation (2.7) and using formula (2.2) 

one can easily obtain the de Rham functional equation  for WF [1]: 

).()cos()(   bWabaW  (2.8) 

Further let us calculate on the solution (2.6) the well-known Dirichlet inte-

gral:  

,)(][

0

2




 rdrduuI  (2.9) 

where   is the operator of two-dimensional gradient. 

It is easy to see from functional series (2.6) that vector ),1( u  consists 

from nowhere differentiable functions therefore it is convenient to calculate func-

tional (2.9) as the following limit: 

 










2

0
01

.),(),(lim][ drr
r

u
ruuI

r
 (2.10) 

Under ,4,3,2b

 

functions 


1)}{cos( n

nb   are orthogonal on the 

interval ]2,0[  : 

,)cos()cos(

2

0

nm

mn dbb 


  (2.11) 

hence using this relation one can obtain from (2.10) that the Dirichlet integral is 

equal to: 

.)(][
1

2







n

nbauI   (2.12) 

It is obvious that numerical series (2.12) converges if 12 ba  and diverges 

otherwise. We underline that under growing value of parameter b  length of seg-

ment of convergence for a : )1,1( bba  tends to zero. One can rewrite condi-

tion of convergence for sum (2.12) via fractal dimension (2.4) of WF: 
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D
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uI



 (2.13) 

Formula (2.13) means that if boundary condition (2.2) of IDP in some 

sense is “weakly” nondifferentiable then series (2.12) is convergent and if WF 

(2.3) is “strongly” nondifferentiable then series (2.12) is divergent. 

Let us now consider norm of function (2.6) in Hilbert space )( 0

2 L : 

.),(||||

0

2




  rdrdruu  (2.14) 
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Using formula (2.11) it is not difficult to find that value (2.14) is equal to: 

.
12

||||
1

2




 


n
n

n

b

a
u


 (2.15) 

Under 2b  numerical series contained in the right-hand side of the for-

mula (2.15) can be majorized by sum 






1

12 )(
n

nba  of convergent geometrical pro-

gression. Thus norm (2.14) can be estimated as follows: 

.
2

||||
2

2

ab

a
u





 (2.16) 

Upper bound (2.16) is valid under all admissible values of parameter a . 

 

FRACTALS

A Infinite Number 

оf Scales and Self -

Similarity (Scaling)

The Hausdorf

Fractal Dimension
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n →∞

Mathematical Physical

The Hausdorf

Fractal Dimension

D ≥ D0

Finite Number of

Iteration

n

Fractional 

Derivates

and Integrals

A Finite Number of

Scales and Self -

Similarity (Scaling)

A Piecewise

Differentiable 

Function

 

Fig. 2.1. The Potapov scheme of division of fractals on mathematical and phys-

ical  

 

In practice to deal with solution (2.6) of IDP (2.1)-(2.2) with boundary 

condition (2.3) possessing by fractal dimension (2.4) it is convenient to transfer  

from mathematical fractals to physical ones [1]. The procedure of this transfer is 

presented on Fig. 2.1. Of course this approach destroys relations (2.7) and (2.8) 
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but it brings new advantages namely let one take only a limited number N
 
of 

terms of the series (2.3) then the resulting function:  





N

n

nn

N baW
1

)cos()(   (2.17) 

will be differentiable as many times as required.  

Using inequality 1|cos|   which is valid for all real   it is not difficult to 

establish that for any fixed 0  inequality  

  |)()(| NWW  (2.18) 

is true under 

.1
ln

)1(ln








 


a

a
N


 (2.19) 

 

 
 

Fig. 2.2. Graph of the boundary condition  

 

In this case we shall call function (2.17) as the truncated Weierstrass func-

tion (TWF). In other words if one takes number N  for TWF obeying to condition 

(2.19) then such TWF approximates WF in accordance with inequality (2.18). 

Graph of the TWF under 75.0a  and 2b  with  01.0
 
is presented 

on Fig. 2.2. In this case 58.1FD  and 21N . 
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At last let us apply procedure of truncation for series (2.6) with the same 

number of terms N
 
as in condition (2.19): 

.)cos(),(
1





N

n

nbn

N braru
n

   (2.20) 

Because of 1r

 

it is easy to estimate that: 

.
1

|),(),(|
1

1








Nb
N

N r
a

a
ruru   (2.21) 

 

 
Fig. 2.3. Graph of exact solution   

 

 

Inequality (2.21) means that in this case function (2.20) approximates func-

tion (2.6) even better then TWF approximates WF. From this inequality one can 

see that in fact fractality of exact solution (2.6) really exists only in narrow ring in 

the vicinity of the unit circle 1||:0  z  which is the boundary of the domain 

0 . Moreover it is clear that under 1r  it is enough only the first term of the 

series (2.6) to describe behaviour of exact solution of IDP under consideration 

quite precisely. 

Graph of function (2.20) with parameters corresponding to the TWF pre-

sented on Fig. 2.2 is shown on Fig. 2.3. 
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2.2 The internal Dirichlet problem on the nearly 

circular domain bounded by fractal curve  
 

In this section we consider IDP on the nearly circular domain:  

,0
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2
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u
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u
      , iyxz        ),(0 zuu

z


 

 (2.22) 

where   is star-shaped domain on complex plane С  containing the origin of 

coordinates;  

   is boundary of domain  ; 

  is a small parameter ( 10  ) characterizing proximity of domain   to the 

unit disk 0 ; 

),( zu
 
is unknown function; 

)(0 zu
 
is boundary condition. 

Let one choose polar equation of   in the next form:  

),(1)(  r       ],2,0[    (2.23) 

where )(  is 2π-periodic function over polar angle   and let one suppose that 

])2,0([2  С  hence closed curve (2.23) differs slightly from the unit circle 0  

both its location and its curvature.   

Further the Riemann theorem [3] claims that in this case there is a holo-

morphic function ),( zfw   realizing conformal mapping of domain   on the 

unit disk 0 .  

Moreover exact solution of IDP (2.22) can be written via this function 

),( zf  as follows [4]:  
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Generally speaking one may derive this mapping ),( zf  explicitly in the 

framework of formalism of the harmonic moments of exterior domain \C  [5] 

but this way is too hard. On the other hand due to representation (2.23) of   we 

can restrict ourselves by construction of approximate conformal mapping of the 

nearly circular domain on unit disk. 

In this case for function ),( zfw   realizing conformal mapping of do-

main   on the unit disk 0  and obeying to conditions 0),0( f  and 

0),0(  zf  the following asymptotic formula is known to be valid [3, 6]: 

),()(),( 2

1  Ozfzzfw                                               (2.25) 

where 
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A feature of our approach is taking into account a fractality of domain’s 

boundary  . On the other hand in accordance with methods developed in [3, 6] 

for derivation of the desired mapping the boundary   must be quite smooth.  In 

order to overcome this obstacle we apply concept of physical fractals (see Fig. 

2.1) namely we use as function )(

 

TWF (2.17). Of course this TWF must 

contain enough terms in correspondence with inequality (2.19) to approximate the 

input WF with fixed accuracy (2.18). Graph of typical shape of such boundary is 

shown on Fig. 2.4, dotted line corresponding to the unit circle 0 . 

 

 
Fig. 2.4. Graph of the domain with fractal boundary  

 

Calculating integral (2.26) with function )(NW

 

we obtain the next 

lacunary polynomial of complex variable z : 

.)(
1

1

1 



N

n

bn n

zazf                                                                        (2.27) 

Substituting expression (2.25) with function (2.27) into formula (2.24) and 

expanding its integrand on   one can find approximate solution of IDP (2.22)-

(2.23) in the following form: 
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In formula (2.28) 
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Zero-order term in asymptotic expansion (2.28) looks like the well-known 

Poisson integral for the unit disk 0  [3, 4], but we stress that integration in ex-

pression (2.29) is performed along the curve   with polar equation (2.23) hence 

to calculate integral in formula (2.29) one ought to substitute into this formula 

)exp())(1()(   i .  

Integrals (2.31), (2.32) and (2.33) representing contribution of boundary  

roughness into the first order term (2.30) in asymptotic expansion (2.28) must be 

estimated in the same manner.  

This calculation seems to be very awkward but in practice contour integrals 

in formulae (2.31), (2.32) and (2.33) can be found as sums over residues of its in-

tegrands in domain  . 

To demonstrate this technique let us derive the influence of fractal 

roughness of boundary of round cylindrical hole in conductor on distribution in it 

of electrostatic potential and electric field strength. And let us remind that 

approximate conformal mapping (2.25) of domain with fractal boundary is 

determined by function (2.27) corresponding to TWF (2.17). 

According to general principles of electrostatics let us set:  

,1)(0 zu   .z                                                                           (2.34)       

It is easy to check that in this case calculation in correspondence with  for-

mula (2.29) gives us that:        

,1)()0( zu    .z                                                                       (2.35)       

Further let one consider the following function: 
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Lacunary polynomial (2.36) is a holomorphic function of complex variable 

z  on   therefore the result of application of the theory of residues to integral in 

expression (2.31) is equal to: 
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Function zzf )(1  also has no singularities in domain   hence using the 

Cauchy formula for derivative one can obtain from formula (2.32) that: 
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At last in accordance with the Cauchy theorem after homotopy of curve   

into the unit circle 0  in integral (2.33) it is not difficult to see that 

.0)()1(

3 zu                                                                                      (2.39)                                                                                       

Thus combining formulae (2.37), (2.38) and (2.39) in correspondence with  

expression (2.30) we obtain the following unexpected result: 

   ,0)()1( zu    .z                                                                      (2.40)       

Formula (2.40) means that electrostatic potential of this domain varies only 

in the second order on  :       

),(1),( 2 Ozu      .z                                                       (2.41)                                 

It is immediately succeed from expression (2.41) that in any point z  

electric field strength is equal to: 

).(),(),( 2 OzuzE 


                                                          (2.42)                                 

Formula (2.42) gives us useful consequence for technique of electric 

measurements namely under electrostatic screening using round cylindrical hole in 

conductor one may not take care about precision of boundary processing. 

After some generalization on three spatial dimensions the ideology of 

calculations developed in this section may be useful for description of electrically 

charged fractal core-shell nanoparticles and elastic tensions around such structures 

[7]. 
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Abstract. A cryptographic protocol should provide two basic requirements for secure 

communication. These requirements are known as diffusion and confusion. Substitution 

box structures are needed in order to provide the confusion requirement in block 
encryption algorithms. These cryptographic blocks must have a nonlinear structure to 

meet the confusion requirement. Various designs based on chaotic systems have been 

proposed to ensure the nonlinearity requirement. In this study, a new substitution box 

structure based on Nose–Hoover Chaotic System is proposed. Successful analysis results 
showed that the proposed new chaos based substitution box structure could be an 

alternative to the other three degree chaos based substitution box structures.  

 

Keywords: chaos, cryptography, substitution box, image encryption. 
 

1  Introduction 
 

Our security requirements have changed as everything in our world has 

changed. The concept of knowledge has become increasingly important in this 

change [1]. As the concept of knowledge gained importance, the security 

problem of this information emerged. Researchers have developed many 

different encryption algorithms to solve this problem. These encryption 

algorithms must meet various requirements. These requirements are known as 

diffusion and confusion. Substitution box structures are needed in order to 

provide the confusion requirement in block encryption algorithms [2]. These 

cryptographic blocks must have a nonlinear structure to meet the confusion 

requirement. 

Many encryption algorithms use substitution box structures to provide 

the confusion requirement [3-15]. Although there are many methods for 

substitution box structures, a design approach that has attracted attention in 

recent years has been the design approach using chaotic systems. In this study, a 

substitution box structures approach based on chaotic systems is proposed. The 

application of this proposed cryptographic structure is shown on an image 

encryption algorithm. 

The rest of the study is organized as follows. In the Section 2, a brief 

literature summary about chaos based s-box design is given. In the Section 3, 

the Nose-Hoover chaotic system is introduced. In the Section 4, the proposed 

new s-box structure is explained and analysis results are given The last section 

summarizes the study. 

113



 

2  Related Works 
 

Chaos-based s-box studies have been a remarkable research topic in the last two 

decades. One of the most important reasons behind this increase in interest in 

research topic is the developments in cryptanalysis studies. In particular, 

application attacks allow the attacker to make various inferences about 

cryptographic protocols using a variety of side channel information. Although 

designs based on mathematical transformation do not contain weaknesses in 

terms of performance criteria, their well-defined features allow this side channel 

information to be easily obtained. Therefore, new searches for alternative s-box 

structures based on mathematical transformation have accelerated. An important 

design technique in this aim is chaos based s-box designs. 

Chaos based s-box design was first encountered in 2001 [16]. In this 

study, a s-box design has been realized by using discrete time logistic map and 

this structure has been used in a block encryption algorithm architecture. 

Between 2001 and 2010 [17, 18], it has been aimed to improve the performance 

of s-box structures by using different chaotic maps. However, the performance 

characteristics of the AES s-box structure could not be approached in these 

studies. Therefore, performance parameters have been improved with various 

optimization algorithms [19]. However, the additional transaction costs in these 

studies have emerged as another problem to be solved . 

In 2010, the idea of using continuous time chaotic systems in the 

design process as an alternative to discrete time chaotic systems has been 

proposed [20]. The aim of these design studies is to increase the complexity of 

the chaotic system and improve the nonlinearity properties of s-box designs. 

Following these studies, several studies aimed at improving performance by 

using more complex chaotic systems have been proposed. Among these studies, 

design studies based on hyper chaotic systems [21], time delayed chaotic 

systems [22] and fractional order chaotic systems [23] draw attention.In chaos 

based s-box designs, the effect of using only different chaotic systems on 

performance has not been investigated. In addition to selecting chaotic systems 

as an entropy source, it is aimed to increase the quality of the entropy source by 

using various additional procedures [23-30].  

In this study, an algorithm based on continuous time chaotic systems 

has been proposed. The most important aspect of the study is that the system 

selected as chaotic system does not need any control parameters. This feature of 

the selected system will have several advantages in the design process of the 

cryptographic protocol, especially in the process of sharing the secret key of the 

algorithm (key distribution). 

 

3  Nose–Hoover Chaotic System 
 

Chaos theory is an exciting science. Because it points out that the randomness 

behind the events have actually mathematical equations. Chaotic behavior first 

emerged by showing that reason of randomness in weather forecasts modeled by 
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various differential equations is the internal structure of the system. In the 

literature, the simplest differential equation models in which chaotic behavior is 

observed are known as systems like Lorenz, Chua, Chen. The common features 

of these systems are expressed in third order differential equations. 

Nose–Hoover system [31] is a third-order system like the systems 

mentioned above. The definition using ordinary differential equations is given in 

Eq. (1). The system in which Eq. (1) is expressed has three initial conditions. 

 

dx/dt = y 

dy/dt = y * z – x                   (1)  

dz/dt = 1 – y*y 

     

The phase space graphs showing the variation of the state variables of the Nose 

– Hoover system are shown in Figure 1.  

 

 
Fig. 1. Phase-space analysis of Nose–Hoover system 

 

 

4  Proposed S-Box Design Algorithm 
 

The innovative aspect of the study is the chosen chaotic system class. This is the 

first study in the literature using Nose–Hoover chaotic system in substitution 

box design. For substitution box design, the recommended method in Ref. [14] 

is used. The details of the used method can be examined in detail. A program 

can be produced different substitution box design by running the program 

repeatedly at different times. The program has a user-friendly design. There is 
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also an introductory video on how to use the program. There is also an interface 

for the performance tests of the substitution box structures produced in the 

program. There are five widely accepted criterion in the literature. These tests 

are: 

 Bijective criterion, 

 Nonlinearity criterion,  

 Bit independence criterion (BIC),  

 Strict avalanche criterion 

 Input/output XOR distribution criteria 

 

A sample substitution box structure and performance criteria produced using the 

proposed chaotic system are given in Table 1. Since the method used for 

substitution box design automatically provides bijective, this criterion is not 

included in Table 1. 

 

Table 1. Proposed substitution box structure 
s-box 

 0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 19 100 82 169 62 29 131 137 16 49 240 105 155 43 152 73 

1 36 171 57 18 237 81 247 136 98 9 195 97 228 17 235 165 

2 224 218 193 232 177 229 147 227 35 71 46 54 216 58 238 53 

3 23 175 139 75 151 33 129 163 252 248 96 61 225 254 68 40 

4 21 250 176 78 253 4 200 183 162 66 145 188 243 28 166 64 

5 255 22 133 161 39 55 197 191 143 173 104 63 206 83 233 50 

6 220 106 154 205 146 181 24 67 25 90 48 111 239 77 101 226 

7 74 164 102 204 44 14 87 217 236 91 168 158 120 65 122 119 

8 142 10 76 244 189 37 222 207 56 246 174 84 214 60 230 42 

9 79 182 221 126 1 2 198 38 245 180 251 116 88 89 134 5 

A 231 112 190 69 201 0 72 215 31 167 234 113 209 199 109 186 

B 196 95 178 86 52 20 132 128 41 7 13 156 202 3 123 212 

C 12 213 160 223 51 93 70 203 242 110 15 125 118 30 80 184 

D 187 47 115 208 45 121 210 6 194 108 144 117 138 85 211 148 

E 141 192 107 103 124 172 11 241 219 130 159 185 26 170 149 27 

F 127 34 99 153 135 140 179 114 59 157 94 92 8 249 32 150 

 

The cryptographic features of the proposed substitution-box structure are given 

in Table 2. 
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Table 2. Cryptographic properties of proposed substitution box structure 

s-box structure 

Nonlinearity 

Average 

Strict 

Avalanche 

Criterion 

Average 

Bit Independence Creation 

Input / Output 

XOR 

Distribution 

BIC-SAC 
BIC-

Nonlinearity 
Max 

104.25 0.5044 0.502 103.93 10 

 

5 Conclusions 
 

In this study, a substitution box design has been performed which could be an 

alternative to chaos based substitution box structures in the literature. The 

innovative aspect of the proposed method is the chaotic system used in the 

design process. The most important feature that distinguishes this Nose–Hoover 

system from others is that it does not need any control parameters. The results of 

the analysis showed that a successful substitution box structure can be obtained. 
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22. F. Artuğer, F. Özkaynak, (2020) A Novel Method for Performance 

Improvement of Chaos-Based Substitution Boxes, Symmetry 2020, 12, 571, 
doi:10.3390/sym12040571. 

118



23. A. Belazi, A. A. A. El-Latif, A.-V.Diaconu, R. Rhouma, and S. Belghith, 
“Chaos-based partial image encryption scheme based on linear fractional and 

lifting wavelet transforms”, Opt. Lasers Eng., vol. 88, pp. 37–50, Jan. 2017. 

24. Ahmad, M. [2018] “Random search based efficient chaotic substitution box 
design for image encryption,” Int. J. Rough Sets Data Anal. 5(2), 131–147, doi: 

10.4018/IJRSDA.2018040107.  

25. Ahmed, H.A.,  Zolkipli, M. F., Ahmad, M. [2018] “A novel efficient 

substitution-box design based on firefly algorithm and discrete chaotic map”, 
Neural Comput. Appl. 3, 1-10.  

26. Alzaidi, A.A., Ahmad, M., Doja, M.N., Solami, E.A., Beg, M.M.S.[2018] “A 

New 1D Chaotic Map and beta-Hill Climbing for Generating Substitution-

Boxes”, IEEE Access 6, 55405-55418.  
27. Alzaidi, A.A., Ahmad, M., Ahmed, H.S., AlSolami, E. [2018] “Sine-Cosine 

Optimization Based Bijective Substitution-boxes Construction Using Enhanced 

Dynamics of Chaotic Map”, Complexity, 2018.  

28. Farah, M.A.B., Guesmi, R., Kachouri, A. et al. A new design of cryptosystem 
based on S-box and chaotic permutation. Multimed Tools Appl (2020). 

https://doi.org/10.1007/s11042-020-08718-8 

29. S. S. Jamal, A. Anees, M. Ahmad, M. F. Khan and I. Hussain, "Construction of 

Cryptographic S-Boxes Based on Mobius Transformation and Chaotic Tent-
Sine System," in IEEE Access, vol. 7, pp. 173273-173285, 2019. 

30. M. A. Yousaf, H. Alolaiyan, M. Ahmad, M. Dilbar and A. Razaq, 

"Comparison of Pre and Post-Action of a Finite Abelian Group Over Certain 

Nonlinear Schemes," in IEEE Access, vol. 8, pp. 39781-39792, 2020. 
31. R. Hao, X. Ma (2019) Dynamical Analysis of Nose-Hoover Continuous 

Chaotic System Based on Gingerbreadman Discrete Chaotic Sequence. In: Jin 

J., Li P., Fan L. (eds) Green Energy and Networking. GreeNets 2019. Lecture 

Notes of the Institute for Computer Sciences, Social Informatics and 
Telecommunications Engineering, vol 282. Springer, Cham 

 

 

119



 

 

 

120



Investigation the spin transport of a DNA chain on 

the effect of temperature gradient: a multifractal 

 
Sohrab Behnia

1
, Fatemeh Nemati

2
, and Samira Fathizadeh

3
 

 

1
  Department of Physics, Faculty of Science, Urmia University of Technology, 

    Urmia, Iran 

     (E-mail: s.behnia@sci.uut.ac.ir) 
2

      Department of Physics, Faculty of Science, Urmia University of Technology, 

   Urmia, Iran    

    (E-mail: fateme.nemti@sci.uut.ac.ir) 
3

    Department of Physics, Faculty of Science, Urmia University of Technology, 

   Urmia, Iran 

    (E-mail: s.fathizadeh@sci.uut.ac.ir) 

 

Abstract. Creating the spin current due to temperature gradient has attended so attention. 

Researchers are interested in spintronic field since data can be processed and transferred 

safely. Spin-caloritronic phenomena as, an emerging field, combine the electron’s spin 

and heat in materials.There are severe restrictions through using inorganic materials such 

as high cost and the lack of materials. Because of those limitations, we choose biological 

material (especially DNA) with super features such as flexibility, low cost, and 

adjustable conductance to investigate the spin transfer in an appropriate temperature 

gradient. The extended PBH model, with spin degree of freedom is chosen for this study. 

The Nose-Hoover thermostat is used for applying the temperature gradient. We used 

chaos approach to analyze the system. At first, with simultaneously varying of the biased 

voltage and magnetic field, we found at E=0.6(mv) and B=0.05, 0.25, 0.4(T), there are 

maximum spin current. Secondly, we have simultaneously varied the biased voltage and 

magnetic field and we found the maximum spin current at E=0.6(mv) and T=305, 310, 

335 (K). We studied the system using multi-fractal analysis, and Re′nyi dimension. So 

off and on states were rcognized. This gives a helpful device to recognize the reactions of 

organic polymer to external factors acting on the system. 

 

Keywords: Spin Switch, Chaos, DNA, Temperature Gradient 
 

1  Introduction 
 

Among the technologies involved in heat transfer, thermoelectric transformation 

technology (Tes)  is an applied technology, that has several advantages, 

including small size, high reliability, long life [1]. On the other hand, 

thermoelectric devices can directly convert thermal energy into electrical 

energy. Semi-conductors, ceramics, and polymers are the most utilized materials 

in the manufacturing of Tes [2]. Therefore, the transport characteristics of 

molecular systems can be investigated with thermoelectric devices [3]. The 

combination of spintronics and thermoelectricity is known as spin-caloritronic 

phenomena [4, 5]. This phenomenon is utilized to investigate the cooperation of 

charge, spin, and heat transport. In addition, the use of DNA spin polarization to 
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transmit information is one of the most interesting issues in information 

theory[6]. 

 

Inorganic materials are widely used in the manufacture of spintronics devices. 

There are serious restrictions through using inorganic materials such as high 

cost and the lack of materials. Because of those limitations, we choose 

biological material (especially DNA) with super features such as flexibility, low 

cost, and adjustable conductance to investigate the spin transfer in an 

appearance temperature gradient. The spin polarization property of materials is 

one of the most important factors in choosing a material in spintronic 

phenomena. In this regard, a DNA molecule is used as biological material to 

investigate the DNA nano-switches. By regulating the gate voltage, switching 

the spin current between on and off states is possible. Spin switch effect was 

investigated on many inorganic materials such as graphene/MoS2 [6], MnSi [7] 

and so on. DNA is a chemical chain consisting of 4 organic bases, and it is 

stored in the cells of a wide variety of organisms. 

 

DNA is a long polymer consist of nucleotides, and any nucleotide is combined 

of three basic organic (cytosine, guanine, adenine, thymine), sugar, and 

phosphate groups [9]. Several theoretical models have illustrated the nonlinear 

dynamics of DNA, such as Peyrard-Bishop (PB), Peyrard-Bishop-Dauxois 

(PBD), and PBH (Peyrard-Bishop-Holstein) models [10]. We choose the 

generalized PBH model with spin degree of freedom because of their 

advantages such as spin and charge transfer capability. There are several ways 

to study the effects of the environment on the system, such as the Langevin 

thermostat,  Nos′e-Hoover thermostat, etc. So to investigate the effect of heat on 

spin transfer, the Nos′e-Hoover thermostat was used as the heat source, Fig.1. 

Our purpose is creating a spin switch in the DNA chain. In order to find the 

conditions in which the system acts as a switch, we consider the multi-fractal 

spectrum. So we studied the Re′nyi dimension and analogous specific heat. 
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Fig.1. A schematic illustration of the model used to investigate the temperature driven 

spin transport. 

  

2 Model and Method 

 
We have chosen the N=40 base pairs DNA system (Table1). The Hamiltonian is 

written as follows [8]: 

 

fieldSocarDNASYS HHHHH  int
 (1) 

 

Where, 
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HDNA is the DNA lattice Hamiltonian, where m is the mass of base pair, 

by using a semi-classical approach, 2)1()(  nn ya
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yyW nn  are Morse potential and 

stacking interaction of neighboring base pairs in the chain, respectively. 
Dn and an are depth and the width of the Morse potential.  As well as, k 

is the coupling constant, ρ is the stiffness parameter, and α is the 

damping coefficient. Also, 
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Here, cn
ϭ+

, and cn
ϭ
 create or destroy an excitation at the tight-binding site n with 

ϭ=↑↓ and χ is the electron−lattice coupling constant. 
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Table 1. The DNA sequences [8] 

Name Number of base 

pairs 

sequences 

HC1 40 TAAATAAATAAATAAATAAAT 

AAAATAAATAAAAGCCTTT 

CH22 60 AGGGCATCGCTAACGAGGTC 

GCCGTCCACAGCATCGCTAT 

CGAGGACACCACACCGTCCA 

 

1,11

*

1,1
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1,11,
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nnnnnnnnSOSO

ccDccDccDccD

ccccccccitH 
 

 

(5) 

 

Where,             1coscos1sinsinsin1, nininnitD sonn
, tso 

is spin-orbit interaction constant and θ is the helix angle and φ =nΔφ is the 

cylindrical coordinate with ϕ the twist angle. The preservation of time reversal 

symmetry leads to 

  nnnn DD ,11,
. The formulation of Nos′e-Hoover thermostat is 

as follows [8]. The parameters that are used in the PBH model are shown in 

Table 2. 
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(6) 

Here, ξ is the thermodynamics friction coefficient which interacts with the 

particles. T is the temperature preserved by heat source and M=1000 is the 

constant of Nos′e –Hoover. In the current study, we investigate the effect of 

external electrical and magnetic fields on spin transfer in DNA. So, 

EBfield HHH  [8]: 
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Due to the non-linear equations of the system, the chaos approach can be used to 

analyze the system. To obtain this approach, the evolution equation of 

Hamiltonian is extracted and it is necessary to convert the second-order 

differential equations to first-order equations, and then to extract the 

corresponding spin-up electric currents to study the information transfer by the 

spin current. In this regard, tools such as Reni dimension, etc. are used to 

analyze the behavior of the spin current of the system. So the Heisenberg 

approach is used to obtain the currents. 
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Table 2.PBH parameters[8] 

Value 
Unit Symbol 

300 amu m 

0.04 2A
eV

 

k 

0.5  ρ 

0.35 A
-1

 b 

[0.1-0.6] A
eV

 

χ 

an[1-1.7] A
-1
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Here, I
↑ 

and I
↓
 are spin-up and spin-down currents, respectively. Now, the net 

spin (Is) and net charge (Ic) currents are introduced as following:  

 
  IIIS
 

  IIIC
 

(10) 

 

3  Result and Discussion 
 

We have tried to obtain the different electrical responses of the system. Several 

strategies have been offered to describe strange attractors from a sincerely 

geometrical point of view. Based on concepts developed in the theory of fractal 

sets, we have simultaneously varied the biased voltage and magnetic field and 

studied the response of the system. Various islands have emerged that represent 

on and off states that are examined and confirmed by multifactorial analysis. 

The result gives a helpful tool to recognizing the reactions of organic polymer to 

external factors acting on the system. We have considered the Re′nyi dimension 

(Dq) [10] to analyze the system: 
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Where Pi is the probability that the trajectory on the strange attractor visits box 

i, and M(l) is the number of nonempty boxes. The multi-fractal analysis of spin 

current time series can show the multi-fractal behavior. To achieve a 

thermodynamic understanding of multi-fractality. We considered 

 Dqq q 1 wherein τ is analogous free energy. So, Cq  is defined as 

follows:  
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 As shown in Fig.2, there are some islands at parameters surface with some 

different currents. The maximum spin current can be seen at E=0.6 (mV) and 

B=0.05, 0.25, 0.4 (T). In this way, on and off states are determined.  
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Fig.2. Alteration of spin current due to the concurrent effects of the magnetic field and 

bias voltage. 

 

 

Secondly, by simultaneously varying the electrical field and temperature 

gradient, different behavior of spin current is shown. At E=0.5 (mV), T=305, 

310, 335 (K) maximum spin currents are shown, so we can say that on and off 

states are determined.  
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Fig.3. Alteration of spin current due to the concurrent effects of temperature and bias 

voltage. 
 
The multi-fractal analysis of spin current time series at different magnetic fields 

shows the multi-fractal behavior. As shown in Fig.4, there is maximum and 

minimum spin current for B=0.25, 0.05, 0.4 (T) and B=0.15, 0.45 (T), 

respectively. It means that the region with maximum spin current (ON state) is 

distinguished from the zero spin current regions (OFF state). Similarly, we 

studied the Re′nyi dimension spectrum of system for which, temperature 

gradient is varied. As shown in Fig.5, there is maximum and minimum spin 

current at T=310, 305, 320 (K) and T=325, 330 (K), respectively. It is clear that 

the region with the maximum spin current represents the on state, and the region 

with the minimum spin current represents the off state. So, the spin switch can 

be designed. 
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Fig.4. The Re′nyi dimension spectrum at different quantities of the magnetic 

field  at E=0.6 (mV) and T=335(K) 
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Fig.5. The Re′nyi dimension spectrum at different quantities of the temperature 

gradient at E=0.5 (mV) and B=0.05(T) 

 

 

Furthermore, the analogous specific heat Cq is investigated. In this paper, we 

studied Cq of the magnetic field and temperature. As shown in Figs 6 and 7, 

there is one single peak for B=0.25 (T) and T=310 (K) wherein, the maximum 

spin current is observed. The obtained results indicate that higher dimension 

spectra are relative to the maximum positive currents. This prepares a beneficial 

gadget to identify the notable responses of the biological polymer. 
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Fig.6. Analogous of specific heat for various values of the magnetic field at 

 E=0.6 (mV) and T=335(K) 

 

 

 

128



-40 -30 -20 -10 0 10 20 30 40
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

q

C
(q

)

 

 

T=310

T=320

T=325

 
Fig.7. Analogous of specific heat for various values of the temperature gradient at 

E=0.5 (mV) and B=0.05(T) 

 

Conclusions 
 

We have theoretically studied the various factors to design a spin switch based 

on the HC1 sequence. Then, we have changed the magnetic field bias voltage 

and also the temperature and bias voltage at the same time. The on/off behaviors 

have been shown. We have used the multifractal analysis to understand the 

switch behavior better. Besides, the on/off behavior of the system can be 

distinguished via the Re′nyi dimension spectrum. Moreover, The analogous of 

specific heat can endorsement the results. 
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Selective transport of suspending
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micro-channels.
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Abstract. This paper analyzes the possibility to obtain selective transport of mi-
croparticles depending their size. The particles are suspended in a fluid confined in
modulated channels and a periodic pumping moves back and forth the fluid without
net displacement. Using numerical simulation and bifurcation analysis tools, we show
the existence of particle drift under the Stokes assumption of the fluid flow. For spe-
cific parameter ranges, the particle transport can be selective. The transport solution
and the selectivity are related to (de)synchornization transitions in forced non-linear
oscillators. We reveal that chaotic transitions are a key factor to drop from a bounded
dynamics to a net transport. This transport phenomenon can be relevant for heavy
particles in suspended in the air in microgravity environnement.
Keywords: Particle transport, synchronization, Chaotic dynamics, bifurcation anal-
ysis, microfluidic.

1 Introduction

Sorting suspended particles in a fluid is an issue in many domains such as
the food industry, medical analyses or wastewater treatment. Many processes
are based on the microfiltration using a membrane. However, at high per-
meation rates, this method suffers from the accumulation of non-permeating
particles above the membrane surface, thereby blocking the pores [1]. In re-
cent decades, alternative techniques using flow in a periodic and asymmetric
structure of micro-channels have been developed. In these systems, the parti-
cles are driven mainly by the viscous force. Micro-particles may drift from the
streamline mainly due to the lift force. In a confined geometry, the lift effect
is strongly dependent on the particle size and induces a selective trajectory.
Based on this principle, passive micro-fluidic devices to sort the particles have
been developed such as branching channels, pinched flow fractionation, spiral
channels or media with a periodic pattern of micro-posts [2–6]. The particle
sorting is done using a continuous flow.
Such a method does not apply to the removal of specific particles from a basin.
Particle selection using an oscillating flow, i.e. without net displacement of
the fluid, is possible as shown in [7]. The particle transport occurs through
a periodic structure of triangular columns. For a range of particle sizes, the
lift force acts asymmetrically during the back and forth cycle of the fluid flow.
This results in a drift that is orthogonal to the oscillating flow for a parameter
range. Therefore in all systems the lift force is the key phenomenon of particle
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drift and sorting.

In contrast, the present paper focuses on longitudinal transport, i.e. the
drift takes place along the axis of fluid oscillations. Indeed few studies are
devoted to the onset of transport and to the kind of transition. These questions
are useful for the design optimization of these devices.
We consider a micro-device similar to [8] where two basins are connected via
modulated channels filled with a liquid. A periodic pumping confers a back
and forth fluid motion dragging the particles in suspension. For oscillating
Stokes flow, the 1D transport of particles is usually explained by the Stokes
drift [9]. The particle follows the flow drift due to the traveling wave. In our
context, the fluid is, however, driven by a standing wave which does not lead
to fluid drift. The flow therefore needs to be ratchet like. In the early 2000s,
the transport of overdamped particles in ratchets in many fields in physics was
interpreted as a Brownian motor in which transport results from the action of
noise in an asymmetric potential [10,11]. Such a drift ratchet phenomenon may
occur in the microfluidic context considered here [12] and the experiment in [8]
corroborated this theory. Nevertheless, further experiments revealed that the
thermal fluctuations are negligible and the experiment in [8] does not evidence
transport due to a Brownian ratchet.
Recently, we highlighted different 1D transport mechanisms in a Stokes flow,
called ratchet flow, for a simple model of inertial particle [15]. We showed that
the spatial variations of the fluid flow induce a ’ratchet effect’. For instance,
for moderate damping chaotic dynamics are a key component of the transport.
However, the parameter domains of the transport require that the particle
radius is not negligible compared to the channel radius [13]. Therefore, the
drag coefficient depends on the channel walls and hence on the particle position.
Such a variation may induce a friction ratchet [14,10].

The goal of this paper was to determine whether such 1D transport mech-
anisms as in [15] exist for a particle radius comparable to the channel radius,
and then to determine a possible dependence of the transport direction on the
particle size. To answer these questions, we computed the friction for the 3D
axisymmetric problem and we used bifurcation analysis tools and continuation
of periodic orbit to provide a comprehensive overview of the dynamics in the
phase space.

Fig. 1. Sketch of the problem: the particle translates along the x-axis of a periodic
modulated channel. It is dragged by the periodic motion of a viscous fluid.
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Fig. 2. Profile of (left panel) ûeq(x) and (right panel) γ̂(x) functions for two particle
radii: (black line) rp = 0.05 and (red dashed line) rp = 0.1.

fig:profiles

2 Modeling

Let us consider a L-periodically modulated channel infinitely extended along
the line (Ox) through which a Newtonian fluid with the viscosity µ is T -
periodically pumped. We call ’cell’ the channel portion of length L (Fig. 1).
The cell is axisymmetric and its radius r(x) varies sinusoidally:

R(x) = Rm (1 + cr cos (2πx)) (1)

where Rm is the mean radius and cr is the channel camber. In this study, we fix
the channel geometry such as Rm = 0.14 ·L and cr = 0.56 which corresponds to
the shape shown in Fig. 1. We assume that the flow is a quasi-static Stokes flow.
Then, a periodic pumping implies a periodic fluid velocity field in space and
time. Moreover, the time dependence of the velocity field is governed by the
periodic pumping v0(r, t) = u0(r)A(t), where A(t) is the pumping amplitude
and u0(r) is L-periodic. We note [p] the amplitude of the pressure difference
between the cell inlet and outlet. Pressure, length and time are scaled by
[p], L and T respectively. We consider spherical particle of mass m with the
adimensional radius rp. If, in addition, we assume that the particle moves only
along the axis and the particle does not rotate then the particle position x(t)
is governed by the dimensionless ODE:

ẍ+ Pγ γ̂(x)ẋ = PγPvγ̂(x)ûeq(x)A(t). eq : ode (2)

In the latter equation, we have introduced two bifurcation dimensionless pa-
rameters:

Pv =
[p]T

µ
(3a)

Pγ =
LTµ

m
. (3b)

The field γ̂(x) > 0 is the normalized drag coefficient of the particle. It depends
on the channel boundary and on the particle size [17,13]. The field ûeq(x) is
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related to the flow field velocity without particle and also to the particle radius
rp. Fig. 2 displays the fields ûeq(x) and γ̂(x) for a sinusoidal cell profile such as
cr = 0.56 rmin = 0.14. The computation of these coefficients is detailed in [16].
The particle size does not notably affect the veolcity field ûeq (Fig. 2a) whereas
the friction is very sensitive to the particle radius (Fig. 2b). The friction is
maximal in the narrow region of the cell and minimal in the larger region.
For rm = 0.1, the ratio between the maximum and minimum value is large in
contrast to rm = 0.05, for which γ̂(x) is almost constant. In the latter case,
Eq. 2 is similar to the ratchet flow model studied in [15,23,24] and we expect
similar transport dynamics. If rp = 0.1, the large friction contrast may induce,
in addition, a friction ratchet [10].

Note that the functions ueq(x) and γ(x) are 1-periodic and have the parity-
symmetry like the geometry of the problem. If, in addition, the pumping
A(t) varies sinusoidally, then the problem is invariant by the parity symmetry
x→ −x. More precisely, if x(t) is a trajectory given by Eq. 2 then −x(t+ 1/2)
is also the solution for a symmetric initial condition. In order to break of the
parity-symmetry, the back and forth phases of the pumping should be different,
i.e. this means that A(t + 1/2) 6= −A(t). Let us introduce the parameter α
such as 0 ≤ α < 1 and define the function A(t):

A(t) =

∣∣∣∣∣ 1− α , if 0 ≤ (t modulo 1) < α

cos
(

2π t−α1−α

)
− α , if α ≤ (t modulo 1) < 1

(4)

If α = 0 is zero, A(t) = cos(2πt) and the problem is symmetric. Otherwise, the
pressure difference is constant during the first step in the interval [t0, t0 + α[
followed by a sinusoidal pumping in the interval [t0 + α, t0 + 1[. In this case
A(t + 1/2) 6= −A(t). Note that the mean value of the pumping is still zero if
α 6= 0.

In this paper, we consider two particle sizes: rp = 0.05 or rp = 0.1. The
transport dynamics are explored in the parameter space using the time integra-
tion and the path-following method of the periodic solutions. The bifurcation
parameters are Pγ ,Pv and α. Branches of T -periodic solution on bifurcation

diagrams are represented by the norm ||.|| such as: ||s|| = [ 1T
∫ T
0

(ẋ(t))2dt]1/2.

3 Drift at large drag Pγ

In this section we analyze the transport solutions when the drag Pγ is large.
According to [15], if Pv � 1 we can prove that there are two periodic solutions
of the particle motion which are centered at the extrema of the velocity field
ueq noted s0 for the maximum and sm for the minimum. In the symmetric
case (α = 0), by increasing Pv, we find out a third solution noted sa bifurcated
from either s0 or sm via a spontenaeous symmetry breaking. Fig. 3 shows the
time evolution of the three solutions s0, sm and sa. As in [15], one of the three
solutions are stable and attracts all of the dynamics if α = 0. Therefore, the
transport solutions can occur only if α 6= 0.
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Fig. 3. Time evolution of the periodic solutions s0, sm and sa for rp = 0.05, α =
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Fig. 4. Continuation of 1-periodic solutions for rp = 0.05, Pv = 1350,Pγ = 79 by
varying α. Plain [dashed] line indicates stable [unstable] orbit. Black dots indicate
pitchfork bifurcations.

3.1 Transitions to transport solutions

We follow the periodic branches of solutions s0 and sm by varying α and we
fix Pv = 1350 (fig. 4). The branches s0 and sm annihilate in a saddle-node
bifurcation for α ' 0.2807. A similar scenario arises starting from α = 1
for which the pumping is zero: a pair of saddle orbits annihilate in a saddle-
node for α ' 0.8143. In the large range [0.3; 0.8], no solution is found. The
saddle-node bifurcations correspond to the intermittent bifurcation type-I [19]
as explained in [15]. The stroboscopic time evolution of the particle position at
every period (fig. 5) displays a regular descending staircase for different values
of α. The plateaux correspond to oscillations close to the threshold. The
plateaux become longer when α approaches the onset of bifurcations. Such a
dynamics is similar to the phase slip of a desynchronisation transition [15]. A
well-known consequence is that the drift velocity vanishes as the square root
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Fig. 5. Discrete particle positions xn = x(n), n ∈ N near the onset. Different values
of α = 0.283; 0.285; 0.3; 0.4; 0.5, other parameters as in fig. 4.

fig:drift

of the threshold distance: c ∝
√
α− αc,where αc is the threshold value [22].

According to the time integration, the drift velocity increases with α till α ' 0.5
and remains almost constant till 0.6. By further increasing α the velocity
decreases to zero when α approaches the critical value of the second saddle
node. Consequently, the optimal transport is about α = 0.5. In the next
section, we fix α at 0.5 and we seek the parameter domains of particle transport.
Note that according to the discussion in [15], the particle drift phenomenon is
part of a class of dissipative rocking ratchets for which the transport direction
is determined by the asymmetry [20,21]. In the current problem, it means that
the direction of transport depends only on the sign of the α parameter, i.e. the
kind of pumping. The particle drifts to negative values of x if α > 0, otherwise
the particle drifts to positive values.

3.2 Domain of intermittent drift

We explore the transport domain by varying the parameters Pv and Pγ . We
trace the saddle-node loci of the periodic solutions, in the (Pγ ,Pv) plane (Fig. 6)
which represents the possible onset of transport. By varying Pγ the two saddle-
nodes form a vertical band which ends at a minimal value of Pγ except if Pv is
about 1000 (see Fig. 6). The transport arises in the region outside these bands
and when the bands do not overlap (gray region in Fig. 6). Therefore, the
transport domain is roughly a sector in the (Pv,Pγ) plane. Then, the transport
occurs if Pv is large enough, in other words, if the pumping amplitude is large.
There is additional tapered vertical spaces for specific values of Pv for which
transport may occur for large Pγ values. The specific Pv values are only slightly
affected by the particle size: the tapered region occurs for Pv about 1500, 2200
and 2900 regardless of rp.
In general, the domains of intermittent drift are qualitatively similar by varying
rp. However, the existence domain differs quantitatively, which allows to find
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Fig. 6. Saddle-node loci of 1-periodic solutions in the (Pγ ,Pv) plane for rp = 0.1.
The gray region displays the domain of intermittent drift.

fig:domain

specific parameters for which the drift arises while for the other particle size
the dynamics is still periodic and so bounded. Therefore, the transport only
occurs for specific particle sizes.
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Fig. 7. [left] Discrete particle trajectory xn near the onset of the synchronized trans-
port c = −1. [right] The same discrete particle trajectory represented in the comoving
frame xn + n. Parameters are: rp = 0.1, α = 0.5,Pγ = 24.2,Pv = 2250.

fig:intertosynchro

4 Transport for moderate Pγ

In this section, we consider smaller values of Pγ . Thus, the particle damping is
smaller implying a larger desynchronization between fluid movement and the
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particle trajectory. This leads to more complex dynamics especially chaotic
dynamics.

4.1 Synchronized transport

sec:sync
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Fig. 8. Continuation of synchronized transport c = −1 with Pγ = 7.46 and rp = 0.1.
Plain [dashed] lines indicate stable [unstable] solutions. Black dots indicate period-
doubling bifurcations.
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We study the behavior of the intermittent drift when Pγ is decreasing. We
observe that the drift velocity c increases and the discrete dynamics presents
shorter and shorter plateaus as in Fig. 5. According to Fig. 7, the plateaus
may disappear and the transport occurs almost with a constant velocity. The
representation of the dynamics in the co-moving frame (c = −1) points out an
intermittent and a regular behavior. Indeed, the dynamics in the co-moving
frame is due to the phase slip at a synchronization transition for weakly non-
linear oscillator. It is a similar scenario as described in Section 3 but in the
co-moving frame. The threshold is a saddle-node from which a pair of periodic
solutions emerge. In the laboratory frame: these periodic solutions correspond
to a synchronized transport solution: after a entire number n of time periods
the particle moves by an entire number of spatial periods m, then the velocity
is a rational c = m/n. This result is typical of phase locking (here is the c ve-
locity) of a forced non-linear oscillator [22]. In the example of Fig. 7, we have
c = −1, but we found also other velocities for other parameters: c = −1/2 and
c = −2.
Another difference with the intermittent drift is that the synchronized trans-
port can be not an attractor especially if Pγ is not large. For instance, for
Pγ = 7.46, we plotted the bifurcation diagram of the synchronized transport
by varying the Pv parameter (Fig. 8). The transport emerges via a saddle-
node bifurcation related to a synchronization phenomenon at about Pv = 1628.
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From this saddle, two branches display zigzags with further saddle-nodes and
period-doubling bifurcations. Due to the period doubling, the branch changes
its stability. According to Fig. 8, there exist Pv ranges for which the transport
c = −1 is a stable solution. From the period-doubling bifurcations a cascade
of period-doubling bifurcations occurs leading to a chaotic dynamics. This dy-
namics being bounded in the co-moving frame the transport velocity remains
equal to c = −1. The scenario is similar to the one described in [15] in this
context and it involves universal results of (de)synchronization of periodic os-
cillators by periodic external action [22]. As a result, in the range delimited by
period-doubling, there may exist chaotic transport solutions without locked ve-
locity. The transport velocity is then lower than in the synchronized transport
case but the transport does not vanish.

Fig. 9. Route to synchronized transport: dynamics and transitions by increasing Pv
for moderate Pγ .

fig:routetosync
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Fig. 10. Chaotic dynamics rp = 0.1,Pγ = 7.46, α = 0.5 for two different values of
Pv. (a) near the crisis of the unbounded dynamics (Pv = 1458.3). (b) near the
syncrhonization transition (Pv = 1467.5).

fig:transitions
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4.2 chaotic transitions

The synchronization transition at the saddle-node of Fig. 8 (Pv = 1628,Pγ =
7.46) differs from the synchronization at Pγ = 24.1. The dynamics is no longer
quasi-periodic but chaotic. In [15], we found intermittency occuring at chaotic
time intervals: this behavior is typical of large forcing of an oscillator [22].
However, the particle dynamics displayed in Fig. 10b does not corroborate the
existence of intermittency. We guess that the coexistence of attractors hides
the intermittency.
Now, we detail the transitions from the periodic solutions to the synchronized
transport by increasing Pv when Pγ = 7.46. Indeed, we retrieve all the bifurca-
tions scenario explained in detail in [15]. The route to synchronized transport
is sketched in Fig. 9. The periodic solutions s0 or sm (Fig. 2), by increasing Pv,
involve a period-doubling cascade leading to a chaotic unbounded dynamics. A
merging crisis may appears and because of the spatial periodicity the strange
attractor is no longer bounded. If the problem does not have the parity sym-
metry (α 6= 0), we expect a preferential direction. In Fig. 10a, the dynamics of
the particle near the onset displays a drift to negative values in a intermittent
manner. However, the intermittency is not quasi-periodic but chaotic. By in-
creasing further Pv, the drift velocity increases and the dynamics is still chaotic
(Fig. 10b).

4.3 Chaotic drift
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Fig. 11. Stroboscopic particles positions xn at entire times for radii rp = 0.05 (black
lines) and rp = 0.1 (red lines) for eleven initial conditions (x0, v0) = (0, i/10) with
i = 0, 1, . . . , 10. Other parameters are α = 0.1,Pγ = 6.7,Pv = 2000.
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The previous transport solutions are obtained for α = 0.5 and we find only
transport to negative direction. A non-zero value of α is required for the ex-
istence of intermittent and quasi-periodic drift. However, if Pγ is not large,
unbounded dynamics and also synchronized transport may exist for α = 0.
The scenario from periodic solution to the unbounded dynamics in Fig. 9 in-
volves, this time, spontaneous symmetry breaking. The chaotic dynamics has
diffusion like behavior: no prefential direction is observed. When there is a
synchronized transport then the synchronized transport solution in the oppo-
site direction exists too. To have an effective transport, we need to slightly
breaks the parity symmetry. As explained in [23], the transport solutions still
exist but for slightly different parameter ranges when α is small. Therefore, we
expect there is parameter domains for which the transport direction depends
on the particle size.
We found for α = 0.1,Pγ = 6.7 and Pv = 2000 different drift directions de-
pending on the particle size: a net drift appears for rp = 0.1 and while, for
rp = 0.05, a slight drift to positive direction occurs (Fig. 11). The dynamics
is chaotic and notably it depends on the initial conditions. For rp = 0.05, the
mean value over the initial conditions of the velocity transport is slightly posi-
tive (c ' 0.04). In addition, there is a diffusive-like behavior too: the trajectory
deviation increases with the time. Indeed, the chaotic dynamics results from
the competition between opposite transport solutions c = ±1 which are unsta-
ble. For rp = 0.1 the diffuse behavior is weak and the mean velocity remains
close to c = −2/5. A possible explanation is that we are in the vicinity of the
onset of the synchronized transport c = −2/5. The multiplicity of solutions
makes it difficult to find this synchronized transport.

5 Concluding remarks

We have shown using time-integration and bifurcation analysis that a selective
transport of micro-particles is possible depending on the particle size.
For large drag Pγ , the possible slow drift is quasi-periodic and determined by
the pumping asymmetry, i.e. the parameter α. Then, the drift requires a non
zero value of α typically a value about 0.5. By decreasing the drag Pγ we
found out synchronized transport solutions. The velocity is then locked to a
rational value. If α is about 0.5, the transport velocity is negative. Therefore,
for α about 0.5, we found either bounded periodic solutions or transport in
the negative direction. However, if the selectivity is possible, we do not find a
change of transport direction depending on the particle size.
Such a property was found for moderate value of Pγ < 10 and α about 0.1.
Indeed, for this parameters values, the asymmetry of the problem is no longer
required. We retrieved the scenarios of the ratchet problem of a point-like
particle. In particular, the dynamics can be chaotic. We found parameters
such as the direction of the parameter drift depends on the particle size.
This theoretical study may have application of heavy particles in the air in
micro-gravity environment. Indeed, the small value of Pγ requires a low density
fluid and the gravity could break the phenomena transport. Because of the
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chaotic dynamics could be strongly influenced by the noise [24], a further work
would be to study the influence of noise on the transport selectivity.
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Abstract. Chaos systems have been studied for decades due to their applications in
several domains such as: economy, communications, cryptography. . . etc. In recent
years, designing and proposing new and higher dimensional chaotic systems become
an increased tendency in particular for chaotic systems applied in network security
domain.
In this paper, we propose a new 4-dimension chaotic map with four (04) control pa-
rameters and five (05) non-linear terms. Then, we investigate the chaotic behaviors
of the proposed system by considering the bifurcation and the Lyapunov exponents
(LE) theories. The proposed map is applied for generating cipher keys to perform
data encryption and secure an Internet Protocol (IP) communication.
Keywords: Chaotic, Dimension, Bifurcation, Lyapunov exponents, Network secu-
rity, Encryption, IP-communication.

1 Introduction

Chaos systems have been studied for decades due to their applications in several
domains such as: electronic circuits [1],[2], network security [3],[4], encryption
domain [5],[6] and in power control [7]. In one hand, chaotic systems’ proper-
ties have been studied and investigated using the bifurcation and the Lyapunov
exponents theories [8],[9]. In the other hand, among the existing chaotic sys-
tems, researchers have investigated for new and more complex systems. By
combining two coexisting attractors, in [10] the evolution of a new 4-dimension
chaotic system is presented and analyzed by using bifurcation diagrams and
Lyapunov exponents’ spectrum. In [11] authors proved that using only sine
or cosine functions and modifying two (02) variables in the function, n-scroll
attractors can be generated. Moreover looking for higher dimension, a new 4-D
hyperchaotic continuous time system is introduced in [15] and its main spec-
ifications are analyzed by means of equilibrium points, stabilities and power
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spectrum. In [16] authors showed that, using 4-D Lorenz system for secure
TCP communicationonl, consume a huge amount of ressources and computa-
tions.
Consequently, we present through this paper an optimized new 4-dimensional
discrete time system for encryption purpose. Then, the chaotic behavior of
the proposed map is investegated based on the bifurcation and Lyapunov ex-
ponent theories. The rest of this paper is structured as follows. The 4-D map
is introduced and the chaotic behavior is investigated in section II. In Section
III, software implementation of secure communication is illustrated using the
proposed map. Finally, a conclusion is given in section IV.

2 The Proposed 4-D Map

2.1 System Description

The proposed 4-D map with (04) bifurcation parameters and (05) non-linear
terms is given as follows:

X(n + 1) = 1− a ∗X(n)2 + (Y (n) ∗ Z(n) ∗ P (n))

Y (n + 1) = 1− b ∗ Y (n)2 + (X(n) ∗ Z(n) ∗ P (n))

Z(n + 1) = c ∗ (X(n) ∗ Y (n) ∗ P (n))

P (n + 1) = d ∗X(n)

(1)

Where X, Y , Z and P are the state variables and a, b, c, d are the control
parameters or the bifurcation parameters.

2.2 Chaos Behavior Investigation

Following the lines given in [12] and [13], the chaotic behavior of the proposed
system (1) is investigated by considering mainly the bifurcation and the Lya-
punov exponents (LE) theories.

Bifurcation process
Bifurcation theory is concerned with changes in the solutions’ behavior of the

proposed system (1) as the parameters a, b,c and d are varying.
Figure 1 shows that chaotic behavior appears in several intervals of the param-
eters a ∈[0.22, 1.00], b ∈[0.90, 2.00], c ∈[-0.95, 0.95] and for the values of the
parameter d ∈[-1.05, 2.5].
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Fig. 1. The bifurcation graphs of the proposed 4-D map.

LE process
Computing the LE values gives a possibility not only to detect all resonances

in the response function, but also to detect the presence of chaos [14]. To search
for strange attractors or for chaos in the proposed model (1), we proceed as
follows:
First, we select the values of the parameters a, b,c and d calculated in the pre-
vious step (bifurcation process). Then we iterate equations (1) repeatedly until
the Lyapunov exponent becomes small or negative, in which case the solution
is probably a fixed point or limit cycle. In either event, we choose a different
combination of a, b,c, d and start over the process.
If, after a few thousand iterations, the solution is bounded (not enormous)
and the Lyapunov exponent is positive, then it is likely that you have found a
strange attractor that corresponds to the chosen values of a, b,c and d.

As a final result, the chaotic behavior is obtained and illustrated by the
trajectory graphs and the signal graphs in figures 3 and 4, respectively.
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Fig. 2. The LE graph of the proposed 4-D map.

Fig. 3. The trajectory graphs of the proposed 4-D map.
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Fig. 4. The signal graphs of the proposed 4-D map.
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3 software implementation of secure Communication

Chaotic systems have been introduced in the network communication security
domain since that they are characterized by their sensitivity, unpredictability
and their widespread spectrum. Hence; we propose to introduce the 4-D chaos
map for securing Client-Server Communication. In the first order, we pre-
pare the Client-Server platform composed of two (02) client stations connected
through an Ethernet network to one (01) server machine (Figure 5).

Fig. 5. The platform test bench.

The proposed platform works considering the following steps :
- The server listens for client connections;
- The client initiates the connection;
- The connection is established;
- The key-Generator load the first random sequence and the next sample;
- The client uses the first key to encrypt and send data to the server;
- The server use the same key to decrypt and send confirmation of receiving
data;
Finally, the client terminates the communication by closing the channel, and
the key-Generator module saves samples for next use with the server.

In the second order, we develop a C# software application for exchang-
ing securely messages between connected computers (figure 7).The developed
application includes a chaos-based cryptosystem using the proposed 4-D map
which is described by the system (2); with a=1.55; b= 1.7; c= 1.6; d= 0.40.
Considering that we are targeting to generate a 32-bit key using the chosen
map, then we have the key space of the cryptosystem 232∗(4+4)=2256 which
is considered very good value in for encryption since that the required value
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should be more than 2100 to satisfy the encryption requirements for key space
[16].

Fig. 6. The developped application’s interface.

4 Conclusion

In recent years; researching and developping new and higher dimensional chaotic
systems become a rising trend in perticular for secure communication purposes.
In this paper, we propose new 4-Dimensional chaotic map in first order. Sec-
ondly, the chaotic behavior of the proposed system is investigated using an
algorithm based on the bifurcation and the Lyapunov exponents properties.
Finally, we apply the proposed system to generate random keys in order to
perform a secure IP-communication.
As future work, statistical and security tests of the proposed system will be
considered as well as the hardware implementation of the proposed scheme.
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Abstract. Two-phase flow past obstacle is widely applied in industries and engineering, where
the interaction of different phases coupled with influence of solid is rather complex. In this
context, the flow characteristics and vortex field have been investigated to explore the mechanism
of two-phase drag and vortex variation. The Lattice Boltzmann Method is utilized to study
the multi-component multiphase flow. The computation implemented on GPU is remarkably
accelerated owing to the natural parallelism of LBM. The process of two-phase flow past a 2D
cylinder is thoroughly examined. The drag forces including the total force and the components
caused by dispersed phase and continuous phase respectively, are illustrated, and themechanisms
for the variations have also been explained. Meanwhile, the vortex-identification approaches
based on the Liutex as well as traditional methods are compared. The relationship between
the breakup as well as coalescence process and extremums of different vortex identification
variables is analyzed.
Keywords: Two-phase flow, flow past cylinder, LBM, vortex identification, Liutex.

1 Introduction

Flow past obstacles is a ubiquitous phenomenon encountered in various industries
including chemical process, food processing and power engineering. For decades,
numerous experimental and numerical efforts have been made focusing on drag and
lift force, vortex separation, flow-induced vibration, etc. The two-phase flow past
obstacles plays a significant role in practical application, such as the packed bed
reactor in petroleum chemical process and heat exchangers in power industry.

In view of the impact of bubbles on the solid, the influence of bubble movement
on vortex shedding and the involvement of bubbles into the vortex, the interaction in
two-phase cross flow between three phases, namely solid, liquid and gas, is coupled
and intricate. Under this circumstance, the traditional computational fluid dynamics
(CFD) methods like Finite Volume Method (FVM) might encounter difficulties and
fail to acquire the details of flow field from macroscopic scale.

Endowed with the advantage of flexible geometry characteristics, inherent paral-
lelism and simplicity of implementation, the Lattice Boltzmann method (LBM) has
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witnessed rapid development in the past decades, particularly in the field of multiphase
flow and flow in complex geometry. Based on the molecular kinetic theory, the LBM
provides a novel and potent approach with solid background of physics and efficient
algorithm in multi-scale analysis from the mesoscopic perspective. With the com-
putation largely restricted to local nodes, the LBM is ideal for implementation with
parallelized hardware such as GPU, which shows an apparent advantage over CPU in
High Performance Computing. The implementation of LBM on GPU contributes to
boosting computation speed and achieving reliable acceleration performance.

As a fundamental research target, the vortex is of vital significance for an intuitive
understanding of turbulence. After decades of intensive research, there are still plenty
of ambiguous issues left to be solved including a widely-acknowledged definition of
vortex. The vortex identification method has evolved from the first generation intuitive
vorticity-based method that fails to discriminate rotational motion from a shear layer
in viscous turbulent flow, to the second generation that rely on other eigenvalue-based
parameters including∆, λ2, λci , etc., which are unfortunately dependent on case-related
uncertain threshold and unable to capture the vortical strength to some extent.

Recently Gao and Liu put forward the third generation Liutex method [1,2], which
provides a more precise perspective of defining vortex. According to the theory,
the vorticity could be decomposed into the non-rotational part, mainly shear and the
rotational part called Liutex, namely ®ω = ®S + ®R. The direction of Liutex vector,
representing the local rotation axis, is defined via the real eigenvector of the velocity
gradient tensor. Themagnitude of Liutex, used to quantify the local rotational strength,
could be simply determined by a explicit formula proposed byWang [3], which follows
the idea of getting rid of the non-rotational part from the vorticity. With the aid of
Liutex, continuous research has been conducted on various applications including the
hairpin vortices [4] and vortex in swirling jets [5,6].

This paper will present a comprehensive investigation on the flow and vortex
field and drag force of multiphase flow past cylinder. The variation of multiphase
drag force with the movement of fluid will be analyzed. The detailed evolution
of the primary variables during the bubble deformation will be discussed for a deep
understanding of its relationshipwith vortex generation and development. Awide range
of identification parameters including the Liutex will be evaluated. The relationship
between extremums of different vortex identification variables and bubble deformation
process, mainly the breakup as well as coalescence, will be analyzed.

2 Models and methods

2.1 Basics of Lattice Boltzmann Method

Lattice Boltzmann Method could be derived from the Boltzmann equation based on
the kinetic molecular dynamics.

∂ f
∂t
+ ®ξ · ∇®x f + ®a · ∇ ®ξ f = Ω( f ), (1)
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where f (®x, ®ξ, t) denotes the particle distribution function that represents the density
of particles with velocity ®ξ at position ®x and time t. The collision operator Ω f

characterizes microscopic interaction between molecules and could be simplified by
single-relaxation-time approximation proposed by Bhatnagar–Gross–Krook (BGK)
[7].

Ω( f ) = −
f − feq
τ

(2)

Through discretizing in the physical space, velocity space and time, the discrete
Lattice Boltzmann Equation (LBE) could be derived,

fi(®x + ®ciδt, t + δt) − fi(®x, t) = (Ω(®x, t) + Fi(®x, t))δt (3)

where ®ci represents the discrete velocity direction, and fi(®x, t) is the particle distribution
function along the direction of ®ci . The widely adopted discretization model is usually
expressed as DdQm, where d and m denotes number of dimensions and velocities. For
2D simulation D2Q9 is adopted.

The macroscopic parameters such as density, velocity and internal energy can be
calculated statistically from moments of the discrete distribution function.

ρ =
∑
i

fi, ρ®u =
∑
i

ci fi, ρe =
1
2

∑
i

( ®ci − ®u)2 fi . (4)

By means of the multi-scale expansion techniques such as Chapman-Enskog anal-
ysis, the LBGK model could recover continuity equation and Navier-Stokes equation
at the macroscopic scale under the limit of small Mach number.

2.2 Multiphase Lattice Boltzmann methods

In multiphase flow simulation, the Shan-Chen model [8] incorporates a repulsive
or attractive Shan-Chen force, which does not need any explicit interface tracking.
Compared with other models, the Shan-Chen model has satisfactory performance in
both efficiency and accuracy and is adopted in the multiphase LBM simulation.

For single-component multiphase flow, the interaction force density acting on fluid
at ®x can be computed via integral over all possible interaction sites ®x′ .

FSC(®x) = −
∫
(®x
′

− ®x)G(®x, ®x
′

)ψ(®x)ψ(®x
′

)d3 ®x
′

(5)

where ψ(ρ) also called pseudo-potential denotes the effective density. G(®x, ®x
′

) is a
Green function to determine the strength and range of interaction, with the simplest
form concerning nearest lattice neighbors.

G(®x, ®x
′

) =


wiG ®x

′

= ®x + ®ciδt

0 otherwise
(6)
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In a multiphase fluid system constituted by n components, the LBE of Shan-Chen
model can be expressed as

f σi (®x + ®ciδt, t + δt) − f σi (®x, t) =
f eq(σ)i − f σi

τσ
δt + (1 −

δt
2τσ
)Fσ

i (®x, t) (7)

where f σi , f eq(σ)i , τσ,Fσ
i is the distribution function, equilibriumdistribution function,

relaxation time and forcing term of the σ component.
The total interaction force acting on the σ component can be computed by adding

the force imposed by all the components.

Fσ
SC(®x) = −ψ

σ(®x)
∑
σ
′

Gσσ
′

∑
i

wiψ
σ
′

(®x + ®ciδt) ®ciδt (8)

In the present work we focus on the two-component multiphase system without
phase change, namely n = 2 and Gσσ = 0. Gσσ

′ is set as positive for repulsive
force between different components. The overall density, weighed average velocity
and pressure of the fluid are calculated as follows.

ρ =
∑
σ

ρσ, ®u =
∑
σ(ρσ ®uσ/τσ)∑
σ(ρσ/τσ)

, p = c2
s (ρσ + ρσ′ ) + c2

sGρσρσ′ (9)

2.3 Momentum Exchange Algorithm of the Bounce-Back method
The widely adopted method to implement no-slip wall boundary condition in LBM
is the Bounce-Back method, with the advantage of simplicity of implementation and
guaranteed mass conservation. However, the traditional Bounce-Back method in the
regular lattice could only approximate arbitrary boundaries with stair-case shapes,
which might introduce large errors at cells nearby boundaries. While by increasing the
mesh resolution the error could be reduced and the results approaches precise solution.

In the context of Bounce-Back scheme, the Momentum Exchange Algorithm
(MEA) is adopted to calculate the force in this paper. The basic idea of MEA is
to identify the populations across the boundary and calculate the net momentum trans-
fer consisting of two parts, namely the momentum carried by the fluid to the wall f ini
and the momentum transported from the wall to the fluid f out

ī
. The procedure includes

the following steps [9].
• Identify the momentum links between solid and boundary nodes xwi .
• Evaluate the incoming populations f ini and bouncing populations f out

ī
of each

momentum link.
• Calculate the transferred momentum during the time steps and acting force on the
boundary.
The drag and lift forces are calculated using MEA in the following section. The

drag force FD is to quantify the resistance in the opposite direction of flow. The lift
force FL is in the orientation perpendicular to the flow direction. Thus they can be
evaluated by the components of total force in X and Y direction. Since the force is cal-
culated via the populations f , for the multi-component case in present paper, the force
of theσ component could be obtained based on the populations of each component f σ .
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2.4 Parallel Implementation of LBM on GPU

For practical convenience, the main process of calculation of LBE can be decomposed
into two parts, namely collision and streaming. With the features of ‘non-linearity is
local’ in collision step and ‘non-locality is linear’ in streaming step, LBM is naturally
suitable for computation on parallel architecture including GPU. GPU is capable of ex-
ecuting a multitude of threads in parallel simultaneously. which could take advantage
of thousands of cores in GPU and remarkably boost the computation. The implemen-
tation of LBM on GPU has aroused wide research interest and proved successful in
delivering reliable performance. In this paper, the open-source software Sailfish is
adopted for the simulation. The computation was implemented on NVIDIA Tesla K20
GPU.

2.5 Vortex identification method and Liutex

Several well-acknowledged identification parameters are selected including the vor-
ticity ω [10], Q [11], R [12], Ω [13], ΩR [14] and Liutex R [15], which are defined
by:

ω = ‖ ®ω‖ = ‖∇ × ®u‖

Q =
1
2
(‖B‖2F − ‖A‖

2
F )

Ω =
‖B‖2F

‖A‖2F + ‖B‖
2
F

=
b

a + b

ΩR =
β2

α2 + β2 + ε

®R = R®r =
(
〈 ®ω, ®r〉 −

√
〈 ®ω, ®r〉2 − 4λ2

ci

)
®r

(10)

where A = 1
2 [∇®u + (∇®u)

T ], B = 1
2 [∇®u − (∇®u)

T ] are the symmetric and antisym-
metric parts of the velocity gradient tensor, respectively. a = ‖A‖2F , b = ‖B‖2F ,

where ‖ · ‖2F represents the Frobenius norm. α = 1
2

√(
∂V
∂Y −

∂U
∂X

)2
+

(
∂V
∂X +

∂U
∂Y

)2

and β = 1
2

(
∂V
∂X −

∂U
∂Y

)
, where while U, V and W represent the velocity compo-

nents in the XYZ coordinate satisfying ∇®V = Q∇®uQT by a rotation matrix Q and
[∇ ®V]1,3 = [∇ ®V]2,3 = 0. ε is a small positive parameter. λci and ®r are the imaginary
part of the complex eigenvalue and the real eigenvector of ∇®u, respectively. In this
work, these criteria will be used for comparative analysis of vortex motion.

2.6 Validation

In this section, the LBM model is firstly validated against 2D single-phase flow past a
cylinder to verify the accuracy of force evaluation. Then the Laplace test is conducted
to examine the multiphase model.
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For two-dimensional case, with the characteristic length corresponding to the
obstacle’s diameter, the drag and lift coefficient and the Strouhal number are calculated
as follows.

CD =
FD

1
2
ρDū2

, CL =
FL

1
2
ρDū2

, St =
f D
ū

(11)

The comparison of simulation results with validation reference is displayed in Table
1. On the whole, the simulation results show in good conformity with benchmark in
Schaefer’s paper[16].

As for the multi-component Laplace test, a spherical droplet of one phase with
radius R is initialized surrounded by the another liquid phase. The interface is deter-
mined where the density reaches the average of the bulk densities inside and outside
the droplet. The result of Laplace test is displayed in Fig. 1, where the relationship
between measured pressure difference ∆p and 1/R is linear, with coefficient of deter-
mination of the fitted lines above 0.999, in desirable agreement with the Laplace Law,
namely ∆p = σ/R.

Concerning the two-phase model validation, it has been completed in our earlier
work [17], by the validating the bubble departure diameter and release period. In
addition, the GPU performance of LBM has also been tested and validated via the
cavity driven flow case in another earlier work [18].

On the whole, the LBMmode, two-phase scheme, GPU performance have already
been well validated.

(a) Density contour (b) Data fitting

Fig.1. The validation of Laplace test for multi-component case

3 Results and discussion

3.1 Numerical setup

Theflowdomain is discretized by 256×1024Cartesianmesh grids. The two-dimensional
cylinder obstacle with the diameter of 100 nodes is placed right in the center of channel
and referred to as cylinder in the following sections. Initially a circular bubble of the
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Table 1. Validation of flow past a 2D cylinder
Re 20 100

CD CL CDmax CLmax St
Present result 5.5499 0.0118 3.2877 0.9842 0.3062

Benchmark lower bound 5.57 0.0104 3.22 0.99 0.295
Benchmark upper bound 5.59 0.0110 3.24 1.01 0.305
Benchmark bounds refer to the results in Schaefer’s paper[16]

dispersed phase is set up at the upside of channel with the diameter equal to 100 nodes,
which will be called bubble later. The rest of field is filled with the continuous phase.
Note that the density contour denotes the density of the continuous phase. Referring
to previous multi-component multiphase research [19], the viscosity of the two phases
are set as the same and the parameter G is determined via Gρ = 1.8. The initial
velocity of the bubble and the force is in the downward direction.

3.2 The evolution of two-phase flow

The evolution of density contour is shown in Fig. 2, where the typical image during
the progress is presented. With initial velocity and imposed force, the bubble moves
towards the cylinder. As the nearly round bubble approaches the obstacle, the hindrance
from the obstacle flattens the bubble at the bottom (at T=6300). Subsequently it is
separated by the solid (at T=7600) and stretches to a great extent (at T=10400), till
the filament between the bubble becomes unstable and breaks up into several satellite
bubbles (atT=10800). The four small bubblesmove along the periphery of cylinder and
successively detach from the solid (at T=12300). Influenced by the vortex field behind
the obstruction, bubbles move towards center-line and become closer (at T=14000).
Involved in the vortex behind the obstacle, the distance between two bubbles reduced
and they coalesce for the first time (at T=15600) and finally merge into one bubble (at
T=18100).

3.3 The evolution of drag force

The evolution of drag force is shown in Fig. 3. As the bubble approaches the cylinder,
the drag force of continuous phase Fc

D increment steadily while that of the disperse
phase Fd

D declines inversely, leading to the increase of total drag force Ftotal
D . This

variation results from the compression of the fluid between the bubble and solid due
to the movement of the bubble. This trend continues until Fc

D attains its maximum at
T=7625 and Fd

D reaches theminimum atT=7689, when the bubble surrounds nearly the
upper half part of cylinder. Then the bubble covers the majority of cylinder periphery
and the tendency of the curves converts into the opposite, namely Fc

D decreases till
it reaches the minimum at T=10751 and conversely Fd

D increases till its maximum at
T=10766. Ftotal

D plunges and attained its minimum at T=10741. With the portion of
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(a) T=6300 (b) T=7600 (c) T=10400 (d) T=10800

(e) T=12300 (f) T=14000 (g) T=15600 (h) T=18100

Fig.2. The contour of density at different time steps

bubble coverage of cylinder periphery increasing, Fd
D consequently enhances and Fc

D
reduces, until the bubble is over stretched and break up into pieces. Therewith the
continuous phase regains the contact with cylinder and Fc

D boosts, arriving at a local
maximum at T=11633. In contrast Fd

D drops towards a local minimum at T=11617.
Afterwards the curves gradually flatten out.

Fig.3. The evolution of drag force
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3.4 The evolution of R, S, ω and comparison of vortex identification methods

Based on the relation of ®R + ®S = ®ω, the evolution of R,S and vorticity ω at different
time steps are shown in Fig. 4 and Fig. 5.

For the evolution of breakup process in Fig. 4, before bubble brings into contact
with solid, some zones with negative Liutex appear inside the bubble in the bottom
and lateral at T=6300. As the deformation affects the distribution of Liutex, there exist
negative zone in the center and positive zone on the sides atT=7600. AtT=10400 there
exist zones with positive Liutex between and ahead of the stretched bubbles, as well
as zones with negative Liutex laterally adjacent to them. When the break-up of bubble
occurs at T=10800, magnitude of Liutex near the position of fracture is relatively high
in positive or negative value. As the surface tension transform the bubble into a nearly
round shape at T=11600 and T=12300, zones with high magnitude of negative Liutex
inside the bubbles are observed.

For the evolution of coalescence process in Fig. 5, when the small bubbles merge
together, the distortion results in zones with high level of magnitude of Liutex both
inside and around the bubble. Taking the coalescence of two bubbles in the right as an
example, atT=15500 there appear negative Liutex zone near the line of bubble contact.
At T=15600, there are positive Liutex zone inside the bubble and alternatively positive
and negative Liutex outside the bubble. At T=15700, the negative Liutex zones have
disappeared and the positive zones also shrink in area and decrease in magnitude.

On the whole, S and Ω show similarity with each other in distributions and mag-
nitudes. Mainly, the bubble’s motion and shape dominate the variations of shear and
vorticity, whose distributions and magnitudes are so close that the variations of R
plays merely a fairly secondary role. Because of the relatively low velocity, shear de-
formation plays the dominating role on the vortex evolution characteristics. However,
indicated by R, the pure rotational motion also shows clear features dominated by the
formation of bubbles deformation, breakup and coalescence.

Moreover, considering the immediate moment when the bubble breaks up for
example, Fig. 6 shows the comparison of the varied vortex identification approaches
defined by Eq. (10), where R, Q, ω, S, Ω andΩR can all show the basic characteristics
of vortex structure partly yet some differences still exist.

At the moment of bubble breakup, rotational vortices are formed around the four
small satellite bubbles near the cylinder. In the meantime, in the downside of the
square obstacle, some small pure rotational vortices are also formed. The rotational
vortexes are formed around the locations with sufficiently large or locally maximum
curvatures of interface, such as around the ends of the stretched bubbles. The reason
lies in that the vortex can only be generated when and where the shear is too large for
the fluid to resist. Thus vortices may be generated during the bubble breakup near the
region with sufficiently large curvatures of interface.

In addition, R and Q show comparatively similar distributions in pairs, which
evaluate the vortex by absolutely rotational strength. Whereas Ω and ΩR show com-
paratively similar distributions in pairs, which determine the vortex by relatively levels
of strengths of rotation to shear.
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(a) T=6300

(b) T=7600

(c) T=10400

(d) T=10800

(e) T=11600

(f) T=12300

Fig.4. The evolution of R,S and ω at T=6300, 7600, 10400, 10800, 11600 and 12300
respectively
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(a) T=15500

(b) T=15600

(c) T=15700

Fig.5. The evolution of R,S and ω at T=15500, 15600 and 15700 respectively

Fig.6. The contour of primary variables at T=10800
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3.5 The evolution of Rmax and Smax

The evolution of statistics of primary variables of the dispersed and continuous phases
will be discussed in this and following sections. The local maximums and minimums
are represented by means of red and blue marks in the figures. In order to relieve
the burden of computation, the data is possessed every ten time steps, resulting in the
exhibited tenfold extremes.

Firstly, the maximum value of R (namely Rmax) is shown in Fig. 7. In Fig.
(7a), it is noteworthy that the data of Rmax is only selected from the interior of the
bubble (dispersed phase). There exist three distinct peaks at T=10830, T=15480 and
T=18050. Thus both the maximum and minimum of Liutex experience extremes at
T=10830. Whereas in Fig. (7b) the data of Rmax is only selected from the exterior
of the bubble (continuous phase). The remarkable peaks locate at T=10770, T=15460
and T=18030.

By Fig. (7b), the suddenly sharp increase of Rmax at about T = 10770 is caused by
the very moment the bubble begins to break up into small satellite bubbles, whereas the
peak of Rmax at T = 15460 corresponds to the moment when small bubbles coalesce
into large ones for the first time. Similarly, the peak of Rmax atT = 18030 corresponds
to the moment when bubbles merge into one eventually. In Fig. (7a) for the dispersed
phase, the sharp peaks of Rmax correspondingly coincide with that of the continuous
phase in Fig. (7b). The small differences of peak times of Rmax between Fig. (7a)
and Fig. (7b) are caused by the tiny differences of rotational motion of vortices of the
two phases.

Moreover, detailed inspection also indicates that the peaks of Rmax of the dispersed
phase are later than that of the continuous phase. It may possibly be deduced that the
rotational vortex or the vortical motion is transferred from the exterior to the interior
of the bubble. In other words, the vortex inside the bubble is induced by the external
shear or rotational motions.

On the other hand, with regard to the evolution of the maximum of shear, Smax ,
in Fig. (7c) for the dispersed phase, the three remarkable peaks locate at T=11010,
T=15500 and T=18080, with the location approximate to that in Fig. (7a). In Fig. (7d)
for the continuous phase, the curve manifests a distinct peak at T=11000 and a minor
peak at T=18050.

Comparing Figs. (7c) and (7d) to Figs. (7a) and (7b), it is also clear that the peaks
of Rmax and Smax almost take place simultaneously. In traditional applications, the
vortex is always identified by vorticity, which in current situation is mostly dominated
by shear rather than pure rotation. However, like in Fig. 7, as the maximum of real
vortex indicated by Rmax can also be identified by the maximum shear Smax , using
vorticity identification methods is somewhat usable if the most accurate description of
vortex is not needed.

Nevertheless, the first peak of Rmax is closer to the moment of bubble break-up
than that of Smax . Besides there is no peak near the first coalescence of bubbles in Figs.
(7d). Therefore, using R to quantify the pure rotational vortex is mostly encouraged in
two-phase flows, either for vortices in the dispersed phase or in the continuous phase.
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(a) Rmax of dispersed phase (b) Rmax of continuous phase

(c) Smax of dispersed phase (d) Smax of continuous phase

Fig.7. The evolution of maximum of R and S

3.6 The evolution of Qmax

The evolution of Qmax is shown in Fig. 8. Respecting the maximum of Qmax , in Fig.
(8a) for the dispersed phase, there exist three remarkable peaks located at T=10830
and the other two at T=15480 and T=18050. Referring to previous figures, these peaks
are on the location near the bubble break-up and coalescence. In Fig. (8b) for the
continuous phase, two peaks lie at T=15550 and T=18030, while the curve reaches
minimum at T=10880 and experiences drastic fluctuations.

To sum up, it is found that Qmax could also indicate the two-phase vortical motion.
In other words, it is also an applicable indicator for shape deformation of bubbles and
rotational motion of fluids to some extent, yet not as good as Rmax .

3.7 The evolution of Ωave and Ωave
R

Finally, the evolution of Ωave and Ωave
R are shown in Fig. 9. In this section, the

averaged values of Ω and ΩR over the dispersed or continuous phases are illustrated.
Concerning Ωave, Figs. (9a) and (9b) show the mean values of Ωave of the

dispersed phase and continuous phase respectively. The Ωave of dispersed phase first
climbs to a maximum atT=6180. Subsequently it falls back yet rises again and exhibits
drastic fluctuations afterwards. This kind of variation of Ωave of the dispersed phase
clearly indicates the variation of vortical motion inside the bubbles, which is clearly
more smoothly and varied more slowly than the variation of Ωave of the continuous
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(a) Qmax of dispersed phase (b) Qmax of continuous phase

Fig.8. The evolution of maximum of Q

phase (Fig. (9b)). As a whole, neither Ωave of the dispersed phase nor that of the
continuous phase indicate the instantaneous variations of the vortex motion of the
two-phases as good as using Rmax .

Figs. (9c) and (9d) show the variations of Ωave
R of the dispersed and continuous

phases. In this condition, the variation ofΩave
R shows much clearer features thanΩave.

To say specifically, Ωave
R is always fluctuating more evidently and intermittently than

Ωave. Moreover, the peaks ofΩave
R also take place around the points of suddenly sharp

change of former vortex identification methods, e.g. Rmax or Qmax , such as the peaks
at T=11050, T=15920 and T=18470.

Referring to Eq. (10), the mechanism may lie in the definition of Ωave
R . Generally

speaking, α and β are better than A and B for defining the pure rotational motion of
fluids. α and β are used to define R or the pure rotational vortical motion. Conversely,
A and B with possible shear deformation, are not indicating the pure rotational motion
features. Hence, it is still very clear to evaluate even the total level or strength of the
rotational motion of fluids by using α and β.

4 Conclusion

In this work, we presented the characteristics of vortex and drag force of two-phase
flow past a cylinder using Liutex-based analysis through validated multiphase LBM
model on GPU computation. The main findings can be summarized as follow:

• Regarding the evolution feature, the bubble may be deformed and stretched greatly
until its final breakup during the process of flow past the cylinder. After that, the
small satellite bubbles may gradually coalesce to make larger ones successively in
the downstream.
• Dominated by the bubble behavior, the drag force components caused by the
dispersed bubble phase and continuous fluid phase show the opposite trend. The
mechanism of variation of force components results from the specific variations
of velocity and density of the two-phases.
• Influenced by the two-phase interaction behavior, the vortex identification method

R successfully describes the region of pure rotation of fluids, though itsmagnitudes
are small compared to the shear of fluids.
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(a) Ωave of dispersed phase (b) Ωave of continuous phase

(c) Ωave
R

of dispersed phase (d) Ωave
R

of continuous phase

Fig.9. The evolution of average of Ω and ΩR

• Via averaging over the respective phase fields, ΩR shows evident advantages
compared to Ω, since ΩR can not be weakened by the averaging process, whereas
the Ωave fails to show such kind of features.

Acknowledgments

The authors are grateful for the support of this research by the National Science
and Technology Major Project (Grant No. 2011ZX06901-003), the National Natural
Science Foundations of China (Grant No. 51576211), the National High Technology
Research and Development Program of China (863) (2014AA052701).

167



References

1. C. Liu, Y. Gao, S. Tian, and X. Dong, “Rortex a new vortex vector definition and vorticity
tensor and vector decompositions [J],” Physics of Fluids, vol. 30, no. 3, 2018.

2. Y. Gao and C. Liu, “Rortex and comparison with eigenvalue-based vortex identification
criteria [J],” Physics of Fluids, vol. 30, no. 8, pp. 085 107–, 2018.

3. Y.-q. Wang, Y.-s. Gao, J.-m. Liu, and C. Liu, “Explicit formula for the liutex vector and
physical meaning of vorticity based on the liutex-shear decomposition [J],” Journal of
Hydrodynamics, vol. 31, no. 3, pp. 464–474, 2019.

4. Y.-s. Gao, J.-m. Liu, Y.-f. Yu, and C. Liu, “A liutex based definition and identification of
vortex core center lines [J],” Journal of Hydrodynamics, vol. 31, no. 3, pp. 445–454, 2019.

5. N. Gui, H.-b. Qi, L. Ge, P.-x. Cheng, H. Wu, X.-t. Yang, J.-y. Tu, and S.-y. Jiang, “Analysis
and correlation of fluid acceleration with vorticity and liutex (rortex) in swirling jets [J],”
Journal of Hydrodynamics, vol. 31, no. 5, pp. 864–872, 2019.

6. N. Gui, L. Ge, P.-x. Cheng, X.-t. Yang, J.-y. Tu, and S.-y. Jiang, “Comparative assessment
and analysis of rortex vortex in swirling jets [J],” Journal of Hydrodynamics, vol. 31, no. 3,
pp. 495–503, 2019.

7. P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes in gases. i. small
amplitude processes in charged and neutral one-component systems [J],” Physical Review,
vol. 94, no. 3, pp. 511–525, 1954.

8. X. Shan and H. Chen, “Lattice boltzmann model for simulating flows with multiple phases
and components [J],” Physical Review E, vol. 47, no. 3, pp. 1815–1819, 1993.

9. K. Timm, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. Viggen, “The lattice
boltzmann method: principles and practice [M],” Berlin, Germany, Springer, 2016.

10. J.-m. Liu, Y.-q. Wang, Y.-s. Gao, and C. Liu, “Galilean invariance of omega vortex identifi-
cation method [J],” Journal of Hydrodynamics, vol. 31, no. 2, pp. 249–255, 2019.

11. Y. Wang, Y. Gao, H. Xu, X. Dong, J. Liu, W. Xu, M. Chen, and C. Liu, “Liutex theoretical
system and six core elements of vortex identification [J],” Journal of Hydrodynamics, 2020.

12. Y. Gao, J. Liu, Y. Yu, and C. Liu, “A liutex based definition and identification of vortex core
center lines [J],” Journal of Hydrodynamics, vol. 31, p. 445–454, 2019.

13. X. Dong, Y. Wang, X. Chen, Y. Dong, Y. Zhang, and C. Liu, “Determination of epsilon for
omega vortex identification method [J],” Journal of Hydrodynamics, vol. 30, p. 541–548,
2018.

14. C. Liu, Y. Gao, X. Dong, Y. Wang, J. Liu, Y. Zhang, X. Cai, and G. N, “Third generation
of vortex identification methods: Omega and liutex/rortex based systems [J],” Journal of
Hydrodynamics, vol. 31, p. 205–223, 2019.

15. J. Liu, Y. Gao, Y. Wang, and C. Liu, “Objective omega vortex identification method [J],”
Journal of Hydrodynamics, vol. 31, p. 455–463, 2019.

16. M. Schaefer and S. Turek, “Benchmark computations of laminar flow around a cylinder
[M],” vol. 48, pp. 547–566, 1996.

17. T. Sun, N. Gui, X. Yang, J. Tu, and S. Jiang, “Numerical study of patterns and influencing
factors on flow boiling in vertical tubes by thermal lbm simulation [J],” International
Communications in Heat & Mass Transfer, vol. 86, p. 32–41, 2017.

18. P. Cheng, N. Gui, X. Yang, J. Tu, and S. Jiang, “Application of lattice boltzmann methods for
the multiphase fluid pipe flow on graphical processing unit [J],” Journal of Computational
Multiphase Flows, vol. 10, no. 3, p. 109–118, 2018.

19. H. Huang, D. T. Thorne, M. G. Schaap, and M. C. Sukop, “Proposed approximation for
contact angles in shan-and-chen-typemulticomponentmultiphase lattice boltzmannmodels
[J],” Physical Review E, vol. 76, no. 6, p. 066701, 2007.

168



Generalised univariable fractal interpolation
functions

Vasileios Drakopoulosa*, DuYong Pakb, SongIl Rib

a Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece

b Department of Mathematics, University of Science, Pyongyang, D.P.R. of Korea

Abstract

We show how to construct a generalised iterated function system whose graph is
the attractor, a fractal set, of some continuous function which interpolates a given
set of data. Moreover, Rakotch contractions and vertical scaling factors as (continu-
ous) ‘contraction functions’ are used in order to obtain generalised fractal interpolation
functions with extensive practical applications, including data fitting and approxima-
tion of functions. A special generalised fractal interpolation function is introduced
as an explicit illustrative example to show the effectiveness of the proposed method
as compared to other existing methods. In particular, fractal interpolation functions
which are widely presented in the literature can be obtained as particular cases of our
construction.

Mathematical Subject Classification: 37C45; 28A80; 37L30

Keywords: Iterated function system (IFS); Fractal interpolation function (FIF); Rakotch
contraction; function vertical scaling factors.

1 Introduction

The concept of fractal interpolation functions (FIFs) was introduced by Barnsley [1] on the
basis of the theory of iterated function systems (IFSs). Barnsley defined a fractal interpo-
lation function (FIF) in 1986 and presented a construction of fractal functions by fractal
interpolation. In the developments of theory of FIFs, many researchers have generalized the
notion of FIFs in different ways. The fractal interpolation functions have been discussed
in detail in the literature (see [1]-[10]). Fractal interpolation functions have become a pow-
erful tool for modeling many natural objects and have wide applications in mathematics
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and several other areas of applied sciences. For example, the fractal interpolation functions
have been widely used in approximation theory, image compression, computer graphics and
modeling of natural functions (or surfaces) such as rocks, metals, terrains and so on. As
we know, a fractal interpolation function is generated by an IFS that consists of a finite
set of some continuous functions on a complete metric space. Vertical scaling factors in
the continuous functions have a decisive influence on the shape of the corresponding FIF
because the vertical scaling factors uniquely determine the corresponding FIF provided that
the interpolation points are prescribed in advance (see [12]).

How to construct fractal functions (rough functions) and analyse their complexity has
become one of the most important topics in fractals (see [10]). The graph of a fractal inter-
polation function is an attractor of some iterated function system (see [1]). The concept of
iterated function system was introduced as a natural generalization of the well-known Ba-
nach contraction principle (see [1], see [12], cf. [10]). Iterated function systems have become
powerful tools for construction and analysis of new fractal interpolation functions. In order
to ensure more flexibility in modeling natural shapes and phenomena or in image processing,
researchers proposed many types of fractal interpolation functions by using iterated function
systems (see [1], [12], [2], [10]).

The connectivity of attractors of iterated function systems is very important in the con-
struction of fractal interpolation functions. The graphs of linear one variable fractal inter-
polation functions are always continuous functions. In usual approaches, the existence of
linear FIFs follows from Banach’s fixed point theorem (see [1]). Furthermore, in almost all
the papers, the various types of FIFs are limited within the cases of constant vertical scaling
factors and Banach’s fixed point theorem. In 2011, to get the FIFs with more flexibility
and diversity in a more general sense, Wang and Fan introduced a natural generalization
of Barnsley’s affine fractal interpolation function by using special function vertical scaling
factors and Banach’s fixed point theorem (see [?]). In order to construct new iterated func-
tion systems and fractal interpolation functions, one can use the well-known fixed point
results obtained in the fixed point theory (see [?], [5], [9], [10]). As far as we know, the first
significant generalization of Banach’s principle was obtained by Rakotch in 1962 (see [4],
p.124).

In 2017, Ri presented a method to generate generalized FIFs by using the Rakotch fixed
point theorem ([7]) instead of the Banach fixed point theorem in certain concrete case (see
[10]). However, results of [10] do not directly apply to the general case which often occurs
in practical applications. In fact, in general case, the methods of proof of results in [10] fail
because generalized transformations can involve special function vertical scaling factors that
are not constant vertical scaling factors. The results of [?] and [10] inspire us to find possible
vertical scaling factors (not necessarily constant vertical scaling factors) and contractions
(not necessarily Banach contractions) for the existence of generalized FIFs. In this paper,
in order to obtain generalized fractal interpolation functions, we use Rakotch contractions
and special function vertical scaling factors. Dealing with generalized fractal interpolation
functions is better than the one provided by [10]. In particular, we give an explicit illustrative
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example to demonstrate the effectiveness of obtained results.
This paper is organized as follows. In Section 2 we recall some results needed in con-

structing general FIFs. In Section 3 we introduce a new type of IFSs that will be used in
our discussion for a special class of FIFs with function vertical scaling factors. In Section
4 we give a generalized FIF with special function vertical scaling factors as the fixed point
of certain Read-Bajraktarević operator. In Section 5 we ensure that a generalized IFS with
special function vertical scaling factors has a unique invariant set. In Section 6 we give an
explicit illustrative example to demonstrate the effectiveness of the preceding theory. Finally,
in Section 7 we draw our conclusions.

2 Preparatory facts

In this section, we describe some basic notions and theorems on fixed point theory. The
following results will be the key in the proof of our main results.

Definition 2.1. (see [?], p.100, see [7], see [4], p.144) (1) If for some function ϕ : (0,+∞)→
(0,+∞) and a self-map f of a metric space (X, d), we have

∀x,y∈X d(f(x), f(y)) ≤ ϕ(d(x, y)),

then we say that f is a ϕ-contraction. (2) If f is a ϕ-contraction for some function ϕ :

(0,+∞) → (0,+∞) such that for any t > 0, α(t) := ϕ(t)
t
< 1 and the function (0,+∞) 3

t→ ϕ(t)
t

is non-increasing, then we call such a function a Rakotch contraction.

Remark 2.2. (see [4], p.144, diagram) Each Banach contraction is a Rakotch contraction,
since a map f : X → X is a Banach contraction iff it is a ϕ-contraction for a function
ϕ(t) = αt, for some 0 ≤ α < 1.

Theorem 2.3. (see [7], cf. [?], cf. [5], cf. [4]) (1) Let X be a complete metric space and
f : X → X be a Rakotch contraction. Then there is a unique fixed point k ∈ X of f , and
for each x ∈ X,

lim
n→+∞

fn(x) = k.

(2) Let X be a complete metric space and {X; f1, · · · , fN} be an iterated function system
consisting of Rakotch contractions. Then there is a unique non-empty compact set K ⊂ X
such that

K =
N⋃
i=1

fi(K).

Now we describe some basic results on fractal interpolation theory. Let N be a positive
integer greater than one and I := [x0, xN ] ⊂ R. Let a set of data points {(xi, yi) ∈ I×R : i =
0, 1, 2, · · · , N} be given, where {x0, x1, · · · , xN} is a partition of I (i.e., x0 < x1 < x2 < · · · <
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xN) and y0, y1, · · · , yN are given real numbers. Set Ii := [xi−1, xi] ⊂ I and let li : I → Ii for
i = 1, 2, · · · , N be contractive homeomorphisms such that

li(x0) = xi−1, li(xN) = xi,

|li(x′)− li(x′′)| ≤ λ|x′ − x′′| whenever x′, x′′ ∈ I

for some 0 ≤ λ < 1. Furthermore, let mappings Fi : I × R → R be continuous with, for
some k ≥ 0 and 0 ≤ α < 1,

Fi(x0, y0) = yi−1, Fi(xN , yN) = yi.

|Fi(x′, y′)− Fi(x′′, y′′)| ≤ k|x′ − x′′|+ α|y′ − y′′|

for all x′, x′ ∈ I, y′, y′′ ∈ R, and i = 1, 2, · · · , N .
Now define functions wi : I × R→ I × R for i = 1, 2, · · · , N by

wi := (li(x), Fi(x, y)).

Barnsley presented the following famous result.

Theorem 2.4. (cf. [1], p.306) The IFS{I × R, wi : i = 1, 2, · · · , N} defined above has a
unique nonempty compact set G ⊂ R2 such that

G =
N⋃
i=1

wi(G).

Then G is the graph of a continuous function f : I → R which obeys

f(xi) = yi for i = 0, 1, · · · , N.

The function f whose graph is the attractor of an IFS is called a fractal interpolation
function (FIF) corresponding to the data {(xi, yi) : i = 0, 1, · · · , N} (cf. [1], p.306).

Remark 2.5. In accordance with the idea of Barnsley, researchers proposed many types of
FIFs. In [1], [12] and [10],

li(x) :=
xi − xi−1
xN − x0

x+
xNxi−1 − x0xi

xN − x0
.

(1) In [1], [12] and [2], the maps wi(x, y) are chosen so that functions Fi(x, y) are Banach
contractions with respect to the second variable.
In the affine fractal interpolation function (cf. [1], p.308),

Fi(x, y) := cix+ diy + fi,
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where |di| < 1, and in the fractal interpolation function with function vertical scaling factors
(see [?], see [12], p.3-4, cf. [2]),

Fi(x, y) := di(x)y + qi(x),

where supx∈I |di(x)| < 1. (2) In [10], one type of fractal interpolation functions is considered,
where the maps wi(x, y) are chosen so that functions Fi(x, y) are Rakotch contractions with
respect to the second variable. In the nonlinear fractal interpolation function (see [10]),

Fi(x, y) := cix+ si(y) + fi,

where si is a Rakotch contraction.

3 A certain generalised IFS

In this section, we introduce a new type of IFSs that will be used in our discussion for a
special class of FIFs with function vertical scaling factors. Barnsley’s functional condition for
existence of a fractal interpolation function can be replaced by another functional conditions
(see [10]). In order to obtain a new generalized fractal interpolation function, we use Rakotch
contractions and special function vertical scaling factors in the construction of a generalized
IFS (cf. [10], cf. [12]).

Let N be a positive integer greater than one and I := [x0, xN ] ⊂ R. We will work in
the complete metric space I × R, with the Euclidean metric d0. Let a set of data points
{(xi, yi) ∈ I × R : i = 0, 1, 2, · · · , N} be given, where x0 < x1 < x2 < · · · < xN and
y0, y1, y2, · · · , yN ∈ R. Set Ii := [xi−1, xi] ⊂ I and define contractive homeomorphisms
li : I → Ii by

li(x) := aix+ ei,

where for all i = 1, 2, · · · , N , the real numbers ai, bi are chosen to ensure that li(I) = Ii. Let
ϕ : (0,+∞) → (0,+∞) be a non-decreasing continuous function such that for any t > 0,

α(t) := ϕ(t)
t
< 1 and the function (0,+∞) 3 t→ ϕ(t)

t
is non-increasing. Let di : I → R be a

continuously differentiable function such that

max
x∈I
|di(x)| ≤ 1.

Then by the differential mean value theorem and the existence theorem of maximum value
and minimum value of continuous function, we can see that for some Ldi > 0,

|di(x′)− di(x′′)| ≤ Ldi |x′ − x′′|,

where x′, x′′ ∈ I. Hence di is Lipschitz function defined on I satisfying maxx∈I |di(x)| ≤ 1.
Consider an IFS of the form {I × R;wi, i = 1, 2, · · · , N} in which the maps are generalized
transformations of the special structure

wi

(
x
y

)
=

(
li(x)

Fi(x, y)

)
=

(
aix+ ei

cix+ di(x)si(y) + fi

)
,
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where the transformations are constrained by the data according to

wi

(
x0
y0

)
=

(
xi−1
yi−1

)
, wi

(
xN
yN

)
=

(
xi
yi

)
for i = 1, 2, · · · , N , and si are some Rakotch contractions (with the same function ϕ). Then
for all (x, y′), (x, y′′) ∈ I × R,

|Fi(x, y′)− Fi(x, y′′)| = |di(x)||si(y′)− si(y′′)|
≤ |si(y′)− si(y′′)| ≤ ϕ(|y′ − y′′|).

That is, each wi(x, y) is chosen so that function Fi(x, y) is Rakotch contraction with
respect to the second variable. Also, analytically, we obtain (compare with ai, ei, ci, fi of
[10]).

ai =
xi − xi−1
xN − x0

,

ei =
xNxi−1 − x0xi

xN − x0

ci =
yi − yi−1
xN − x0

− di(xN)si(yN)− di(x0)si(y0)
xN − x0

,

fi =
xNyi−1 − x0yi
xN − x0

− xNdi(x0)si(y0)− x0di(xN)si(yN)

xN − x0
.

Remark 3.1. 1) Our bivariate function di(x)si(y) is a generalization of bivariate function
di(x)y in the fractal interpolation function with function vertical scaling factors (see [?],
see [12], p.3-4, cf. [2]). In fact, in the case when 0 < maxx∈I |di(x)| < 1 (see [12], p.3),
obviously,

di(x)y =
di(x)

maxx∈I |di(x)|
max
x∈I
|di(x)|y.

Let si(y) := maxx∈I |di(x)|y and d∗i (x) := di(x)
maxx∈I |di(x)|

. Then di(x)y = d∗i (x)si(y), maxx∈I |d∗i (x)| =
1 and si is a Banach (or Rakotch) contraction.

2) Our functional condition maxx∈I |di(x)| ≤ 1 is the essential condition to show the
difference between Banach contractibility of Fi(·, y) and Rakotch contractibility of Fi(·, y)
(compare with [12]). In fact, since ϕ(t) < t for any t > 0,

|Fi(x, y′)− Fi(x, y′′)| = |di(x)||si(y′)− si(y′′)|
≤ max

x∈I
|di(x)||si(y′)− si(y′′)|

≤ max
x∈I
|di(x)|ϕ(|y′ − y′′|)

≤ max
x∈I
|di(x)||y′ − y′′|,
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where (x, y′), (x, y′′) ∈ R2.
Hence, if maxx∈I |di(x)| < 1, as can be seen, notwithstanding each si is a Rakotch contraction
that is not Banach contraction, each Fi is Banach contraction with respect to the second
variable because

|Fi(x, y′)− Fi(x, y′′)| ≤ max
x∈I
|di(x)||y′ − y′′|.

On the other hand, if maxx∈I |di(x)| = 1, then we can conclude that each Fi is Rakotch
contraction (that is not Banach contraction) with respect to the second variable whenever
each si is a Rakotch contraction (that is not Banach contraction) because

|Fi(x, y′)− Fi(x, y′′)| ≤ max
x∈I
|di(x)|ϕ(|y′ − y′′|).

4 Fixed point of a certain operator

In this section, we introduce a generalized FIF with special function vertical scaling factors
as the fixed point of certain Read-Bajraktarević operator (see [6]). By using Rakotch fixed
point theorem, we show that the graph of a generalized FIF with special function vertical
scaling factors is the invariant set of some generalized IFS.

Denote by C(I) the set of continuous functions f : I = [x0, xN ]→ R. Let C∗(I) ⊂ C(I)
denote the set of continuous functions f : I → R such that f(x0) = y0 and f(xN) = yN , that
is,

C∗(I) := {f ∈ C(I) : f(x0) = y0, f(xN) = yN}.

Let C∗∗(I) ⊂ C∗(I) ⊂ C(I) be the set of continuous functions that pass through the given
data points {(xi, yi) ∈ I × R : i = 0, 1, 2, . . . , N}, that is,

C∗∗(I) := {f ∈ C∗(I) : f(xi) = yi, i = 0, 1, · · · , N}.

Define a metric dC(I) on C(I) by

dC(I)(g, h) := max
x∈[x0,xN ]

|g(x)− h(x)|

for all g, h ∈ C(I). Then (C(I), dC(I)), (C∗(I), dC(I)) and (C∗∗(I), dC(I)) are complete metric
spaces. For all f ∈ C∗(I), define a mapping T : C∗(I)→ C(I) by

Tf(x) : = Fi(l
−1
i (x), f(l−1i (x)))

= cil
−1
i (x) + di(l

−1
i (x))si(f(l−1i (x))) + fi

for x ∈ [xi−1, xi] and i = 1, 2, · · · , N . Obviously, T is a form of Read-Bajraktarević operator
as defined in [6].

Lemma 4.1. Tf ∈ C∗∗(I) for all f ∈ C∗(I). That is, T : C∗(I) → C∗∗(I) and T n :
C∗∗(I)→ C∗∗(I) for all n ≥ 2.
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Proof. Since

wi

(
x0
y0

)
=

(
xi−1
yi−1

)
, wi

(
xN
yN

)
=

(
xi
yi

)
for i = 1, 2, · · · , N , we obtain li(x0) = xi−1, li(xN) = xi, l

−1
i (xi−1) = x0, l

−1
i (xi) = xN ,

Fi(x0, y0) = yi−1 and Fi(xN , yN) = yi for i = 1, 2, · · · , N . Hence if xi ∈ [xi−1, xi] for
i = 1, 2, · · · , N , then since f ∈ C∗(I), we obtain

Tf(xi) = Fi(l
−1
i (xi), f(l−1i (xi)))

= cil
−1
i (xi) + di(l

−1
i (xi))si(f(l−1i (xi))) + fi

= cixN + di(xN)si(f(xN)) + fi

= Fi(xN , f(xN)) = Fi(xN , yN) = yi

and if xi ∈ [xi, xi+1] for i = 0, 1, 2, · · · , N − 1, then since f ∈ C∗(I), we obtain

Tf(xi) = Fi+1(l
−1
i+1(xi), f(l−1i+1(xi)))

= ci+1l
−1
i+1(xi) + di+1(l

−1
i+1(xi))si+1(f(l−1i+1(xi))) + fi+1

= ci+1x0 + di+1(x0)si+1(f(x0)) + fi+1

= Fi+1(x0, f(x0)) = Fi+1(x0, y0) = yi.

So f(xi) = yi for all i = 0, 1, 2, · · · , N and Tf(x) is continuous at each of the points
x1, x2, · · · , xN−1. By definition of the mapping T , Tf(x) is continuous on the interval
[xi−1, xi] for all i = 1, 2, · · · , N . Hence Tf ∈ C∗∗(I) and T n : C∗∗(I) → C∗∗(I) for all
n ≥ 2.

Using Lemma 4.1 and the technique introduced in [10], we can obtain the following
Theorem that will be used in our discussion for a special class of FIFs with function vertical
scaling factors.

Theorem 4.2. Let N be a positive integer greater than one. Let {I×R;wi, i = 1, 2, · · · , N}
denote the IFS defined above, associated with the set of data

{(xi, yi) : i = 0, 1, · · · , N}.

Then the operator T is a Rakotch contraction (considered as a map T : C∗(I) → C∗(I)).
Hence there is a unique continuous function f : I → R which is a fixed point of T . In
particular, f(xi) = yi for i = 0, 1, · · · , N . Moreover, the graph G of f is invariant with
respect to {I × R;w1, · · · , wN}, i.e.,

G =
N⋃
i=1

wi(G).
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Proof. Since maxx∈I |di(x)| ≤ 1, we obtain that for all g, h ∈ C∗(I) ⊂ C(I),

dC(I)(Tg, Th) = max
x∈[x0,xN ]

|Tg(x)− Th(x)|

= max
i=1,2,··· ,N

max
x∈[xi−1,xi]

|Tg(x)− Th(x)|

= max
i=1,2,··· ,N

max
x∈[xi−1,xi]

|cil−1i (x) + di(l
−1
i (x))si(g(l−1i (x))) + fi

− cil−1i (x) + di(l
−1
i (x))si(h(l−1i (x))) + fi|

= max
i=1,2,··· ,N

max
x∈[xi−1,xi]

|di(l−1i (x))si(g(l−1i (x)))− di(l−1i (x))si(h(l−1i (x)))|

≤ max
i=1,2,··· ,N

max
x∈[xi−1,xi]

|si(g(l−1i (x)))− si(h(l−1i (x)))|

≤ max
i=1,2,··· ,N

sup
x∈[xi−1,xi]

ϕ(|g(l−1i (x))− h(l−1i (x))|),

where ϕ : (0,+∞) → (0,+∞) is some non-decreasing function such that ϕ(t) < t for t > 0

and t → ϕ(t)
t

is non-increasing. Since ϕ : (0,+∞) → (0,+∞) is non-decreasing continuous
function and l−1i : [xi−1, xi] → [x0, xN ] for all i = 1, 2, · · · , N , we obtain that for i0 ∈
{1, 2, · · · , N} and x0 ∈ [xi0−1, xi0 ],

ϕ(|g(l−1i0 (x0))− h(l−1i0 (x0))|) ≤ϕ( max
x∈[xi0−1,xi0 ]

|g(l−1i0 (x))− h(l−1i0 (x))|)

≤ϕ( max
x∈[x0,xN ]

|g(x)− h(x)|)

=ϕ(dC(I)(g, h)).

Since x0 was arbitrary,

sup
x∈[xi0−1,xi0 ]

ϕ(|g(l−1i0 (x)− h(l−1i0 (x))|) ≤ϕ(dC(I)(g, h))

and since i0 was arbitrary,

max
i=1,2,··· ,N

sup
x∈[xi−1,xi]

ϕ(|g(l−1i (x)− h(l−1i (x))|) ≤ϕ(dC(I)(g, h)).

Hence we obtain

dC(I)(Tg, Th) ≤ max
i=1,2,··· ,N

sup
x∈[xi−1,xi]

ϕ(|g(l−1i (x)− h(l−1i (x))|)

≤ϕ(dC(I)(g, h)) = ϕ(dC(I)(g, h)).

So we conclude that T : C∗(I) → C∗∗(I) ⊂ C∗(I) is a Rakotch contraction (with the same
function ϕ) on the complete metric space (C∗(I), dC(I)). Theorem 2.3 (1) implies that T
possesses a unique fixed point in C∗(I). That is, there exists a continuous function f ∈ C∗(I)
such that for all x ∈ [x0, xN ],

Tf(x) = f(x).
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Since T : C∗(I) → C∗∗(I) (by Lemma 4.1), we have f = Tf ∈ C∗∗(I). That is, there is
a continuous function f that passes through the given data points {(xi, yi) ∈ I × R : i =
0, 1, 2, . . . , N}. Let G denote the graph of f ∈ C∗∗(I), that is, G := {(x, f(x)) : x ∈ [x0, xN ]}.
Since f is a fixed point of the operator T and if x ∈ [xi−1, xi], then

Tf(x) = Fi(l
−1
i (x), f(l−1i (x))),

we obtain that for all x ∈ [x0, xN ],

f(li(x)) =Tf(li(x))

=Fi(l
−1
i (li(x)), f(l−1i (li(x))))

=Fi(x, f(x)).

Since wi(x, y) = (li(x), Fi(x, y)) for all for i = 1, 2, · · · , N , we obtain that

wi(G) =wi({(x, f(x)) : x ∈ [x0, xN ]})
={wi(x, f(x)) : x ∈ [x0, xN ]}
={(li(x), Fi(x, f(x))) : x ∈ [x0, xN ]}
={(li(x), f(li(x))) : x ∈ [x0, xN ]}
={(x, f(x)) : x ∈ [xi−1, xi]}.

Hence

G ={(x, f(x)) : x ∈ [x0, xN ]}

=
N⋃
i=1

{(x, f(x)) : x ∈ [xi−1, xi]}

=
N⋃
i=1

wi(G).

This completes the proof.

Remark 4.3. In the case where the vertical scaling factor parameters are constants, Barnsley
investigated the existence of affine FIFs by using the Banach fixed point theorem (see [1]), and
Wang and Fan introduced a natural generalization of Barnsley’s affine FIFs by using special
function vertical scaling factors and Banach’s fixed point theorem (see [?]). Here, we study
the existence of generalized FIFs with function vertical scaling factors by using the Rakotch
fixed point theorem, and the techniques used in Theorem 4.2 is completely different from those
used in [1]-[2]. But Theorem 4.2 does not ensure that the IFS{I×R;wi, i = 1, 2, · · · , N} has
a unique invariant set. The uniqueness of invariant set is determined explicitly in Theorem
5.1.
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5 Attractor of a certain IFS

In this section, we ensure that a generalized IFS{I × R;wi, i = 1, 2, · · · , N} with special
function vertical scaling factors has a unique invariant set (attractor). Theorem 5.1 that
is our main theorem in this paper improves upon a result proved by [10], and the proof of
Theorem 5.1 is based on arguments first applied in [10]. If we combine the both of Theorem
4.2 and Theorem 5.1 into a party, we can easily know that the graph of a generalized FIF
with special function vertical scaling factors is a unique attractor of a certain IFS.

Theorem 5.1. Let N be a positive integer greater than one. Let each si be a bounded Rakotch
contraction. Let {I × R;wi, i = 1, 2, · · · , N} denote the IFS defined above, associated with
the set of data

{(xi, yi) : i = 0, 1, · · · , N}.
Then there is a metric dθ on I × R, equivalent to the Euclidean metric d0, such that for all
i = 1, · · · , N , wi are Rakotch contractions with respect to dθ. In particular, there exists a
unique nonempty compact set G ⊂ I × R such that

G =
N⋃
i=1

wi(G).

Proof. We define a metric dθ on I × R by

dθ((x
′, y′), (x′′, y′′)) := |x′ − x′′|+ θ|y′ − y′′|,

where θ is a positive real number which is specified below. Since |di(x′)−di(x′′)| ≤ Ldi|x′−x′′|
and Fi(x, y) := cix+ di(x)si(y) + fi,

|Fi(x′, y′)−Fi(x′′, y′′)| =
=|cix′ + di(x

′)si(y
′) + fi − (cix

′′ + di(x
′′)si(y

′′) + fi)|
≤|ci||x′ − x′′|+ |di(x′)si(y′)− di(x′′)si(y′′)|
≤|ci||x′ − x′′|+ |di(x′)||si(y′)− si(y′′)|+ |si(y′′)||di(x′)− di(x′′)|
≤|ci||x′ − x′′|+ |si(y′)− si(y′′)|+ sup

y′′∈D(si)

|si(y′′)||di(x′)− di(x′′)|

≤(|ci|+ sup
y′′∈D(si)

|si(y′′)|Ldi)|x′ − x′′|+ |si(y′)− si(y′′)|,

where D(si) ⊂ R is the domain of definition of si. Let

k := max
i=1,2,··· ,N

(|ci|+ sup
y′′∈D(si)

|si(y′′)|Ldi),

Then for all (x′, y′), (x′′, y′′) ∈ I × R,

|Fi(x′, y′)− Fi(x′′, y′′)| ≤ k|x′ − x′′|+ ϕ(|y′ − y′′|),

11

179



where ϕ : (0,+∞) → (0,+∞) is some non-decreasing function such that ϕ(t) < t for

t > 0 and t → ϕ(t)
t

is non-increasing. That is, each Fi,j is a Rakotch contraction (with the
same function ϕ) with respect to the second variable, and Lipschitz with respect to the first
variable. Hence we obtain for all (x′, y′), (x′′, y′′) ∈ I × R,

dθ(wi(x
′, y′), wi(x

′′, y′′)) =dθ((li(x
′′), Fi(x

′, y′)), (li(x
′′), Fi(x

′′, y′′)))

=|li(x′)− li(x′′)|+ θ|Fi(x′, y′))− Fi(x′′, y′′)|
≤|ai||x′ − x′′|+ θ(k|x′ − x′′|+ ϕ(|y′ − y′′|))
=|ai||x′ − x′′|+ θk|x′ − x′′|+ θϕ(|y′ − y′′|)
≤(|ai|+ θk)|x′ − x′′|+ θϕ(|y′ − y′′|).

Let (x′, y′), (x′′, y′′) ∈ I × R and (x′, y′) 6= (x′′, y′′). Since ϕ : (0,+∞) → (0,+∞) is non-
decreasing continuous function and ϕ(t) < t for all t > 0, we obtain that

dθ(wi(x
′, y′), wi(x

′′, y′′)) ≤(|ai|+ θk)|x′ − x′′|+ θϕ(|y′ − y′′|)

=(|ai|+ θk)|x′ − x′′|+ θ
ϕ(|y′ − y′′|)

|x′ − x′′|+ |y′ − y′′|
(|x′ − x′′|+ |y′ − y′′|)

=(|ai|+ θk + θ
ϕ(|y′ − y′′|)

|x′ − x′′|+ |y′ − y′′|
)|x′ − x′′|

+ θ
ϕ(|y′ − y′′|)

|x′ − x′′|+ |y′ − y′′|
(|y′ − y′′|)

≤(|ai|+ θk + θ
ϕ(|x′ − x′′|+ |y′ − y′′|)
|x′ − x′′|+ |y′ − y′′|

)|x′ − x′′|

+ θ
ϕ(|x′ − x′′|+ |y′ − y′′|)
|x′ − x′′|+ |y′ − y′′|

(|y′ − y′′|)

≤(|ai|+ θk + θ)|x′ − x′′|+ θ
ϕ(|x′ − x′′|+ |y′ − y′′|)
|x′ − x′′|+ |y′ − y′′|

|y′ − y′′|)

≤max{|ai|+ θk + θ,
ϕ(|x′ − x′′|+ |y′ − y′′|)
|x′ − x′′|+ |y′ − y′′|

}(|x′ − x′′|+ θ|y′ − y′′|)

= max{|ai|+ θk + θ,
ϕ(|x′ − x′′|+ |y′ − y′′|)
|x′ − x′′|+ |y′ − y′′|

}dθ((x′, y′), (x′′, y′′))

≤max{ max
i=1,2,··· ,N

|ai|+ θk + θ,
ϕ(|x′ − x′′|+ |y′ − y′′|)
|x′ − x′′|+ |y′ − y′′|

}dθ((x′, y′), (x′′, y′′)).

Since N > 1, we obtain 0 < ai := xi−xi−1

xN−x0
< 1 for all i = 1, 2, · · · , N .

Let

θ :=
1−maxi=1,2,··· ,N |ai|

2(k + 1)
.
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Then 0 < maxi=1,2,··· ,N |ai|+ θk + θ < 1 and since k ≥ 0, we obtain 0 < θ < 1.
Let for all t > 0,

β(t) := max{ max
i=1,2,··· ,N

|ai|+ θp+ θ,
ϕ(t)

t
}.

Then because α(t) := ϕ(t)
t

and α : (0,+∞) → [0, 1) is a non-increasing, we can see that β :
(0,+∞)→ [0, 1) is a non-increasing and for each (x′, y′), (x′′, y′′) ∈ I × R, (x′, y′) 6= (x′′, y′′),

dθ(wi(x
′, y′), wi(x

′′, y′′)) ≤ β(d((x′, y′), (x′′, y′′)))dθ((x
′, y′), (x′′, y′′)),

where d((x′, y′), (x′′, y′′)) := |x′ − x′′| + |y′ − y′′|. Since 0 < θ < 1, for all (x′, y′), (x′′, y′′) ∈
I × R, (x′, y′) 6= (x′′, y′′),

|x′ − x′′|+ θ|y′ − y′′| ≤ |x′ − x′′|+ |y′ − y′′|.

That is,
dθ((x

′, y′), (x′′, y′′)) ≤ d((x′, y′), (x′′, y′′)).

Since β : (0,+∞)→ [0, 1) is a non-increasing, we can see that

dθ(wi(x
′, y′), wi(x

′′, y′′)) ≤β(d((x′, y′), (x′′, y′′)))dθ((x
′, y′), (x′′, y′′))

≤β(dθ((x
′, y′), (x′′, y′′)))dθ((x

′, y′), (x′′, y′′)).

Hence wi are Rakotch contractions in (I×R, dθ). On the other hand, metric dθ is equivalent
to the Euclidean metric d0 on I × R (see [10]). So (I × R, dθ) is a complete metric space.
Hence wi : I × R → I × R is a Rakotch contraction in (I × R, dθ) and by Theorem 2.3 (1),
there exists an unique fixed point in I × R. By Theorem 2.3 (2), for the complete metric
space (I × R, dθ), there is a unique nonempty compact set G ⊂ I × R such that

G =
N⋃
i=1

wi(G).

By the definition of Hausdorff metric, equivalence of two metrics implies the equivalence of
Hausdorff metrics generated by them (see [9], p.91, Lemma 3.6). Hence for (I×R, d0), there
is a unique nonempty compact set G ⊂ I × R such that

G =
N⋃
i=1

wi(G).

This completes the proof.

Remark 5.2. The boundedness of si is the essential condition to establish a unique invariant
set of an iterated function system.
In the fractal interpolation function with function vertical scaling factors, 0 < maxx∈I |di(x)| <
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1 (see [?], see [12], p.3-4, cf. [2]). Let M := maxx∈I |cix+ fi| and h ≥ M
1−maxx∈I |di(x)|

. Then

for all y ∈ [−h, h],

|Fi(x, y)| = |cix+ di(x)y + fi|
≤M + max

x∈I
|di(x)||y|

≤M + max
x∈I
|di(x)|h ≤ h.

So for all (x, y) ∈ I× [−h, h], we can see that Fi(x, y) ∈ [−h, h]. That is, an iterated function
system,

{I × [−h, h];wi : i = 1, 2, · · · , N},
has been constructed (cf. [3], p.1897). Thus D(si) = [−h, h] and si(y) := maxx∈I |di(x)|y is
bounded in D(si) (see Remark 3.1). Hence the boundedness of si in D(si) is the essential
condition to establish a unique invariant set of an iterated function system (see the proof of
Theorem 5.1, cf. [3], p.1897, the proof of Theorem 2.1).

Remark 5.3. Our result is a substantial generalization of [?, ?, ?]. The function whose
graph is the attractor of an IFS as described in Theorem 4.2 and Theorem 5.1 generalizes the
affine fractal interpolation function (see [1]), the fractal interpolation function with function
vertical scaling factors (see [?], see [12]) and the nonlinear fractal interpolation function
(see. [10]). (1) In the affine fractal interpolation function (cf. [1], p.308, Example 1), for
all t > 0,

ϕ(t) := max
i=1,2,··· ,N

|di|t,

where |di| < 1 for all i = 1, 2, · · · , N .
(2) In the fractal interpolation function with function vertical scaling factors (cf. [?], cf.
[12], p.3), for all t > 0,

ϕ(t) := max
i=1,2,··· ,N

max
x∈I
|di(x)|t,

where di(x) is Lipschitz function defined on I satisfying supx∈I |di(x)| < 1 for all i =
1, 2, · · · , N . (3) In the nonlinear fractal interpolation function (cf. [10]), di(x) ≡ 1 and
ϕ : (0,+∞) → (0,+∞) is a non-decreasing continuous function such that for any t > 0,

α(t) := ϕ(t)
t
< 1 and the function (0,+∞) 3 t → ϕ(t)

t
is non-increasing. Thus, we improve

upon results proved by [1], [12] and [10].

6 A certain generalized fractal interpolation function

In this section we focus on generalized FIFs with a special structure by means of results
obtained in the previous sections. For this purpose, we give an extremely explicit simple
example to demonstrate the effectiveness of the preceding theory. We may assume, without
loss of generality, that [x0, xN ] = [0, 1]. This special case can always be achieved by means
of an affine transformation (which does not change the existence of FIF) (see [2]).
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Let ϕ(t) := t
1+t

for t ∈ (0,+∞). Then ϕ : (0,+∞) → (0,+∞) is a non-decreasing

continuous function and t→ ϕ(t)
t

is non-increasing continuous function.
Let a set of data {(xi, yi) : i = 0, 1, · · · , N} be given, where xi, yi ∈ [0, 1] for all i =
0, 1, · · · , N . Let for all i = 1, 2, · · · , N ,

di(x) := 22ixi(1− x)i.

Then
max

x∈[x0,xN ]
|di(x)| = 1

and by differential mean value theorem, for all x′, x′′ ∈ [0, 1], there is Ldi > 0 such that

|di(x′)− di(x′′)| ≤ Ldi |x′ − x′′|.

Let for y ∈ [0,+∞) and i = 1, 2, · · · , N ,

si(y) :=
y

1 + iy
.

Then, for y′, y′′ ∈ [0,+∞),

|si(y′)− si(y′′)| = |
y′

1 + iy′
− y′′

1 + iy′′
| ≤ |y′ − y′′|

1 + i|y′ − y′′|

≤ |y′ − y′′|
1 + |y′ − y′′|

= ϕ(|y′ − y′′|).

That is, each si is Rakotch contraction (with the same function ϕ) that is not Banach
contraction on [0,+∞) (see [10], cf. [11], p.848, cf. [8], p.262).
Let for all i = 1, 2, · · · , N ,

wi(x, y) := (aix+ ei, cix+ di(x)si(y) + fi),

where

ai = xi − xi−1, ei = xi−1,

ci = yi − yi−1, fi = yi−1.

Then, by Theorem 4.2 and Theorem 5.1, there exists a continuous function f : [0, 1] → R
that interpolates the given data {(xi, yi) : i = 0, 1, · · · , N}. Moreover, the graph G of f is
invariant with respect to {[0, 1]× R;w1, w2, · · · , wN}, i.e.,

G =
N⋃
i=1

wi(G).

This clearly shows that our method is much more effective than the method due to [1]-[10].
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Remark 6.1. We refer to f as a generalized fractal interpolation function with function
vertical scaling factors. The reason for this name is that the functions Fi take the form

Fi(x, y) = cix+ di(x)si(y) + fi,

where maxx∈I |di(x)| ≤ 1 and each si is Rakotch contraction.
That is, each Fi, in general, is generalized with respect to the second variable y (cf. [10]).
In fact, in [1]-[12], since 0 < |di(x)| ≡ |di| < 1 or 0 < maxx∈I |di(x)| < 1 and

di(x)y =
di(x)

maxx∈I |di(x)|
max
x∈I
|di(x)|y,

we can see that

Fi(x, y) = cix+ di(x)y + fi

= cix+ d∗i (x)si(y) + fi,

where d∗i (x) := di(x)
maxx∈I |di(x)|

and si(y) := maxx∈I |di(x)|y, and thus each si is a special Banach

contraction and linear. That is, each Fi(x, y) is a special Banach contraction and linear with
respect to the second variable y. Then the corresponding FIF is an affine FIF introduced by
Barnsley (see [1]) or a FIF with function vertical scaling factors (see [?], see [12], cf. [2]).
Obviously, we can say that the generalized FIFs with function vertical scaling factors may
have more flexibility and applicability.

In below, we give the graph of a linear FIF, the graph of a nonlinear FIF of [10] that is
not a linear FIF, and the graph of a generalized FIF that is not a FIF of [10] (see Fig. 1,
Fig. 2, Fig. 3). Here we omit their details to avoid the repetition.

7 Conclusion

The FIFs have been widely used in approximation theory, image compression, computer
graphics and modeling of natural surfaces such as rocks, metals, terrains and so on. In
order to get more flexibility and diversity in modeling natural shapes and phenomena or in
image processing, we introduced new generalized FIFs which generalize widely used linear
FIFs. In order to obtain new generalized FIFs, we use Rakotch contractions and special
function vertical scaling factors, and we have presented the principle and the method of
generalized fractal interpolation in detail. Dealing with generalized fractal interpolation
functions is better than the one provided by [10]. Theorem 4.2 and Theorem 5.1 ensure that
an attractor of constructed generalized IFS is a graph of some continuous function which
interpolates the given data. In particular, an explicit illustrative example shows that our
result remains still true under essentially weaker conditions on the maps of IFS. Comparing
linear FIFs with function vertical scaling factors and generalized FIFs with function vertical
scaling factors, we can know that the FIFs considered in this paper have more flexibility
and diversity and are more suitable to the fitting and approximation of many complicated
functions.
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Figure 1: A linear FIF.

Figure 2: A nonlinear FIF of [10] that is not a linear FIF.
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Figure 3: A generalized FIF that is not a FIF of [10].
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Abstract. In this paper, design Hidden Bifurcation kind to Multiscroll Chaotic
Attractors via Saturated Function Series are reconnoitred. The idea was taken from
the work Zaamoune, et al(2019) and the method introduced by Menacer, et al. (2016)
for Chua multiscroll attractors. These idea (hidden bifurcation kind) depends on how
you appear the scrolls odd or even were the number of scrolls is even. We have studied
many examples to prove this idea, mentioned that the number n of scrolls satisfies
n = p + q + 2 in LÜ , Chen et al (2004).
Keywords: Hidden bifurcation, multiscroll chaotic attractor, saturated function
series..

1 Introduction

It is well known that the method hidden attractor generating one-directional(1-
D) -scroll has been studied in the last few years [1]-[3]-[4]. Since the method
was presented by Leonov, et al [4] in the Chua attractor, they have proposed
efficient technique for the numerical localization of the hidden attractors in
one-directional dynamical systems. Hidden attractor has many applications
in a real word like mechanics, electronics, chemistry, biology but the most
important in electronic circuits (hysteresis circuit, and saturated circuit). In
2016, the auteur’s Menacer, et al changed the type of discrete parameters by
presented a generating multi-spirals, and this new method they called a ”hidden
bifurcation”, the cause of this name it’s has a change in the number of spirals.
In this paper, we study design hidden bifurcation kind method in the attractor
for generating one-directional (1-D) -scroll by saturated function series. In 2004
Chen, et al design and analysis of multi scroll chaotic attractors from saturated
function series [8], but we present a new idea in hidden bifurcation, where we
know that the role of method hidden bifurcation it’s a parametres control in
the number of spirals, her in this work p1 and q1 in function 12 it’s a bossed. In
this article, we change the values of system Chen parameters 11 a, b ,c and d1
we found a new attractor different about Chen attractor in [8], we change every
time the parameter ε in 0.55 to 1 and the parameters p1 and q1 and we noted
that it’s not only the parameter εcontrol in the appearance of numbers scrolls,
the parameters p1 and q1 also control in appearance of numbers scrolls it’s a
new idea. This paper is disposed of as follows : In Section 2, the analytical-
numerical method for hidden attractor proposed by Leonov in [6],[7]. the model
of 1−D scroll chaotic attractors generated by saturated function series proposed
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.In Section 3, the model of 1−D scroll chaotic attractors generated by saturated
function series proposed. In section 4 , the localization technique presented in
[2] for hidden bifurcation in 1−D scroll chaotic attractors, we introduced the
results for a new idea. Finally, in Sec. 6, a terse conclusion is pictured.

2 Analytical-numerical procedure for attractors
localization

Leonov et al. [6],[9], [10] found a procedure to discover numerically hidden
attractor for Chua attractor. The technique developed in [2], discovering hidden
bifurcations in the multispiral Chua attractor. To improv, this numerical
method, consider a system with one-directional (1-D) -scroll

dx

dt
= Px+ βΨ(κTx), x ∈ R3. (1)

were P is a constant (n× n) matrix,β, κ are constant n−dimensional vectors,
T is a transposition operation, Ψ(ς) is a continuous piecewise-differentiable
vector-function, and Ψ(0) = 0. Consider a coefficient of Harmonic linearization
k at like the matrix P0 as :

P0 = P + kβκT (2)

wich ±iω0 (ω0 > 0) eigenvalues the matrix P0 and the rest have negative real
parts. Suppose that such k occurs. So, rewrite system 1 as.

dx

dt
= P0x+ βϕ(κTx), (3)

were ϕ(ς) = Ψ(ς)−kς.We display a fixed sequence of functions ϕ0(ς), ϕ1(ς), · · · , ϕn(ς),
that the function ϕ0(ς) is small, and ϕm(σ) = ϕ(ς). In this state the smallness of
function ϕ0(ς), permit one to practise the procedure of harmonic linearization
for the system

dx

dt
= P0x+ βϕ0(κTx) (4)

and conclude a stable nontrival periodic solution x0(t). So, the localization of
the attractor of a system(19), design numerically the transformation of this
periodic solution. So, we obtain the primary condition x0(0) of the periodic
solution, system (4) can be changed by S (X = SY ) to the form :

·
y1 = −ω0y2 + v1ϕ

0(y1 + ct3Y3)
·
y2 = ω0y1 + v2ϕ

0(y1 + ct3Y3)
·
Y3 = A3Y3 + V3ϕ

0(y1 + ct3Y3)

(5)

So V3 and c3 is an (n− 2)−dimensional vector, y1, y2 are scalar values; Y3 is
an (n− 2)−dimensional vector, v1 and bv2 are real numbers; A3 is an (n− 2)×
(n− 2) matrix, where all of its eigenvalues have negative real parts. Supposed
that for the matrix A3 there exists a d3 > 0 such that

Y t3 (A3 +At3)Y3 ≤ −2d3 |Y3|2 , ∀Y3 ∈ Rn−2. (6)
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In one-directional(1-D) -scroll, case, present the describing function Φ of a real
variable ς as follows:

Φ (ς) =

∫ 2π/ω0

0

cos(ω0t)ς) cos((ω0t) dt (7)

Theorem 1. If a positive ς0 satisfies that

Φ(ς0) = 0, b1
dΦ(ς)

dς

∣∣∣∣∣
ς=ς0

< 0 (8)

So, for the initial condition of the periodic solution X0(0) = S(y1(0), y2(0),
Y3(0))T at the first step of algorithm, one has

y1(0) = ς0 +O(ε), y2(0) = 0, Y3(0) = On−2(ε) (9)

In Application, to find k and ω0, can uses the transfer function of system (4),

W (ρ) = κT (M − ρI)−1β (10)

where ρ is a complex variable. The number ω0 is calculated from the equation
ImW (iω0) = 0 and k is then determined using the formula k0 = −ReW (iω0).

3 1 − D Scroll Chaotic Attractor via a saturated
function series

Here, to generate 1−D n scroll chaotic attractor we presented a system from
saturated function series follows :

·
x = y
·
y = z
·
z = −ax− by − cz + d1f(x; k1;h1; p1; q1)

(11)

where

f(x; k1;h1; p1; q1) =


y1 if x > q1h1 + 1
y2 if |x− ih1 ≤ 1,−p1 ≤1 i ≤ q1|
y3 if ih1 + 1 < x < (i+ 1)h1 − 1
and − p1 < i < q1 − 1
y4 if x < −q1h1 − 1

(12)

y1 = (2q1 + 1) k1 , y2 = k1 (x− ih1) + 2ik1, y3 = (2i+ 1) k1, and y4 =
− (2q1 + 1) k1here, a, b, c, d1 are real numbers and the parameters p1, q1, h and
k are integers. The formula to calculated the number n of scrolls, it’s explained
in Chen, et al [8] and in Zaamoune, et al[11] For k = 11,h = 22,p1 = 3, q1 = 3,
a = d1 = 0.8, c = 0.72 and b = 0.6 a 8-scroll attractor is generated as the
verged attractor of the system (11-12), see Fig 1
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Fig. 1. One-directional 8-scroll chaotic attractors.

4 Generalized hidden bifurcation with scalar
nonlinearity.

Now, we apply the above procedure; rewrite a system 11 in the form

dx

dt
= Px+ βΨ(κtx), x ∈ R3 (13)

Here

P =

 0 1 0
0 0 1
−a −b −c

 , X =

x
y
z

 ,

κ =

 1
0
0

 , β

 0
0
d1

 and ψ(ς) = f(ς).

Define the coefficient k and a small parameter ε, system (13) can be rewrite in
the forme :

dx

dt
= P0x+ βεϕ(κTx), (14)

where

P0 = P + kβκT =

 0 1 0
0 0 1

k0d1 − a −b −c

 ,

λP0
1,2 = ±iω0, λP0

3 = −d

The transfer function WP (λ) of system (14) can be given by

WP0(λ) = κT (P − λI)−1β (15)

where λ is a complex variable. By the transformation X = SY , system (14) is
changed to the form

dY

dt
= HY + vεϕ(cTY ) (16)
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where

H =

 0 −ω0 0
ω0 0 0
0 0 −d

 , Y =

 y1
y2
Y3

 , v =

 v1
v2
1



and c =

 1
0
−h

. The transfer function of system (16) can be written as

WH(λ) = cT (H − Iλ)−1v
= h

d+λ − λ
v1

λ2+ω2
0

+ ω0
v2

λ2+ω2
0

So, we could obtain the implies k, d, h, v1, v2 by using the equality of transfer
functions of systems (14) and (16):

WH(λ) = κT (M0 − λI)−1β (17)

This implies the following relations:

k0 =
a−ω2

0d
d1

d = c

h = −d1
ω2

0+d
2

v1 = −d1
ω2

0+d
2

v2 = −cd1
ω0(ω2

0+d
2)

(18)

We utilized the transformation X = SY the following relationships can be
gotten :

H = S−1P0S, b = S−1β, cT = κtS (19)

So, by 19 we found this matrix :

S =

 S11 = 1 S12 = 0 S13 = −h
S21 = 0 S22 = −ω0 S23 = dh

S31 = −ω3
0 S32 = 0 S33 = d2h


So, thr first step in above procedure is determine the initial data, as

X(0) = SY (0) = S

 ς0
0
0

 =

 ς0S11

ς0S21

ς0S31

 (20)

For system the Chen, the initial condition is :

X0(0) =

(
x0(0) = ς0, y

0(0) = 0, z0(0) = −ς0ω3
0

)
(21)
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5 Numerical Results of Hidden Bifurcation kind

In this work, we introduced a new idea in hidden bifurcation behavior in the
attractor by we changed the values of parameters of the system generated via
saturated function serie. So, we presented the system (11-12) with parameter
values

a = d1 = 0.8, c = 0.72, b = 0.6p1 = q1 = 3, k = 11andh = 22

By folowing the above method we are started first calculation the frequency ω0

and a coefficient of harmonic linearization k as well :

ω0 = 0.7745 and k = 0.46

Then, we presented fours cases numbers of scrolls 4, 6, 8, 10, by numerous
sequentially ε from the value ε = 0.55 to ε = 1. while in the case of p = 8 and
q = 0,the initial conditions are : (x0(0) = −3.3256, y0(0) = 0, z0(0) = 1.5450.)

When, p = q = 3 the hidden bifurcation kind is even as 2, 4, 6, 8 and for
p = 0, q = 6 the hidden bifurcation kind is odd as 1, 2, 3, 4, 5, 6, 7, 8 that means
the number of scrolls appearance is one by one, see figures (4, 5).

The case 4 scrolls, p = q = 1 the hidden bifurcation kind is even as 2, 4and
for p = 0, q = 2 the hidden bifurcation kind is odd as 1, 2, 3, 4, see figures (2,
3).

The case 6 scrolls, p = q = 2 the hidden bifurcation kind is even as 2, 4, 6
and for p = 0, q = 4 the hidden bifurcation kind is odd as 1, 2, 3, 4, 5, 6.

The case 10 scrolls, p = q = 4 the hidden bifurcation kind is even as
2, 4, 6, 8, 10 and for p = 0, q = 8 the hidden bifurcation kind is odd as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

The role idea of the hidden bifurcation kind was ’even or odd’ if the number
of the scrolls was even. This idea based on the principle idea of [11]. View that
when the parameters p or q equalizes zero the hidden bifurcation behavior
it was odd, as for, p = q the hidden bifurcation behavior was even and it’s
explicated in tables below (1) and figures (2, 3, 4, 5)

n = p + q + 2 The number of scrolls is even

p or q value Zero The scrolls appearance is odd

p = q The scrolls appearance is even

Table 1. The behavior of hidden bifurcation kind
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(a) (b)

(c)

Fig. 2. The increasing number of spirals of system (14) according to increasing ε
values, when p = 1 and q = 1, k=11 and h=22. (a) : The first scroll for ε=0.55, (b)
: The second scroll for ε=0.92, (c) : The third scroll for ε=1.
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(a) (b)

(c)

Fig. 3. The increasing number of spirals of system (14) according to increasing ε
values, when p = 2 and q = 0, k=11 and h=22. (a) : The first scroll for ε=0.55, (b)
: The second scroll for ε=0.92, (c) : The third scroll for ε=1.
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(a) (b)

(c) (d)

Fig. 4. The increasing number of spirals of system (14) according to increasing ε
values, when p = 3 and q = 3, k=11 and h=22. (a) : The first scroll for ε=0.55, (b)
: The second scroll for ε=0.92, (c) : The third scroll for ε=0.975, (d) : The last scroll
for ε=1

198



(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 5. The increasing number of spirals of system (14) according to increasing ε
values, when p = 6 and q = 0, k=11 and h=22. (a) : The first scroll for ε=0.55, (b) :
The second scroll for ε=0.92, (c) : The third scroll for ε=0.98, (d) : The fourth scroll
for ε=0.985, (e) : The fifthly scroll for ε=0.99, (f) : The sixthly scroll for ε=0.992,
(g) : The last scroll for ε=1

199



 

200



Analysis of thermal and quantum escape times
of Josephson junctions for signal detection

G. Filatrella1, C. Barone2, C. Guarcello3, A. S. Piedjou Komnang3, V.
Pierro4, A. Rettaroli5, and S. Pagano2

1 INFN Gruppo Collegato Salerno and Dept. of Sciences and Technologies, Univ. of
Sannio, Via F. De Sanctis, I-82100 Benevento, Italy
(E-mail: filatrella@unisannio.it)

2 INFN, Gruppo Collegato Salerno and Dept. of Physics, Univ. of Salerno, Via
Giovanni Paolo II, I-84084 Fisciano (SA), Italy

3 Dept. of Physics, Univ. of Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA),
Italy

4 INFN Gruppo Collegato Salerno and Dept. of Engineering, University of Sannio,
Corso Garibaldi 107, I-82100 Benevento, Italy

5 INFN, Laboratori Nazionali di Frascati, Frascati (Roma) Italy and Dept. of
Mathematics and Physics, University of Roma Tre, I-00100 Roma, Italy

Abstract. In this work we investigate the limits to the possibility to reveal the exis-
tence of weak microwave signals through Josephson junctions. Even if the Josephson
element is capable to reveal the electromagnetic field, thermal noise is to be quantified
by means of signal theory, as a confounding factor that limits the detection. We show
how the decision problem can be embedded in the frame of signal detection. As a
consequence, the optimization of the detection probability and the minimization of
the false alarm probability give a guide to select the Josephson junction parameters
that best suit the purpose.
Keywords: Josephson junctions, Escape time, Signal detection, Particle detection.

1 Introduction

When Josephson junctions (JJ) are employed as detectors of microwave signals,
they can reach a very high response (of the order of kV/W [31]), close to the
quantum sensitive limit [14,15,26]. Moreover, as superconducting elements, the
devices can work no matter how the temperature is lowered, thus allowing to
minimize thermal noise, at least until the contribution to the escapes through
quantum tunneling processes becomes statistically dominant. These premises
are, in a nutshell, the basis for the intensity of the efforts devoted to the
development of highly-sensitive detectors based on JJ [3], as well as Josephson
calorimeters [35,16]. To reveal even very weak electromagnetic signals, the
energy to induce the transition between two states of the JJ should be close to
the single photon energy. As the interaction between the JJ and the signal is
generally mediated by a resonant cavity, also the latter excitation should be on
the same energy scale [20]. Thus, for a more detailed description of the device
potentialities and limits, it is necessary to embed the problem in the context of
microwave photon manipulation through superconducting electronics [13,1]. In
doing so, the energy landscape of the device, as well as the antenna interaction
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with the microwave photon field, are essential for a device description [4]. It
is in fact the JJ potential that dictates the disturbing switches due to thermal
escapes and quantum tunneling [4,32]. A model for the detector consists of a
current drive that perturbs the JJ dynamics and favors the switches to a finite
voltage state; the statistics of the escape times are analyzed to highlight the
presence of the perturbation.

Several remarkable achievements have been reached so far. The minimum
photon content that can be revealed through JJ has been estimated in the order
of 102, a limit that can be possibly lowered [36]. It has also been demonstrated
that it is possible to resolve the number of photons in a propagating mode [11].
Quite naturally, to decide about the presence of a weak signal, it is necessary to
achieve a silent enough state, that is a device capable to stay quite if no signal
is applied. Some schemes that exploit the phase diffusion regime have been
recently proposed with such purpose [30]. However, for the purpose to exploit
the high sensitivity of JJ in the search for photons resulting from elusive parti-
cles as axions [7–9,28,10,22,37,3], it is necessary to set up a different detection
scheme to ascertain the existence of extra photons, above and beside the back-
ground [5]. The purpose of this work is to analyze a scheme for the detection
of such excess photons through the analysis of the JJ switching currents [2,29],
embedded in the frame of signal detection [12]. In fact, as the Josephson phase
is of quantum nature it is not directly accessible, detection is possible only if
the photons cause a switch, a passage from the superconducting state to a fi-
nite voltage state (mathematically, the problem amounts to determine the first
passage time across the separatrix of a potential well [17]). As the passage also
occurs because of thermal fluctuations, a careful analysis is necessary to prove
that the passages are a consequence of some external field. The framework of
signal detection allows to make simple estimates of the temperature constraints
and of the experimental set-up. As a consequence, the optimization of the de-
tection probability (and the minimization of the false alarm probability) gives
a guide to select the JJ parameters that best suit to reveal weak microwave
signals. In brief, detection amounts to the following question: how is it possible
to infer the presence of microwave extra photons, apart the thermal ones, from
the analysis of the switches to the finite voltage of a JJ? A tentative answer to
this question is the subject of the present paper, organized as follows: in Sect.
2 the problem will be extensively formulated, alongside with the description of
an electrical model for the dynamics of a JJ and of a perturbation. In Sect.
3 the signal analysis indications for the performances of the detection will be
recounted. Last Sect. 4 concludes.

2 The problem

We shall consider a small tunnel JJ coupled to the environment through the
bias current:

C
~
2e

d2ϕ

dt′2
+

1

R

~
2e

dϕ

dt′
+ I0 sinϕ = Ib + IN (t′) + IS(t′) (1)
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The right hand side of this equation summarizes the current supplied to the
junction. In this formulation, therefore, one assumes that the impedance of
the Josephson element is much lower than the impedance of any source, and
consequently the external world is seen as a current source (although other
configurations are possible, in which a voltage bias is more appropriated [24]).
Eq. (1) includes inertia (determined by the capacitance C), dissipation (as
governed by the dissipative element R) and fluctuations (the random current
IN (t′) supplied by the resistance), the nonlinear periodic term (the oscillating
Josephson current of amplitude I0), a constant bias current Ib, and the signal
current IS(t) (that summarizes the effects of the photon field). Fluctuations
are assumed to be Gaussian with:

〈IN (t′)〉 = 0, (2)

〈IN (t′)IN (t′ − s′)〉 =
2kBT

R
δ(t′ − s′). (3)

where kB is the Boltzmann constant, T is the absolute temperature, δ the Dirac
function, 〈·〉 is the expectation operator.

The usual normalized units [6,33] are as follows (here, as usual, ~ is the
reduced Planck constant, and e is the elementary charge):

• The current is normalized to the critical current I0:

γ =
Ib
I0
. (4)

• Time is normalized to ω−1J , where ωJ =
√

~C/2eI0 is the frequency of the
linear oscillator. :

t = t′ωJ . (5)

Introducing the normalized temperature D = kBTωJ

/
RI20 and the normalized

conductance 1
/
βc = (1/R)

√
~
/

(2eI0C), leads to the normalized versions of

Eqs.(1,2,3):

d2ϕ

dt2
+

1

βc

dϕ

dt
+ sinϕ = γ + γN (t) + γS(t), (6)

〈γN (t)〉 = 0, (7)

〈γN (t)γN (t− s)〉 = 2Dδ(t− s), (8)

where γ’s indicate the normalized current terms. The dynamics of the JJ is
characterized by the bias-dependent small oscillation frequency:

ω0(γ) =
(
1− γ2

)1/4
(9)

and the energy barrier that cages the dynamics is:

∆U(γ) = 2
[√

1− γ2 − γ cos−1(γ)
]
. (10)

Finally, the photon field γS is supposed to be modeled as a succession of nor-
malized impulses of amplitude A and duration δτ that arrive regularly with a
period T . The response of a JJ to such a field, and how the response can be
exploited to infer the existence of the field, is the problem dealt with in this
paper. Some indications are presented in the next Section.
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Fig. 1. Time dependent dynamics of the phase ϕ and the voltage dϕ/dt. The dashed
lines denote the time at which a passage to the finite voltage is detected.

3 Results

A JJ described by Eqs.(6,7,8) can undergo switches between the zero voltage
and the finite voltage, as shown in Fig.1. When the system switches, the
phase difference increases and, according to the a.c. Josephson relation V =
(h/2e)dϕ/dt [18,19], a voltage drop across the junction can be measured. The
switches can occur either because of thermal current (7,8), or because of the
current pulse train. The starting point is therefore to collect the sequence of
times at which a passage has occurred in the absence of the photon field drive:

t01, t
0
2, ... , t

0
N . (11)

For this case, one expects that, on average, the escapes (the passages across
the separatrix between the localized oscillations and unbound runaways) occur
with a rate given by the Kramers approximation [17]:

r0(γ,D) =
ω0

2π
e−

∆U(γ)
D (12)

(for the Gaussian noise; other kinds of noise give pretty different results [25]).
In the presence of a signal, which mimic the absorption of some photons that

is capable to induce a current into the JJ, the sequence of switches is presumably
altered, and the photons can be possibly revealed through deviations from the
purely thermal sequence (11); let us call the sequence of the escapes in the
presence of the extra-photons:

t11, t
1
2, ... , t

1
N . (13)

This sequence is expected to have a larger number of events in the same observa-
tion time respect to the unperturbed case (11). An example of two histograms
for {t0} (no signal) and {t1} (with signal) are shown in Fig. 2. We underline
that, at variance with the cases in which one is interested in counting the num-
ber of photons (e.g., [20]), to reveal a source of photons (e.g., the presence of
an axion field [3]) it suffices to statistically determine if an observed collection
of switches is more likely drawn from sequence (11) or from sequence (13).
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Fig. 2. Histograms of N = 104 switching times. Parameters of the simulations are:
γ = 0.8, D = 0.1, 1

/
βc = 0.025. The impulses that mimic the photon fields are of

amplitude A = 0.5, duration δτ = 10, and arrive regularly with a period T = 100.

In the simplest approximation, one expects that the rate r1 associated to
the escapes (13) in the presence of photons is just the sum of the unperturbed
rate r0 and an additional rate rA due to the photons:

r1(γ,D, γS) = r0(γ,D) + rA. (14)

In our settings, where the photons are modeled as current pulses with a period
T , we have rA = 1/T for a most efficient detector.

Apart the analytical approximations embodied in Eq.(14), for our line of
reasoning it is important to underline that the rates r0 and r1 are statistical
averages, for Eqs.(12,14) predict what happens on average. Thus, in a given
measurement time P one expects 1

/
〈t0i 〉 = n0 = Pr0 escapes in the purely

thermal case, and 1
/
〈t1i 〉 = n1 = Pr1 escapes in the presence of the extra

photons, with the obvious inequality n1 > n0. In an actual measurement, one
observes a certain number of switches, say n, and a decision is to be made: in
which sense the measured number favors an hypothesis (the switches are just
due to thermal activation) or the other (there are extra switches due to the
photon field)? Naturally, the more the two rates are apart, the more likely
is that the measurement is a clear cut decision. Also, no matter how close
they are, with a sufficiently long measurement time P it is always possible
to discriminate the two conditions. To make these ideas quantitative is the
objective of the next Section.
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Fig. 3. Length of the observation period P , according to estimate (16), as a function
of rA at a fixed r0 = 0.001 (solid red curve) and as a function of r0 at a fixed
rA = 0.001 (dashed blue curve).

3.1 Statistical analysis of the switching times

To quantify the efficiency of the detection of a photon field one can introduce the
Kumar-Caroll (KC) index dKC [21], in analogy with the detection of continuous
sinusoidal signals [12,2]:

dKC =
|〈t1〉 − 〈t0〉|√

1
2 [σ2(t1) + σ2(t0)]

. (15)

where 〈t0,1〉 is the average switching time in the absence (presence) of the
signal, and σ2(t0,1) the corresponding variances. This index is a proxy for the
Signal-to-Noise-Ratio (SNR) [21], and as such will be used in this paper.

Assuming a large number of events in the measurement time P , and that the
escapes due to the photons are an additional rate independent of the thermal
rate, and that a reliable detection requires at least dKC = 1, one obtains the
relation [34]:

P r2A −
1

2
rA − r0 = 0, (16)

between the rate of the photons rA, the thermal escape rate r0, and the obser-
vation time P . Inspection of Eq.(16) reveals that the measurement time length
P is positively related to the thermal rate r0, see Fig. 3.

Some further elaborations of the estimate (16) are relevant. To begin with,
one can define a ratio between the photon arrivals and the thermal spontaneous
escapes:

r0 = x rA

that allows to explicitly observe that:

dKC =

√
2PrA
2x+ 1

. (17)
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Fig. 4. Relation between the thermal escape rate as a function of the photon arrival
time, according to estimate (16), for different values of P .

This equation confirms the intuitive scaling between the observation time P ,
the photon arrival rate, and the ratio between the thermal and photon rates.
In particular, one can insert the matching condition P = 1/rA in Eq. (17) to
obtain the relation between the observation time, the temperature and bias
point through Eqs. (9)–(12).

In Fig. 3 it is displayed the behavior of the observation time P , calculated
according to Eq. (16), as a function of the inverse photon rate, r−1A (see the red
solid curve). If the photon rate is low, e.g. around 10−3 Hz, the observation
time for a dKC = 1 reads ∼ 1500 s. It is also noticeable that the dependence
is quadratic. Should the photon rate be much smaller than the assumed mHz,
the detection could prove unfeasible. Conversely, if the photon arrival rate is
relatively high, one can considerably increase also the thermal rate, and hence
higher temperatures are allowed.

In Fig. 4 it is displayed the behavior of the thermal escape rate, r0, as a
function of the photon arrival time, rA, for different values of the observation
time P . It is evident that the thermal escape rate (that is, the temperature of
the system) can be increased as the photon rate increases. However, for any
value of P , there is a threshold value of rA (e.g., rA ' 103 for P = 500) below
which thermal escapes to achieve a dKC = 1 become vanishingly small. The
latter condition entails extremely low temperatures.

In brief, if some SNR is to be reached, the trade-off between the parameters
of the experiment can be evaluated. A more detailed analysis of the problem
requires to retrieve the index (15) from numerical simulations of the model
equations (6,7,8), as we shall do below.

3.2 An example of the Kumar-Carrol index usage

To illustrate an application of the signal-to-noise index (15), let us suppose
that the index has been computed for several values of the bias current γ to
optimize the bias level. To fix the ideas, let us suppose that the highest value
of dKC corresponds to γ = 0.8; the escapes retrieved for such choice are shown
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Fig. 5. Histograms of the average over 20 switching times, for the same data of Fig.
2, and thus consisting of N ′ = 500 data. The other parameters are therefore the same
as in Fig. 2.

in Fig.2. The index reads dKC = 20.8, that indicates a very good SNR – would
it be possible to collect 10000 escapes, the average of the exit times could give
a clear cut indication of the presence, or not, of the excess photons. In fact the
statistics of the escapes can be summarized in Tab. 1.

Signal N 〈ti〉 σ(ti) σ(〈ti〉N )

absent 104 182.7 151 1.24

present 104 154.0 124 1.51

Table 1. Statistics of the escape times of Fig.2. Here N is the number of switches,
〈ti〉 the average escape time, σ(ti) the standard deviation, σ(〈ti〉N ) the standard
deviation of the average . The resulting KC-index reads dKC = 20.8.

It is evident that for the case under examination the detection performs
extremely well. With a KC-index around 20 the SNR is extremely high, and
also intuitively there is no doubt that, if the average escape time decreases
from ∼ 180 to ∼ 150, something has happened and a signal is present. This
is quite reasonable, for the switches occur on average with the same rate as
in the incoming pulses period T = 100; therefore the efficiency is very high
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(almost each pulse causes a switch) and the number of data is conspicuous
(N = 104). Under these circumstances, the statistical analysis is just a confirm
of the intuition. However, the approach proves useful for the design of an
experiment if it is not possible to collect as many as 104 switches. Let us
suppose, ceteris paribus, that the rate of arrival of the pulses is extremely low,
say 1

/
rA ∼ 1h, and therefore the number of events that can be collected in a

day of measurements is around N = 20. A principal question would be: how
many days of data collection should be planned to decide, with good confidence,
about the existence of the pulses?

Let us thus suppose that the actual sample of data to be analyzed consists
of M escape times, M � N , say M = 20 to fix ideas. A collection of 500
average escape times (over M = 20 events) retrieved binning the 104 data of
Fig. 2, is shown in Fig. 5. In a single measurement run in which 20 switches
are collected, a single average escape time would be obtained, and not always
the same value for the statistical fluctuations. Let us summarize the data in
Tab. 2.

Signal N ′ 〈ti〉 σ(ti) σ(〈ti〉N′)

absent 500 182.7 33.8 1.24

present 500 154.0 27.7 1.51

Table 2. Statistics of the escape times of Fig.5, that is the escape times averaged
over M = 20 events. Here N ′ = N/M = 500 is the number of means, 〈ti〉 the
average escape time over N ′ × M escapes, σ(ti) the standard deviation of the N ′

means, σ(〈ti〉N′) the standard deviation of the overall average. Naturally, 〈ti〉 and
σ(〈ti〉N′) coincide with Table 1, as they are computed on the same set of data. The
resulting KC-index for a single measurement (that is, an average over 20 data) reads
dKC = 0.93.

In the first place, let us remind of a subtle difference between Fig. 2 and
Fig. 5, as perhaps better explained in the corresponding Table 1 and Table 2.
Figure 2 is a collection of all data, any single switch that has occurred. Figure
5 is a collection of hypothetical repetition of the average over 20 switches. The
statistical test to decide about the presence of the signal is to be performed on
the average over all data in the case of Fig. 2, and hence the very high SNR,
compared to the test on a single event of Fig. 5, to which pertains a much
smaller SNR.

For the central limit theorem one can assume that the distribution of the
averages is approximately Gaussian, centered on the population average (that
is estimated through the average of the N = 104 data) and with a standard
deviation which is smaller than the population standard deviation.

Applying the signal analysis means to determine the error of the first type
α and of the second type β when a decision on the existence of the photon
field is to be made, on the basis of the escape time average. Let us do so with
the help of the Gaussian approximation, that is to assume that the histogram
of the average escape time of Fig. 5 is Gaussian distributed, as schematically
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Fig. 6. Application of the detection scheme to the averaged data assumed to be
Gaussian distributed.

illustrated by Fig. 6. To decide between the hypothesis one usually places a
threshold for the measured average escape time, 〈t〉th, see Fig. 6. The decision
will favor the hypothesis “1” (the photon field is there) if the actual measured
time is below the threshold, and obviously the complementary hypothesis (there
is no photon field) will be selected if the actual measured time is above. The
choice of the threshold reflects on the decision errors: either the probability
of false alarm (type I error α), or the probability of missing a signal (type
II error β). These features are combined in the so-called receiver operator
characteristic of the test statistic, that is, of the combination of the errors
α and β for each particular choice of the threshold. It is natural, if there
are not particular reasons to do otherwise, to choose the case α = β that
unequivocally individuates a threshold and hence the errors. The features of
the detection can thus be obtained by a straightforward application of the
central limit theorem with the data of histogram of Fig. 2: it suffices to notice
that the standard deviation σ (ti) that appears in the definition of dKC (15)
is smaller of a factor ∼

√
M ' 4.5, as it is confirmed by Tables 1,2. In this

manner one can connect the SNR estimated through dKC to the size of type
I and II errors, as illustrated in Fig. 7. In this figure, we show the dKC

index as a function of the sample size M (open circles and solid line). From
each estimated dKC index, according to the condition α = β, we can uniquely
determine the size of the errors of the test (triangles), see Fig. 6. In the same
figure, the solid line displays the dKC behavior estimated assuming that the
standard deviations in Eq. (15) decrease as the square root of the number of
data in a sample,

√
M . It is clear that such behavior scales nicely for M � N .

Therefore, if a sufficiently long simulation is available, it is possible to carefully
design the experiment to achieve the desired error bound.

Let us summarize how it is possible to put to a good use the definition
of the SNR through the KC-index (15). First, it is useful to select the most
appropriated parameter values to achieve the best SNR; in the present case we
have supposed that the optimization of the SNR has given the best bias point
γ = 0.8. For such parameter, a consistent number of events has been collected,
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N = 104. From the data so collected, it has been possible to determine the
number of experiments that could suffice to achieve the desired level of error
(type I and II, chosen to be identical).

Fig. 7. Application of the detection scheme to the averaged data assumed to be
Gaussian distributed. The circles (left axis) indicate the SNR ratio estimated by the
index dKC . The triangles (right axis) indicate the α = β level of the errors in the
detection through the sample average as a function of the number of switches M
of the average. The solid line is the estimate obtained assuming that the standard
deviations scale as the square root of the number of points N . The other parameters
are the same as in Fig. 2.

4 Conclusions

We have demonstrated that the application of signal analysis to switching event
of a Josephson junction subject to a periodic train of current pulses can be
used to carefully plan experiments devised to decide about the existence of
the perturbation. If the pulse train is to be interpreted as a photon field
that irradiates the junction, this scheme can be applied to decide about the
existence of elusive particles [3]. In particular the scheme can be useful if
the arrival frequency of the pulses is very low, and therefore it is particularly
cumbersome to collect a large number of events to distinguish the signal from
the external field from spontaneously, thermally activated, events. Under these
circumstances, it is necessary to resort to statistical test. When this is the case,
the SNR to be reached for a significant test is the guideline for an accurate
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experiment design. As the estimate of the SNR calls for extensive simulations,
both to optimize the parameters and to collect a statistically relevant number
of events, it is probably necessary to resort to parallel simulations, possibly
with CUDA architecture [27].

Let us add a word of caution. The analysis here presented is based on sample
mean, detection can be improved with maximum likelihood estimators [2], that
exploit the full information content of the escape distribution. However, the
analytical estimate of the distribution of the escapes is a relatively complicated
problem [23] to give a reliable solution for the estimate evaluation.
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Abstract. The guaranteed control problems for nonlinear dynamical systems with
uncertainty in initial states and parameters are studied. The case is investigate when
only the bounding sets for initial system states and for system parameters are given
without any additional statistical or probabilistic information on these values. Apply-
ing the previously developed approaches and new results developed here to evaluating
trajectory tubes and reachable sets, we study the properties of optimal control that
solves the problem of control for the trajectory tube of a dynamic system with un-
certainty and nonlinearity of a quadratic type.
Keywords: Nonlinear dynamics, Control, Estimation, Uncertainty, Ellipsoidal cal-
culus, Funnel equations.

1 Introduction

The paper investigates the problems associated with the study of reachable
sets of a nonlinear control dynamical system (and of a corresponding dif-
ferential inclusion) with incomplete information on the initial states of the
system or on other system parameters, limited by specifying only some spe-
cial sets containing the unknown elements (Kurzhanski[14], Kurzhanski and
Varaiya[16], Allgöwer and Zheng[1], Milanese et al.[18], Scweppe[22], Walter
and Pronzato[23]). As indicated in many studies, the geometry of the reach-
able sets of nonlinear dynamical systems may be very complicated. In these
cases, the approximation of reachable sets by domains of a certain canonical
form is of interest. As such canonical figures, the most natural are ellipsoids,
parallelepipeds, polyhedra and some other canonical figures. A number of im-
portant approaches are relevant for assessing the unknown states of control
systems and corresponding trajectory tubes of differential inclusions through
approximation by canonical sets and tubes of motions with an accurate descrip-
tion of their parameters and dynamic characteristics (Kurzhanski and Valyi[15],
Chernousko[5], Kostousova[12], Polyak et al.[21]).

Currently the principal facts and results of the theory of linear differential
systems with uncertain parameters are well developed, a number of important
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and computationally useful algorithms have been constructed for finding the
external and internal (with respect to the inclusion of sets) approximations
of the set-valued states of dynamical systems in the case of a linear system
dynamics. However the presence of nonlinear terms in the state velocities of
the control systems causes a loss of the convexity of the reachable sets and,
therefore, raises many theoretical questions and therefore requires the devel-
opment of related mathematical tools and algorithms that are adequate to
the indicated problems of nonlinear analysis. Some ideas and approaches to
the study of set-valued motions (trajectory tubes) for a number of differential
systems with nonlinearity and uncertainty in dynamics were presented earlier
in Filippova[7], Filippova and Lisin[8], Filippova and Matviychuk[9] (see also
references in the indicated publications).

In this paper we assume that in a dynamic system there are two types of
nonlinearity, namely, we have a combination of bilinear and quadratic func-
tions in the state velocities. Earlier, we examined the problems of evaluating
the reachable sets of systems under study taking into account all possible con-
trols at once. Knowing the areas of reachability with respect to all parameters
of the system under study (for all possible initial states, disturbances, controls)
is very useful, since it helps to evaluate the capabilities of the system. However,
it seems important to have a description of the trajectory tube generated by a
specific choice of a control function, it will allow solving optimization problems
for set-valued movements of the considered systems under uncertainty. Note
that in this paper we consider a special class of control systems with nonlin-
earity and uncertainty under other informational assumptions than was done
in a recent paper Filippova and Matviychuk[10]. Thus, this research continues
and complements developments in the field of mathematical control theory re-
lated to the study of the dynamics of multivalued states of nonlinear control
systems. The approaches and algorithms presented here may be applied in the
study of models with nonlinearity and uncertainty in real systems in robotics,
economics, biology and other fields (considered e.g. in Allgöwer and Zheng[1],
Bayen and Rapoport[2], Cecarelli et al.[4], Keller et al.[11]).

2 Problem formulation

2.1 Basic notations

The main notations used in the paper are basic; however, we define here some
additional, most frequently used and important constructions.

We denote by Rn the n-dimensional vector space and by compRn the set
of all compact subsets of Rn. Also Rn×m denotes the set of all n×m-matrices.

The usual inner product of x, y ∈ Rn is x′y = (x, y) =
∑n
i=1 xiyi with prime

as a transpose and also the

‖x‖ = ‖x‖2 = (x′x)1/2, ‖x‖∞ = max
1≤i≤n

|xi|

are corresponding norms for x ∈ Rn.
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For the identity matrix we use the symbol I ∈ Rn×n. Denote by Tr(A) a
trace (a sum of diagonal elements) of n× n-matrix A. Let B(a, r) = {x ∈ Rn :
‖x− a‖ ≤ r} be a ball in Rn with a center a ∈ Rn and with a radius r > 0.

We use here also the notation

E(a,Q) = {x ∈ Rn : (Q−1(x− a), (x− a)) ≤ 1}

for the ellipsoid in Rn, where a ∈ Rn is its center and a n × n-matrix Q is
symmetric and positive definite.

2.2 Main problem

We study here the nonlinear control system

ẋ = A(t)x+ f(x)d+ u(t),

x0 ∈ X0, t0 ≤ t ≤ T,
(1)

here x, d ∈ Rn, ‖x‖ ≤ K (K > 0), the function f(x) is quadratic in x, that is
f(x) = x′Bx, with a positive definite and symmetric n× n-matrix B.

Functions u(t) (“controls”) in (1) are assumed to be Lebesgue measurable
on [t0, T ] and

u(t) ∈ U , for a.e. t ∈ [t0, T ].

We assume that the constraint set U is given and U ∈ compRn. The n × n-
matrix function A(t) in (1) has the form

A(t) = A0 +A1(t), (2)

where the n× n-matrix A0 is given and the measurable n× n-matrix A1(t) is
unknown but bounded, A1(t) ∈ A1 for t ∈ [t0, T ], namely we have

A(t) ∈ A = A0 +A1, (3)

A1 =
{
A={aij}∈Rn×n : |aij |≤cij , i, j=1, . . . n

}
,

where cij ≥ 0 (i, j = 1, . . . n) are given numbers. The latter relations mean
that all elements of the matrix A(t) are known only up to certain errors, the
values of which are given (this does not exclude the case when some elements of
the matrix can be known exactly, this corresponds to the situation when some
cij = 0).

Assume that we have the ellipsoid as an initial set X0 in (1), that is

X0 = E(a0, Q0),

with a symmetric and positive definite matrix Q0 ∈ Rn×n and with a center
a0.

If it will be necessary we will use also a notation x(t;u(·)) = x
(
t;u(·), A(·), x0

)
with indication of additional parameters A(·), x0 for an absolutely continuous
function x(t) which is the solution to (1)–(3) with initial state x0 ∈ X0, with
admissible control u(·) and with a matrix A(·) satisfying (2)–(3).
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Due to the fact that some quantities are unknown but bounded, we are
forced to consider all possible versions of motions compatible with additional
data as a generalized solution to the control system, that is, we need to replace
a single-valued trajectory by a bundle or tube of motions of the following form
X (t;u(·)).

Definition 1. For each admissible control u(·) the generalized solution tube
X (t;u(·)) (with t ∈ [t0, T ]) of system (1)–(3) is defined as follows,

X (t;u(·)) = {x ∈ Rn :∃x0∈X0, ∃A(·)∈A,

x = x(t) = x
(
t;u(·), A(·), x0

)
}.

Let us consider the following main problems.

Problem 1. For each feasible control u(·)∈U , find the optimal external ellip-
soidal estimate E(â, Q̂;T, u(·)) of the reachable set X(T ;u(·)) of the system (1)-
(4), such that

X (T ;u(·)) ⊂ E(â, Q̂;T, u(·)).

Remark 1. Here we understand the optimality of the desired ellipsoidal esti-
mate, bearing in mind the closest operation with respect to inclusion of related
sets.

Problem 2. Given a vector x∗ ∈ Rn find the feasible control u∗(·) ∈ U such
that the related ellipsoidal estimate is optimal, that is we have

d(x∗, E(â∗, Q̂∗;T, u∗(·))) = inf
u(·)∈U

d(x∗, E(â∗, Q̂∗;T, u(·))) = ε∗.

3 Main results

First, we define an auxiliary parameter k, which is required to formulate the
main result (see also Filippova[7]). To do this, consider the matrix B1/2Q0B

1/2

and denote its maximal eigenvalue as k2, that is we have

E(a0, Q0) ⊆ E(a0, (k
+
0 )2B−1), (4)

and k+0 is the smallest positive number for which this estimate (4) is true.

Theorem 1. The upper ellipsoidal estimate is true

X (t0 + σ;u(·)) ⊆ E(a∗(t0 + σ), Q∗(t0 + σ) | u(·)) + o(σ)B(0, 1) (5)

with σ−1o(σ)→ 0 for σ → +0 and

a∗(t0 + σ) = ã(t0 + σ) + σ(â+ a′0Ba0 · d+ k2d) + σu(t0), (6)

and with functions ã(t), Q∗(t) satisfying the following equations

˙̃a = Ã0ã, t0 ≤ t ≤ T, ã(t0) = a0, (7)
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Q̇∗ = Ã0Q∗ +Q∗(Ã0)′ + qQ∗ + q−1G, Q∗(t0) = Q0, t0 ≤ t ≤ T, (8)

where
Ã0 = A0 + 2d · a′0B, q =

(
n−1 Tr ((Q∗)−1G)

)1/2
, (9)

G = diag
{

(n− v)
[ n∑
i=1

cji|ãi|+
(

max
σ={σij}

n∑
p,q=1

Q∗pqcjpcjqσjpσjq
)1/2]2}

, (10)

with a maximum in (10) calculated over numbers σij = ±1, i, j = 1, . . . , n,
such that we have cij 6= 0 and v is a number of such indices i for which cij = 0
for all j = 1, . . . , n.

Proof. The relation (5) is established along the main lines and ideas presented
in Filippova[7]. Indeed, from the funnel equation Panasyuk[20] we have

X(t0 + σ;u(·)) ⊆
⋃

x̃∈E(0,k+0
2
B−1)

(a0 + x̃+ σ(A0 +A1)(a0+

x̃) + σ(a0 + x̃)′B(a0 + x̃)) + σu(t0) + o(σ)B(0, 1). (11)

We remind that we may use here the property that at the boundary points x̃
of the ellipsoid E(0, (k+0 )2B−1) we have the equality x̃′Bx̃ = (k+0 )2 (for a more
simple case detailed explanations of the last property may be found also in
Filippova[7]). With this property and rearranging the terms in (11), we come
to the formulas (5)-(10).

Remark 2. We see here that the ellipsoidal estimates of the tube X(t;u(·)) for
each fixed control u(·) are under investigation here and therefore the parameters
of the estimation procedures depend on u(·). We can complicate the problem
by additionally assuming the presence of state constraints or by considering a
slightly more general class of uncertainty, e.g. in the coefficients of the matrix
of linear terms of the state velocities.

Remark 3. It follows from Theorem 1 that we can construct a discrete tube
E(â, Q̂;T, u(·)) with ellipsoidal cross-sections that solves Problem 1 and for
which we have the inclusion

X(T ;u(·)) ⊆ E(â+(T ), Q̂+(T );u(·)) + o(ε)B(0, 1). (12)

We emphasize that this discrete construction may be used as a basis for related
computational schemes and algorithms allowing to find the trajectory tubes
numerically.

Using the results Filippova and Matviychuk[9], we may derive the following
result.

Theorem 2. Let ε∗, u∗(·) be the optimal values of the Problem 2. Then we
have the relations

ε∗ = min
u(·)∈U

max
||l||=1

{r+(T ;u(·))(l′B−1l)1/2+

l′(a+(T ;u(·))− x∗)} = max
||l||=1

{r+(T ;u∗(·))(l′B−1l)1/2+ (13)

l′(a+(T ;u∗(·))− x∗)}.
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Proof. First, we find the minimal positive number ε such that the following
inclusion is true

E(a+(T ), Q+(T );T, u(·)) ⊆ B(x∗, ε),

or equivalently

ρ(l|E(a+(T ), Q+(T );T, u(·)) ≤ ρ(l|B(x∗, ε)), ∀l ∈ Rn.

Appling the result of Theorem 1, we get the relation

l′a+(T ) + (l′Q+(T )l)1/2 ≤ l′x∗ + ε||l||,

and from the above relations we conclude that

ε∗ = min
u(·)

max
||l||=1

((l′Q+(T )l)1/2 + l′(a+(T )− x∗)).

Taking into account the equality Q+(T ) = r+(T )B−1 we get the equations
(13).

The proposed results may be used as the basis for the development of com-
putational algorithms for solving applied problems of controlling and estimating
the movements of real systems operating in conditions of uncertainty and non-
linearity, in particular, in the fields of robotics, economics and finance, biology
and other fields. Related algorithms with computational examples (for lower
dimensional systems) that illustrate the approach may be found e.g. in Filip-
pova and Matviychuk[9]. In the next section a more complicated example of a
dynamical system in the space R3 is given and discussed.

4 Numerical simulations

Example. Consider the following control system ẋ1 = −x1 + x21 + x22 + 2x23 + u1(t),
ẋ2 = x2 + u2(t),
ẋ3 = x3 + u3(t),

(14)

Assume that U = B(0, 1), x0 ∈ X0 = B(0, 1) and t ∈ [0, T ] with T =
0.4. The projections of reachable sets X(t) together with related estimating
ellipsoids E+(t) = E(a+(t), Q+(t)) onto the planes of state coordinates (related
planes are (x1, x2), (x1, x3) and (x2, x3), respectively) are shown in Fig. 1-3 for
time grid t = 0.1; 0.15; 0.2; 0.25; 0.3; 0.35; 0.4 (we need to specify here that for
simplicity we put u(t) = 0 here, in other cases calculations and pictures are
similar).

The last Fig. 4 shows the upper estimating ellipsoid E+(t) = E(a+(t), Q+(t))
and the reachable set X(t) as they are in the related space R3 of state variables
{x1, x2, x3} for t = 0.4.

Note that the evaluating ellipsoid touches the reachable set (that is, the
external estimate is tight), which implies that without changing the structure
of parameters (for example, without changing the main matrix of coefficients),
it cannot be reduced to a smaller ellipsoid.
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Fig. 1. Projections Proj1,2E
+(t) of ellipsoids E+(t) = E(a+(t), Q+(t)) (blue color)

and projections Proj1,2X(t) of reachable sets (black color) X(t) at the plane of
{x1, x2, t}-coordinates.

5 Further theoretical directions and possible applications

Theoretical schemes and related numerical algorithms for evaluating trajectory
tubes and methods for solving control problems for set-valued motions based
on Theorems 1-2 can be developed further in many directions, among them we
note the following areas:

• studies of optimization and robust stabilization problems for uncertain non-
linear systems with impulsive control functions,
• problems of viability and control for dynamical systems described by non-

linear differential equations and differential inclusions,
• improvement and development of new numerical methods for estimating

set-valued motions of nonlinear dynamical systems (ensembles of trajecto-
ries) based on the proposed ideas for high-dimensional systems,
• research of new, more complex classes of nonlinearity in the dynamics of

controlled systems with uncertain factors,
• development of theoretical approaches to the estimation of set-valued mo-

tions using approximations for set-valued motions based on the use of dis-
crete schemes of the theory of differential inclusions with a large order of
accuracy.

The applications of the problems discussed here are in the nonlinear con-
trol and estimation theory and related nonlinear models with unknown but
bounded errors. Numerous application models can be noted here, in particu-
lar, real models in robotics, in transportation systems, in biology, medicine and
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Fig. 2. Projection Proj1,3E
+(t) of ellipsoids E+(t) = E(a+(t), Q+(t)) (blue lines)

and projections Proj1,3X(t) of reachable sets (black lines) X(t) at the plane of
{x1, x3, t}-coordinates.

economics. In these aspects, we would like to highlight, in particular, the stud-
ies and results obtained earlier by Bayen and Rapoport[2], Cecarelli et al.[4],
Koller et al.[11]), Filippova and Matviychuk[9], Kuntsevich and Volosov[13],
Malyshev and Tychinskii[17], Ovsyannikov[19].

6 Conclusion

The paper deals with the state estimation problems for uncertain dynamical
control systems for which we assume that the initial state is unknown but
bounded with given constraints. We consider here a special case of uncertainty
and nonlinearity when the matrix parameters in state velocities are unknown
but bounded.

The system nonlinearity under study is generated also by the presence of
bilinear terms and quadratic forms in related differential equations. The prob-
lem is reformulated as the control problem for the motion of related set-valued
states.

Using the ideas developed earlier for some classes of uncertain systems we
solve here the control problem with a new class of uncertainty and with a special
structure of nonlinearity. So we construct the external ellipsoidal estimates of
reachable sets for the system under study and find the solution of the related
optimization problem.
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Fig. 3. The projections Proj2,3E
+(t) of estimating ellipsoids E+(t) =

E(a+(t), Q+(t)) (indicated in blue lines) and projections Proj2,3X(t) of reachable
sets (indicated in black lines) X(t) at the plane of {x2, x3, t}-coordinates.
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1. F. Allgöwer and A. Zheng. (Eds.) Nonlinear Model Predictive Control, Birkhauser,
Basel, 2000.

2. T. Bayen and A. Rapaport. Minimal time crisis versus minimum time to reach
a viability kernel: a case study in the prey-predator model. Optimal Control
Applications and Methods, Wiley, 40(2), 330–350, 2019.

3. R. W. Brockett. On the reachable set for bilinear systems. Lecture Notes in Eco-
nomics and Mathematical Systems, 111, 54–63, 1975.

4. N. Ceccarelli, M. Di Marco, A. Garulli and A. Giannitrapani. A set theoretic
approach to path planning for mobile robots. Proc. 43rd IEEE Conference on
Decision and Control, Atlantis, Bahamas, Dec. 2004, 147-152, 2004.

5. F. L. Chernousko. State Estimation for Dynamic Systems, CRC Press, Boca Raton,
1994.

6. F. L. Chernousko and D. Ya. Rokityanskii. Ellipsoidal bounds on reachable sets of
dynamical systems with matrices subjected to uncertain perturbations. Journal
of Optimization Theory and Applications, 104, 1, 1-19, 2000.

7. T. F. Filippova. Differential equations of ellipsoidal estimates for reachable sets
of a nonlinear dynamical control system. Proceedings of the Steklov Institute of
Mathematics (Supplementary issues), 271, suppl.1, S75-S84, 2010.

223



Fig. 4. Reachable set X(t) and its upper ellipsoidal estimate E+(t) = E(a+(t), Q+(t))
for t = 0.4 (3d-picture in the plane of state variables {x1, x2, x3}).

8. T. F. Filippova and D. V. Lisin. On the estimation of trajectory tubes of differential
inclusions. Proc. Steklov Inst. Math.: Problems Control Dynam. Systems. Suppl.
Issue 2, S28–S37, 2000.

9. T. F. Filippova and O. G. Matviychuk. Approaches to estimating the dynamics
of interacting populations with impulse effects and uncertainty. In: C. Skiadas
and Y. Dimotikalis (Eds.), 12th Chaotic Modeling and Simulation International
Conference, CHAOS 2019, Springer Proceedings in Complexity, Springer, Cham,
85–99, 2020.

10. T. F. Filippova and O. G. Matviychuk. Control problems for set-valued motions
of systems with uncertainty and nonlinearity. In: A. Tarasyev, V. Maksimov
and T. Filippova (Eds.), International Conference Stability, Control, Differential
Games, SCDG2019, September 16 20, 2019, Yekaterinburg, Russia, Lecture
Notes in Control and Information Sciences - Proceedings, Springer, Cham, 379–
389, 2020.

11. T. Koller, F. Berkenkamp, M. Turchetta and A. Krause. Learning-based
model predictive control for safe exploration and reinforcement learning,
arXiv:1803.08287v3 [cs.SY], https://arxiv.org/pdf/1803.08287.pdf , 1–9, 2018.

12. E. K. Kostousova. On polyhedral estimates of reachable sets of discrete-time
systems with uncertain matrices and integral bounds on additive terms. In:
Y. Sergeyev and D. Kvasov (Eds.), Numerical Computations: Theory and Al-
gorithms. NUMTA 2019, Lecture Notes in Computer Science, Springer, Cham,

224



11974, 124–138, 2000.
13. V. M. Kuntsevich and V. V. Volosov. Ellipsoidal and interval estimation of state

vectors for families of linear and nonlinear discrete-time dynamic systems. Cy-
bernetics and Systems Analysis, 51(1), 64–73, 2015.

14. A. B. Kurzhanski. Control and Observation under Conditions of Uncertainty,
Nauka, Moscow, 1977.

15. A. B. Kurzhanski and I. Valyi. Ellipsoidal Calculus for Estimation and Control,
Birkhauser, Boston, 1997.

16. A. B. Kurzhanski and P. Varaiya. Dynamics and Control of Trajectory Tubes.
Theory and Computation, Springer-Verlag, New York, 2014.

17. V. V. Malyshev and Yu. D. Tychinskii. Construction of attainability sets and
optimization of maneuvers of an artificial earth satellite with thrusters in a strong
gravitational field. Proc. of RAS, Theory and Control Systems, 4, 124-132, 2005.

18. M. Milanese, J. P. Norton, H. Piet-Lahanier and E. Walter (Eds.). Bounding
Approaches to System Identification, Plenum Press, New York, 1996.

19. D. A. Ovsyannikov. Mathematical modeling and optimization of beam dynamics.
IFAC Proceedings Volumes, 34(6), 13–22, 2001.

20. A. I. Panasyuk. On the equation of an integral funnel and its applications. Differ.
Equations, 24(11), 1263-1271, 1988.

21. B. T. Polyak, S. A. Nazin, C. Durieu and E. Walter. Ellipsoidal parameter or
state estimation under model uncertainty. Automatica, 40, 1171-1179, 2004.

22. F. Schweppe. Uncertain Dynamic Systems, Prentice-Hall, Englewood Cliffs, New
Jersey, 1973.

23. E. Walter and L. Pronzato. Identification of Parametric Models from Experimental
Data, Springer-Verlag, Heidelberg, 1997.

225



 

226



Interacting Populations: Dynamics and
Viability in Bounded Domains under

Uncertainty

Tatiana F. Filippova

Department of Optimal Control, N.N.Krasovskii Institute of Mathematics and
Mechanics, Ural Branch of Russian Academy of Sciences, 16 Sofya Kovalevskaya
str., 620108 Ekaterinburg, Russian Federation
(E-mail: ftf@imm.uran.ru)

Abstract. Nonlinear control systems which describe the dynamics of the interac-
tions of predators and their preys under assumption of uncertainty in related initial
conditions are studied. It is assumed that the interaction of populations occurs in
limited areas, estimated by corresponding ellipsoids. The possible presence of uncer-
tainty or errors in determining the parameters of these ellipsoids and the uncertainty
in the initial conditions of the moving objects and also in some parameters of dy-
namical systems are taken into account. Procedures and algorithms for evaluating
the movements of upper estimates of reachable sets of the system under indicated
conditions of uncertainty are proposed. Numerical simulation results related to the
proposed techniques and illustrating the results are also included
Keywords: Nonlinear systems, Control, Uncertainty, Ellipsoidal calculus, Viability,
State estimation.

1 Introduction

In 1920 Alfred Lotka initiated the study of a predator-prey model and showed
that the populations could oscillate permanently, he further developed his re-
searches in this direction and published a book (Lotka[20]). In 1926 the Italian
mathematician Vito Volterra happened to become interested in the same model
(Volterra[31]). Now the classical Lotka–Volterra equations have a long history
of use and researches in different branches of theory and applications, in this
field it is worth to mention some recent approaches and results (e.g. Skiadas[29],
Filippova and Matviychuk[16]) related to this class of problems.

We consider the modification of this classical problem and study it un-
der conditions of uncertainty in initial system states and maybe also under
uncertainty in some other parameters. We study the case when there is no
precise description of the uncertain data (noises and errors) in the model,
but only some bounds on these values are specified. This situation arises
when we are trying to create a mathematical model that takes into account
the absence of probabilistic data on uncertain parameters of the studied phe-
nomenon, or these data are not reliable enough and therefore cannot be taken
into account. To study problems of this class, we use the set-membership es-
timation approach which deals with a set of all feasible parameters vectors,
consistent with the model structure, current measurements and uncertainty
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features (Bertsekas and Rhodes[3], Kurzhanski and Valyi[18], Kurzhanski and
Varaiya[19], Kurzhanski and Filippova[17], Milanese et al.[23], Schweppe[28],
Walter and Pronzato[32], Chernousko[7–9], Brockett[6], Dontchev and Lem-
pio[10], Veliov[30], Mazurenko[22], Polyak[26]).

In this paper we continue the study initiated in Filippova[14,15], Filippova
and Matviychuk[16] and construct the estimating procedures for reachable sets
of nonlinear dynamical control systems of Lotka-Volterra type under conditions
of uncertainty and in the complicating assumption of the presence of state
constraints on the system trajectories. It should be noted that the study of
control systems with state constraints is closely related to the techniques and
results of the theory of survival, or, using the already well-established term,
viability theory (Aubin and Cellina[1], Bayen and Rapaport[2], Kurzhanski and
Filippova[17], Bonneuil and Mullers[5], Filippova[11]).

The viability theory presents additional convenient instruments to design
and to develop mathematical and algorithmic techniques for investigating and
adapting to viability constraints the complex dynamical systems under un-
certainty which may be found in many domains from biology to economics,
financial markets, control theory, robotics etc. Basing on above mentioned
approaches we formulate here new theoretical schemes and construct new al-
gorithms for determining upper ellipsoidal estimates of reachable sets of the
studied control system with uncertainty. Numerical examples and simulation
results related to the proposed techniques and to the presented algorithms are
also included.

2 Problem formulation

2.1 Preliminary constructions

We will continue to use the notations defined earlier in Filippova and Matviy-
chuk[16] but for the convenience of the reader we will nevertheless recall some
basic concepts. So Rn will be the n–dimensional Euclidean space, compRn is
the set of all compact subsets of Rn, Rn×n stands for the set of all n × n–
matrices and x′y = (x, y) =

∑n
i=1 xiyi be the usual inner product of x, y ∈ Rn

with prime as a transpose, the Euclidean norm is ‖x‖ = (x′x)1/2. We denote
as B(a, r) the ball in Rn, B(a, r) = {x ∈ Rn : ‖x − a‖ ≤ r}, I is the identity
n×n-matrix, diag{a1, ..., an} is the diagonal n×n–matrix with elements ai at
the main diagonal and with zero entries outside it.

Denote the ellipsoid E(a,Q) = {x ∈ Rn : (Q−1(x− a), (x− a)) ≤ 1} with
a center a ∈ Rn and with a symmetric positive definite n × n–matrix Q. Let
Tr(Y ) denote the trace of n× n–matrix Y (the sum of its diagonal elements).

Consider the following system

ẋ = Ax+ f(x)d+ u(t), x0 ∈ X0, t0 ≤ t ≤ T, (1)

where x, d ∈ Rn, ‖x‖ ≤ K (K > 0), f(x) is the nonlinear function, which is
quadratic in x,

f(x) = x′Bx, (2)
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with a given symmetric and positive definite n×n-matrix B. Control functions
u(t) in (1) are assumed to be Lebesgue measurable on [t0, T ] and satisfying the
constraint

u(t) ∈ U, for a.e. t ∈ [t0, T ], (3)

here U is a given set, U ∈ compRm. The n× n–matrix A in (1) is assumed to
be also given.

We will assume that the bounding set X0 for initial system states x0 in (1)
is an ellipsoid, X0 = E(a0, Q0), with a symmetric and positive definite matrix
Q0 and with a center a0.

Let the absolutely continuous function x(t) = x(t; u(·), x0) be a solution
to dynamical system (1)–(17) with initial state x0 ∈ X0 and with admissible
control u(·).

Definition 1. The reachable set X(t) at time t (t0 < t ≤ T ) of system (1)–(3)
is defined as

X(t) = { x ∈ Rn : ∃ x0 ∈ X0, ∃ u(·) ∈ U, such that

x = x(t) = x(t; u(·), x0) }, t0 < t ≤ T.
(4)

Remark 1. We can also interpret the control functions u(·) in (1)–(4) as un-
known perturbations in the model dynamics. Thus, the tube X(t) can play the
role of a set-valued state of the system (1) under conditions of uncertainty in
its dynamics.

2.2 Evolution equations for dynamical models with set-valued
states

The further notions are closely related to the concepts and definitions of set-
valued analysis in general and in particular to a solution notion of a differential
inclusion (Aubin and Cellina[1])

ẋ ∈ F(t, x) (5)

where F(t, x) is a set-valued function reflecting the variety of models under
uncertainty conditions.

Assume that the initial condition to the differential inclusion (5) is unknown
but bounded

x(t0) = x0, x0 ∈ X0 ∈ compRn (6)

Denote by h(A,B) the Hausdorff distance between sets A,B ⊆ Rn, namely,

h(A,B) = max {h+(A,B), h−(A,B)},

with h+(A,B), h−(A,B) being the Hausdorff semidistances between the sets
A,B, namely,

h+(A,B) = sup{d(x,B) | x ∈ A},

h−(A,B) = h+(B,A), d(x,A) = inf {‖ x− y ‖ | y ∈ A}.
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Assuming a set X0 ∈ comp Rn to be given, denote as x[t] = x(t, t0, x0) (t ∈
[t0, T ]) a solution to (5) (an isolated trajectory) that starts at point x[t0] =
x0 ∈ X0.

We take here the Caratheodory–type trajectory x[·], i.e. an absolutely con-
tinuous function x[t] that satisfies the inclusion

d

dt
x[t] = ẋ[t] ∈ F(t, x[t]) (7)

for almost every t ∈ [t0, T ]. We assume that all the solutions {x[t] = x(t, t0, x0) |
x0 ∈ X0} are extendable up to T that is possible under some additional as-
sumptions, Filippova[12]. Let us consider the equation

lim
σ→+0

σ−1h( X [t+ σ],
⋃

x∈X [t]

(x+ σF(t, x)) ) = 0,

t0 ≤ t ≤ T, X [t0] = X0.
(8)

Theorem 1. (Panasyuk[25], Kurzhanski and Filippova[17]) The multifunction
X [t] = X (t, t0, X0) is the unique set–valued solution to the evolution equation
(8).

2.3 State constraints and viability

The main problem of the paper is to find external ellipsoidal estimates of the
reachable set X(t) (t0 < t ≤ T ) and to apply these results to find the upper
bounds of reachable sets for nonlinear dynamical control systems of Lotka-
Volterra type considered now with the following viability (or state) constraint

x[s] ∈ Y (s), s ∈ [t0, t] (9)

where Y (t) ∈ conv Rn for t ∈ [t0, T ].
This viability constraint may be induced by state restrictions defined for a

given plant model or by the so-called measurement equation

y(t) = G(t)x+ w, (10)

where y is the measurement, G(t) is a given matrix function, w is an unknown
but bounded “noise” with a given bound,

w ∈ Q∗(t), Q∗(t) ∈ comp Rp,

(here Q∗(t) is a given set-valued function).
To start the analysis of the above problem consider the analogy of the funnel

equation (8) but now for the viable trajectory tubes X[t] = X(t, t0, X0):

lim
σ→+0

σ−1h
(
X[t+ σ],

⋃
x∈X[t]

(x+ σF(t, x))
⋂
Y (t+ σ)

)
= 0,

t0 ≤ t ≤ T, X[t0] = X0.

(11)

The following result is valid (under some additional assumptions on F(t, x)
and Y (t)).

Theorem 2. (Kurzhanski and Filippova[17]) The set-valued function X[t] =
X(t, t0, X0) is the unique solution to the evolution equation (11).
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3 Main results

We apply here the approaches described above to study the classical model
of the Lotka-Volterra type, but now we consider these approaches with two
complications. Namely, first, we assume that we have uncertain initial states,
and second, we assume that we have an additional constraint on the current
states of the system. In the recent paper Filippova and Matviychuk[16], we
considered only the first problem; a more complicated case of two simultaneous
constraints is being investigated here.

3.1 Lotka-Volterra control systems under uncertainty and state
constraints

Consider the following control system of Lotka-Volterra type which describes
the classical ecological predator-prey (or parasite-host) model with additional
control functions (Bayen and Rapaport[2], Bonneuil and Mullers[5], Lotka[20],
Murray[24], Prostyakov[27]):{

ẋ1(t) = ax1 − bx1x2 + u1,
ẋ2(t) = −cx2 + dx1x2 + u2,

x(t0) = x0, t0 ≤ t ≤ T. (12)

Here a, b, c, d > 0 are given and we assume that initial state vector x0 is un-
known but bounded, that is we have the inclusion x0 ∈ X0, where X0 is a
given compact subset of R2. This assumption may be interpreted for example
in such a way that we do not know exactly the initial states (or amounts) of
predators and prey. Control functions u(t) in (12) are assumed to be Lebesgue
measurable on [t0, T ], they satisfy the constraint

u(t) ∈ U, for a.e. t ∈ [t0, T ], (13)

where U is given, U ∈ compR2. The choice of control can influence, in partic-
ular, the rate of change in the number of predators and prey.

Using diagonalization procedures of matrix analysis described in details in
Filippova and Matviychuk[16], we transform the system (12) to the following
one (here a parameter ε > 0)

ż = A∗z + f
(1)
ε (z) · d(1) + f

(2)
ε (z) · d(2) + w(t),

z0 ∈ Z0, w ∈ W, t0 ≤ t ≤ T,
(14)

where

A∗ =

(
A −C
−C A

)
,

functions f
(1)
ε (z) and f

(2)
ε (z) are positive definite quadratic forms with matrices

B
(1)
ε = diag{1, ε2} and B

(2)
ε = diag{ε2, 1}, respectively. The following result

may be used to produce the upper estimate of a reachable set X(t) of the
system (12) of Lotka-Volterra type with ellipsoidal constraints on the control
function.
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Theorem 3 (Matviychuk [21]). For all σ > 0 and for reachable set X(t0 +
σ) = X(t0 + σ, t0, X0) of the system (12) we have the following upper estimate

X(t0 + σ) ⊆ E(a(1)(σ), Q(1)(σ))
⋂

E(a(2)(σ), Q(2)(σ)) + o(σ)B(0, 1),

σ−1o(σ)→ 0 when σ → +0,
(15)

where

a(1)(σ) = Z−1(a(σ) + σk21λ
2
12d

(2)) + σâ,

a(2)(σ) = Z−1(a(σ) + σk22λ
2
21d

(1)) + σâ,

a(σ)=(I+σZAZ ′)Za0+σ(Za0)′B(1)
ε Za0d

(1)+σ(Za0)′B(2)
ε Za0d

(2),

Q(1)(σ) = Z−1
(
(p−11 + 1)(I + σR)k21(B(1)

ε )−1(I + σR)′+

+(p1 + 1)σ2(||d(2)||2k41λ412 · I + ZQ̂Z ′)
)
(Z−1)′,

Q(2)(σ) = Z−1
(
(p−12 + 1)(I + σR)k22(B(2)

ε )−1(I + σR)′+

+(p2 + 1)σ2(||d(1)||2k42λ421 · I + ZQ̂Z ′)
)
(Z−1)′,

R = ZAZ ′ + 2d(1)(Za0)′B(1)
ε + 2d(2)(Za0)′B(2)

ε ,

where B
(1)
ε = diag{1, ε2}, B(2)

ε = diag{ε2, 1}, k21, k22, λ212 and λ221 are the
maximal eigenvalue of the matrices

(B(1)
ε )1/2ZQ0Z

′(B(1)
ε )1/2, (B(2)

ε )1/2ZQ0Z
′(B(2)

ε )1/2,

(B(1)
ε )−1/2B(2)

ε (B(1)
ε )−1/2, (B(2)

ε )−1/2B(1)
ε (B(2)

ε )−1/2,

respectively, numbers p1, p2 are the unique positive solutions of related algebraic
equations

n∑
i=1

1

p1 + αi
=

n

p1(p1 + 1)
,

n∑
i=1

1

p2 + βi
=

n

p2(p2 + 1)

with αi, βi ≥ 0 (i = 1, ..., n) being the roots of the following equations

det
(
(I+σR)k21(B(1)

ε )−1(I+σR)′−ασ2(||d(2)||2k41λ412 · I+ZQ̂Z ′)
)
=0,

det
(
(I+σR)k22(B(2)

ε )−1(I+σR)′−βσ2(||d(1)||2k42λ421 · I+ZQ̂Z ′)
)
=0.

Because the above formulas look too complicated, before to apply them we
slightly modify the system (12) in the same way as it was done in Bratus[4,
p. 44-45]. After this transformation we come to the system{

v̇1 = v1 − v1v2 + u1,
v̇2 = −αv2 + v1v2 + u2,

v(t0) = v0, t0 ≤ t ≤ T. (16)

Here α > 0 and initial state vectors v0 are unknown but bounded,

v0 ∈ B(0, µ) = {v = {v1, v2} : v21 + v22 ≤ 1}
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and control functions u(t) satisfy the following constraint (with r > 0)

u(t) ∈ B(0, r), for a.e. t ∈ [t0, T ]. (17)

Replace here ones again the variables as w1 = v1+v2, w2 = v1−v2 and consider
the system

ẇ = Dw + d(1)f1(w) + d(2)f2(w),

w(t0) = w0 ∈ B(0, r), r = 2−1/2, t0 ≤ t ≤ T,
(18)

with f1(w) = 2w2
1 + w2

2, f2(w) = w2
1 + 2w2

2,

D =

(
1−α
2

1+α
2

1+α
2

1−α
2

)
(19)

and with related trajectory tube denoted as W (·) = W (·, t0, X0).

Theorem 4. For all σ > 0 and for W (t0+σ) = W (t0+σ, t0, X0) the following
upper estimate is true

W (t0 + σ) ⊆ E(a(1)(σ), Q(1)(σ))
⋂

E(a(2)(σ), Q(2)(σ)) + o(σ)B(0, 1), (20)

where σ−1o(σ) → 0 when σ → +0 and parameters of the estimating ellipsoids
E(a(1)(σ), Q(1)(σ)) and E(a(2)(σ), Q(2)(σ)) are defined in Theorem 3 with the
following simplifications

k21 = k22 = 2/r2, λ212 = λ221 = 2, a = â = 0,

d(1) = −d(2) = −(0, 1)′, Q̂ = r2I,

B(1) =

(
2 0

0 1

)
, B(2) =

(
1 0

0 2

)
.

Proof. The proof of the above upper estimates follows the scheme used in
Filippova and Matviychuk[16].

3.2 Iterative algorithm and numerical simulation

The following iterative algorithm may produce the external ellipsoidal tube
for the reachable set X(t), t ∈ [t0, T ] in numerical modelling. Note that, in
comparison with the algorithm given in Filippova and Matviychuk[16], it is
somewhat more complicated in calculations, since additional steps appeared
here.

Algorithm. Subdivide the time segment [t0, T ] into subsegments [ti, ti+1]
where ti = t0 + ih (i = 1, . . . ,m), σ = (T − t0)/m, tm = T .

• Given X0 = E(a0, Q0), find ellipsoids E(a(1)(σ), Q(1)(σ)) and
E(a(2)(σ), Q(2)(σ)) from Theorems 3–4.
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• Find the smallest (with respect to some criterion [18,7]) ellipsoid E(a1, Q1)
which contains the intersection

E(a(1)(σ), Q(1)(σ))
⋂
E(a(2)(σ), Q(2)(σ)) ⊆ E(a1, Q1).

• Find the new ellipsoid E(a2, Q2) such that we have

E(a1, Q1)
⋂
Y ⊆ E(a2, Q2)

(this is a correction taking into account state constraints)
• Consider the system on the next subsegment [t1, t2] with E(a2, Q2) as the

initial ellipsoid at the next instant t1.
• Further steps repeat above iterations. At the end of the process we will

get the external estimate E(a+(t), Q+(t)) of the tube X(t) with accuracy
tending to zero when m→∞.

Example 1. Consider the following control system of Lotka–Volterra type:{
ẋ1(t) = x1 − x1x2 + u1,
ẋ2(t) = −x2 + x1x2 + u2,

x0 ∈ X0, t0 ≤ t ≤ T.
(21)

Here we take t0 = 0, T = 1, X0 = B(0, 1) and U = B(0, 0.1). We assume also
that we have the following additional state constraint

x[s] ∈ E(d,D), s ∈ [t0, t]

with d = (0.1, 0) and

D =

(
2.25 0

0 0.56

)
.

The trajectory tube X(t) and some reachable sets are shown in the Fig. 1
and Fig. 2. Ellipsoidal estimates for the reachable set X(0.01) which were
found on the basis of results of Theorems 3,4 are shown in Fig. 2. Several steps
of the main Algorithm of external ellipsoidal estimating the reachable set X(t)
with the resulting ellipsoidal tube E(a+(t), Q+(t)) are shown in the Fig. 2.

4 Conclusions

We considered the problems of state estimation for dynamical control systems
with unknown but bounded initial state. The solution was studied through the
techniques of trajectory tubes of related differential inclusions.

The problem of estimating reachable sets of nonlinear dynamical control
systems of Lotka-Volterra type which describe the dynamics of the interaction
of predators and their preys under uncertainty conditions and state constraints
was studied. Applying results of the theory of trajectory tubes of control
systems we found upper ellipsoidal estimates of related reachable sets.

The algorithms of constructing ellipsoidal estimates are given, numerical
simulation results related to the proposed techniques and illustrating the algo-
rithms are included.
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Fig. 1. Estimates of X(t) of the system (21).

Fig. 2. Steps of the Algorithm of ellipsoidal estimating process for the trajectory
tube X(t) (σ = 0.01).
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Abstract. In this paper we present a new non–linear, discrete, dynamical system trying to 

model the historic battle of Salamis (480 BC) between Greeks and Persians. The model 

describes the most effective strategic behavior between two participants during a battle or 

in a war. Moreover, we compare the results of the dynamical analysis to Game Theory, 

considering this conflict as a dynamic game. 

Keywords: Battle of Salamis, Discrete Systems, Modeling Strategic Behavior, Game 

Theory.  

 

1 Introduction 
 

The model approaches short–term conflicts between two participants (players), 

where one is weaker than the other opponent. Also, the parameters (that we use 

in Eq. 1, see below) are the most crucial factors in order to highlight the optimal 

way to achieve a decisive victory. 

The solution of the equations of the dynamical system (called equilibrium point) 

shows what kind of behavior each player should adopt, i.e. an aggressive or 

defensive one. In this way, according to Game Theory, the optimum strategic 

behavior is called Nash Equilibrium [9]. 

One of the most representative games of Evolutionary Game Theory is the so-

called game “Hawk – Dove”, which was originally developed by Smith and Price 

[10] to describe animal conflicts and is quite similar to our attempt. We will 

present below the game and its results.  

The game “Hawk – Dove” has many applications in everyday life. There are two 

animals (or two players) fighting for the same resource. Each of them can behave 

either as a hawk (i.e. fight for the resource) or as a dove (i.e. abandon the resource 

before the conflict escalates into a fight). Individuals have a benefit B if they win 

and a cost C if lose.  

If a Hawk meets a Hawk, they will fight and one of them will win the resource; 

average payoff is (B-C)/2. If a Hawk meets a Dove, the Dove immediately 

withdraws, so the payoff of the Dove is zero, while the payoff of the Hawk is B. 

If a Dove meets a Dove, the one who first gets hold of the resource keeps it, while 

the other does not fight for it; average payoff B/2. The strategic form of the game 

is given by the payoff matrix:  

 

𝑃𝑎𝑦𝑜𝑓𝑓𝐻,𝐷 = (
(𝐵 − 𝐶)/2 𝐵

0 𝐵/2
) 
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2 Solution of the game “Hawk – Dove”  
We set the benefit B = 2 if a player wins, and the cost C = 1 if a player loses. 

Using the Gambit1 software (16.0.1), we find Nash equilibriums and the dominant 

strategy. 

 

 
Fig. 1: The results of "Hawk - Dove" game. 

 
Fig. 1 shows us the payoff matrix and the two Nash equilibriums. If both players 

behave as a Hawk, the one who first injures the other wins. We set the player 1 

starts and injures the player 2, thus player 1 wins. If someone behaves as a Hawk 

and the other behaves as a Dove, then the player with the aggressive behavior 

(Hawk) wins and takes all the resource. If both players behave as a Dove, then 

they share the resource. 

Regarding Nash equilibriums, there are two pure strategies. On the one hand, both 

players behave as Hawks and on the other hand, player 1 behaves as a Hawk and 

player 2 as a Dove. Moreover, we can observe that player 1 behaves as a Hawk 

in both cases and player 2 behaves either as a Hawk or as a Dove, but in each case 

player 1 wins. 

We should note that if player 2 injures first player 1, the Nash equilibriums would 

be different. 

 
1 McKelvey, Richard D., McLennan, Andrew M., and Turocy, T. L., 2014. 
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Fig. 2: Dominant Strategy. 

 
Fig. 2 shows the dominant strategy of the game, where player 1 behaves as a 

Hawk independently of the player’s 2 behavior (i.e. Hawk or Dove). Therefore, 

the first dominant strategy may not be effective, because both players behave as 

Hawks and player 1 wins the half of the resource and does not maximize his profit. 

Although, if the player behaves as a Hawk, knowing that the other player behaves 

as a Dove, then he takes all the resource (maximum profit). Thus, we believe that 

the second Nash equilibrium is more effective and optimum strategy. 

 

3 The Dynamical Model 
It is widely acknowledged that the military strategy is the combination of ends, 

ways and means [7]. In our attempt to study the strategic behavior of two warring 

parties, we developed a new non-linear discrete system of two equations based on 

the above phrase. The main objective of the model is to simulate the way by which 

the two opponents behave strategically, where the one is weaker than the other. 

At the same time, in Game Theory, the war is considered as a dynamic game 

where the strategies of the players are studied by calculating their optimal strategy 

(Nash equilibrium). In this research, we tried to compare the results of the Game 

Theory with those from the analysis of the discrete dynamical system. At the end 

of the analysis, the optimum and effective strategy for both participants (players) 

will be suggested. 

The model, which is applied in short-term conflicts and describes the strategic 

behavior of each participant, is given by Eq. 1: 

 

{
𝑥𝑡+1 = 𝑃𝑥 + 𝑇𝑁𝑥 − 𝐺 ∙ (𝐷𝑦 + 𝐸𝑥) ∙ 4𝑦𝑡 ∙ (1 − 𝑦𝑡)

𝑦𝑡+1 = 𝑃𝑦 + 𝑇𝑁𝑦 − (1 − 𝐺) ∙ (𝐷𝑥 + 𝐸𝑦) ∙ 4𝑥𝑡 ∙ (1 − 𝑥𝑡)
     [1] 

 

 

where: 

𝑥𝑡: The strategic behavior of any form of social organization x (state, country, 

etc.) at the time t. 
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𝑦𝑡: The strategic behavior of any form of social organization y (state, country, 

etc.) at the time t. 

𝑥𝑡+1: The optimal strategic behavior of any form of social organization x at the 

(next moment of) time t + 1. 

𝑦𝑡+1: The optimal strategic behavior of any form of social organization y at the 

(next moment of) time t + 1. 

We consider 𝑥𝑡 , 𝑦𝑡 , 𝑥𝑡+1, 𝑦𝑡+1 ∈  [0,1], because the logistic equation is defined in 

[0,1], which is derived from the study of biological populations reproduced in 

discrete time [6]. It’s the evolution of the population model of Malthus [8] and 

shows that the exponential growth cannot tend to infinity, but there is a critical 

point, i.e. a saturation. In other words, it is not possible for someone to win and 

the other to lose continuously. Also, each optimal strategic behavior, at the time 

t, affects the next move – strategic behavior, at the time t + 1, of the opponent. 

In addition, we can interpret the values of variables (and parameters, as shown 

below) as percentages or probabilities, which help us to explain the results; these 

are also explained through the Game Theory.  

Moreover, if the value of  𝑥𝑡+1 (or 𝑦𝑡+1, respectively) equals to 0, it indicates the 

fully defensive strategic behavior of participant x (or y respectively), while if it 

equals to 1, then it indicates the fully aggressive behavior of participant x (or y 

respectively). 

The parameters of Eq. 1 are the main and most important factors that could affect 

the strategic behavior of x (or y, respectively). In particular: 

The parameter 𝑷𝒙 represents the strength (economic, military, population, 

territorial) of x and 𝑷𝒚 is the strength of y, respectively. These two parameters 

indicate the substance of each form of social organization compared to the other. 

𝑻𝑵𝒙 and 𝑻𝑵𝒚 represents the Technological Naval capability and evolution of x 

and y, respectively. These two parameters are also defined in comparison with the 

technological capability and evolution of the other participant and describe the 

means mentioned by [7]. 

The parameter G represents the geographical location (geophysical terrain) of the 

area where the battle or the war is taking place. We believe that this is another 

part of the military strategy, namely the ways [7]. Trying to emphasize the 

importance of this parameter and how it can be an advantage or disadvantage for 

each participant, we set in the first equation as G and in the second equation as 1 

– G. The closer to the 1 the value of the parameter, the easier the geophysical 

terrain of the area is. 

The parameter 𝑫𝒙 represents the damages caused by x to y and respectively, 

𝑫𝒚 represents the damages that y brings to x. The damages which we refer to may 

be economic, territorial, military, etc. or even deception and damaging of the 

psychological part of the opponent. Moreover, these two parameters complete the 

last part of the military strategy, namely the ends [7]. 

The parameter 𝑬𝒙 represents the expenses of participant x and 𝑬𝒚 the expenses of 

participant y, respectively. In other words, these denote the preparation costs of 

each participant for a battle (or war), compared to each other. 
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All the parameters that have been presented above should belong to [0,1]. 

Namely, 𝑃𝑥 , 𝑃𝑦 , 𝑇𝑁𝑥 , 𝑇𝑁𝑦 , 𝐺, 𝐷𝑥 , 𝐷𝑦 , 𝐸𝑥 , 𝐸𝑦 ∈  [0,1]. 

In the next section, we present the dynamic analysis and the results from the 

application of Eq. 1 in naval battle of Salamis. 

 

4 The case of (naval) Battle of Salamis 
 

The naval battle of Salamis was an important battle of the second Persian invasion 

in Greece and has been estimated to being held on September 28th, 480 BC in the 

Salamis straits (in the Saronic Gulf near Athens). The two warring parties were 

the Greeks (Hellenic alliance) and the Persian Empire [2]. 

After the fall of Thermopylae, the Persians proceeded to Athens. The Greeks had 

been advised by the Oracle of Delphi, that only the "wooden walls" would save 

them and they considered that this referred to a fight in the sea [5].  

A few days before the battle, the meeting of the Greek admirals had to decide the 

geographic location of the battle. On the one hand, the Spartan General Evriviades 

proposed to fight in the Isthmus of Corinth, under the main argument that in case 

of failure it would be possible for them to continue to fight into the center of the 

Peloponnese. On the other hand, the Athenian General Themistocles insisted to 

fight in Salamis straits. He believed that if he forced the Persians to attack there, 

the numerous Persian ships couldn’t extent highlighting their dominance. 

Ultimately, the council considered that Themistocles’ argument was better and 

decided to support it [1]. 

The Greek fleet was estimated by Herodotus in 380 triremes and Aeschylus gave 

a round 300 triremes, but we can’t be certain for the exact number. On contrary, 

the Persian fleet was estimated in 500-600 triremes2. Herodotus describes the 

Persian ships as “better sailing”, when compared to the Greek fleet. This may be 

attributable to a combination of factors such as lightness of materials and structure 

of the ship, better seamanship and more extensive naval experience. The triremes 

of Hellenic alliance were heavier and more durable. However, Herodotus reports 

that these ships were equipped with an embolism, with which they sank the enemy 

ships. They used two attacking maneuvers: diekplous, (i.e. attack from the rear or 

sides with a sharp turn) and periplous, (flanking or enveloping move, which 

generally gave an extra benefit against superior numbers in open water). The 

purpose of both was to ram the enemy in the side. In this way, they achieved 

serious damages or even the complete destruction of the Persians ships. On the 

contrary, the Persian tactic was “ramming and boarding” [11]. 

 

 
2 Aeschylus, writing decades earlier, also gives 1,207 triremes, but Herodotus writes, 

shortly before battle took place, that the Persian fleet wasn’t much bigger than Greek. 

Because of a weather phenomenon (storms) 600 ships sank (400 at the coast of Magnesia, 

north of Artemisium and 200 in Euboea). 

243



 
Fig. 3: The battle of Salamis. 

 Source: Burn, A. R. (1962). Persia and the Greeks, New York: Minerva Press 

 

At dawn (if the date of the battle was indeed 28th Sept.), the two fleets were ready 

for the naval conflict. Xerxes, sure of his victory, sat on a throne on mountain 

Aigaleo, to enjoy the war spectacle. The narrowness of the space and the limited 

extent of the sea did not allow the Persians to use the major of their force in the 

front line. Thus, the number of ships was approximately equal.  In this naval 

battle, the bravery and dexterity of the Greek fleet played an important role. They 

fought aggressively to defend their moral values and their freedom [1]. 

Herodotus reports that “the Greeks fought with discipline and held their 

formation, but the Persians did not seem to be following any plan, so things were 

bound to turn out for them as they did”. Also, Aeschylus mentions that 

Themistocles must be given the credit for their battle and the winning tactics. The 

turning point of the battle came as the Persians “suffered their greatest losses 

when the ships in their front line were put to fight and those following, pressing 

forward to impress the King (i.e. Xerxes) with their deeds, became entangled with 

them as they tried to escape”, as Herodotus comments [11]. 

The naval battle evolved rapidly and by the noon it was visible that the Greeks 

would win. The Persian fleet had crushed, while the Greek fleet continued to 

haunt them, killing the helpless, non–swimming soldiers. This brought the battle 

to an end, leaving the Greek force in full control of the straits [1]. 

When the battle was over, a Roman source mentions that Greeks lost more than 

40 triremes and Persians more than 200 ones [11]. The victory of the Greek force 

was of major importance, since they managed to cause the collapse of the Persian 

morale, which is evidenced by the abandonment of the battle. In addition, the right 
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decision of Themistocles for the geographic location of the naval battle was one 

of the most intelligent movements to bring the Greek victory.  

 

5 Applying the model in naval battle of Salamis – Approaching 

the reality 
 

Starting the dynamical analysis of the naval battle of Salamis, we set the initial 

conditions in Eq. 1, which represent as much as possible the historical events of 

the battle. Specifically: 

(a) We set Greeks as the weak participant – player (x) and Persians as the 

powerful participant – player (y). 

(b) The strength of Hellenic alliance, 𝑃𝑥 = 0.25 and the strength of Persian 

empire, 𝑃𝑦 = 0.8. 

(c) The technological naval capability of Greeks, 𝑇𝑁𝑥 = 0.7 and the 

technological naval capability of Persians, 𝑇𝑁𝑦 = 0.35. 

(d) The geographic location of the naval battle, G = 0.4, i.e. the Salamis 

straits, which are an advantage point for the Greek fleet. 

(e) The damage caused to Persian side was huge, so we set 𝐷𝑥 = 0.8  
and 𝐷𝑦 = 0.2. 

(f) The preparation costs of this battle for each participant: 𝐸𝑥 = 0.3, 𝐸𝑦 =

0.7, respectively. According to Kyriazis and Zouboulakis [5], 100 new 

Athenian triremes were built under the Athenian Naval Law of 

Themistocles. Each one cost one talent (6000 ancient drachmae), so the 

total cost was 100 talents (or 600.000 ancient drachmae). In 480 BC, the 

Athenian fleet was comprised of 200 triremes, equivalent to the two 

thirds of the total Greek strength. However, the Persian ships were 

similar in shape, so we assume that the cost of each ship was similar. 

Thus, it is obvious that the Persians spent more money to support their 

expedition to the Greek territories than the Greeks.  

With these initial conditions, we solve the system (Eq.1), by using the 

mathematical software Maxima3 (5.39.0), calculating the equilibrium points. 

Then, we study more extensively the behavior of the model and we present 

bifurcation diagrams and timeseries diagrams using the software E&F Chaos4. 

Solving the system (Eq.1), there are two equilibrium points: E1 (x* = 0.75, y* = 

0.475) and E2 (x** = 0.96, y** = 1.012). According to Game Theory, these two 

fixed points are considered as Nash Equilibriums [9]. Below, the stability of the 

fixed points will be examined.  

The Jacobian matrix is: 

 

𝐽 = (
0 0.8𝑦 − 0.8(1 − 𝑦)

3.6𝑥 − 3.6(1 − 𝑥) 0
) 

 
3 https://sourceforge.net/projects/maxima/files/Maxima-Windows/5.39.0-Windows/ 
4 E & F Chaos: written by Diks, C., Hommes, C., Panchenko, V., van der Weide, R., 

(2008). 
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We calculate the Jacobian matrix at the equilibrium point E1: 

 

𝐽∗ =  (
0 0.038

1.803 0
) 

The determinant of J* is det (J*) = 0.069 > 0. 

The trace of J* is trace(J*) = 0. 

The eigenvalues of J* is (0.264i, -0.264 i); two complex roots. 

The discriminant 𝛥 = 𝑡𝑟𝑎𝑐𝑒(𝐽∗)2 −  4 ∙ 𝑑𝑒𝑡(𝐽∗)=  0.2788 < 0. 

Therefore, the equilibrium point E1 is a stable – center. 

Studying the second fixed point E2, the Jacobian matrix at the equilibrium point 

is: 

𝐽∗∗ = (
0 0.82

3.314 0
) 

The determinant of J** is det (J**) =  2.718 < 0. 

The trace of J** is trace(J**) = 0. 

The eigenvalues of J** is (1.648,  1.6487); two real roots. 

The discriminant is 𝛥 = 𝑡𝑟𝑎𝑐𝑒(𝐽∗∗)2 −  4 ∙ 𝑑𝑒𝑡(𝐽∗∗) 10.874 > 0. 

Therefore, the equilibrium point E2 is a saddle point. 

Consequently, we accept the fixed point E1 (x* = 0.75, y* = 0.475) and reject E2 

(x** = 0.96, y** = 1.012), because the value of y** is greater than 1. 

Thus, we continue the analysis for the fixed point E1. Interpreting this equilibrium 

point, we confirm the aggressive (strategic) behavior of Greeks; since the value 

of x* is close to 1 and the mild (strategic) behavior of Persians; since they thought 

it would be an “easy win”. 

Indeed (historically), the courage of the Greeks, their technological naval skills, 

and the advantageous geographical location contributed in this aggressive 

behavior. As far as the Persians are concerned, their mild (strategic) behavior is 

due to the fact that they underestimated their enemy, since they regarded that the 

Greeks are an easy target, and they would achieve a decisive victory. 

Connecting the game “Hawk – Dove” to the naval battle of Salamis, player 1 (red) 

is “Persians” and player 2 (blue) is “Greeks” (Fig. 4). The Hellenic alliance had 

an aggressive behavior (Hawk) and the Persians behaved as a Dove. According 

the Nash equilibriums that have been mentioned above (See 2), the Greeks (player 

2) should behave as a Hawk (i.e. aggressive), regardless of Persian’s behavior, so 

as to win this battle. 
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Fig. 4: Time series diagram - x (Greeks; blue) and y (Persians; red). 

 

Fig. 4 shows us how the two warring parties behave (strategically). In particular, 

it represents the optimal strategic behavior of Greeks and Persians in Salamis 

straits for a time interval of 24 hours. We can observe an oscillation, at the 

beginning, until t = 6 h. (both lines) and then it is normalized and balanced. That 

means that the duration of the main battle was approximately 6 hours. Indeed, 

according to historical documents, the battle started at dawn (approximately at 

06:00 am) and the Greek victory was visible at noon. 

 

 
Fig. 5: Bifurcation Diagram for different values of G. 

x (Greeks; blue) and y (Persians; red). 

Fig. 5 presents the strategic behavior of Greeks (blue) and Persians (red) as the 

parameter G changes. We observe for the positive values of G, the blue line is 
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above the red until G = 0.64 (critical value) and for G > 0.64 the red line is above 

the blue. The increase of the value of parameter signifies the change of the 

geographical location (a more open sea), which becomes more difficult for Greeks 

and in contrary easier for Persian. Thus, we approve that if the location of the 

naval battle was in an open sea, the Persians would have a crucial advantage, 

which would possibly lead to win this conflict. 

Although we did not study the negative values of parameter G, we believe that 

there are some unpredictable geophysical factors (e.g. meteorological phenomena 

to influence the outcome of the conflict), which are surprisingly interesting. 

Specifically, we refer to weather conditions, such as air, ripple, etc., which can 

affect the geophysical terrain of the area. Due to these weather phenomena, period 

doubling bifurcations and chaos appear and we cannot predict what could happen 

in the battle for these values of G.  

 

 
Fig. 6: Bifurcation diagrams for different values of parameters 𝑇𝑁𝑥 and 𝑇𝑁𝑦 . 

 Fig. 6a: x (Greeks; blue) and Fig. 6b: y (Persians; red).  

Fig. 6 depicts the technological evolution and capability of x (Greeks; blue) and 

y (Persians; red), respectively. In the left diagram (Fig. 6a), for the negative values 

of parameter 𝑇𝑁𝑥, we can distinguish a pair of bubble bifurcations, while 

afterwards we have the well-known period-doubling scenario to chaos. A possible 

interpretation of this chaotic scenario is the uncertainty of Greeks in technological 

capability – first attempts to construct ships. The first ships, as Krasanakis [4] 

mentions, were floating planks and carved tree trucks only with oars. Since the 

ships were primitive, the situation was unstable (there is chaos in this range of 

values) because they were not capable to fight in naval battles. Later, the sails 

were invented, which gave high speed to ships, and they were consisted no more 

than wood but iron. For this reason, we have bubble bifurcations, which indicate 

the technological alternatives that existed for the construction of the ships. In the 

interval of positive values of 𝑇𝑁𝑥, there is stability with two fixed points. Here, 

it’s the beginning of better shipbuilding ability and new expertise ship 

construction. Finally, there is one equilibrium point which shows the better 

version of ships, of that period, namely Triremes. Triremes were wooden 
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warships which move either with sails or oars. Moreover, in the positive values 

of the parameter 𝑇𝑁𝑥, the increasing of the slope of the curve is visible, which, 

on the one hand, it means that in 480 BC the triremes were an innovation in 

shipbuilding and on the other hand, it shows the excellent naval capability of the 

Greeks. 

Persians, through the years, developed technological equipment because of their 

expansive mania to conquer Greece. Comparing the Figures 6a and 6b, it seems 

that Persians had a lower technological development than Greeks, since they 

focused more on land army than on warships. Their ships were mainly used 

as troopships rather than battleships [11]. 

 

Conclusions 
In this article, a new non – linear discrete model has been presented, which 

simulates the optimum strategic behavior of two warring parties for short–term 

battles. In addition, we try to compare this model with the game “Hawk – Dove”, 

applying this attempt in the naval battle of Salamis. Based on the results we have 

extracted, we (mathematically) proved the historical events of this conflict. 

Specifically, the Greek’s strategic behavior fits with the aggressive behavior of 

the Hawk and as well as the Persian’s strategic behavior fits with the more 

defensive behavior of the Dove in the game. Moreover, the estimated duration of 

the battle was proved as well as the dominance of the Greek fleet in the Salamis 

straits. Finally, the technological naval capability of the Greek alliance was able 

to cause serious damages to the opponent and led them to a crashing defeat. 
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Abstract. In this paper, different results concerning (pseudo)-atomicity are obtained
from the Quantum Measure Theory mathematical perspective and several physical
applications are given. Precisely, the mathematical concept of atomicity (and, par-
ticularly, that of minimal atomicity) is extended, based on the non-differentiability
of the motion curves associated to the motions of the structural units of a complex
system on a fractal manifold.
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1 Introduction

Although classical measure theory imposes strict additivity conditions, in the
recent decades, a rich theory of non-additive measures developed. Precisely,
modifications of traditional Measure Theory (Pap [12, 13]) led to Quantum
Measure Theory (Gudder [7, 8], Salgado [15], Sorkin [17-19] and Surya and
Wallden [20]). An extended notion of a measure has been introduced and its
applications to the study of interference, probability, and spacetime histories
in Quantum Mechanics have been discussed (Schweizer and Sklar [16]). Intro-
duced by Sorkin [17-19], quantum measures are an useful tool which enables us
to describe Quantum Mechanics and its applications to Quantum Gravity and
Cosmology (Hartle [9, 10], Phillips [14], Salgado [15]).

Quantum Measure Theory indicates a wide variety of applications, as its
mathematical structure is used in the standard quantum formalism. In [17-
19], Sorkin proposed a history-based framework, which can accommodate both
standard Quantum Mechanics and physical theories beyond the quantum for-
malism. Recently, since Quantum Mechanics can be assimilated with a partic-
ular model of Fractal Mechanics at a given scale resolution in the form of Scale
Relativity Theory in a constant fractal dimension and arbitrary (Mercheş and
Agop [11]), fundamental concepts of Quantum Mechanics can be extended to
similar concepts, but on fractal manifolds.

This paper refers to certain aspects concerning atomicity, which is a very
important property in (non)-additive measure theory (Gavriluţ [1], Gavriluţ
and Croitoru [3, 4]). This property concerns sets which, from a mathematical
“measurement” viewpoint have the property that each subset is either “negligi-
ble” or it is almost like the considered set. Precisely, we consider here atomicity,
pseudo-atomicity and minimal atomicity from the Quantum Measure Theory
mathematical perspective. Several physical applications and considerations are
provided and the concept of fractal atomicity is introduced.
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2 Atomicity in Quantum Measures Theory

Unless stated otherwise, all over this paper, T denotes an abstract non-empty
set and L a lattice of subsets of T . Suppose (V,+, ·) is a real vector space with
the origin θ.

In what follows, we give certain key-concepts from Quantum Measure The-
ory, with slight modifications of the corresponding ones from Gavriluţ et al.
[2], Gavriluţ and Agop [5, 6]:

Definition 2.1 Let m : L → V be a set function, with m(∅) = θ.
I) m is said to be:

(i) finitely additive (or, grade-1-additive) if m(
p
∪
i=1
Ei) =

p∑
i=1

m(Ei) holds, for

any arbitrary pairwise disjoint sets (Ei)i∈{1,2,...,p} ⊂ L, p ∈ N∗;
(ii) a grade-2-measure if

m(E ∪ F ∪G) +m(E) +m(F ) +m(G) = m(E ∪ F ) +m(F ∪G) +m(E ∪G)

holds, for any pairwise disjoint sets E,F,G ∈ L;
II) Two sets E,F ∈ L are called m-compatible (denoted by EmF ) if

m(E ∪ F ) +m(E ∩ F ) = m(E) +m(F )

holds (i.e., m-compatible sets are those two sets for which the set function m
behaves like a grade-1-measure);

III) An arbitrary fixed set E ∈ L which is m-compatible with any set F ∈ L
is called a macroscopic set.

Remark 2.2. (Gavriluţ et al. [2], Gavriluţ and Agop [5, 6])
(i) Some quantum objects interfere with each other, but others do not.

Consequently, one can justify the name of a “macroscopic set” by the fact that
it does not interfere with any set and thus it behaves like a non-quantum object
in the macroscopic world.

(ii) One can immediately check that m-compatibility generates a relation
which is reflexive, symmetric but it is not transitive.

(iii) Evidently, if m is grade-1-additive, then it is also a grade-2-measure,
but the converse does not hold.

(iv) If E ∈ L is arbitrarily chosen, then E and ∅ are m-compatible.
(v) Suppose ti, where i ∈ {1, 2, ..., p}, p ∈ N∗ represent quantum objects or

quantum events and let be their collection T = {t1, t2, ..., tp}. One can need an
interpretation of a “measure” on T , in situations when the additivity condition
from Definition 2.1.-(ii) is not fulfilled.

For these reasons, in what follows we introduce several notions, that are
weaker than classical additivity and also than those from the above Definition
2.1. As before, these notions generalize those from Gavriluţ et al. [2], Gavriluţ
and Agop [5, 6]:

Definition 2.3. A set function m : L → V , with m(∅) = θ, is called:
(i) disjoint-null-additive if m(E ∪ F ) = m(E), for every disjoint E,F ∈ L,

with m(F ) = θ;
(ii) null-additive if m(E ∪ F ) = m(E), for every E,F ∈ L, with m(F ) = θ;
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(iii) null-null-additive if m(E ∪ F ) = θ, for every E,F ∈ L, with m(E) =
m(F ) = θ;

(iv) null-equal if m(E) = m(F ), for every E,F ∈ L, with m(E ∪ F ) = θ;

(v) a quantum measure (q-measure, for short) if it is a disjoint-null-additive
and null-equal grade-2-measure.

Definition 2.4. If, moreover, (V,≤) is an ordered vector space, then a set
function m : L → V , with m(∅) = θ, is called:

(i) null-monotone if for every E,F ∈ L, with E ⊆ F , if m(F ) = θ, then
m(E) = θ;

(ii) monotone if m(E) ≤ m(F ), for every E,F ∈ L, with E ⊆ F ;

(iii) a submeasure if m is monotone and subadditive (i.e., m(E ∪ F ) ≤
m(E) + ν(F ), for every (disjoint) E,F ∈ L).

Examples 2.5. (i) It T is a nonempty metric space, then the Haus-
dorff dimension dimHaus : P(T ) → R is a monotone real function. Evidently,
dimHaus(∅) = 0.

(ii) For every d ≥ 0, the Hausdorff measure Hd : P(T ) → R is an outer
measure, so, particularly, it is a submeasure.

Definition 2.6. Suppose (V,≤) is an ordered vector space.

I) If m : L → V , with m(∅) = θ is an arbitrary set function, then:

(i) A set A ∈ L is called a pseudo-atom of m if m(A) > θ and B ∈ L,
B ⊆ A implies m(B) = θ or m(B) = m(A);

(ii) m is said to be non-pseudo-atomic (NPA, for short) if it has no pseudo-
atoms (i.e., for every A ∈ L with m(A) > θ, there exists B ∈ L, B ⊆ A, such
that m(B) > θ and m(A) 6= m(B);

(iii) A set A ∈ L is called to be a minimal atom of mif m(A) ≥ θ and for
every B ∈ C, B ⊆ A, it holds either m(B) = θ or B = A;

II) Suppose, moreover, that C is a ring of subsets of T and let m : C → V
be a set function, with m(∅) = θ.

(i) A set A ∈ C is called an atom of ν if m(A) > θ and for every B ∈ C,
with B ⊆ A, we have m(B) = θ or m(A\B) = θ;

(ii) m is said to be non-atomic (NA, for short) if it has no atoms (i.e., for
every A ∈ C with m(A) > θ, there exists B ∈ C, B ⊆ A, such that m(B) > θ
and m(A\B) > θ);

(iii)m is said to be finitely purely atomic if there is a finite family (Ai)i∈{1,2,...,n}

of pairwise disjoint atoms of m so that T =
n
∪
i=1
Ai (in this case, the entire space

is assumed to be a finite collection of pairwise disjoint atoms).

In case when C is a ring of subsets of T and m : C → R+, with m(∅) = 0, is
an arbitrary set function, then (when they exist), its atoms and pseudo-atoms
have certain remarkable properties:

Proposition 2.7. (Gavriluţ and Croitoru [3, 4]) (i) (self-similarity of
atoms) If m is null-monotone, E ∈ C is an atom of m and F ∈ C, F ⊆ E
is such that m(F ) > 0, then F is an atom of m and m(E\F ) = 0.

(ii) (self-similarity of pseudo-atoms) If E ∈ C is a pseudo-atom of and
F ∈ C, F ⊆ E is such that m(F ) > 0, then F is a pseudo-atom of m and
m(F ) = m(E).
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(iii) If E,F ∈ C are pseudo-atoms of and m(E ∩ F ) > 0, then E ∩ F is a
pseudo-atom of m and m(E ∩ F ) = m(E) = m(F ).

(iv) Let m : C → R+ be null-additive and let E,F ∈ C be pseudo-atoms of
m.

1. If m(E ∩ F ) = 0, then E\F and F\E are pseudo-atoms of m and
m(E\F ) = m(E),m(F\E) = m(F ).

2. If m(E) 6= m(F ), then m(E ∩ F ) = 0,m(E\F ) = m(E) and m(F\E) =
m(F ).

(v) Let m : C → R+ be null-additive and let E,F ∈ C be pseudo-atoms of
m. If m(E∩F ) > 0 and m(E\F ) = m(F\E) = 0, then E∩F is a pseudo-atom
of and m(E∆F ) = 0.

Definition 2.8. Suppose m : C → R+, with m(∅) = 0, is an arbitrary set
function. Let m : P(T )→ [0,∞], defined for every A ∈ P(T ) by:

m(A) = sup

{
p∑
i=1

m(Ai);A =
p
∪
i=1
Ai, Ai ∈ C,∀i ∈ {1, ..., p}, Ai ∩Aj = ∅, i 6= j

}
.

We say that m is of finite variation if m(T ) <∞.

3 Quantum Measures. Decoherence functions

In Quantum Mechanics, when a wavefunction becomes coupled to its environ-
ment, the objects involved interacting with the surroundings, the decoherence
phenomenon occurs. It is also known as the “wavefunction collapse” and it
allows the classical limit to emerge on the macroscopic scale from a set of
quantum events. After decoherence has occurred, the system’s components
can no longer interfere, so one could assign a well-defined probability to each
possible decoherent outcome.

Remark 3.1. In light’s classical theory, the intensity of the light in an
arbitrary point is determined by the square amplitude of the light. For instance,
in Young’s two-slit experiment, the intensity of the light on the detector screen
is given by the square amplitude of the wave obtained through the overlapping
(superposition) of the secondary waves originating from each slit. Of course,
this classical wave theory can not be used in this case since it ignores the
corpuscular character of the light. However, by analogy, it suggests that in
Quantum Mechanics, it can be introduced either a wavefunction which satisfies
the Schrödinger equation. The wavefunction is a complex quantity, while the
states density is a real one. We expect then, that the states density ρ(x, y, z, t)
to find the particle in a given point from the volume V, in a vecinity of the
point of coordinates (x, y, z, t) at a momentum t should be proportional with
|Ψ |2, that is,

ρ(x, y, z, t) ≡ |Ψ(x, y, z, t)|2 (1)

Let Ψ1 be the wavefunction in a given point from the screen where the
interference field is localized, corresponding to the waves propagated through
the slit 1. Similarly, let Ψ2 be the wavefunction in the same point, corresponding
to the waves propagated through the slit 2. The two intensity distributions,
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corresponding to the “experiments” performed with only one open slit are
determined by the respective states densities (probability distributions)

ρ1 ≡ |Ψ1|2, ρ2 ≡ |Ψ2|2 (2)

On the other hand, when both slits are open, the wavefunction is given by
the sum of the two contributions Ψ1 and Ψ2 :

Ψ ≡ Ψ1 + Ψ2 (3)

The corresponding states density (probability distribution)

ρ ≡ |Ψ1 + Ψ2|2 (4)

determines then the intensity of the “structure” from the interference field.
Let us explain in the following, Ψ1 and Ψ2 in the form

Ψ1 =
√
ρ1e

iθ1 , Ψ2 =
√
ρ2e

iθ2 (5)

It results

ρ ≡ |Ψ |2 = |Ψ1|2 + |Ψ2|2 + 2Re{|Ψ1| · |Ψ2| exp[i(θ2 − θ1)]}
≡ ρ1 + ρ2 + 2

√
ρ1ρ2 cos∆θ,∆θ = θ2 − θ1.

(6)

Now, if the term cos∆θ is a time functional

cos∆θ ≡ cos∆θ(t) (7)

then the system is decoherent (the interference field does not exist). If

cos∆θ = const. (8)

then the system is coherent (there exists an interference field).
One can define functions related to interference, as shown in the following.

Let C be the family of complex numbers, “ ” the complex conjugate of a
complex number and “| · |”, the modulus of a complex number.

Definition 3.2. Suppose A is an algebra of subsets of T. A function D :
A×A → C is said to be a decoherence function if the following conditions hold:

(i) D(E,F ) = D(F,E), for every E,F ∈ A;
(ii) D(E,E) ≥ 0, for every E ∈ A;
(iii) |D(E,F )| ≤ D(E,E) ·D(F, F ), for every E,F ∈ A;
(iv) D(E ∪ F,G) = D(E,G) + D(F,G), for every disjoint E,F ∈ A and

every G ∈ A.
Remark 3.3. (i) Since D(E,E) ∈ R, then the conditions (ii) and (iii) from

Definition 3.2. are justified.
(ii) By (i), for arbitrary E,F ∈ A representing quantum objects, Re[D(E,F )]

can be interpreted as the interference between E and F , as we remark in what
follows:

Proposition 3.4. If D : A × A → C is a decoherence function, then the
set function M : A → C, M(E) = D(E,E) is a q-measure.
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Example 3.5. If V is a pre-Hilbert space and if m : A → V is finitely
additive, then D : A×A → C,

D(E,F ) =< m(E),m(F ) >,

for every E,F ∈ A is a decoherence function.
Moreover, if m : A → C is finitely additive (often interpreted as a quantum

amplitude), then one can define the decoherence function defined for every
E,F ∈ A by

D(E,F ) = m(E) ·m(F ).

The corresponding q-measure is M : A → C,

M(E) = D(E,E) = m(E) ·m(E) = |m(E)|2,

for every E ∈ A.
Remark 3.6. (i) If E,F ∈ A are disjoint, then M is not grade-1-additive.

Indeed,

M(E ∪ F ) = |m(E ∪ F )|2 = |m(E) +m(F )|2 =

= |m(E)|2 + |m(F )|2 + 2Re[m(E)m(F )] =

= M(E) +M(F ) + 2ReD(E,F ).

Also, M(E ∪ F ) = M(E) + M(F ) if and only if ReD(E,F ) = 0 (this means
interference is represented by the real part of a decoherence function).

(ii) If m : A → R is a real valued submeasure of finite variation m, then the
set function

D : A×A → R, D(E,F ) =< m(E),m(F ) >

is a decoherence function.

4 From the standard mathematical atom to the fractal
atom by means of a physical procedure

Let T be an abstract nonvoid set, L a lattice of subsets of T and m : L → R+

an arbitrary set function with m(∅) = θ.
Remark 4.1. (i) The union of two sets A and B having the fractal dimen-

sions DA, respectively, DB has the fractal dimension DA∪B = max{DA, DB};
(ii) The intersection of two sets A and B having the fractal dimensions DA,

respectively, DB has the fractal dimension DA∩B = DA + DB − d, where d is
the embedding Euclidean dimension.

One can introduce then the following concept:
Definition 4.2. A pseudo-atom, a minimal atom, respectively, A ∈ L of m

having the fractal dimension DAis said to be a fractal pseudo-atom, a fractal
minimal atom, respectively.

One easily gets:
Proposition 4.3. If A,B ∈ L are fractal pseudo-atoms of m and if m(A∩

B) > 0, then A ∩ B is a fractal pseudo-atom of m and m(A ∩ B) = m(A) =
m(B).
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Abstract. An experiment cannot refute mathematical theory, but decides whether a given 

theory is suitable for describing the indicated phenomena. I do not question the theory of 

chaos in the field of infinite and continuous spaces, but I present a hitherto unknown 

class (half-chaotic systems) of finite discrete networks in which this theory gives 

erroneous results and I explain why. It is easy to repeat the computer simulation 

experiments described here, also much wider descriptions are available. The widely 

known Kauffman hypothesis 'life on the edge of chaos' is based on the recognition made 

in random autonomous Kauffman networks. This recognition, supported by mathematical 

theory of chaos, gave an image in which systems can be either ordered or chaotic with a 

fairly fast phase transition between them. Only for parameters in the immediate vicinity 

of this phase transition, the changes have properties suitable for describing stability of 

adaptive evolution and typically modeled objects. This limitations for the variables are 

strong. However, modeled adapted systems are not fully random, they are usually stable, 

but the estimated parameters are usually ―chaotic‖-they place the fully random networks 

in the chaotic regime, far from the narrow phase transition. The half-chaotic network has 

such ―chaotic parameters‖, it simultaneously exhibits in similar share both small 

(ordered) and large (chaotic) reactions for small disturbances. The discovery of half-

chaos frees modeling of adapted systems from sharp restrictions; it allows to use ―chaotic 

parameters‖ and get a nearly stable system more similar to modeled one. It gives a base 

for identity criterion of an evolving object, simplifies the definition of basic Darwinian 

mechanism and changes ―life on the edge of chaos‖ to ―life evolves in the half-chaos of 

not fully random systems‖. 

Keywords: Kauffman networks, complex networks, chaos, life on the edge of chaos, 

phase transition to chaos, damage spreading. 

 

1 Introduction 
 

This is empirical work using computer simulation. It concerns dynamics in 

complex autonomous Kauffman networks that are finite and discrete, shows that 

current theory of deterministic chaos used for them, based on Lyapunov 

coefficient in infinite, continuous space, implies false expectations. Such a 

method is an approximation. It loses a few important phenomena present in such 

the networks, but absent in the infinite and continuous space. Current view is 

based on the assumption that networks are fully random, however, interesting 

phenomena concerning life occur in not fully random networks due to natural 

selection. Also limitation to Boolean networks in statistical investigation makes 

incorrect picture. Due to such the reasons, expectations of the theory that life is 

on the edge of chaos can be and are inadequate. 
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The description of the investigation and the arguments for introducing the half-

chaos given in this article is necessarily shortened and simplified. A much more 

extensive investigation and description is available in supplement (Gecow [9]) 

to this article. Wider versions of the article are available in preprints (Gecow 

[8]). The data (programs and its sources, results of simulations) analyzed here 

and additional explanations are available from the author on any request. 

 

2 Kauffman network and chaos in it 
 

The considerations concern the statistical stability of the deterministic Kauffman 

networks (Kauffman [11, 12, 13]). A node in such a network receives signals at 

the K inputs, converts them uniquely to the output signal called the state of the 

node, then sends it to other nodes by k outputs. Up to now, 2 (logical) signal 

states have been used. In the simplest case it was assumed the same probability 

and full randomness of connections and functions. K (called ―connectivity‖, see 

(Turnbull et al. [24])) was the basic variable for Kauffman.  

The conflict (Aldana et al. [1, 2], Turnbull et al. [24]) of a size of K in the 

Kauffman model and K estimated from nature is a problem solved here. 

Kauffman postulates that the natural property of the random ordered systems 

(‗order for free‘ Kauffman [14]) is the source of stability, but then K should be 

extremely small  (K≤2) (Derrida and Pomeau [4]). The attempts to prove that 

the real genetic network is ordered
 
(Serra et al. [19, 20], Shmulevich et al. [22]) 

assume such a source of stability. Different circumstances allowing for greater 

K in the ordered phase were indicated (p.48 in Aldana et al. [1]), such as a 

significant difference in probabilities of logical states (Derrida and Pomeau [4]), 

or deviation from the randomness of the function (canalizing Kauffman et al. 

[15]), but these and other suggestions are not satisfactory for many reasons 

(Gecow [7]). 

Synchronous computing is used, i.e. the states of nodes from the discrete time t 

are input signals and arguments of function of other nodes, and the results of 

these functions are node states at the next moment (t+1). Considerations have 

been limited to autonomous systems – they do not take the signal from the 

environment. Determining the states and functions of all nodes and the 

connections between nodes uniquely determines the trajectory - consecutive 

states of the whole network (sets of states of all nodes). 

Same K for all N nodes of the network are taken. The size of a change in a 

network function at time t after a small disturbance is measured by the number 

A (from Avalanche Serra et al. [20]) of the nodes, which have a different state 

from the pattern network - identical but without disturbance. The value d=A/N 

is called damage, its distribution characterizes stability and is the most 

important result (Fig.1a,b). 

The main characteristic of the chaotic  behavior of dynamical systems is high 

sensitivity to initial conditions, leading to maximally different effects for very 

similar initial conditions. I use the term ‗chaos‘ in such the meaning, similarly 

as Kauffman [13] does. For chaotic Kauffman networks a small initiation of 

damage typically causes a large avalanche of damage which spreads onto a big 
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part of the discrete and finite system and ends at a Derrida equilibrium level 

(Derrida and Pomeau [4], Gecow [7], Derrida and Weisbuch [5]), which is a 

maximal lose of information about previous system. The existence of this 

limitation is the main difference between this ‗chaos‘ and the more commonly 

taken definition (Schuster [21]) used for continuous variables on infinite space. 

The term ‗chaos‘ is not reserved for one of those separate areas. The distribution 

of damage size is the experimental base to classify particular system of 

Kauffman network as chaotic or ordered using levels of damage equilibrium 

calculated from Derrida‘s annealed approximation. 

According to my previous (Gecow [7]) suggestions, here I also study a larger 

number of s (>2, usually 4) of equally probable signal states, which in random 

networks for every sensible K (≥2) always gives chaos. Attempts to introduce 

more signal states already exist (Luque, F.J. Ballesteros [17], Sole et al. [23]), 

but they assume the possibility of an ordered phase for the random network, that 

these states cannot be equally probable.  

Several types of networks are considered. They differ in the rules of their 

creation and k distributions: sf (scale-free Barabási,et al. [3]), er (classical Erdős 

and Rényi [6] "random"), and ss (single-scale). In the figures, the second letter 

of these shortcuts indicates the network type. It is also looked after the node 

functions are correctly random, but this assumption cannot always be fully met, 

so the impact of the derogations is checked. The vector type,s,K is the basic 

variable here. Further, parameters s,K, which in the case of a random system 

give chaos, we will refer to in short as "chaotic". 

 

3 Main results in brief, half-chaos 
The research has shown that among the systems with chaotic parameters, the 

strongly increased stability desirable in modeling many interesting objects is in 

not fully random systems with short attractors, here called half-chaotic. 

Functioning of such the system after a small disturbance is quite different 

(chaotic) or very similar (ordered), comparing to a undisturbed system. Medium 

damage is practically nonexistent. Both of these options occur in the same 

system similarly often, which is surprising, since it was previously thought that 

the system may be either chaotic or ordered. As addition to the short attractor, 

this ratio is influenced (Gecow [8]) among other  by negative feedback, 

modularity, and ‗in-ice-modularity‘ detected in these studies. 

Kauffman is trying to describe living systems and similar using several easy to 

show and the main parameters of his model, he simplifies the rest of them 

assuming their randomness, but natural selection works on all possible 

parameters destroying their randomness. Indeed, it is difficult to imagine the 

possibility of the existence of half-chaotic systems. In fact, after the system is 

drawn, it is either chaotic or ordered, and the set of random systems contains all 

the possible ones. Only near the phase transition the changes of function can 

statistically be small, and such are necessary for the evolution of modeled 

objects, as Kauffman stated in the well-known hypothesis that "life is on the 

edge of chaos and order." In the interpretation of the results of this approach, it 

has not been seen that the statistical absence of intermediate systems does not 
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imply a small number of such systems. There are a lot of half-chaotic systems, 

but their share is negligible, because chaotic systems with given parameters 

(e.g., K) are radically more - for larger N not imaginable many. In light of the 

results, it must be stated that "life evolve in the half-chaos of not fully random 

systems". 

 

4 A point attractor system is half-chaotic 
 

Demonstration of the existence of half-chaotic systems can be made simply by 

indicating such systems, e.g. in the form of an algorithm for their construction. 

A good and simple example is a point-attractor system. You can get this system 

from the random system slightly change the function of nodes: for current input 

signals, insert as the function value the current state of this node. This is a very 

slight deviation from randomness. By investigating the various static statistic 

characteristics of such a network, it is difficult to detect that this is a unique 

network. This uniqueness is not only because a point attractor, but it is a half-

chaotic network. 

The distribution of the damage size in the half-chaotic network has two peaks - 

the left of very small changes of network function and the right - of the large 

changes in the function. Between them is a big gap - intermediate changes 

practically do not occur (Fig.1a). This allows us to naturally determine the 

"level of order" q as the content of the left peak. This q is the most important 

characteristic of the damage distribution (Fig.1c, 2a,f), which clearly 

distinguishes the half-chaotic systems (J in Fig.2f, Fig.1c without X, Fig.3a,b) 

from the chaotic ones (X in Fig.1c, 2f, 3c). The right peak was predicted by 

Derrida (Derrida and Pomeau [4], Derrida and Weisbuch [5], Gecow [7, 8]) in 

the annealed approximation model - it is a chaotic reaction, the maximal loss of 

information about earlier function. It can be said that the system ceases to be 

itself from before of the disturbation, completely loses its adaptation (if it was 

adapted), or more generally - purposeful action. 

Disturbation initiating of network function change can be very different. In my 

main study I used permanent change of node function in one node only for one 

(initial) state of inputs. For s = 4 we can change the value of the function to 3 

other values. In another investigation I use addition and removal of node. 

The natural question arises: Will leaving such disturbing changes, modeling the 

evolution of the object, results in the loss of the half-chaos? It turns out that 

leaving only the changes that triggered a minor change in the range of  left peak 

allows for a long evolution without losing half-chaos. This feature, termed the 

‗evolutionary stability of the half-chaos‘, is included into definition of the half-

chaos. The system is changing slowly - it remains "self", although it evolves and 

may lose the point attractor. Changes in the network functioning are small but 

not negligible. However, the attractor typically remain small. 

Accepting only minor changes in the naturally separated left peak is the real 

basis of the ‗natural identity criterion‘. Acceptance of one initiating change 

giving a chaotic change of function (from the right peak) causes (experiments X 

in Fig.2f, 1c) that the feature of half-chaos disappears, and the system becomes 
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typically chaotic. It is a good model of death, which is necessary for elimination 

in the Darwinian basic mechanism. Simultaneously, elimination is the 

opposition of identity continuity defined by the left peak. It simplifies and 

clarifies the definition of the Darwinian mechanism and allowing it to be used to 

define life. 

 

 
 

Fig.1. The main result.  a, b – distribution of damage size,  a – full, b – left peak .  

A – Avalanche, number of different node states at maximal t (tmx) in disturbed and 

undisturbed networks. A is averaged over the last 50 timesteps. In the networks there are 

N = 400 nodes, and damage, d = A/N. The first character of the curve description (‗d‘, 

‗4‘, ‗5‘, ‗6‘, ‗7‘) indicates the experiment, while the second shows the network type (‗f‘ – 

scale-free, ‗r‘ – Erdős-Rényi ‗random‘). Only the networks in experiment ‗d‘ are Boolean 

(number of equally probable signal  variants,  s = 2)  but  connectivity (number of input 

links), K = 4. In all remaining experiments, s = 4 and K = 3. Fully random networks with 

such values of parameters s and K are chaotic (only the right peak exists), but here, the 

left peak exists and its share is not negligible (see q in c). Such a picture, with two peaks, 

is for each particular network. They are neither ordered nor chaotic; thus, I call them 

‗half-chaotic‘. The results from a few hundred networks for each experiment are 

summarized here. Errors are not calculated due to the presence of many types of rare 
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causes, which make such calculation inadequate—the smoothness of the curves is 

enough. 

c – Half-chaos – fractions of ordered events (q) and chaotic. In the range of q an order 

resulting from the absence of output in some nodes (k = 0) in the network er is isolated as 

yellow. For ‗d‘ and X (from ‗7‘) there are no evolution, the results concern the network 

immediately after generation of half-chaos, but for X also after acceptance of one chaotic 

change, which gives a typical chaos (see also Fig.2f). In the remaining methods (‗5‘, ‗6‘ 

and ‗7‘) result is a sum of the results of 4 stable set M, as in a,b, (see Fig.2). s,K = 4,3 

except ‗d‘ where s,K = 2,4. 

 

 
 
Fig.2. The stabilization of basic parameters during evolution is the main argument 

for evolutionary stability of half-chaos. 

The similarity of half-chaos based on  in-ice-modularity, despite the differences in the 

way (‗5‘,‘7‘) of it obtaining. For ‗6‘ it is no  in-ice-modularity, then lack ‗6‘ in (c,d,e).  

Sets J, M1, M7, M13, M19 and M20 of initiation are full - no blocking of reverse 

changes (‗5-7‘, N=400). Initial set J and M1, see (c,d,e) are not yet stabilized, therefore 

they are not summarized in Fig.1. 
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a - Stability of parameter q (degree of order of the system, the contents of the left peak in 

Fig.1) shows lack of moving towards the chaos (smaller q) during the evolution. 

b - The average time of five latest explosion to the chaos does not grow. In the chaotic 

networks such explosions (Fig.3c) happen almost until the not yet exploded processes 

exist. 

c - The average size of the ice and of the local clusters. In ‗6‘ there is no ice. 7f has a 

specific derogation, but it also stabilizes.  

d - The average number of global clusters.  

e - The average number local clusters.  

f - Average q(t) in sets of J and X, starting after construction  of  in-ice-modular system 

(‗7‘). In this experiment (part of ‗7‘) N=800, tmx=2000, no evolution and M sets. J gives 

a typical picture for half-chaotic systems - q quickly stabilizes and is high. X starts after 

accumulation one disturbing permanent change, which has given large damage 

avalanche. Here q(t) drops up to tmx and probably further, but not for er due to k=0.   
 

5 Short attractor and  in-ice-modularity 
 

A more detailed analysis of the mechanisms for maintaining the increased 

stability of systems with chaotic parameters has shown that the basic condition 

of the statistically significant presence of the left peak in the damage 

distribution is a sufficiently short attractor. It allows to limit the number of 

different circumstances in which secondary initiations (disturbations) appear in 

effect of encountering an input state by a node for which the value of the 

function was changed. For one expiration of the damage is relatively probable, 

but the fade out of each of the many independent disturbations is practically 

impossible. 

It was checked by the method ‗6‘ that such the condition is sufficient to obtain a 

half-chaos, but the shape of the left peak (Fig.1b) was significantly different 

from obtained starting from point attractor (method ‗5‘). Practically it contains 

only lack of functional change (A = 0) and therefore such system is not suitable 

for modeling the evolution of objects like administrative units, technological 

processes, technical constructions and living organisms. 

The differences in the half-chaos mechanisms obtained starting from the point 

attractor (‗5‘) and from the small attractor (‗6‘) were investigated more in 

details. It turned out that the mechanism in the first case is very similar to the 

indicated by Kauffman in the vicinity of the phase transition – ―small lakes of 

activity in the ice‖ (originally: ―unfrozen islands‖) (Kauffman [12]). Kauffman 

calls ice nodes that do not change their state. Starting from the small attractors 

(‗6‘) practically does not create ice. Point attractor system is a completely 

frozen, disturbation unfreezes small subset of nodes (Fig.2c), and inside it 

attractor is usually small. After accumulating such the change, the next 

disturbation unfreezes another independent piece (clusters in the figures), and an 

image similar to modularity is created. I called it  in-ice-modularity. In-ice-

modules are also the classic modules, but this is only one, supporting, but less 

important factor. The main property of the  in-ice-modules is the activity - 

changes of the states of forming them nodes. The ice surrounds them and 

isolates  from  the  other  in-ice-modules.   In-ice-modules  are  the  result  of the 
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Fig.3. Half-chaos and chaos in the presentation of A(t) from simulation of a full set 

of small permanent disturbations.  

A - number of the nodes states different than in the not disturbed system. t is a number of 

steps of network calculation from damage initiation. The details should be watched in 

enough magnification - they were presented on the screen pixels. Showed examples are 

typical for all experiments or network types. Here s =4, it indicates level of Derrida 

equilibrium near A=290 (see Fig.1a). Typical N = 400, tmx = 1000 is used, so the 

rectangle has a dimension of 400*1000 pixels. After each of 1200 initiation A(t) is drawn 

with a continuous black line. As can be seen, the transition to chaos in the vicinity 

Derrida balance is rapid in several to over a dozen steps, where A increases drastically, 

so I call it "explosion." Threshold is here chosen at A=150 which is marked in red. It is 

used for q calculation. After the end of initiation set, the red curve q(t) - the share of 

processes that in the time t did not cross the threshold, was added to the figure. q=1 for 

A=N. Red description of the left has been added for readability. Blue line describe the 

share of processes that currently have A = 0, i.e. damage fade out.  

a – Half-chaos. The red curve q(t) quickly stabilizes at a high level near q=0.4. (See 

Fig.2f.) In the lower part of the graph many trajectories are drawn (there are 476 of 

1200). The last explosion occurs at t=18. These, and lot of other data are presented on the 
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screen and saved, they are described in details in (Gecow [8, 9]). Blue line is much lower 

than red. It means, that most of stable processes are not a case of damage fade out (A=0). 

b – A premise of  in-ice-modules. The lower part of the similar to (a) image, but a case 

with larger fluctuation. The q level is here high, near q = 0.55. A distribution of damage 

size lower than threshold 150 was studied on section from t = 600 to tmx (purple curve 

on the right frame). It is one of ways to see the  in-ice-modules existence. The seen 

significant peak is probably an effect of stimulating of one hypothetical large  in-ice-

module.  

c – Chaos. Typical form for sf network type, for er and ss explosions typically end 

earlier. Here one process has not  yet exploded at tmx. Experiments X  (see Fig.2f) have 

also such the picture. Here, q(t) is steadily decreased until not 'exploded' processes exist. 

For the chaotic system processes which fade out (A=0, blue line) are the main part of not 

yet exploded which build q, the secondary initiations lead typically to their explosion. 

 

functioning defined by the functions and states of nodes in a given structure. 

This state really gives the half-chaos based on small attractors, but they are local 

attractors in  in-ice-modules, and their assembly can give quite a large global 

attractor for the whole system. Local clusters (present in one process after one 

permanent change) are defined as sets of nodes with the same period of state 

changes. There are usually several local clusters (Fig.2e) at the same time, and 

ice occupies most of the network (Fig.2c). In the method ‗6‘ there is usually one 

cluster covering almost the entire network, there is lack of  in-ice-modules but 

the classic modules are present like in method ‗5‘. In one process of evolution 

very close clusters are frequent, they freeze for many initial changes and 

reappear, often changing their period. A set of such similar clusters in the 

process of evolution of a given network is called global cluster (Fig.2d), but its 

definition is fuzzy and abounds in many different phenomena difficult to 

resolve. Among them are assembling and disintegration of clusters.  

An algorithm is developed to create a  in-ice-modular system based on such a 

description, in the networks with random structure, without starting from the 

point attractor. It effectively gives half-chaos (‗7‘) with similar properties 

observed when starting from the point attractor (‗5‘). It is unnecessary to force  

the small attractors in the  in-ice-modules.  

 

6 The supports for stability 
 

It is generally believed that the stability of the various systems results from 

homeostasis based on regulation by negative feedback. Kauffman [14] pointed 

instead to the property of ordered phase (order for free) as the most important 

reason, but for it extremely small K should be expected. Searching for 

mechanisms for increasing the stability of systems with chaotic parameters I 

began with an attempt to show that increasing the share of negative feedback is 

sufficient (Gecow [8]). However, this claim turn out to be wrong, a short 

attractor is necessary, but negative feedback indeed (Gecow [8, 9]) causes very 

strong support for stability. Narrowing of functions and always present 

modularity also are insufficient, but similarly supportive. However, research on 

modularity is rather superficial and the subject needs to be deepened. 
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7 The basic details of simulations 
 

Simulation studies and their analysis include many important details that are 

unfeasible to include in this article. They are described in more than 200 pages 

of reports (Gecow [9]), only selected of them in article (Gecow [8]). Only basic 

ones are listed here.  

The typical size of the studied network is N=400 nodes, but experiments with 

N=800 and even 4000 also exist. The basic parameters are: s - the number of 

equally probable states of the signal, uniquely s=2 (the Boolean network 

denoted by ‗d‘ in Figs.1) or usually s=4; and K - number of inputs to the node, 

constant for the whole network, K=4 for s=2 and K=3 for s=4. A(t) - the number 

of node states different from the undisturbed pattern at a given moment t is the 

principal measured value. This value is shown in Fig.3 and is also used (Figs.2f, 

3) to determine q(t). The particular system is calculated at tmx discrete time 

steps t after disturbation, and then at t=tmx, more adequate value for the final 

results (Fig.1) is recorded as averaged A over the last 50 counting steps t. 

Typically, tmx is 1000, but longer stretches are also used, even up to 20000. The 

tmx value was arbitrarily determined on the basis of preliminary simulations, 

but it is checked whether the increase would not change the results. 

Network types sf, ss and er are used in experiments described here. The second 

letter indicates the network type in the figures. The number of networks with 

parameters type,s,K in a particular final simulation is usually about 600, it 

happens 100, but often experiments were repeated in a similar way, giving a 

much greater certainty. Due to the strong influence of various factors, often 

sporadic, formal errors in the obtained results are not calculated, judging such a 

calculation as clearly inadequate and misleading. This problem is limited to the 

similarity of results from the similar simulations and the visual evaluation of 

fluctuations. The evolution of the experiments ‗5‘, ‗6‘, ‗7‘ has many additional 

constraints to increase credibility. They are similar in these three cases for the 

basic results, but moreover, a series of simulations of other rules are performed. 

After initial set of initiation (J) there are 20 sets M, in most of them the reversal 

of the accepted changes are blocked. This results in the exclusion of a large 

number of initiations from the measurements and leads to a significant 

slowdown of evolution. After several such set, the reversal is allowed (M1, M7, 

M13, M19, M20), assuming that the change has already another circumstances. 

It also allows to correct measure of various phenomena that illustrate evolution 

(Fig.2). Since the attractor is decreasing spontaneously, making it difficult to 

move away from the point attractor, it is also forbidden to reduce the global 

attractor to less than 7, and in the M20 (at ‗5‘, ‘6‘, ‘7‘) to reduce the attractor. 

Also, the point of initiation of damage is shifted by t=50 after each accumulated 

change, because the magnitude of this shift turn out to be a significant factor.  
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8 Conclusion 
 

Various complex objects adapted by natural selection or humans were attempted 

to model by dynamic complex networks. For that, Kauffman's Boolean 

networks are perfect. It was estimated that mean connectivity K should be 

clearly larger than 2. However, such networks, according to current views, 

should be chaotic, and this did not match the features of modeled objects. The 

discovery of the half-chaos in which K and s can take larger values than the 

extreme 2, and yet in the model remains the order, removed from this modeling 

sharp constraints, which until now are the typical basis of many considerations   

(Nghe et al. [18], Serra et al. [19, 20], Kauffman [12, 14], Aldana et al. [1, 2], 

Luque and Ballesteros [17], Sole et al. [23], Kauffman et al. [15], Shmulevich et 

al. [22], Iguchi et al. [10], Villani et al, [25], Kinoshita, [16]). This opens the 

door to adequate models with complex networks. 

Kauffman's well-known hypothesis (Kauffman [12, 13]) "lives on the edge of 

chaos and order" as a result of deepening the model and finding the half-chaos is 

here modified to "life evolves in the half-chaos of not fully random systems". 

This change entails deeper interpretive conclusions, indicates the natural basis 

of the identity of the evolving object and the model of its death necessary for 

Darwinian elimination. 

Of course, such a brief summary is necessarily a great simplification. Basing the 

conclusions on the finite network simulations in complex nonlinear phenomena 

is well-justified, but is in conflict with the habit of defining chaos through 

Lyapunov exponent, whose analog for networks (coefficient of damage 

propagation (Gecow [7]) and eq.2.3 in (Aldana et al. [1])) in the case of half-

chaos turns out to be misleading. The presented results can be treated as a guide 

to developing more advanced methods, but in the case of finite, dynamic 

complex networks, it will not necessarily be a more comfortable and more 

relevant description. 
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Albert Einstein and the doubling of the deflection of light 

 

Jean-Marc Ginoux1 

 

 

One of the three consequences of Einstein’s theory of general relativity was the curvature of 

light passing near a massive body. In 1911, he published a first value of the angle of 

deflection of light, then a second value in 1915, equal twice the first. In the early 1920s, when 

he received the Nobel Prize in Physics, a violent controversy broke out over this result. It was 

then disclosed that the first value he had obtained in 1911 had been calculated more than a 

century before by a German astronomer named Johann von Soldner. The aim of this article is 

therefore to compare the methods used by Soldner and then by Einstein leading to this first 

value and to explain the importance of the doubling of this value in the framework of 

Einstein’s theory of gravitation.   

 

A. The Genesis of General Relativity and the Curvature of Light 

 

Two years after the publication of his article on special relativity, Albert Einstein considered 

generalizing his theory. Thus, in 1907, he wrote an article entitled “Relativitätsprinzip und die 

aus demselben gezogenen Folgerungen” (“On the Principle of Relativity and the Conclusions 

Drawn from it”), at the request of Johannes Stark, editor of the Jahrbuch der Radioaktivität, 

in which he presented for the first time one of the consequences of his theory. In paragraph V. 

entitled “The Principle of Relativity and Gravitation”, he wrote: 

 
                                                 
1 Laboratoire des Sciences de l’Information et des Systèmes, LIS, CNRS, UMR 7020 – Archives Henri Poincaré, 
AHP, CNRS, UMR 7117. 
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“From this it follows that those light rays that do not propagate along the  -axis 

are bent by the gravitational field2…” 

 

At that time Einstein thought that the effect of gravitational field on rays of light was too 

weak to be detected as evidenced by his conclusion: 

 

“Unfortunately, the effect of the terrestrial gravitational field is so small according 

to our theory (because of the smallness of 
2

x

c


) that there is no prospect of a 

comparison of the results of the theory with experience3.” 

 

During the autumn 1911, Einstein became full professor of theoretical physics at the 

German Charles-Ferdinand University in Prague. Einstein lived more than a year at number 7 

Leniscka Street with his first wife Mileva Maric and their two children Hans Albert and 

Eduard. Here he wrote a second article, considered as the starting point of his theory of 

general relativity: “Einfluss der Schwerkraft auf die Ausbreitung des Lichtes” (“On the 

influence of Gravitation on the Propagation of Light”) in which he gave a first value of the 

deflection of light passing near a massive body. In paragraph 4 entitled Curvature of light rays 

in the gravitational field, he wrote: 

 

“By equation (4) a light-ray passing by a heavenly body suffers a deflection to the 

side of the diminishing gravitational potential, that is, to the side directed toward 

the heavenly body, of the magnitude 

 

                                                 
2 Albert Einstein, “Relativitätsprinzip und die aus demselben gezogenen Folgerungen” (“On the Principle of 
Relativity and the Conclusions Drawn from it”) Jahrbuch der Radioaktivität, 4, 411–462, 1907.  
3 Ibid. 
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where k denotes the constant of gravitation, M the mass of the heavenly body, Δ 

the distance of the ray from the center of the body (and r and   are as shown in 

Fig. 3). A light-ray going past the Sun would accordingly undergo deflection by 

the amount of 4.10−6 = 0.83 seconds of arc. The angular distance of the star from 

the center of the Sun appears to be increased by this amount. As the fixed stars in 

the parts of the sky near the Sun are visible during total eclipses of the Sun, this 

consequence of the theory may be compared with experimental evidence4.” 

 

Then, he added: 

 

“It would be urgently wished that astronomers take up the question here raised, 

even though the considerations presented above may seem insufficiently 

established or even bizarre. For, apart from any theory, there is the question 

whether it is possible with the equipment at present available to detect an 

influence of gravitational fields on the propagation of light5.” 

 

In 1913 Einstein was appointed, on the recommendation of Marie Curie and Henri Poincaré, 

to a chair of mathematical physics at the Swiss Federal Polytechnic in Zürich (later the 

Eidgenössische Technische Hochschule, ETH) where he had studied a few years earlier. The 

following year, he joined Berlin to become director of the Kaiser-Wilhelm Institute of Physics, 

                                                 
4 Albert Einstein, “Einfluss der Schwerkraft auf die Ausbreitung des Lichtes” (“On the influence of Gravitation 
on the Propagation of Light”), Annalen der Physik, 4(35), 898–908, 1911. 
5 Ibid. 
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and university professor. On November 1915, he submitted four papers to the journal of the 

Prussian Academy of Sciences6. Then, he published in 1916 in Annalen der Physik a 40-page 

article entitled “Die Grundlage der algemeinen Relativitätstheorie” (“The Foundations of the 

General Theory of Relativity”) considered as the final and complete version of his theory of 

general relativity. In the last section he presented the three observable physical consequences 

of his theory and in particular the curvature of the light rays and explained that this latter 

consequence could be verified by exact astronomical experiments: 

 

“From this it follows that the spectral lines of light reaching us from the surface of 

large stars must appear displaced towards the red end of the spectrum*. 

 

*According to E. Freundlich, spectroscopical observations on fixed stars of 

certain types indicate the existence of an effect of this kind, but a crucial test of 

this consequence has not yet been made7.” 

 

Then, he provided a second value of the deflection of light passing near a massive body: 

 

“We examine the curvature undergone by a ray of light passing by a masse M at 

the distance Δ. If we choose the system of co-ordinates in agreement with the 

                                                 
6 Albert Einstein, “Grundgedanken der allgemeinen Relativitätstheorie und Anwendung dieser Theorie in der 
Astronomie” (“Fundamental Ideas of the General Theory of Relativity and the Application of this Theory in 
Astronomy”), Preussische Akademie der Wissenschaften, Sitzungsberichte, 315, 1915, “Zur allgemeinen 
Relativitätstheorie” (“On the General Theory of Relativity”), Preussische Akademie der Wissenschaften, 
Sitzungsberichte, 778-786 & 799-801, November 4, 1915, “Erklärung der Perihelbewegung des Merkur aus der 
allgemeinen Relativitätstheorie” (“Explanation of the Perihelion Motion of Mercury from the General Theory of 
Relativity”), Preussische Akademie der Wissenschaften, Sitzungsberichte, 831-830, November 18, 1915, 
“Feldgleichungen der Gravitation” (“The Field Equations of Gravitation”), Preussische Akademie der 
Wissenschaften, Sitzungsberichte, 844-847, November 25, 1915. 
7 Albert Einstein, “Die Grundlage der allgemeinen Relativitätstheorie” (“The Foundations of the General Theory 
of Relativity”), Annalen der Physik, 4(49), 769–822, 1916. 
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accompanying diagram, the total bending of the ray (calculated positively if 

concave towards the origin) is given in sufficient approximation by8 

 

2

M
B







 

 

According to this, a ray of light going past the sun undergoes a deflexion of 

1.7’’…” 

 

It is very surprising to notice that this second value of the angle of deflection of light provided 

by Einstein is equal twice the first. It will be learned some years later that the first value 

provided by Einstein in 1911 was in fact identical to that published a century earlier by the 

German physicist and astronomer Johann Georg von Soldner9. According to Abraham Pais : 

 

“An Argentinian eclipse expedition which had gone to Brazil in 1912 and which 

had the deflection of light on its experimental program was rained out. In the 

summer of 1914, a German expedition led by Erwin Freundlich and financed by 

Gustav Krupp, in a less familiar role of benefactor of humanity, headed for the 

Crimea to observe the eclipse of August 21. (Russian soldiers and peasants were 

told by their government not to fear evil omens: the forthcoming eclipse was a 

natural phenomenon.). When the war broke out, the party was warned in time to 

                                                 
8 The value 28 K c   where K represents the Cavendish’s constant.  
9 This fact has been reported since by many historians of science such as Thomas Glick, The Comparative 
Reception of Relativity, Boston Studies in the Philosophy and History of Science, Vol. 103, Springer Netherlands, 
Dordrecht, D. Reidel, 1987; Jean Eisenstaedt, « De l’influence de la gravitation sur la propagation de la lumière 
en théorie newtonienne. L’archéologie des trous noirs », Archive for History of Exact Sciences, Vol. 42 (4), 
(September 1991), p. 315-386. Jürgen Renn, The Genesis of Relativity, Vol. 1-4, Boston Studies in the 
Philosophy and History of Science, Vol. 250, Springer Netherlands, Dordrecht, D. Reidel, 2007; Milena Wazeck,  
On Einstein’s opponents: the public controversy about the theory of relativity in the 1920s, Cambridge; New 
York: Cambridge University Press, 2014. Nevertheless, neither of these references contains any mathematical 
analysis nor comparison of Soldner’s and Einstein’s results.  
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return and some did so. Those who hesitated were arrested, eventually returned 

home safely but of course without results. Frustration continued also after 

November 18, 1915, the day on which Einstein announced the right bending of 

1”74. […]  

An opportunity to observe an eclipse in Venezuela in 1916 had to be passed up 

because of the war. Early attempts to seek deflection in photographs taken during 

past eclipses led nowhere. An American effort to measure the effect during the 

eclipse of June 1918 never gave conclusive results. It was not until May 1919 that 

two British expeditions obtained the first useful photographs and not until 

November 1919 that their results were formally announced10.” 

 

When the armistice was signed on November 11, 1918, two expeditions were mounted, one to 

Sobral in Brazil, led by Andrew Crommelin from the Greenwich Observatory, and one to 

Principe Island off the coast of Spanish Guinea, led by Eddington. After the return of the 

expeditions, data analysis began. Einstein could not hide his enthusiasm in the expectation of 

the results. On September 22, 1919, Hendrik Lorentz sent a telegram to Einstein announcing: 

 

“Eddington found stellar shift at solar limb, 

tentative value between nine-tenths of a second and twice that.” 

 

On the afternoon of November 6, 1919, at Burlington House in Piccadilly, the Astronomer 

Royal, Sir Frank Dyson, had the honour of presenting the results of the two expeditions. He 

described in detail the equipment, the photographs, and the complexities of the computations. 

His conclusion, however, was simple.  

                                                 
10 Abraham Pais, Subtle Is the Lord: The Science and the Life of Albert Einstein, Oxford University Press, 1982, 
p. 304. 
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“The results of the expeditions to Sobral and Principe leave little doubt that a 

deflection of light takes place in the neighbourhood of the sun and that it is of the 

amount demanded by Einstein’s generalized theory of relativity.” 

 

Thus, it was considered that the astronomical observations had ‘‘demonstrated’’ the curvature 

of space. The day after, Einstein’s name became legendary. The London Times published an 

article entitled “Revolution in Science, New Theory of the Universe, Newtonian ideas 

overthrown”. On November 9, 1919, the New York Times published the following article:  

 

“Diversion of light Rays Accepted as Affecting Newton’s Principles11.” 

 

Thus, in 1919 the expedition led by Crommelin and Eddington “confirmed” Einstein’s second 

prediction, that is to say, that the value of the deflection of the light passing near the Sun was 

equal to 1.7 seconds of arc12. Moreover, the question, which was the subject of intense 

controversy, was whether or not Einstein was aware of Soldner’s work when he published his 

article in 1911. 

 

B. Controversy around the curvature of light 

 

In the early Twenties, Einstein and his theory of relativity were subject to many attacks of 

various natures13. The first, the most odious, had an anti-Semitic character. Then, in 1921, 

scientists such as Charles Lane Poor, a professor of astronomy, a specialist in Celestial 

                                                 
11 See Jean-Marc Ginoux, Albert Einstein: a biography through the Time(s), Hermann, Paris, 2016. 
12 Eddington’s results for the solar eclipse observation of the apparent displacement of stars of 1919 have been 
widely disputed by many historians of science. See for example John Earman and Clark Glymour, “Relativity 
and Eclipses: The British Eclipse Expeditions of 1919 and Their Predecessors,” Historical Studies in the 
Physical Sciences, Vol. 11, No. 1 (1980), p. 49-85. 
13 See Milena Wazeck, On Einstein’s opponents: the public controversy about the theory of relativity in the 
1920s, Cambridge; New York: Cambridge University Press, 2014. 
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Mechanics at Columbia University, tried to prove that Einstein’s theories of relativity were 

false. To this aim he published an article entitled « Is Einstein wrong? – A debate14 ». When 

Einstein was invited to the Collège de France in 1922 by Paul Langevin, his theories were 

challenged by Édouard Guillaume who had worked with him as a patent examiner at the 

Swiss patent office in Bern and had come purposely from Swiss in order to “destroy 

relativity”. Indeed, he had published a few weeks beforehand an article entitled: “Y a-t-il une 

erreur dans le premier mémoire d’Einstein ?” which let no doubt concerning his intentions15.  

Unfortunately, this anti-relativistic attitude was shared by a part of the French scientific 

community and more particularly by many Academicians of Sciences. It has been initially 

convened that Einstein presents his work at the Academy but some of the members of the 

Academy had decided as a protest against his presence to rise and leave the hall as soon as he 

entered, Einstein had to renounce16. In August 1922, Einstein, who had received many death 

threats, decided to leave temporarily Europe. On October 8, 1922, Albert Einstein and his 

second wife Elsa came aboard the S.S. Kitano Maru in Marseille (south France) and reached 

then their final destination at Fukuoka in Japan where Einstein gave a lecture at the Daihaku 

Theater. On November 15, during a stopover in an hotel of Shanghai, Einstein received a 

telegram from Sweden announcing him that he has been awarded the Nobel Prize of Physics 

for “his contribution to theoretical physics and more particularly for his discovery of the law 

of photoelectric effect” and not for his relativity theories.  

This news almost immediately triggered new reactions. Einstein’s most virulent opponent was 

the German physicist Philipp Lenard, Nobel Prize in 1905 (the year of the relativity theory) 

                                                 
14 Charles Lane Poor, “Is Einstein wrong? – A debate” in The Forum, June 1924, p. 705-715. 
15 Édouard Guillaume, “Y a-t-il une erreur dans le premier mémoire d’Einstein ?” Revue Générale des Sciences 
Pures et Appliquées, vol. 33, 15 janvier 1922, p. 5-10.   
16 See Michel Biezunski, Einstein à Paris, Paris, Presses universitaires de Vincennes, Saint Denis, 1991, p. 26. 
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and active proponent of the Nazi ideology. Then, in April 1923 Professors Ernst Gehrcke17 of 

Berlin, P. Lenard of Heidelberg, O. E. Westin 18  of Stockholm charged Einstein with 

downright plagiarism, saying: 

 

“From these facts the conclusion seems inevitable that Einstein cannot be 

regarded as a scientist of real note. He is not an honest investigator.” Thus Westin 

protested to the Directorate of the Nobel Foundation against the reward of 

Einstein19.”  

 

What were “theses facts” invoked by the three professors against Einstein? The New York 

Times of April 13 provides the answer: 

 

“… in 1801 Dr. J. von Soldner, a German physicist of eminence in his day, 

actually derived the formula recently used by Einstein. This was 122 years ago. 

Einstein never once mentions Soldner in his writings. This is bad enough, but the 

worst is yet to come. 

It has been shown by Professor Dr. E. Gehrcke, Director of the Imperial Physical 

and Technical Institute of Berlin, a position first filled by Helmohltz and by 

Professor P. Lenard of Heidelberg, winner of the Nobel Prize in Physics, that 

Soldner omitted a certain factor in his formula of l801, which error Einstein also 

copied when he appropriated the Einstein-Soldner formula in the Einstein paper 

of 1911. In a subsequent paper to the Berlin Academy of Science, 1915, Einstein 

                                                 
17 E. Gehrcke (1878-1960) was a German experimental physicist, Director of the Imperial Institute of Berlin. He 
was a Privatdozent at the Friedrich-Wilhelms-Universität from 1904 to 1921 and an außerordentlicher Professor 
(extraordinarius professor) from 1921 to 1946.  
18 Oscar Edward Westin (1848-1930) was a Swedish engineer, professor of mechanical engineering at the Royal 
Institute of Technology in Stockholm. 
19 See The New York Times, April 13, 1923. This event is also mentioned in Philipp Frank, Einstein: His Life and 
Times, New York, A. A. Knopf, 1947, p. 202 and next.  
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camouflaged this fraud as best he could, yet could not prevent its discovery and 

exposure by Professors Lenard of Heidelberg, Gehrcke of Berlin and Westin or 

Stockholm.” 

 

To these three scientists was added the professor Arvid Reuterdahl, Dean of the Engineering 

Department of the University of St. Thomas, St. Paul, Minnesota. He sent a letter to the Editor 

of The New York Times published on June 3, 1923 and in which he claimed: 

 

“There are two episodes in the Einsteinian development of the bending of light. In 

Einstein’s 1911 paper the value of the deflection is given as 0.83 of a second. 

Soldner’s value was 0.84 of a second. The two formulae are identical except in 

the matter of the convenient substitution by Einstein of different letters than those 

used by Soldner. Compared, letter for letter, the meanings are, however identical20. 

In his 1916 paper Einstein modified his 1911 value to read 1.7 of a second. 

Einstein has never taken the world into his confidence concerning the reason of 

this change. He has never admitted that either one or the other of these values 

must be erroneous21.” 

 

Indeed, in 1916, in his famous article entitled “The Foundations of the General Theory of 

Relativity22”, Einstein realized that his earlier result on the bending of light, he had presented 

in his previous article of 1911, was too small by a factor of 2. This factor will be proved to be 

decisive because it enables to reveal a strict separation between Newtonian and Einsteinian 

theory of gravitation. This was due to the fact that in his 1911 paper Einstein had not taken 

                                                 
20 See § C.3.  
21 We will see in § C.4 that this statement is partially inaccurate. 
22  Albert Einstein, “Die Grundlage der allgemeinen Relativitätstheorie” (“The Foundations of the General 
Theory of Relativity”), Annalen der Physik, 4(49), 769–822, 1916. 
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into account in his computations the curvature of space but, only included the effect of 

Newtonian gravitational interaction on the four-dimensional  space-time that he will express 

later in a Minkowskian metric. According to Abraham Pais : 

 

“Let us briefly recapitulate Einstein's progress in understanding the bending of 

light.  

1907. The clerk at the patent office in Bern discovers the equivalence principle, 

realizes that this principle by itself implies some bending of light, but believes that 

the effect is too small to ever be observed.  

1911. The professor at Prague finds that the effect can be detected for starlight 

grazing the sun during a total eclipse and finds that the amount of bending in that 

case is 0’’87. He does not yet know that space is curved and that, therefore, his 

answer is incorrect. He is still too close to Newton, who believed that space is flat 

and who could have himself computed the 0’’87 (now called the Newton value) 

from his law of gravitation and his corpuscular theory of light.  

1912. The professor at Zurich discovers that space is curved. Several years pass 

before he understands that the curvature of space modifies the bending of light. 

1915. The member of the Prussian Academy discovers that general relativity 

implies a bending of light by the sun equal to 1’’74, the Einstein value, twice the 

Newton value. This factor of 2 sets the stage for a confrontation between Newton 

and Einstein23.” 

 

 

 

                                                 
23 Abraham Pais, op. cit., p. 303. 
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C. Comparison of the work of Einstein and Soldner 

 

Such a comparison has been subject to many studies and several historians of science have 

analyzed both works of Soldner and Einstein from a mathematical point of view during these 

last decades. In 1975, Hans Fuchs published an article entitled “On the history of ideas about 

the effect of gravity on the light24” in which he presented the proofs leading to the value of the 

deflection of light passing near a massive body obtained by Soldner in 1801 and then by 

Einstein in 1911 and finally in 1915. After comparing Einstein’s paper of 1911 with that of 

Soldner of 1801, Fuchs wrote: “Man erhält also trotz Zuhilfenahme des Aquivalenzprinzips 

wieder den alten falschen klassischen Wert! Wie ist das möglich?25”. Then, he explained: 

“Obwohl wir von der Erde aus eine Verlangsamung der Vorgänge feststellen, werden wir 

doch mit gleichen Uhren auf der Sonne wie auf der Erde die gleichen Frequenzen und die 

gleiche Lichtgeschwindigkeit messen, weil die Uhren in gleichem Masse wie die 

Naturvorgänge verlangsamt werden! 

Diese logisch einwandfreie Sicht der Dinge erlangte Einstein erst durch das tiefere 

Verständnis, das durch die allgemeinen Relativitätstheorie gebracht wurde (nach 1915)26.” By 

using the Fields Equations of Gravitation and the Schwarzchild metric (including the so-

called Ricci tensors) Fuchs showed that Einstein was then able to give the “der korrekte 

relativistische Wert” (“the correct relativistic value”). He also compared the relativistic and 

classical calculations and stated that the two results differ by a factor of two. However, his 

proof is different from those presented in this paper. 

                                                 
24 Hans Fuchs, “Zur Geschichte der Ideen über die Wirkung der Schwerkraft auf das Licht,” Orion, Vol. 33 (151), 
(December 1975), p. 183-193. 
25 “Thus, despite the aid of the principle of equivalence, one gets the old false classic value again! How is that 
possible?” 
26 “Although we observe a slowing down of the earth from the earth, we will measure the same frequencies and 
the same speed of light with the same clocks on the sun as on the earth, because the clocks are slowed down to 
the same extent as the natural processes! 
Einstein achieved this logically correct view of things only through the deeper understanding that came with the 
general theory of relativity (after 1915).” 
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In 1978, Stanley Jaki published an article in which he recalled the historical context of the 

bending of light27. Starting from the seminal works of Newton and Laplace, he presented the 

controversy triggered out by Lenard, Gehrcke and Westin (see § B. above). Then, he proposed 

an English translation of Soldner’s article allowing historians of science to study and compare 

his works with those of Einstein28. He gives many details and references concerning Soldner’s 

life but didn’t provide any mathematical analysis of his article.  

In 1980, John Earman and Clark Glymour published a long article in which they compared 

Einstein’s results of 1911 and 1915. As Fuchs29, they recalled: “Einstein had not by 1911 yet 

absorbed the four-dimensional geometrical way of viewing space-time urged by Minkowski. 

In certain respects his thinking about space-time was still classical30.” Then, they explained: 

“Einstein gave two arguments for the deflection of light passing near a massive body such as 

the sun; one argument, given in 1911 before the general theory was in hand, relied on his 

“principle of equivalence,” while the other, given in 1916, used Einstein’s own approximate 

solution to his gravitational field equations together with Huygens’ principle from classical 

optics. The former derivation gave a value for the deflection at the limb of the sun of 0.83" of 

arc, the latter 1.7" of arc.” They concluded that: “By 1916 Einstein had obtained two different 

expressions for the angular deflection of a light ray by a massive gravitational source, both 

giving the angle as a hyperbolic function of distance of closest approach to the massive body. 

The two expressions, one from the principle of equivalence and the other from the general 

theory, differ only by a factor of two.” Nevertheless, they didn’t compare Einstein’s results 

with Soldner’s. 

                                                 
27 See also Jean Eisenstaedt, « De l’influence de la gravitation sur la propagation de la lumière en théorie 
newtonienne. L’archéologie des trous noirs », Archive for History of Exact Sciences, Vol. 42 (4), (September 
1991), p. 315-386. 
28 Stanley L. Jaki, “Johann Georg von Soldner and the gravitational bending of light, with an English translation 
of his essay on it published in 1801,” Foundations of Physics, December 1978, Vol. 8, Issue 11-12, p. 927-950. 
29 Hans Fuchs, “Zur Geschichte der Ideen über die Wirkung der Schwerkraft auf das Licht,” Orion, Vol. 33 (151), 
(December 1975), p. 183-193. 
30 John Earman and Clark Glymour, “Relativity and Eclipses: The British Eclipse Expeditions of 1919 and Their 
Predecessors,” Historical Studies in the Physical Sciences, Vol. 11, No. 1 (1980), p. 49-85. 
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In 1981, Hans-Jürgen Treder and Gerhard Jackisch published an article in which they 

considered that “A factor 2, which had been the occasion for misinterpretation, has to be 

attributed to the terminology used by German physicists and astronomers of that time31.” 

They concluded that: “Soldner did nowhere draw false inferences but fell a victim to the 

printer’s devil, and it is indisputable that Soldner obtained the Newtonian value of the 

deflection of light, which with respect to the constants of his times amounts to 0''84, and not 

to Einstein’s value.” Nevertheless, it is obvious that they compared Soldner’s result with that 

provided by Einstein in 1915 and not with that of 1911. Moreover, their conclusion has been 

challenged by historians of science such as Ledo Stefanini32 who wrote: “Some scholars 

attribute the numerical errors appearing in Soldner’s memoir (correctly pointed out by Lenard 

in 1921 republication) to typographical errors33, but this does not suffice to clear the issue.” 

So, the aim of this work is to mathematically compare the formula obtained by Soldner with 

the one stated by Einstein in his paper of 1911 and to verify if they are identical or not. By 

using a simple first-order series expansion, it will thus be proved (to our knowledge for the 

first time) that both Soldner’s and Einstein’s formula are perfectly identical. Then, a 

mathematical analysis of the second formula concerning the bending of light established by 

Einstein in 1915 will enable to explain the importance of the doubling of this value in the 

framework of Einstein’s theory of gravitation. 

  

 

 

 

 

                                                 
31  Hans-Jürgen Treder and Gerhard Jackisch, “On Soldner’s value of Newtonian deflection of light,” 
Astronomische Nachrichten, Vol. 302 (6), (May 1981), p. 275-277. 
32 Ledo Stefanini, “A misunderstanding in Soldner’s interpretation of the gravitational deflection of light,” 
Lettera Matematica, Vol. 4 (3-4), (March 2017), p. 167-172. 
33 Stefanini quotes Hans-Jürgen Treder and Gerhard Jackisch. 
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1. Value of deflection of light by Soldner in 1801 

 

Johann Georg von Soldner (1776-1833) was a German physicist, mathematician and 

astronomer. He first worked in the Berlin Observatory (Berliner Sternwarte) and later in 1808 

in Munich where he became a member of the Academy of Sciences and the director of the 

observatory in Bogenhausen. In a paper written in March 1801 and published in 1804, he 

calculated the amount of deflection of a light ray by a star based on Newton‘s corpuscular 

theory of light and wrote:  

 

“It is, of course, true that already through observations and otherwise one was 

aware of considerable deviations from an assumed law; such as was the case with 

the aberration of light. There can, however, be deviations which are so small that 

it is difficult to decide whether they are true deviations or errors of observation. 

There can also be deviations which are considerable but, being combined with 

magnitudes one has not yet succeeded in clearly identifying, escape the observer.  

Of the latter kind may be the deviation of a light ray from straight line when it 

passes close by a celestial body and is considerably exposed to its attraction34.” 

 

Soldner then presented the following diagram (see Fig. 1). 

 

                                                 
34 See J. von Soldner, “Ueber die Ablenkung eines Lichtstrals von seiner geradlinigen Bewegung,” (“On The 
Deviation Of A Light Ray From Its Motion Along A Straight Line Through The Attraction Of A Celestial Body 
Which It Passes Close By”), Berliner Astronomisches Jahrbuch, 1804, p. 161-172. See also Stanley L. Jaki, 
“Johann Georg von Soldner and the gravitational bending of light, with an English translation of his essay on it 
published in 1801,” Foundations of Physics, December 1978, Vol. 8, Issue 11-12, p. 927-950. 
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Fig. 1. Soldner’s diagram for deflexion of a light ray. 

 

Then, he indicated that “C (Fig. 1) is the center of the attracting body, A is the location at its 

surface. From A, a light ray goes into the direction AD or in the horizontal direction, by a 

velocity with which it traverses the way v in a second. Yet the light ray, instead of travelling 

at the straight line AD, will forced by the celestial body to describe a curved line AMQ, 

whose nature we will investigate (…) g be the gravitational acceleration at the surface of the 

body. Furthermore CP = x, MP = y and the angle MCP  .” Then, he explained: 

 

“The force with which the light ray at M will be pulled by the body in the 

direction MC, will be 22gr . This force can be decomposed into two others, 

 2

2g
cos

r
  and  2

2g
sin

r
  according to the directions x and y; and therefore one 

obtains the following two equations (s. Traité de mécanique céleste par Laplace, 

Tome I, p. 21) 
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2

2 2

2d x g
cos

dt r
   

 

       
2

2 2

2d y g
sin

dt r
  …”  

 

These two equations correspond to the projection along the x and y directions of Newton’s 

second law according to which the product of the mass by the acceleration (left hand side) is 

equal to Newton’s gravitational force (right hand side). 

Soldner’s simplification of the “mass of a ray of light” on either side of this equality is 

consistent with Newton’s theory of light then considered as made up of small discrete 

particles called “corpuscles”. Indeed, it is only in 1803, three years after the writing of 

Soldner’s article, that Thomas Young (1773-1829) performed his famous double-slit 

experiment from which he proposed a wave theory of the light. Thus, starting from the two 

preceding equations and after a demonstration which does not present any great difficulties, 

Soldner draws the following conclusion: 

 

“The light ray, however, comes in the direction DA to the eyes of the observer; 

thus ADB will be the angle of perturbation. If one calls this angle ω then one has, 

since the triangle ABD at A is a right triangle 

 

tan
AB

AD
   

 

If one puts these values for AB and AD in the expression for tan ω, then one has 
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v v g
 


 

 

If one substitutes in the formula for tan ω  the acceleration of gravity on the 

surface of the sun, and one takes the radius of that body for unity, then one finds 

ω = 0’’.84. If one could observe the fixed stars very close to the sun, then one 

would have to take this very much into account. But since this is not known to 

happen, the perturbation caused by the sun can also be neglected35.” 

 

At the time, such observations were impossible; Soldner therefore concluded that these effects 

were minute. He ended his article as follows: 

 

“Hopefully, no one would find it objectionable that I treat a light ray as a heavy 

body. That light rays have all the absolute [basic] properties of matter one can see 

from the phenomenon of aberration which is possible only because light rays are 

truly material. And furthermore, one cannot think of a thing which exists and 

works on our senses that would not have the property of matter36.” 

 

Thus, it appears that Soldner based his computations on the Newton’s emission theory, 

according to which light is made up of particles. As far as Einstein is concerned, he made use 

of the Huygens principle, that is to say, the variation of the direction of the wavefront as a 

function of the luminous frequency, as will be seen in the next section. 

 

 

                                                 
35 Ibid. 
36 Ibid. 
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2. Value of deflection of light by Einstein in 1911 

 

In his 1911 paper, Einstein first established that “the velocity of light in the gravitational field 

is a function of the location37.” Then, by using Huygens’s principle, he stated that “light-rays 

propagated across a gravitational field undergo deflection38.”   

 

 

 

Fig. 2. Einstein’s diagram for deflexion of a light ray. 

 

From this figure (see Fig. 2), Einstein stated that the direction of the wave front changes by an 

amount equal to c n   per unit of distance along the direction of the wave (where c is the 

velocity of light) and the “angle of deflection per unit of path of the light-ray is 
1 c

c n





”. 

Finally, he obtained “for the deflection  , which a light-ray experiences toward the side n  

on any path (s) the expression 

 

2

1
ds

c n
 
 

 ” 

 

                                                 
37 Albert Einstein, “Einfluss der Schwerkraft auf die Ausbreitung des Lichtes” (“On the influence of Gravitation 
on the Propagation of Light”), Annalen der Physik, 4(35), 898–908, 1911. 
38 Ibid.  
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where the integral goes from   to   and kM r   is the gravitation potential. Then, 

Einstein changed variables to polar coordinates as highlighted on the following figure (see Fig. 

3a). In order to simplify the understanding of his approach, let’s pose in what follows: n y  , 

s x  et S R  (see Fig. 3b)39.  

    

    

(a)        (b) 

 

Fig. 3. Deflection of a light ray in polar coordinates. 

 

According to Fig. 3b, we have 2 2r x y  . Thus, the gravitation potential reads: 

  

2 2

kM

x y
 


 

 

It follows that 
32 2

kM kM
y

n y y rx y

        
     

. Einstein then considers that nearly all of 

the deflection occurs within some reasonable proximity of the gravitating body. So, we can 

simply set y = R in the integral which reads: 

 

                                                 
39 See also Kevin Brown, Reflections on Relativity, lulu.com, Mars 2017.  
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2 3 2 3

1 1kM kMR
yds dx

c r c r


 

 

   . 

 

The following variable changes  x R tan  , y R  leads Einstein to: 
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1 2Rd coskMR kMR kM kM
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Then, Einstein ended his 1911 paper by this sentence: 

 

“A light-ray going past the Sun would accordingly undergo deflection by the amount of 4.10−6 

= 0,83  seconds of arc40.” 

 

Let’s notice that although the reasonings and the computations are different, the result of 

Einstein is exactly the same as that of Soldner (as shown in the next section). In other words, 

a light ray passing near the sun will undergo a deflection of nearly 0.83’’. 

 

3. Comparison of Einstein and Soldner formulas 

 

This section aims to prove that both formulas established by Soldner in 1801 and Einstein in 

1911 are identical except in the choice of letters.  

Soldner’s formula of 1801 reads: 
2

2
tan

4

g

v v g
 


 

- g is the gravitational acceleration at the surface of the body 

- v is its velocity.  
                                                 
40 Ibid.  
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In his article, Soldner wrote: 

 

“On the presupposition that light needs 564’’.8 decimal seconds of time to come 

from the sun to the earth, one finds that it traverses in one-tenth of a second 

15.562085 earth radii. Thus v = 15.562085. If one takes among the geographical 

latitudes that whose square of the sine is 1/3 (corresponding to a latitude of 

35°16’), the earth’s radius as 6,369,514 meters, and the acceleration of gravity 

there as 3.66394 meters (see Traité de mécanique céleste by Laplace, Vol. I, p. 

118), then expressed in earth radii g = 0.000000575231.” 

 

We deduce that the dimension of the acceleration of gravity on the surface of the body g is s−2 

and that of the velocity is s−1. Indeed, Soldner made use of a kind of “normalisation” of these 

two physical variables which can be written as 0g g   and v c   where   is the radius 

of the considered body (in this case the Sun). Soldner’s formula can be rewritten as 

 

1

2

2 2 22

2

2 2 1 2 4
tan 1

44 1

g g g g

v v vgv v g
v




       
 

 

But since, according to Soldner g << v, a first-order41 series expansion can be made and reads: 

 

 
1

2
4

2 2 2 2 2

2 4 2 4 2
tan 1 1

g g g g g
O v

v v v v v



               

  

 

                                                 
41 In his 1911 and 1915 articles Einstein also made use of first-order approximations.  
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The angle   is considered as infinitely small, so we deduce that 
2

2g

v
  . 

Then, by posing 0g g   and v c  , we have: 

 

0
2

2g

c
 
  

 

In 1911, Einstein proposed the following formula: 
2

2kM

c
 


 where 

- k  is the constante of gravitation (Cavendish’s constant),  

- M is the mass of the heavenly body, 

-   is the distance of the ray from the center of the body, i.e., its radius. 

In the case of the Sun, we have: 0 2

kM
g 


. So, it gives  

 

0
2 2 2 2

22 2 gkM kM

c c c
        

 

  

Thus, both Soldner and Einstein’s formulas are identical. 

 

0
2

2g

c
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4. Value of deflection of light by Einstein in 1915 

 

During the autumn 1915, Einstein completed his general theory of relativity. He thus modified 

his gravitation potential   while taking into account as previously the Newton’s gravitational 

interaction (see § C.2) but also the curvature of space near a massive body42. Then, he 

expressed the gravitation potential   as 

 

 
2

3 22 2 2 2

kM mx

x y x y
  

 
 

 

In this case 
 

2 2 2

3 2 52 2 2 2

4kM kMx x y
kMy

n y y rx y x y

         
      

 

The integral reads then 
2 2 2 2

2 5 2 5

1 4 4x y kMR x R
kMyds dx

c r c r


 

 

 
   . By using the same 

variable changes,  x R tan  , y R , Einstein obtained: 

 

 
    

2 22 2 3

52 5 2 2 2
2

4 14 4tankMR x R kMR Rd kM
dx

c r c cos c RR cos





 




 


     

 

                                                 
42 Cf. Kevin Brown, Op. Cit.  
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In his publication of 1916 Einstein43 provided for the deflection of a light ray the value 

2

M
B







 which results of the previous integration. He defined at the page 818 of this same 

article the constant 
2

8 k

c

   (see Eq. (69)). By replacing into the value of B, we have: 

 

2

4
2

kM
B

c R
   

 

Einstein wrote in his conclusion: 

 

“According to this, a ray of light going past the sun undergoes a deflexion of 1.7’’…” 

 

Thus, it appears that Einstein’s computation of the value of deflection of a light ray performed 

in 1915 led him to twice the amount derived in his 1911 paper. 

  

Where does this doubling come from? How did Einstein justify it? 

 

In fact, contrary to what Arvid Reuterdahl (see § B) claimed, Einstein has really “taken the 

world into his confidence concerning the reason of this change”. Indeed, as early as 1915, 

Einstein wrote:  

 

“By use of the Huygens principle, one finds through a simple calculation, that a 

light ray from the Sun at distance   undergoes an angular deflection of 

magnitude 2  , while the earlier calculation had given the value   . A 

                                                 
43  Albert Einstein, “Die Grundlage der allgemeinen Relativitätstheorie” (“The Foundations of the General 
Theory of Relativity” ), Annalen der Physik, 4(49), 769–822, 1916. 
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corresponding light ray from the surface rim of the Sun should give a deviation of 

1.7’’ (instead of 0.85’’) 44.” 

 

In 1920, in the appendix 3 of the third edition of his book written in 1916, he wrote: 

 

“As a result of this theory, we should expect that a ray of light which is passing 

close to a heavenly body would be deviated towards the latter. For a ray of light 

which passes the sun at a distance of   sun-radii from its centre, the angle of 

deflection ( ) should amount to  

 

1.7 seconds of arc 


 

 

It may be added that, according to the theory, half of this deflection is produced 

by the Newtonian field of attraction of the sun, and the other half by the 

geometrical modification (“curvature”) of space caused by the sun45.” 

 

D. Conclusion  

 

The author of one of Einstein’s most famous biographies, Ronald Clark had written that he 

was “the man who had bent the light”. One would be led to believe that the concept of 

“curvature of light” which was conceived by Soldner in the early nineteenth century was 

rediscovered a century later by Einstein. In fact, many authors have shown that this idea was 

                                                 
44 Albert Einstein, “Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie” 
(“Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity”), Preussische 
Akademie der Wissenschaften, Sitzungsberichte, 831–839, 1915. 
45 Albert Einstein, Relativity: The Special and General Theory, London, Methuen & Co Ltd, 1920.  
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already present in the works of Isaac Newton. Indeed, in the first of the famous Queries of his 

work entitled Opticks, Newton wrote in 1704: 

 

« Do not Bodies act upon Light at a distance, and by their action bend its Rays, and is not this 

action (caeteris paribus) strongest at the least distance? »  

 

It thus appears that neither Soldner nor Einstein is the inventor of the concept of “curvature of 

light”. One can then ask whether Einstein had any knowledge of Soldner's work. It is 

naturally very difficult to answer this question. The elements we have today allow us only to 

affirm that the values of the deflection of light rays passing near a massive body obtained by 

Soldner in 1801 and by Einstein in 1911 are perfectly identical, although the computations of 

Soldner were based on Newton’s corpuscular theory, while those of Einstein were based on 

the Huygens’s principle. First, it is important to note that the impossibility of measuring the 

deflection of light during the eclipses of 1912 and 1914 was an extraordinary opportunity for 

Einstein. Indeed, without this providential rain and without the declaration of war the 

observations of the astronomers would have absolutely not confirmed the first value that it 

had provided in 1911 and they would certainly have invalidated his theory. 

Note then that the method of computing the deflection of light that Einstein used in 1915 is 

exactly the same one he used in 1911. The only difference is the expression of gravitation 

potential which took into account the curvature of the space in the vicinity of a massive body. 

Thus, in his article in 1915, Einstein provided a value (1.7’’) which was well contained within 

the range of values observed by the expeditions led by Crommelin and Eddington in 1918 

(0.9’’ to 1.8’’). It is clear from this analysis that the plagiarism accusations against Einstein 

which are part of an anti-relativist and anti-Semitic movement are absolutely baseless. Even if 

it has been established that the values of the deflection of a light ray provided by Soldner in 
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1801 and Einstein in 1911 are identical, they are both wrong because they don’t take into 

account the curvature of space and so, are not consistent with those “obtained” by Crommelin 

and Eddington and confirmed after by more accurate astronomical observations. 
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Abstract. In this paper, we point out an “affinity” between the system of agents
trading in cryptocurrencies and statistical mechanics. In particular, we try to extend
the concept of entropy in the sense of Boltzmann such a definition to a model in
which the particles are replaced by N economic subjects (agents), that are completely
described by their ability to buy and to sell a certain quantity of cryptocurrencies.
In addition, by applying this model to the closing prices of some of this we show that
entropy can be used as an indicator to forecast the price trend of cryptocurrencies.
Keywords: Cryptocurrency, Entropy, Prices Forecast, Boltzmann, Blockchain.

1 Introduction

The concept of entropy was first introduced by Clausius[23], whose definition
was applied to a thermodynamic system that performs a transformation. Since
the mid-19th century, entropy has been a key element linking mechanics to
thermodynamics; however, this entropy suffered from a conceptual problem
which, as demonstrated by Gibbs[28], was revealed in the case of identical gases
(Gibbs Paradox ). He solved this problem by changing the count of states. On
the other hand, Boltzmann[16] presented his statistical interpretation of ther-
modynamic entropy, managing to link the macroscopic properties of a system
with the microscopic ones. Based on Gibbs, in 1949 Shannon[8] developed a
theory capable of evaluating the amount of information that is lost in receiving
a message from a source to a recipient. This form of entropy was generalized
by Rényi[3], Tsallis[7], Adler et al.[15] (in topology), redefined by Pincus[19]
(approximate entropy) and - more recently - by Chen et al.[27] as a time series
regularity measure.
The application of entropy in sectors such as economics or finance is linked to
the work of Brissaud[4] that assimilated entropy to disorder, so as to make this
tool that has always been applied the physics part of the economy. The forms
of entropy most used in this case are Shannon entropy and the generalizations
by Rényi and Tsallis, who contributed to creating a new line of application for
the management of financial portfolios. For example, these new types of en-
tropy has been used by Philippatos and Wilson[6], Usta and Kantar[10], Jana
et al.[22], Gulko[17], and Dionisio et al.[2].
What we want to demonstrate in this paper is that it is possible to assimilate
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a cryptocurrency system to a thermodynamic system. In this way, we are able
to determine entropy in the sense of Boltzmann so that we can make price
predictions related to the possibility that they move in a more or less wide
range; unlike all the recent applications concerning theories based on Shannon
entropy and its derivations. Innovation is linked to the reinterpretation of the
monetary system of cryptocurrencies. In this sense, we can apply physical the-
ories to a social science. Once the system has been described, our goal is to
verify that entropy calculated in the physical sense also occurs in the economic
context to allow us to make assumptions on how the process could move in the
next future. This type of conjecture has been presented by Sergeev[20], Zakiras
et al.[26] and Smith and Foley[9]. In particular McCauley[13], based on this
previous theory, maintains that the illiquidity of the markets does not allow for
the application of the concepts of statistical mechanics.
The paper structure is the following: in Section 2 we analyze cryptocurren-
cies and their key characteristics, focusing on the fact that they have a supply
limit; in Section 3 we describe the evolution of a system of a particle in statis-
tical thermodynamics and how to determine its entropy, subsequently applying
these notions to our monetary system; in Section 4 we define the theoretical
assumptions we can link to the system created previously to study the price
evolution in these currency markets and we analytically describe the calculation
of entropy using real data; finally in section 5 some conclusions are drawn.

2 Cryptocurrency

Cryptocurrencies represent a digital currency system with no guarantee institu-
tion and no transaction control. The main cryptocurrencies, by media coverage
or by the possibility that some financial intermediaries offer to use them as a
payment instrument, are: Bitcoin, Ethereum and Ripple. Unlike traditional
financial assets, their value is not based on tangible assets such as the economy
of a country or a company, but it is based on the security of an algorithm that
tracks transactions. Their definition is controversial since by some entities [11]
they are considered intangible assets (IFRS) while according to the German
financial supervisory authority (BaFin) they are officially financial instruments
[5]. All the cryptocurrencies have been based on the Bitcoin, a currency cre-
ated by Nakamoto[24] who in 2009 released a software capable of implementing
transactions. The currency itself is a unique alphanumeric string that repre-
sents a certain transaction, a transaction which will then be entered in a public
register called blockchain.
The blockchain is the fulcrum of these systems and is essentially a register in
which the data of the owners of the currency are entered, transactions occur
in an encrypted manner. The blockchain is a data structure consisting of a
list of transaction blocks linked together so that each refers to the previous
one in the chain. A block is a data structure that aggregates transactions to
include them in the public register. The block is made of a header, containing
metadata, followed by a long list of transactions. A complete block, with all
transactions, is, thus, 1000 times larger than the block header [1]. The in-
tegrity of the blockchain network is guaranteed through consensus algorithms
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such as Proof-of-Work (PoW) and Proof-of-Stake (PoS), that solve the Byzan-
tine Generals Problem[12] (problem of consent in the presence of errors). A
consensus algorithm is a mechanism used by the network to reach consensus,
i.e. ensuring that the protocol rules are followed and that transactions occur
correctly so that coins can only be spent once.
The cryptocurrency generation process is called mining, which adds money to
the supply. Cryptocurrencies are “minted” during the creation of each block at
a fixed and decreasing rate [1]: each block generated on average every 10 min-
utes contains new currency. For example, if we consider Bitcoin, every 210000
blocks the currency issue rate decreases by 50% (the availability of new coins
grows as a geometric series every 4 years). It is estimated that around the
year 2140, the production of the last block will be reached (6930000) and the
number of coins produced will tend to its upper limit of 21 million (precisely
20999999.97690000), value introduced by Nakamoto himself and contained in
the variable “MAX MONEY” as can be read in the source code present on
GitHub. This value represents a sanity check, especially used to avoid bugs in
which it is possible to generate currency from nothing and therefore moving
towards a situation in which the blockchain diverges into different potential
paths (called fork).

3 Methodology

The main assumption in this paper is that the prices of cryptocurrencies behave
like a thermodynamic system, so it is possible to determine entropy by using
the Boltzmann formula. In order to present the theoretical framework and the
methodology, we need to briefly introduce the main physical results. In Statis-
tical Mechanics a macroscopic system is made up of N molecules (N ∼ 1024

is the Avogadro’s constant) whose mechanics provide the evolution of 6N dy-
namic variables describing completely the microscopic states of this system.
Motion in the phase space can be studied using the 3N position components
and the 3N momenta components, indicated with {qi} and {pi} whose evolu-
tion is driven by Hamilton’s equations. Mechanics, therefore, provides a very
detailed description of the system contrary to thermodynamics which studies
the collective variations; for this reason, the mechanical point of view can be
defined microscopic and the thermodynamic one macroscopic. The study of the
system from a microscopic point of view concerns experimental observation on
one or a few molecules.
Everything that happens from the microscopic side can be expressed in macro-
scopic terms through thermodynamics, defined in this case as a large amount of
microscopic variables. We consider an isolated system of N particles described
by the 3N coordinates and the 3N momenta in a 6N -dimensional space at
a certain time t. Particles are subject to the laws of classical mechanics and
therefore X(t) evolves according to Hamilton’s equations. Since the Hamilto-
nian H(p, q) does not depend on time, the energy E is a conserved quantity
during motion and develops on a fixed hypersurface. We want, for example,

Source: https://github.com/bitcoin/bitcoin/blob/master/src/amount.h
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to measure an observable A(X) (a function defined in the phase space) of the
system in thermodynamic equilibrium, but since the scale of macroscopic times
is much larger than the microscopic one, we can consider a datum as the result
of a system that has gone through a large series of microscopic states; this im-
plies that the observable must be compared with an average performed along
with the evolution of the system calculated over very long times Ā. The calcu-
lation of Ā would require knowledge of both the microscopic state at a certain
moment and the determination of the corresponding trajectory in the phase
space, which corresponds to a practically inexhaustible request. To determine
the observable, the ergodic theory intervenes, according to which each energy
surface is completely accessible to any motion with the given energy and the
average residence time in a certain region is proportional to its volume. If
these conditions are satisfied, the average Ā can be calculated as the average of
A(X) in which the states with the fixed energy contribute with equal weight.
In applications it is convenient to consider on average all states with energy
within a fixed range [E,E +∆E]; furthermore, we are only interested in some
macroscopic properties such as particle number N and the volume V . There
is an infinite number of systems that satisfy these conditions: these form the
Gibb’s ensemble which is represented by a set of points in the phase space
characterized by a density function ρ(p, q, t) defined so that ρ(p, q, t) d3Np d3Nq
corresponds to the number of representative points of the system during the
instant t contained in the infinitesimal volume of the phase space d3Np d3Nq.
Furthermore, since energy, volume and number of particles are constants of
motion, the total number of systems in an ensemble is conservative.
We can thus introduce the postulate of equal a priori probability who claims
that when a macroscopic system is in thermodynamic equilibrium its state can
be with equal probability each of those which satisfies the macroscopic condi-
tions of the system. This postulate implies that the system under consideration
belongs to an ensemble called microcanonic with density function

ρ(p, q) =

{
ρ∗ if E < H(p, q) < E +∆

0 otherwise
(1)

where ρ∗ is constant and all members of the ensemble have the same number
of particles and equal volume.
We can define Γ (E) the volume occupied by the microcanonical ensemble in
the phase space as:

Γ (E) ≡
∫
E<H(p,q)<E+∆E

d3Np d3Nq (2)

and Σ(E) the volume bounded by the energy surface E:

Σ(E) ≡
∫
H(p,q)<E

d3Np d3Nq (3)

so that
Γ (E) = Σ(E +∆E)−Σ(E). (4)
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Entropy, then, can be defined as:

SΓ =

∫
E≤H≤E+∆E

d3Np d3Nq ρ(−κB ln ρ)

=

∫
E≤H≤E+∆E

d3Np d3Nq
1

Γ

(
−κB ln

1

Γ

)
=

1

Γ
κB ln Γ

∫
E≤H≤E+∆E

d3Np d3Nq

=
1

Γ
κB ln Γ · Γ = κB ln Γ (E)

(5)

where κB ∼ 1.3806 ∗ 10−23 is the Boltzmann constant. To analytically cal-
culate Γ (E), which represents the number of states accessible to the system
at temperature T , we must consider that a microcanonical ensemble is made
up of J identical copies of the closed system, each of which is located in a
microstate (pi,qi) of the phase space. Being all on the same hypersurface E,
we can divide it into cells of equal size, where in each there are ji systems such
that J =

∑
i ji. To define the system it is necessary to find the most probable

distribution of the ji microstates, that is, to count the total number of ways in
which we can obtain a certain macrostate. In the Boltzmann paradigm with
an ideal gas consisting of identical particles under the same conditions, we can
say that

Γ (E) =
J !∏
i ji!

(6)

The idea that entropy is connected to volumes in the phase space finds its ori-
gin in the Helmholtz Theorem, whose goal is to exactly bring thermodynamics
down from mechanics.
Let us now try to translate this physical theory into a financial dress. Viaggiu et
al.[25] have developed a representation of an economic model relating to money
from a thermodynamic point of view. In their description the ensemble is made
up of the N interacting economic subjects, entirely described by two variables
{xi, yi} which represent money and credit/debt capacity and which are not
conjugated in the sense of mechanics Hamiltonian. The key characteristic is to
consider a representative function of the total currency as a conservative law,
to be able to exploit the ergodic hypothesis.
Our idea is to go back to their hypothesis by applying it to the case of cryp-
tocurrencies. We consider a model in which the particles are replaced by N
economic subjects (agents) who intend to trade in cryptocurrencies (compared
only to a reference currency, such as the USD). These agents are completely
described by 2 variables, which we can, however, identify as {xi, yi}, where xi
and yi indicate, respectively, the ability to buy and to sell a certain quantity of
cryptocurrencies (both expressed in monetary terms). The latter hypothesis is
possible according to the fact that the market to which we refer is influenced
only by the supply and demand leverage. As for [25], even if the complete
Hamiltonian formalism is not respected, we can consider as a conserved quan-
tity the total number of cryptocurrencies in circulation which by their definition
is constant over a suitable time interval through the function M(xi, yi) (as in
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the particular case of Bitcoins for which the supply limit is fixed at 21 million).
However, since the supply limit has not yet been reached by any cryptocur-
rency we consider this quantity constant concerning the currency in circulation
in a precise time t, therefore:

M =

N∑
i=1

xi + yi. (7)

In this sense, the sum of the ability to sell and buy of the N agents fully
describes the cryptocurrencies in circulation. The ergodic hypothesis allows
us, given a certain function f(xi, yi), to express its average with respect to the
time in terms of an average over the ensemble at fixed M :

f̄ =

∫
M=const

f(x, y)ρ(x, y) dx dy (8)

where ρ(x, y) denotes the probability distribution of the ensemble. Through
these assumptions we can verify the economic transformations through ther-
modynamics; in particular, as in statistical mechanics, we can calculate the
volume in the phase space [25] . If we integrate over all the available volume
of the configuration space spanned by {x, y} with M̄ = m (where M̄ denotes
the average over the whole configuration space) we have

∫
M̄=m

dNx dNy = 0.
So introducing a thick shell ∆ where ∆� m we can define:

Γ (m) =

∫
m<M<m+∆M

dNx dNy

k2N
(9)

where dNx dNy is understood as the phase space and k is a normalization
factor such that Γ is dimensionless. This functional represents the number
of microscopic realizations of the system under examination and allows us to
calculate the entropy S as described in the equation (5).

4 The model

In this section, however, we try to define, through a new type of approach, how
it is possible to calculate entropy considering essentially the prices obtainable
from the currency markets (FOREX).
First, we know that cryptocurrencies are used by an approximate number of
economic entities equal to 44 million (based on the number of blockchain port-
folios[21]) for which N � 1. We also know that every subject in our system
is fully described by its ability to buy and sell ({xi, yi}). Let us consider that
these two variables are summarized in the last prices of the cryptocurrency on
the currency markets, a type of price used to keep track of changes in the value
of an asset throughout a session. In this sense, the latest prices allow us to
understand whether, compared to the previous session, the ability to buy or
sell prevailed. We can summarize this price capability in the sentence “prices
describe the strength with which agents position themselves in the phase space”.
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The key point is that we can use the function M (described above) because in
a certain time t the quantity of cryptocurrencies is constant and quantifiable,
in this way we can go back to the previous economic model and determine Γ
as described in the equation (9). Analytically, we do not consider the number
of economic subjects present in the market but indirectly deduce their “po-
sition” in the phase space from the difference between the closing prices. In
particular, first we cluster the closing price series based on a certain reference
interval (5 days); as for each cluster there is a maximum and a minimum price,
we calculate the difference in terms of necessary steps to pass from one to the
other obtaining a certain value of gap G (this assumption is based on the
idea that the distance between maximum and minimum is a measure of the
dispersion of agents in our phase space); to calculate the “volume” occupied
by the disposition of the agents we use combinatorial analysis, therefore:

Γ = G5 (10)

Once the value of Γ is determined, entropy can be calculated by using the
Boltzmann formula:

S = κB ln Γ. (11)

Finally, precisely because Boltzmann’s constant is of the order of Avogadro’s
number, we can “rationalize” this entropy value obtained by multiplying it by
1023. Our data analysis shows that in situations where entropy is drastically
reduced, in the following phase it must grow in an “almost obligatory” way; this
in terms of cryptocurrency prices indicates that in situations in which the gap
between the maximum and the minimum is drastically reduced in the transition
from one cluster to another “almost compulsorily” follows a situation in which
it is certainly wider than the previous one. This type of price-based entropy
defines how agents move in the phase space, so it allows us to understand if
there is more movement towards one area rather than another.

4.1 Dataset

The empirical analysis has been applied to the closing prices of three cryp-
tocurrencies, all related to the US dollar (USD), that are:

• Tether, whose price with 4 decimal places requires a step equal to 0.0001;
• Bitcoin Cash, whose price with 2 decimal places requires a step equal to

0.01;
• Litecoin, whose price with 3 decimal places requires a step equal to 0.001.

Prices are considered with a daily time frame over 1 year, from 1/1/2019 to
31/12/2019 and they are clustered in 5 days. To make the figures more clear,
the 1-year interval has been divided into 4 trimesters. Furthermore, to better
test the idea, the same test was carried out also on daily prices at 1 minute of
1/4/2020 recorded from 10:56 to 11:52, instead of clustered in 5 minutes. The
difference from the daily case is that these prices were collected, always from
the same source, but observed on different currency markets.

Source: Investing.com
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4.2 Numerical examples

We can start the analysis from the annual case. The first cryptocurrency
analyzed is Tether (USDT/USD), whose price moves in a neightborhood of 1
and consists of 4 decimal places; distinguish the trend of entropy compared to
prices in the 4 ranges previously defined.

(a) Closing prices and en-
tropy 1/1 - 31/3

(b) Closing prices and en-
tropy 1/4 - 29/6

(c) Closing prices and en-
tropy 30/6 - 27/9

(d) Closing prices and en-
tropy 28/9 - 31/12

Fig. 1: Prices (blue) and entropy (orange) Tether in the period 1/1 - 31/12

As can be seen graphically, when entropy reaches a point of relative mini-
mum falling below a certain threshold (it therefore undergoes a sharp reduction)
it is forced in the next cluster to grow, almost as if to rebalance itself. In terms
of prices, this implies that in the cluster in which the entropy descent occurred
there was a very small gap and, in the subsequent cluster, since entropy in-
creases the gap also increases. In this case, the range of variation of prices is
very “narrow” and every movement is important. It is possible, however, to no-
tice for example looking at the figure 1 (d) what is the gap value and therefore
the entropy threshold that, if “under”-passed, will cause an immediate growth
in the next future.
The next cryptocurrency analyzed is Bitcoin Cash (BCH/USD):
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(a) Closing prices and en-
tropy 1/1 - 31/3

(b) Closing prices and en-
tropy 1/4 - 29/6

(c) Closing prices and en-
tropy 30/6 - 27/9

(d) Closing prices and en-
tropy 28/9 - 31/12

Fig. 2: Prices (blue) and entropy (orange) Bitcoin Cash in the period 1/1 -
31/12

In this case the figure 2 (d) shows how the gap threshold below which a sharp
drop in entropy occurs can also be quite high (especially in currencies where
high volatility allows it to to move many points from one price to another).
The last cryptocurrency we have considered is Litecoin (LTC/USD):

311



(a) Closing prices and en-
tropy 1/1 - 31/3

(b) Closing prices and en-
tropy 1/4 - 29/6

(c) Closing prices and en-
tropy 30/6 - 27/9

(d) Closing prices and en-
tropy 28/9 - 31/12

Fig. 3: Prices (blue) and entropy (orange) Litecoin in the period 1/1 - 31/12

Also in this cryptocurrency all the situations defined above occur, in par-
ticular from the figure 3(d) it can be seen how, following the fact that the first
4 clusters are growing despite the gap value being quite low, the gap threshold
to define the drastic descent of entropy is quite low. As for the case of 1-minute
prices, we can summarize the trend of the different cryptocurrencies together
as shown in figure 4 which shows how all the assumptions made in the previous
case are also respected for prices of this type
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(a) Tether (b) Bitcoin Cash

(c) Litecoin

Fig. 4: Prices (blue) and entropy (orange) of cryptocurrencies based on 1 minute

In particular, the hypotheses made previously are very evident in the case
of the Tether (figure 4 (a)).

4.3 Possible effects on prediction

Thanks to previous results we can use entropy as an indicator to make pre-
dictions on the price trend of cryptocurrencies in the currency markets. For
example, we can suppose that we are in a certain cluster X where entropy has
declined sharply. As previously defined, we expect entropy to grow in the next
cluster and this leads to an increase in the price gap. The hypothesis we can
make is that the value of the gap in the cluster X+1 is at least one unit higher
than the value in the cluster X: we can use this information to understand
what the future price range will be. In this case, knowing the value of the
gap in the cluster X, we can create a bifurcation that represents the possible
evolution of the price in the event of a bullish or bearish trend. Assuming,
moreover, that the first cryptocurrency price close enough to the last price of
the previous cluster what we can expect is such a situation: if the second clos-
ing price of the cluster X + 1 is higher than the previous price in the same
cluster and assuming an upward trend we can assume that the series of prices
continues in an area that we have defined as Gap−; while if the second closing
price of the cluster X + 1 is lower than the previous price in the same cluster
and assuming a bearish trend we can assume that the price series continues in
an area that we have defined as Gap+. Such information can be fundamental
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for example for an investor who intends to choose the ideal moment to enter
(or exit) the market or balance any price limits.

5 Conclusions

In this paper, we have defined a similarity between a thermodynamic system
and a currency system. Thanks to this assumption, we have shown how it’s
possible to apply Boltzmann’s entropy to cryptocurrencies. This system is
characterized by the presence of N subjects interested in buying (or selling) this
type of currency. Assuming that the quantity of money at a certain moment t
is fixed and determinable, it is possible to hypothesize that the position of each
economic entity is summarized by the last price of the cryptocurrency itself in
the currency markets, as an indicator characterized by the ability to buy and
sell. With this hypothesis, it was possible to determine the entropy using the
Boltzmann formula, dividing the time interval into clusters and calculating the
gap between the different prices. This analysis has shown that when entropy
falls sharply then it must necessarily grow shortly; which in terms of price
corresponds to a situation in which the gap between maximum and minimum
is wider than the previous one.
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