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Abstract

In this work we will study a boundary value problem governed
by a nonlinear heat equation by compactness method. We look
for the existence and uniqueness of a function u = u(x; t), x 2 
;
t 2 (0; T ), solution of the problem (P).
Keywords: Compactness, Nonlinear, Parabolic, Priori Esti-

mates, Uniqueness.

1 Notations and position of the problem

Let 
 an open bounded domain of Rn, with regular boundary �:We
denot by Q the cylinder Rnx � Rt : Q = 
 � ]0; T [, with boundary �,
u0and f are functions, � > 0 :We look for the existence and uniqueness
of a function u = u(x; t), x 2 
 ; t 2]0; T [, solution of the problem (P ):

(P )

8<:
@u
@t
��u+ juj� u = f in Q

u = 0 on �
u(x; 0) = u0 (x) x 2 


(1:1:1)
(1:1:2)
(1:1:3)

(1.1)

2 Existence and uniqueness of the solution

The main results are given by the fallowing theorem of existence and
theorem of uniqueness

2.1 Existence of the solution
Theorem 1 Assume that 
 is bounded open of Rnare given f; u0 with :

f 2 L2 (Q) ; (1.2)

u0 2 H1
0 (
) \ Lp (
) ; p = �+ 2:; (1.3)
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Then there exists a function u satisfying:

u 2 L1
�
0; T ;H1

0 (
) \ Lp (
)
�
; (1.4)

@u

@t
(x; 0) 2 L1

�
0; T ;L2 (
)

�
; (1.5)

@u

@t
��u+ juj� u = f in Q (1.6)

u(0) = u0(x), x 2 
 (1.7)

Proof.

2.1.1 First step: looking for approached solutions

We introduce a sequence functions w1; :::; wm; :: having the following
properties: 8>><>>:

wi 2 H1
0 (
) \ Lp (
) 8i;

8m; w1; :::; wm are linearly independent
combinations of linear �nite wi are dense in

H1
0 (
) \ Lp (
) :

(1.8)

We look for um = um (t) (approximate solution) of the problem as:

um (t) =
i=mX
i=1

gim(t)wi. (1.9)

We determine the functions gim with the conditions�
u
0

m (t) ; wj

�
+a (um (t) ; wj)+(jum (t)j� um (t) ; wj) = (f (t) ; wj) ; 1 � j � m;

(1.10)
As a is a bilinear form de�ned as follows:

a (u; v) =
nX
i=1

Z



@u

@xi

@v

@xi
dx (1.11)

The system (1:10) of ordinary di¤erential equations nonlinear be sup-
plemented by initial conditions:

um (0) = u0m; u0m =
mX
i=1

�imwi !
m!1

u0 in H1
0 (
) \ Lp (
) ; (1.12)

Through the linear independence of w1; :::; wm; , we have det (wi; wj) 6= 0,
ie the system composed of (1:10); (1:12) admits a solution de�ned on
[0; tm]. The a priori estimates which follow show that tm = T .

2
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2.1.2 Second step: a priori estimates.

We multiply equation (1:10) index j by g
0
jm (t) was:

(u0m (t) ; u
0
m (t)) + a (um (t) ; u

0
m (t)) + (jum (t)j

� um (t) ; u
0
m (t))

= (f (t) ; u0m (t)) (1.13)

But, jum (t)j� um (t) 2 Lp
0
(
)and p = � + 2; Then according to

Cauchy Schwarz were:

1

2

d

dt

�
ju0m (t)j

2
+ kum (t)k2

�
+
1

p

d

dt
(

Z



jum (x; t)jp dx) � jf (t)j ju0m (t)j

(1.14)
So we integrate between 0; t; we deduce:

1

2

�
ju0m (t)j

2
+ kum (t)k2

�
+
1

p
kum (x; t)kpLp(
) �

1

2
ju1mj2 +

1

2
ku0mk2

+
1

p
kum (0)kpLp(
) +

tZ
0

jf (�)j ju0m (�)j d� (1.15)

From (17); (18) and inequality:

ab � 1

2
a2 +

1

2
b2:

We have

jf (�)j ju0m (�)j �
1

2
jf (�)j2 + 1

2
ju0m (�)j

2
:

Then

1

2

�
ju0m (�)j

2
+ kum (t)k2

�
+
1

p
kum (x; t)kpLp(
) � c+

1

2

tZ
0

jf (�)j2 d�

+
1

2

tZ
0

ju0m (�)j
2
d�: (1.16)

But

f 2 L2 (Q))
tZ
0

jf (�)j2 d� � constant.

3
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We deduce, therefore, in particular (1:16) that:

ju0m (t)j
2 � c0 +

tZ
0

ju0m (�)j
2
d�; (1.17)

And after the Gronwall inequality we have:

ju0m (t)j � constant. (1.18)

Then
kum (t)k+ kum (x)kLp(
) � constant. (1.19)

By (1:18) ; (1:19) and when m!1 we have: um in a bounded set of
L1 (0; T ;H1

0 (
) \ Lp (
)) and u
0
m in a bounded set of L

1 (0; T ;L2 (
)).

2.1.3 Third step: passage to the limit

In the second step we were um borned in L1 (0; T ;H1
0 (
) \ Lp (
)) ; then

it is bounded in L2 (0; T ;H1
0 (
)).Since L

1 (0; T ;H1
0 (
) \ Lp (
)) :{resp.

L1 (0; T ;L2 (
))} is the dual of L1(0; T ;H�1 (
) + Lp
0
(
)){resp. of

L1 (0; T ;L2 (
))}, there exists a result um; u� sush that :

8g 2 L1
�
0; T ;H�1 (
) + Lp

0
(
)
�
: :

TZ
0

(u� (t) ; g (t)) dt !
�!1

TZ
0

(u (t) ; g (t)) dt

Which implies:

u� ! u weak in L1
�
0; T ;H1

0 (
) \ Lp (
)
�
and in L2

�
0; T ;H1

0 (
)
�
:

(1.20)
So :

9u0� ! u0in D0 �0; T ;H1
0 (
) \ Lp (
)

�
) u0� ! u0in L1

�
0; T ;L2 (
)

�
and in L2

�
0; T ;L2 (
)

�
(1.21)

Then in particular um bounded in H1 (Q), but we know that the next
injection is compact:

H1 (Q) ,! L2 (Q) (1.22)

And according to the de�nition of compact injection, we can suppose
the sequence u� extracted um satis�es (1:20) and (1:21) ; then u; u0 exists
and in L2 (Q) then:

4
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�
u� ! u in L2 (0; T ;H1

0 (
) \ Lp (
)) strong (a.e),
u0� ! u0in L2 (0; T ;L2 (
)) weak (a.e).

(1.23)

Studying the convergence of jumj� um:
jumj� um is bounded in L1

�
0; T ;Lp

0
(
)
�
, then we set:

ju�j� u� ! w in L1
�
0; T ;Lp

0
(
)
�
; (1.24)

Showing that:
w = juj� u: (1.25)

For this we give the following lemma:

2.1.4 Lemma:

Let O be an open bounded Rnx � Rt; g� and g are functions of Lq (O),
1 < q <1, such that

kg�kLq(O) � c, g� ! g p.p. in O (1.26)

Then
g� ! g in Lq weak . (1.27)

When we ask: O = Q and g� = ju�j� u�, from (1:23) :

u� ! u in L2 (Q) (a.e) (1.28)

Therefore :

g� = ju�j� u� * juj� u = g (a.e) in Lp
0
(
) (1.29)

Such that p
0
= �+2

�+1
= q (for p = �+ 2), and after (1:24) :

ju�j� u� * w in Lp
0
(
) : (1.30)

Since the limit is unique, therefore:

g = juj� u = w:

We show that this solution satis�es the equation (1:10), so when we
set m = � and we �x j such that � > j ; then:

�
u0� (t) ; wj

�
+ a (u�; wj) + (ju� (t)j� u� (t) ; wj) = (f (t) ; wj) . (1.31)

5
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From (1:24) and (1:25)�
u0�; wj

�
* (u0; wj) in L1 (0; T ) ; (1.32)

Where:
a (u�; wj)* a (u;wj) in L1 (0; T ) : (1.33)

And after (1:24) and (1:25)

(ju�j� u�; wj)* (juj� u;wj) in L1 (0; T ) (1.34)

It follows therefore from (1:30) that:

d

dt
(u;wj) + a (u;wj) + (juj� u;wj) = (f; wj) : (1.35)

According to the density of the basis fwjg in separable spaceH1
0 (
)\

Lp (
), we have

d

dt
(u; v) + a (u; v) + (juj� u; v) = (f; v)8v 2 H1

0 (
) \ Lp (
) (1.36)

Then the solution u satis�es (1:2) ; (1:3)
It remains to show that the solution u satis�es the initial conditions

(1:1:3) : u (0) = u0; :
By (1:20) and (1:21) we have:

u� ! u in L1
�
0; T ;H1

0 (
) \ Lp (
)
�
; (1.37)

So u� is continuous on [0; T ] then continous on 0 and then:

u0� = u� (0)! u (0) = u0 in H1
0 (
) \ Lp (
) ;

whence (1:7) .

3 Uniqueness of solution

Theorem 2

It is located in the assumptions of Theorem 1 with:

� � 2

n� 2
( any �nite � if n = 2).Then the solution u obtained in Theorem of

existence is unique.
Let u; v be two solutions, in the sense of Theorem 2, then w = u� v

satis�es:

6
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8>><>>:
w0 ��w = jvj� v � juj� u;

w (0) = 0;
w 2 L1 (0; T ;H1

0 (
) \ Lp (
)) ;
w0 2 L1 (0; T ;L2 (
)) :

So (1:22) implies:

(w0; v) + a (w; v) = (jvj� v � juj� u ; v) 8v 2 H1
0 (
) :

To replace v by w0must w0 2 H1
0 (
) for v 2 H1

0 (
) but w
0 2 L2 (
)

then we must introduce an auxiliary function:

	 : ]0; T [! R, 8s 2 ]0; T [

t 7!	(t) =

8<:�
sR
t

w (�) d�; t � s;

0; t > s

	0 (t) = w (t) ; w1 (t) =

tZ
0

w (�) d� if 8t � s:

Thus

	(t) = �
sZ
t

w (�) d� = w1 (t)� w1 (s)) 	(0) = �w1 (s)

Then (1:22) gives:

(w0;	(t)) + a (w;	(t))= (jvj� v � juj� u ;	(t)) )

1

2
jw (s)j2 + 1

2
kw1 (s)k2=�

sZ
0

(jvj� v � juj� u ;	(t)) dt

We have

j� (jvj� v � juj� u ;	(t))j � c
Z



sup (juj� ; jvj�) ju� vj j	(t)j dx =

c

Z



sup (juj� ; jvj�) jw (t)j j	(t)j dx

7
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According to Holder�s inequality we have:

c

Z



sup (juj� ; jvj�) jw (t)j j	(t)j dx = c
Z



sup (juj� ; jvj�) jw (t)j :

jw1 (t)� w1 (s)j dx � c
h
kjuj�kLn(
) + kjvj

�k
Ln(
)

i
As

1

n
+
1

q
+
1

2
= 1;

Then
1

q
=
n� 2
2n

) q =
2n

n� 2 :

But in Theorem 2

� � 2

n� 2 ) �n � 2n

n� 2 = q ) �n � q:

We have
H1
0 (
) � Lq (
) ;

1

q
=
1

2
� 1

n
; n � 3

Then ������
Z



(juj� u� jvj� v) 	 (t) dx

������ � :
c (ku (t)k� + kv (t)k�)

�
kw1 (t)kLq(
) + kw1 (s)kLq(
)

�
kw (t)kL2(
)

And as u; v 2 L1 (0; T ;H1
0 (
)) for ( H

1
0 (
) � Lq (
)); we have :������

Z



(juj� u� jvj� v) 	 (t) dx

������ � c jw (t)j (kw1 (t)k+ kw1 (s)k) :
So

jw (s)j2 + kw1 (s)k2 � c
sZ
0

�
jw (t)j2 + kw1 (t)k2

�
dt:

According to Gronwall inequality we have:

jw (s)j2 + kw1 (s)k2 = 0)�
w (s) = 0
w1 (s) = 0

)u = v:

Then we have the uniqueness.

8
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Abstract: The West-Brown-Enquist universal growth curve has been mapped on the 

power law function with the time-dependent scaling factor and exponent representing the 

temporal fractal dimension of the growth of species like mammals, birds, fish, 

crustaceans, regardless of taxon, cellular metabolic rate and body size. The results 
obtained permit formulation of three important rules governing the biological growth: (i) 

growing biological systems possess its own, internal, universal fractal time, which differs 

from the linear scalar time of the external observer, (ii) fractal structure of the universal 

time is lost during growth, (iii) the universal growth belongs to the class of macroscopic 
non-local quasi-quantum phenomena. 

 

Keywords: Biological growth, Fractal time, Mapping method, Nonlocality, Quasi-

quantum phenomena 

 

1. Introduction 
Recently, an idea has been developed that the growth curves describing 

neuronal differentiation [1] or malignant tumour progression [2] can be 

successfully fitted by the fractal function  

                                                    
( )

( ) ( ) tb t

ty t a t t                                           (1) 

with the scaling factor at(t) and exponent bt(t) as the functions of time. The 

formula (1) is derived by the mapping the sigmoidal Gompertz function [3]  

                                                    

 ate
a

b

eGtG



1

0)(
                                      (2) 

widely used to describe the time-evolution of the biological system (organism, 

organ, tissue, bacterial colony, tumour etc.) on the power one. In this approach 

we employ the generalized spline interpolation method [4], which permits 

interpolating the Gompertz function (2) by a family of power law curves 

                                 ( )

0( ) ( ) +     1,2,....t ib t

i t iy t a t t y i N                       (3) 

determined at the points {ti, yi(ti)}. Defining the sets of parameters at={at(ti), 

i=1,2…}, bt={bt(ti), i=1,2…},one may derive the fractal function (1) assuming 

that functions (2) and (3) are isovalued and isosloped for the each moment of 

time. In such circumstances the equality of the functions (2) and (3) as well as 

their first derivatives provides the set of equations [1,2]  
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 

 

 
1

1

0
1

( )         ( ) 1

1

at

at

t

at

b
e ba e

bat a
t tb

e
a

e
b t bte a t t G e

e














 
   

 

             (4) 

Here, G0 stands for the initial mass, volume, diameter or number of proliferating 

cells, a - is the retardation constant whereas b denotes the initial growth or 

regression rate constant.  

The main objective of the present study is extension of the research 

area on the ontogenic growth described by the West-Brown-Enquist function [5] 

                       2

1

0 1( ) 1 exp( ) cm t M c c t                                     (5) 

derived from the first principles: the conservation of metabolic energy, the 

allometric scaling of metabolic rate, energetic costs of producing and 

maintaining biomass. In the above formulae 
1/ 4

0
0 1 2 01/ 4

1
1   ( ) ( 0)

4 4

m a
c c c M m t m m t

M M

 
         

 
   (6) 

m0 denotes the initial mass of the system, M is the maximum body size reached 

whereas a is the metabolic parameter. The function (5) can be expressed in 

dimensionless form 

          

1/ 4

1 0

( )
( ) 1 exp( )       ln( )

m t
r c t c

M
  

 
      
 

                   (7) 

which has been named the universal growth function [5]. It almost perfectly 

describes the growth of all known species like mammals, birds, fish, 

crustaceans, regardless of taxon, cellular metabolic rate and body size [5].  

 Recently, the West-Brown-Enquist model has been successfully 

applied to fit the data for the different types of the tumours [6]. In particular, it 

has been demonstrated [7] that instead of the function (7) its generalized form  

         

1

1 0

( )
( ) 1 exp( )      (1 ) ln( )

p
m t

R p c t c
M

  



 
       
 

       (8) 

                       

1

10
0 1 21       1

p

pm
c c aM c p

M



 
     

 
                      (9) 

better reproduces the tumor growth than the original function (5). Here, 

parameter p takes the value in the range<2/3, 1> [7]. Hence, the both universal 

growth functions (7) and (8) can be applied as input for the mapping procedure 

to obtain the fractal function (1) characterizing the growth of the species like 

mammals, birds, fish, crustaceans and different kinds of tumors. 

The main purpose of the present work is mapping the functions (7) and (8) 

on the power law one using the spline interpolation method outlined above. As 

the result one gets the time-dependent universal fractal dimension bτ(τ) and the 

scaling factor aτ(τ) appearing in generalized τ-dependent function (1), which 

includes universal time τ instead of t. The analytical formulae bτ(τ) and aτ(τ) will 
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be employed to calculate their values at an arbitrary moment of time and to 

interpret the biological growth in the terms of the quasi-quantum model of life 

[8]. 

 

2. The Method 
The West et al. [5] universal curve representing the growth of different 

biological species is employed to formulate the model considered here and to 

derive the universal power law function describing the biological growth in the 

space-time with universal temporal fractal dimension. All operations (plotting, 

integration, differentiation) were performed by making use of a Maple vs.14 

processor for symbolic calculations. To avoid errors, the derivation of the 

mathematical formulae was also carried out by the Maple software. Proceeding 

along the line of the generalized spline interpolation method outlined above, the 

universal growth function (7) can be converted into power law using the set of 

nonlinear equations 

                 
1

1 exp( )        exp( )
b b

a b a 

     
    

                      (10) 

which assume that power law (3) and the universal growth (7) functions are 

isovalued and isosloped for the each moment of the universal time. The solution 

of the nonlinear set of equations (8) is the universal fractal dimension and the 

scaling factor  

                

 
exp( )

( )           ( ) 1 exp( )
1 exp( )

b
b a 

 

 
   




   

 
        (11) 

which define the universal fractal function  

                                                    

( )
( ) ( )

b
y a  

  
                                    (12) 

describing the biological growth in the space-time with the universal time τ 

defined by (7). The equation (10) permits formulating the power law function 

governing the growth of all species, independently of their biological 

characteristics, e.g. a, M and m0. The plots of the universal fractal dimension 

bτ(τ) and scaling factor aτ(τ) generated from (9) are presented in Fig. 1. 
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Fig. 1. The universal fractal dimension bτ(τ) and scaling factor aτ(τ) generated 

from Eqs. (11). 

 

One may prove that the universal growth function (8) satisfies the first- and 

second-order differential equations 
2

2

exp( ) exp( )
( ) ( ) 0, ( ) ( ) 0

1 exp( ) 1 exp( )

d d
R R R R

d d

 
   

   

 
   

   
(13) 

The second term in the above equations represents the well-known in the 

quantum physics Hulthèn potential
 

[9] widely used in description of the 

electrostatic interactions between micro-particles. One may prove that this 

equation is a special case of the quantal non-local Horodecki-Feinberg equation 

[10,11] for the time-dependent Hulthèn potential [9]  

 

  

2 2 2
2 2

v2

exp[ ]
     1,2...

1 exp[ ] 2
v v v v

d v
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For the critical screening [12] (β=1) and ground quantum state (v=1) the 

quantum wave function Ψ1 reduces to the macroscopic growth function R(τ) 

          11, 0

1 11 exp( ) exp( ) ( ) 1 exp( )R
      

           (15) 

This result indicates that the biological growth according to the universal growth 

function (8) belongs to the class of macroscopic non-local quasi-quantum 

phenomena. The notion quasi-quantum refers to the possibility of application of 

the quantum language and formalism in description of macroscopic objects [8] 

as this equation does not contain the Planck’s constant and is a special case of 

the quantal Horodecki-Feinberg equation. 

 

3. Conclusions 
The calculations performed reveal that the fractal dimension bτ(τ) decreases to 

zero from the maximum value equal to one. On the contrary, the scaling factor 

at the beginning takes the value one aτ(τ=0)=1 and then decreases to 0.6321 for 

τ=1 (it corresponds to bτ(τ=1)=0.5820); then it tends to the asymptotic value 

equal to one aτ(τ→∞)=1. The results obtained permit formulation of three 

interesting rules governing the biological growth in the space-time with 

universal time τ, from which the first two conform acceptably with the results of 

our previous investigation on the neuronal differentiation and tumorigenessis 

[1,2]:
  

 

(i) Growth of biological systems according to the universal West et al. 

function (8) can be described in the space-time with internal 
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universal fractal time, which differs from the linear bτ(τ=0)=1 

scalar time of the external observer. 

(ii) Fractal structure of the universal time is lost during biological 

growth. 

(iii) Universal growth belongs to the class of macroscopic non-local 

quasi-quantum phenomena. 

 

As far as point (i) is concerned, if we assume that time is a continuous variable, 

it is clear that at the beginning of growth of a biological system it takes place in 

the space-time with the temporal fractal dimension bτ(τ=0)=1 equal to the 

extrasystemic (physical) time. During growth, it is continuously transformed 

into intrasystemic universal fractal time, which diminishes to zero as growth 

continues.  
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Abstract. In presence of Multiple User Interference (MUI), the performance of Im-
pulse Radio Ultra Wide Band (IR-UWB) system is deteriorated. Hence the choice
of codes allowing multiple access is crucial for minimizing the MUI and for enhanc-
ing the system performance. In this paper, we tackle the Bit Error Rate (BER)
performance analysis of Chaotic Time Hopping (Chaotic-TH) UWB employing Pulse
Position Modulation (PPM). Under this assumption, we derive an exact expression for
the BER based on the UWB indoor communication with Line Of Sight (LOS) multi-
path channel. Computer simulation results have shown that the proposed Skew Tent
Map (STM) Chaotic-TH sequences outperforms the conventional code based Gold
sequences.

Keywords: Chaotic Time Hopping Code, Ultra Wide Band, Pulse Position Modu-
lation, Bit Error Rate.

1 Introduction

Recently, research activities have focused on utilizing Ultra Wide Band (UWB)
system for wide exploitation such as tracking applications, precision locating,
wireless and sensor data collection, Ad Hoc and commercial applications [1].
UWB supporting its coexistence with overlapping spectrum technologies (other
narrow and wide band wireless systems), offers promises to satisfy the require-
ments of low cost and high-speed digital home networks and reducing the mul-
tipath.

TH combined with PPM was originally proposed for UWB systems [1,2].
Currently, TH-PPM and TH-BPSK UWB systems are often considered as al-
ternatives for a given application, although the differences between the two
systems lead to different performance characteristics. This is due to the fact
that pulse-position modulation (PPM) is habitually adopted in UWB systems,
a modulation format that is characterized by conveying the information mes-
sage on the time position of the transmitted pulses. Since UWB transmitted
pulses have an extremely short time duration.

Despite of the increasing interest in UWB technology, there are still several
challenging issues to be addressed regarding the signal processing at the receiver
[3]. Probably the most critical aspect is the multi-user interference, modulation
type and the codes allowing multiple access of UWB systems. Thus, the choice_________________ 
7th CHAOS Conference Proceedings, 7-10 June 2014, Lisbon Portugal 
C. H. Skiadas (Ed) 
© 2014 ISAST                               
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of criteria is prominent for enhancement the performance of UWB systems.

Different methods have been proposed in the recent past for evaluating the
effect of MUI on the performance of UWB systems. Recently the research has
been focused on the statistical characteristics of the MUI. Many of them have
modeled the MUI as a standard Gaussian approximation (SGA) [2,4,5].
Other works have dealt with the optimization of the performance by code selec-
tion [6–8]. In [9], MUI was modeled based on the observation that interference
in UWB system is provoked by collisions occurring between pulses belonging
to different transmissions.

The novelty of this work is to propose a code optimization method to mini-
mize collisions with other users. The idea consists to combined Time Hopping
with Code Division Multiple Access (TH-CDMA) such as in cellular network. A
novel analytical expression is derived, inspired from the Developed Time Hop-
ping Codes (DTHC), originally introduced in [10]. This results is established
in the case of Impulse Radio (IR)-UWB signals employing PPM modulation
in combination with TH-code (THC), and propagation over realistic channel
IEEE 802.15.4a indoor communication CM1 [11].

The rest of this paper is organized as follows Section 2 the TH-UWB system
model is presented. In section 3, we describe briefly, the THC using in this pa-
per such as Gold sequences and STM sequences. Thereafter we propose a code
optimization method to minimize the number of collisions in Time Hopping-
Code Division Multiple Access (TH-CDMA). In section 4, we compare our
method with THC. The efficiency of TH-CDMA is verified by simulation re-
sults. On the other hand, chaotic sequences outperforms Gold sequences in
term of BER. Finally, conclusions appear in section 5.

2 IR-UWB signal model

In this work we focus on the design of an asynchronous UWB-IR system when
multi user make a non-coordinated usage of the same bandwidth. In this
scenario the overall performance is dominated by the MUI and a TH sequence
is assigned to each user in order to reduce the overall interference that arises
from collision with other users transmission.
The block diagram of the system model is described in Fig. 1. Subsequently,
we give the transmitted signal model for PPM modulation, the channel model
and the correlating receiver structure. Then we develop the variance expression
of the MUI for the PPM modulation.
.

In summary, when multiple access is affected by using THC, the resulting

signal s
(j)
tr (t) corresponding to Nu users in a TH-UWB system, with equiprob-

able data b(j) ∈ [0 1] mapped through binary PPM with the time shift δ set to
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Fig. 1. Block diagram of the TH-PPM-UWB signal.

equal the pulse width, is given by [1]:

s
(j)
tr (t) =

√
E

(j)
b

Nf

∞∑
k=−∞

w(t− kTf − c̃(j)k Tc − b(j)bk/Nfcδ − θj) (1)

Where E
(j)
b is the received symbol energy for the jth user, Nf is the number of

pulses transmitted for each bit. w(t) represents pulse shaping with pulse width
τ , Tf is the frame time, each frame has a duration of Tf . Each frame divided

into Nc time chips, each time chip has a duration of Tc. c̃
(j)
k represents the

THC sequence assigned to jth user, will be modeled as independent random

variables and are assumed to be periodic of period Nf . c̃
(j)
k taking values in

[0, Nc − 1] with equal probability. Therefore the THC sequence provides an
additional shift (in multiples of the chip time Tc), in order to reduce collisions

effects in multiple access. b.c is the floor operator and b
(j)
k ∈ {0 , 1} is the

binary sequence of the transmitted symbol at time k corresponding to user
j supposed to be independent and identically distributed. δ is the time shift
associated with binary PPM that is, the pulses corresponding to bit 1 are sent
δ seconds later than the pulses corresponding to bit 0. θj accounts for the
asynchronism between the different users and will be assumed to be uniformly
distributed.
A typical pulse employed in the literature [1,2] is the second derivative of a
Gaussian pulse has the form

w(t) = (1− 4π(
t

τ
)2) exp(−2π(

t

τ
)2) (2)

According to the model proposed by the IEEE 802.15.4a working group [11]
the channel impulse response is written as

h(j)(t) =

Mp−1∑
m=0

R−1∑
r=0

α(j)
r,mδ(t− T (j)

m − τ (j)r,m) (3)

where Mp is the number of multipath components, R is the number of rays,
αr,m is the tap weight of the rth ray (path) in the mth cluster each users may
experience different number of propagation paths, δ is the Dirac delta function.
Tm is arrival time of the mth cluster and τr,m is the arrival time of the rth ray
relative to the mth cluster. By definition, τ0,m = 0.
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The cluster arrival time is modeled as a Poisson process and the ray arrival
time is modeled as a mixed Poisson process in [11].
The parameters of the channel as a function of the transmitter-receiver distance
and the LOS availability. The value of the parameters are given in table 1.

Table 1. IEEE 802.15.4a Channel parameters CM1

Target Channel Characteristics CM1

Λ (ns−1) 0.047
Distance (m) 7 − 20
Line of Sight Yes
β is the mixture probability 0.095
λ1 Ray arrival rate for mixture of poisson processes (ns−1) 1.54
λ2 Ray arrival rate for mixture of poisson processes (ns−1) 0.15
m0 Mean of log-normal distributed nakagami-m factor (dB) 0.67
m̂0 Standard deviation of log-normal distributed nakagami-m factor (dB) 0.28

Assuming Nu users transmitting asynchronously, then we can write the received
signal as

r(t) =

Nu∑
j=1

s
(j)
tr (t) ∗ h(j)(t) + n(t) (4)

where each signal s
(j)
tr (t) experiences a different multipath channel h(j)(t) that

accounts for fading and delays from jth user to the reference one. ∗ denotes
the convolution operator, n(t) is an Additive White Gaussian Noise (AWGN)
process with zero mean and variance E{n(t)} = N0/2 for each t. The impulse
response in CM1 channel is depicted in figure 2.

The output of the correlating receiver of the ith user at time Th is given by:

s(i)rec(Th) =

Nf−1∑
p=0

∫ ThTs+pTf+c̃
(i)
p Tc+Tc+τ

(i)
0,0+T

(i)
0

ThTs+pTf+c̃
(i)
p Tc+τ

(i)
0,0+T

(i)
0

r(t)v(t−ThTs−pTf−c̃(i)p Tc−τ (i)0,0−T
(i)
0 )dt

(5)
where v(t) is the receiver’s template signal defined by v(t) = w(t+δ)−w(t). An

accurate value of τ
(i)
0,0 can be obtained by UWB acquisition techniques. From

the previous equations and after variable changes, we obtain

s(i)rec(Th) = TU (i) + TISI(i) + TI(i) + TN (i) (6)

with

TU (i) =

Nf−1∑
p=0

α
(i)
0,0

∫ Tc

0

s
(i)
tr (t+ ThTs + pTf + c̃(i)p Tc)v(t)dt

TISI(i) =

Nf−1∑
p=0

Mp−1∑
m=0

R−1∑
r=0,r+m6=0

α(i)
r,m

∫ Tc

0

s
(i)
tr (t+ThTs+pTf+c̃(i)p Tc+T

(i)
0 −T (i)

m +τ
(i)
0,0−τ (i)r,m)v(t)dt
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Fig. 2. One realization of UWB channel model CM1.

TI(i) =

Nf−1∑
p=0

Mp−1∑
m=0

R−1∑
r=0

α(j)
r,m

∫ Tc

0

Nu∑
j=1,j 6=i

s
(j)
tr (t+ThTs+pTf+c̃(i)p Tc+T

(i)
0 −T (j)

m +τ
(i)
0,0−τ (j)r,m)v(t)dt

TN (i) =

Nf−1∑
p=0

∫ Tc

0

n(t)v(t)dt

TU is the useful signal, TISI is inter-symbol interference signal, TI is the
MUI and TN is the term corresponding to the noise.
In [12], we defined a criterion named ACN for selecting code sequences in
synchronous and single-path TH-UWB system. Also we showed numerically,
that this criterion is adequate even in the multipath channel case. Indeed in
the synchronous case, we showed that

TI(i) = Ew

Nu∑
j=1,j 6=i

α(j)(2b
(j)
h − 1)cn(si, sj) (7)

where Ew is the amplitude which controls the transmitted power, α(j) is the

tap weight of the user j, b
(j)
h is the binary sequence, cn(si, sj) is the number

of collision between codes c̃(i) and c̃(j). c̃(j) can be computed by taking into
account the developed Time-Hopping Codes (DTHC) [10] corresponding to

THC as follows: for a given code c̃
(j)
l , the DTHC is a binary code of length
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NcNf and is defined by

c(j)r =

{
1 if r = c̃

(j)
l + lNc, r = 0 . . . , NcNf − 1.

0 otherwise. 0 ≤ l ≤ Nf − 1,
(8)

The relation between TH sequence c̃
(j)
l and the developed code c

(j)
r is illustrated

by an example in Fig. 3 and given by the following equation according to
equation (7).

Fig. 3. DTHC corresponding to the THC [1 3 0 2].

cn(i, j) =

NfNc−1∑
l=0

c
(i)
l c

(j)
l (9)

The Average Collision Number ACN of the sequence set c̃(j), j = 1, . . . Nu is
therefore defined by [12]:

ASCN =
1

Nu(Nu − 1)

Nu∑
i=1

Nu∑
j=1,j 6=i

cn2(i, j) (10)

3 The proposed codes

In this section we begin by present the THC using in this paper such as Gold
sequences and STM sequences. Thereafter we propose a code optimization
method to reduce collisions with other users in Time Hopping-Code Division
Multiple Access (TH-CDMA).
The Gold sequence based THC [12], taking values in {0, 1, · · · , Nc − 1}. For

Nc = 16 the THC takes values in 0 ≤ c̃(j)l ≤ Nc−1 and is obtained by convert-
ing every k consecutive bits into a decimal in each row. k is given by Nc = 2k.

Chaotic sequences have some properties that motivate researchers to use
them in various applications. These properties are determinism, long term
unpredictability and high sensitivity to initial conditions. Especially chaotic
sequences generated by one dimensional non linear transformation have been
used in cryptography, watermarking, spectrum spreading systems [13].
A non linear one dimensional discrete system is defined by

xk+1 = fa(xk) (11)
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where fa is a parametric non linear transformation and a is called bifurca-
tion parameter. The behavior of the system is determined by the Lyapunov
exponent defined by

λ = lim
T→+∞

1

T

T−1∑
i=0

ln |f ′a(xi)| (12)

If λ is positive the behavior of the system is chaotic, if it is negative the behavior
is regular.

In this work we consider chaotic sequences STM defines as follows.

xn+1 =

{ xn

r , 0 ≤ xn ≤ r
1−xn

1−r , r < xn ≤ 1
(13)

STM exhibits chaotic behavior for every value of the bifurcation parameter
r ∈ [0 1]. The TH-codes are generated by quantization of the so generated
sequences as follows:

q(x) = bxn+1Ncc

b.c is the floor operator.
Figure 4 show the Lyapunov exponent and ASCN versus the bifurcation pa-
rameter r for STM. We can see that the curves of the ASCN follow the one of
Lyapunov exponent and that the greater the exponent is the smaller the ASCN.
For r = 0.5, we have the best ASCN and Lyapuonv exponent. This example,

Fig. 4. Lyapunov exponent and ASCN for Skew tent map.

shows numerically that the ASCN of a quantized chaotic sequences depends on
the chaoticity of these sequences measured by their Lyapunov exponent. All
along this work we have taken r = 0.5.

In order to improve the performance of the TH-UWB system we present a
novel construction code which have a fewest coincidences in their codes to get
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Fig. 5. Proposed TH-CDMA codes construction

the smaller ASCN. In figure 5, we have illustrated the proposed TH-CDMA
codes wherein each frame divided into Nc time chips, each chip is divided into
Nt slots. The pulses train are transmitted in every Tt. The code construction
is given by the formula

c̃
(j)
TH = Ntc̃

(j)
l + c̃

(j)
t + lNtNc (14)

where c̃
(j)
l takes values in [0, Nc − 1] and c̃

(j)
t takes values in [0, Nt − 1], Nt is

the time slots. c̃
(j)
l and c̃

(j)
t assigned to jth user, will be modeled as independent

random variables and are assumed to be periodic of period Nf . The parameter
l take values in 0 ≤ l ≤ Nf − 1.

In Fig. 6, we reported the ASCN versus the user number for Nc = 16. The
STM are averaged over 100 realizations and the bifurcation parameter is set to
the value that gives the best ASCN, i.e., r = 0.5. The initial inspection of the
results reveals that the TH-CDMA sequences give a better ASCN than those
of TH sequences. These results show the advantage of optimizing the code
sequences for a TH-UWB system. Moreover, the results showed that STM
have a better ASCN than Gold sequences. Furthermore, the results showed
that when the number of users less than 7 (Nu < 7) in TH sequences and
respectively when the number of users less than 10 users (Nu < 10) in TH-
CDMA sequences, the ASCN obtained is zero. This explains that there is no
collision. This is due to the fact that the Gold sequences are orthogonal for
these values of Nu.
To see how these results are reflected on the performances of a TH-UWB-PPM
system. In the next section, we evaluate the BER performance of TH-UWB-
PPM using TH-CDMA sequences which is compared with THC sequences.

4 Simulation Results and Discussions

In the sequel, we consider the BER optimization of TH-UWB-PPM system in a
residential environment CM1 channel by means of simulations. The simulation
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Fig. 6. ASCN versus user number in the asynchronous case for THC versus TH-
CDMA Gold sequences

parameters are listed in Table 2. For simplicity, we will assume that the number
of paths L is the same for all users.

Table 2. Major parameters of the TH-UWB system.

Simulation parameters Acronym Value

Chip duration Tc 1ns
Pulse duration τ 0.2ns
Number of slot Nt 8
Number of chip Nc 4,16
Number of path L 10
Number of frame Nf 4
Sampling frequency Fs 8GHz
Number of sampling Ne 50
Signal to Noise Ratio SNR 10dB
Number of bits for each user Nb 105

Factor for spread spectrum Gold N 31

In Fig. 7, we have depicted the BER compared with the number of interfer-
ing users for THC versus TH-CDMA for both Gold and STM sequences. For
Nu < 10, the BER is low and we did not find any error for a number of bit
equal to 105.
We can see that TH-CDMA sequences have better performances than the THC
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sequences. Likewise, we can see that the BER performances using chaotic se-
quences (STM) have better performance than classical sequences (Gold). Re-
spectively for THC and TH-CDMA sequences.
These results validate the relevance of the ASCN as an ’off-line’ performance
evaluation criterion. Otherwise, if we use the classical sequences, we must
transmit the code sequences for each user. On the other side, with chaotic
sequences we just need to know the initial condition and the used chaotic map.
This improves the quality and the security of the transmission, and shows the
significance of using chaos in communication.

Fig. 7. BER versus user number for THC versus TH-CDMA Gold and STM sequences

5 Conclusion

In this paper, we studied the performance of a TH-UWB-PPM system in mul-
tiple access context. Due to the effect of the MUI on UWB systems, it is crucial
to reduce the MUI in order to enhance the performance in term of bit error
rate. Based on this observation, we proposed a simple method to optimize a
code sequences called TH-CDMA. The UWB system using TH-CDMA code
sequences show excellent attributes in terms of reduction of bit error rate com-
pared to the THC and this is true for Gold and chaotic sequences (STM). The
results shows the significance of using chaos in communication. We can also
notice that the plots of the ASCN and the BER are highly correlated. Specif-
ically, we showed that the higher the Lyapunov exponent is the lower is the
ASCN. Which validate the use of the ASCN as an efficient off-line evaluation
criterion.
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Abstract. A generalized logistic function is firstly introduced for the derivation of a 
generalized logistic map (GLM), which is shown to have generalized bifurcation diagrams, 
chaotic time series and fractal sets depending on the two real constants in the GLM. Next, a 
two-dimensional generalized chaos map without complex variables, which includes the 
Mandelbrot one as a special case, is constructed according to the structure of the GLM, and 
the fractal sets are discussed. Finally, it is concluded that the construction is expanded to a 
three-dimensional generalized chaos map based on three chaos solutions to the kernel map, 
and the fractal sets with physical analogue are numerically obtained. 
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1  Introduction 
 
For the study of dynamical systems, simple one-dimensional (1-D) nonlinear 
difference equations have arisen in the field of biological, economic and social 
sciences. A special example is the logistic map describing biological population 
growth, and the map possesses a rich spectrum of dynamical behavior which is 
called chaos in many respects [8, 9]. In particular, a bifurcation diagram of the two 

parameter quadratic family x → (x
2 
− a)

2 
− b has been observed [2], and the self-

adjusting logistic map with a slowly changing parameter in time [10] and the logistic 
map with a periodically modulated parameter [14] have been considered. Moreover, 
coupled maps have been discussed for crises and hysteresis [3], wavelength doubling 
bifurcations [1], spatially coherent states [13], and the Mandelbrot set in electronic 
experiment [4].  
On the other hand, fractals have been proposed and discussed for the geometric 
representation of shapes and irregular patterns in nature, and the concept of fractals 
has been useful for describing various natural objects, such as clouds, coasts, rivers 
and road networks [7]. However, it has been pointed out that the physics of fractals is 
a subject waiting to be born [5], since the Mandelbrot map has been defined as a 
complex map, and the map is known to be a special one in the sense of analytic 
complex function satisfying the Laplace equation [11].  
In this paper, firstly we derive a 1-D generalized logistic map with two constants from a 
generalized logistic function for biological population growth. Noticing the structure 
of the 1-D map, we construct a two-dimensional (2-D) generalized Mandelbrot 
map and a three-dimensional (3-D) generalized chaos map. Finally, it is shown that 
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the 3-D map based on three chaos solutions to the kernel map has fractal sets with 
physical analogue, which are defined in the space of three initial values. 
 
2  One-Dimensional Chaos Maps and Fractal Sets 
 
We introduce here the logistic function P(t)=1/(1+e-t) with the population growth 
P(t) and the time t>0, which is applied to a range of fields including biology, 
demography, economics and probability. As a generalized logistic function, we treat 
the following one; 

,)( d
eb

a
tP

ct
+

+
= −

                                                      (1) 

 

where coefficients { 0,0,0,0 ≥≠>≠ dcba }  are real constants, and d denotes a 

constant population growth term. From (1), we have the first order differential 
equation as; 
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and the transformation 

,)/( 0 nn XABx ≡                                                      (5) 

  
where 0>∆t is the time step, α)(1 tA ∆+≡  and α)(0 tB ∆≡  with 

),2)(/( bdaac +≡α  we find a 1-D generalized logistic map (GLM); 
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If d = 0 in (7) and (8), then (6) gives a map )1(1 nnn xAxx −=+ , which is the logistic 
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one, and the map at A = 4.0 has an exact chaos solution )2(sin2 n
n Cx =  with a real 

constant lmC 2/π±≠  and finite positive integers {l, m}, which has been applied to 
cryptosystems [6, 15], that is, we call the map )1(41 nnn xxx −=+

 the kernel map of 

(6). Therefore, the constant A in (6) denotes a coefficient of the nonlinear term, and 
the constant B corresponds to the constant population growth term d in (1). The 
constants A and B play a key role in the construction of 2-D and 3-D chaos maps in 
Sections 3 and 4. 
The 1-D GLM derived as (6) gives, for example, the orbits in the case of (A, B) 
=(3.0, 0.3) with the initial value x0 = 0.6 as shown in Figure 1. In Figure 1, we 
illustrate the graph corresponding to the function y = Ax(1 − x) + B, which is a 
parabola depending on parameters A and B. The quadratic iteration is used here, and 
it is found that the orbits in Figure 1 do not always stay in the interval [0, 1]. Then, 
the generalized bifurcation diagrams depending on A and B of (6) are obtained as  
 
 

 

Fig. 1. A  graphical iteration obtained by (6). The case of 
(A, B) = (3.0, 0.3) and x0 = 0.6 is shown. 

 
 

 

Fig. 2. Generalized bifurcation diagrams in the case of the 
parameter B. 
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Fig. 3. Generalized bifurcation diagrams in the case of the parameter A. 

 
 
presented in Figures 2 and 3 with 0 ≤ A ≤ 6.0 and  −0.5 ≤ B ≤ 2.0, respectively. 
The diagrams show plots of the asymptotic population numbers versus the parameter 
A or B, and the open areas or the windows in each diagram correspond to the area 
for periodic cycles as well discussed on the diagram for the logistic map. From the 
bifurcation diagrams of Figures 2 and 3, it is found that there exists a set defined as 
points of (A, B) on the A-B plane for which 

nx  in (6) does not go to infinity as 

∞→n . Here, since the set depends on parameters {A, B}, we treat the following set 
defined by  
 
                                    },lim,{1 ∞<∈=

→∞ n
n

xBAM R                              (9) 

 
where 

nx  satisfies (6), and all the parameters are real numbers. In Figure 4(a), the 

set M1 is obtained by iterating (6) with x0 = 0.6. In Figure 4(a), the M1 under −4.0 ≤ 
A ≤ 4.0 and −10.0 ≤ B ≤ 10.0 is shown. However, it should be noticed that the M1 
does not present a physical analogue because of a set on the A-B plane. If we zoom 
in near the point (A, B) = (1.3416, 1.6574), then we find Figure 4(b). The same is 
true for other points, such as (A, B) = (1.34146, 1.65724) and (A, B) = (1.341434, 
1.657167) in (c) and (d), respectively. Thus, there exists a self-similarity structure of 
open area in the M1, that is, the M1 has a fractal structure. The time series at points 
{ P1, P2, P3, P4}  in Figure 4(a) are shown in Figure 5. All the time series in Figure 5 
at the points in Figure 4(a) give chaotic behaviors, and the amplitude of time series 
corresponds proportionally to the value of B. Especially, it is found that the chaotic 
time series at points {P1, P2, P3, P4} do not converge, and the fractal structure 
appears only in the first quadrant of Figure 4(a). 
Similarly, according to the structure of (6), if we introduce an arbitrary chaos 
solution )(ncfxn ≡  to the kernel map )(1 nn xgx ≡+

, we can construct the following 

1-D generalized  chaos map; 
 
                                               BxAgx nn +=+ )(1                                             (10) 

 
with real constants {A, B}. 
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(a)                                                       (b) 
 
 
 
 
 
 
 
 
 
 

(c)                                                     (d) 
 

Fig. 4. A  set M1 on the A − B plane and the fractal structure. Figure 
(a) is a set under −4.0 ≤ A ≤ 4.0 and −10.0 ≤ B ≤ 10.0. Figures (b), 
(c) and (d) are the enlargements of the previous small framed 
region, respectively. 

 
 

 
                                                                  (a) 

 
                                                                  (b) 

 
                                                                  (c) 

 
                                                                  (d) 
 

Fig. 5. Time series at points {P1, P2, P3, P4} in Figure 4(a). The 
values of A and B in (a) − (d) are (A, B) = (3.9, 0.01), (2.5,0.6), 
(1.0, 2.2) and   (0.2, 8.0)  at {P1, P2, P3, P4}, respectively. 
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3  Two-Dimensional Chaos Maps and Fractal Sets 
 
As constructed in Section 2, we begin for 2-D chaos maps by setting two chaos 
solutions; 
 

),(1 ncfxn =                                              (11) 

),(2 ncfyn =                                                      (12) 

to the kernel map 
 

),,(11 nnn yxgx =+                                              (13) 

),,(21 nnn yxgy =+                                             (14) 

 
and have a 2-D generalized chaos map as 
 

,),( 1111 byxgax nnn +=+                                      (15) 

,),( 2221 byxgay nnn +=+                              (16) 

 
where {a1, a2, b1, b2}  are real constants. 
For example, from two chaos solutions )2cos( n

n Cx =  and )2sin( n
n Cy =  to the 

kernel map xn+1 = (xn
2 − yn

2) and yn+1 = 2xnyn, we get a 2-D chaos map as 
 

,)( 1
22

11 byxax nnn +−=+                                 (17) 

.221 byxay nnn +=+                                               (18) 

 
Here, the case of (b1, b2) = (x0, y0) or (k1, k2) is called M-type or J-type, respectively, 
where {x0, y0} are initial values and {k1, k2}  are real constants, because the case of 
(a1, a2, b1, b2) = (1.0, 2.0, x0, y0) gives the Mandelbrot map, and the case of (a1, a2, b1, 
b2) = (1.0, 2.0, k1, k2) equals the Julia map derived from the complex map. 
For the case of two chaos solutions; 
 

),2cos( n
n Cx =                                                 (19) 

),2(sin 2 n
n Cy =                                               (20) 

 
to the kernel map xn+1 = xn

2 
­ yn  and yn+1 = 4xn

2yn, we find the following  
2-D generalized chaos map; 
 

,)( 1
2

11 byxax nnn +−=+                                 (21) 

,2
2

21 byxay nnn +=+                                        (22) 

 
where the case of (a1, a2, b1, b2) = (1.0, 4.0, x0, y0) or (a1, a2, b1, b2) = (1.0, 4.0, k1, 
k2) yields a 2-D M-type or J-type chaos map, respectively. It is important to note 
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that the kernel map does not correspond to an analytic complex function satisfying 
the Laplace equation [11]. The fractal sets defined by 
 

},,lim,{ 002 ∞<∈=
∞→ nn

n
yxyxM R                    (23) 

 
are shown in Figures 6 and 7, here {x0, y0}  are initial values for the map (21) and  
(22). In Figure 6, the fractal structure has Holes in the set, and in Figure 7 the shape 
of the set gives a fractal one of Horn. 
 
4  Three-Dimensional Chaos Maps and Fractal Sets 
 
Then, for the construction of a 3-D generalized chaos map, we introduce three chaos 
solutions; 
 

),(1 ncfxn =                                                     (24) 

),(2 ncfyn =                                                    (25) 

),(3 ncfzn =                                                     (26) 

 
to the kernel map; ),,,(11 nnnn zyxgx =+  ),,,(21 nnnn zyxgy =+  ).,,(31 nnnn zyxgz =+  

Thus, we obtain a 3-D generalized chaos map with three real coefficients { a1, a2, a3}   
 
 
 
 
 
 
 
 
 
 
 

    (a)                                                   (b) 
 
 
 
 
 
 
 
 
 

(c)                                                   (d) 
 

Fig. 6. The 2-D M-type fractal set of the map (21) and (22)  
with a structure of Hole in the set. 
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(a)                                                   (b) 

 
                                                                     (c) 
 

Fig. 7. The 2-D J-type fractal set of the map (21) and (22)  
(k1=k2=-0.5) with a shaped structure of Horn. 

 
 
and three real constants {b1, b2, b3} as 
 

,),,( 1111 bzyxgax nnnn +=+                                 (27) 

                                           ,),,( 2221 bzyxgay nnnn +=+                          (28) 

,),,( 3331 bzyxgaz nnnn +=+                                (29) 

 
here it should be noticed that solutions { }nnn zyx ,,  to (27)-(29) are chaotic, but have 

no exact chaos solutions (24)-(26). 
For example, from the case of three chaos solutions; 
 

),2cos( n
n Cx =                                     (30) 

),2sin( n
n Cy =                                             (31) 

),2(sin 2 n
n Cz =                                          (32) 

 
to the kernel map ,222

1 nnnnn zxyxx −=−=+  yn+1 = 2xnyn and zn+1 = 4xn
2yn

2 = 4xn
2zn, we 

derive the following 3-D chaos map; 
 

,)( 1
2

11 bzxax nnn +−=+                                     (33) 
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,221 byxay nnn +=+                                        (34) 

,3
2

31 bzxaz nnn +=+                                                 (35) 

 
where the case of (b1, b2, b3) = (x0, y0, z0) or (k1, k2, k3) is a 3-D M-type or J-type 
chaos map, respectively. The fractal sets are defined by 
 

},,,lim,,{ 0003 ∞<∈=
∞→ nnn

n
zyxzyxM R                 (36) 

 
and are illustrated in Figures 8 and 9 for the M-type and the J-type fractal sets with 
initial values {x0, y0, z0}  and real constants {k1, k2, k3}. The fractal structure in the set 
of Figures 8(a) and (b) has 3-D Holes corresponding to Figure 6(c) [12]. The shape 
has a physical analogue, for example, of Banana (Figure 8(c)), and the Holes close 
to the skin (Figure 8(d)) correspond qualitatively to the 2-D Holes of Figure 6(c). In 
Figure 9, the shape of the set has a fractal structure of 3-D Horn (Figures 9(a) and 
(b)) on the surface of the set, which has a physical analogue of the Horn of Deer 
(Figure 9(c)) corresponding to the 2-D fractal set (Figure 7(a)). 
 
 
 
 

       
(a)                                                 (b) 

 

   
(c)                                                 (d)  

 
Fig. 8. A 3-D M-type fractal set in the x0 − y0 − z0 space for (a1, a2, a3)  

= (1.0, 2.0, 4.0) in (33) - (35), and the physical analogue (c) and (d). 
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(a)                                                   (b) 

 

 
                                                                  (c) 

 

Fig. 9. A 3-D J-type fractal set in the x0 − y0 − z0 space for (a1, a2, a3) = (1.0, 2.0, 
4.0) and (k1, k2, k3) = (−0.5, 1.6, −0.5) in (33) - (35), and the physical analogue (c). 

 
 
In this paper, we introduce an iteration number 300 to get each element of the set, 
the convergence condition xn

2 + yn
2 < 4.0, and the numerical calculation software 

MATLAB and POV-Ray for fractal sets {M1, M2, M3}. 
 
Conclusions 
 
We have derived firstly the 1-D GLM with the physical analogue of population 
growth, and have considered the bifurcation diagrams, the fractal sets, the chaotic 
time series and the structure of the 1-D GLM based on an exact chaos solution. Then, 
the proposed approach is applied to the construction of the 2-D chaos maps without 
complex variables, which include the Mandelbrot map and the Julia map. Finally,     
we have expanded it to the construction of 3-D chaos maps based on three chaos 
solutions, and to the calculation of fractal set with physical analogue, defined in the 
x0-y0-z0 space.  
The authors would like to thank Prof. C. V. Tao for his encouragement, and staffs 
and graduate students of Department of Physics and Computer Science, University 
of Science, for their discussion. 
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Abstract. We propose a stability analysis method applicable to a simple non-linear hybrid
dynamical system (HDS). First, we define the two-dimensional non-linear HDS and its be-
havior. Next, we use Taylor expansion around the period-one orbit to derive the perturbation
between of the orbits, which is the finding of this study. Moreover, we consider the evolution
of the perturbation and analyze the stability of the period-one orbit. Finally, we apply the
proposed method to a non-linear interrupted circuit and confirm its validity.
Keywords: Hybrid dynamical system, Stability analysis, Bifurcation, Period-one orbit.

1 Introduction

Hybrid dynamical system (HDS) has interrupted characteristics depending on the
state and a periodic interval. Impacting systems [1], neuron models [2] and power
electronic circuits [3] are typical examples of HDS. In addition, we know that the bi-
furcation phenomena occur upon varying the parameter values. Researchers have re-
ported that the bifurcation phenomenon changes the qualitative property [4]. There-
fore, analyzing the bifurcation phenomena is important in order to solve engineering
problems.

The bifurcation phenomena observed in the HDS are classified into two types.
One depends on the characteristic multiplier of the Jacobian matrix, which is called
the local bifurcation [5]. The period-doubling bifurcation, saddle-node bifurca-
tion, neimark-sacker bifurcation are known as the examples of the local bifurca-
tion. These bifurcation phenomena have studied in many papers. On the other
hand, border-collision bifurcation, grazing bifurcation, corner-collision bifurcation
are called the global bifurcation [6]. We can analyze them based on the normal form
map, which uses the characteristic multiplier [7]. Therefore, deriving the character-
istic multiplier is important for investigating the bifurcation phenomena.

Deriving the characteristic multiplier of the Jacobian matrix is called stability
analysis. Poincaré map method and Filippov’s method are the examples of the sta-
bility analysis method for HDS [8, 9]. Each method has advantages and disadvan-
tages respectively. For example, we can apply Poincaré map method for both linear
and non-linear HDS but the calculation process of the Jacobian matrix is compli-
cated. So this method is unsuitable to analyze the stability of high-dimensional
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HDS. On the other hand, Filippov’s method is able to apply for linear HDS even if
the HDS has high-dimensional topology. However, we can not apply this method to
non-linear HDS.

In this paper, based on Filippov’s theory, we propose a stability analysis method
for non-linear hybrid dynamics system which depends on the state and periodic
interval. First, we define the two-dimensional non-linear HDS. Next, we explain
the method to derive stability of period-one orbit. Furthermore, we consider its
state transition matrices (called the monodromy matrix) using Taylor expansion.
Finally, we apply proposed method for a non-linear interrupted circuit and confirm
its performance.

2 Analytical method

2.1 Two-dimensional non-linear hybrid dynamical system

We consider the two-dimensional non-linear dynamical dynamical system described
by the following differential equations

dx

dt
= f (x,λ) =

{

f1(x,λ1), subsystem-1
f2(x,λ2), subsystem-2 , (1)

where t ∈ R, x ∈ R2 and f : R2 → R2, and which has two subsystems. Now, Eq.
(1) is written by the following equations

x(t − kT ) = ϕ(t − kT,xk,λ) =
{

ϕ1(t − kT,xk,λ1), subsystem−1
ϕ2(t − kT,xk,λ2), subsystem−2 , (2)

when xk means the solution at arbitrary time t = kT as t ≥ kT . In adding, we define
the switching section Σ composed of scalar function q : R2 → R2 as follows

Σ = {x ∈ R2 : q(x) = 0, q : R2 → R}, q(t + T, x) = q(t, x) . (3)

Next, we explain the behavior of the orbit observed in this system. When the
solution reaches to Σ, subsystem-1 changes to subsystem-2. If the periodic forces
add to subsystem-2, it changes to subsystem-1. However, this switching event does
not occur when the periodic forces add to subsystem-2. The behavior observed in
periodic interval T can be classified roughly into two cases. Case(a) is that the orbit
keep subsystem-1 in periodic interval T . On the other hand, in case(b), the switching
event occurs. In case(a), the solution at t = (k + 1)T is written as follows

xk+1 = F(xk) = ϕ1(T,xk,λ1). (4)

In case(b), the solution at t = (k + 1)T is written as follows

xk+1 = F(xk) = P2(P1(xk)). (5)
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P1 and P2 in Eq. (5) are expressed by the following equations

P1(xk) = ϕ1(ta,xk,λ1), (6)

P2(xk) = ϕ2(T − ta, P1(xk),λ2), (7)

where the interval which the system keeps subsystem-1 is ta. From Eqs. (4) and (5),
we can define period-one orbit observed in this system as follows

F1(xk) − xk = 0. (8)

And we describe the period-one orbit which satisfies Eq. (8) as follows

x∗k+1 = ϕ j(T,x∗k,λ j), j = 1 or 2, (9)

where x∗k is the initial value at t = kT .

2.2 Stability of period-one orbit

Based on Floquet theory [10], we explain stability of period-one orbit. We consider
the perturbations between the period-one orbit and the nearby one. The initial con-
dition of nearby orbit is perturbed. The perturbations of both orbits at t = 0 and
t = T are decided as follows

∆x0 = x0 − x∗0,

∆x1 = x1 − x∗1.
(10)

Relationship between ∆x0 and ∆x1 is expressed as

∆x1 =M∆x0. (11)

Now, we name M the monodromy matrix. Deriving the characteristic multipliers µ
in Eq. (12) of the monodromy matrix M , we can analyze stability of period-1 orbit

|M − µIn| = 0. (12)

The period-one orbit is stable if the characteristic multipliers satisfies |µ| < 1.
First, we derive the monodromy matrix in case(a). Figure 1 shows the period-

one orbit (gray line) and nearby one (black line) in case(a). From Eq. (2), x1 is
described as

x1 = ϕ1(T,x∗0 + ∆x0,λ1). (13)

Using Taylor expansion around x∗0, Eq. (13) is rewritten as follows

x1 = ϕ1(T,x∗0,λ1) +
∂ϕ1(T,x∗0,λ1)

∂x∗0
∆x0. (14)

Therefore, the mondromy matrix M in case(a) is expressed as

M =
∆x1

∆x0
=
∂ϕ1(T,x∗0,λ1)

∂x∗0
. (15)

351



����
��������	
��

����

��

���

���
��

���

��

�
��

Fig. 1. A conceptual diagram of the monodromy matix without switching
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Fig. 2. A conceptual diagram of the monodromy matix with switching

Next, we derive the monodromy matrix in case(b). Figure 2 shows the two orbits
and the enlarged view around the switching section Σ. In the enlarged view, t̂a is
the interval which the period-one orbit keeps subsystem-1. On the other hand, the
nearby one keeps subsystem-1 for t̄a. From Eq. (2), x(t̂a) and x1 and described
respectively as

x(t̂a) = ϕ1(t̂a,x∗0 + ∆x0,λ1), (16)

x1 = ϕ2(T − t̄a,x∗(t̄a) + ∆x+,λ2). (17)

Using Taylor expansion around x∗0, Eq. (16) is rewritten as follows

x(t̂a) = ϕ1(t̂a,x∗0,λ1) +
∂ϕ1(t̂a,x∗0,λ1)

∂x∗0
∆x0. (18)

Similarly, using Taylor expansion around x∗(t̄a), Eq. (17) is rewritten by the follow-
ing equation

x1 = ϕ2(T − t̄a,x∗(t̄a),λ2) +
∂ϕ2(T − t̄a,x∗(t̄a),λ2)

∂x∗(t̄a)
∆x+. (19)

From the above, the monodromy matrix M in case(b) is expressed as

M =
∂(ϕ2(T − t̄a,x∗(t̄a),λ2))

∂x∗(t̄a)
S
∂(ϕ1(t̂a,x∗0,λ1))

∂x∗0
. (20)
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Here, matrix S is called the saltation matrix and described as follows

S = In +
(f2 − f1)n>

n>f1 +
∂q(x(t))
∂t

∣

∣

∣

∣

∣

t=ta

, (21)

where In is the identity matrix.

3 Example of the application

In this chapter, we apply proposed method to the two-dimensional interrupted cir-
cuit. The two-dimensional non-linear interrupted circuit is presented in Fig. 3. The
circuit equations are given by































L
di
dt
= −ri − v

C
dv
dt
= i −G(v) +

E1 − v
R0 + R1

, for switch-1, (22)































L
di
dt
= −ri − v

C
dv
dt
= i −G(v) +

E2 − v
R0 + R2

, for switch-2, (23)

where G(v) denotes non-linear resistor and is expressed as

G(v) = −a tanh(bv). (24)

Figure 4 shows behavior of the orbit observed in this system. We assume that
the initial inductance current ik and the initial capacitance voltage vk at t = kT and
the switch is position 1. When v reaches the reference voltage vref, the switch is
turned to 2. The switch keeps position 2 until the arrial of the next clock pulse. If
we replace with

y =
v
a

√

C
L
, x =

i
a
, τ =

1
√

LC
, r1 =

1
a

1
R0 + R1

, r2 =
1
a

1
R0 + R2

,

B1 = r1E1, B2 = r2E2, g1 =
r1γ

b
, g2 =

r2γ

b
, k = r

√

C
L
, γ = ab

√

L
C
.

(25)

Eqs. (22) and (23) are transformed into the following differential equations

f1 =



























dx
dτ
= −kx − y

dy
dτ
= x − g1y + tanh(γy) + B1

, for switch-1, (26)
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Fig. 3. Two-dimensional non-linear interrupted circuit
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Fig. 4. Example of the orbit

f2 =



























dx
dτ
= −kx − y

dy
dτ
= x − g2y + tanh(γy) + B2

, for switch-2, (27)

We fix the following parameters shown in Eqs. (22) and (23)

k = 0.1, γ = 1.6, yref = −0.67,
B1 = 0.8, B2 = 1.3, g1 = 0.7, g2 = 2.5. (28)

Figure 5 shows the 1-parameter bifurcation diagram upon varying the bifurca-
tion parameter T . From Fig. 5 we observe that the bifurcation phenomenon for
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periond-1 solution occur around T = 11.1. Here, we consider (a) and (b) in Fig.
5. Figure 6 shows the phase planes at (a) and (b). Therefore, we presume that the
bifurcation phenomenon around T = 11.1 is period-doubling bifurcation. Table
1 shows the application result of the proposal method. In table 1, µ1 and µ2 are
the characteristic multipliers of the monodromy matrix corresponding to the bifur-
cation parameter T . Table 1 indicates that period-doubling bifurcation occurs at
T = 11.10961. From this result, we confirmed the validity of our proposed method.

4 Conclusion

In this paper, we have proposed a stability analysis method applicable to a simple
non-linear HDS. First, we defined the two-dimensional non-linear HDS and its be-
havior. Next, we used Taylor expansion around the period-one orbit to derive the
perturbation between the orbit and nearby one. Moreover, we considered the evo-
lution of the perturbation and analyze stability of the period-one orbit. Finally, we
applied this method for a non-linear interrupted circuit, and we confirm the validity
of this method.
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Fig. 6. The phase planes

Table 1. Application result

T µ1 µ2 Remarks

11.12000 -0.10616 -0.87017 Stable
11.11000 -0.10050 -0.99499 Stable
..
.

..

.
..
.

..

.

11.10961 -0.10032 -1.00000 PD1

...
...

...
...

11.10000 -0.09612 -1.12860 Unstable
11.09000 -0.09266 -1.27292 Unstable
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A vision of the Brownian motion models

useful in random systems analysis
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Abstract. There are many cases when we refer to chaos and chaotic and complex
systems to describe the comportment of some natural phenomena. In this context,
we shall discuss, in this paper, some aspects which appear in the study of various
systems. Firstly, we shall refer to the Brownian transition probabilities in connection
with the conditions assumed on the transition probabilities; and then the standard
Brownian motion is considered in connection with the ”passage times” which are
the most important Markov times.

Keywords: stochastic differential equations, stochastic calculus, Markov pro-

cesses, Markov property, Brownian motion.

1 Introduction

Starting from the observation that many a time we refer to chaos and chaotic
and complex systems to describe the comportment of some natural phenom-
ena, it is very useful, from a mathematical point of view, to talk about a
passing from chaotic and complex systems to Brownian motion. In this way
we can refer to the Brownian motion which is a more realistic model of such
phenomena.

Its fascinating properties and its far-reaching extension of the simplest
normal limit theorems to functional limit distributions acted, and continue
to act, as a catalyst in random systems analysis. As some authors remarks
too, the Brownian motion reflects a perfection that seems closer to a law of
nature than to a human invention.

In Physics, the ceaseless and extremely erratic dance of microscopic par-
ticles suspended in a liquid or gas, is called Brownian motion. It was sys-
tematically investigated by Robert Brown (1828, 1829), an English botanist,
from movement of grains of pollen in water to a drop of water in oil. He was
not the first to mention this phenomenon and had many predecessors but
Brown’s investigation brought it to the attention of the scientific community.

Brownian motion was frequently explained as due to the fact that parti-
cles were alive. It is only in 1905 that kinetic molecular theory led Einstein
to the first mathematical model of Brownian motion. He began by deriving
its possible existence and then only learned that it had been observed._________________ 

7th CHAOS Conference Proceedings, 7-10 June 2014, Lisbon Portugal 
C. H. Skiadas (Ed) 
© 2014 ISAST                               
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A completely different origin of mathematical Brownian motion is a game
theoretic model for fluctuations of stock prices due to L. Bachélier from 1900.
In his doctoral thesis, Théorie de la spéculation, Ann. Sci. École Norm.
Sup., 17, 1900, 21-86, he hinted that it could apply to physical Brownian
motion. Therein, and in his subsequent works, he used the heat equation
and, proceeding by analogy with heat propagation he found, albeit formally,
distributions of various functionals of mathematical Brownian motion. Heat
equations and related parabolic type equations were used rigorously by Kol-
mogorov, Petrovsky, Khintchine.

But Bachélier was unable to obtain a clear picture of the Brownian mo-
tion and his ideas were unappreciated at the time. This because a precise
definition of the Brownian motion involves a measure on the path space,
and it was not until 1908-1909 when É. Borel published his classical mem-
oir on Bernoulli trials: Les probabilités dénombrables et leurs applications
arithmétique, Rend. Circ. Math. Palermo 27, 247-271, 1909. But as soon
as the ideas of Borel, Lebesgue and Daniell appeared, it was possible to
put the Brownian motion on a firm mathematical foundation. And this
was achived in 1923 by N. Wiener, in his work: Differential space, J. Math.
Phys. 2, 131-174, 1923.

Many researchers were fascinated by the great beauty of the theory of
Brownian motion and many results have been obtained in the last decades.
As for example, among other things, in Diffusion processes and their sam-
ple paths by K. Itô and H.P. McKean, Jr., in Theory and applications of
stochastic differential equations by Z. Schuss, or in Stochastic approxima-
tion by M.T. Wasan as in Stochastic calculus and its applications to some
problems in finance by J.M. Steele.

In fact, the construction of the Brownian motion as a limit of a rescaled
random walk can be generalized to a class of Markov chains. In this context,
at the 4th CMSIM international Conference, we discussed some aspects re-
lating to the approximation in the study of Markov processes and Brownian
motion; also, we referred to the Markov property from a perspective of K.
Itô.

Itô’s integral and other details and related topics in stochastic calculus
and applications in random systems analysis are developed among other
by B. Øksendal and A. Sulem, J.M. Steele, P. Malliavin, P. Protter, D.W.
Stroock.

2 In short about transition probabilities

In some previous papers we have dicussed on Markov processes in a vision of
K. Itô and we have emphasized the aspects regarding to the Markov prop-
erty. In this context a fundamental concept is that of transition probabilities
which will be considered, in short, below.
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Let S be a state space and consider a particle which moves in S. Also,
suppose that the particle starting at x at the present moment will move into
the set A ⊂ S with probability pt(x,A) after t units of time, “irrespectively of
its past motion”, that is to say, this motion is considered to have a Markovian
character.

The transition probabilities of this motion are {pt(x,A)}t,x,A and is con-
sidered that the time parameter t ∈ T = [0,+∞).

The state space S is assumed to be a compact Hausdorff space with a
countable open base, so that it is homeomorphic with a compact separable
metric space by the Urysohn’s metrization theorem. The σ-field generated
by the open space (the topological σ-field on S) is denoted by K(S). There-
fore, a Borel set is a set in K(S).

It will be assumed that the transition probabilities {pt(x,A)}t∈T,x∈S,A∈K(S)

satisfy the following conditions:

(1) for t and A fixed,

a) the transition probabilities are Borel measurable in x;

b) pt(x,A) is a probability measure in A;

(2) p0(x,A) = δx(A) (i.e. the δ-measure concentrated at x);

(3) pt(x, ·)
weak−→ pt(x0, ·) as x→ x0 for any t fixed, that is

lim
x→x0

∫
f(y)pt(x, dy) =

∫
f(y)pt(x0, dy)

for all continuous functions f on S;

(4) pt(x, U(x)) −→ 1 as t↘ 0, for any neighborhood U(x) of x;

(5) the Chapman-Kolmogorov equation holds:

ps+t(x,A) =

∫
S
pt(x, dy)ps(y,A).

It is interesting to observe that, if we define,

pt(x, dy) =
1

t
√

2π
e−

(y−x)2

2t2 dy in R

pt(∞, A) = δ∞A.

then, the conditions (1) – (5) above are satisfied for Brownian transition
probabilities.

Let now consider C = C(S) to be the space of all continuous functions (it
is a separable Banach space with the supremum norm). Then, the transition
operators can be defined in a similar manner.
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Definition 2.1 The operators pt, defined by

(ptf)(x) =

∫
S
pt(x, dy)f(y), f ∈ C

are called ”transition operators”.

And the conditions for the transition probabilities can be adapted to the
transition operators.

Now the Markov process can be defined as follows

Definition 2.2 A Markov process is a system of stochastic processes

{Xt(ω), t ∈ T, ω ∈ (Ω,K, Pa)}a∈S ,

that is for each a ∈ S, {Xt}t∈S is a stochastic process defined on the proba-
bility space (Ω,K, Pa).

The transition probabilities of a Markov process will be denoted by
{p(t, a,B)}. Now let us denote by {Ht} the transition semigroup and let Rα
be the resolvent operator of {Ht}.

The next results shows that p(t, a,B), Ht and Rα can be expressed in
terms of the process as follows:

Theorem 2.1 Let f be a function in C(S). Then

1. p(t, a,B) = Pa(Xt ∈ B).

2. For Ea(·) =
∫

Ω ·Pa(dω) one has Htf(a) = Ea(f(Xt)).

3. Rαf(a) = Ea
(∫∞

0 e−αtf(Xt)dt
)
.

Proof. One can observe that 1. and 2. follow immediately.
To prove 3., we will use the following equality:

Rαf(a) =

∫ ∞
0

e−αtHtf(a)dt =

∫ ∞
0

e−αtEa(f(Ht))dt.

Since f(Xt(ω)) is right continuous in t for ω fixed, and measurable in ω
for t fixed, it is therefore measurable in the pair (t, ω). Thus, we can use
Fubini’s theorem and therefore we obtain

Rαf(a) = Ea

(∫ ∞
0

e−αtf(Xt)dt

)
,

which proves 3.
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3 From chaotic motion to Brownian motion

In our days the Brownian motion is of ever increasing importance not only
in Probability theory but also in classical analysis and its applications.

Frequently, Brownian motion was explained as due to the fact that parti-
cles were alive. Today we know that this motion is due to the bombardament
of the particles by the molecules of the medium. In a liquid, under normal
conditions, the order of magnitude of the number of these impacts is of 1020
per second.

Let us imagine a chaotic motion of a particle of colloidal size immersed
in a fluid. Such a chaotic motion of a particle is called, usually, Brownian
motion and the particle which performs such a motion is referred to as a
Brownian particle. Such a chaotic perpetual motion of a Brownian particle
is the result of the collisions of particle with the molecules of the fluid in
which there is.

But this particle is much bigger and also heavier than the molecules of the
fluid which it collide, and then each collision has a negligible effect, while the
superposition of many small interactions will produce an observable effect.

On the other hand, for a Brownian particle such molecular collisions
appear in a very rapid succession, their number being enormous. For a so
high frequency, evidently, the small changes in the particle’s path, caused by
each single impact, are too fine to be observable. For this reason the exact
path of the particle can be described only by statistical methods.

Thus, the influence of the fluid on the motion of a Brownian particle can
be described by the combination of two forces in the following way:

1. The considered particle is much larger than the particle of the fluid so
that the cumulated effect of the interaction between the Brownian particle
and the fluid may be taken as having a hydrodynamical character. Thus,
the first of the forces acting on the Brownian particle may be considered
to be the forces of dynamical friction. It is known that the frictional force
exerted by the fluid on a small sphere immersed in it is determined from
the Stockes’s law: the drag force per unit mass acting on a spherical particle

of radius a is given by −βv, with β =
6πaη

m
, where m is the mass of the

particle, η is the coefficient of dynamical viscosity of the fluid, and v is the
velocity of particle.

2. The other force acting on the Brownian particle is caused by the
individual collisions with the particles of the fluid in which there is. This
force produces instantaneous changes in the acceleration of the particle.
Furthermore, this force is random both in direction and in magnitude, and
one can say that it is a fluctuating force. It will be denoted by f(t). For f(t)
the following assumptions are made:

a) The function f(t) is statistically independent of v(t).
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b) f(t) has variations much more frequent than the variations in v(t).

c) f(t) has the average equal to zero.

In these conditions, the Newton’s equations of motion are given by the
following stochastic differential equation

dbfv(t)

dt
= −βv(t) + f(t) (1)

which is called the Langevin’s equation.
From the Langevin’s equation, the statistical properties of the function

f(t) can be obtained if its solution will be in correspondence with known
physical laws. One can observe that the solution of (1) determines the
transition probability density (in brief the transition density) ρ(v, tv0) of the
random process v(t), which verifies the equation

P (v(t) ∈ A) |v(0) = v0) =

∫
A

ρ(v, t,v0)dv. (2)

We do not insist on these aspects, our purpose has been to introduce the
concept of transition density.

Now following K. Itô ([7], [5]) we shall refer shortly to the k-dimensional
Brownian motion and emphasize some of its results.

But, firstly, we shall remind some aspects ragarding to the 3-dimensional
Brownian motion discussed at the 6th CMSIM international Conference.

It is not difficult to observe that a definition of a Markov process as in
Definition 2.2 not correspond to many processes that are of a real interest.
For this reason it is useful to obtain an extension of this notion (such an
extended notion has been proposed by K. Itô).

Let E be a separable Banach space with real coefficients and norm || · ||
and let also L(E,E) be the space of all bounded linear operators E −→ E.
It can be observed that L(E,E) is a linear space.

Definition 3.1 The collection of stochastic processes

X = {Xt(ω) ≡ ω(t) ∈ S, t ∈ T, ω ∈ (Ω,K, Pa)}a∈S

is called a ”Markov process” if the following conditions are satisfied:

1) the ”state space” S is a complete separable metric space and K(S) is a
topological σ-algebra on S;

2) the ”time internal” T = [0,∞);

3) the ”space of paths” Ω is the space of all right continuous functions T −→
S and K is the σ-algebra K[Xt : t ∈ T ] on Ω;
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4) the probability law of the path starting at a, Pa(H), is a probability mea-
sure on (Ω,K) for every a ∈ S which satisfy the following conditions:

4a) Pa(H) is K(S)-measurable in a for every H ∈ K;

4b) Pa(X0 = a) = 1;

4c) Pa(Xt1 ∈ E1, · · · , Xtn ∈ En) =∫
. . .

∫
ai∈Ei

Pa(Xt1 ∈ da1)Pa1(Xt2−t1 ∈ da2) . . .

. . . Pan−1(Xtn−tn−1 ∈ dan) for 0 < t1 < t2 < . . . < tn.

According to Definition 3.1, X will be referred as a Markov process in
the generalized sense.

Now let X be a Markov process in a generalized sense and let us denote
by B(S) the space of all bounded real K(S)-measurable functions. Also let
us consider a function f ∈ B(S).

It is supposed that

Ea

( ∞∫
0

|f(Xt)|dt
)

(3)

is bounded in a. Therefore

Uf(a) = Ea

( ∞∫
0

f(Xt)dt

)
(4)

is well-defined and is a bounded K(S)-measurable function of a ∈ S.
The Uf is called the potential of f with respect to X. Having in view

that Uf = limα↓0Rαf , it is reasonable to write R0 instead of U . Based on
this fact, Rαf will be called the potential of order α of f .

Remark 3.1 It is useful to retain that Rαf ∈ B(S) for α > 0; and generally
f ∈ B(S) while R0f(= Uf) ∈ B(S) under the condition (3).

Now the name potential is justified by the following theorem on the 3-
dimensional Brownian motion

Theorem 3.1 Let X be the 3-dimensional Brownian motion. If f ∈ B(S)
has compact support, then f satisfies (3) and

Uf(a) =
1

2π

∫
R3

f(b)db

|b− a|
=

1

2π
×Newtonian potential of t. (5)

Let us denote by D a bounded domain in Rn, n ≥ 1.
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Definition 3.2 A function g is called ”harmonic” in D if g is C∞ in D
and if ∆g = 0 (where C∞ is the class of functions differentiable infinitely
many times.).

Now let f be a continuous function defined on the boundary ∂D and let
us denote by X a k-dimensional Brownian motion defined as follows

Definition 3.3 The k-dimensional Brownian motion is defined on S = Rk

by the equality

pt(a, db) = (2πt)−
k
2 e−

|b−a|2
2t db = Nt(b− a)db,

where |b− a| is the norm of b− a in Rk.

Given a k-dimensional Brownian motion X, if there exists a solution g
for the Dirichlet problem (D, f)1, then

g(a) = Ea(f(Xλ)), (6)

where λ ≡ λD = exit time from D (that is to say λD = inf{t > 0 : Xt 6∈ D},
the hitting time of DC).

In this context an interesting result is given in the following theorem

Theorem 3.2 If D is a bounded domain and g is a solution of the Dirichlet
problem (D, f), then

g(a) = Ea(f(Xλ))

where a ∈ D and λ = λD.

On the other hand, the Dirichlet problem (D, f) has a solution if ∂D is
smooth as it is prooved in the following theorem

Theorem 3.3 If ∂D is smooth, then

g(a) = Ea(f(Xλ)),

where λ = λD = exit time fromD, is the solution of the Dirichlet problem
(D, f).

Note 3.1 The expression ”∂D is smooth” means that ∂D has a unic tangent
plane at each point x of ∂D and the outward unit normal of the tangent plane
at x moves continously with x.

Remark 3.2 Many other details regarding to the topics just discussed, proofs
and some related problems can be found in [7], [6], [1], [5], [23], [14], [21],
[13], [19], [17].

1The Diriclet problem D, f is to find a continuous function g = gD,f on the closure

D ≡ D ∪ ∂D such that g is harmonic in D and g = f ◦ g ∂D.
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Conclusion 3.1 The Brownian motion can be represented as a random sum
of integrals of orthogonal functions. Such a representation satisfies the the-
oretician’s need to prove the existence of a process with the four defining
properties of Brownian motion, but it also serves more concrete demands,
one of the most important being the ”chaotic and complex systems analysis”.

Especially, the series representation can be used to derive almost all of
the most important analytical properties of Brownian motion.

It can also give a powerful numerical method for generating the Brownian
motion paths that are required in computer simulation.
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Abstract: Recently much attention has been paid to investigation of nonlinear dynamics 

of switching power converters, as this kind of dynamical systems, being inherently 

hybrid, is capable of exhibiting a wide variety of well known smooth as well as novel 

non-smooth phenomena. This research shows the diversity of complex interactions of 

smooth bifurcations and border collisions in one of the most typical power circuits – 

boost converter under current mode control – applying the method of complete 

bifurcation groups. The effects of realistic parameters and implementation of 

compensation signals on the robustness of chaotic modes of operation are investigated 

and explained in details. 

Keywords: Bifurcations, Chaos, Non-smooth phenomena, Switching power converters.  

 

1. Introduction 
It is common knowledge for the majority of engineers working in the field of 

power electronics, that the only acceptable operating regime of switching power 

converters (SPC) is the period-1 (P1) mode, when all waveforms repeat at the 

same rate as driving clock element. So, all the efforts of practicing engineers are 

directed to insurance of stable operation of DC-DC converters, eliminating the 

possibilities of occurrence of any subharmonic oscillations. On the other hand, 

recent investigations have shown that the operation of SPC in subharmonic or 

even chaotic modes allows achieving higher performance characteristics of 

these devices. In example, paper [1] presents the novel control strategy, 

allowing simple digital implementation and excellent transient response. The 

idea of the control is based on the use of various combinations of two different 

control pulses that from the point of view of nonlinear dynamics could be 

treated as operation in a variety of subharmonic regimes. The other research [2] 

shows the applicability of inherently arising chaotic modes of operation of 

switching converters to the reduction of high levels of electromagnetic noise, 

generated by this kind of devices. Thus it has been demonstrated, that contrary 

to generally accepted opinion, the non-linear operating modes  of switching 

converters could be efficiently utilized, providing new progressive control 

perspectives.  

The methodology of implementation of the control ramp is widely used as the 

compensation tool for the irregularities of the current loop, ensuring stable P1 

operation of SPC. In general, the introduction of this compensating signal shifts 

the border of the first period-doubling bifurcation, estranging the appearance of 
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subharmonic oscillations that are usually avoided. However, the same ramp also 

modifies the structure of the parameter space even after the period-doubling 

bifurcation, defining noticeable changes in the dynamics of the system. This 

research is dedicated to exploration of different mechanisms of chaotization and 

further aftereffects in the operation of SPC, defined by the implementation of 

mentioned compensation technique.  

It has been demonstrated during several last decades, that the conventional 

models and methodologies used to predict the appearance of subharmonic 

oscillations in switching power converters are generally oversimplified and not 

capable of providing reliable data in many cases [3]-[6]. This fact determined 

the development of great number of scientific researches dedicated to possible 

improvements of already existing models and to the introduction of new 

promising approaches. Recently one innovative methodology – method of 

complete bifurcation groups (MCBG) [7]-[9] – has been applied to investigation 

of rare phenomena and chaos in SPC, allowing the detection and detailed 

analysis of previously unobserved operating regimes. MCBG is utilized within 

current research in order to provide the most complete analysis of the observed 

non-linear phenomena in the dynamics of SPC. 
The structure of the paper is as follows. The second section presents the 

simplified discrete-time model of the boost SPC, introducing the compensating 

ramp in the current control loop. The results of the complete bifurcation 

analysis, including the construction of bifurcation map and various bifurcation 

diagrams, are presented and discussed in section 3. The concluding remarks and 

comments are given in the last section. 

 

2. The Model of Boost Converter with Compensation Ramp 
The SPC under study is widely used boost converter with peak current mode 

control, exhibiting unstable dynamics as the duty cycle exceeds 0.5 [3]. The 

main methodology of extending the region of stable P1 operation in this kind of 

devices is the introduction of compensation ramp signal, which is also included 

in the dynamical model. 

 

 

 
Fig. 1. (a) The simplified model of current - mode controlled boost converter; 

(b) waveforms of inductor current and compensation ramp. 

368



The simplified model of boost SPC is shown in Fig. 1. The operation of 

converter is as follows: the switch is turned ON as the clock pulse arrives and 

turned OFF as the value of inductor current reaches the compensation ramp.  

The dynamics of this energy conversion circuit could be described by two 

systems of difference equations, depending on the sequence of switching events.  

If the clock pulse arrives before the inductor current reaches the Iramp, the 

obtained discrete time model is the following: 
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If the inductor current reaches Iramp before the arrival of the next clock pulse the 

map would include the ON and OFF intervals: 
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The borderline Iborder defines the case, when the clock pulse arrives exactly at 

the time instance the inductor current reaches the control signal: 

( )./ cinrefborder SLVTII +−=  (4) 

It has been shown that this discrete-time model could be efficiently applied to 

the study of nonlinear dynamics and estimation of stability boundaries of main 

period-1 and subharmonic modes of operation [8]. 

The provided model (1)-(4) is used in the process of the construction of 

bifurcation map, complete bifurcation diagrams, calculating parameters of 

different periodic regimes as well as estimating their stability. 

The values of main parameters of boost converter under test are as follows: 

R=40 (Ω); L=1.5 (mH); C=5 (µF); T=100 (µS); Vin=5 (V); Iref=[0.2…0.9] (A); 

Sc=[0…2000] (A/s).  
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3. Results of the complete bifurcation analysis 
As it has been mentioned in the introduction, the analysis of the global 

dynamics of boost SPC will be provided by means of one of the most 

progressive techniques – method of complete bifurcation groups. This 

methodology has proved to be very useful during the complete analysis of 

nonlinear phenomena, observed in various classes of smooth as well as non-

smooth dynamical systems [7]-[9].  

The complete bifurcation analysis of the boost converter begins with the 

construction of bifurcation map, selecting reference current and compensation 

ramp as primary and secondary bifurcation parameters (see Fig. 2). As the 

mechanisms of chaotization are of special interest and the P1 orbits are not 

involved in the rapid transitions to chaotic modes of operation, the range of 

parameters defining stable P1 regime is disregarded in the constructed 

bifurcation map. As it could be seen from Fig. 2 for Sc=0 the classical period 

doubling route to chaos should be observed. As the value of compensation ramp 

is increased other subharmonic operation regimes (as well as periodic windows) 

just after the P2 appear, defining the formation and structure of chaotic regions. 

 

S
c
,A
/s

 
Fig.2. The bifurcation map of the boost converter. 

 

This map will be referred to during the analysis of complete bifurcation 

diagrams, constructed as the horizontal cross-sections of Fig. 2.  

It should be understood, that in this case the complete bifurcation diagrams are 

3-dimensional graphs, depicting the sampled inductor current and capacitor 

voltage on two axes and the bifurcation parameter on the third one. For the 

clearness of analysis only the projection of this graph to the plane defined by the 

inductor current and the bifurcation parameter (Iref) will be observed, as only in 
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this plane the collisions with the border defined by (4) could be precisely 

detected and interpreted. 

In order to analyze the influence of the incrementing compensation ramp on the 

chaotization of the system, first let’s examine the complete bifurcation diagram 

for the boost converter without the compensation. 

i n
/I
re
f

 
Fig. 3. The complete bifurcation diagram for Sc=0 (A/s). 

 

The bifurcation diagram, depicting stable (dark lines) and unstable (light-

colored lines) periodic regimes, as well as chaotic regions (shaded area), is 

shown in the Fig. 3. It could be seen, that for small values of reference current, 

the system operates in the stable P1 regime and moves to P2 mode through 

classical period doubling bifurcation. Further increment of Iref leads to the 

development of non-smooth phenomena, when stable or unstable orbits collide 

with the Iborder (dashed line), leading to non-smooth transition from P2 to P4 

regimes (see point BC1), as well as change of shape of unstable branch of 6T 

bifurcation group (see point BC2). Thus it could be concluded, that for the 

selected set of system parameters, collisions with the border have slightly 

changed the topology of bifurcation diagram, without any noticeable rapid 

jumps between different modes of operation.  

The second bifurcation diagram, constructed for Sc=200 (A/s) is shown in the 

Fig. 4. One of the most interesting features of the observed diagram is the 

presence of rather uncommon phenomena that will be referred as “cutting 

border collision” (CBC). It is well known, that the collision with borders in 

hybrid systems could lead to the appearance of non-smooth bifurcations, when 

the multipliers do not smoothly cross the unit circle, indicating the widely 

observed period-doubling or saddle-node bifurcations, but rather “jump” over 
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the border of unit circle, depicting the rapid change in the stability of definite 

regime under investigation. In the mentioned case the periodic regime still 

continues to exist, but its stability suddenly changes. However the CBC leads to 

the “disappearance” of all stable as well as unstable periodic regimes that cross 

the defined borderline.  
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Fig. 4. The complete bifurcation diagram for Sc=200 (A/s). 

 

This phenomenon could be observed, in example, in points BC1, BC2 and BC4 

in the Fig. 4, where stable P2, P4 and unstable P8 regimes collide with the 

borderline defined in (4) and disappear without any signs of bifurcations. The 

route to chaos in this case is formed by rather uncommon period-doublings, 

leading to the infinite number of unstable periodic orbits and chaotic mode of 

operation.  

It has been shown in the Fig. 3, that for Sc=0 (A/s) the border collision of 6T 

bifurcation group leads to some changes in the shape of bifurcation diagram. 

However the diagram in the Fig. 4 demonstrates that the same collision for 

Sc=200 (A/s) causes the disappearance of unstable branch of 6T bifurcation 

group, preserving the stable branch, leading to the development of independent 

chaotic regime.  

It is interesting to note that the P2 orbit appears at point BC3 as unstable regime 

and continues to exist for larger values of Iref. So it could be assumed that in the 

interval Iref=[0.64…0.68] (A) this regime slides along the borderline (4). Other 

orbits after the CBC are not observed within the parameter range of interest.  

As the transition from P2 to P4 in the Fig.4 is caused by highly non-smooth 

event, it would be interesting to investigate the topology of basins of attraction 

of coexisting P2 and P4 modes of operation for Iref=0.63 (A).  
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Fig. 5. Basins of attraction of P2 and P4 regimes for Sc= 200 (A/s) and Iref=0.63 

(A) with corresponding attractors. 

 

As it could be seen from Fig. 5, despite the border collisions observed in the 

complete bifurcation diagrams, the basins of attraction of P2 and P4 regimes, 

forming rather complex structure, still remain smooth and no sign of uncommon 

topological peculiarities are observed. 

 
Fig. 6. The complete bifurcation diagram for Sc=500 (A/s). 
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Further increment of the compensation ramp practically leads to the 

enlargement of stable P1 region and essentially changes the sequence and types 

of bifurcations. Fig. 6 depicts the complete bifurcation diagram of the boost 

converter for Sc=500, showing that the first period doubling at Iref=0.45 is 

followed by rapid transition from P2 to P6 operating regime with definite region 

of coexistence of both mentioned orbits. Further chaotization is governed by 

unstable orbits arising from the P6 regime through classical period-doublings.  

Points BC1 and BC2 in the Fig. 6 demonstrate to possible interactions of 

periodic orbits, appearing from saddle-node bifurcations with the borderline (4). 

At point BC1 the cutting border collision eliminates only the unstable regime of 

8T bifurcation group, allowing the gradual development of chaotic attractor. 

However at point BC2 the stable branch of 5T bifurcation group collides with 

the borderline and rapid chaotification is observed without the development of 

sequent period-doubling cascade.  

The bifurcation map, shown in the Fig. 2, allows asserting that further 

increasing the value of Sc leads to the implementation of direct P2-P6, P2-P8, 

P2-P10 etc. transitions as well as the development of increasingly wider 

periodic windows, excluding the possibility of existence of practically useful 

robust chaotic modes of operation.  

 

4. Conclusions 
The results of complete bifurcation analysis allow revealing some interesting 

changes in chaotification scenario of the compensated boost switching power 

converter. For the converters with small output capacitance and without 

compensating ramp (i.e. Sc=0) the classical smooth period doubling route to 

chaos could be observed. As the value of the compensating ramp signal is 

increased the non-smooth effects, emerging from the interaction of bifurcation 

branches of stable and unstable periodic regimes with the borderline (4), take 

place, determining the general appearance of bifurcation diagram and transition 

to chaotic mode of operation.   

It should be noted that, taking into account the topology of complete bifurcation 

diagrams constructed within this research, the definition of bifurcation group in 

MCBG (see e.g. [7]) should be revised, as the P2 and P4 regimes in the Fig. 4, 

corresponding to the same 1T bifurcation group have no common bifurcation 

points and are not mutually connected with stable or unstable branches.  
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Abstract: In the last decade there has been considerable interest in a novel dynamical 
phenomenon of chimera states observed in an array of non-locally coupled oscillators 
where regions of coherence and incoherence coexist across the network. In this study we 
show how chimera states emerge in coupled logistic maps for certain specified initial 
conditions when the range and strength of coupling is varied. Here we show that these 

states are very robust and persist even in the presence of noise in the network parameters. 
On applying localized external perturbation to the incoherent regions, it is possible to 
obtain a completely coherent/incoherent dynamics in the whole network depending on 
the strength and sign of perturbation. This has important applications in the control of 
undesirable local dynamics, such as seizures in neural systems, or fibrillations in cardiac 
tissues. 
Keywords: Chimera states, coupled logistic maps, control, pinning. 
 

 

Introduction 
The coexistence of coherent and incoherent dynamics in an array of non-locally 

coupled, identical Ginzburg Landau oscillators was first observed by Kuramoto 

and Battogtokh [1]. Such a state was named “chimera” meaning, something 

composed of incongruous parts. Chimera states are defined as spatiotemporal 

patterns of synchrony and disorder in homogeneous, non-locally coupled 

excitable systems. Recently, this phenomenon has been experimentally 

demonstrated in a system of mechanical oscillators by Aaron et al [2]. What 

makes the chimera behavior interesting is the coexistence of distinct spatial 

regions of synchronized behavior and irregular incoherent behavior, in networks 
of identical and symmetrically coupled units. Such a phenomenon is also 

observed in nature in neuronal systems of birds and dolphins which sleep with 

half of their brain (synchronous state) while the other half remains awake 

(asynchronous state) [3].  
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Network topologies such as global (i.e. all-to-all) coupling and local (i.e. 

nearest-neighbor) coupling have been extensively studied. However, networks 

with nonlocal coupling has been less studied in spite of applications in wide 

areas, viz., chemical oscillators [4], excitable systems e.g., neural tissue [5], 

Josephson junctions [6], etc. There is now renewed interest in nonlocal networks 
with the recent discovery of chimera states [7]. In various numerical studies it 

has been shown that non-local coupling is a necessary condition for the 

occurrence of chimera states [8]; with local or global coupling, identical 

oscillators either synchronize or oscillate incoherently, but never do both 

simultaneously. In addition, the emergence of chimera states is extremely 

sensitive to the initial conditions and is observed only for carefully chosen 

initial conditions [9]. Numerous studies suggest that chimera states can exist in 

complex systems with nonlocal interactions. In this study we analyze the 

chimera states in nonlocally coupled logistic maps. Since it is unlikely that in 

any physical system, all the units are identical, the effect of heterogeneity on 

their collective behavior is of interest. With this objective we analyze the 

emergence and stability of chimera states in the presence of noise. In particular, 
we introduce noise in the initial conditions and in the system parameters, viz., 

the bifurcation parameter and the coupling strength. In the event of undesirable 

dynamical behavior in localized regions, viz., cardiac arrhythmia, epileptogenic 

neural activity, desynchronization in coupled chemical reactors, etc. With this 

objective we analyze the effect of external perturbation or pinning given 

selectively to regions of incoherence on the spatiotemporal dynamics of the 

whole system. 

 

 

2  The Model and Simulations 
 

Model: 
In this study we analyze the occurrence of chimera states in non-locally coupled 
logistic maps on one-dimensional lattice (with periodic boundary conditions). 

We consider identical logistic maps at every node of the lattice which are 

coupled to P neighbors on either side on the spatial lattice. The spatio-temporal 

dynamical system considered here is given by the equation  

 

 

        (1) 

 
where i = 1, 2, … , N, t denotes the time step, ε the coupling strength and each 
node is coupled to P number of nodes on either side, i.e., a total of 2P 

connections. The local function considered here is a logistic map given by f(x) = 

ax(1 - x), a being the bifurcation parameter. The radius of coupling rc = P/N is a 

constant for all the nodes in the lattice. Since P = 1 corresponds to local 

(nearest-neighbor) coupling and P = N/2 corresponds to global coupling (all 

nodes connected to all other nodes), rc lies between 1/N and 1/2. To 
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mathematically quantify how spatially coherent or incoherent certain region in 

the lattice is, the parameter Ri which gives the degree of coherence in a local 

region surrounding the node i is defined as 
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where i = 1, 2, …, N, ψj =sin-1 (2xj – maxjxj - minjxj)/( maxjxj - minjxj), δ denotes 

the neighborhood of a node on either side for which the extent of coherence is 

measured, maxjxj and minjxj denote the maximum and minimum values of xk 

respectively, where k is a node in the neighborhood of node j. Ri measures the 

degree of coherence in an interval defined by δ, in that as N → ∞ and δ → 0, Ri 

→ 1 in the coherent interval and 0 < Ri < 1 in the incoherent interval. In Figure 

1(a) is shown the spatial dynamics of x at a given time t, after eliminating the 

transients. In Figure 1(b) is shown the spatial behavior of R for δ = 2. It may be 

noted that the value of R in the coherent region is close to 1 in Figure 1(b) (δ = 

2). In the incoherent regions, the value of R is lower than in the coherent 

regions. Thus, analyzing the behavior of Ri helps in detecting the presence of 

chimera states in the lattice. 
 

 
 

Fig. 1: a) Spatial dynamics of x for δ = 2, b) spatial dynamics of R for δ = 2. The system 

size N = 400, and the system parameters are a = 3.8, rc = 0.32,  = 0.24. Regions shaded 

in blue are the regions of incoherence. 
 

Initial Conditions: 
In numerous studies it has been shown that the emergence of chimera states is 

extremely dependent on the initial conditions. Here we consider three different 

initial distributions of x to induce chimera states in the 1d spatially coupled 

lattice. 

TYPE I: In this case, the distribution of x in the initial state is set to be the same 
in certain regions of the lattice, and randomly distributed between an interval in 

small intervals between them as defined below and depicted in Figure 2(a) [1]: 

  i  [0, N/8) and [7N/8, N), xi(0) = 0.45 

   i  [N/4, 3N/4), xi(0) = 0.9 
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i  [N/8, N/4) and [3N/4, 7N/8), xi(0)  I, I = [0.4, 0.5] U [0.85, 0.95] 
 

 

After eliminating the transients we observe the emergence of chimera states in 

the lattice: the coherent regions corresponding to those with initial condition 

0.45 and 0.9, and the incoherent regions interspersed in between them as seen in 

Figure 2(d). The spatial behavior of R in Figure 2(g) further confirms the 
chimera state. It is important to start the system with some regions in distinctly 

different initial conditions to observe the chimera behavior.  

TYPE II: A half compressed tanh function in the first half of the lattice and its 

mirror image in the second half as shown in Figure 2(b) is considered and is 

given by  
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The chimera behavior is observed in this case also as shown in Figure 2(e) and 

2(h), very similar to that observed with type I initial conditions, except that the 

incoherent intervals are not so well defined.  

TYPE III: In this case the initial distribution of x is considered to be a sine 

function over the lattice given by 

 

   i  [0, N), init xi = sin(i/N) 

 
as shown in Figure 2(c). The spatial behavior of x in Figure 2(f) and Ri is Figure 

2(i) exhibits emergence of chimera states. Unlike type I and type II conditions, 

in this case there is no sharp discontinuity in the x value along the lattice, and 

also has no interval that is completely coherent (region in which every node has 

a constant value). In the case of type II or type III initial conditions, the chimera 

states are observed only when the local dynamics is chaotic, while the type I 

initial conditions give rise to chimera states even when the local dynamics is 

periodic; in this case the regions of incoherence are spatially and temporally 

periodic while the coherent regions are spatially synchronous. Thus we observe 

that different types of initial conditions can give rise to chimera states, as long 

as the coupling is non-local. 
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Fig. 2: The three types of initial conditions considered here, viz., type I, II and 

III, are shown in (a) – (c) and in (d) – (f) the spatial dynamics of non-locally 

coupled logistic maps obtained after eliminating 50000 transients for the 

corresponding initial conditions is depicted. Figures (g) – (i) depicts the spatial 

dynamics of R corresponding the to the dynamics of x in (d) – (f) respectively. 

The parameters (rc, ε) for the plots (d), (g) are (0.32, 0.24), (e), (h) are (0.24, 

0.24) and (f), (i) are (0.24, 0.24). 

 
 

Sensitivity to initial conditions: 
In order to see the dependence on the initial conditions for the emergence of 

chimera states, in Figure 3 we show the spatio-temporal dynamics of the system 

after eliminating 50000 transients for the parameters chosen in the chaotic 

regime. In Figure 3(a) is shown the dynamical state attained on using type I 

initial conditions (defined above) and in Figure 3(b) dynamical state attained on 

using random initial, i.e. xi(0) is a random number in the range (0,1). It may be 

noted that in Figure 3(a) with type I initial conditions, the system exhibits 

regions of incoherence interspersed between regions of coherence, while no 

such dynamical behavior is observed with random initial conditions (Figure 
3(b)), for same set of parameter values. The spatio-temporal dynamics of the 

lattice was analyzed for 50 different random initial configurations and chimera 

behaviour was not observed in any of these cases. Thus we may conclude that 

though the emergence of chimera behaviour is sensitive to initial conditions, it is 

observed for a various types of carefully chosen initial conditions. 
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Fig. 3: Spatio-temporal dynamics of the non-locally coupled logistic maps with 

(a) type I initial conditions, (b) random initial conditions in the interval (0, 1) for 

a = 3.8, rc = 0.32 and  = 0.24. 

 

 

3  Results and Discussions: 

Analysis of rc -  parameter space: 
The emergence of chimera states is observed to be dependent on two 

parameters, viz., the range of coupling, rc and the strength of coupling, . In 

Figure 4 is shown the rc -  parameter-space plot indicating various dynamics 
observed in one-dimensional non-locally coupled logistic maps for type I initial 

conditions. The chimera behavior is observed for a wide range of coupling 

shown by regions in blue when the coupling strength  is low and K denotes the 
wave number of the spatial dynamics. It is observed that for a given coupling 

strength, chimera states with higher wave numbers occur at lower radius of 

coupling than those with lower wave numbers. Also, with increase in the range 

of coupling rc, the chimera behavior is observed even for very lower coupling 

strengths, . The red and green regions correspond to temporally periodic 
dynamics with period p = 4 and 2 respectively. The yellow region corresponds 

to chimera dynamics with p = 4, while the purple region indicates chimera 

dynamics with p = 2. 
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Fig. 4: rc -  parameter-space plot shown for non-locally coupled logistic maps 
with N = 400 with type I initial conditions. The values of a is 3.8. The chimera 

states emerge in regions shown in blue, purple and yellow, while red and green 

regions correspond to temporal periodic dynamics with period-4 and period-2 

respectively. The yellow region indicates intersection of blue and green regions 

and purple region, the intersection of blue and red regions. K denotes the wave 
number of the spatial dynamics. 

 

In Figure 5 the spatiotemporal dynamical behavior of the system at points 

marked ‘a’, ‘b’, ‘c’, and ‘d’ in Figure 4 is depicted in the third column. It may 

be noted from the spatio-temporal dynamics of x corresponding to point 'a' and 

'b' that as the coupling strength  increases from 0.2 to 0.24, the degree of 
coherence increases (for fixed rc = 0.32). On further increasing the coupling 

strength ( > 0.3), the regions of incoherence disappear and the lattice is seen to 
exhibit coherent dynamics (results not shown). The spatio-temporal dynamics at 

larger coupling strength,  = 0.42 (rc = 0.24) corresponding to 'c' is mainly 
coherent. The spatio-temporal dynamics corresponding to point 'd' exhibits 

higher wave number (K = 2) and period (p = 4). 
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Fig. 5: (a) - (d) depicts the spatial dynamics (xi vs i) at points a, b, c and d 

respectively in the rc -  parameter-space plot (Figure 4). (e) – (h) spatial plots 

of Ri vs i corresponding to the plots (a) – (d). The parameter values (rc, ) for the 
points ‘a’, ‘b’, ‘c’, and ‘d’ in Figure 4 correspond to (0.32,0.2), (0.32, 0.24), 

(0.28,0.42) and (0.15, 0.24) respectively. The points ‘a’, ‘b’, and ‘c’ corresponds 

to wave number K = 1, while point ‘d’ to wave number K = 2. The 

spatiotemporal dynamics is shown in the third column. For the calculation of R, 

δ value was chosen to be 2. 

 
Thus we observe that for fixed coupling strength , the incoherence in the 
spatial dynamics decreases with an increase in the radius of coupling. This is 

confirmed from the spatial behavior of degree of coherence, Ri, for different 

values of radius of coupling in Figure 6(a). Similarly, for weak coupling the 

dynamics is incoherent, but as the coupling strength is increased through a 

critical value (for fixed radius of coupling), coherence emerges and on further 
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increase in the coupling strength, complete synchronization is observed. This is 

quantified in terms of Ri in Figure 6(b). 

 

 
 

Fig. 6: (a) Spatial behavior of R is shown for various values of radius of 

coupling, rc: 0.2 (red), 0.32 (green) and 0.4 (blue) for a constant coupling 

strength, ε = 0.24. There is a clear decrease in the spatial incoherence with 

increase in the value of rc. (b) Spatial behavior of R is shown for various values 

of coupling strength, ε : 0.24 (red), 0.32 (green) and 0.36 (blue) for a constant , 

rc = 0.2. We see a clear decrease in the degree of spatial incoherence with 

increase in the value of ε. The remaining parameters for figures 6(a),(b) are a = 

3.8, N = 400, δ = 2. 

 

Robustness of chimera states to perturbations : 
In real practical situations, it is unlikely to have the same system parameters 

over the entire spatial domain, e.g., the junctional coupling strengths,  may 
vary between cells in a neural tissue, or the growth parameter a may not be 

same in all subpopulation patches, etc. To mimic such a scenario, we introduce 

small random variations in the system parameters a and , i.e., a ± δai and  +  

δi. Since the occurrence of chimera states is sensitive to the initial conditions, 
we also introduce noise in the initial conditions, i.e., xi(0) ± δxi(0) (xi(0) refers to 

type I initial conditions), and analyze the emergence and stability of the chimera 

states in such a heterogeneous coupled logistic maps. In Figure 7(a)-(d) is 

shown the spatial dynamics of x and in the adjacent plots (2nd panel) the spatio-

temporal dynamics for varying coupling strengths. It is observed that at lower 

coupling strengths, the lattice exhibits incoherent dynamics in the presence of 

noise. As the coupling strength is increased, incoherence in the dynamics is 
reduced and emergence of chimera states is clearly observed for intermediate 

coupling strengths (0.24 < 0.35). For  > 0.35, the lattice exhibits spatially 
coherent dynamics. 
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Fig. 7: In (a) – (d) is shown the spatial dynamics of x and their corresponding 

spatio-temporal plots (in the 2nd column) for different coupling strengths,  = 
0.2, 0.24, 0.3 and 0.35 respectively with a variation of ± 0.005. The parameters 

values of the lattice are a = 3.8 ± 0.04, and the random variations to the type I 
initial conditions as ± 0.05. 

 
Effect of External Perturbation on the Chimera States: 
In various physical and biological systems such as power grids or excitable 
tissues (e.g., cardiac or neuronal tissues), the synchronous movement of all their 

parts is extremely crucial for their proper functioning [10]. Localized regions of 

incoherence in such systems may cause hindrance to their performance and in 

extreme situations may even completely destabilize the system [11]. In such 

situations, there is clearly a need to address local disturbances/incoherent 
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dynamics and bring the system back to its original synchronous dynamical state. 

Here we attempt to analyze the effect of applying localized external perturbation 

or “pinning” to the incoherent regions and see if the system is driven to spatially 

synchronous state or the whole lattice exhibits incoherent dynamics. The 

objective is to manipulate the dynamics in the event of the system exhibiting 
undesired local dynamics. For example, extended periods of synchronization in 

the brain, results in epileptic seizures and there exists need for external 

intervention. In diffusively coupled logistic maps, it has been shown by Parekh 

et al [12] that negative pinning suppresses chaos while positive pinning 

induces/enhances chaos. In Figure 8(a), we observe that on applying negative 

pinning to the incoherent regions, the degree of incoherence is reduced and can 

be completely suppressed, while applying positive pinning as shown in Figure 

8(b), the degree of incoherence is enhanced. However, it may be noted that the 

coherent dynamics attained by selectively pinning the regions of incoherence 

exists only as long as the pinning is being given. In Figure 9 is shown the effect 

of removing the external pinning after having applied for a certain period of 

time. Initially the system is considered to be exhibiting chimera behavior when 
no pinning is applied to (blue). The region of incoherence is decreased both in 

the spatial spread and extent on applying negative pinning selectively to the 

nodes in the incoherent region (red). On switching off the external pinning and 

eliminating transients, we observe that the system goes back to the original 

dynamical state and exhibits spatial incoherence regions which are much 

narrower than the initial case, i.e., on switching off the external perturbation, the 

extent of spread of the incoherent dynamics is reduced, but not completely 

eliminated. 

     

 
 

 

Fig. 8: (a) Spatial behavior of R for the parameters N = 400, rc = 0.32, ε = 0.24, 

δ = 2, shown on selectively pinning the incoherent regions with varying 

strengths of (a) negative pinning: -0.05 (green) and -0.15 (red); (b) positive 

pinning: 0.02 (green), 0.05 (red). The plots in blue correspond to “no pinning” 
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in both (a) and (b). It is clear that negative pinning suppresses while positive 

pinning enhances incoherence. 

 

         
Fig. 9: Spatial behavior of R: i) no pinning (blue), ii) selective pinning of - 0.13 

(green) after eliminating 50000 transients and iii) eliminating 50000 transients 

after removing the selective pinning (red). Here, a = 3.8, N = 100, rc = 0.32,  = 
0.18, δ = 2. 

 

 

Conclusions 

 
In this study we carried out a systematic analysis for the emergence and stability 

of chimera behavior in non-locally coupled logistic maps. We discuss the 

emergence and disappearance of chimera states as a function of the radius and 
strength of coupling. The chimera states are observed to be robust to small 

random variations in the initial conditions and system parameters for reasonable 

strength and radius of coupling. We also showed that is possible to 

suppress/induce incoherence in spatially localized regions as this maybe 

desirable in certain situations such as epileptic seizures, or cardiac fibrillation. 

However, the persistence of pinning is required for achieving the desired 

behavior. This has important applications in many complex physical and 

biological systems. 
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