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Abstract. The pioneering contribution of this paper is to design and implement a
Neural Network (NN) that demonstrates chaotic Pattern Recognition (PR) proper-
ties, and where the network in and of itself is a “small-world” or “scale-free” network.
The foundational NN that we employ for this is the Adachi Neural Network (AdNN).
The latter is a fascinating NN which has been shown to possess chaotic properties, and
to also demonstrate Associative Memory (AM) and PR, while variants of the AdNN
have also been used to obtain other PR phenomena, and even blurring. The prob-
lem with the Adachi NN is that it is a fully-connected network requiring quadratic
computations for the training. Our aim in this paper is to reduce the computations
needed for the training significantly. The motivation for this is the fact that most
“physical” networks including biological NNs and Internet networks have the prop-
erties of complex small-world or scale-free networks. To place the paper in the right
perspective, we mention that in [1] we managed to reduce the AdNN’s computational
cost significantly by merely using a linear number of computations by enforcing a
Maximum Spanning Tree topology and a gradient search method. However, from the
perspective of a network’s structure, very few real-life networks have a tree-shaped
linearly-connected topology. The question we consider in this paper is whether we
can reduce the degree of connections of each node to mimic the small-world or scale-
free phenomena, more akin to “real” NNs. Simultaneously, we shall also attempt to
ensure that the newly-obtained network still possesses strong PR characteristics. To
achieve this, we first construct a small-world network by means of the so-called N-W
model. We then address the problem of computing the weights for the new NN. This
is done in such a manner that the modified small-world connection-based NN has
approximately the same input-output characteristics, and thus the new weights are
themselves calculated using a gradient-based algorithm. By a detailed experimental
analysis, we show that the new small-world AdNN-like network possesses PR prop-
erties for appropriate settings. As far as we know, such a small-world AdNN has not
been reported, and the results given here are novel.
Keywords: Chaotic Neural Networks, Chaotic Pattern Recognition, Adachi-like
Neural Networks, Small-world Networks.
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1 Introduction

In this paper we shall attempt to design and implement a Neural Network
(NN) that demonstrates chaotic Pattern Recognition (PR) properties. How-
ever, unlike the existing NNs that demonstrate chaotic PR phenomena, our
newly-designed network, in and of itself, must be a “small-world” or “scale-free”
network. To clarify the difference between chaotic PR systems and traditional
PR systems, we mention the following: The goal of the field of Chaotic PR
systems can be expressed as follows: We do not intend a chaotic PR system to
report the identity of a testing pattern with a “proclamation” of the pattern’s
class. Rather, what we want to achieve, on one hand, is to have the chaotic
PR system give a strong periodic or more frequent signal when a pattern is
to be recognized. Further, between two consecutive recognized patterns, none
of the trained patterns must be recalled. Finally, and most importantly, if an
untrained pattern is presented, the system must give a chaotic signal. This is
analogous to how the brain works. Once a pattern is recalled from a memory
location, the brain is not “stuck” to it, it is also capable of recalling other
Associated Memory (AM) patterns. This ability to “jump” from one memory
state to another in the absence of a stimulus is one of the hallmarks of the
brain, and this is one phenomenon that a chaotic PR system has to emulate.

Adachi et al and Calitoiu et al have done a lot of ground-breaking work
in this area [2–4], and we have built on these results in various avenues [3–6],
including that of designing a NN that can yield ideal chaotic PR [7]. Generally
speaking, the computational burden of the original AdNN and its variants [2–4]
is quadratic, rendering them to be impractical machines. This is also true of
most of the current NNs which possess a regular topology, e.g., a completely
connected graph or a neighbor-coupled graph. In [1] we managed to reduce the
AdNN’s computational cost significantly by merely using a linear number of
computations by enforcing a Maximum Spanning Tree topology and a gradient
search method. All of these must be contrasted with “real” NNs which usually
have irregular topology, e.g., a small-world or a scale-free graph. In our previous
paper [6], we succeeded in creating a Random-AdNN by using the E-R model.
Then we computed the weights for the new network by means of gradient
search. The newly obtained network was shown to still possess PR and AM
properties. The contribution of this paper is to present a novel NN which
is connected in a small-world way, which we shall refer to as “Smallworld-
AdNN”. This is achieved by using the N-W model followed by an effective
gradient search strategy, whence the computational burden can be significantly
reduced. Further, as we shall show presently, the Smallworld-AdNN is almost
as effective as the fully-connected AdNN with regard to its chaotic and PR
characteristics.

2 Designing the Smallworld-AdNN

2.1 The Topology of the Smallworld-AdNN

As mentioned above, to design the Smallworld-AdNN, we shall first arrive at
a topology with edges connected in a small-world manner, by using the W-S
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model. The second step will involve the computation of the weights associated
with this new structure, which is an issue addressed subsequently.

There are many ways to generate a small-world NN. In this paper, we only
utilize the Watts-Strogts (W-S) [8] and the Newman-Watts (N-W) models [9].

The general steps of the obtaining a W-S model are as follows:
1. Arrange the neurons in a cycle, and index them from 1 to N .
2. Create a neighbor-coupled network, where each neuron is connected with

k/2 neurons on both its sides. Thus, the degree for each neuron is k.
2. Re-connect each edge of the network with fixed probability pr. That

is, for each edge, delete it with a probability pr and connect it with another
randomly chosen neuron.

The reader will observe two special situations that arise from this W-S
model: The new network becomes a random network if pr = 1 while it remains
the same if pr = 0.

Obviously, the W-S model has the potential of causing some neurons to
become isolated. In [9], Watts and his coauthor improved the W-S model by
edge addition instead of deletion. Thus the second step is modified as follows:
Randomly connect two unconnected neurons with a fixed probability pr. Again,
one can then see that if pr = 1, the network becomes fully connected while it
remains the same if pr = 0. It is worth pointing out that the W-S and N-W are
essentially the same when pr is small and the number of neurons, N , is large.
In this paper, we shall use the N-W model to create a small-world network.
Consequently, we build the topology of the Smallworld-AdNN by invoking the
following algorithm.

Algorithm 1 Topology Smallworld-AdNN

Input: N , the number of neurons in the network, and a set of p patterns which the
network has to “memorize”.
Output: The topology and initial weights of the Smallworld-AdNN.
Method:

1: Create a neighbor-coupled graph, G, with N vertexes which is to represent the
AdNN.

2: Connect two randomly chosen unconnected neurons with a fixed probability pr.
3: Compute the initial weights of the edges of G, {wij}, by the following:

wij = 1

p

∑p

s=1
(2xs

i − 1)(2xs
j − 1), where xs

i is the ith component of the sth stored
pattern.

4: If there is no edge between vertex i and j, then let wij = 0;

End Algorithm Topology Smallworld-AdNN

2.2 The Weights of the Smallworld-AdNN: Gradient Search

Since we have successfully created the structure of the Smallworld-AdNN by
using the N-W model, it is clear that the NN at hand will not adequately
compare with the original AdNN. Thus, our next task is to determine a new
set of weights so as to force the Smallworld-AdNN to retain some of its PR
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properties, namely those corresponding to the trained patterns. We briefly
explain below the process for achieving this.

The Smallworld-AdNN is defined by following equations:

xS
i (t+ 1) = f(ηSi (t+ 1) + ξSi (t+ 1)), (1)

ηSi (t+ 1) = kfη
S
i (t) +

∑

eij∈G

wS∗

ij xS
j (t), (2)

ξSi (t+ 1) = krξ
S
i (t)− αxS

i (t) + ai. (3)

where {wS∗

ij }, xS
i , ξSi and ηSi are the weights, outputs, and state variables of

the Smallworld-AdNN respectively, and have similar meanings to {wij}, xi, ξi
and ηi of the AdNN.

In order to find the optimal values of {wS∗

ij }, we define the square error

between the original output of the AdNN and new output at the nth step:

Ep =
1

2

N
∑

i=1

(xA,p
i − xS,p

i (n))2, (4)

where xA,p
i and xS,p

i imply the outputs of the ith neuron when the pth pattern
is presented to the AdNN network and the Smallworld-AdNN network respec-
tively. The overall global error is defined by E =

∑P
p=1

Ep where P is the
number of trained patterns.

In order to adjust wS
ij to obtain the least global error E, we consider the

gradient, ∆wS
ij , and move wS

ij by an amount which equals ∆wS
ij in the direction

where the error is minimized. This can be formalized as below:

∆wS
ij = −β

∂E

∂wS
ij

= −β
∂
∑P

p=1
Ep

∂wS
ij

= −β

P
∑

p=1

∂Ep

∂xS,p
i (n)

·
∂xS,p

i (n)

∂wS
ij

= β
P
∑

p=1

(xA,p
i − xS,p

i (n)) ·
1

ε
· xS,p

i (n) · (1− xS,p
i (n)) · xS,p

j (n), (5)

where β is the learning rate of the gradient search. The formal algorithm which
achieves the update is given in Algorithm 2. The results of a typical numerical
experiment which proceeds along the above gradient search are shown in Fig.
1 and 2. In these simulations, we have chosen the learning rate β to be 0.05
and pr = 0.5. Specifically, we catalogue our experiments for three cases, i.e.,
when k/2 = 4, k/2 = 6 and k/2 = 10 respectively.

The simulation results are shown in Fig. 1 and 2. If k/2 = 4, the average
value of ∆wS

ij does not converge at 0, as shown in Fig. 1. However, as k/2

increases, e.g., k/2 = 6, ∆wS
ij converges to 0, as shown in Fig. 2 (a). If k/2 is

even larger, ∆wS
ij also converges to 0 but at a faster rate, as shown in Fig. 2

(c)1. This phenomenon can be easily explained: The larger the value of k/2,

1 Please note that in all the three cases, the total error E does not converge to 0. This
is because we have modified the structure of the AdNN. The new network cannot
behave exactly the same as the original one, but can approximate it.
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Algorithm 2 Weights Smallworld-AdNN

Input: The number of neurons, N , a set of P patterns, and the initial weights
{wS

ij} of the Smallworld-AdNN. These initial weights are {wA
ij} for the edges in the

smallworld graph, and are set to zero otherwise. The parameters and the setting
which we have used are the learning rate β = 0.05, ε = 0.015, α = 10, kf = 0.2 and
kr = 1.02.
Output: The weights {wS∗

ij } of the Smallworld-AdNN.
Method:

1: Compute the outputs of the Smallworld-AdNN corresponding to the P trained
inputs.

2: For all edges of the Smallworld-AdNN, compute ∆wS
ij as per Equation (5). Oth-

erwise, set ∆wS
ij = 0 .

3: wS
ij ← wS

ij +∆wS
ij .

4: Go to Step 1 until E is less than a given value or ∆wS
ij ≈ 0.

End Algorithm Weights Smallworld-AdNN

the more are the edges that the Smallworld-AdNN has, leading to a better-
fitting effect. In practice, we have opted to choose k/2 = 6 to obtain a finer
trade-off between the effect of the fit and the associated computational cost.
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Fig. 1. The figure on the left shows the variation of the average of ∆wS
ij (averaged

over all values of i and j) over the first 200 iterations of the gradient search scheme.
The average converges to a value arbitrarily close to zero after 70 time steps. The
figure on the right shows the variation of the global error over the same time frame.
Observe that this quantity does not converge to zero.

The Lyapunov analysis of the Random-AdNN is also available, but omitted
here in the interest of space. It can be found in [10].

3 Chaotic and PR Properties of the Smallworld-AdNN

We now briefly report the PR properties of the Smallworld-AdNN. These prop-
erties have been gleaned as a result of examining the Hamming distance between
the input pattern and the patterns that appear in the output. In this regard,
we mention that the experiments were conducted using the Adachi data set, as
shown in Fig. 3.

In the ideal setting we would have preferred the Smallworld-AdNN to be
chaotic when exposed to untrained patterns, and the output to appear period-
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Fig. 2. The figures show the variation of the average of ∆wS
ij and the global error

over the same time frame. The degree of the connection is k = 12 (for (a) and (b))
and k = 20 (for (c) and (d)) respectively.
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Fig. 3. The 10× 10 patterns used by Adachi et al . The first four patterns are used
to train the network. The fifth patterns are obtained from the corresponding fourth
patterns by including 15% noise in (a) and (b) respectively. The sixth pattern is the
untrained pattern.

ically or more frequently when exposed to trained patterns. Besides yielding
this phenomenon, the Smallworld-AdNN also goes through a chaotic phase and
a PR phase as some of its parameters change.

By studying Fig. 1 and 2 we see that if k/2 = 6, the Smallworld-AdNN
can fit the original AdNN very well. Thus, we have set the parameters in
Algorithm 1 to be pr = 0.5 and K = 6 so as to obtain a better trade-off effect.
We summarize the results for the Smallworld-AdNN by using different settings
of pr. The others parameters are: kf = 0.2, kr = 1.02, α = 10, ε = 0.015,
β = 0.05. The results are tabultaed in Table 1.

From this table we clearly see that the Smallworld-AdNN is able to “res-
onate” the input patterns with corresponding output patterns. If P1 is the
input, then the network outputs P1 accordingly, while at the same time, no
other trained patterns appear in the output sequence. Even when a noisy pat-
tern is presented to the system, e.g., P5, which is a noisy pattern of P4 with
15% noise, the network still “resonates” P4 instead of P5 in the output se-

396



Table 1. The frequency of the Hamming distance between the input and the output
patterns for the Smallworld-AdNN. The probability pr = 0.5 and k/2 = 6

Input Patterns

pr = 0.5, k/2 = 6 P1 P2 P3 P4 P5 P6

P1 96 0 0 0 0 0
P2 0 376 0 0 0 0

Retrieved P3 0 0 108 0 0 0
Patterns P4 0 0 0 93 136 0

P5 0 0 0 9 2 0
P6 0 0 0 0 0 28

quence. Furthermore, if the input is an untrained pattern, e.g., P6, none of the
trained patterns will be recalled. In this case, even the input pattern P6 itself,
will be retrieved only a few times, as one can see is much less than the other
diagonal numbers obtained when input is P1 – P4. In this regard, we comment
that using the values of pr = 0.5 and k/2 = 6 are good enough for PR, which
also significantly minimizes the computational burden. Indeed, as one can see,
the distribution for the degree of each vertex of the Smallworld-AdNN has the
form:

p(k) =

(

N
k − 6

)

(

3

N

)k−6(

1− 3

N

)N−k+6
(6)

which is approximately a Poisson distribution, as shown in Fig. 4.
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0.25

Fig. 4. The degree of each neuron obeys the Poisson distribution. From this figure
we can see that most of the neurons have degree 8 or 9, which means that the
computational load has been significantly reduced when compared to the original
AdNN, which we know has a vertex degree of 99.

4 Conclusions

In this paper we have concentrated on the field of Chaotic Pattern Recognition
(PR), which is a relatively new sub-field of PR. Such systems, which have
only recently been investigated, demonstrate chaotic behavior under normal
conditions. The system would, however resonate (or produce a single pattern
more frequently) when it is presented with a pattern that it is trained with.
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The network which we have investigated is the Adachi Neural Network (AdNN)
[2–4], based on which we have, ourselves, developed results in various avenues
[3–6], including that of designing a NN that can yield ideal chaotic PR [7].
In this paper we have considered how the topology can be modified so as to
render the network to be much closer to “real” neural networks. To achieve
this, we have changed the network structure to be that of a Small-world graph,
and then computed the best weights for the new graph by using a gradient-
based algorithm. Apart from a Lyapunov analysis, by a detailed experimental
suite, we have shown that the new Smallworld-AdNN possesses chaotic and PR
properties for different settings.
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Detecting Chaos Using

the Strength of Extreme L Rule
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Abstract. For a time series we consider the quantity L, formally similar to angular
momentum, and strength of a rule, named the extreme L rule, about actual value
of L and two future time series elements. A four-dimensional vector is assigned to a
scalar time series by the numerical titration with low level noise. Mean strength of
the rule and standard deviation, for two levels of added noise, are the components of
this vector. It is shown that the values of Lyapunov exponent are close if vectors of
time series described by Feigenbaum map are close. Three sets of four-dimensional
vectors are formed – Rg, St and Ch, for artificial regular, stochastic and chaotic time
series respectively and their 2-norm distances are estimated. In such a manner we can
distinguish chaos with small noise from pure noise, including colored noise. Chaotic
time series are constructed using iterative maps (Feigenbaum, Henon, sine-square, ...
map) and three-dimensional ODEs (Lorenz, Ueda, Rikitake, ... equations). For an
experimental time series we find its four-dimensional vector and classify it, computing
2-norm distances to sets Rg, St and Ch. The proposed method is tested on a time
series measured in the experiment with RLC circuit. Our result is in agreement with
the results obtained by conventional methods.
Keywords: Time series, Chaos, Noise, Strength of rule, Numerical titration.

1 Introduction

In 2001 Poon and Barahona proposed a numerical titration procedure for de-
tection of chaos [8]. Their method is analogous to neutralization of the acid
with added base, for the purpose of determination of acid concentration. Poon
and Barahona add noise of increasing standard deviation to time series until
its nonlinearity goes undetected. Limiting value of standard deviation gives a
relative measure of chaos intensity.
Hu and Raman are confirmed chaotic nature of AFM tip oscillations by Lya-
punov exponent and noise titration calculations [3]. Chaotic human ventilation
was identified in the same manner [10]. Freitas, Letellier and Aguirre are found
that noise titration fails to distinguish colored noise from low-dimensional chaos
[2]. Roulin, Freitas and Letellier propose usage of this method for detecting a
nonlinear component in dynamics [9].

7thCHAOS Conference Proceedings, 7-10 June 2014, Lisbon Portugal
C. H. Skiadas (Ed)
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The genuine Poon-Barahona method is not applied here, but the level of added
noise is restricted on two low values. Noise affects the strength of a rule, we
formulate using a quantity formally similar to angular momentum. Then we
introduce four-dimensional vectors describing time series. Characterization of
a measured time series is possible by comparison of two vectors – vector of
measured time series and vector of an artificial time series of known character.
Our goal is to avoid difficulties in computing entropies, dimensions and Lya-
punov exponents of a measured time series [5].

2 Extreme L Rule

For a time series A1, A2, ..., A2000 we compute

Zk = (1− b) Ak
Amax

+ bGk (1)

where
Amax = max{|Ak|; k = 1, 2, ..., 2000} (2)

and Gk is Gaussian noise. In numerical titration procedure we will take two
levels of noise: b = 10−6 and b = 10−3.
The quantity formally similar to angular momentum is

Lj = XjVyj − YjVxj , j = 2, 3, ..., 999 (3)

with
Vxi = Xi −Xi−1, Vyi = Yi − Yi−1 (4)

and
Xk = Z2k+1, Yk = Z2k (5)

We now formulate the extreme L rule. For Nα (Nβ) different values of m

Lm > Lα (Lm < Lβ) ⇒
sign(Xm+1 −Xm) = const. and sign(Ym+1 − Ym) = const. (6)

Strength of the rule is
Nα +Nβ − 2 (7)

For example, we take a time series with the following rule

L80 > L400 > L300 > L658 > · · ·
L50 < L600 < L200 < L381 < · · ·

sign(X81 −X80) = sign(X401 −X400) = sign(X51 −X50) =

sign(X601 −X600) = sign(X201 −X200) = sign1

sign(Y81 − Y80) = sign(Y401 − Y400) = sign(Y51 − Y50) =

sign(Y601 − Y600) = sign(Y201 − Y200) = sign2 (8)
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where

sign(X301 −X300) 6= sign1 or sign(Y301 − Y300) 6= sign2

sign(X382 −X381) 6= sign1 or sign(Y382 − Y381) 6= sign2 (9)

Then

Lα = L300, Lβ = L381, Nα = 2, Nβ = 3, Nα +Nβ − 2 = 3 (10)

The strength of extreme L rule in this case is three.

3 Four-Dimensional Vectors Assigned to Time Series

If level of noise in titration procedure is b = 10−6, we find strength of the rule
S1 ± δS1. If level of noise is b = 10−3, the strength of the rule is S2 ± δS2.
Then we construct four-dimensional vector

< S1, δS1, S2, δS2 > (11)

and assign it to considered scalar time series. In graphical representation of
this vector, lengths of red, yellow, green and blue lines are equal to S1, δS1, S2

and δS2 (figure 1, figure 2).
Distance between two sets of four-dimensional vectors, Set1 and Set2, is

d(Set1, Set2) = min{|| < Pi1, δPi1, Pi2, δPi2 >

− < Qj1, δQj1, Qj2, δQj2 > ||; i = 1, 2, 3, ..., j = 1, 2, 3, ...} (12)

where vectors < Pi1, δPi1, Pi2, δPi2 > belong to Set1, vectors
< Qj1, δQj1, Qj2, δQj2 > belong to Set2 and || || denotes 2-norm.

Considering damped oscillations

Ce−βt sinωt, t = 0.01k (13)

we can see that values of β and values of ω are close if corresponding four-
dimensional vectors are close (figure 2). Therefore dynamics described by a
time series and vector assigned to this time series are strongly connected.

For Feigenbaum map
Ai = 1− qA2

i−1 (14)

values of the Lyapunov exponent

λ = lim
n→∞

1

n

n∑
i=1

ln|2qAi−1| (15)

are approximately equal if vector components are approximately equal (figure
3).
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We consider now time series Ak = ξ(0.01k) constructed usin Lorenz equa-
tions

dξ

dt
= 10(η − ξ), dη

dt
= rξ − η − ξζ, dζ

dt
= ξη − 8

3
ζ (16)

with
ξ(0) = 9.4, η(0) = 8.8, ζ(0) = −7.8 (17)

If vectors describing time series are close, then values of r are close (figure 4).

In many cases we have considered, if two vectors < P1, δP1, P2, δP2 > and
< Q1, δQ1, Q2, δQ2 > are close, namely

|| < P1, δP1, P2, δP2 > − < Q1, δQ1, Q2, δQ2 > ||
<< || < P1, δP1, P2, δP2 > ||, || < Q1, δQ1, Q2, δQ2 > || (18)

then characters of corresponding time series are very similar. Reversed state-
ment is not valid. If characters of two time series (type of chaos or type of
regularity for example) are very similar, their vectors can be very different.

Fig. 1. First bundle contains vectors of eight stochastic time series. Lengths of red,
yellow, green and blue lines are equal to S1, δS1, S2 and δS2. Eight vectors in
the second bundle are assigned to eight regular time series (undamped periodic and
quasi-periodic oscillations).
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Fig. 2. Vectors of damped oscillations Ce−βt sinωt (t = 0.01k), where (1) ω = 1
and β = 0.001 − 0.0011 (first bundle), (2) ω = 1 and β = 0.003 − 0.0031 (second
bundle), (3) β = 0.001 and ω = 4.0 − 4.005 (third bundle), (4) ω = 3.005 − 3.0051
and β = 0.002 − 0.0021 (fourth bundle).

Fig. 3. Vectors of Feigenbaum map. Values of λ are: (1) from -0.0203 to -0.0191 (first
bundle), (2) from 0.4064 to 0.4093 (second bundle), (3) from 0.5399 to 0.5407 (third
bundle), (4) from 0.6425 to 0.6457 (fourth bundle).
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Fig. 4. Vectors of time series constructed using Lorenz equations. Four vectors in
first bundle describe regular time series with r = 10.2 − 10.4. The following vectors
describe chaotic time series with r = 29.800002 − 29.800005 (second bundle), r =
30.100002 − 30.100005 (third bundle), r = 30.200002 − 30.200005 (fourth bundle).

4 Sets of Vectors Rg, St and Ch

We now form three sets (Rg, St and Ch) containing four-dimensional vectors
of artificial regular, stochastic and chaotic, with small noise, time series.
Set Rg contains vectors of regular time series (damped and undamped, periodic
and quasi-periodic, oscillations and Feigenbaum map in regular regime). Form
of the time series elements, in the case of undamped oscillations, is

Ak =
∑
i

[
C1 cosωik + C2 cos(Ωik + φi)

]
(19)

Vectors of stochastic time series there are in set St. We have generated
random numbers with uniform and Gaussian distributions (white and colored
noise). Colored noise in St is generated by Bartosch algorithm [1].

Few hundred chaotic time series, described by vectors belonging to set Ch,
are constructed using iterative maps (Feigenbaum, Henon, sine-square, etc)
and three-dimensional ODEs (Lorenz, modified Lorenz, Rössler, Ueda, Riki-
take, etc). The level of aded noise in these time series is from zero to 0.01%.
This noise is included in Aj . The noise included in Zk (eq. 1) is something else.
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We are found out distances between sets Rg, St and Ch:

d(Rg, St) = 0.07, d(Rg,Ch) = 0.15, d(St, Ch) = 0.29 (20)

5 Periodically Driven RLC Circuit

A time series Ki of length 25000 is measured in the experiment with periodi-
cally driven RLC circuit, performed by Kodba, Perc and Marhl [7]. Ki is the
output voltage with a sampling rate of 500 measurements per second. Chaos
is detected using basic methods – determinism test, attractor reconstruction
and calculation of the largest Lyapunov exponent. The mutual information
method and the false neighbor method yield the proper embedding delay and
the proper embedding dimension [6].
We analyze subseries

Ai = Ki+p (i = 1, 2, ..., 2000) (21)

and confirm presence of chaos (table 1).

p vector d(vector,Rg)
||vector||

d(vector,St)
||vector||

d(vector,Ch)
||vector||

0 < 1, 0, 1.55, 0.88 > 0.033 0.198 0.246

32 < 1, 0, 1.46, 0.96 > 0.060 0.235 0.204

65 < 0, 0, 0.54, 0.73 > 0.086 0.259 1.262

82 < 1, 0, 1.54, 1.03 > 0.047 0.261 0.168

83 < 0, 0, 0.37, 0.60 > 0.083 0.158 1.928

582 < 0, 0, 0.11, 0.31 > 1.011 0.068 5.284

624 < 0, 0, 0.12, 0.33 > 0.351 0 4.893

718 < 0, 0, 0.16, 0.37 > 0.631 0.070 4.124

824 < 0, 0, 0.16, 0.39 > 0.571 0.047 3.916

970 < 0, 0, 0.18, 0.39 > 0.527 0 3.805

923 < 2, 0, 2.40, 1.39 > 0.149 0.149 0.044

941 < 2, 0, 2.60, 1.46 > 0.168 0.150 0.034

969 < 2, 0, 2.29, 1.49 > 0.150 0.192 0.004

997 < 2, 0, 2.11, 1.04 > 0.148 0.175 0.048

999 < 2, 0, 2.26, 1.19 > 0.109 0.134 0.017

1001 < 2, 0, 2.21, 1.10 > 0.098 0.135 0.016

Table 1. Considering time series measured by Kodba, Perc and Marhl we find regular
subseries (p = 0, 32, 65, 82, 83), stochastic subseries (p = 582, 624, 718, 824, 970) and
chaotic subseries (p = 923, 941, 969, 997, 999, 1001).

6 Kobe Earthquake

We have computed vectors for subseries of the recorded Kobe earthquake time
series [4]. Most often we find

d(vector,Rg) > 0, d(vector, Ch) > 0, d(vector, St) = 0 (22)
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with
vector =< 1, 0, 1, 0 > or < 2, 0, 2, 0 > or < 3, 0, 3, 0 > (23)

For other vectors, the distances often satisfy

d(vector, Ch) > d(vector,Rg) >> d(vector, St) > 0 (24)

and rarely much greater is replaced by greater

d(vector, Ch) > d(vector,Rg) > d(vector, St) > 0 (25)

We can conclude that analyzed time series is stochastic one.

7 EEG Time Series

We consider here EEG time series Ek (k = 1, 2, ..., 3595) recorded on a patient
undergoing ECT therapy for clinical depression [11]. A vector is assigned to

Aj = Ej+p (j = 1, 2, ..., 2000; p = 1, 2, ..., 1595) (26)

with certain p. Then we compute distance from the vector to sets Rg, St and
Ch. When p is increasing, the vector oscillates between St and Ch, or between
Rg and Ch (table 2).

p vector d(vector,Rg)
||vector||

d(vector,St)
||vector||

d(vector,Ch)
||vector||

1 < 1, 0, 1.27, 1.54 > 0.27 0.38 0.06

2 < 13, 0, 13.15, 0.39 > 0.07 0.02 0.43

3 < 1, 0, 1.53, 2.12 > 0.31 0.37 0.02

4 < 13, 0, 13.07, 0.33 > 0.07 0.02 0.42

5 < 1, 0, 1.17, 1.20 > 0.09 0.38 0.06

6 < 13, 0, 13.13, 0.34 > 0.07 0.02 0.43

7 < 1, 0, 1.55, 2.19 > 0.33 0.37 0.04

8 < 13, 0, 13.13, 0.34 > 0.07 0.02 0.43

751 < 1, 0, 1.40, 1.97 > 0.27 0.38 0.08

752 < 17, 0, 17.03, 0.17 > 0.08 0.12 0.55

753 < 1, 0, 1.77, 2.63 > 0.43 0.39 0.18

754 < 17, 0, 17.01, 0.10 > 0.08 0.12 0.55

755 < 1, 0, 1.60, 2.39 > 0.38 0.38 0.11

756 < 17, 0, 17.01, 0.10 > 0.08 0.12 0.55

757 < 1, 0, 1.39, 1.92 > 0.26 0.39 0.09

758 < 17, 0, 17, 0 > 0.09 0.12 0.55

Table 2. Results we are obtained investigating subseries of EEG time series. For p
from 1 to 8, the vector approaches to Ch, then to St, again to Ch, and so on. For p
from 751 to 758 similar oscillations happen, but St is replaced by Rg.
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8 Conclusion

A new method for time series analyze is proposed here. The extreme L rule
and four-dimensional vectors assigned to time series are in the basis of this
method. In plenty of examples, closeness of vectors leads to similar characters
of time series described by these vectors. We compute distances from vector of
a measured time series to sets Rg, St and Ch, containing vectors of artificial
regular, stochastic and chaotic time series. If minimal distance is significantly
smaller than other distances, we assume that the character of time series is
determined correctly with high probability.
In our further investigations we can add vectors of other artificial time series
to sets Rg, St and Ch. It is also possible to replace Ch with a few sets
corresponding to different types of chaos.
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Abstract: During continuous casting process (CCP), liquid steel is cast from the tundish to a 

mold. Here the steel adopts the mold section geometry (squared section) and begins to be 

quenched using a primary cooling system incorporated in the mold walls. Then steel billets 

are quenched using a secondary cooling system. Finally the steel billets are driven along a 

free zone to be cut and stored as a new product. During this industrial process, different grain 

structures are formed as a function of the heat removal conditions and the corresponding 

solidification speed. Near the billet surfaces a chill zone is initially formed followed by a 

columnar grain zone and finally an equiaxed zone in the core. A computational simulator 

based on stochastic methods and cellular automaton (chaos theory) is described in this work. 

The algorithms and equations used are also explained in detail. Computational arrays of the 

heat removal process previously calculated are saved and reloaded to assign solidification 

times and rebuild the billet thermal history [5]. The simulator includes computational 

algorithms for grain nucleation and grain growth in every zone. Routines for pre-nucleation 

and pre-growth have been also added for an improved simulation and a graphical user 

interface was used to display on the screen the structures simulated.  

 

Keywords: Grain structures (Chill, columnar and equiaxed grains), Steel billets, chaotic 

morphology, metals Solidification. 

 

1. Introduction. 
Simulation of grain structure formation during steel solidification is a complex 

process. Many computational algorithms have been developed by many authors 
[1-

26]
. Some of them have been working on the solution of the heat removal conditions 

during the CCP 
[1-4]

. The first mathematical models were based on interpolation 

methods to predict the steel thermal behavior due to the limits on computational data 

processing speed and limited storage capacity. Nevertheless some researchers 
[2-3]

 

continued developing more efficient programs and models according with the 

increment on computing capacities. Others
 [4-7] 

have been using new finite element 

software packages capable to solve heat and mass transfer equations. Some others 

have studied anisotropy of the material properties and related with the new 

mathematical theories such as stochastic, probabilistic and statistical methods; 

_________________ 
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which were developed to describe the particular complex geometries in the nature 

such as cellular automaton and fractals 
[5-26]

. Many of these theories are based on the 

management of statistical information of analyzed samples such as grain size and 

grain population. Then a computational algorithm is programmed to establish a 

relationship with a random process. The Monte Carlo and cellular automaton
 [6-11 & 

19-23]
 are two of the most popular methods used for simulation due to these can be 

easily programmed using random instructions to be included in calculation routines. 

The Monte Carlo Method is based on the computational generation of random 

numbers. This method has been widely used in material science to develop 2D and 

3D computational models for representing heterogeneity on materials properties and 

sophisticated morphologies of solids 
[5-26]

. Some authors
 
have been working on 

mathematical models for the solidification of metals and alloys using heterogeneous 

distributions of metals and phases
 [6-12 & 19]

. Some authors dedicated emphasis in 

dendritical growth 
[14-18]

. Crystal and grain growth have been studied as a function of 

the dwell time on liquid, mushy and final solidification 
[9]

. Other authors have been 

developed models to calculate the geometrical transformation during re-

crystallization
 [10-12]

.  The cellular automaton theory has also been used to create 

models for phase transformations and simulate microstructures of grains for 

different metallic materials 
[6-11 &19-23]

. Other researchers have been analyzed the 

influence of simulation scales (micro, meso & macro) 
[13 & 18] 

for simulating micro-

structures and nano-structures. Other authors have studied the influence of the 

processing methods over physical and chemical properties of materials. These new 

mathematical theories have been developed in the last three decades becoming very 

popular establishing the computational relationships between deterministic and 

stochastic processes. The Model developed in the present work to simulate the 

different grain structures in a steel billet solidified, uses computational algorithms to 

reproduce grain nucleation and growth processes. Heat removal conditions and 

particular nodal solidification speed are compared with pre-defined values to 

establish the boundary between different grain sizes and morphologies formed and 

reproduce the grain growth. 

 

2. Reading and management of the information. 
The steel was discretized using a regular squared mesh and solved using a finite 

difference method to calculate the thermal behavior in a previous work
 [5]

. Steel was 

considered as homogeneous and every node in the mesh represented the same 

energy (HI,J) to foundry a steel volume until the casting temperature (initial 

temperature). When the steel is cast; the energy and temperature on every node 

decrease due to heat removal conditions. The steel originally in a liquid state is 

quenched to mushy and then to a final solid state. The simulator developed by the 

present authors 
[5]

 calculates the steel thermal behavior as a function of many factors 

such steel composition, casting speed, and the operating conditions. Then 

solidification and temperature profiles were displayed on the screen using nested 
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loops routines. These loops were profited for including in the main thermal solution 

a routine to save the calculated information at each step time. Temperature in each 

node of the steel discretizated is calculated as a function of the corresponding heat 

latent “TI,J=f(HI,J)” and the heat removal conditions (-qI,J) applied after each 

iteration. These temperatures are compared with the changing state temperatures 

(Tliq & Tsol). When both values are identical the corresponding simulation times are 

stored in two independent 2D computational arrays to be saved in two independent 

files at the end of the simulation. The times (tI,J) are declared as floating point data 

type for a more precise calculation. The saved times are ordered as (tliq I,J & tsol I,J) to 

be identified and read using the new grain growth model developed. Moreover the 

information about the billet geometry and dimensions, the step time (∆t) and casting 

conditions such as the casting temperature “Tc”, the casting speed “cs”, etc. are 

stored using a code number used to recognize the every factor involved during 

casting. This information is read independently by the grain growth simulator; 

which makes possible to create a grain structure without repeating the calculation of 

the steel thermal behavior. The 2D computational arrays are recognized reading the 

additional information firstly to establish the upper limits (nx) and (ny) to be used 

for the nested loops which commands the simulation process. The read values are 

loaded and stored in two new restored computational arrays; a numeric encoding is 

used to identify these values; number (1) is used for “Tliq” and (2) is for “Tsol” 

respectively. Here the main loop for the simulation process goes from an initial time 

(t=0) to the final solidification time registered (tmax). The main loop uses the 

previously saved step time (∆t) to command the simulation; and the saved nodal 

times (tliq I,J) and (tsol I,J) are compared with the simulation time (t+∆t) using a single 

identification routine to rebuild the steel thermal history placing the nodes on the 

screen. The mushy time is obtained using equation (1). Moreover it is possible to 

calculate the fraction of solid (Xsol I,J) and liquid (Xliq I,J) simultaneously using 

equations (2) and (3) respectively due to the time representation is analogous to the 

temperature and to the solid fraction. This calculation permits the node be classified 

as a function of its actual solidification status. 

)tt(t J,1solIJ,liqIJ,mushyI −=  (1) 

J,liqIJ,solI

J,solIt

J,solI
tt

tt
X

−

−
=  

(2) 

t

J,solI

t

J,liqI X1X −=  (3) 

The algorithm shown in the flow chart shown of figure (1) is used to count the 

solidified nodes and display a solidification profile on the screen as is shown in 

figure (2). Here the variables (nl
t
), (nm

t
) and (ns

t
) count the nodes on liquid, mushy 
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and solid respectively; these are initialized equal to zero to begin every new 

counting process at each step time (t+∆t). At the end of the loops execution these 

variables are stored to display the solidification speed graphs shown in figures (3, 4 

& 5). Solidification begins inside the mold. Here Liquid steel is quickly quenched 

on the billet surfaces. In consequence a lot of nodes change from liquid to solid state 

instantly; and the mushy time is very short. Nevertheless the solidification speed 

decreases and mushy time becomes longer. Figure (3) shows an accounting of the 

total nodes that goes from liquid to mushy and from mushy to solid during 

simulation. These graphs are cumulative. The vertical slopes in both curves at the 

beginning evidence a high solidification speed. Horizontal slopes at the ending 

indicate the reduction of the solidification speed. The region between these two 

curves is the mushy time. The last node on changing to mushy was at 74s. Which 

makes match with the longest mushy time with the maximum nodes on mushy 

registered on figure (4). The slope in this graph also is vertical at the beginning of 

the solidification, confirming a high solidification speed. The chill zone is formed 

here. After that the slope becomes to decrease and the columnar grain zone grows 

and finally the equiaxed grains begin to appear when the mushy time becomes very 

long. Nevertheless the solidification speed is reduced suddenly after 10s. Although 

the nodes changing state continue being increased due to the heat latent inside the 

billet section. Finally after (74s.) the number is decreased due the absence of liquid 

steel. The instantaneous changing state speeds are shown in figure (5).  In the same 

way than the other graphs here a lot changing state nodes were registered at the 

beginning of the solidification until reach a maximum value confirming a high 

solidification speed. Then both are reduced due to the nodes changing state are 

slowly decreased. 

 

 

Figure (1). Flow chart for counting the 

nodes on liquid, mushy and solid. 

Figure (2). Solidification profile. 
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Figure (3). Nodes changing to mushy and 

solid states. 

Figure (4).  Nodes on mushy. 

 

 
Figure (5). Nodes changing to mushy and solid states. 

 

3. Nucleation, Growth, Pre-nucleation and Pre-growth. 
Steel solidification is a complex problem and different grain structures are formed 

according with the solidification speed. The most common procedures involves 

during solidification are Nucleation and growth. Nucleation happens when the 

simulation time is greater or equal than the individual node solidification time (t>tsol 

I,J). Nucleation is an independent process for each node. A nodal nucleation is 

accepted after a positive identification in the comparison between a local probability 

of nucleation and a random number generated as is done in Monte Carlo method. If 

this second identification is true a new grain is born. Then a new random number is 

generated in order to assign a color and then the corresponding pixel is printed on 

the screen coordinates. In contrast growth process is a dependent process. If the 

condition (t>tsol I,J) is true but the second identification is negative the node will be 

considered as available to be growth with a solidified neighbor using a searching 

routine. In that way, all the solidified neighbors surrounding the pivoting node are 

considered for growing with. A probability corresponding with their proximity and 

solidification time is assigned; and the Monte Carlo Method is used to select 

randomly the neighbor for growing with. Then the color of the neighbor selected is 

assigned to the pivoting node. Additionally procedures such as pre-nucleation and 

pre-growth are included in the algorithm to obtain a better approach. These are 

included to represent the probability that a pivoting node can be solidified before its 
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solid fraction reach the unit (Xsol I,J<=1). The routines developed for nucleation and 

growth process are used for solving these procedures in order to avoid unnecessary 

code and make more efficient the algorithm. Nevertheless the searching routines are 

modified according to the grain structure to be formed. Each node will be a part of 

only one single grain during simulation; reason why the algorithm takes in counts 

the following assumptions: 

 

A pivoting node is the node which is being analyzed. 

The mushy time (tmushy I,J) is used to identify the grain zone by comparison. 

A node is solidified only one time when the sentence (t>tsol I,J) is true. 

A node is only chance to be pre-nucleated according with its solid fraction. 

A pre-solidified node is registered as a solidified node. 

A pre-growth node is registered as a solidified node. 

 

4. Grain Structures Chill, Columnar and Equiaxed. 
The flow chart shown in figure (6) explains the process for identification of the 

grain zones. The first grain structure formed during steel solidification is well 

known as chill zone. A high solidification speed forms quickly a shell thickness 

formed with a great number of little size equiaxed grains are formed in this zone as a 

consequence of the high solidification speed. Here grain nucleation is the most 

frequent solidification procedure; grain growth is limited due to the simultaneous 

growth of many neighboring nucleated grains. At the beginning of solidification the 

mushy time is very short, in consequence its calculation is also considered as not 

necessary. In the same way pre-nucleation and pre-growth routines are not included 

for being considered as not needed during the formation of the chill zone. The 

boundary for the formation of the chill zone is (tchill=2.0s). This value is compared 

with the mushy time and if the sentence (tmushy I,J <=tchill) is true the algorithm is 

employed. Solidification speed decreases as the times goes due to the shell thickness 

formed reduces the heat removal capacity and the nodes inside the billet remain 

longer times on liquid and mushy. If the sentences (tmushy I,J >tchill) and (tmushy I,J <tcol) 

are true; the algorithm for columnar zone is employed. Here the growth process will 

be the most frequent process. Nucleation of new grains rarely happens in columnar 

and equiaxed zones. Nevertheless in both these zones, pre-nucleation and pre-

growth of new grains are commonly occurring. The boundary for the formation of 

the columnar zone is (tcol =12.5s). Finally if the sentence (tmushy I,J >tcol) is true the 

algorithm for the equiaxed zone is applied. 

 

The inclusion of pre-nucleation and pre-growth procedures generates new grains 

(npng) which must be counted in order to know the number of available un-solidified 

nodes (nng) at each solidification time (t+∆t) during the simulation. When the sum 

(npng + nng) is equal to total solidified nodes at that time (n tot sol) the loop is break 
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and the values are returned to initial values and the entire process begins for the next 

step time. Here the each new solidified node is counted after the pre-nucleation and 

pre-growth routines have been executed and before nucleation and growth 

procedures were executed as is shown in the shaded area of figure (6). This routine 

is compiled separately and nested to be employed in the columnar and equiaxed 

zones. Pre-growth and growth are randomly selective procedures that involve a 

particular neighboring analysis about the pivoting node in order to transform the 

numerical information of the thermal analysis in a cellular automaton. A cellular 

automaton is a computational algorithm for describing spatial and temporal 

evolution of complex system by applying local or global stochastic and deterministic 

transformation rules. The evolution of the cellular automata takes place through the 

application of the transformation rules that act on the state of each node and 

determine the state of a node as a function of its previous state or the state of the 

neighboring nodes. Then the new state of the variables used is updated 

simultaneously for all nodes. The value of an arbitrary state variable “ξ” assigned to 

a particular node at a time (t+∆t) is a function of its present state and the state of its 

neighbors. The equation (4) shows formally this relation for a two dimensional 

analysis considering the 4 nearest neighbors. This is well known as von Newman 

neighboring. Nevertheless the equation (5) is also widely used due to the inclusion 

of the 4 next nearest neighbors is necessary in many analysis. This is called Moore 

neighboring. 
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In columnar zone different preferential growth directions are adopted by the grains. 

Here grains are growth from the chill zone boundary towards the billet centre 

against the heat flux direction. In this zone preferential growth directions are 

calculated for each pivoting node using two-dimensional von Newman 

configurations considering the 4 nearest neighbors as is shown in figure (7a). The 

first step is to search the solidified neighbors. Equal probabilities are assigned to the 

nodes beside the pivoting node. Nodes in front are hotter than the pivoting node and 

frequently un-solidified; reason why the probabilities assigned to them are minor. In 

contrast nodes behind the pivoting node (those nearest to the billet surface) 

frequently are solidified reason why the major probability for growing is assigned to 

them. Nevertheless these assumptions can be improved in order to give a 

preferential probability for growing; calculating the distances from the pivoting 

node to the 4 billet surfaces using the equations (6-9). These distances are sum and 

the probabilities (PD) are assigned to the neighbors according from the nearest to the 

fares surface using the equation (10). The general algorithm is shown is figure (8). 
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a) 

 
b) 

 

Figure (6). Flow chart for counting the nodes 

on liquid, mushy and solid. 
Figure (7). Routines for two-dimensional 

searching nodes during growth and pre-

growth with von Newman neighboring. 
 

 

 

D1 = I (6) 

D2 =nx- I (7) 

D3 = J (8) 

D4 = ny-J (9) 
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During growth, the pivoting node is compared to be identified as un-solidified node 

and the previously solidified neighbors are searched. Nevertheless these conditions 

are inverted for pre-growth. Here the pivoting node is compared to be identified as a 

pre-nucleated node and the un-solidified neighbors are searched. In consequence the 

searching criterion is inverted as is shown in figure (7b) for the von Newman 

neighboring. If the condition for pre-growing node is true; the pivoting node will 
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grow towards a billet surface in the same direction than the heat flux. Nodes in 

equiaxed zone remain a long time in mushy and their solidification speed is very 

slow. The hypothesis here is that pre-nucleation, pre-growth and growth are also 

frequent procedures. Nevertheless preferential growth directions are calculated for 

each pivoting node using two-dimensional Moore configurations considering the 8 

nearest neighbors as is shown in figures (9a) and (9b). Here the difference in time 

between the pivoting node and the neighbors is calculated in order to find the 

shortest. A pair of loops including this procedure is nested in order to avoid 

unnecessary code. The differences are calculated using the equation (11) where the 

sub indexes “i” and “j” are used to identify each neighbor. Due to the 4 nearest 

neighbors indicated in the von Newman are nearer than those in the Moore 

neighboring a correction according with their distance to the pivoting node must be 

applied solving the equation (12) for every neighbor. Then the preferential 

probabilities are assigned according with the shortest difference time. Here a 

sentence “if” is also included in the searching routines in order to eliminate an 

unavailable neighbor at every time.  

 

j,iJ,solID ttdt −=  (11) 

22

j,i )jJ()iI(d −+−=  
(12) 

 

a) 

 
b) 

 

Figure (8). Flow chart for searching 

neighbors analysis. 

Figure (9). Routines for two-dimensional 

searching nodes during growth and pre-growth 

with Moore neighboring. 
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Some assumptions for the equiaxed zone are the following: 

 

A node is considered as available to be pre-nucleated or pre-growth if the sentence 

(Xsol I,J>=0.5) is true. Although the probability is increased as the solid fraction is 

also increased. 

 

A preferential probability for growing is assigned to a neighbor as a function of the 

shortest time deference in the equiaxed zone; nevertheless similar results can be 

obtained if the probabilities are assigned as a function of the neighbor’s solid 

fraction. 

 

5. Simulations. 
The solidification times were obtained after calculate the steel thermal behavior of a 

squared steel billet (160 x 160 mm.) using the operating conditions shown in table 

(1). Here (Ω) is the shooting angle and (dbs) is the distance (billet surface to spray) 

for the secondary cooling system (SCS).  

 

The continuous casting machine is symmetrical and the same operating conditions 

were applied over the 4 billet surfaces. The radius on the curved zone is (rc=9.0 m), 

the casting speed was (2.35 m/min) and the casting temperature was (1524 C). 

Figure (10) shows a ¼ cut of a steel billet. Here is shown the location of the 3 grain 

zones. Figure (11) is an example of the grain structures obtained using the model 

developed. Here the cellular automaton forms a digital image displayed on the 

screen. The grain size and grain orientation according with the corresponding grain 

zone and the each node position are appreciated in detail.  

 
Table 1.- Operating conditions in the SCS. 

segment Information 

1 2 3 4 

Water flow rate 

(l/min). 

105 185 195 195 

Sprays 1 9 9 9 

θ 2 12.6 16 16 

Ω 60 60 60 60 

dbs (mm) 160 160 160 160 
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Figure (10). Grain zones in a steel billet. Figure (11). Simulated grain structure of a 

steel billet. 

 

6.Conclusions. 
After the execution of the algorithms and the simulation of the solidification process 

it is possible confirms: 

  

At the beginning a high solidification speed, corresponds to a short mushy time. In 

consequence a lot of nodes are quickly nucleated forming a zone with little equiaxed 

grains. 

 

The growth orientation depends of the heat flux direction. Evidence is appreciated in 

the columnar zone. 

 

The structures obtained confirmed the strong influence of the solidification speed 

and mushy time 
[9]

 over the grain structure to be formed as is shown in figure (11). 

Here the grain size becomes bigger as the simulation time goes and as the mushy 

time becomes longer. 

 

The model developed in the present works is capable to reproduce in detail the grain 

structures (chill, columnar and equiaxed) formed during the solidification of a steel 

billet. 
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Abstract: In this paper the bi-velocity is applied to calculate the behavior of high zirconium content 
alloys in the Ni-Al-Zr system. The method allows a quantitative description of diffusion mass 
transport in multi-phase materials. The method links the bi-velocity Darken approach with the phase-
field model in which the diffusion zone is quantitatively characterized by phase volume fractions. The 
chemical potentials of components in the ternary Ni-Al-Zr system are predicted numerically on the 
basis of thermodynamic properties of binary systems included in the investigated ternary system. The 

idea of predicting ijk
exG  values is regarded as calculation of values of a Gex  function inside a 

certain area (a Gibbs triangle) unless all boundary conditions, that is values of Gex  on all legs of the 

triangle are known ( ij
exG , ik

exG , jk
exG ). This approach is contrary to finding a function value 

outside a certain area, if the function value inside this area is known.  
The results of the calculations are compared with experimental concentration’s profiles of nickel, 
zirconium and aluminum in zirconium doped aluminide coatings deposited on pure nickel by the PVD 
and CVD methods. 
Keywords: NiAlZr system, reactive diffusion, simulation, Zr content 

 

1. Introduction. 
The aluminizing process is extensively used to form protective coatings on aircraft turbine 
blades made of superalloys [1]. Aluminizing process is realized in many ways, such as: 
pack cementation, above-the-pack or physical and chemical vapor deposition methods. 
Addition of small amounts of reactive elements such as Zr, Hf, Y, or Ce to NiAl coatings 
has beneficial effects on the oxidation behavior. This beneficial effects include 
improvement of adhesion of alumina scales and reduction of oxide scale growth rate [2-6]. 
The problem of designing the technology of coatings’ deposition by CVD and PVD 
methods and designing the layers formed during aluminization remains open. The main 
difficulty is included in description of diffusion in a multi-component solid which leads to 
multi layers formation.  
 In this work, the bi-velocity method is generalized and combined with the phase 
field model. The fusion of these two methods, referred as the Bi-velocity Phase Field 
Method, is applied to calculate composition–distribution profiles for elements present in the 
diffusion couple. Hence, the diffusion path, which in the ternary phase diagram connects 
the terminal composition of the diffusion couple can be calculated. When the isothermal 
section of the phase diagram is projected onto the composition triangle, then the fields 
crossed by the diffusion path can be indicated. In this work the Ni-Al-Zr system is 
analyzed. The previous binary [7,8] model is expanded and mass transport in the 

_________________ 
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multicomponent system is taken into account, in which the layers of various phases and 
multiphase layers can grow. The previous model is generalized and combined with the 
phase-field approach. Values of chemical potentials of aluminum nickel and zirconium in 
ternary Ai-Ni-Zr alloys were predicted numerically on the basis of thermodynamic 
properties of binary systems included in the investigated ternary system. 

 
2. The Model and Simulations 
The interdifusson may be described by means the generalized Darken or Onsager analysis 
[9]. In this paper the Darken method coupled with the Phase Field Method [10,11] is used. 
The core of the generalized Darken method is the mass conservation law: 
   

( )div 0d drifti
i i i

c
c c

t
υ υ∂ + + =

∂
 (1) 

 

where ic  denotes the average concentration of the i-th component in the j-th phase; d
iυ  

and driftυ  are the average diffusion component velocity and the overall drift velocity, 

respectively.  
 In the presented analysis, a motion of a single phase r-component mixture, i.e., alloy or 

solid solution is taken into account.  The molar ratio, ,i jN is defined as: 

,
,1: : i j

i ji i
j

c
N

c
= =∑ ∑  (2) 

 The mixture molar concentration in the j-th phase is a sum of the components molar 
concentrations and  for simplification is accepted  constant: 

 , .i j ji
c c const= =∑  (3) 

 The component diffusion velocity, ,
d
i jυ , should be expressed by the proper constitutive 

formula. In this work  the Nernst-Planck equation is implemented: 

 
,

, , x

ch
i jd

i j i jB
µ

υ
∂

= −
∂

, (4) 

where ,
ch
i jµ  is the chemical diffusion potential of the i-th component in the j-th phase; ,i jB  

denotes the mobility.  
 The chemical potential can be expressed by the molar concentration as: 

 ( )0
, , , ,lnch

i j i j i j i jRT cµ µ γ= + , (5) 

where 0
,i jµ  denotes the standard, constant chemical potential of the i-th component and 

,i jγ  its activity coefficient.  

Finally, by coupling Eqs. 4 and 5, the diffusion velocity of the components can be 
expressed as: 
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,
, ,

ln

x
i jd

i j i j

c
RTBυ

∂
= −

∂
. (6) 

 The drift velocity can be calculated from the mass conservation of the components, with 
additional assumption of constant total molar concentration, thus: 

( ), , ,,0
d drift

i j i j i j ji j

i i

c cc

t x

υ υ∂ +∂
= =

∂ ∂∑ ∑  (7) 

finally, the drift velocity equals: 

,
,

i jdrift d
j i ji

j

c

c
υ υ= −∑ . (8) 

 
 The average composition of the system in the spatial region is a weighted average of the  
compositions of the phases in the equilibrium, i.e. the compositions described by the tie-line 
ends, Fig. 1. The mass balance expressed for each component says:  

( ), ,1i i ic f c f cα α α β= + − ,    3,2,1=i .    (9) 

In the one-phase region there is simply:  

α,ii cc =
 
 or

  β,ii cc =          (10) 

depending on the phase. 
  

The volume fraction, jf , in a two-phase region, ,i jc  and ,i jυ are the concentration and 

overall velocity of the i-th component in j-th phase, 

1f fα β+ = ,  0 1jf≤ ≤ . (11) 

Finally, the mass conservation in single α  and β  phase regions can be rewritten in a 

form: 

( ),
, ,div 0,       1,2,3,       ,j i j

j i j i j

f c
f c i j

t
υ α β

∂
+ = = =

∂
 (12) 

The overall average flux of the i-th component can be defined as: 

,,
, , , , ,       1,2,3ii drift drift

i i i i i i

cc
c f D f D f c f c i

x x
βα

α α β β α α α β β βυ υ υ
∂∂

= − − + + =
∂ ∂

 (13) 

 Figure 1 present the schematic presentation of the proposed method - the 
interdiffusion of  the three componet system between α  and β  phases. On the 

composition triangle the phase boundaries are presented (functions gα  and gβ ).  Lines 

connecting  boundaries show the tie-lines (conodes), which are the initial conditions from 
the phase diagram. 
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 Figure 1. The schematic presentation of the Darken coupled with phase field 

method. 
 

Values of chemical potentials ch
iµ  (equation 4) of aluminum, nickel and zirconium were 

calculated on the basis of thermodynamic properties of binary systems included in the 
investigated ternary system. The idea of predicting exGijk values is regarded as calculation of 
values of  exG function inside a certain area (a Gibbs triangle) unless all boundary 
conditions, that is values of Gex  on all sides of the triangle, are known (exGij,

 exGik,
 exGjk). 

This approach is contrary to finding a function value outside a certain area, if the function 
value inside this area is known (this issue is well known in mathematics). In this approach, 
values of excess Gibbs functions for all concentrations of binary alloys are taken into 
consideration, not only the selected ones and there is no problem with choosing binary mole 
fractions and proper weighting, unlike in geometrical models. In this approach, weighting 
of each mole fraction is the same. This model was successfully applied to Cu-Sn-Zn and Bi-
Cu-Ni alloys [12] and results agree very well with the values obtained by the Calphad 
method. 

The excess Gibbs energy exG describes the influence of non-ideal mixing behavior 
on the thermodynamic properties of a solution phase. The Muggianu [13] extension of the 
Redlich-Kister formalism [14] is a widely accepted description of the excess Gibbs energy: 

,m, …0,1, = z,

Lxxx)x(xLxx

)x(xLxx+)x(xLxx=G

ijkkji

n

kji

z
kjjk

z
m

0=z
kj

z
kiik

z
m

0=z
ki

z
jiij

z
m

0=z
ji

ex

∑∑

∑∑

≠≠
−+

−−

                         (14)
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where zL ij are binary and Lijk is ternary temperature dependent interaction parameters 
optimized on the basis of the available thermodynamic and phase diagram data. 
 

                                               ijk
2

kijk
1

jijk
0

iijk Lx+Lx+Lx=L                               (15) 

 
Thermodynamic parameters for binary alloys were accepted from Huang and Chang [15] 
for Al-Ni, Wang et al. [16] for Al-Zr and Wang et al. [17] for Ni-Zr. 
 

                              
2

NiAlNiAlNi,Al ) x (x35T) + (7998 ) x (x32712 + 16T + 168292L −⋅+−⋅−=                   (16) 

 
       

2
ZrAlZrAlZr,Al ) x (x16806  ) x (x36570 13.235T +  165348L −⋅+−⋅−−=                      (17) 

 
                                                      5.25T +  125000, −=ZrNiL                                           (18) 

 
 
As a results of calculations the following values of ternary L parameters for 1273K were 
obtained:  
 

                                 x105x103.3 x101.3L Zr
6

Ni
6

Al
-7

Zr,Ni,Al ⋅−⋅+⋅−=                       (19) 

 
 
Values of chemical potentials of aluminum and zirconium were derived from excess Gibbs 
energy according to the following formulas: 
 

                             
( )
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iZrAlN
ex
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Ni
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3.Experiments and  Results 
Zirconium and aluminum layers (each 1 µm thick) were deposited by the EB-PVD 

method [18]. The samples with Zr and Al  layers were subjected to diffusion treatment at 
1325 K for 4 h in the argon atmosphere.  

The microstructure of the coating was examined by the use of an optical microscope 
Nikon Epiphot 300, a scanning electron microscope (SEM) Hitachi S-3400N and an energy 
dispersive spectroscope (EDS) Fig.2. 
 The coating consists two zones: outer (3-4 µm thick) zone and internal (6-7 µm 
thick) one. On the top of the coating the proportion of Ni, Al and Zr corresponded to 
Ni(Al,Zr) phase (Fig. 2, Table 1, Point 1). The chemical composition of the inner zone, 
distributed below the Ni(Al,Zr) phase corresponds to the  Ni5Zr phase  (Fig. 2, Table 1 
Point 2) . Below the presence of the Ni(Al,Zr) phase was detected (Fig. 2, Table 1, Point 3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 2. Microstructure of the Zr 1 µm thick and Al 1 µm thick coatings 
deposited by EB-PVD method after diffusion treatment. 

 
Table 1. Chemical composition on the cross-section of the Zr 1 µm thick and Al 1 µm thick 
coatings after diffusion treatment 

Chemical composition, % at 
Point 

Al Ni Zr 
1 7.57 86.20 6.23 
2 - 82.66 17.34 
3 2.91 95.48 1.61 

 
When zirconium content is high the diffusion coefficients in γ-Ni phase based is on 
Campbell approximation[19]. The diffusion between γ-Ni and Ni5Zr phase is analyzed. The 

428



Zr diffusion coefficient is approximated basing on the Grandjean and Limoge data[20], 
Table 2.  
 
Table 2. Thermodynamic and kinetic data used to simulate the reactions in Ni-Al-Zr system 
at 1325 K.  

Phase, j 

Al diffusion 

coefficient, ,Al jD  

[cm2s-1] 

Ni diffusion 

coefficient, ,Ni jD  

[cm2s-1] 

Zr diffusion 

coefficient, ,Zr jD  

[cm2s-1] 
γ-Ni 4.24 10-12 4.24 10-12 10-15 
ZrNi5 4.24 10-12 4.24 10-12 10-15 

 
Figures 3 and 4 present the time evolution of the concentration profile and the diffusion 
path. The presented data describe  changes of the average composition of the system 
parallel to the mass transport direction, as it results from the concentration profiles. It is 

seen that the diffusion path passes the Niγ − + 5Ni Zr  two-phase region. This means that 

such two-phase zone might grow during diffusion. The points where the diffusion path 
cross the interphase boundaries determine the average compositions of the system for 
which any phase (dis)appear or one phase transform into the other.  

 

- 

 

 
Figure 3. The comparison of the concentration profile of the NiAlZr multiphase diffusion 

experiments (dots) and simulations (line). 
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 Figure 4. The comparison of the concentration profile of the NiAlZr multiphase  

diffusion experiments and simulations on a concentration triangle. Two phase can 
be distinguish: γ-Ni and Ni5Zr phase. 

            
 
5. Conclusion. 
 Based on the bi-velocity method, a model of reactive diffusion in three-component 
systems was proposed. The model is based on the generalized Darken approach with proper 
boundary conditions. The generalized Darken method is coupled with the phase field 
approach. The model includes both drift and diffusion velocities. The presented results are 
used to model the zirconium doped aluminide coatings formation deposited on pure nickel 
by the PVD method. It was shown that Zr behaves as a marker  Results of simulation well 
describe experimental values of nickel, aluminum and zirconium concentration distributio 
in zirconium dopped alumina coatings. 
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Abstract: In this work we consider the application of some signal processing 

techniques to multivariate financial time series, particularly the Principal 

Component Analysis (PCA), the Independent Component Analysis (ICA), also 

known as blind source separation and the quite recent Forecastable Component 

Analysis (ForeCA). The key idea is not to compare their differences but more to 

find their “joint strenght” by joining their different views of time series. 

Knowing, for instance, that ICA linearly maps the observed multivariate time 

series into a new space of statistically independent components (ICs) we could 

“observe” the other two techniques at the same “time” and merge the 

information. We applied these techniques to two different scenarios: one, more 

micro, to some stocks quoted in the Portuguese Stock Market (PSI20); the other 

one, more macro, to study nine European stock markets. 

 
Keywords: Data reduction, Stock Market, Pearson Correlation, Distance Covariance, 

Component Analysis 

 

1. Introduction 
In 1967, a seminal paper on the spectrum of empirical correlation matrices 

written by Marcenko and Pastur turned out to be useful in many and very 

different contexts like, for our purposes, finance time series. Its central 

objective, as a new statistical tool to analyze large dimensional data sets, only 

became fully relevant in the last twenty years, when the storage and handling of 

great amounts of data became a daily routine in financial markets. 

 

The correlations within stock price fluctuations for different assets or markets 

are important because, for instance, of their direct use for risk management in 

the Markowitz portfolio theory. In this study, however, in a less profitability 

use, we are more interested in collecting the real information from stocks 

dependency. In practice, there are different sources of noise in the estimated 

correlations. 

 

In their work, Laloux et. al., show that this accumulated noise in the correlation 

matrix for price fluctuations can be accounted for by using the tools from the 

random matrix theory (RMT). In particular, they found that the distribution of 

eigenvalues of empirical correlation matrix, excluding some of the largest 
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eigenvalues, fits very well in the Marcenko-Pastur distribution of the RMT. 

These results strongly suggest that eigenvalues of correlation matrix falling 

under the Marcenko-Pastur distribution contain no genuine information about 

the financial markets. Extended work has been conducted to explain information 

contained in the deviating eigenvalues, which reveals that the largest eigenvalue 

corresponds to a market wide influence to all stocks and the remaining deviating 

eigenvalues correspond to conventionally identified business sectors. Using the 

same RMT method, extensive works have been performed in the correlation 

analysis of various stock markets. 

 

In this work we are going to retrieve some of these results using RMT applied to 

two sets: first to twelve stocks quoted in the Portuguese Stock Market (PSI20) 

and then to nine European stock markets. Finally, we will apply Principal 

Component Analysis (PCA), Independent Component Analysis (ICA) and 

Forestecable Component Analysis (ForeCA) to these same sets in an effort to 

merge the resulting information. 

 

 

2. Methods 
 

2.1 Principal Component Analysis (PCA) 

 

PCA is defined as a statistical procedure that by means of an orthogonal 

transformation converts a set of observations of (possibly correlated) variables 

into a set of linearly uncorrelated variables called principal components. This 

transformation is defined in such a way that the first principal component has 

the largest possible variance. The remaining components in turn have the 

highest variance possible under the constraint that it is orthogonal (uncorrelated 

with) to the preceding components. Principal components are guaranteed to be 

independent if the data set is jointly normally distributed. 

 

PCA invention is attributed to Karl Pearson (1901) who created this as an 

analogue of the principal axes theorem in mechanics; it was later independently 

developed and named by Harold Hotelling in the 1930s. The method is mostly 

used as a tool in exploratory data analysis and for making predictive models. 

 

PCA is considered the simplest of the true eigenvector-based multivariate 

analyses and here we will use the eigenvalue decomposition of the data 

covariance (or correlation) matrix, being in that way, closely related to the RMT 

method. 

 

2.2 Independent Component Analysis (ICA) 

 

The method known as independent component analysis (ICA) is also referred to 

as blind source separation (Herault and Jutten 1986, Jutten and Herault 1991, 

Comon 1994). The central assumption is that an observed multivariate time 
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series (daily stock returns) reflect the reaction of a system (the stock market) to 

a few statistically independent time series. ICA seeks to extract out these 

independent components as well as the mixing process. Here we will follow 

Back and Weigend (1997) approach to express ICA in terms of other measures 

of the statistical independence of signals. 

 

In financial context, ICA was proposed for the first time by Moody and Wu to 

separate the observational noise from the true price in a foreign exchange rate 

time series. 

 

 
Figure 1: Schematic representation of ICA 

 

The original sources are mixed through matrix to form the observed signal. The 

demixing matrix transforms the observed signal into the independent 

components. Figure 1 shows the most basic form of ICA. We observe a 

multivariate time series, consisting of values at each time step. We assume that 

it is the result of a mixing process. 

 

We will consider here the application of a signal processing technique known as 

independent component analysis (ICA) or blind source separation. This 

technique can be applied to multivariate financial time series and the main idea 

is to linearly map the observed multivariate time series into a new space of 

statistically independent components. 

 

 

ICA versus PCA 

 

Independent component analysis can be contrasted with principal component 

analysis and so we give here a brief comparison of the two methods here. Both 

ICA and PCA linearly transform the observed signals into components. The key 

difference however, is in the type of components obtained. 

 

PCA algorithms use only second order statistical information. On the other 

hand, ICA algorithms may use higher order statistical information for separating 

the signals. For this reason non-Gaussian signals (or at most, one Gaussian 

signal) are normally required for ICA algorithms based on higher order 

statistics. For PCA algorithms however, the higher order statistical information 

provided by such non-Gaussian signals is not required or used, hence the signals 

in this case can be Gaussian. 
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2.3 Forecastable Component Analysis (ForeCA) 

 

Here we introduce Forecastable Component Analysis (ForeCA), a novel 

dimension reduction technique for temporally dependent signals (Goerg, 2013). 

Based on a new forecastability measure, ForeCA finds an optimal 

transformation to separate a multivariate time series into a forecastable and an 

orthogonal white noise space. We will the R package ForeCA, which uses a 

converging algorithm with a fast eigenvector solution. Applications to financial 

and macro-economic time series show that ForeCA can successfully discover 

informative structure, which can be used for forecasting as well as classification. 

 

 

3. Data and Results 

 

3.1 The PSI-20 set 

 

The 12 stocks that we call the PSI-20 set were obtained from the PSI-20 Index 

which is a price index calculation based on 20 stocks obtained from the universe 

of Portuguese companies listed to trade on the Main Market and was designed to 

became the underlying element of futures and options contracts. The data used 

in this study are the close values and its log returns from these 12 stocks, and 

cover the period from January 24, 2000 to September 25, 2013 for a total of 

3362 observations. In Figure2 we can see the daily values from the PSI-20 

index. 

 
Figure 2: PSI-20 from 2001 to 2014 

 

During the period 1997-2001 the Portuguese stock market becomes highly 

sensitive to fluctuations in international markets due to the integration in the 

euro area markets. Moreover, the reduced size of the Portuguese financial 

market suggests that the behavior of national stock returns depends highly or 

mimics the behaviors of stock returns in European and American markets. The 

period from January 2001 and November 2001 was characterized by economical 

and political instability in Europe and United States due to the introduction of 

euro and the high value of the dollar against the euro, some regional conflicts 

like the Israel- Palestinian conflict, and the September 11 with negative impacts 
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on the financial markets, including the Portuguese stock market. In this period 

the PSI-20 index declined by 24,42 per cent. Between 2002 and 2007 we 

assisted to markets recovery, but in 2008, with the mortgage and subprime 

crises we saw the world markets in general, and PSI-20 in particular, going 

down once again. Finally, we are having some recovery signals from the 

beginning of 2013. 

 

Calculating the Correlation Matrix using the Statistical Software R, we obtain 

for these 12 stocks: 

 
Table 1: Correlation Matrix for the PSI-20 twelve stocks 





































































00.160.029.021.035.007.005.050.018.036.033.047.0

60.000.118.025.024.004.035.052.045.050.049.054.0

29.018.000.121.038.017.015.043.000.007.006.009.0

21.025.021.000.109.019.048.028.026.036.040.039.0

35.024.038.009.000.109.004.015.030.028.010.002.0

07.004.017.019.009.000.104.0271.003.004.024.000.0

05.035.015.048.004.004.000.126.042.049.068.064.0

50.052.043.028.015.027.026.000.106.004.021.012.0

18.045.000.026.030.003.042.006.000.161.052.045.0

36.050.007.036.028.004.049.004.061.000.175.080.0

33.049.006.040.010.024.068.021.052.075.000.184.0

47.054.009.039.002.000.064.012.045.080.084.000.1

CorM  

 

This matrix confirms some empirical ideas we had about the stocks, namely that 

the first and the second ones (“bes” and “bpi”) are highly correlated, which is 

not a surprise as these 2 stocks are from the financial sector. More surprisingly 

is the high correlation between each of these two and the third one (“edp”) that 

comes from electrical sector. 

 

Calculating the relationship between the first three eigenvalues for 12 stocks: 

"bes", "bpi", "edp", "jeronimomartins", "motaengil", "novabase", "portucel", 

"portugaltelecom", "semapa", "sonaeC", "sonaeR" and "zonoptimus", and 

considering a sliding window of 20 days, we got the following: 

 
Figure 3: eig12 vs eig13 for PSI20 stocks 

 

From Figure3 it is understandable that the ratio between the second eigenvalue 

(eigenvalue 2) and the first eigenvalue (eigenvalue 1), named eig12, has a global 

mean of 0.5, that is to say, the highest eigenvalue has a value that doubles the 
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second one. The mean for the eig13 is, for all the period, of about 0.39, that is to 

say that the first eigenvalue is two and a half times higher than the third one. 

Looking closer at the Figure3 we can observe that these ratios diminished 

greatly in the last six years: for eig12 the mean goes to 0.2 and for eig13 the 

mean goes to 0.15. These diminishing values tell us that the stocks are more 

correlated. 

 

Comparing these results with twelve random stocks we get the following figure: 

 
Figure 4: eig12 vs random eig12 for PSI20 stocks 

 

Here, it is clear the difference between the eigenvalues from the random stocks 

(red) and the ones coming from the real stocks. 

 

Performing Independent Component Analysis, following Back and Weigend 

(1997), for these stocks we can observe firstly their returns. 

 
Figure 5: returns for PSI20 stocks 

 

And then their independent components, obtained using the FastICA algorithm: 
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Figure 6: independent components for PSI20 stocks 

 

Finally, we work out a little bit of ForeCA. For our 12 stocks we obtain the 

following results: 

 
Figure 7: forecastability for PSI20 stocks 

 

We can see that all stocks have a Forecast value over 1.0%, and, from the two 

calculated components the most forecastable is ForeC2. For individual stocks 

we must refer the sixt, that is, “Novabase”. 

 

3.2 European Markets set 

 

The data used in this study was taken daily for a set of nine european market 

indices. We analyzed the following markets: Netherlands index (AEX), Austrian 

index (ATX), French index (CAC 40), German index (DAX 30), British index 

(FTSE 100), Spanish index (IBEX 35), Italian index (MIB), Portuguese index 

(PSI-20) and Swiss index (SSMI) from, roughly, the year 2000 until late 

September 2013. 

 

The data used in this work are the daily Close values for these nine markets for 

a total of 3468 observations. 
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In Figure8 we can observe the returns for the nine markets. It seems with no 

doubt that they are synchronized. 

Looking at the returns helps us to look only to relative variation and not to 

absolute values. In fact, these markets are quite different in absolut values, as 

we can see from Figure8. 

 
Figure 8: nine markets returns 

 

In order to perform a study using PCA we started by calculating and relatively 

compare their values for the 3 highest eigenvalues from the 9 markets. In Figure 

[fig:eig12vseig13] we compare the relationship between the 3 major 

eigenvalues. 

 
Figure 9: eig12 (red) vs eig13 for the 9 markets 

 

We can generally say that the highest eigenvalue is getting higher over the time. 

It starts to be 3,3 to 5 times higher in the beginning of the XXI century and more 

recently became almost 10 to 15 times higher than the second. More recently, 

the difference between them is getting, again, smaller. From the second to the 

third highest we can infer a relationship of 2. 
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Performing Independent Component Analysis, following Back and Weigend 

(1997), for the nine markets we can observe their independent components, 

obtained using the FastICA algorithm: 

 
Figure 10: independent components for the 9 markets 

 

Finally, we work out the results for markets of ForeCA. For our 9 markets we 

obtain the following results: 

 

 
Figure 11: forecastability for PSI20 stocks 

 

 

4. Conclusions 

 

Indeed, PCA, ICA and ForeCA gives uses different but hopefully 

complementary views concerning the dependence and relationship between 

stocks or market indices. 
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Clearly, it is more difficult to get good insights when looking at stocks 

comparing with markets. These are much more correlated, something that we 

only see in stocks from the same sector. 

 

Component analysis, despite being around for some time, deserves new 

approaches that a complementary view can offer. ForeCA gives us promising 

results and we hope to explore more in future work. 
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Abstract. Sigmoid behavior of natural physical ageing in network glass-formers 

revealing multi-step-wise growing kinetics of enthalpy losses ∆H(t) is studied at the 

example of glassy Se-rich arsenoselenides As-Se (As10Se90, As20Se80 and As30Se70). It is 

shown that phenomenological description of this ageing kinetics can be adequately 

developed in terms of first-order relaxation processes, tending atomic structure of a glass 

from initial towards more thermodynamically equilibrium state. The microstructure 

mechanism of natural physical ageing is explained by specificity of structural-topological 

complexes in the studied glasses (ratio between structural fragments having heteropolar 

As-Se and homopolar As-As and Se-Se covalent chemical bonds).This kinetics is shown 

to obey characteristic stretched exponential behavior originated from a number of 

growing steps, attributed to interconnected processes of chalcogen chains alignment and 

cooperative shrinkage of a whole glassy-like network. Developed model of natural 

physical ageing explains well the observed stretch-exponential behavior of low-

temperature relaxation kinetics in terms of hierarchically-constrained mixed serial-

parallel relaxation events having different atomic precursors, such as Se-based chains -

Se-Se-Se-, =As-Se-Se- and =As-Se-As=) This phenomenological ageing kinetics can be 

decomposed into a few elementary components, each of them approaching to single 

exponential dependence. 

Keywords: Сhalcogenide Glasses, Physical Ageing, Differential Scanning Calorimetry, 

Glassy Network, Structural Fragments. 
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1.  Introduction 
 

The natural physical ageing  (PhA) is known to be an important phenomenon for 

amorphous solids, because it results in uncontrolled time drift of such their 

important exploitation properties as atomic density, elastic modulus, brittleness, 

permeability, strength, fracture energy, deformation, etc. [1]. Nevertheless, the 

microstructural characteristics of PhA have not been studied enough, known 

only some reports related to PhA in silicate glasses [2-4]. However, the silicate 

glasses (characterized by over-constrained structural networks) possess very 

slow relaxation kinetics at ambient conditions [3] typically resulting in simple 

exponential dependence, which can be accepted only as a partial case for overall 

natural PhA kinetics.   

From this point, the chalcogenide glasses (ChG) are more suitable objects for 

detailed examination of PhA kinetics, because they allow studying of almost 

complete picture of PhA at quite acceptable timescales ranging from a few days 

or even hours (in the case of very chalcogen-rich compositions) up to years or 

even decades (in case of chalcogen-depleted compositions) [5-7].  

In general, the compositional variations in the ability to PhA are determined by 

a number of Lagrangian constraints per atom nc of ChG-forming networks built 

of fully-saturated covalent chemical bonds assuming their equivalence with 

movement stretching and bending limitations (mechanical constraints). Under 

this definition, the covalent bonding Z can be described by mean number of 

covalent bonds per one atom of glass-forming network. The under-constrained 

networks possessing Z < 2.4 and smaller nc, which are less than dimensionality 

of space nc < 3, are subject to pronounced drift in their properties caused by 

thermodynamically-driven forces tending the system towards more favorable 

energetic state. In contrast, the over-constrained (Z > 2.4, nc > 3) and optimally-

constrained (Z = 2.4, nc = 3) ChG do not age at normal conditions at all, 

demonstrating strong non-ageing ability. 

In this paper, the kinetics peculiarities of natural PhA will be studied in under-

constrained of As10Se90  (Z = 2.1, nc = 2.25), As20Se80 (Z = 2.2, nc = 2.5) and 

As30Se70 (Z = 2.3, nc = 2.75) ChG and comparative analysis will be developed 

for this compositional row of glass formers taking into account their main 

structural features in respect to previously analyzed [6]. 

 

2.  Experimental 
 

The ChG of binary AsxSe100-x (x =10, 20, 30) system were prepared by 

conventional melt-quenching route in the evacuated quartz ampoules from a 

mixture of high-purity elemental precursors, as described elsewhere [7].  

Amorphous state and composition of the as-prepared ChG were controlled 

visually by a characteristic conch-like fracture, data of X-ray diffraction and X-

ray photoelectron spectroscopy. Bulk samples in the form of thick (~3 mm) 

plates, prepared for differential scanning calorimetry (DSC) measurements, 

were used for the investigations.  
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DSC measurements were performed using NETZSCH 404/3/F microcalorimeter 

pre-calibrated with a set of standard elements, the DSC traces being recorded in  

ambient atmosphere with q = 5 K/min heating rate. More detailed description of 

the measurements protocol can be found in [7].  

 

3. Results 

 
The curve of time-dependent enthalpy losses ∆H(t) in As10Se90 ChG associated 

with long-term PhA is presented on Fig. 1.  
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Fig. 1. Kinetics of ∆H(t) losses in As10Se90 ChG 

decomposed in four-steps serial single-exponential processes 

 

As it follows from Fig.1, the kinetic of PhA in As10Se90 ChG exhibits well-

expressed four-steps character. The straightforward fitting of the experimental 

data describing enthalpy losses ∆H(t) in this As10Se90 glass during natural PhA 

with the stretched-exponential relaxation function gives numerical values of 

time constant τ ≅ 663 days and power index (index of non-exponentionality or 

dispersivity) β = 0.25.  

Taking into account that this kinetics is characterized by hierarchically-

constrained mixed serial-parallel relaxation behavior, it can be conveniently 

modeled by the following expression: 
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where ai and bi are materials-related parameters connected with amplitude of the 

relaxation process, τi  is effective time constant (the relaxation time), ∆it is a so-

called retardation time (the parameter giving time delaying of the next step of 

PhA in respect to the previous one), Θ(t-∆ti) is the Heaviside step function, 

whose value is accepted to be 0 for negative arguments (t < ∆ti) and 1 for 

positive arguments (t ≥ ∆ti), and n is number of steps in the relaxation kinetics.   

The results of the modelling with eq. (1) and corresponding fitting parameters 

for four-steps serial presentation of PhA in As10Se90 ChG are given in Table 1. 

 

Table 1. Fitting parameters in eq. (1), describing PhA knetics in As10Se90 ChG. 

 

Step # 

(duration, days) 

Fitting 

goodness 

r
2
 

ai, 

J/g 

bi, 

J/g 

ai+bi, 

J/g 
τ, 

days 

∆ti,  

days 

i=1 

(0÷1.5) 

0.008 0 0.46 0.46 0.2 0 

i=2 

(1.5÷20) 

0.022 0.46 1.52 1.98 5.3 1.7 

i=3 

(20÷365) 

0.038 1.98 1.82 3.80 35.0 16.5 

i=4 

(365÷10000) 

0.034 3.80 3.27 7.07 1173 340 

 

The curve of time-dependent enthalpy losses ∆H(t) in As20Se80 ChG associated 

with long-term PhA is presented below on Fig. 2.  
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Fig. 2. Kinetics of ∆H(t) losses in As20Se80 ChG 

decomposed in three-steps serial single-exponential processes 
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The kinetic of PhA in As20Se80 ChG exhibits  two-steps behaviour, the values of 

PhA is expected smallest as compared with the same in As10Se90 ones (number 

of constrains per atom nc = 2.5). The straightforward fitting of the experimental 

data describing enthalpy losses ∆H(t) in As30Se70 ChG during PhA with 

stretched-exponential relaxation function gives  τ=1008.6 days and β = 0.28. 

The results of the modelling with eq. (1) and fitting parameters for this three-

step serial presentation of PhA kinetics in As20Se80 ChG are gathered in Table 2. 

 

Table 2. Fitting parameters in eq. (1) describing PhA kinetics in As20Se80 ChG. 

 

Step # 

(duration, days) 

Fitting 

goodness 

r
2
 

ai, 

J/g 

bi, 

J/g 

ai+bi, 

J/g 
τ, 

days 

∆ti, 

days 

i=1 

(1÷20) 

0.0933 0 1.4 1.4 4.9 0 

i=2 

(20÷335) 

0.03705 1.4 2.0 3.4 66.8 17.5 

i=3 

(335÷10000) 

0.04821 3.4 2.7 6.1 1651.4 305 

 

The curve of time-dependent enthalpy losses ∆H(t) in As30Se70 ChG associated 

with long-term PhA is presented on Fig. 3. 
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Fig. 3. Kinetics of PhA in As30Se70 ChG deconvoluted 

in two-steps serial single-exponential processes 
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The kinetic of PhA in As30Se70 ChG exhibits  two-steps behaviour,  the values 

of PhA is expected smallest as compared with the same in As10Se90 and As20Se80 

ones (the number of constrains per one atom nc = 2.75). The straightforward 

fitting of the experimental data describing enthalpy losses ∆H(t) in As30Se70 

ChG during PhA with the stretched-exponential relaxation function gives τ ≅ 

100242.7 days and β = 0.35. The results of modelling with eq. (1) and fitting 

parameters for two-steps serial presentation of PhA kinetics in As30Se70 ChG are 

gathered below in Table 3. 

 

Table 3. Fitting parameters in eq. (1) describing PhA kinetics in As30Se70 ChG. 

 

Step # 

(duration, days) 

Fitting 

goodness 

r
2
 

ai, 

J/g 

bi, 

J/g 

ai+bi, 

J/g 
τ, 

days 

∆ti, 

days 

i=1 

(1÷300) 

0.022 0 0.7 0.7 - 0 

i=2 

(300÷10000) 

0.0265 0.7 3.3 4 1398 250 

 

 

4. Discussion 
 

The mechanism of PhA in ChG is known to be based on elementary relaxation 

acts (twisting) of inner Se atoms within double-well potentials associated with 

high flexibility of chalcogen chemical bonds [7-9].  

As it follows from above experimental results, the PhA in the studied ChG 

exhibits well-expressed step-wise character, showing some kinds of plateaus 

and steep regions. The increasing of As content leads to decreasing of PhA in 

full accordance to increased nc values (from 2.25 for As10Se90 to 2.5 for As20Se80 

and 2.75 for As30Se70 ChG). Moreover, with increase in As content, the values 

of non-exponentionality index β in the stretched-exponential relaxation function 

describing observed kinetics increases (from 0.25 for As10Se90 to 0.28 for 

As20Se80 and 0.36 for As30Se70 ChG). This means, obviously, the decrease in the 

dispersivity of the system, so the number of steps in the PhA kinetics decreases 

too (from 4 for As10Se90 to 3 for As20Se80 and 2 in As30Se70 ChG).  

These features can be well explained by accepting main microstructure 

signatures of the studied ChG. 

Thus, in As10Se90 ChG, the Se atoms created -Se-Se-Se- chains (nc = 2.0) and 

=As-Se-Se- (nc = 2.45) fragments taken in 67:33 ratio, while in As20Se this ratio 

become only 25:75. In contrast, in As30Se70 ChG, the intermediate surroundings 

of Se atoms significantly changes: -Se-Se-Se- chains disappear, and principally 

new =As-Se-As= (nc = 3.00) structural environment is formed instead (the ratio 

between =As-Se-Se- and =As-Se-As= fragments reaches as high as 29:71).  

Under such conditions, three types of double-well potentials can be assumed for 

central Se atoms in the studied ChG owing to their immediate surroundings, 
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namely -Se-Se-Se-, =As-Se-Se- and =As-Se-As= fragments with differ heights 

of energetic barriers. 

It is well known that -Se-Se-Se- fragments possess the smallest height of 

energetic barrier, while =As-Se-As= fragments are characterized by the highest  

barrier. Therefore, -Se-Se-Se- fragments relax on the initial stages of PhA with 

characteristic time constant τ ~4.9 days, and =As-Se-As= fragments relax at the 

final stage of natural PhA with characteristic time constant τ ~ 1200÷1600 days 

(see Tables 1-3), although (according to serial-parallel specificity of long-term 

natural PhA) the relaxation of all structural fragments present in the glass occurs 

on each stage. 

Since the content of -Se-Se-Se- structural fragments in As20Se80 ChG (25 %) is 

less that in As10Se90 (67 %) [7], the initial two steps in As20Se80 glasses arise 

very quickly. Therefore, its separate distinction is not possible under such 

condition (see Fig. 2), and, consequently, both first and second steps cooperate 

giving the smallest value of time constant τ.  

In case of As30Se70 ChG, the homoatomic -Se-Se-Se- structural fragments are 

absent at all, and initial stage of relaxation are caused mainly by shrinkage of 

=As-Se-Se- structural fragments, producing only two steps in the final 

relaxation kinetics.  

It should be noted that the retardation times ∆ti in eq. (1) remain on the same 

order for all types of relaxing atomic environments whichever the glass 

composition (Table 1-3). 

 

Conclusions 
 

It is shown that kinetics of enthalpy losses ∆H(t) caused by natural physical 

ageing in Se-rich As-Se ChG during more than two decades exhibited well-

expressed step-wise behavior. The microstructure mechanism of this relaxation 

in the studied ChG is shown to be governed by structural-topological nature of 

corresponding glassy network. 
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Chaos in Pendulum Systems with Limited

Excitation in the Presence of Delay
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Abstract. Dynamic system ”pendulum - source of limited excitation” with taking
into account the various factors of delay is considered. Different approaches to write
a mathematical model of this system using three- or fifteen-dimensional systems of
differential equations without delay is suggested. It is established that for small values
of the delay it is sufficient to use three-dimensional mathematical model, whereas for
relatively large values of the delay the fifteen-dimensional mathematical model should
be used.

Genesis of deterministic chaos is studied in detail. Maps of dynamic regimes,
phase portraits of attractors of systems, phase-parametric characteristics, Poincare
sections and maps are constructed and analyzed. The scenarios of transition from
steady-state regular regimes to chaotic ones are identified. It is shown, that in some
cases the delay is the main reason of origination of chaos in the system ”pendulum -
source of limited excitation”.

Keywords: pendulum system, limited excitation, delay, deterministic chaos..

1 Introduction

In mathematical modeling of oscillatory processes a mathematical model of
a relatively simple dynamical system is often used to study the dynamics of
much more complex systems. A typical example of this approach is the exten-
sive use of pendulum models to study the dynamics of systems of an entirely
different nature. Pendulum mathematical models are widely used to describe
the dynamics of various technical constructions, machines and mechanisms, in
the study of cardiovascular system, financial markets, etc. Such widespread
use of pendulum models makes it relevant to study directly the dynamics of
pendulum systems.

The study of the non-ideal by Zommerfeld–Kononenko [1] dynamical system
“pendulum–electric motor” in the absence of any delay factors was initiated in
[2], [3]. In this system the existence of deterministic chaos was identified and
studied. It was proved that limited excitation is the main cause of chaos in this
system.

In this paper the oscillations of “pendulum–electric motor” system with
taking into account various factors of delay are considered. The delay fac-
tors are always present in rather extended systems due to the limitations of
signal transmission speed: waves of compression, stretching, bending, current
strength, etc. The aim of this work is to study the influence of various factors
of delay on steady-state regimes of this system.
_________________ 
7th CHAOS Conference Proceedings, 7-10 June 2014, Lisbon Portugal 
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2 Delay factors in “Pendulum–electric motor” system

In the absence of any delay factors the equations of motion of the system
“pendulum–electric motor” were obtained in [2]:



































dy1

dτ
= Cy1 − y2y3 −

1

8
(y2

1
y2 + y3

2
);

dy2

dτ
= Cy2 + y1y3 +

1

8
(y3

1
+ y1y

2

2
);

dy3

dτ
= Dy2 + Ey3 + F ;

(1)

where phase variables y1, y2 describe the pendulum deviation from the vertical
and phase variable y3 is proportional to the rotation speed of the motor shaft.
The system parameters are defined by

C = −δ1ε
−2/3ω−1

0
, D = −

2ml2

I
, F = 2ε−2/3(

N0

ω0

+ E) (2)

where m - the pendulum mass, l - the reduced pendulum length, ω0 - natural

frequency of the pendulum, a - the length of the electric motor crank, ε =
a

l
,

δ1 - damping coefficient of the medium resistance force, I - the electric motor
moment of inertia, E, N0 - constants of the electric motor static characteristics.

Let us consider the following system of equations [4]:



































dy1(τ)

dτ
= Cy1(τ − δ)− y2(τ)y3(τ − γ)−

1

8
(y2

1
(τ)y2(τ) + y3

2
(τ));

dy2(τ)

dτ
= Cy2(τ − δ) + y1(τ)y3(τ − γ) +

1

8
(y3

1
(τ) + y1(τ)y

2

2
(τ));

dy3(τ)

dτ
= Dy2(τ − γ) + Ey3(τ) + F.

(3)

Positive constant parameter γ was introduced to account the delay effects
of electric motor impulse on the pendulum. We assume that the delay of the
electric motor response to the impact of the pendulum inertia force is also equal
to γ. Taking into account the delay γ conditioned by the fact that the wave
velocity perturbations on the elements of the construction has a finite value
that depends on the properties of external fields, for instance, the temperature
field. In turn, the constant positive parameter δ characterizes the delay of the
medium reaction on the dynamical state of the pendulum. This delay is due
to the limited sound velocity in that medium.

Assuming a small delay, we can write

yi(τ − γ) = yi(τ) −
y1(τ)

dτ
γ + ..., i = 2, 3

yi(τ − δ) = yi(τ)−
y1(τ)

dτ
δ + ..., i = 1, 2
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Then, if Cδ 6= −1, we get the following system of equations [4]:



































ẏ1 =
1

1 + Cδ

(

Cy1 − y2 [y3 − γ (Dy2 + Ey3 + F )]−
1

8
(y2

1
y2 + y3

2
)

)

;

ẏ2 =
1

1 + Cδ

(

Cy2 + y1y3 − y1γ(Dy2 + Ey3 + F ) +
1

8
(y3

1
+ y1y

2

2
) + 1

)

;

ẏ3 = (1− Cγ)Dy2 −
Dγ

8
(y3

1
+ y1y

2

2
+ 8y1y3 + 8) + Ey3 + F.

(4)
The obtained system of equations is already a system of ordinary differential

equations. Delays are included in this system as additional parameters.
In order to approximate the system (3) another, more precise, method can

be used [5], [6]. Let us divide each of the segments [−γ; 0] and [−δ; 0] into m

equal parts. We introduce the following notation

y1(τ −
iδ

m
) = y1i(τ), y2(τ −

iγ

m
) = y2i(τ), y2(τ −

iδ

m
) = ỹ2i(τ),

y3(τ −
iγ

m
) = y3i(τ), i = 0,m.

Then, using difference approximation of derivative [5], [6] the system of
equations with delay (3) can be reduced to the following system of equations
without delay:























































































































dy10(τ)

dτ
= Cy1m(τ) − y20(τ)y3m(τ) −

1

8
(y2

10
(τ)y20(τ) + y3

20
(τ));

dy20(τ)

dτ
= Cỹ2m(τ) + y10(τ)y3m(τ) +

1

8
(y3

10
(τ) + y10(τ)y

2

20
(τ)) + 1;

dy30(τ)

dτ
= Dy2m(τ) + Ey30(τ) + F ;

dy1i(τ)

dτ
=

m

δ
(y1 i−1(τ) − y1i(τ)), i = 1,m;

dy2i(τ)

dτ
=

m

γ
(y2 i−1(τ) − y2i(τ)), i = 1,m;

dỹ2i(τ)

dτ
=

m

δ
(ỹ2 i−1(τ) − ỹ2i(τ)), i = 1,m;

dy3i(τ)

dτ
=

m

γ
(y3 i−1(τ) − y3i(τ)), i = 1,m.

(5)

Should be noted that the main variables in this system are only y10, y20, y30.
In other words the solutions y1, y2, y3 of the system (3) are described by the
functions y10, y20, y30 of the system (5).

The system (5) is a system of ordinary differential equations of (4m+3)-th
order. Choosing a sufficiently large m in the system (5), the system (3) will
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be very well approximated by the system (5) [5]. In this paper the system of
equation (5) was considered at m = 3. In this case, the system (5) has 15 equa-
tions. The calculations of cases m > 3, with a significant increase the number
of equations, were also carried out. It was established, that increasing the num-
ber of equations has practically no effect on identification and description of
steady-state regimes of “pendulum–electric motor” system. But it significantly
increases the complexity of constructing characteristics, which are necessary
for study the steady-state regimes of oscillations. Therefore, the use of math-
ematical model (5) at m = 3 is the most optimal for studying the influence of
delay on regular and chaotic dynamics of “pendulum–electric motor” system.

3 Maps of dynamic regimes

Therefore, we obtained three-dimensional (4) and fifteen-dimensional (5) mod-
els each describing the system of equations with delay (3). These models are the
systems of non-linear differential equations, so in general the study of steady-
state regimes can be carried out only by using numerical methods and algo-
rithms. The methodology of such studies is described in detail in [2].

In the study of dynamical systems the information about the type of steady-
state regime of the the system depending on its parameters is crucial. This
information can provide a map of dynamic regimes. It is a diagram on the
plane, where two parameters are plotted on axes and the boundaries of different
dynamic regimes areas are shown. The construction of dynamic regimes maps
is based on analysis and processing of spectrum of Lyapunov characteristic
exponents [2,7]. Where necessary, for more accurate determination of steady-
state regime of the system, we study other characteristics of attractors: phase
portraits, Poincare sections and maps, Fourier spectrums and distributions of
the invariant measure.

Let us consider the behavior of the systems (4) and (5) when the parameters
are C = −0.1, D = −0.6, E = −0.44, F = 0.3. In fig. 1 the maps of dynamic

a b

Fig. 1. Maps of dynamic regimes
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a b

c d

Fig. 2. Maps of dynamic regimes

regimes are shown. The map in fig. 1a was built for three-dimensional model (4)
and the map in fig. 1b was built for fifteen-dimensional model (5). These figures
illustrate the effect of delays γ and δ on changing the type of steady-state regime
of the systems. The dark-grey areas of the maps correspond to equilibrium
positions of the system. The light-grey areas of the maps correspond to limit
cycles of the system. And finally, the black areas of the maps correspond to
chaotic attractors.

We can notice a certain similarity the maps in fig.1a, b. In delay absence
in these systems, the steady-state regime is stable equilibrium position. With
an increase of the delay of the medium δ the type of steady-state regime of the
systems (4) and (5) does not change. It still remains an equilibrium position
(dark-grey areas in the figures). However, with an increase of the delay of
interaction between pendulum and electric motor γ, the equilibrium position is
replaced by the area of limit cycles with ”mounted” area of chaos. With further
increase of the delay γ, the attractor of both systems is again equilibrium
position.
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Let us study the dynamics of the system (4) and (5) at other values of
the parameters. At C = −0.1, D = −0.58, E = −0.6, F = 0.19 the steady–
state regime of both systems is limit cycle. In fig. 2a the map of dynamic
regimes of three-dimensional system (4) and in fig. 2b the map of dynamic
regimes of fifteen-dimensional system (5) are shown. At small values of the
delays the steady-state regime of both systems does not change, it is periodic.
The attractors are limit cycles (light-grey areas in the figures). With a further
increase of the delay values the maps in fig. 2a, b are certainly different. At
small values of the delay γ and with increase of the delay δ the type of steady–
state regime of the system (5) is replaced by chaotic regimes, whereas the type
of steady–state regime of the system (4) does not change, it remains periodic.
Further in both figures there are a rather wide area of chaos in which fairly
narrow strips of periodic regimes are built in.

In fig. 2c, d the maps of dynamic regimes of respectively the system (4) and
the system (5) at C = −0.1, D = −0.53, E = −0.6, F = 0.19 are constructed.
In delay absence and at small values of the delays both systems have chaotic
attractors (black areas in the figures). With an increase of the delay values the
region of chaos is replaced by the region of periodic regimes. Then again chaos
arises in the system. Further this area is replaced by the area of limit cycles.

As seen from the constructed maps of dynamic regimes, the dynamics of
the system (4) and (5) is the same only for small values of the delay γ and δ.
With an increase of the delays the differences of the dynamics of these systems
is very significant.

4 Regular and chaotic dynamics

Let us study the types of regular and chaotic attractors that exist in the systems
(4) and (5). We implement a horizontal section of the maps of dynamic regimes
in fig.2c, d along the delay γ at δ = 0.15. In other words, let us consider the

a b

Fig. 3. The dependence of maximal non-zero Lyapunov’s characteristic exponent (a),
phase-parametric characteristic (b) of three-dimensional system (4)
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behavior of the systems (4) and (5) when parameters are C = −0.1, D = −0.53,
E = −0.6, F = 0.19 and the delays δ = 0.15 and 0 ≤ γ ≤ 0.3.

In fig. 3a,b the dependence of maximum non-zero Lyapunov’s characteris-
tic exponent and phase-parametric characteristic of three-dimensional system
(4) are shown respectively. These figures illustrate the influence of the delay
of interaction between pendulum and electric motor γ on chaotization of the
system (4).

Let us construct the same characteristics at the same values of the param-
eters for fifteen-dimensional system (5). In fig. 4a,b respectively the depen-
dence of maximum non-zero Lyapunov’s characteristic exponent and phase-
parametric characteristic are shown.

a b

Fig. 4. The dependence of maximal non-zero Lyapunov’s characteristic exponent (a),
phase-parametric characteristic (b) of fifteen-dimensional system (5)

In fig.3a, 4a we can clearly see the presence of intervals γ in which maximum
Lyapunov exponent of the systems is positive. In these intervals the systems
have chaotic attractors. The area of existence of chaos is clearly seen in phase-
parametric characteristics of the systems. The areas of chaos in the bifurcation
trees are densely filled with points. A careful examination of the obtained
images allows not only to identify the origin of chaos in the systems, but also
to describe the scenario of transition to chaos. So with a decrease of γ there
are the transitions to chaos by Feigenbaum scenario (infinite cascade of period-
doubling bifurcations of a limit cycle). Bifurcation points for the delay γ are
clearly visible in each figures. These points are the points of approaches of
the Lyapunov’s exponent graph to the zero line (fig.3a, 4a) and the points of
splitting the branches of the bifurcation tree (fig.3b, 4b). In turn, the transition
to chaos with an increase of the delay happens under the scenario of Pomeau-
Manneville, in a single bifurcation, through intermittency.

A careful analysis of these figures allows to see qualitative similarity of the
respective characteristics of the systems (4) and (5). However, with increasing
the delay the differences in the dynamics of these systems become very signif-
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icant. So for instance at γ = 0.05 the steady–state regime of the system (4)
is limit cycle. While at this value of the delay the attractor of the system (5)
is chaotic attractor. Conversely, for example at γ = 0.11 the system (4) has
steady–state chaotic regime. While at this value of the delay the system (5)
has periodic regime of oscillations.

This suggests that three-dimensional system of equations (4) should be used
to study the system (3) only at very small values of the delay. With increasing
values of the delay to study regular and chaotic oscillations of ”pendulum–
electric motor” system, fifteen-dimensional system of equations (5) should be
used.

5 Conclusion

Various factors of delay have significant influence on the dynamics of “pendulum–
electric motor” system. The presence of delay in such systems can affect the
type of steady-state regime change. It is shown that for small values of the
delay it is sufficient to use three-dimensional mathematical model, whereas for
relatively high values of the delay the fifteen-dimensional mathematical model
should be used.

In future research is planned to construct and research mathematical models
of “pendulum–electric motor” system in the presence of variable in time delay
factors.
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Abstract. In this paper, we use an adaptive synchronization technique for parameter
matching with chaotic persistent excitation (PE). Two Chua’s oscillators, identical
in every parameter except for one, are set up in a master/slave configuration where
the slave’s mismatched parameter is adaptable. Using a Lyapunov function and
incorporating the presence of PE, an adaptive control law is given to ensure exact pa-
rameter matching. A high-fidelity SPICE simulation model is given that incorporates
commercially-provided macro models of the integrated circuits used and obviates the
need for any user-defined functions. A voltage controlled inductor-gyrator is used as a
tunable parameter made up of current feedback op amps (CFOAs). The performance
of the adaptive controller is compared over a wide range of parameter values by us-
ing MATLAB simulations. SPICE and MATLAB simulations are run with realistic
component tolerances to mimic a physical experiment.

Keywords: Chua’s oscillator, adaptive synchronization, parameter matching, in-
ductor-gyrator, CFOA, chaotic simulation, SPICE, MATLAB, TINA-TI.

1 Introduction

Chua’s circuit has been extensively used to study various topics relating to
chaos theory, including synchronization of coupled chaotic systems [13]. When
two chaotic systems are not identical, synchronization becomes less trivial and
various adaptive schemes are considered. For example, adaptive synchroniza-
tion of Chua’s oscillator has been considered with adaptive observer design [5],
parameter identification [19], and adaptive backstepping [6]. Many of the prior
works are theoretical in nature, difficult to realize experimentally, and may
not yield exact parameter matching [3]. To render adaptive synchronization of
chaotic circuits closer to physical realization, Ref. [18] has provided SPICE sim-
ulations with ideal user defined functions for the adaptive controller. Ref. [8]
has suggested circuit schematics to realize an adaptive controller for synchro-
nization of uncertain and delayed chaotic systems, but it does not account for
the non-ideal characteristics of integrated circuits such as the AD633.
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Adaptive synchronization of Chua’s oscillators can be categorized in two
parts: adapting the control coupling between the two circuits or adapting one
or more parameters of the Chua’s oscillators [4]. Both adaptive synchronization
approaches have been digitally implemented for secure communication applica-
tions. The first approach is used to account for changes in signal strength [20],
while the second approach introduces deliberate changes in the parameters as
a way to send binary messages as a ‘key’ [4].

In this paper, we use an adaptive synchronization technique for parameter
matching with chaotic PE. Two Chua’s oscillators, identical in every parameter
except for one, are set up in a master/slave configuration where the slave’s mis-
matched parameter is adaptable. Using a Lyapunov function and incorporating
the presence of PE, an adaptive control law is given to ensure exact param-
eter matching. Following Ref. [15], this paper uses analog circuit schematics,
which exploit CFOAs, to implement the derived adaptive controller. Moreover,
a high-fidelity SPICE simulation model is provided that incorporates commer-
cially available macro models of various integrated circuits used and obviates
the need for any user-defined functions. The performance of the adaptive con-
troller is compared over a wide range of parameter values by using MATLAB
simulations. SPICE and MATLAB simulations are run with realistic compo-
nent tolerances to mimic a physical experiment. For experimental results that
parallel the simulation studies of this paper, see Ref. [15].

2 System Model

2.1 Chua’s Oscillator

In this paper, an adaptive controller is designed to tune a parameter of the
Chua’s oscillator shown in Figure 1. Various parameters of a Chua’s oscillator
include L as a linear inductor, R and R0 as linear resistors, C1 and C2 as
linear capacitors, and others that correspond to the Chua’s diode. The state
equations of the Chua’s oscillator are given by

dv1
dt

=
1

C1

(
G (v2 − v1)− g (v1)

)
,

dv2
dt

=
1

C2

(
G (v1 − v2) + iL

)
,

diL
dt

=
1

L
(−v2 −R0iL) ,

(1)

where v1, v2, and iL are voltage across C1, voltage across C2, and current
through L, respectively, and G is the conductance of the resistor R (G , 1

R ).
Furthermore g(·) is the nonlinear voltage-current (v–i) characteristic of the
Chua’s diode described by

g(vR) =





GbvR + (Gb −Ga)E1, if vR ≤ −E1,

GavR, if |vR| < E1,

GbvR + (Ga −Gb)E1, if vR ≥ E1,

(2)

where Ga, Gb, and E1 are known real constants that satisfy Gb < Ga < 0 and
E1 > 0.
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Master Chua’s oscillator Slave Chua’s oscillator
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−
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+
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L
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R v1

+

−

vRC2 C1

Fig. 1. Master/slave Chua’s oscillator coupling.

2.2 Master/slave System

The adaptive control framework of this paper considers a unidirectional cou-
pling from a master Chua’s oscillator to a slave Chua’s oscillator such that
the slave Chua’s oscillator synchronizes its states to the states of the master
oscillator which operates autonomously. This configuration is shown in Fig-
ure 1 where it is assumed that the following parameters of the master and
slave Chua’s oscillators are matched, R̃ = R, R̃0 = R0, C̃1 = C1, and C̃2 = C2.
The state equations of the master Chua’s oscillator are equivalent to (1) while
the state equations of the slave Chua’s oscillator are given by

dṽ1
dt

=
1

C1

(
G(ṽ2 − ṽ1)− g(ṽ1) +Gu1

(vu1
− ṽ1)

)
,

dṽ2
dt

=
1

C2

(
G (ṽ1 − ṽ2) + ĩL

)
,

d̃iL
dt

=
1

L̃
(−ṽ2 −R0ĩL),

(3)

where vu1 = v1 since it is the output of a voltage follower op-amp and Gu1 is
the conductance of the coupling resistor Ru1 in Figure 1 (Gu1 , 1

Ru1
). Note

that L̃ is a tunable parameter for which we give an adaptive parameter update
law in Section 3.

3 Adaptive Synchronization: Tuning L̃

In a master/slave configuration, the master Chua’s oscillator is described by

(1). For the slave Chua’s oscillator, inductance L̃ is the tunable mismatched
parameter for the slave Chua’s oscillator (3). Subtracting (1) from (3) produces
the error dynamics

ėv1 =
1

C1

(
G (ev2 − ev1)− c (ṽ1, v1) ev1 + u1

)
,

ėv2 =
1

C2

(
G (ev1 − ev2) + eiL

)
, ėiL =

1

L̃
(−ṽ2 −R0ĩL) +

1

L
(v2 +R0iL) ,

(4)
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where ev1 , ṽ1 − v1, ev2 , ṽ2 − v2, and eiL , ĩL − iL are the error states and
u1 , Gu1

(v1− ṽ1). Moreover, it is easy to show that g(ṽ1)−g(v1) = c(ṽ1, v1)ev1
where c(ṽ1, v1) is bounded by the constraints Ga ≤ c(ṽ1, v1) ≤ Gb < 0 [7].

Next, let the control law and parameter update law, respectively, be given
by

u1 = −Gu1
ev1 and

d

dt

(
1

L̃

)
= γeiL

(
ṽ2 +R0ĩL

)
, (5)

where γ is a positive constant.

Theorem 1. [15] The two Chua’s oscillators (1) and (3) will synchronize

and the parameter L̃ will converge to some constant under (5) if the master
system (1) remains on the trajectory of its chaotic attractor and Gu1

is chosen
to satisfy the following inequality

Gu1
>

1

2
G−Ga. (6)

Remark 1. Note that the results of Theorem 1 are also applicable if the Chua’s
oscillator is on a periodic trajectory. As long as the attractor of the Chua’s
oscillator is bounded, the results of Theorem 1 hold.

Remark 2. When the trajectories of (1) are driven on a chaotic attractor, its

states will satisfy the qualities of PE as discussed in [10,11,14] and L̃(t)→ L(t)

as t→∞. Further evidence of L̃(t)→ L(t) as t→∞ is provided via simulation
results in the sequel.

4 Tuning L̃ Implementation

Over the years, several variations of the Chua’s oscillators have been devel-
oped [9]. Similarly, master/slave coupling between two Chua’s oscillators for
state v1 (and v2) is easily achievable with just one resistor and one op-amp
(Figure 1). However, measuring and controlling the state iL is not as trivial.
Therefore variations of inductorless implementations of Chua’s oscillators have
been developed [9]. This paper implements the adaptive controller (5) which

tunes the parameter L̃ to L. The measurement of iL and ĩL along with the
ability to tune L̃ is possible by using inductor-gyrators made up of CFOAs.
Refer to our parallel experimental work [15] for detailed explanation of the
circuitry required for this task.

5 SPICE and MATLAB Simulation Results

5.1 SPICE Simulation Results

SPICE simulations are done to mimic an experimental scenario to examine
the influence of unmodeled parasitic effects on the physical system that are
not amenable to examination using the ideal circuit equations such as (1),
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Fig. 2. Schematic of master/slave Chua’s oscillator as constructed in the TINA-TI
SPICE simulation software.

(3), and (5). This simulation strategy can be an integral step in designing
complex chaotic experiments. Hence, we develop a SPICE simulation model
(see Figure 2) containing the various non-ideal behaviors of components such
that the simulation model can closely represent a plausible experiment. This
includes extracting the signals iL and ĩL by measuring the voltages at nodes
vq and vhq in the SPICE simulation (see Figure 2) as opposed to directly

extracting iL (vq = iLR1m) and ĩL (vhq = ĩLR̃1m). The SPICE simulator
TINA-TI V9 [16] is chosen because of the capability of its numerical solver
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to optimize its tolerance parameters for convergence. As shown in Figure 2,
we used three distinct integrated circuits (ICs), the AD633, the AD844, and
the TL082. High fidelity SPICE Macro-Models [1, 2, 17] of each IC are used
in the SPICE simulation. Similarly, the JFET used, the 2N3819, is modeled
in TINA-TI V9 using the Sckickman-Hodges model with specific parameters
for the 2N3819 already embedded in the software. Simulation is run using the
order 2 trapezoidal integration method. Two initial conditions are set to -6V
and 6V at nodes v2 and ṽ2, respectively. The AD633 input terminal Z has a
direct −5 mV source connected to it for the purpose of compensating for the
internal DC offset of the AD633.

The simulation uses the ideal values of the passive components for the
master Chua’s oscillator as shown in Table 1. In addition, values of passive
components in the slave Chua’s oscillator and adaptive controller are increased
by their respective tolerances as indicated in Table 1. These tolerances are
selected based on commercially available components.

Table 1. Simulation component values.

Master Chua’s Oscillator Adaptive Controller Slave Chua’s Oscillator

R1 = 22 kΩ Ru1 = 500 Ω 1% R̃1 = 22 kΩ 0.1%

R2 = 22 kΩ RI = 1 kΩ 0.1% R̃2 = 22 kΩ 0.1%

R3 = 3.3 kΩ CI = 18 nF 3% R̃3 = 3.3 kΩ 0.1%

R4 = 220 Ω Ri = 1.1 kΩ 0.1 % R̃4 = 220 Ω 0.1%

R5 = 220 Ω Rf = 220 Ω 0.1 % R̃5 = 220 Ω 0.1%

R6 = 2.2 kΩ R̃6 = 2.2 kΩ 0.1%

R = 1.7 kΩ R̃ = 1.7 kΩ 0.1%

C1 = 10 nF C̃1 = 10 nF 1%

C2 = 100 nF C̃2 = 100 nF 1%

C = 18 nF C̃ = 18 nF 3%

R0 = 200 Ω R̃0 = 200 Ω 0.1 %

R1m = 1 kΩ R̃1m = 1 kΩ 0.1%

R2m = 2.25 kΩ R̃2m = 2.25 kΩ 0.1 %

R3m = 1 kΩ R̃3m = 1 kΩ 0.1%
RDS = 1 kΩ TR = 2N3819

r̃om1 = 10 kΩ 1%
r̃om2 = 10 kΩ 1%

To quantify how well the master/slave system synchronizes, we use the 2-
norm of [ev1 , ev2 , eiL ]T as our measure, (enorm , ||[ev1 , ev2 , eiL ]T||), and observe

its evolution over time. Using the signals ĩL and ṽ2 we estimate L̃ and R̃0 (L̃est,

R̃0est) with a sliding window least square algorithm. Similarly, using signals iL
and v2 we estimate L and R0 (Lest, R0est). Comparing these estimates allows

us to examine how well L̃ converges to L. The transient experimental data
is displayed in Figure 3, divided into parts (a)–(e). Switch SW1 is opened at
t = 0.025s which initiates adaptation. Each point on Figure 3(c) represents a
least square estimate of a window of 50 samples and the x-axis indicates the
time when the leading sample is taken. Figure 3(d) and Figure 3(e) re-plot the
last 10 ms of Figure 3(b) and Figure 3(c), respectively, to better visualize the

464



steady-state results. The average of each signal (except Vc) in sections (d) and
(e) is listed in Table 2.

Table 2. SPICE simulation: Adapting for L̃ with tolerances.

R0 = 200 Ω R0est = 202.89 Ω (average)

R̃0 = 200.2 Ω R̃0est = 202.84 Ω (average)
L = 40.5 mH (see (21) [15]) Lest = 45.4 mH (average)

enorm = 1.8 × 10−3 (average) L̃est = 45.3 mH (average)
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Fig. 3. SPICE simulation: Adapting for L̃ with tolerances.
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5.2 MATLAB Simulation Results

MATLAB-Simulink simulations are run to examine the performance of the
adaptive control laws derived in Section 3 as a function of the behavior of the
master Chua’s oscillator which changes from chaotic to equilibrium behavior.
Simulations are run 1,000 times for 1,000 different values of C1 ranging from
10 nF to 13 nF. With each change in the C1 value, the simulation result for the
master Chua’s attractor also changes. To illustrate the change in the master
Chua’s attractor with the change in the value of C1, Figure 4 provides the
bifurcation diagram for the master Chua’s oscillator for the 1,000 values of
C1. To capture the impact of component tolerances the slave Chua’s oscillator
parameters are increased by 0.1% (not including C̃1, which is set to C1).

All simulations are set up as follows: simulations are run by using the
Runge-Kutta 4th order numerical solver with a fixed step-size of 10 microsec-
onds for a simulation time of two seconds. The initial conditions are selected
to be v1(0) = 1, v2(0) = 0, iL(0) = 0, ṽ1(0) = 2, ṽ2(0) = 0, and ĩL(0) = 0.
Since it takes time for the master Chua’s oscillator to evolve from the initial
condition to reach the attractor corresponding to the chosen C1 value, the pa-
rameter update law is activated only after 0.5 seconds into the simulation. The
parameters used in simulations are listed in Table 3. Figure 4 shows the results
for the MATLAB simulation. Figure 4 uses three measures to examine the
performance of the adaptive controller. The first performance measure is the
error eρ(t = 2), that is the parameter error after two seconds of simulation time
averaged over the last 10 ms of simulation. The second performance measure
is enorm(t = 2), that is the norm of the error state vector after two seconds
of simulation time averaged over the last 10 ms of simulation. Finally, the
third performance measure is the settling time (tst), that is the time it takes
the slave oscillator’s adaptive parameter to reach within 10% of the master’s
corresponding fixed parameter.

Table 3. MATLAB simulation parameters.

G =1/1700 S G̃ =1/1700 + 1/1700000 S γ = 5 × 107

R0 =13 Ω R̃0 = 13.013 Ω L = 18 mH

Ga = −0.40909 mS G̃a = −0.40949909 mS L̃(0) = 10 mH

Gb = −0.75758 mS G̃b = −0.75833758 mS

E1 =1.1739 V Ẽ1 =1.1750739 V
Gu1 = 1/500 S Gu1 =1/500 + 1/500000 S

C2 = 100 nF C̃2 = 100.1 nF

5.3 Discussion

We first comment on the overall performance of the SPICE simulation per-
formed in Section 5.1 by observing Figures 3(b) and 3(c). In the macro scale
plot, once the adaptive controller is activated at t = 0.025s, the measure enorm
approaches zero and the estimates of the slave oscillator parameters (R̃est and

L̃est) approach the corresponding parameter values of the master oscillator.

However, in Figure 3(c), estimated values of R0 and R̃0 undergo change de-
spite the fact that R0 is a fixed parameter and the parameter update law is only
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Fig. 4. MATLAB Simulation: Adapting for L̃ with tolerances.

supposed to change the parameter value L̃. This indicates that the inductor-
gyrator is not a pure inductor but only a good-enough model for this system
to operate within certain tolerances. Next, we examine Figures 3(d) and 3(e)
which show the last 10ms of Figures 3(b) and 3(c), respectively. The state
errors between the master and slave Chua’s oscillator still exist and the pa-
rameters L and L̃ do not perfectly match, with a 0.1mH difference on average
(Table 2). This mismatch is attributed to component tolerances. In a simula-
tion study of adaptive synchronization of Chua’s oscillators with a mismatched
parameter, [12] similarly observed that the adaptive parameter does not con-
verge to the desired value. Repeating the SPICE simulation without including
competent tolerances (see Table 4 and Figure 5), it is seen by averaging the
last 10 ms of the 40 ms simulation that there is no difference between Lest and
L̃est.

Next, we comment on our MATLAB simulation results (Figure 4) that il-
lustrate how the adaptive controller performs depending on the behavior of the
master Chua’s oscillator. Note that adaptation of parameter L̃ occurs regard-
less of the system being chaotic or a simple oscillator. The adaptive controller
stops working only when the master Chua’s oscillator is in steady state. A close
examination of Figure 4 reveals a large spike in enorm at around C1 = 12.32 nF.
This spike is due to the fact that in this small range of C1 the Chua’s oscillator
is approaching equilibrium very slowly in which the 2 second simulation time is
not enough for the master Chua’s oscillator to reach its steady state behavior.
The only time enorm reaches close to zero is when the Chua’s attractor is in
equilibrium, which is when C1 goes above 12.33 nF. At equilibrium, the energy
storing components no longer have a long term effect on the system and the
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inductor functionally behaves as a short and the capacitors behave as open.
In this mode, the adaptive parameters do not converge to any particular value
but stay the same. Additional MATLAB simulations conducted with ideal pa-
rameter values show that the errors decrease by several orders of magnitude
(see Figure 6).

Table 4. SPICE simulation: Adapting for L̃ without tolerances.

R0 = 200 Ω R0est = 202.42 Ω (average)

R̃0 = 200 Ω R̃0est = 202.46 Ω (average)
L = 40.5 mH (see (21) [15]) Lest = 45.4 mH (average)

enorm = 1.6 × 10−3 (average) L̃est = 45.4 mH (average)
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Fig. 5. SPICE simulation: Adapting for L̃ without tolerances.
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Fig. 6. MATLAB simulation: Adapting for L̃ without tolerances.

6 Conclusion

In this paper we presented an adaptive controller that is designed to match a pa-
rameter (L) in two Chua’s oscillators with the presence of PE. We implemented
the adaptive controller using analog circuitry in a high-fidelity SPICE simula-
tion while incorporating reasonable electrical component tolerances. Further-
more, we tested our adaptive controllers over many conditions of the Chua’s
oscillator using MATLAB simulations. Our results show that the adaptive
controller achieves parameter matching with a certain degree of error due to
tolerance mismatch of the master and slave Chua’s oscillator. In addition, the
adaptive controller performs not only when the master Chua’s oscillator is in
the chaotic mode but also when the system is a simple oscillator (and does not
fulfill the qualities of PE).
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Chaos in hydrodynamic models of pulsating
BL Her-type stars
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Abstract. We present hydrodynamic models of pulsating BL Her-type stars that
show a wealth of dynamical behaviours characteristic for deterministic chaos. Inter-
esting phenomena detected in our models include period doubling and intermittent
routes to chaos, periodic windows within chaotic domain, type I and type III intermit-
tency, interior crisis bifurcation and others. Before we describe the models, we briefly
review the current knowledge about type II Cepheids, a group of radially pulsating
stars to which BL Her class belongs, and the methods used to model such stars.
Keywords: astrophysics, pulsating stars, type II Cepheids, chaos, intermittency.

1 Type II Cepheids

Type II Cepheids are low-mass (M ≈ 0.5 − 0.7M�), giant stars pulsating
radially with periods from one to several tenths of days (see e.g. Wallerstein[1]
or Soszynski et al.[2]). In the H-R diagram, a plot of absolute luminosity
(L) vs. the effective temperature (Teff), these stars are located in the cool
and luminous part, within the instability strip (IS), in which pulsations are
driven with the opacity (kappa) mechanism (e.g. Cox[3]). Type II Cepheids
are divided into three classes: BL Her stars, with periods between 1 and 4
days, W Vir stars with periods between 4 and 20 days and RV Tau stars with
periods above 20 days. The borderline between BL Her and W Vir stars is
somewhat arbitrary (see Soszynski et al.[2]). RV Tau stars, on the other hand,
are distinguished by period-doubled pulsation which starts to appear at periods
above 20 days. Recent studies show however, that effect can appear also at
shorter periods, in particular the W Vir star, a prototype of the W Vir class,
shows the effect (Templeton & Henden[4]). In addition, the period doubling
effect was discovered in one BL Her star with period ≈ 2.4 days (Smolec et
al[5]). The possible existence of period doubled BL Her stars was predicted by
Buchler & Moskalik[6] 20 years earlier, based on hydrodynamic models.

Type II Cepheids are at advanced evolutionary stages (see Wallerstein[1],
Gingold[7]). The division into three classes is believed to reflect different evo-
lutionary stages of the stars. After hydrogen is depleted in the core, the star
climbs up the Red Giant Branch (RGB) increasing its luminosity at nearly

7thCHAOS Conference Proceedings, 7-10 June 2014, Lisbon Portugal
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constant effective temperature. After the helium is ignited in the degenerate
core, the progenitors of type II Cepheids arrive at the blue side of the Zero-
Age Horizontal Branch (ZAHB), steadily burning helium in the center. They
evolve redward, towards the Asymptotic Giant Branch (AGB) and, as they
cross the instability strip, they pulsate as BL Her variables. As helium is de-
pleted in the core, its burning continues, along with the hydrogen burning,
in the shells surrounding the carbon/oxygen core. The star, now climbing up
the AGB, may loop back into the IS due to instabilities in the shell burning,
becoming a W Vir-type variable. Finally, as the star leaves the AGB on the
way to the white dwarf sequence, it crosses the IS for the last time, pulsating
as RV Tau-type variable.

In majority of cases, the least luminous, shortest period BL Her stars are
very regular pulsators, with repeatedly stable cycle-to-cycle variation. As lu-
minosity increases the light variation becomes less regular. Irregular amplitude
and period variation is frequently observed in W Vir stars. Strong irregular-
ities on top of period-doubled pulsations are common in RV Tau stars. The
behaviour is more pronounced in longer period stars. Closely related to RV Tau
stars, even more luminous and longer period semi-regular and Mira-type pul-
sators, show very strong irregular cycle-to-cycle variation, without evident pe-
riod doubling. Deterministic chaos was detected in two RV Tau-type stars and
in a few semi-regular and one Mira-type variable, for which long (at least 30
years) and good quality observations allowed a rigorous analysis (Buchler et
al.,[8], Kolláth et al.,[9], Buchler, Kolláth & Cadmus,[10], Kiss & Szatmáry[11]).
Hydrodynamic models of type II Cepheids indicate that indeed, as pulsation
period increases a period-doubling route leads to deterministic chaos (Buchler
& Kovács[12], Kovács & Buchler[13]). We note however, that no period-4 (or
other than period-2) pulsating star is known to date.

2 Hydrodynamic models of BL Her stars

For more than 50 years now, large amplitude radially pulsating stars are in-
vestigated with the help of one dimension pulsation hydrocodes. The first
calculations were purely radiative, neglecting the energy transfer by convec-
tion. Nowadays, simple 1D recipes for time-dependent turbulent convection
are used. In our study of BL Her models we used our nonlinear code (Smolec
& Moskalik[14]) implementing the Kuhfuß[15] one-equation, turbulent convec-
tion recipe. Equations we solve are momentum, internal and turbulent energy
equations:

du

dt
= −1

ρ

∂

∂r

(
p+ pt

)
+ Uq − GMr

r2
, (1)

dE

dt
+ p

dV

dt
= −1

ρ

∂
[
r2
(
Fr + Fc

)]
r2∂r

− C, (2)

det

dt
+ pt

dV

dt
= −1

ρ

∂
(
r2Ft

)
r2∂r

+ Eq + C. (3)
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with

u =
dr

dt
(4)

Above, u is fluid velocity, Mr is mass enclosed in radius r, V is specific volume
(inverse of specific density, V = 1/ρ), p and E are pressure and energy of the
gas. Fr, Fc and Ft are radiative, convective and turbulent fluxes, respectively.
Radiative flux is computed assuming diffusion approximation and radiation
pressure and radiation energy are included in p and E. Turbulent energy, et,
is computed according to model of Kuhfuß. pt is turbulent pressure and Uq

and Eq are viscous momentum and energy transfer rates. The internal and
turbulent energy equations are coupled through the term C:

C = S −D −Dr, (5)

with source (or driving) function, S, describing the rate of turbulent energy
generation/damping through the buoyant forces, D modelling the decay of tur-
bulent energy through the turbulent cascade and Dr describing the rate at
which turbulent energy is transformed to the internal energy, through the ra-
diative cooling of the convective eddies. The model contains eight parameters,
values of which are calibrated using observational constraints. The reader is
referred to Smolec & Moskalik[14] for further details.

To construct a model of pulsating star we first solve the static version of
equations (1)–(3). The model is divided typically into 150–200 lagrangian mass
shells extending down to a fixed temperature of a few million Kelvin. It is not
necessary to model the deeper stellar interior as pulsation amplitudes are negli-
gibly small there. The equilibrium model is subject to linear stability analysis,
which yields periods and linear eigenvectors of the pulsation modes. All known
type II Cepheids pulsate in the lowest frequency fundamental mode. The static
model is perturbed with the scaled velocity eigenvector and equations (1)–(4)
are integrated in time till steady pulsation state is reached. In majority of the
studies focused on classical pulsators, RR Lyrae stars or classical Cepheids, the
model converges to a limit cycle – full amplitude, single-periodic pulsation. In
our recent studies of type-II Cepheids of BL Her type a much more interesting
solutions were found, including period doubled pulsation, nicely reproducing
the observations of the only BL Her star showing the effect (Smolec et al.[5]) and
periodic and quasiperiodic modulation of pulsation (Smolec & Moskalik[16]).
In this contribution we discuss an even more complex behaviour we found in
BL Her type models with decreased eddy-viscous dissipation – deterministic
chaos.

We discuss a single sequence of BL Her-type models, with the same mass
(M = 0.55M�), the same luminosity (L = 136L�), the same chemical com-
position and varying effective temperature, which is a control parameter in
the following. The models cover a 170 K stripe in the H-R diagram and were
computed with the maximum step in effective temperature of 1 K, decreased
to 0.1 K in the most interesting domains. The models were integrated typically
for 10 000 pulsation cycles (up to 50 000 for few cases) and radius variation, in
particular the values of maximum radius, were analysed in detail. Smolec &
Moskalik[17] present a detailed description and analysis of these models.
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3 Chaotic phenomena in BL Her models – a showcase

Figure 1 presents a bifurcation diagram for the computed BL Her models. It is
a stack a grey-scaled histograms. For each effective temperature we computed
the probability with which the maximum radii fall into 120 bins into which the
range of maximum radius variation in the models was divided. In the bottom
part of Fig. 1 values of the largest Lyapunov exponents, computed using the
algorithm of Rosenstein, Collins & De Luca[18], are plotted. They are positive,
with typical values between 0.15 d−1 and 0.20 d−1, dropping significantly at
the edges of the chaotic bands. Period doubling route to chaos is evident both
from the cool and the hot side of the computation domain. Period doubling
cascade up to period-16 (on the hot side) is detected in our model grid. The
length of period-2k domain, d2k, decreases as k increases. The ratios dk/d2k are
estimated to d2/d4 = (3.6 ± 0.4) K and d4/d8 = (5 ± 2.5) K (on the hot side),
and d2/d4 = (3.5 ± 0.9) K (on the cool side), and do not differ significantly
from the Feigenbaum constant. The chaotic band is split into parts by several
windows with periodic variation. The largest, period-3 window, is the most
interesting. At its cool side, as effective temperature decreases, an intermittent
route to chaos is detected (Pomeau and Mannevile[19]). On its hot side, the
period doubling route leads to three chaotic bands which merge into one in
an interior crisis bifurcation (Grebogi, Ott and Yorke[20]). Below we highlight
these and other interesting phenomena we detect in our models.
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Fig. 1. Bifurcation diagram for the computed hydrodynamic models (top) and vari-
ation of the largest Lyapunov exponent (bottom).

• Chaotic models. In Fig. 2 we display first return maps for two hydro-
dynamic models followed for 50 000 pulsation cycles. Complex and likely
fractal structure of the attractor is well visible.

• Periodic windows. We detect seven windows with periodic behaviour.
Three of the windows, with period-6 (at Teff = 6371 K), period-5 (at Teff =
6383 K) and period-6 (at Teff = 6479 K) behaviour, are less than 2 K wide.
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Return map for the model located in first of these windows is displayed in
Fig. 3 (left). In a window extending between 6397 K and 6400 K period-7
and, after a period doubling bifurcation, period-14 behaviours are detected.
In a window extending between 6363 K and 6366 K complex scenario is
observed – see return map in Fig. 3 (right), including type-III intermittency
discussed below. The two largest windows, period-3 (6421 K–6438 K) and
period-6 (6459 K–6468 K) windows, show a rich internal structure, with
period-doubling and intermittent routes to chaos. These are also discussed
in more detail below.

Fig. 2. First return maps for two models showing chaotic variability.

Fig. 3. First return map for a period-6 model (left) and four models from period-9
window. In both cases first return maps for directly neighbouring, slightly cooler,
chaotic models are plotted with grey dots, for a reference.
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• Type III intermittency. The effect is clearly observed in one model
from period-9 window (Teff = 6365 K) In a return map (Fig. 3, right) 9
bands are clearly visible, while inspection of maximum radii (Fig. 4) clearly
reveals type-III intermittency: switching between period-9 and period-18
behaviour (see Pomeau and Mannevile[19]).
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Fig. 4. Type III intermittency in a model with Teff = 6365.0 K.

• Type I intermittency. The effect is best visible at the cool edge of the
largest, period-3 window, at which, as effective temperature of the models
is decreased, the intermittent route to chaos is evident. In Fig. 5 the
maximum radii are plotted vs. the pulsation cycle number for two models
with 6420.9 K and 6420.7 K. We note that a slightly hotter model (6421 K)
displays a strictly periodic, period-3 behaviour. As effective temperature is
decreased, period-3 cycle losses its stability (tangent bifurcation) and type
I intermittency is observed with the stages of almost periodic behaviour
rapidly shrinking with the growing distance from the bifurcation point.

• Interior crisis and crisis induced intermittency. These phenomena
are present on the hot side of the period-3 window. There, at Teff ≈ 6435 K,
a period doubling cascade forms three separated chaotic bands. As effective
temperature is increased, these three bands hit the unstable period-3 cycle
created in the tangent bifurcation at the cool edge of the period-3 window,
expand, and merge into one chaotic band (Teff ≈ 6438 K). A crisis induced
intermittency is well visible in slightly hotter models and is illustrated in
Fig. 6.

• Remerging Feigenbaum tree. The period-3 and period-6 windows are
tightly connected, as is well visible in the bifurcation diagram (Fig. 1), and
form a period-3 bubble or remerging Feigenbaum tree (Bier & Bountis[21]).
The scenarios at the cool and at the hot side of the chaotic band separating
these two windows are mutual mirror images. In addition the three chaotic
bands that are formed in the two windows (as temperature is increased
within period-3 window, and as temperature is decreased in period-6 win-
dow) do not disappear as they merge into one band in the crisis bifurcation.
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Fig. 5. Type I intermittency in a model with Teff = 6420.9 K (top) and in a model
0.2 K cooler (bottom).
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Fig. 6. Crisis induced intermittency in a model with Teff = 6438.4 K.

They sustain their identity and smoothly merge within the chaotic domain
(between 6438 K and 6459 K) as dark grey bands in Fig. 1 indicate.

4 Discussion

Most of the chaotic phenomena detected in the models were not yet detected
in pulsating stars. In BL Her stars only period doubling effect was found in
one star. Nevertheless chaotic dynamics is present in more luminous type II
Cepheids of RV Tau type and in semi-regular and Mira-type variables. Based on
our models we expect, that the wealth of dynamical behaviours well known in
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classical dynamic systems, like Lorenz or Rössler systems, may also be present
in pulsating stars. Detection of these effects is difficult however, as long, regu-
lar and precise monitoring of stellar variability is necessary. With the growing
amount of high quality data from massive sky surveys, like Optical Gravita-
tional Lensing Experiment (Udalski et al.[22]), we hope that discovery of the
reported effects, like intermittency or period-k pulsation (with k other than 2),
is only a matter of time.
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Abstract. In this paper the encryption, transmission and recovery of a confidential
message using chaotic signals is presented. The communication process is made in
a two-channel communication system with multi-user modality. Here, the authors
suggest the consideration of two criteria to choose the suitable chaotic signal, so that,
the security level of the encrypted message would be improved. The criteria consider
the characteristics of the chaotic signals, such as energy and frecuency location. To
achieve this objective, the synchronization of chaotic systems is needed, for this rea-
son, these systems are arranged in topologies of complex networks and synchronized
using the Complex Systems Theory.

Keywords: Private communications, Chaotic encryption, Chaotic oscillator, Syn-
chronization, Complex network.

1 Introduction

Driven by the idea of hidding and restricting access to certain information,
mankind has developed increasingly complex ways to carry out the encryption
of data; among the methodologies that have been explored to hide information,
the chaotic encryption is one of the main alternatives.

Chaotic oscillators have received lots of attention in the last decade because
of their potential application in private communications. These systems have
attracted the interest of the researchers who have studied and implemented
these extensively in the field of communications [1].

Particularly, in this paper, chaos generators exhibit scrolls chaotic attrac-
tors, these models are capable of generating scrolls along any of its state vari-
ables, these nonlinear dynamical systems belong to the family of grid-scroll
attractors in 1-D, 2-D and 3-D.

A new family of n-scroll attractors [1,2] are used as generators of chaotic
signas which for simplicity will be called Genesio & Tesi 3-D (G&T 3-D)
chaotic oscillators as this model is a generalization of the original model that
R. Genesio and A. Tesi proposed in 1992 [1–3].

The chaotic communications is an area that has been active in the last
decade, this is because the non-periodicity and apparent randomness of chaotic
_________________ 
7th CHAOS Conference Proceedings, 7-10 June 2014, Lisbon Portugal 
C. H. Skiadas (Ed) 
© 2014 ISAST                               
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signals are the main benefits observed [4], nevertheless, the encryption process
lacks a selection criteria to choose the suitable chaotic signal to encrypt, this
in the sense of satisfying the message requirements, i.e., the correct masking in
time and frequency domain.

In this work, the selection criteria of chaotic signal based on the energy
characteristics of the signal is proposed. Finally, to reach the purpose of this
reseach, the synchronization of chaotic oscillators is needed, for this reason,
some results of synchronization of G&T 3-D chaotic oscilladors arranged in
topologies of complex networks are presented.

This paper is organized as follows: In Section II a brief review on synchro-
nization of complex dynamical networks is given. In Section III, the problem of
synchronization in N-coupled chaotic systems in complex networks is exposed
as well as the basic model of multi-scroll attractor G&T 3-D system that is used
as chaos generator; the corresponding synchronization results are provided also
in this section. In Section IV, the criteria proposed to choose the chaotic signal
are shown and explained as well as the results of the encryption, transmission
and recovery of a confidential message test. In Section V some conclusions are
given.

2 Complex networks

A complex network is defined as an interconnected set of nodes, where each
node is a fundamental unit, with its dynamics depending of the nature of the
network. Each node is defined as follows

ẋi = f(xi) + ui, xi(0) = ci, i = 1, 2, . . . , N, (1)

where xi = [xi1 xi2 . . . xin] ∈ ℜn are the state variables of the node i, ci ∈ ℜ
are the initial conditions and ui ∈ ℜn establishes the synchronization between
two or more nodes and is defined as follows [5]

ui = c

N
∑

j=1

aijΓxj , i = 1, 2, . . . , N, (2)

the constant c positive definite represents the coupling strength and Γ is a
constant matrix linking coupled state variables. In this matrix, two nodes are
linked through their ith state variables. Assume that Γ = diag(r1, r2, . . . , rn)
is a diagonal matrix with ri = 1 for a particular i and rj = 0 for j 6= i.

The matrix A = (aij) ∈ ℜN×N is the coupling matrix which shows a con-
nection between node i and j, if this is the case, then aij = 1, otherwise aij = 0
for i 6= j. The diagonal elements of A are defined as

aii = −

N
∑

j=1,j 6=i

aij = −

N
∑

j=1,j 6=i

aji i = 1, 2, ..., N. (3)

The dynamical complex network (1) and (2) is said to achieve synchroniza-
tion if x1(t) = x2(t) = . . . = xn(t), t → ∞. A network with N identical
multi-scroll attractors G&T 3-D as nodes is considered.
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3 Synchronization of N multi-scroll attractor Genesio &

Tesi 3-D via coupling matrix

In this section, synchronization of complex networks constituted of N-coupled
multi-scroll attractor G&T 3-D is achieved. First, it is shown the set of equa-
tions that describes the multi-scroll attractors G&T 3-D; then, necessary data
to achieve synchronization is provided; finally, at the end of the section syn-
chronization results are shown.

Multi-scroll attractor G&T 3-D chaotic oscillator is described by







ẋ = y − f1(y),
ẏ = z − f1(z),
ż = −ax− ay − az + af3(x),

(4)

where

f1(y) =

My
∑

i=1

g (−2i+1)
2

(y) +

Ny
∑

i=1

g (2i−1)
2

(y), (5)

f1(z) =

Mz
∑

i=1

g (−2i+1)
2

(z) +

Nz
∑

i=1

g (2i−1)
2

(z), (6)

f3(x) =

k−1
∑

l=1

γgnl
(x), (7)

gθ(·) =















1, · ≥ θ, θ > 0,
0, · < θ, θ > 0,
0, · ≥ θ, θ < 0,
−1, · < θ, θ < 0,

(8)

where nl = ρ+0.5+(l− 1)(ρ+ ς+1), γ = ρ+ ς+1, ρ =| mini,j{u
eq,y
i +u

eq,z
j } |

and ς =| maxi,j{u
eq,y
i + u

eq,z
j } |. Here, x, y, z ∈ ℜ, a = 0.8, ueq,y and ueq,z are

the vectors for the y and z variables related to the equilibrium points, the Eq.
(8) is the core function [2]. The equilibrium points satisfy x + y + z = f3(x),
y = f1(y) and z = f1(z) where the points for the y, z variables are given by

ueq,y = {−My, . . . , −1, 0, 1, . . . , Ny},

ueq,z = {−Mz, . . . , −1, 0, 1, . . . , Nz}.
(9)

Synchronization of a complex networks: A complex network of iden-
tical multi-scroll attractor G&T 3-D is synchronized. The coupled network
topology is illustrated in Fig. 1, where every oscillator is described by Eqs. (4)-
(8); considering a synchronization scheme of N-coupled multi-scroll attractor
G&T 3-D chaotic systems, the coupling matrix corresponding to the displayed
topology is omitted because of its size (17× 17) which is obtained as explained
in the previous section, all its eigenvalues are 0 = λ1 > λ2 ≥ λ3 . . . ≥ λ17.

The Gamma matrix is defined as Γ = diag(1, 0, 0), this means that the
synchronization is achieved by the first state variable. According to Eq. (1), the
control laws ui1 for i = 1, . . . , 17 are given by the nonzero A matrix elements.
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Fig. 1. Topology of the complex network with 17 oscillators.

The initial conditions for each oscillator are

Initial conditions

x1,..., 9(0) -0.1 0.1 0.2 -0.2 0.3 -0.3 0.4 -0.4 0.5

y1,..., 9(0) -0.1 0.1 0.2 -0.2 0.3 -0.3 0.4 -0.4 0.5

z1,..., 9(0) -0.1 0.1 0.2 -0.2 0.3 -0.3 0.4 -0.4 0.5

x10,..., 17(0) -0.5 0.6 -0.6 0.7 -0.7 0.8 -0.8 0.9

y10,..., 17(0) -0.5 0.6 -0.6 0.7 -0.7 0.8 -0.8 0.9

z10,..., 17(0) -0.5 0.6 -0.6 0.7 -0.7 0.8 -0.8 0.9

Table 1. Initial conditions for each oscillator of the complex network in Figure 1.

The coupling strength c = 10 was obtained through the stability analysis
reported in [6]. With this data, the following synchronization results are ob-
tained: In Fig. 2(a) the chaotic attractor of Eq. (4) with 4 × 2 × 2 scrolls
of the complex network is shown; Fig. 2(b) shows only the evolution of the
second state variable of each chaotic oscillator, where synchrony can be ob-
served. These chaotic signals will be used in the communication process in the
following section. For readers interested in this topic can reffer to [10–12] and
their references.

−2 0
2 4 6 8 10

−0.5

0

0.5

1

1.5

2
−1

−0.5

0

0.5

1

x(t)

y(t)

z
(
t
)

(a)

0 10 20 30 40 50 60 70 80

−1

−0.5

0

0.5

1

1.5

t (sec)

y
i
(
t
)
 
 
 
 
 
 
i
=
1
,
.
.
.
,
1
7

(b)

Fig. 2. (a) View x − y − z chaotic attractor 4 × 2 × 2 scrolls, (b) Evolution of the
second state variable of each chaotic oscillator.
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4 Selection criteria for the chaotic signal

As above mentioned, chaos generators and chaotic signals have been imple-
mented extensively in the field of private communications [7–9], however, there
remains a lack of criteria for choosing the best masking chaotic signal, for
this reason, in this section, two criteria of selection are proposed and these are
briefly described.

4.1 Criterion 1: selection based in the chaotic signal energy

The first criterion suggests the selection of the chaotic signal based on its energy,
using this approach, the higher energy value the better the chaotic signal to
encrypt, however, it is not necessary to choose signals with very large indices
but only those that meet the requirements of the message to encrypt.

N−1
∑

n=0

|xc(n)|
2 ≫

N−1
∑

n=0

|xm(n)|2. (10)

Here, xc(n) is the chaotic signal and xm(n) is the message. The criterion
considers a relation between the energy of the message and the chaotic signal,
i.e., J1 will yield how many times the chaotic signal energy exceeds the message
energy, with this, J1 ≫ 1 → good encryption.

4.2 Criterion 2: selection based in the chaotic signal energy in the
frequency domain

Despite the advantage that means choosing the signal by its level of energy, it
is advisable to know its bandwidth, this in order to ensure a good encryption
seen from the frequency domain, i.e., considering the frequency range in which
the spectrum of the message to encrypt is located. It is very important to
know the frequencies where the most energy of the chaotic signal is located to
prevent the encrypted message to be retrieved by filtering techniques, this idea
is ilustarted in Fig. 3.

The second criterion considers the amount of chaotic signal energy in the
frecuencies where the most energy of the message is located.

N−1
∑

k=0

α(k)|Xc(k)|
2 ≫

N−1
∑

k=0

α(k)|Xm(k)|2, (11)

where Xc(k) are the chaotic signal Fourier coeficients, Xm(k) are the message
Fourier coeficients and α(k) is the frequency weighting function that selects the
frequencies where the message is located. This criterion will give the relation
between the chaotic signal energy and the message energy just in a specific
frequencies band. Basically, criterion J2 will show how many times the chaotic
signal energy, located in the message bandwidth, is bigger than the message
energy; with this J2 ≫ 1 → good encryption. As in the previous case it is
recommended to choose the chaotic signal that meets the requirements of the
message to encrypt.
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Fig. 3. Bad encryption seen from the frequency domain: spectral density of (a)
Chaotic signal, (b) message m1, (c) message m2 and (d) chaotic signal + m1,2.

4.3 Chaotic encryption

In this section the results of encryption, transmission and recovery of a con-
fidential message are given, also, the criteria above described are considered
to choose the chaotic signal from the ones generated in Section 3 as result of
synchronization. It is highly recommended to choose the chaotic signal based
on both criterions J1 and J2 to prevent a bad encryption.

State Ec (105) J1 J2

x(t) 5.5522 265.5872 14.8015

y(t) 0.0724 3.465 1.8041

z(t) 0.0815 3.9023 1.9981

Table 2. Criteria values for the chaotic signal of the synchronization of the complex
network in Fig. 1.

The communication diagram is shown in Fig. 4, the transmission process is
made in two channels and the recovery in multi-user modality. In Table 2 are
shown the resulting values for criteria proposed, where the α(k) function has a
unity gain covering 0.025-1 kHz and nule gain at other frequencies.

Here, as shown in the diagram of Fig. 4 the synchronization of transmitter
and receptor is made through the first state, according to Table 2, the third
state is a good option to encrypt due to the first state has values bigger than
necessarly besides that it has been used to synchronize.

In Fig. 5 the resulting signals of the communication process are given.
At the top, the message to encrypt m(t) that is a short part of the piano song
Ballad to Adelina; at the middle, the encrypted message s(t) = z(t)+m(t) that
is transmitted by the second channel and finally at the bottom, the retrieved
message m′(t) = s(t)− z′(t) for every user.
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Fig. 4. Multi-user communication diagram with two transmission channels.
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Fig. 5. (a) Message to encrypt m(t), (b) Encrypted message s(t) and (c) Retrieve
message m′(t).

As we could see, it was accomplished the transmission of a confidential mes-
sage, where, the encryption was made using a chaotic signal and the recovery
through the synchronization of a complex network.

5 Conclusion

In this work the chaotic encryption of an audio signal was made. Authors have
proposed two criteria Eqs. (10)-(11) to choose the chaotic signal to encrypt the
message in order to improve the security level of the communication process.
The criteria consider the energy characteristics of the message and the masking
chaotic signals. The resulting indices of each criterion give how good a chaotic
signal is to be applied as masking signal. It has been shown that choosing
the chaotic signal with indices that cover in a fair way the requirements of the
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massage is sufficient to achieve a good encryption. It is important to mention
that J1 and J2 do not give local information, i.e., they cannot prevent from
bad encryption when the chaotic signal magnitude is smaller than the message
magnitud in a specific time interval.
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