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Abstract. The Weierstrass function derived from an exact chaos solution to the logistic 
map is firstly introduced, and a nonlinear time series expansion is proposed for the 
logistic chaos with a 2π-period in order to compose an infinite sum of trigonometric 
nonlinear functions. The nonlinear functions are computed by the algorithm given as a 
method without the accumulation of round-off errors in iterating the functions to 
minimize an error function for the expansion. Finally, it is shown that the logistic chaos 
is decomposed into a nonlinear time series by the proposed time series expansion, and 
the expansion generates the time series of 1/f noise depending on the power spectrum.        
Keywords: Logistic chaos, Chaos solution, Nonlinear time series, Time series expansion, 
Power spectrum, 1/f noise. 

 
1  Introduction 
 
In the field of nonlinear science, traditional and modern approaches to the time 
series analysis, which are based on statistics and the theory of dynamical 
systems, have been discussed, using a large number of data sets taken from 
various fields, such as biology, geophysics, economics and social sciences [3, 6]. 
As is well known, the Fourier series expansion decomposes periodic functions 
or periodic signals in terms of an infinite sum of simple oscillating functions, 
and has been applied to finding an approximation for original problems as 
harmonic analysis [5]. In addition, a large variety of analytic methods has been 
available for the quantification of nonlinear dynamics recorded in time series, 
which are some of the most prominent nonlinear properties. Recently, 
bifurcations, the Lyapunov exponents and fractal dimensions have been applied 
to the analysis of nonlinear dynamics, nonlinear prediction, noise reduction and 
climate records [15, 16]. 
On the other hand, the concept of chaos [12, 13] has been intensively studied, 
and has influenced thinking in many fields of science, since chaotic systems 
have shown rich and surprising structures with irregular behavior [14]. A most 
direct link between chaos and real time series is the nonlinear time series 
analysis of dynamical systems. The chaos theory has produced a wealth of 
powerful methods for the analysis of time series in nonlinear dynamical systems. 
In the meantime, the author has considered the fractal curves describing the 
Weierstrass function, which are obtained from exact chaos solutions to chaos 
maps [9, 10], and has proposed an algorithm without the accumulation of round-
off errors by iterating chaos maps [8, 17]. The aim of this paper is to propose a 
nonlinear time series expansion for analyzing the logistic chaos [7], to show a 
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relationship between the time series and 1/ f noise found widely in nature [1, 4, 
11], and to apply the proposed time series expansion to a generation of 1/ f noise. 
 
2  The Logistic Chaos and the Weierstrass Function 
 
For simple functions of a nonlinear time series expansion proposed in Section 3, 
firstly we introduce an exact chaos solution; 
 

,,2,1,0),2cos( L== nCx n
n                                (1) 

 
where a real number lmC 2/π±≠  with finite positive integers {l, m} to the 
logistic map ,12 2

1 −=+ nn xx and another solution )2sin( n
n Cy =  to the 

chaos map )21(2 2
11 −+ −= nnn yyy  [9]. From the solution (1), we derive the 

following Weierstrass-like function; 
 

                                         )2cos()( ttx n=                                                      (2) 

 
with time t > 0, which gives fractal curve [10], and have a generalized function 
as 

                                         ),cos()( tptx n=                                                     (3) 

and in a discrete form; 

                                        ),cos()( i
n

i tptx =                                                    (4) 

 
where p and ti are positive integers. Therefore, (3) is a Weierstrass function as 

∞→n , since )(tx  is continuous but not differentiable anywhere. For example, 

time series of )3cos()( i
n

i ttx =  are illustrated in Figure 1, and it is found that 

the time series have chaotic behaviors. 
 
3  A Nonlinear Time Series Expansion 
 
The well-known Fourier series expansion for a given periodic continuous 
function )(tf   has been represented by 
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where ω  is angular frequency, and we propose a nonlinear time series 
expansion for a periodic continuous function )(tg  with a period π2 as follows;  
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(a) n =1 

 

 
(b) n =5 

 

 
(c) n =10 

 
Fig. 1. Time series of x(ti) = cos(3nti) for n = 1, 5 and 10. 
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here p is a positive integer, and 
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Simple functions )cos( tp n  and )sin( tp n in (6) are orthogonal, and then )(tg  is 

proposed as a nonlinear expansion since the linear coefficient ωn  in (5) 
corresponds to the nonlinear coefficient np in (6) with respect to n. At 

),,2,1,0( Nitt i L==  with the number N of time series in a π2 -period by 

dividing evenly into N intervals, (6) is exactly given by  
 

                       ∑
∞

=

++=
1

0 )),sin()cos((
2

)(
n

i
n

ni
n

ni tpbtpa
a

tg                    (10) 

 
where the coefficients },,{ 0 nn baa  in (6) and (10) are obtained by (7) - (9). Here, 

we introduce the following correction function for the logistic chaos time series  
),2cos( i

i CX ≡  Ni ,,2,1,0 L=  of (1) as 

 
                                    ,/)(, 0 NXXaaiXy Nii −≡−=                                      (11) 

 
to have a periodicity, that is, a π2 -period at 0.00 == Nyy  (see Figure 2), and 

define an error function; 
 

                                       ∑
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for minimizing the ε  between the logistic chaos data 

iy  and the time series 

expansion )( itg  given by (10). 

 
4  Numerical Examples 
 
For the iterative calculation of the logistic chaos time series )2cos( i

i CX ≡  

without the accumulation of round-off errors, we introduce the algorithm [8] by 
setting; 
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π)/( mlC i≡                                                (13) 

and 
                                                (mod21 ii ll ≡+ )2m                                          (14) 

 
with an integer 

il  and a large prime number m, and choose the following 

arbitrary three cases for the data 
iX ; 

 
Case 1 
                              =),( 0 ml (167852967387, 31574166101),                        (15) 

Case 2 
                                   =),( 0 ml (8754681, 751234570907),                           (16) 

Case 3 
                                  =),( 0 ml (62547845, 784301365553)                           (17) 

 
with the arbitrary initial integer 

0l  of 
il . Then, we can obtain the logistic chaos 

time series 
iX  without the accumulation of round-off errors in the iteration. 

Next, for the calculation of simple functions )cos( i
ntp  and )sin( i

ntp  in the 

expansion (10), we use the algorithm by setting; 
 
                                                      π)/( mlt ii ≡                                               (18) 

and 
                                                (mod1 ii pll ≡+ )2m                                          (19) 

 
with Ni ,,2,1,0 L=  and a small prime number 1−= Nm  to have the π2 - 

period at Ni =  in (10). Thus, we find the optimal integer p and the optimal 
initial value 

0l  of 
il  to get a minimal 1610−≈ε , as an optimization problem,   by 

iterating (12) and introducing PSO (Particle Swarm Optimization) for the high-
speed optimization [2]. Then, the resultant nonlinear time series expansions with 
n=100 terms of )cos( i

ntp  and )sin( i
ntp  are given as  
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where the coefficient np  in (20) – (22) corresponds to a higher frequency than 

that of the ωn  in (5) [7]. The time series 
iy  and )( itg  are illustrated in Figure 

2, and the optimal parameters {p, l0} and ε  are shown for each case.  
 
 

 
(a) Case 1: (p, l0) = (54, 70), 161008.6 −×=ε  

 
 

 
(b) Case 2: (p, l0) = (89, 64), 161039.5 −×=ε  

 
 

 
 

(c) Case 3: (p, l0) = (34, 13), 1510004.1 −×=ε  
 

Fig. 2. The chaos data 
iy  (11) and the expansion g(ti) (10). 
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The power spectra of  )( itg  (20)-(22) are represented for Cases 1-3 in Figure 3, 

and it is found that all the Cases have a flat average value, and show a property 
like white noise, that is, the logistic chaos time series has a property of white 
noise in terms of power spectra obtained by the numerical iteration without the 
accumulation of round-off errors. 
 
 

 
(a) Case 1 

 

 
(b) Case 2 

 

 
(c) Case 3 

 
Fig. 3.  Power spectra of g(ti) (20)-(22). 
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Then, if we set the coefficients },{ nn ba  to have a property of 1/ f noise for 

Cases 1-3 in (20)-(22), we obtain the power spectra shown in Figure 4(a), and 
the time series of Cases 1-3 are illustrated in (b)-(d) of Figure 4, respectively. 
Here, it is interesting to note that the time series (b)-(d) of 1/ f noise in Figure 4 
are generated by iterating the expansions (20)-(22), which are constructed on the 
basis of chaos, and have no accumulation of round-off errors in the iterative 
calculation. 
 

 
(a) 

 

 
(b) Case 1 in (a) 

 

 
(c) Case 2 in (a) 

 

 
(d) Case 3 in (a) 
 

Fig. 4. Three 1/ f noises obtained by setting the coefficients 
na  and 

nb  of 

Cases 1-3 in (20)-(22). 
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Conclusions 
 
In this paper, a nonlinear time series expansion has been proposed for the time 
series of the logistic chaos, where the chaotic time series are obtained from the 
exact chaos solution to the logistic map by introducing the algorithm [8] without 
the accumulation of round-off errors caused by iterating the calculation of the 
chaos solution. Here, the algorithm is used for simple functions )cos( i

ntp  and 

)sin( i
ntp  in the nonlinear time series expansion (10). As a result, it is shown 

that the time series of the logistic chaos have a property of white noise in the 
power spectrum, and the expansions (20) - (22) generate 1/ f noise by setting the 
coefficients 

na  and 
nb . Therefore, the proposed nonlinear time series expansion 

based on chaos would be applied to the analysis of nonlinear time series and the 
generation of 1/f noise. 
The author would like to thank the graduate students at Osaka Prefecture 
University for their helpful discussion and numerical calculation. 
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Abstract 
Longitudinal count data often arise in financial and medical studies. In such applications, 
the data exhibit more variability and thus the variance to mean ratio is greater than one. 
Under such circumstances, the negative binomial is more convenient to be used for 
modeling these longitudinal responses. Since these responses are collected over time for 
the same subject, it is more likely that they will be correlated. In literature, various 
correlation models have been proposed and among them the most popular are the 

autoregressive and the moving average structures. Besides, these responses are often 
subject to multiple covariates that may be time-independent or time-dependent. In the 
event of time-independence, it is relatively easy to simulate and model the longitudinal 
negative binomial counts following the MA(1) structures but as for the case of time-
dependence, the simulation of the MA(1) longitudinal count responses is a challenging 
problem. In this paper, we will use the binomial thinning operation to generate sets of 
MA(1) non-stationary longitudinal negative binomial counts and the efficiency of the 
simulation results are assessed via a generalized method of moments approach. 

Keywords: 
Negative Binomial, Longitudinal, Moving Average ,Binomial thinning, Stationary, Non-
stationary, Generalized method of moments 

 

 
 

 

1  Introduction 
 

In today’s era, longitudinal data has become extremely useful in applications 
related to the health and financial sectors. It constitutes of a number of subjects 
that are measured over a specified number of time points. Since these 

measurements are collected for a particular subject on a repetitive basis, it is 
more likely that the data will be correlated. The correlation structures may be 
following autoregressive, moving average, equi-correlation, unstructured or 
any other general autocorrelation structures[4][5]. Moreover, in longitudinal 
studies, the responses are influenced by many factors such as in the analysis of 
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CD4 counts, the influential factors are the treatment, age, gender and many 
others. In order to estimate the contribution and the significance of each of 
these factors towards the response variable, it is important to transform the data 
set-up into a regression framework. In literature, the regression parameters 
have been estimated by various approaches. Initially, the method of 

Generalized Estimating equations (GEE) were developed but it fails under 
misspecified correlation structure particularly under the independence 
correlation structure [5]. Thereafter, Prentice and Zhao [2] developed a Joint 
Estimation approach to estimate jointly the regression and correlation 
parameters and yielded more efficient regression estimates than the GEE 
approach but the joint estimation is based on higher order moments.  Their 
approach is also based on the working correlation structure but the presence of 
these high order moments dilute the misspecification effect and boost the 
efficiency of the estimates.  On the other hand, Qu and Lindsay [3] developed 

an adaptive quadratic inference based Generalized Method of Moments 
(GMM) approach where they assumed powers of the empirical covariance 
matrices as the bases.  These bases are then used to form  score vectors or 
moment estimating equations and thereafter, they were combined to form a 
quadratic function  in a similar way as the GMM approach. This approach of 
analyzing longitudinal regression models has so far been tested on normal, 
Poisson data [3] but has not yet been explored in negative binomial correlated 
counts data.  In this paper, our objectives are to develop the moment estimating 

equations based negative binomial model, construct the quadratic inference 
function and then obtain the regression estimates by maximizing the function. 
However, one challenging issue is that since the negative binomial model is a 
two parameter model (that is, depending on the mean and over-dispersion 
parameter), it implies that we will require higher order moments. This 
estimation approach will be tested via simulations on MA(1) stationary and 
non-stationary negative binomial counts.  The organization of the paper is as 
follows: In the next section, we will review the negative binomial model along 

with its MA(1) Gaussian autocorrelation structure and the adaptive GMM 
approach following Qu and Lindsay [3].  In section 3, we will develop the 
estimating equations for the negative binomial model followed by simulation 
results. 

 

 
 

2  Negative Binomial model 
               Longitudinal data comprise of data that are collected repeatedly over    

               Tt ,3,2,1  time points for subjects Ii ,3,2,1 . Thus any 
thi    

               random observation at 
tht  time point will have a representation of the form  

              ity .  The negative binomial model for ity  is given by 
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with  )exp()(  T

ititit xyE    and 
2)( ititit cyVar   , 0c where in 

notation form ,  

                                                           ),
1

(~ itit c
c

NeBiny   

 

given a 1p   vector of covariates 
T

itx  and vector of regression parameters  of the 

form 
T

p ],...,,[ 21   , 
T

iTitiii yyyyy ],....,,...,,[ 21  and 

T

iTitiii ],....,,...,,[ 21   . 

Since these counts ity  are collected repeatedly over time, it is more likely that ity  will 

be correlated over time. In this paper, we will assume that the simulated ity  set of 

response variables come from the family of MA(1) Gaussian autocorrelation structure. 
The derivation of the MA(1) stationary negative binomial counts follows from McKenzie 
binomial thinning process[1]. However, the derivation of the MA(1) non-stationary 

correlation structure has not yet appeared in statistical literature.  In the next section, we 
provide an in-depth derivation of the MA(1) non-stationary Gaussian autocorrelation 
structure. 

 

 

3  MA(1) Non-Stationary Gaussian autocorrelation Structures  

In the non-stationary set-up, the mean parameter at each time point will differ as the 
covariates are time-dependent, that  

                                                iTitii  .......21   

Following McKenzie[1], we set up the framework to generate the MA(1) non-stationary 

Gaussian autocorrelation structure. Tthe binomial thinning process assumes that 

                                                 ittiitit ddy  1,*  

 
 where      

                                ),
1

(~ 1iit c
c

NeBind 


, )
1

,(~
cc

Betait





    and,   

                                                   1,* tiit y =





1,

1

)(
tiy

j

ititj zb  , 

                                    prob[ )( itjb  =1]= it , prob[ )( itjb  =0]=1- it  and  

 

                                




cc

cccc
c






2

22

1

)221(
  

229



That is the conditional distribution of 1,* tiit d  follows the binomial distribution with 

parameters 1itd  and it . Under these assumptions,  it can be proved that 

),
1

(~ itit c
c

NeBiny  and the set of 
T

iTitiii yyyyy ],...,...,,[ 21  follows the 

MA(1) structure..  Under these distributional assumptions, we note that the covariance 

between ity  and kity   is given by 
2

2

,,

)1(1 












 ktikti
c for 1k  and for other 

lags, the covariance does not exist. 

 

4. Simulation of MA(1) Non –Stationary NB counts 
The simulation process will follow from the binomial thinning operation explained in the 

previous section with )exp(  T

itit x , that is we need to provide a given set of 

covariate designs and a set of regression vector    that respects the dimension of the 

covariate matrix. Note that for the stationary case, the covariate matrix will be time 
independent while for the non-stationary, the covariate design will be time-dependent. As 
such, we assume for the non-stationary case the following designs,  
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and 2itx is generated from the Poisson distribution with mean parameter 2.  In this way, 

the mean parameter for each subject i will vary.  Thus, for these set of covariates and 

initial estimate of the regression vector, dispersion parameter and correlation parameter, 
we generate MA(1) Negative Binomial random variables by first simulating the error 

components itd , 1ity  and the thinning operation random variables 1,* tiit y . For 

our simulation process, we will assume the values of 
T]1,1[ . 

5. Estimation Methodology 
Qu and Lindsay [3] have developed an estimation approach based Generalized Methods 
of Moments that do not require any assumption in the underlying correlation structure 
and do not require any estimation of the correlation parameter. In fact, Qu and Linsday 
[3] assumed a score vector that only needs the empirical covariance estimation matrix              
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where iD  is the gradient matrix: 
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  and  is an orthogonal vector. The 

calculation of the parameter  requires the conjugate gradient method [see Qu and 

Lindsay [3]].  In the context of the negative binomial model,  the score vector g is 

defined as: 
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Using the score vector g , Qu and Lindsay [3] defined the objective function 
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By maximizing the objective function with respect to the unknown set of parameters, we 

obtain the estimating equation 
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 .  Since the above estimating equation is non-linear, we solve 

the equation using the Newton-Raphson procedure that yields an iterative equation of the 
form 
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 is the double derivative hessian part of the score 

function and this is being used for calculating the variance of the regression and over-
dispersion parameters. As illustrated by Qu and Lindsay [3], this method yields 
consistent and efficient estimators and tends towards asymptotic normality for large 
sample size.  
 

6. Results and Conclusion 
Following the previous sections, we have run 10,000 simulations for each of the sample 

sizes 500,200,100,50,20I  based on the different covariate designs for the non-

stationary set-ups. Note that for the stationary case, the mean is held constant at all time 
points whilst for non-stationary, the mean varies with the time points given the time-
dependent covariates. The table provides the simulated mean estimates of the regression 
parameters along with the standard errors in brackets. 
 

I Design A Design B Design C 

20 0.9919;1.0010 
(0.1351;0.2120) 

1.0121;0.9987 
(0.1401;0.1971) 

0.9956;1.0013 
(0.2212;0.1898) 

50 1.0110;0.9978 
(0.1022;0.1762) 

0.9919;0.9995 
(0.1211;0.1881) 

0.9982;1.0121 
(0.1580;0.1) 
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100 0.9982;0.9995 
(0.0812;0.1120) 

1.0101;0.9961 
(0.0754;0.1052) 

0.9988;1.0015 
(0.0889;0.1010) 

200 1.0012;1.0005 
(0.0661;0.0991) 

0.9992;0.9992 
(0.0762;0.0975) 

1.0042;1.0141 
(0.0562;0.0888) 

500 0.9999;1.0001 
(0.0552;0.0808) 

0.9992;0.9993 
(0.0432;0.0652) 

0.9978;1.0010 
(0.0466;0.0762) 

Based on the simulation results, we note that the estimates of the regression parameters 
are close to the population values and as the sample size increases, the standard errors of 
the regression parameters decrease which indicates that the estimates are consistent and 
efficient. However, we have remarked a significant number of failures in the simulations 
as we increase the sample size. These failures were mainly due to ill-conditioned nature 

of the double derivative Hessian matrix. To overcome this problem in some simulations, 
we have used the Moore Penrose generalized inverse method in R (ginv in Library 
MASS) to perform the iterative procedures. Overall, the generalized method of moments 
estimation technique is a statistically sound technique but in terms of computation, it may 
not always be reliable. 
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Learning dynamical regimes of Solar Active
Region via homology estimation
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Abstract. The development of numerical methods of mathematical morphology and
topology gives us opportunity to analyze various structures on the plane and in space.
In particular they can be used to analyze the complexity of the image by estimat-
ing the variation of the number of connected structures and holes depending on the
brightness level. Alternate sum of this numbers gives topological invariant Euler char-
acteristic. The other approach to estimation this characteristic is persistent homology
calculation at the different sub level sets. It turned out that the application of these
ideas to the active regions of the Sun magnetograms allowed diagnostic changes in
different dynamic regimes connected with sun flares.
Keywords: Topological persistence, mathematical morphology, dynamical regimes
detections, Sun Active Region, homology .

1 Introduction

Large solar flares are the most dramatic results of the evolution of the magnetic
fields in sunspots. The energy of such flare reaches 1032 erg and the peak power
reaches about 1029 erg/sec. For the most powerful X flares energy density

reaches 10−4W/m
2
.

Energetic flares which are occurred near the center of the solar disk could
make a disastrous damage of the terrestrial and space equipment. First of
all, there are failures and crashes of space crafts on geocentric orbits, see in
Karimova et al. [1], increase in background radiation at altitudes of manned
space crafts, radio blackout caused by magnetic storms, induced currents in
pipelines that reach hundreds of amperes, failures in automatic control systems
in metropolitan areas and many others,see in Pulkkinen [2].

Large flares tend to occur in big groups of spots, so called active regions
(ARs) of the Sun. Flaring ARs may contain more than a dozen spots of dif-
ferent polarities forming a topologically complex spatial configuration of the
magnetic fields, seen in Longcope [3] and in Borrero and Ichimoto [4]. The
problem of early prediction of the X-ray flares is a practically important sci-
entific task. It is complicated by the fact that there is no correct theoretical
assumptions about the solar flares appearance so far. Existing forecast methods
are based largely on the rich observation phenomenology. The most common
approach associate the flares with variations of space complexity of the AR, i.e.
a complex of geometric and/or kinematic features observed in dynamic scenar-
ios of the AR. the most of them were suggested in 1972 by Smith [5]. Many
contemporary publications on flare precursors investigation (see, for example
Cui et al. [6], Falconer et al. [7] and Mason and Hoeksema [8]) also rely on_________________ 
7th CHAOS Conference Proceedings, 7-10 June 2014, Lisbon Portugal 
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the characteristics describing some changes in the magnetic structures. These
changes are traced either in magnetogram’s patterns or in the features of scalar
or vector fields reconstructed from digital images. It is believed that the pre-
cursors are produced by the dynamics of new magnetic fields emerging inside
or in the neighborhood of the AR, seein Lites[9]. Sometimes such flows can be
observed directly,as described in Magara [10], but, in general, their detection
in monitoring mode is a separate and challenging problem, see in Knyazeva et
al. [11].

In this paper for describing topological complexity of magnetic field we
suggest to use methods comes from mathematical morphology and algebraic
topology. The main idea of this approach is to consider magnetogramm as a
3D random field. We consider the changes in topology of magnetogramm as a
changes in behaviour of peaks and dips of random field.

2 Mathematical morphology

Estimation of morphological functionals for physical fields are based on the
stochastic-geometry methods developed by Adler [12] and Worsley [13]. These
were begun with the pioneering work of Rice [14], who proposed to study ran-
dom processes by considering the distributions of plots beyond some specified
level. The mean time a plot spends above the specified level, i.e., the duration
of the excursions, and the number of excursions per unit time serve as useful
statistics in this case. For two dimensional fields is considered so-called excur-
sion sets. This is a set formed by the values which exceeds the specified values
. On the excursion set Minkowski functionals could be estimated, see in Adler
[12], and Worsley [13]. Euler characteristic (EC or χ) the main of them. The
formal basis based on Morse theory see in Bobrowski[15] and Matsumoto [16].

The magnetograms represent a matrix containing values of the line-of-sight
magnetic field. The main idea is separating the magnetograms into a set of
binary images with the selected steps. Let’s consider an excursion set

Au = {x ∈W : Bz(x) ≥ u} (1)

of the field in a compact region W , formed by the pixels x?W where the
magnetic field Bz(x) exceeds a specified level u. We mark these pixels black.
This makes it possible to translate each magnetogram into a set of black and
white images, one for each selected level. At each level be can define the number
of connected components (islands) m0 and holes in the islands m1. Then, it
can be shown by Adler (1981) that:

χ(Au) = m0 −m1. (2)

It could be shown that χ(Au) measures the topological complexity of the field
on the excursion set u . It is not difficult to estimate the Euler characteristic
for each of these levels. This quantity is a measure of the complexity of the
magnetic-field topology. So for the sequence of magnetogram we will have a
sequence of EC for each excursion set. This allows us to trace the changing
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in topology of magnetic field as a changes in EC . The main drawback in this
approach that we have EC for each excursion set, so we need to analyse many
evolution of EC at each level or choose previously level.

3 Persistence homology

The second approach to estimate the Euler characteristic is connected to per-
sistent homology [17] and a technique based on deep relations of persistence
diagrams with the Hausdorff measures of singular points of random fields [15].
In this case, the main contribution to the estimates gives a topography of neigh-
bourhoods of the big field excursions and correlations of extrema of the field
on a large scale. The structure of the field is determined by the content of the
local neighborhoods for the maxima and minima: how many and at which level
peaks or dips appear which are close to the given maximum or minimum. Also
we would like to know up to which level field maxima (minima) are isolated in
a some local neighborhood. We can measure a life time of each isolated peak as
the length of the interval or barcode on which it is separated from others. It is
usefull to draw it on the plane using the beginning and the end of the barcode
as point coordinates. As the result we obtain a set of points which lie above
the diagonal that corresponds to barcodes of the zero length. This graph is
called a persistence diagram. It is convenient to give some simple structure at
the neighborhood of the maximum — so-called simplicial structure.

The computation of Betti numbers comes from algebraic topology and de-
veloped for simplical complexes. There are basis of the relevant definitions in
book of Edelsbrunner and Harer [17].. The incremential algorithm for com-
puting homology which we used in our work could be found in the article of
Delfinado and Edelsbrunner [18]. It consists with two sequential steps: filter
construction of simplices (for two-dimensional images the simplex is a vertex,
an edge or a triangle) and computing the Betti numbers on the created filtra-
tion. Let f(x, y) is a value at pixel (x, y).For the filter construction we need
to determine the function value for each of simplices. In order to do this we
associate each pixel (x, y) of the image with the vertex. We define the value
for the remaining simplices by assigning the maximum of values between their
vertices. Now we describe the algorithm for the filter construction. First we
sort all vertices (pixels of the image) in increasing order of their function value
F (v) (i. e. the intensity level of the corresponding pixels) and create a sequence

v1, v2, v3, . . . , vn.

Let us further assume that if two vertices have the same value of the function
F then the vertex, which is higher or to the left of the second vertex on the
image, is located closer to the beginning of the sequence (3). Next, we iterate
through all elements of the ordered sequence and add each of them to the filter.
At the same time, attaching the new vertex to the filter we add all edges and
all triangles that can be generated by vertices which we already have in the
filter and the new vertex. A condition for creating the edge or the triangle is
presence of two neighboring vertices for the edge and three neighboring vertices
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for the triangle (such a way that no two edges cross each other). As a result
we obtain the filter, the sequence of simplices,

s1, s2, s3, . . . , sn.

such that the simplices there are sorted in increasing order of their value F (sj .
To distinguish topological spaces based on the connectivity of n-dimensional
simplicial complexes are used Betti numbers. Informally, the k- th Betti number
refers to the number of k-dimensional holes on a topological surface. B0 is the
number of connected components, B1 is the number of one-dimensional or
”circular” holes. In our case there are only B0 and B1. We can compute the
B0 and B1 numbers by processing the simplices in the filter and keeping track
of changes in connectivity of the obtaining set. Here, the basic data structure
is the Union-Find data structure. This structure supports two operations,
namely Find(i) and Union(i, j). Find(i) returns the number of connected
components that contain i. If i and j belongs to different components, then
Union(i, j) operation merge them in one.

Now we can compute the Betti numbers by processing the simplices in the
filter and keeping track of changes in connectivity of the obtaining set. For
computing B0 we processed simplices in the direct order. If we add vertex
we add components, if there is an edge in filtration we need to check if the
vertexes of edge belongs to different components, if belong than the number of
components decrease by one and we merge components in other case nothing
happens. To compute Holes or B1 we use the same algorithm applying it to a
dual graph. In the dual graph to each vertex corresponds the triangle of the
initial graph, to each triangle corresponds the vertex in the initial graph and
to each edge corresponds the dual edge. We add at the end of the filter with
the value minus infinity. After that we apply the algorithm described above
with one small correction: we go backwards through elements of the filtration
and compute the persistence for the dual graph. As a simple example at Fig
1a we represent several steps of filtration processing for 6x6 matrix, at Fig 1b
marked all the holes in test matrix.

Fig. 1. First steps of incremental algorithm B0 or components (a) and B1 or holes
(b) computing
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This algorithm can be supplemented by computing the so-called persistence
of connected components. By the persistence we mean the life time of the
corresponding connected component, i. e. a range of intensity values in which
the given component exists. If vertices of the current edge belong to different
connected components, then after merging them into a single component we
suppose that the component, which appeared later than another, disappears
(“dies”). In that way we can keep track of “birth” and “death” of connected
components at the intensity levels. The same true for holes. If we sum all life
length for B0 and for B1 and take difference of them we receive average value
of the Euler characteristic,see Bobrowski [15]

χ(B) = L(B0)− L(B1) (3)

4 Results

We used a time sequence of magnetograms of the full solar disk, obtained
with the help of a Helioseismic and Magnetic Imager (HMI) tool, installed
aboard the Space Observatory SDO, see Scherrer et al. [19]. The angular
resolution of HMI data is ≈ 0.5′′/pixel (it corresponds to a linear scale of about
500 km/pixel). The data represent a matrix of 4000×4000 pixels which contains
the values of the flux density of the component Bz(x) of magnetic field of the
Sun, directed along the line-of-sight. A time interval between magnetograms
was 720 seconds, and the noise level does not exceed 6 gauss. A fragment
of 600 × 600 pixels containing the AR was cut from each magnetogram. For
the specified 720 seconds time gap about 700 consecutive images of the same
active region passing across the solar disk were available. We considered only
the 60-degrees circular area about the center of the disk to avoid the significant
geometric distortions. We used FI index of flare productivity to compare the
variations to flare activity. Roughly speaking, it measures a weighted amount of
energy produced by solar flares of various classes in the finite time interval. The
flare classes FI were converted to numeric values in a standard way, namely the
magnitudes of C class flares were not altered, for M class flares the magnitudes
were multiplied by 10, for class X were multiplied by 100, and for B class were
divided by 10 We present here the results of numerical experiments for two
flare-active regions AR 11520 and AR 11158.

AR 11158 appeared near the center of the solar disk as a compact β-class
bipolar group on February 12, 2011. Within a day it reached δ magnetic class
and on 12 February produced a flare of class M6.6. A day later M2.2 flare
followed, and, finally, on 15 February X2.2 flare occurred. After that activity
of this AR actually stopped ,see in Sun et al.[20]. The dynamics of the Euler
characteristic for the high levels of magnetic field strength is shown in Fig. 2 a).
At Fig. 2 a) represents a behaviour of the persistence homology difference
B0 − B1. The complexity of the field in Fig. 2 a) is growing for the fields of
north and south polarities, anticipating an increase in flare productivity. Little
depression could be seen before the big flare. For comparison, Fig. 2 b) shows
the behaviour of the Euler characteristic obtained by the persistent homology .
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Here we note a depression in the EC graph preceding the phase of flare activity.
The depression is the most obvious about a day before the X flare.
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Fig. 2. The dynamics of EC for AR 11158: high levels of magnetic field strength (a).
The dynamics of persistent homology b0-b1 (b)

AR 11520. This active region appeared on the Sun on July 8, 2012. It was
immediately assigned to the class of complex large groups of δ-configuration
with a possible high flare productivity. Initially, the region was a single large
penumbra which contained many small spots of the opposite polarity. In the
course of evolution it began quickly disintegrate into several compact regions.
Against all expectations, the AR 11520 produced only four flares of M class
and one flare X1.4 on 12 July. The last flare approximately corresponded to
the localization of the group near the center of the solar disk. After that the
AR 11520 flare activity stopped. At Fig. 3 a) dynamics of EC at high levels of
magnetic field is shown , before the X flare strong depression could be seen. An
Fig. 3 b the evaluations of the Euler characteristic for the AR 11520 obtained
by the persistent homology are shown. Again we can see well marked variations
in topological complexity of the field before the X flare.
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Fig. 3. The dynamics of EC for AR 11520: high levels of magnetic field strength (a).
The dynamics of persistent homology b0-b1 (b)

5 Conclusion

The main aim of the present work was to develop some topological approaches
for the analysis of the magnetic field of the Sun which are oriented to the de-
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tection of pre-flare scenarios. The data are SDO/HMI magnetograms. Two of
them were selected for the analysis AR 11520 and AR 11158. For these active
regions the strongest flares of the class X far from the limb of the disk were
observed. For the corresponding sequence of magnetograms we obtained time
variations of the Euler characteristic. The EC was estimated in two ways. With
the first approach, it is obtained as one of the Minkowski functionals computed
on the excursion sets of the observed component of the magnetic field strength.
The second way is based on the methods of computational topology. The per-
sistence diagrams were used for the estimation of the sum of barcodes lengths
for the first two Betti numbers. The alternating sum of this lengths might be
considered as the averaged estimate of the Euler characteristic. In morpho-
logical approach for each magnetogram we computed the whole set of EC for
each of excursion set, after that we need to specify some level of magnetic field
and track evolution of EC of them. On the contrary, the persistent homology
consider the full structure of the magnetic field of the AR.

The active regions under study demonstrate different dynamics which are
tracked by patterns of the magnetic field. Typically significant variations of
the Euler characteristic often precede the flares. It should be noted that the
results presented in this paper confirm our earlier works obtained from the
MDI/SOHO magnetograms. This fact slightly compensates for a lack of the
adequate statistical sample restricted by the low level of the solar activity at
the present time. Nevertheless, topological approaches satisfy the empirical
considerations of the primary role of topological changes in the magnetic fields
of active regions.
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Abstract: The phenomenon of chaotic cross-waves generation in fluid free surface in 
two finite size containers is studied. The waves may be excited by harmonic 

axisymmetric deformations of the inner shell in the volume between two cylinders and in 

a rectangular tank when one wall is a flap wavemaker. Experimental observations have 

revealed that waves are excited in two different resonance regimes. The first type of 
waves corresponds to forced resonance, in which axisymmetric patterns are realized with 

eigenfrequencies equal to the frequency of excitation. The second kind of waves is 

parametric resonance waves and in this case the waves are "transverse", with their crests 

and troughs aligned perpendicular to the vibrating wall. These so-called cross-waves 
have frequencies equal to half of that of the wavemaker. The existence of chaotic 

attractors was established for the dynamical system presenting cross-waves and forced 

waves interaction at fluid free-surface in a volume between two cylinders of finite length.  

In the case of one cross-wave in a rectangular tank no chaotic regimes were found. 
Keywords: Cross-waves, Wavemaker, Fluid free sureface, Averaged systems, Parametric 

resonance, Chaotic simulation.  

 

1    Introduction 

TThhee  pphheennoommeennoonn  ooff  ccrroossss--wwaavveess    ggeenneerraattiioonn  iinn  ffrreeee--ssuurrffaaccee  wwaavveess  ooff  aa  fflluuiidd  

ccoonnffiinneedd  iinn  aa  rreeccttaanngguullaarr  ttaannkk  wwiitthh  tthhee  ffiinniittee  ddeepptthh  aanndd  oonnee  wwaallll  aass  aa  ffllaapp  

wwaavveemmaakkeerr  is rather known, Faraday, 1831, [3]. The waves may be excited by 

harmonic oscillations of wavemaker and depending on the vibration frequency 

both axisymmetric and non-symmetric wave patterns may arise. Experimental 

observations have revealed that waves are excited in two different resonance 

regimes. The first type of waves corresponds to forced resonance, in which 

axisymmetric patterns are realized with eigenfrequencies equal to the frequency 

of excitation. The second kind of waves is parametric resonance waves and in 

this case the waves are "transverse", with their crests and troughs aligned 
perpendicular to the vibrating wall. These so-called cross-waves have 

frequencies equal to half of that of the wavemaker, Faraday, 1831, [3]. To 

obtain a lucid picture of energy transmission from the wavemaker motion to the 

fluid free-surface motion the method of superposition, Lamé, 1852, [8], has 

been used. TThhiiss  mmeetthhoodd  aalllloowwss  ttoo  ccoonnssttrruucctt  aa  ssiimmppllee  mmaatthheemmaattiiccaall  mmooddeell,,  wwhhiicchh  

sshhoowwss  hhooww  tthhee  ccrroossss--wwaavveess  ccaann  bbee  ggeenneerraatteedd  ddiirreeccttllyy  bbyy  tthhee  wwaavveemmaakkeerr..  AAllll      

pprreevviioouuss  tthheeoorriieess  hhaavvee  ccoonnssiiddeerreedd  ccrroossss--wwaavveess  pprroobblleemm  aappppllyyiinngg  tthhee  

HHaavveelloocckk’’ss,,  11992299,,  [[22]],,  ssoolluuttiioonn  ooff  tthhee  wwaavveemmaakkeerr  pprroobblleemm  ffoorr  aa  sseemmii--iinnffiinniittee  

ttaannkk  wwiitthh  aann  iinnffiinniittee  ddeepptthh  aanndd  aa  rraaddiiaattiioonn  ccoonnddiittiioonn  iinnsstteeaadd  ooff  zzeerroo  vveelloocciittyy  

ccoonnddiittiioonn  aatt  tthhee  ffiinniittee  bboottttoomm..   
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As the second task the phenomenon of deterioration of fluid free-surface waves 

between two cylindrical shells when the inner wall vibrates radially is 

considered in the present paper.  

 

2    Approximation of Cross-waves in Rectangular Container 

Let us theoretically consider the nonlinear problems of fluid free-surface waves 

which are excited by a flap wavemaker at one wall of rectangular tank of a finite 

length and depth. From the experimental observations, Krasnopolskaya, 2013, 

[6], we may conclude that the pattern formation has a resonance character, every 

pattern having its "own" frequency. Assuming that the fluid is inviscid and 

incompressible, and that the induced motion is irrotational, the velocity field can 

be written as v . Let us consider that patterns can be described in terms of 

normal modes with characteristic eigenfrequencies, we approximate free surface 

displacement waves, when the excitation frequency   is twice as large as one 

of the eigenfrequencies, i.e. 2 nm  , and also  is close to other 

eigenfrequency   0l  ,    as  a function written in the form 

00( ) cos cos ( ) cos .nm lo

n x m y l x
t t

L b L

  
                       (2.1)  

When
3/2

1( ) ( )nm t O  , 1( )lo O  , 1( )lo O   and

2

1
nma

g


   

Where a is an amplitude of wavemaker oscillations, L is the length, b is the 

width and h is the depth of the fluid container. Then a potential of fluid velocity 

1 2 0       as the solution of the harmonic equation and according to [5] 

has following components 
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Where 
1/2

1( ) ( )nm t O  and 1( )lo O   

Using kinematical free-surface boundary conditions, Krasnopolskaya, 2012, [5],  
2

0 1 0 1 1 2( ) ( ) ( ) ( ) ( ) ( )z z zz zz zzz zz                 

1 1 0 2( ) ( ) ( ) ( )t x x y y x x y y                

1 1( ) ( )xz x yz y     ,  

we may find that the amplitude of the resonant cross-wave mode is 

1( ) cos ;
th
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nm nm

t D t
k k h
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                           (2.2) 
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Applying the dynamical boundary condition  
2

0 1 1 1 2( ) ( ) ( ) ( ) ( )t t tz tzz t g             

2 2 2

1 1 1 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x y z x x y y z z                    

1 0 1 0 1 1( ) ( ) ( ) ( ) ( ) ( )x x z z z zz            

1 1 1 1 0( ) ( ) ( ) ( ) ( ),x xz y yz F t         

we can get for the resonant amplitude an equation of parametric oscillations 

2 2 2 3 2 29 3

16 4
nm nm nm nm nm nm nm nm nmk k          

1 2 1 5sin cos 0.nm nmD t D t                             (2.3) 

 We can write it for the rectangular tank with 50L   m, h= 2.5 m, 6.8b  m  

and for the wave numbers 40n  , 10m   in the form 

2 2 2 3 2 29 3

16 4
nm nm nm nm nm nm nm nm nmk k          

20.0478 sin 0.0299 cos 0.nm nm nm nmt t                   (2.4) 

Where 

2 2

2 ,nm

n m
k

L b

    
    
   

 the frequency is 2 1.143nm  Hz. We 

may use the transformation to the dimensionless variables   /nml   , p , 
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,nmt   and finally get a dynamical system (when 2 2.27  Hz and 

0.26  m) in the following form 

3 21.0504 1.4003 0.0478 sin(2 ) 0.0299 cos(2 )p l p l lp Al Ap

l p

            

  

This system (at 2
nm




  =0.014 and additional damping forces 

with 0.01  ) has for any initial conditions only regular solutions. As an 

example in the fig.1 the phase portraits for different values of parameter A 

(which is proportional to the amplitude of wavemaker oscillations) are shown. 

Power spectra are presented in fig.2. They are discrete for  different values of A. 

 
a) 12A  

 
b) 27A  

 

Fig. 1. Phase portraits for different values of wavemaker oscillations A. 

 

 
a) 12A  

 
b) 27A  

 

Fig. 2. Power spectra computed for l time realization for different A.   

3    Two Mode Model of Cross-waves in a Cylindrical Tank 

Now we theoretically consider the nonlinear problems of fluid free-surface 

waves which are excited by inner shell vibrations in a volume between two 

cylinders of finite length. It is useful to relate the fluid motion to the cylindrical 
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coordinate system ( , , )r x . The fluid has an average depth d ; the average 

position of the free surface is taken as 0x  , so that the solid tank bottom is at 

x d  . The fluid is confined between a solid outer cylinder at 2r R  and a 

deformable inner cylinder (which acts as the wavemaker)  at average radius 
01

1 1 0 1 0( ) cos( ) 2 /
d

R r a d x dx r a 


    . This inner cylinder vibrates 

harmonically in such a way that the position of the wall of the inner cylinder is 

1 1 1 0 1 0( , ) ( cos )cos 2 /r R x t R a a t x a         ,where / (2 )d  .  

The potential   can be written as the sum of three harmonic functions 

0 1 2      , Lamé, 1852, [8]. The solution of the linear problem for 1  can 

be written in the form, Krasnopolskaya, 1996,  [4] 

 

, ,
1

0 1
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( ) ( , ),
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i j i j i j

k x d
t r

N k d
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 


    (3.1) 

 

on the complete systems of azimuthal ( cosi , sin i ), and radial 

eigenfunctions 
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Y k R
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



  , with some 

arbitrary amplitudes 
, ( )c s

i j t . In the solution (3.1) the notations 

, ( , ) ( )(cos ,sin )c s
i j i j i jr k r i i      are used, where iJ  and iY  are the i -th 

order Bessel functions of the first and the second kind, respectively, and i jN  is 

a normalization constant, where the index c  (or s ) indicates that the 

eigenfunction cos i  (or sin i ) is chosen as the circumferential component; 

i jk  represents eigen wave numbers. The system of functions ( , )i j r  , with 

0,1,2,...i   and 1,2,3,...j  , is a complete orthogonal system, so any 

function of the variables r  and   can be represented using the usual procedure 

of Fourier series expansion. Thus, the free surface displacement 

0( , , ) ( )r t t    can be written as ( 0 ( )t is the mean level of fluid free 

surface oscillations) 

 
,

,
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0 1

( , )
( , , ) ( ) ( ) .

c s
i jc s

i j
i j i j

r
r t t t

N

 
   
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     (3.2) 

 

Under a parametric resonance, when the excitation frequency is twice as large as 

one of the eigenfrequencies, i.e. 2 nm  , and according the experimental 
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observations we may assume that the free-surface displacement can be 

approximated by two resonant modes. So that we may write [4] 

0 0 0
0

1 1
( , ) ( )c

nm nm l l
nm l

r r
N N

                                               (3.3) 

 

where 0l is the axisymmetric mode which has the eigenfrequency by a value 

very close to  , i.e. 0l  . From the experimental observations follows 

that cross-waves has ampliteds much bigger than the amplitudes of the forced 

waves with the frequency   of the wavemaker vibrations. So that we can seek 

the unknown functions in the form 

 

1/2

1 1 1 1 1 1

0 1 0 2 1 2 1

( ) ( )cos ( )sin ;
2 2

( ) ( )cos ( )sin ,
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 
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 
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where 
1

1 th( )nm nmk k h  , 

2

1
g

nma
   is a small parameter, 1 1

1

4
t    

 is a dimensionless slow time, 0 0

1

0th( )l lk k h  . By substitution of the 

expressions (3.4) into boundary conditions, Krasnopolskaya, 1996, [4] and 

averaging over the fast time t  we finally obtain the dynamical system in the 

form, Krasnopolskaya, 2013, [7], 
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                                      (3.5) 

 

where 
2

1
6 2

1 1( )
2

p q


 
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

 


, 

nm





 ,  is the ratio of actual to 

critical damping of the mode, i (i=1,2,…6) are constant coefficients. The 

dynamical system (3.5) is nonlinear, so numerical solutions were obtained. We 
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used the following coefficients (Krasnopolskaya, 1996, [4] – Becker, 1991, [1]) 

and data: 

 0.01; 3 =1.3k; 4 =0.25; 5 =0.235k; 6 =1.12; = -1.531; 

1 1 2 2(0) (0) (0) (0)p q p q    0.5. 

For these parameters and for different values of k (which is dimensionless 

amplitude of the wavemaker vibrations) extensive numerical calculations were 

carried out in order to find all steady state regimes. In Figure 3 dependences of 

the maximum Lyapunov exponents on value k are shown for the different values 

of the detuning parameters  1  and 2  . 

 
a) at 1 0,   2 0.2   

 
b) at 1 0.2,   2 0   

 

Fig. 3. The dependence of the maximum Lyapunov exponent on value k.  

 

Comparing these dependencies we may conclude that the dynamical system, 

which corresponds to the case when there is no detuning between the half of the 

frequency of excitation   and the  eigenfrequency of the cross-waves  nm , 

i.e. 1 =0, and there is the detuning of frequencies for the axisymmetric mode  

2 =0.2, has chaotic regimes in the wider area of  the parameter k changing. 

To demonstrate this we show in Figure 4 and 6 the phase portraits of solutions 

for the first case and the second when 1 0.2   and there is no detuning for the 

axisymmetric mode, i.e. 2 =0. In Figure 4 c) we have the chaotic attractor and 

in Figure 6 c) the regular cycle. And in Figure 4 attractors occupy bigger areas.  

Power spectra for considered cases are show in Figures 5 and 7 correspondently. 
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a) 0.5k   

 
b) 0.8k   

 
c) 1k   

 
d) 3k   

Fig.4. Phase portraits for regular (cases a, b) and chaotic regimes (cases c, d)  

when 1 0,   2 0.2  . 

 

 
a) 0.5k   

 
b) 0.8k   
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c) 1k   

 
d) 3k   

Fig. 5. Power spectra computed for 1p  data  (cases a, b, c and d) when 1 0,   

2 0.2  . 

 
a) 0.5k   

 
b) 0.8k   

 
c) 1k   

 
d) 3k   

Fig.6. Phase portraits for regular (cases a, b) and chaotic regimes (cases c, d) 

when 1 0.2,   2 0  . 
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a) 0.5k   

 
b) 0.8k   

 
c) 1k   

 
d) 3k   

Fig. 7. Power spectra computed for 1p  data  (cases a, b, c and d) for the case 

when 1 0.2,   2 0  . 

As we may conclude from numerical data and graphs in Figures 3-7 the 

dynamical system (3.5) has both regular and chaotic regimes. The chaotic 

regimes could be realized when 1k  for the first case and 1.6k   for the 

second considered case. For such values of corresponding amplitudes of 

wavemaker oscillations the largest Lyapunov exponents are positive, phase 

portraits have complicated structures of trajectory sets and power spectra are 

continuous ones. 

 

4    Conclusions 

Two new models expressing interaction of two eigenmodes at the condition of 

parametric resonances for the cross-waves of fluid free surface oscillations are 

developed.  Models are simulated. The existence of chaotic attractors was 

established for the dynamical system presenting cross-waves and forced waves 

252



  

interaction at fluid free-surface in a volume between two cylinders of finite 

length. For the system describing resonant cross-waves in the rectangular tank 

no chaotic regimes were found because the connection coefficients of cross-

waves with the axisymmetric waves under the forced resonance are values on 

much smaller order then considered here. So that there are less factors to 

destabilize the system. 
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Abstract. Main task of modern airspace industry is delivery heavy-weight cargo element 

on earth orbit. Lunching spacecraft by aerospace system of “sea launch” nearby equator 

is preferably from economical point of view. Aerospace system which based on super-

heavy amphibious aircraft Be-2500 was offered as the subject of the study. The purpose 

of research is development of nonlinear algorithm of motion control of aerospace system 

on take-off and injection into Earth orbit. This algorithm provides desirable value of 

airspeed, orbital altitude and prevents withdrawal from flying path. There is used the 

synergetic method of analytical designing of aggregated regulators (ADAR) to synthesize 

the basic control laws. 

Keywords: Aerospace System, Synthesis of Control Laws. 
 

1  Introduction 
 

Main task of modern airspace industry is delivery heavy-weight cargo element 

on earth orbit. Lunching spacecraft by aerospace system of “sea launch” nearby 

equator is preferably from economical point of view. Launch failure from the 

platform "Sea Launch" may cause a serious threat for ecology of World oceans. 

Therefore, the most appropriate for injection spacecraft into orbit is using of 

aerospace system “Air Start”, based on project super heavy amphibious aircraft 

Be-2500, which developed at JSC "Beriev Aircraft Company. Air Start system 

consists of lunch aircraft, upper-stage rocket and spaceplane, see Figure 1 

(Kobzev et al. [1]). All stages are returnable and reusable. Super-heavy 

amphibious aircraft can transport upper-stage rocket and spaceplane in any point 

on the planet and take-off as from the airport and from water. Injection into 

Earth orbit consists from three stages. On the first stage: take-off of launch 

aircraft with upper-stage rocket with spaceplane aboard and lift at release 

altitude of upper-stage rocket. Upper-stage rocket with spaceplane aboard are 

separating from launch aircraft. On the second stage: upper-stage rocket with 

spaceplane aboard reaching hypervelocity acceleration and spaceplane 

separating from upper-stage rocket. On the third stage: solo flight of spaceplane 
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and placing in Earth orbit. Transporting of Super-heavy amphibious aircraft to 

any point on the planet increase mobility of space lunching complexes. 

 

 
Fig. 1. Aerospace System: 1 – Lunch Aircraft; 

 2 – Upper-stage Rocket; 3 – Spaceplane 

 

Using of horizontal component of the velocity vector instead vertical launch 

vehicle allow injecting into Earth orbit cargo element with larger mass. Special 

requirements are demanding for precision piloting aerospace system and for 

docking with the orbiting space station. Therefore, it is urgent to develop a 

system of automatic control of all stages of the Aerospace system. 

 

 

2  Mathematical model of Aerospace system 
 

Nonlinear mathematical model of aerospace system consists of mathematical 

models of lunch aircraft, upper-stage rocket and spaceplane. Dynamic equation 

takes into account following factors: aerodynamic configuration, type and 

location of engines, control device, cross-feed of aerospace system elements. 

Mathematical model of the spatial motion of lunch aircraft considering below 

(Byushgens and Studnev [2]): 
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(1) 

where , , , , ,x y z x y zV V V     - projections of linear and angular speed on 

coupled coordinate system; , ,x y z  -  coordinates of the center of mass of lift 

aircraft in the earth coordinate system; , ,    - pitch attitude, bank attitude, 

yaw attitude; , ,x y zI I I  - lift aircraft moment of inertia; g - acceleration of 

gravity; m - aerospace system mass; 

1

n
s

RB BKC xi
i

X X X N
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   ;      
1

n
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x xa xRB BKC xNi
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M M M M
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1
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RB BKC yi
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Y Y Y N
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y уa yRB BKC yNi
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
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1
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RB BKC zi
i

Z Z Z N


   ;        
z

1

n
s

z za zRB BKC Ni
i

M M M M


   ; 

, ,RB BKC RB BKC RB BKCX Y Z      – increment of drag force, normal 

aerodynamic force and sideway force from upper-stage rocket with spaceplane; 

1 1 1

, ,
n n n

xi yi zi
i i i

N N N
  

    - projection of forces of upper-stage rocket- lift aircraft 

retention mechanism in coupled coordinate system; i - index number of 

retention mechanism support column; 
1 1 1

, ,
k k k

xj yj zj
j j j

P P P
  

    - projection of 

summary force of main engines and lift engines on axis of coupled coordinate 
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system; j - number of engine; 
xRB BKCM  , yRB BKCM  , 

zRB BKCM   - moment 

of aerodynamic force from upper-stage rocket with spaceplane about the axis of 

coupled coordinate system with the origin at the lunch aircraft center of mass; 

1 1 1

, , ,
n n n

xNi yNi zNi
i i i

M M M
  

    - moment of force 
1
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  
1

,
n

yi
i

N


  
1

n

zi
i

N

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the axis of coupled coordinate system; 
1
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xPj
j

M


 , 
1

k

yPj
j

M


 , 
1

k

zPj
j

M


  - moments 

of the engine thrust about the axis of coupled coordinate system. 

 

 

3  Synthesis of adaptive control laws 
 

A distinctive feature at the initial stage of take-off of aerospace system, based 

on super-heavy amphibious aircraft Be-2500, is creating under the center wing 

section dynamic air cushion from combined work of main engines and lift 

engines (Kobzev et al. [1]). Acceleration of lift aircraft provided by thrust of 

main engines and horizontal component of lift engines. With increasing 

ascentional force, aircraft completely separated from the water and lift-off. 

Climb and primary mission carried out over the desert areas, which minimizes 

the potential pollution of the ocean in an accident (Kobzev et al. [1]).  

This report proposes the synergetic method of analytical designing of 

aggregated regulators (ADAR) (Kolesnikov [3]) to the problem of designing 

control strategies of an aerospace system. At the initial stage of lunch aircraft 

takeoff, where the lunch aircraft had already lifted the starting surface, it is 

necessary to stabilize the lunch aircraft and orientate on a course for further 

forward movement. Aircraft speed is still insufficient for the effective operation 

of the aerodynamic controls (elevator, rudder, aileron, etc.), and control of 

aircraft is realized by varying of thrust of the lift and main engines. Synthesize 

vector control law u(t), capable to providing the predetermined invariants 

(objectives of management) 
* * *

, , ,0 0 0x x y y z zV V V V V V       

* 0   , *   and able to parry external unmeasured disturbance 

(Bukov [4], Podchukaev [5]). In accordance with the method ADAR, write 

extended mathematical model of synergistic synthesis in variables of system 

status obtained from the model (1) by adding integrators to the original system: 
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where
1 2 3 4 5 6 7, , , , , , ,x x z x y zx V x V x V x x x x x          

8 9 10 11 12, , , ,x y x z x x x        – variables of system status; 
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1 1 1 1 1
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k k k k k

xj yj xPj yPj zPj
j j j j j

u u u u uP P M M M
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         – 

controls; 1 2 3, ,z z z – dynamic variables, representing the external evaluation of 

unmeasured disturbances, acting on the control object; 
1 2 3, , 0k k k   – fixed 

coefficients. 

According to the method ADAR (Kolesnikov [3]), write the first array of macro 

variable: 
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which must satisfy the system of functional equations 

    0m m mT t t   , 1,2,...,5m  , (4) 

where: 
mT  – time constants, which affects to the quality of the dynamics of the 

process in a closed system " control object – regulator”; »; l , 1,2,3l   – any 

connecting function, so called "internal" control actions, which are selected in 

the subsequent stages of the synthesis procedure; ; 0mT   – condition of 

asymptotic stability in the whole equation (4) concerning to varieties 0m  . 

Putting in (4) at the intersection of invariant variety, obtain the system of 

algebraic equations: 

1 2 4 1 5 2 6 30; 0; 0; 0; 0.x x x x x           (5) 

Express from the system of equations (5) "internal" controls l  and substitute 

them into the right sides equation of the object (2), where missing controls mu . 

As a result, at the intersection of invariant variety 0m   observed effect of 

dynamic "compression phase space" (Kolesnikov and Kobzev [6]). Dimension of 

the representative point of the system (2) decreases, the equation of decomposed 

system will assume an aspect: 
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For decomposed system (6) introduces a second set of macro variables: 
*
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where: 
4 5, 0k k   – fixed coefficients. 
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Set of macro variables (7) must satisfy the solution of the system of functional 

equations: 

    0h h hT t t   , 6,7,8h  , (8) 

where: 
hT  – time constants, which affects to the quality of the dynamics of the 

process in a closed system. Combined analytical solution of equations (6), (7) 

and (8) allow to find an expression for the 'internal' controls l , as functions 

variables of the system status 
3 10 11 12, , ,x x x x , time constants 

hT , dynamic 

variable 
3z  and technologic invariant 

12x
. 

Solving the system of functional equations: 
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Obtain expressions for the "internal" controls: 
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(10) 

 

Solving the system (4) of functional equations of ADAR method together with 

the expressions obtained for l  (10), equations of the model object (2) and 

macro variables (3), obtain the desired external controls as a function depending 

on the variables of system status: 
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4  Modeling 
 

Substituting the expressions obtained for the control laws (11) in the extended 

model of the object (2), setting the controller parameters and technological 

invariants, obtain a closed system "object - a regulator." In the right sides of the 

controlled variables introduce piecewise constant disturbance instead of 

estimates of perturbations 1 2 3, ,z z z . Results of numerical modeling with 

parameters of a specific object controls are presented at figure 2÷11. 

 

 
   

Fig. 2. Linear Velocity Components-Time 

Curves, m/s 

Fig. 3. Angular Velocity-Time 

Curves, deg/s 

    

Fig. 4. Coordinates of the Center of Mass-

Time Curves, m 

Fig. 5. Pitch, Roll, Yaw Attitude-Time 

Curves, deg 

 
 

Fig. 6. Controls u1, u2, kg Fig. 7. Controls u3, u4, u5, kg·m 
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Fig. 8. Phase Image, 

invariant
12x

=0.09 rad 

Fig. 9. Phase Image, 

 invariants 
1x

=0 m/s; 
10x

=0 rad 

  
Fig. 10. Phase Image, 

 invariants 
1x

=0 m/s; 
3x

=0 m/s 

Fig. 11. Phase Image, 

 invariant
12x

=0.09 rad 

 

Conclusions 
 

Results of simulation show, that the obtained control laws provide asymptotic 

stability of the closed nonlinear system, realize objectives of management and 

compensate external disturbances, therethrough reduce crew workload and 

enhance the safety of the lunch aircraft at the initial phase of takeoff. 
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Abstract. Since mathematical models describing the work of transmitting-receiving units 

of modern chaotic information systems have become more complex, modeling of 

information properties of deterministic chaos is becoming more topical. The paper 

presents the results of a wide range of works related to the modeling of dynamic chaos 

usage in modern telecommunication systems - from generating chaotic sequences to their 

application for information security and as the actual information media. 

Keywords: Deterministic chaos, chaotic system, computer modeling, information 

properties. 
 

1  Introduction 
 

Nowadays, there is a rapid development of both new methods of information 

transmission and security, and new means of processing analog and digital 

information flows that come in opened or closed state. Deterministic chaos is 

one of the new elements which is recently started to be frequently used in 

modern communication systems Banerjee et al.[1]. In short, this phenomenon is 

complex nonperiodic oscillations that occur under certain conditions 

(parameters) and are the inner nature of the so-called chaotic dynamical systems 

Cvitanovic et al.[2]. This paper presents generalized complex results on the 

dynamic chaos usage in modern communication systems, which are carried out 

in the laboratory for the study of chaotic processes in radio-engineering of the 

Physical, Technical and Computer Science Institute of Chernivtsi National 

University.  

The paper has the following structure. In the second section the relation between 

the Lyapunov exponents and information properties of chaotic oscillations is 

analyzed. The third section is devoted to the modeling of hyperchaotic systems 

in the environment LabView. In the fourth section some topical issues of the 

dynamic chaos usage for information security are discussed, namely the 

formation of pseudorandom generators based on two chaotic systems. The fifth 

section presents the studies of models of information systems using 

deterministic chaos and also some obtained numerical characteristics. 
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2  Lyapunov exponents and information properties of chaotic 

signals 
 

For practical use of chaotic signals it is necessary to use criteria of signals 

complexity. The characteristics of chaotic signals, allowing them to be 

compared include: fractal dimensions (correlation dimension, information 

dimension), Fourier spectrum, Poincare section, Lyapunov exponents, 

topological entropy, etc  Francis C. Moon[3]. Fractal dimension of the attractor 

allow to evaluate the metric complexity of its trajectories in phase space. Fractal 

characteristics of chaotic attractors are invariant to the time scale of chaotic 

systems. The information properties of signals are important for communication, 

cryptography and other applications. Visual image of a dynamic system is its 

attractor. 

Informational properties of chaotic oscillations can be estimated using the 

Lyapunov exponents. In the theory of dynamical systems the Lyapunov 

exponent is a quantitative measure of the exponential divergence of initially 

close trajectories. If the initial distance between the trajectories is d0 then at time 

t the average distance between them will be tedtd 0 , where λ – Lyapunov 

exponent. In terms of information theory, the largest Lyapunov exponent is 

numerically equal to the average information created by a dynamic system. 

Next, we show that the Lyapunov exponents are dependent on the time scale of 

the dynamic system. 

Consider the Rossler system, described by the system of three differential 

equations Rossler[4]: 

                                                     

),(

,

),(

cxzb
dt

dz

ayx
dt

dy

zy
dt

dx

                                  (2.1) 

where x, y, z – state variables, a = 0.15, b = 0.2, c = 10 – system parameters for 

which there is a chaotic regime. 

The values of the Lyapunov exponents of the system (2.1) are as follows:         

λ1 = 0.09, λ2 = λ3 = -9.82. We will change time scale in the system (2.1) by 

replacing t = ktʹ, where k > 0, and obtain a system (2.2):  

                                                     

)),((

),(

),(

cxzbk
dt

dz

ayxk
dt

dy

zyk
dt

dx

                               (2.2) 

Systems (2.1) and (2.2) have the same chaotic attractors and fractal dimensions, 

but the Lyapunov exponents of the system (2.2) are linearly dependent on the 

parameter k as shown in Figure 2.1. 
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By varying the time scale of chaotic systems (2.2) by changing the parameter k 

it is possible to control the speed of generating information. This is a practical 

method of information properties management of dynamical systems. At the 

same time, the change of time scale of chaotic systems is equivalent to the 

change of width of the oscillations spectrum in k times. This means that the 

value of the senior Lyapunov exponent and the width of the signal spectrum are 

interconnected. For example, consider two chaotic flow systems – the Rossler 

system (2.1) and the Lorenz system Lorenz[5]: 

                                                        
,

,
),(

bzxyz
xzyrxy

ayx





                                     (2.3) 

where σ = 10, r = 28, b = 8/3 – system parameters. 

  
а b 

Fig. 2.1. Dependence of the Lyapunov exponent on parameter k: λ1, λ2 – a;        

λ3 – b. 

 

For the Lorenz system for the given parameters the values of the Lyapunov 

exponents are as follow: λ1 = -9.82, λ2 = 0.9, λ3 = -14.57. The value of the 

largest Lyapunov exponent of the Lorenz system is greater than the largest 

Lyapunov exponent of the Rossler system in 10 times. As shown in Figure 2.2 

and Figure 2.3 the signal spectrum of the Lorenz system is more complex and 

broader than in Rossler system. 
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Fig. 2.2. Normalized spectrum of the 

variable x of the Rossler system (2.1) 

Fig. 2.3. Normalized spectrum of the 

variable z of the Lorenz system (2.3) 
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In general, the signal complexity is a composit concept and includes spectral, 

information and metric data. Therefore, we can conclude that the Lyapunov 

exponent characterizes the signal complexity in terms of its information 

properties, but contains little information regarding the complexity of the metric 

structure of the signal. This means that it is incorrect to compare in general the 

signals complexity of continuous dynamic systems using only the value of the 

largest Lyapunov exponent. 

 

3  Modeling of information properties of the hyper-chaotic 

Lorenz system 
 

Hyper-chaotic Lorenz system is described by equations: 
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                            (3.1) 

where cba ,,  – system parameters, zyx ,,  – initial conditions, k  – constant that 

determines the attractor, which in some senses can be chaotic, and in particular 

– controlled Tiegang Gao et al.[6]. 

For modeling of information properties of the hyper-chaotic Lorenz system we 

used LabView programming environment [7]. 

Figure 3.1 shows the block scheme that implements of hyper-chaotic Lorenz 

system. The main functional part is a formula node, in which would include the 

equation (3.1). In the input formula node fed values of system parameters 

( cba ,, ) and the value of the initial conditions ( zyx ,, ). At the output assigned 

equations (3.1). Also, the output is an opportunity to demonstrate the solution of 

equations in three dimensions. 

When changing the system parameters and initial conditions we can be analyzed 

in detail and investigate the behavior of a hyper-chaotic Lorenz system, which 

in many cases is a basic element of the functional blocks of chaotic secure 

communication systems. 
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Fig. 3.1. Block scheme of hyper-chaotic Lorenz system 

 

Figure 3.2 shows the software interface which shows these information 

modeling properties as temporal distributions of the values of the coordinates X, 

Y, Z, three-dimensional map of hyper-chaotic attractor and phase portraits in the 

planes XY, XZ, i YZ, when the number of iterations 5000N , the system 

parameters 10a , 28b , 3/8c , 1,0k , and initial conditions 

1zyx . 

 
Fig. 3.2. Software interface which shows modeling of information properties 

 

Figure 3.3 shows the spectral analysis of chaotic coordinates X, Y, Z with the 

number of iterations 5000N  which was conducted using fast Fourier 

transform. The value 0.01 corresponds to 100 Hz. 
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Fig. 3.3. Fourier spectral analysis when the number of iterations 5000N  

 

Developed block diagram in LabView programming environment allows the 

program to explore the hyper-chaotic Lorenz system. 

 

4  The use of dynamic chaotic systems in cryptography 
 

Since with the development of information technology there is as well the 

development of means of data interception, there is a need in the development 

of new algorithms of information encryption. Dynamic systems are sensitive to 

the initial conditions and control parameters, which makes them good 

candidates for use in the development of encryption algorithms. 

We have proposed a method of generating pseudorandom sequence of bits using 

two dynamic chaotic systems and operations XOR Shahtarin et al.[8]. The first 

dynamic system – the Lorenz system described by equation (4.1), the second – a 

logistic mapping described by equation (4.2). 
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                 (4.1) 

where x, y, z – dynamic variables; a, b, c – parameters of the Lorenz system, 

which usually possess the values a = 10, b = 8/3, c = 28. 

),1(1 nnn r                  (4.2) 

where νn and r – system variable and system parameter respectively, n – 

iteration number. The system parameter r is a significant part of the equation 

and if the values 3.57 < r <4 the system is characterized by chaotic behavior. 

Both dynamic systems were used to generate values of dynamic variables 

Arvind et al.[9]. The values of dynamic variables x, y and z of the Lorenz 

system were compared with the generated value of logistic mapping. If the 

value of Lorenz system variable was larger than the value of the variable of 

logistic mapping, a decision was made that the generated logical «1» otherwise 

logical «0». Thus three sequences of bits are being generated k1, k2 and k3 that 
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are joined together using XOR operation thus forming total pseudorandom 

sequence of bits. Then the obtained sequence can be used for information 

encryption. 

However, for the correct operation of such generator it is necessary to 

coordinate the range of output values of the Lorenz system with the range of 

output values of logistic mapping. This is done by mapping the obtained value 

of the variable within the interval (0;1). 

We have performed simulation of the proposed generator operation in the 

environment LabView, block diagram of the generator is shown in Figure 4.1. 

Simulation has shown that the proposed generator can be easily implemented by 

software and is quite quick Kosovan[10]. 

 
Fig. 4.1. Block diagram of the generator based on two dynamic systems 

 

Also, we have implemented the proposed generator in the programming 

language Delphi 7 an external view of the program is shown in Figure 4.2. 

 
Fig. 4.2. An external view of implementation program of the bit sequences 

generator, where x0, y0, z0 and ν0 – initial conditions of dynamic systems; a, b, c 

and r – control parameters; dt – integration step; n – the length of generated 

sequence. 
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To check whether the proposed generator has the properties of a pseudo 

randomness, the sequence of bits with the length of 16000000 bits was 

generated. The sequence generation was performed when the values of initial 

conditions were the following: for the Lorenz system x0 = 0.1347, y0 = 0.9573, 

z0 = 0.3681, a = 10, b = 2.67, c = 28 and integration step dt = 0.05741 for cubic 

mapping ν0 = 0.1562 and r = 3.9979. In this algorithm the integration step dt  

and control parameter r play a significant role in keys forming, so it is necessary 

to carefully select their values to be able to obtain the generated pseudorandom 

sequence of bits of large length. 

The obtained sequence was tested using a set of statistical tests NIST STS-1.6. 

15 of 16 tests passed. 

On the basis of obtained results we can conclude that the generated sequence is 

really pseudorandom and the proposed generator can be used in the 

development of algorithms of information encryption. Also the proposed 

generator has a large number of keys (initial conditions and parameters), namely 

9 of which 6 can change their values over the sufficiently wide range. If you set 

keys with an accuracy of 5 decimal places a number of their possible 

combinations will be approximately 10
35

. Such a large number of keys 

complicates their selection and makes brute-force attack more complex and 

costly. 

 

5  The research of the possibility of information recovery, its 

hiding and noise immunity in information systems using 

deterministic chaos 
 

Nowadays, the development of digital systems of hidden communication using 

chaotic signals is a topical issue. Numerous works offer analog communication 

systems that use the synchronization of transmitter and receiver for data 

recovery Politansky et al., Eliyashiv et al.[11-12]. The research has found that 

such systems possess low noise immunity caused by high sensitivity of chaotic 

synchronization to the noises in the communication channel and by the 

parameters detuning of drive and response generators. The use of digital 

systems provides both the rise of noise immunity level of data transmission 

process, compared to the analog ones, and the possibility of encoding Bollt, Lai 

[13] and cryptographic security methods Baptista[14] application. 

The most widely used scheme for hidden digital communication is the chaotic 

switching scheme using full synchronization phenomenon Koronovskii[15]. 

Among the systems of hidden transmission of analog information the most 

widely used is the circuit with the use of chaotic masking Downes, Ivanyuk et 

al.[16-17] that is analytically defined by the system of differential equations 

(5.1). The principal of system operation is as follows. One of the output chaotic 

oscillations of the generator x(t) is summed up with an analog data signal m(t) 

followed by transmission to channel. Security of the data transmission process 

through the channel is ensured by complete overlap of the data signal spectrum 

by chaotic oscillation spectrum. The receiver contains one chaotic generator 
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u(t), identical to transmitter generator. Recovered signal can be obtained after 

passing through subtractor as the difference between the receiver input signal 

and the response generator output signal. The control parameters variety of 

drive and response generators and the presence of noises in communication 

channel results in arising of synchronization error that equals the error of data 

signal recovery. Desynchronization of transmitter and receiver generators 

eliminates the possibility of data recovery, transmitted through the channel. 

Besides, it is necessary to ensure the ratio signal/noise no less than 35 dB for 

accurate data recovery, which is its principal disadvantage Vovchuk et al.[18]. 
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where x, y, z, u, v, w – dynamic variables; e – coupling coefficient. 

When using the circuit of chaotic masking in digital systems of data 

transmission, the hiding of transmission process through the channel will be low 

as in the intervals, that are equal to the duration of data bit transmission, a strong 

constant component will take place. In order to eliminate this defect we offer a 

modification of analog circuit of chaotic masking for digital communication 

[18]. In contrast to the circuits of analog data transmission it contains a 

subsidiary generator G, the signal of which is modulated by digital data signal 

and added to the chaotic signal. The modulation is carried out with the aid of a 

key which is turned on or off depending on the value of data bit. The 

implementation of preliminary modulation and ensuring the identity of statistic 

and spectral characteristics of signals generated by the generator G and the 

masking oscillation x(t) enables to match the parameters of carrying and chaotic 

signals. Both harmonic and chaotic signal can be used as a signal G(t) [18]. The 

receiver model remained unchanged. Mathematic model differ only by the 

presence another component in the fifth equation that describes the type of 

modulated carrier oscillation, namely m(t)Asin(2πft) or m(t)y(t), when using the 

harmonic or chaotic oscillation, respectively. 

If the chaotic oscillation is used as carrier then it is sufficient for hidden 

communication that its spectrum is completely offset by masking oscillation 

one. There is other situation using harmonic signal as carrier. In this case, the 

hiding in the channel depends on its frequency and amplitude values. 

The harmonic signal hiding decreases with increasing the value of its amplitude. 

But the decrease in harmonic signal amplitude leads to the decrease in power of 

desynchronization signal of drive and response systems and consequently to the 

decrease in noise immunity of information transmission in general. Thus, for 

reliable operation of the system with chaotic masking it is necessary to choose a 

compromise between the chaotic and harmonic signal values.  

In the modeling process the amplitude A and frequency f were varied. The 

curves family (Figure 5.1) of a dependence )(
ms

hs

ms

desyn

P

P

P

P
, where 

)()( tutSdesyn PPP  - power of a desynchronization signal, )(tSP  - signal power 
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in the channel, )(tuP  - power of response generator output signal, hsP  - 

harmonic signal power, msP  - masking signal power. The figure analysis 

showed that increasing of harmonic signal amplitude leads to increase in value 

desynP . The dependence is linear when the values f are up to 1 kHz, while desynP  

does not exceed 20 % of msP . An increase f leads to the complication of 

dependence. When f are increasing closer to the upper frequency spectrum of a 

chaotic signal f7 = 3,2 kHz та 04.0
ms

hs

P

P
, the value desynP  practically does not 

depend on A and has 80-90 % of msP . If f goes beyond the chaotic oscillation 

spectrum, the dependence )(
ms

hs

ms

desyn

P

P

P

P
 gets more complicated and even when 

12.0
ms

hs

P

P
 the value desynP  increases significantly. 

 
Fig. 5.1. The dependence of the normalized power of the 

desynchronization signal on the normalized power of the harmonic signal by 

changing the values of the amplitude and frequency of the harmonic signal 

 

 
Fig. 5.2. Dependence of the probability of incorrect bits recovery on the value of 

signal/noise ratio in communication channel (1 – with harmonic oscillation used 

as a carrier signal; 2 –chaotic switching scheme; 3 – with chaotic oscillation 

used as a carrier signal) 
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Therefore, for the improvement of quality of information recovery it is 

reasonable to use the harmonic signal with a frequency close to the upper 

frequency of the chaotic signal. The obtained results can also be used for analog 

communication systems, where the harmonic oscillation is the information.  

The dependence of error probability of the received data on the value of 

signal/noise ratio in communication channel is shown in Figure 5.2. The 

obtained results show that the system of data transmission based on the usage of 

harmonic oscillation as a carrier signal yields to the chaotic switching scheme 

by its noise immunity (Figure 5.2 - curve 1 and curve 2 respectively). 

The system based on the usage of chaotic oscillation as a carrier signal is more 

resistant to noise impact in the channel (curve 3). The error probability of 

recovery when using the modified circuit with the ratio S/N0 of the order 10 dB 

is 10
-3

, whereas its value constitutes 10
-2 

while using the chaotic switching 

scheme. 

 

Conclusions 
 

  The results given in this paper once again demonstrate the importance of 

the extensive use of deterministic chaos in modern secure communication 

systems - both as a basic component for information encryption and encoding 

and as the actual information carrier. Since the behavior of information systems 

models is being studied in the various software environments, then on our 

opinion the special attention in future researches should be focused on the 

analysis of pseudorandom properties of chaotic sequences and the ability to 

control the behavior of chaotic systems. Speaking about the choice of one or 

another software environment, we would advise to pay attention to the system 

LabView, which makes it possible to analyze both software and hardware 

solutions in a very wide circuit range (from analog circuits to FPGAs). 
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Acoustic decoding of a sheep bells and trotters within 

a hired of sheep 
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Abstract: Time series analysis is used to de-convolve bell and trotter signals within a 

hired of sheep for the purpose of identifying the sheep’s activity: walking to and from 

grazing pasture and stock pens. 

 

Keywords: sheep bells, acoustic recoding, time series, overtones and walking gait. 

 

1. Introduction 
For centuries percussion instruments in the form of iron bells have been placed 

around the neck of sheep (also cattle and goats) to let herders know what’s 

going on with the herd while they are doing other things. Indeed to improve 

awareness of the shepherds to the herd’s activity, the loudest bell is placed on 

the more active bucks. The tranquil melodic bell ring while sheep are grazing 

has been used to locate herds on pasture, as well as letting the shepherds know 

that ‘all is well’. In contrast the more rapid and louder ring tones have proven to 

be a good indicator of nearby predators. To the shepherd who has been brought-

up to identify these two extremes, the acoustic signatures are easily identified, 

however it may be argued that the identifying conditions between these two 

extremes is much more difficult, and for the average person who is not involved 

in shepherding. 

Time series analysis of a series values sampled of regular intervals has 

been shown to be a power tool in de-convolving complex noise sources such as: 

turbulent fluid [1], complex information with industrial plants chemical [2], and 

White Dwarf stars [3]. This paper reports upon the use of time series analysis 

and mathematical modelling of the acoustic response of iron bells that are 

attached to three sheep within a healthy herd containing between 30 healthy 

adult male and female ‘Sfakia’ sheep. The aim of this work is to establish if the 

bell acoustics can be used to identify the sheep’s walking gait as they move 

steadily between pastures, rather than the extreme scenarios of grazing and 

threat of predators. To prevent imparted stress and ‘sheep worrying’ to a single 

sheep the acoustic measurements were performed at a distance of 20 m from the 

herd. The measurements were made in the month of October on the outskirts of 

the Cretan village of Kástelos in Western Crete. The time of the measurements 

are both in the morning (8-9 am local time) when the sheep are moved down-

hill to pastures and in the evening when they are moved back up-hill to the 

safety of their stock pens in the evening (6-7 pm). The two groups of acoustics 

measurements characterises the mood and movement of the sheep: in the _________________ 
7th CHAOS Conference Proceedings, 7-10 June 2014, Lisbon Portugal 
C. H. Skiadas (Ed) 
© 2014 ISAST                               
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morning the sheep are fresh from their rest and are walking down-hill with a 

slope of 10 degrees and average speed of 2.4 ±0.2 m.s
-1

, whereas in the evening 

the sheep are tired and walking up-hill at an average speed of 1.2 ±0.2 m.s
-1

. 

The measurement is made over seven consecutive days. It is found that speeds 

are in good agreement with the kinetic characteristic of the walking gate of a 

sheep as measured on a pressure sensing walking way [4]. 

When the clapper is struck against the rim, the metal-on-metal impact 

imparts energy instantaneously as sound travels through metal at approximately 

5130 m.s
-1

) into the bell. At this moment a temporary distortion (hum) of the 

rim occurs from the where the energy is transmitted throughout the bells to 

produce a continuous succession of partials resonate tones. It is this time 

dependent combination of strike tone and partials which gives rise to the timbre 

[5] of the bell. However and unlike tuned cast metal hand-bells and church–

bells, the sheep bell’s elliptical shape and composite design imparts boundaries 

on the transmission of energy throughout the met of the bell due to the stiffness 

at the two welded acute angles on the major axis and the less stiff regions on the 

minor axis. In addition the sheep bells perceived timbre also depends on 

whether the struck region of the rim is damped by the sheep’s neck. Thus the 

mechanical interaction within a sheep bell’s timbre is potentially more complex, 

in both pitch and amplitude, when compared to a tuned cast bell. 

 

2. Experiment 

 

2.1 Sheep bell 
The sheep bell studied here is of the composite elliptical open-bell design that is 

made from two formed iron metal sheet (1 mm thick) that are brazed/welded 

together to form the elliptical shaped aperture behind which a closed air-column 

acoustic chamber is formed. The edge dimensions of the aperture are typically 

11.5 cm between the welded seams and 16 cm from the rim to the bell node. 

The clapper is made from 4 mm diameter x 10 cm in length.  

 
Figure 1a and b: a) photograph of flat side of sheep bell, b) Schematic view of open 

aperture of sheep bell. 
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 3 

Finally the bell’s nodal point (minimum vibration point) is attached to the sheep 

using a leather strap. A photograph of a sheep bell is shown in Fig 1a and a 

schematic of the aperture of the bell are shown in Fig 1 b. 
 

 

2.1 Acoustic recording 
The sound recording and deconvolution analysis used in this study is performed 

by National instrument LabVIEW 20011 software program running on a Dell 

laptop. This software has been published elsewhere [6- 10]. The recordings 

where made using an Omi-directional condenser microphone and sampled at 

rate of 24000 samples per second with a 24 Bit depth for a period of 1 second. 

In all cases the measurement where made at a distance of 20 m from the noise 

source (bell and sheep herd). In order to identify the timbre of the sheep bell 

minor and major axis, a single bell was isolated and freely suspended and the 

clapper struck using the force of a human hand. Here we define to frequency 

that go make the timbre are in the normal healthy human hearing frequency is 

between 20 Hz to 20 kHz, but is far more in the 1 to 4 kHz [5]. These two 

recordings along with a recording of the surrounding acoustic environment 

(baseline) are used as sound references for subsequent decoding of the sheep 

traveling upon the road. To standardize the reference measurements with the 

sheep acoustic recordings a piece-by-piece Savitzky-Golay (SG) [11] moving 

window of 10 Hz is used smooth the amplitude of the time series data. This 

digital conditioning of the recordings matches the same conditioning process to 

remove the high frequency sound of the sheep’s feet impacting on the concrete 

road surface. 

 

3. Results 
Three sets of 10 bell recordings were made. These sets are reported in sections: 

3.1 for a single bell removed from sheep neck and  struck by a human hand, 3.2 

bells attached to 3 sheep within the herd as the sheep are walking up-hill 

(evening), and 3.3 as the sheep herd are walking down-hill in the morning. In all 

three cases the recording microphone is placed 20 m perpendicular to the 

direction of the herd movement. 

 

3.1. Sheep bell response (freely suspended) 
Figure 2 shows a triplet of reference acoustic spectra for the freely suspended 

sheep bell. The top spectrum is associated with the clapper striking the bell on 

the major axis, the middle spectra is associated with the clapper striking on the 

minor axis and lower spectrum is a measurement of the surrounding area 

without any strikes (baseline) and is only shown for comparative purpose here. 

Upon comparison of the spectra’s, there a number of features of note: Firstly 

the strike tone is seen to formed from two peaks with frequencies of 600 Hz 740 

Hz which is followed by harmonic related overtones/partials that exhibit dual 

picks, The overtones/partials frequencies in the major axis spectra appears to 

have a strong odd harmonic relationship to the strike tone. For example n = 3, 5, 
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7, 9 etc., whereas both even overtones/partial frequencies (n = 2, 4, 6, 8 etc.) and 

odd overtones appear in the minor axis spectra appears. The disparity that 

appearance the between odd and odd plus even overtones leads the minor axis 

spectra having a richer timbre which may be expressed by the normalised mean 

amplitude (centred around ±200 Hz) of the even overtones/partials to the strike 

tone amplitude as denoted using the standard notation of loss to the carrier 

(dBc), see the annotated dashed box for n = 2, 4, 6 and 8 in figure 2 and 

measured mean values in table 1. In table 1 it can be seen that the loss to the 

strike tone (carrier) for n = 4, 6, 8 is greater for the major axis typically 52.6 dB 

as compared to typically 41.6 dB for the minor axis. The lost however at n = 2 is 

reversed but only by 3 dB.  

0 1 2 3 4 5 6 7 8

-100

-80

-60

-40

-100

-80

-60

-40

-100

-80

-60

-40

 

 

Frequency (kHz)

baseline

 

 

A
m

p
lit

u
d

e
 (

d
B

) minor axis

n
 =

 8

n
 =

 6

n
 =

 4
 

 

major axis)

n
 =

 2

 
Figure 2: Frequency response of sheep bell as struck on the major, minor axis 

using a human hand and basline measurement. 
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Table 1. Strike tone amplitude and dBc values centred (±200 kHz) around even 

overtones/partials for both major and minor axis. 

Axis Strike tone 

(dB) 

n = 2 

(dBc) 

N = 4 

(dBc) 

n = 6 

(dBc) 

n = 8 

(dBc) 

Major axis -41 -44 -50 -52 -56 

Minor axis -47 -48 -43 -37 -45 

 

To a first approximation, the strike tone frequency (fo) and the odd 

overtone/partials frequencies (fn) may be represented mathematically using a 

standing-wave quarter wavelength closed air-column model [5-9] as shown 

equation (1). 

 

L

nc
f n

4
≈    (1) 

 

In equation (1), n is modulo frequency number, L is the physical length of 

resonator and c is the sound velocity at 20 
o
C (air: ~346 m.s

-1
; iron: ~5130 m.s

-

1
). For a closed air-column, the bell aperture defines the antinode (maximum 

pressure vibration) and the node point defines the minimum vibration point. 

Thus using equation (1), the bells 600-800 Hz strike tones equates to L = 11.4 to 

11.8 cm. Using the bell’s geometric information proved in figure 1 the 

computed value of L approximates to the bell’s major axis and either side of the 

apertures surface length which would suggest the twin peaks in the strike tone 

originate from the aperture volume and the metal rim, Given this configuration, 

odd overtones/partials are readily supported and even overtones/partials are 

suppressed. To predict both even and odd overtones/partials resonances 

equation 1 needs to modified by replacing the 4 the denominator with 2 thus 

making equation 1 to represent a half wavelength resonator. 

 

3.2. Sheep bell response as the herd is moving up-hill 
Figure 3 shows a representative acoustic frequency spectrum of the 10 

recordings of 3 similar bells (with a major axis of 10 cm) attached to 3 

individual sheep within the herd. The herd are being walked up-hill at an 

average speed of 1.2 m.s
-1

. The acoustic spectrum shows a clear strike tone at 

750 Hz followed by a series of harmonically grouped overtone/partials at 2.3 to 

2.66 kHz, 4.08 to 4.85 kHz. The dispersion frequency spans of these of these 

groups are of the order of 1 kHz. 

The frequency position of the overtones/partials reveal two features of note. 

Firstly it is known that sonic energy travels approximately 14 times faster 

through ion when compared to air, which will result partials having a different 

harmonic relationship to the strike tone. Secondly, the odd harmonic 

relationship of the reference bell, as discussed in section 3.1, is observed; in that 

they have an odd harmonic relationship (n = 3 (2.55 kHz); n = 5 (4.25 kHz); and 

n = 7 (5.95 kHz) to the strike tone. Using equation 1 the frequency of the strike 
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tone corresponds to the characteristic bell length of 10 cm. However, the 

overtones appear to have twice the bandwidth (~1 kHz) as compared to the 

reference iron bell (~0.5 kHz). 
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Figure 3: Frequency response of sheep herd walking up-hill at 1.2 m.s

-1
. 

 

3.3. Sheep bell response as the herd is moving down-hill 
Figure 4 shows a representative frequency signature of the 10 acoustic 

recordings of the same herd with three bells, but as they are walking down-hill 

in the morning at an average speed of 2.4 m.s
-1

. When compared to the sheep 

walking up-hill spectrum (figure 3) the recorded spectrum shows that the strike 

tone, a 425 Hz tone and overtones/partials are present but there is a significant 

increase in the number of discrete and irregular frequency spaced (10 to 100 Hz) 

noise (14 to 20 dBc) peaks between the bell's strike tone and the 3
rd

 

overtone/partial without altering the frequency dependent noise floor level at the 

even harmonics (n = 2 (1.7 kHz); n = 4 (3.4 kHz); and n = 6 (5.1 kHz)) 

locations.  

Demodulation (
1
/∆f = s) of the irregular frequency response between the 

strike tone and the 3
rd

 overtone provides a characteristic time of 0.01 to 0.1 

seconds. Given the factor of 2 increase in herd speed between the up-hill (figure 

3) and down-hill (figure 4) recordings, the additional irregular peaks may 

originate from the impact of the sheep’s trotters are being picked-up by the 

microphone.  

To analysis the gait of the sheep an audio-visual movie was made for both 

the upward and downward directions of the herd. It was found that the sheep 

have a two-beat diagonal gait (trot) where the diagonal pairs of legs move 

forward at the same time in the down-hill case (2.4 m.s
-1

). In the up-hill case 
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(1.2 m.s
-1

) the sheep tend to move one leg at time. This result is in good 

agreement with the work of J. Kim and G. Breur who used a pressure sensing 

walkway to measure the gait of Suffolk-mix sheep [4]. In their work it was 

reported that the walking trot gait imparted 50-56% of the sheep’s body weight 

to the synchronised diagonal forward and hind limb with a disparity of 59% to 

41% in favour of the forward limb. This would imply the loudness of the sheep 

trot signature would be greater than the up-hill walking gait where one limb is 

moved at a time. It is presumed that in our case the loudness (noise) of the sheep 

walking up-hill gait is not observed due to the noise floor of the acoustic 

measurement. 
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Figure 4: Frequency response of sheep herd walking down-hill at 2.4 m.s

-1
. 

 

4. Conclusion 

Acoustic recordings of iron composite bells have been made in the frequency 

range of 0 to 8 kHz. The acoustic signature of single (and isolated) reference 

bell is used to identify the bells strike tone and overtones/partials response when 

the clapper struck against the metal rim. It is found the bell supports odd 

overtones/partials and abates the even overtones/partials. These recordings are 

then used as a reference to decode the frequency dependent acoustic signature of 

bells attached to 3 sheep within a herd of 27 to 30 healthy male and female 

Sfakia sheep as they are walked up-hill and down-hill on an inclined (10%) 

concrete road at a pace of 1.2 and 2.4 m.s
-1

, respectively. 

Time series analyses of the acoustic recordings of the herd indicate that there 

is significant difference in the up-hill and down-hill. The difference in acoustic 

signature is attributed to the change in the walking gait of the sheep: from one-
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beat to two-beat impact as the sheep alter their gait from a walk to a trot. 

Acoustically the difference occurs in the 850 Hz to 2.6 kHz frequency range 

which is the sensitive hearing range of the human ear. 

 It is concluded that the movement behaviour of a sheep herd that lay 

between the extremes of grazing and predator threat can be discriminated using 

the non-obtrusive and non-worrying technique of acoustic recording. 
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Abstract: Cold atmospheric pressure plasma jets have been shown to exhibit 

considerable potential for use in plasma medicine applications such as in wound 

treatment. New pulsed atmospheric pressure plasma jets are being developed that have 

inherent plasma stability and low gas temperatures. In this study examines a new digital 

enhancement technique to characterise the far field plasma plume and effluent region of 

the plasma. The digital technique provides spatial information that identifies possible gas 

treatment zones for medical applications. Using images from a fast a capture (10 µm 

second) ICCD camera the study shows the luminous plume extends up to 7 mm from the 

reactor exit nozzle and has a kinked, or wrinkled, appearance but nonluminous 

perturbation of the gas is detected up to 3 cm away to the front and either side of the 

visible plasma plume. 

 

Keywords: Imaging, Atmospheric plasma jet; Diagnostics. 

 

1. Introduction 
The development of the cold temperature atmospheric pressure plasma jets in 

recent years has led to the promising new science of plasma medicine. 

Treatments are generally applied using a hand-held atmospheric plasma sources 

that utilise a wide range of electric drive frequencies and reactor geometries. 

Examples of cell treatment leading to apoptosis using these plasma jets have 

been reported by a number of authors [1, 2]. One of the first clinically proven 

hand-held plasma jets is the kINPen med® developed by the Leibniz Institute 

for Plasma Science and Technology (INP), Greifswald, Germany in cooperation 

with neoplas GmbH, Greifswald, Germany is now undergoing in-vivo clinical 

investigation of plasma antiseptic properties on human skin [3], chronic venous 

leg ulcers [4] and cosmetic surgery [5]. These clinical trials require the 

relatively small 1.6 mm diameter plasma to treat large areas of thermally 

sensitive living tissue and microorganisms. Earlier studies using the kINPen 0.9 

versions [6-8] of the plasma jet on microorganism have shown that cells are 

killed outside the visible plasma plume immediate treatment area, indicating 

what has been termed a ‘spillover’ occurs [9]. Further to this, kINPen med® 

plasma induced activation studies on poly(ethylene-terephthalate) PET at a 

nozzle-to-surface distance of 5-15 mm have shown that a similar immediate 

activation (1 day) post treatment ‘spillover’ can be induced  up to 20 mm in 
_________________ 
7th CHAOS Conference Proceedings, 7-10 June 2014, Lisbon Portugal 
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diameter on the polymer surface [10]. 

This work reports on the spatial and temporal visual imaging of the kINPen 

med® plasma plume fluid structure using a photodiode (PD) to trigger a gated 

ICCD camera, with the addition of a new digital image processing technique  of 

the ICCD camera images. This post image processing technique is used to 

enhance the immediate area (up to a distance of approximately 3 cm) around the 

luminous plasma plume to reveal the fluid structure emanating from the gas 

flow. This digital image enhancement approach differs from the Schlieren 

imaging technique [11, 12] (where an image is obtained by illuminating a test 

volume with parallel rays (collimated from a point source) that are then brought 

through a focus at which a knife edge cuts off half the field and most of the 

focal spot) in that all the image processing is performed on the fast ICCD 

camera only. In this work the widely available National Instrument LabVIEW 

software packages is used as an example. The plasma imaging also differs from 

the high temporal resolution flame-front visualization technique [13] were both 

broadband and narrowband spectra images have been reported without colour 

plane extraction. This work also differs from large time scale (10s) imaging of 

the influence of a rotating electrode within DBD plasma has been reported and 

shown to generate complex vortex flow structures at the dielectric surface [14]. 

 

2. Experiment apparatus and methods 
Figure 1a shows a photograph of the plasma jet used in this study. The plasma 

reactor is a cylindrical dielectric barrier discharge made from a glass ceramic 

with an internal diameter of D = 1.6 mm. The inner metal electrode has a 

diameter of ~0.3 mm. The outer body is grounded to produce a cross-field jet 

configuration i.e. an electric field perpendicular to the gas flow.  Here a gas flow 

rate of 5 SLM of 99.99% pure argon is used, equating to a gas velocity through 

the reactor tube of v = 36.7 m.s
-1

. Since the plasma region is 20 mm long there 

is a gas residence time of about 0.5 ms. 

 

 
Figure 1: Photograph of the kINPen Med® plasma interacting with a fingertip. 

 

The inner electrode is powered by a 1 MHz electrical drive frequency that is 

pulse modulated with 2.5 kHz square wave (50 % duty cycle) signal [10]. In this 
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work the plasma plume, and effluent expands unobstructed into atmospheric 

pressure air, and is investigated with a PD, fast imaging camera and post image 

capture enhancement technique to reveal the fluid structure around the plasma 

plume (0-30 mm) in front and to the side of the plume. 

The PD used was a Hamamatsu MPPC with a rise time of 10 ns and spectral 

range between 320 and 900 nm [15]. The light was collected at right angles to 

the plume, 1 mm downstream of the nozzle exit, via a fibre optic with a 

collimating lens, the combination producing a focal area of 1 mm in diameter at 

a length of 6 mm from the lens: Thus making the interrogation area smaller than 

to the diameter of the jet discharge (~1.6 mm). The rising edge of the 2.5 kHz 

modulated plasma light is used to trigger the ICCD Camera. 

The Andor iStar 334T ICCD camera is used to capture the plasma images. A 

14 cm focal length glass lens focused the region from between 2 mm upstream 

to 20 mm downstream of the exit nozzle. Using this combination the overall 

optical chain (between camera and plasma-plume) is of the order of 2 m and the 

camera spectral range is restricted to 300 to 850 nm by the glass lens. The 

camera was triggered, via a delay generator, from the rising edge of the PD 

signal. Within the camera the images are processed using a false-colour scale 

from blue (low intensity) to yellow (high intensity) for maximum visual 

differentiation the gain was set to 2817 out of a maximum of 4095, where the 

final digital images are formatted as a 24-bit red-green-blue (RGB) JPEG (Joint 

Photographic Experts Group) with a N x N pixel array, where N = 1024. 

Through an initial survey of the pulse-on and pulse-off periods of plasma the 

ICCD was synchronised to the respective time periods. 

The gas behaviour beyond the luminous plasma region is explored by using 

LabVIEW based software [16]. This software essentially extracts the lowest 

intensity colour plane (blue plane) from the original RGB image and then uses 

pixel resolution enhancement through digital filtering and a thresholding 

algorithm. Care is taken at each step to ensure that the morphology in the 

recorded data is not distorted by reference at each step to experimentally 

available information, and the goals of the operation and limitations of the 

algorithms. The final images were achieved using four standard sequential steps. 

 

1. The 8-bit “blue” plane is selected from the original 24-bit RGB image. 

2. A fast Fourier Transform (FFT) is then applied to this plane to convert the 

spatial information into its frequency domain.  A low-pass filter is used to 

smooth the noise with a truncation process to remove any remaining high 

frequency component above the user defined cut-off point.  

3. An inverse FFT is then applied to bring the frequency domain data back 

into the spatial domain. 

4. A local Nibalck thresholding segmentation algorithm is then used to 

produce a binary image. In this operation the background particles are set 

to I = 0 (black) while setting fluid structure to a pixel value of I = 1 

(white). The result of this process produces a black-and-white binary 

image that represents the fluid structure within the original blue image. 
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3. Results. 

 

3.1 Visible plasma imaging 
Figures 2 provide examples of 15 individual ICCD images sampled from 31 

images obtained for the argon plasma. The images span from the beginning of 

the pulse at t = 0 µs to the end stages of the pulse at, t = 185 µs. With the gain 

fixed at 2817 each image has the same intensity scale and therefore their 

intensities may be compared directly. To add comparison a scale bar is 

displayed at the top of the figure. The figure shows a linear increase in the 

length of the plume between 0 µs to 40 µs and rapid decrease in length beyond 

185 µs when the plume is almost completely gone. Apart from the earliest and 

latest times the plumes vary in visible length and exhibit a kinked or wrinkled 

structure along the length of each plume. 

 
Figure 2: A selection (a total 15) of space and time resolved images of the 

nozzle and argon plasma. 

 

Using all the 31 ICCD images, the distal length of each discharge plume 

have been calculated but are not shown here. The calculations reveal that the 

plasma expands from the nozzle and reaches, and maintains, a maximum length 

of about 4.5 or 6 mm until the voltage pulse is terminated. The initial velocity of 

the visible plume front is about 200 m.s
-1

.  However at about 4.25 mm the argon 

the front rapidly accelerates to about 300 m.s
-1

 before reaching its maximum 

length with a periodic cycling ranging from 6.5 to 5 mm: with each cycle period 

taking 40 to 45 microseconds, which equates to a frequency of 20 to 22 kHz. 
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3.2 Spatial enhancement of non-visible region around plasma 

plume  
Figure 3 show a screen shot image of the LabVIEW colour plane extraction and 

line profile front panel for the pulse-on period. In this figure the left-hand 

images is the original 32-bit image with interactive line intensity profile (LIP) 

cursor; the second column of images are the three extracted blue, green and red 

planes (presented here in grayscale); the third column of graphs depict the 

selected LIP for each plane; and the final column is basic descriptive analysis of 

the LIP for each plane. The information presented on this front panel reveals 

that majority of the plasma information (white to grey colours) is aligned along 

the flow of the plume in the red and green planes. In contrast the far-field low 

intensity fluid structure information is captured within the blue plane as 

speckled noise surrounding the plume with an outer white ring at a typical 

distance of 2-4 plume diameters either side of the plume. 

 
Figure 3: LabVIEW RGB colour plane and line profile. 

 

We now turn to the digital filtering and threshold processing of the blue 

image. Figure 4 shows the processing of the duration of the pulse-on period and 

the duration of pulse-off period. It is interesting the structure observed on short 

time scale (figures 2) is absent in the long exposure image. It is also apparent 

from figure 4b that there is afterglow. In figure 4c we are imaging the structure 

of the background gas. This shows a distinct ripple-like feature centred in the 

proximity of the maximum light emission from the plume. Figure 4f show that 

this is absent when there is no discharge present. 

To understand these fluid structure images we consider the dimensionless 

Reynolds number (Re) as defined in equation 1 when interpreting figures 4c and 
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4f, as it provides a measure of the ratio of inertial forces to viscous forces and 

quantifies the relative importance of these two types of forces. 

                                                                    (1) 

Where Q is the neutral argon flow rate (8.35 x 10-5 m
3
.s

-1
), D is the diameter of 

the nozzle (0.0016 m), vk is the gas kinematic viscosity (0.000014 m
2
.s

-1
) and A 

is the cross sectional area of the nozzle (2 x 10
-6

 m
2
). For argon gas flows of 5 

SLM, Re equates to 4465 which implies the inertial forces are expected to be 

more dominant than viscous forces and large-scale fluid motion would be un-

damped in the pulse-off period. However when the plasma is turn-on, the 

neutral gas flow rate will increase due to the associated gas heating. 

a: raw

b: B-plane extraction

& FFT filter

c: threshold

d: raw

e: B-plane extraction

& FFT filter

f: threshold

1 cm

 
Figure 4: 0.2 µ second exposure ICCD images of plasma in pulse-on (a) and 

pulse-off period (d); images (b) and (c) depict the image enhancement of the 

pulse-on period; and images (e) and (f) depict the image enhancement for the 

pulse-off period. 
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Considering the processed image of the pulse-on period (figure 4c) a ripple 

structure is observed to radiate from a point along the axis of the plasma plume 

and extends with a complex structure in the direction of effluent flow up to 4 cm 

from the nozzle. This repeating far-field wave-like structure with a white peak 

distances separation of typically 1-2 mm is within an order of magnitude of the 

expected travel distance of the neutral gas within the capture time-frame of the 

camera image. In addition the ripple pattern is found to be asymmetric with 

respect to the effluent flow axis, producing a complex broken structures to the 

top beyond which the discontinuities the structures extend into the ambient air. 

The distance disturbance occurs at around 0.5 cm from the plume distal point. 

In the case of the pulse-off period (figure 4f) the wave-like structures has 

collapsed to form irregular and small-scale chaotic structures with scale lengths 

of the order of the nozzle diameter. These observations are consistent with the 

Reynolds number dimensionless analysis and the loss of driving force to heat 

the plasma gas when the electrical drive power is switched-off. Under these 

conditions the heated gas is expected to begin to equilibrate with the 

surrounding ambient air. 

 

4. Conclusion 

The spatial and temporal visual imaging of an argon-based pulsed plasma jet 

designed for medical use has been studied using photodiode and ICCD camera 

imaging, plus post exposure enhancement of the camera images. This combined 

measurement and diagnostic approach provides a spatial and temporal picture of 

the plasma plume and its effluent. The PD measurements show that the plasma 

is modulated by a fast rising and falling 2.5 kHz square wave time-base profile. 

Microsecond time scale imaging of the discharge using the ICCD camera 

reveals that the plasma plumes are continuous through the 0.2 ms pulse-on 

period of the discharge. However the plume morphology takes on a kinked or 

wrinkled appearance. In addition the plume rapidly decays at the end of the 

voltage pulse suggesting micro-turbulence is the driving force in the production 

of the kinks within the plasma jet To gain access to the effluent gas being 

expelled from the plasma plume the technique of image plane extraction has 

been developed and demonstrated. Here the blue plane of the ICCD digital 

images has revealed pulsed plasma induced fluid structures extending up to 2-3 

cm form the visible plume. This far-field fluid structure information may be 

used in the understanding ‘spillover’ effect when plasma treating thermally 

sensitive polymers and their biomaterial counter parts. 
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Abstract. ”Can one hear the shape of a graph?” - this is a modification of the famous
question of Mark Kac ”Can one hear the shape of a drum?” which can be asked in
the case of scattering systems such as microwave networks and quantum graphs. It
addresses an important mathematical problem whether scattering properties of such
systems are uniquely connected to their shapes? Recent experimental results of Hul
et al. [1],  Lawniczak et al. [2] and  Lawniczak et al. [3] based on a characteristics
of graphs such as the cumulative phase of the determinant of the scattering matrices
indicate a negative answer to this question. In this presentation we review new
important results devoted to the isoscattering networks which are based on local
characteristics of graphs such as structures of resonances and poles of the determinant
of the scattering matrices [3]. Using the analytical formulas for the elements of the
scattering matrices we show that it is possible to link the structure of the scattering
poles of the determinant of the scattering matrices with the experimental spectra
of the microwave networks. Furthermore, we show that theoretically reconstructed
spectra of the networks are in good agreement with the experimental ones.
Keywords: Quantum and classical chaos, Isoscattering systems, Microwave networks
and quantum graphs, Microwave and quantum billiards, Open systems.

1 Introduction

The famous question posed by Marc Kac in 1966 ”Can one hear the shape
of a drum?” [4] addresses the problem whether two isospectral drums have
the same shape. In general, two vibrating systems are isospectral if and only
if their spectra are identical. In mathematical terms Marc Kac’s question
reduces to a question of uniqueness of spectra of the Laplace operator on the
planar domain with Dirichlet boundary conditions. The negative answer to the
above question was given in 1992 by Gordon, Webb, and Wolpert [5,6]. Using
Sunada’s theorem [7] they found a way to construct pairs different in shape
but isospectral domains in R2. The procedure of designing isospectral planar
domains consists of cutting the ’drum’ into subdomains and rearranging them
into a new one with the same spectrum. An experimental confirmation that
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‘hearing’ the shape is impossible was presented by Sridhar and Kudrolli [8] and
Dhar et al. [9].

The problem of isospectrality for quantum graphs was considered by Gutkin
and Smilansky [10]. Quantum graphs consist of one-dimensional bonds which
are connected by vertices. The wave propagation in each bond is governed
by the one-dimensional Schrödinger equation. Gutkin and Smilansky proved
that the spectrum identifies uniquely the graph if the lengths of its bonds
are incommensurate. A general method of construction of isospectral graphs
[11,12] uses the extended Sunada’s approach. In this method one cuts the
graph and ”transplants” the pieces into a different arrangement. As a result
of the transplantation every eigenfunction of the first graph one can assign an
eigenfunction of the second one with the same eigenvalue.

However, inability of determining the shape from the spectrum alone does
not preclude possibilities of distinguishing one drum from another in scattering
experiments. Basing on numerical simulations Okada et al. [13] showed that
isospectral domains constructed by Gordon, Webb and Wolpert can be dis-
tinguished in scattering experiments by different distributions of poles of the
scattering matrices. Therefore, one can pose an important question whether
also the geometry of a graph can be determined in scattering experiments.

This question was answered negatively by Band, Sawicki and Smilansky
[14,15]. They analyzed isospectral quantum graphs with attached infinite leads
which are called isoscattering. In [14,15] the authors showed that any pair
of isospectral quantum graphs obtained by the method outlined in [11,12] is
isoscattering if the infinite leads are attached in a way preserving the symmetry
of the isospectral construction [14,15].

By definition, isoscattering graphs are isopolar when their scattering ma-
trices have the same poles or isophasal when the phases of the determinants of
their scattering matrices are equal.

Isopolar lossless graphs need not be isophasal since to determine the phases
one needs more information. In contrary, any two isophasal lossless graphs are
isopolar [3].

2 Quantum graphs and microwave networks

Quantum graphs can be treated as idealizations of physical networks in the
limit where the lengths of the wires are much larger than their diameter. A
detailed theoretical analysis of their properties as well as applications in model-
ing various physical problems can be found in [16] and references cited therein.
Methods of their experimental realizations were presented in [17,18].

It is crucial for this work that quantum graphs can be successfully modeled
by microwave networks [19]. The introduction of one-dimensional microwave
networks simulating quantum graphs extended substantially the number of sys-
tems which can be used to verify wave effects predicted on the basis of quantum
physics. Among them the most important are highly excited hydrogen atoms
[20–24] and two-dimensional microwave billiards [25–36]. The later papers on
microwave networks [37–39] clearly demonstrated that they can be successfully
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used to investigate properties of quantum graphs also with highly complicated
topology and absorption.

A microwave network consists of n vertices connected by B bonds, e.g.,
coaxial cables. The topology of a network is defined by the n× n connectivity
matrix Cij which takes the value 1 if the vertices i and j are connected and 0
otherwise. Each vertex i of a network is connected to the other vertices by vi
bonds, vi is called the valency of the vertex i.

In the construction of microwave networks we used coaxial cables consisting
of an inner conductor of radius r1 surrounded by a concentric conductor of inner
radius r2. The space between the inner and the outer conductors is filled with a
homogeneous material having the dielectric constant ε. Below the onset of the
next TE11 mode [40], inside a coaxial cable can propagate only the fundamental
TEM mode, in the literature called a Lecher wave.

Using the continuity equation for the charge and the current one can find
the propagation of a Lecher wave inside the coaxial cable joining the i–th and
the j–th vertex of the microwave network [41,19]. For an ideal lossless coaxial
cable the procedure leads to the telegraph equation on the microwave network

d2

dx2
Uij(x) +

ω2ε

c2
Uij(x) = 0, (1)

where Uij(x, t) is the potential difference between the conductors, ω = 2πν
is the angular frequency and ν is the microwave frequency, c stands here for
the speed of light in a vacuum, and ε is the dielectric constant.

If we take into account the correspondence: Ψij(x) ⇔ Uij(x) and k2 ⇔ ω2ε
c2

the equation (1) is formally equivalent to the one–dimensional Schrödinger
equation (with ~ = 2m = 1) on the graph possessing time reversal symmetry
[42]

d2

dx2
Ψij(x) + k2Ψij(x) = 0. (2)

3 Experimental setup

Fig. 1a and Fig. 1b show the two isoscattering graphs which are obtained from
the two isospectral ones by attaching two infinite leads L∞

1 and L∞
2 . Us-

ing microwave coaxial cables we constructed the two microwave isoscattering
networks shown in Fig. 1c and Fig. 1d. In order to preserve the same approxi-
mate size of the graphs in Fig. 1a and Fig. 1b and the networks in Fig. 1c and
Fig. 1d, respectively, the lengths of the graphs were rescalled down to the phys-
ical lengths of the networks, which differ from the optical ones by the factor√
ε, where ε ≃ 2.08 is the dielectric constant of a homogeneous material used

in the coaxial cables.
For the discussed networks and graphs we will consider two most typical

physical vertex boundary conditions, the Neumann and Dirichlet ones. The
first one imposes the continuity of waves propagating in bonds meeting at i
and vanishing of the sum of their derivatives calculated at the vertex i. The
latter demands vanishing of the waves at the vertex.
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The graph in Fig. 1a consists of n = 6 vertices connected by B = 5 bonds.
The valency of the vertices 1 and 2 including leads is v1,2 = 4 while for the
other ones vi = 1. The vertices with numbers 1, 2, 3 and 5, satisfy the Neumann
vertex conditions, while for the vertices 4 and 6 we have the Dirichlet ones. The
graph in Fig. 1b consists of n = 4 vertices connected by B = 4 bonds. The
vertices with the numbers 1, 2 and 3 satisfy the Neumann vertex conditions
while for the vertex 4, the Dirichlet condition is imposed.

The bonds of the microwave networks shown in Fig. 1c and Fig. 1d have
the following optical lengths:

a = 0.0985 ± 0.0005 m, b = 0.1847 ± 0.0005 m, c = 0.2420 ± 0.0005 m,
2a = 0.1970 ± 0.0005 m, 2b = 0.3694 ± 0.0005 m, 2c = 0.4840 ± 0.0005 m.

In order to properly describe considered by us systems we use the two-port
(2 × 2) scattering matrix

S(ν) =

(
S1,1(ν) S1,2(ν)
S2,1(ν) S2,2(ν)

)
, (3)

relating the amplitudes of the incoming and outgoing waves of frequency ν in
both leads.

The two-port scattering matrix S(ν) was measured by the vector network
analyzer (VNA) Agilent E8364B. The VNA was connected to the vertices 1
and 2 of the microwave networks which are shown in Fig. 1c and Fig. 1d. The
scattering matrix S(ν) was measured in the frequency range ν = 0.01−2 GHz.
It is important to note that the connection of the VNA to a microwave network
(see Fig. 1e) is equivalent to attaching of two infinite leads to a quantum graph.

4 Isopolar networks

Let us remind that the two networks in Fig. 1c and Fig. 1d are isopolar if their
scattering matrices have the same poles. In order to study isopolar properties
of graphs presented in Fig. 1 we have to consider important local characteristics
of graphs such as structures of experimentally measured resonances and theo-
retically evaluated poles of the determinant of the two-port scattering matrices.
Such an analysis is important since for open systems resonances show up as
poles [43,44] occurring at complex wave numbers kl = 2π

c (νl − i∆νl), where
νl and 2∆νl are associated with the positions and the widths of resonances,
respectively. In Fig. 2a we show that for the frequency range from 0.01 to 2
GHz the amplitudes | det

(
S(I)(ν)

)
| and | det

(
S(II)(ν)

)
| of the determinants of

the scattering matrices S(I)(ν) and S(II)(ν) of the networks shown in Fig. 1c
and Fig. 1d, respectively, are very close to each other, clearly showing that
we are dealing with the isoscattering networks. The results obtained for the
networks presented in Fig. 1c and in Fig. 1d are marked by blue full squares
and red open circles, respectively.

The analytical formulas for the elements of the scattering matrices S(I)(k)
and S(II)(k) are presented in the Appendix. The calculations showed that
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both scattering matrices posses the isoscattering properties. In Fig. 2b using
the contour plot we present the poles of the amplitude of the determinant of
the scattering matrix |det

(
S(II)(k)

)
| (solid circles) calculated for the graph

with n = 4 vertices (Fig. 1b) for the frequency range from 0.01 to 2 GHz. The
numerical calculations were performed for the isoscattering graph having the
same bond lengths as the ones measured for the microwave network presented
in Fig. 1d. We also imposed the proper vertex boundary conditions. The
vertical axis of Fig. 2b shows the imaginary part ∆ν of the poles of the graph.
Fig. 2a and Fig. 2b clearly show very good agreement between the positions of
the experimental scattering resonances and the theoretical poles. To make this
comparison more straightforward the poles of the determinant of the scattering
matrix det

(
S(II)(k)

)
are marked in Fig. 2a by solid circles.

In general, the microwave networks are lossy. The paper [19] shows that
loses in such networks can be described by treating the wave number k as a com-

plex quantity with absorption-dependent imaginary part Im
[
k
]

= β
√

2πν/c

and the real part Re
[
k
]

= 2πν/c, where β is the absorption coefficient and

c is the speed of light in vacuum. The analytical formulas for the theoretical
scattering matrices S(I)(k) and S(II)(k) allow us to reconstruct the resonances
in the amplitudes of the determinants of the scattering matrices. Since the
graphs are isoscattering both theoretical reconstructions give exactly the same
results. The solid line in Fig. 2a shows the amplitude of the determinant of
the scattering matrix | det

(
S(II)(k)

)
| calculated for the absorption coefficient

β = 0.00762m−1/2. Fig. 2a shows that the theoretical results are in very good
agreement with the experimental ones.

In summary, we analyzed resonances of the two microwave networks which
were constructed to be isoscattering [3]. We showed that the networks are iospo-
lar, i.e., isoscattering, within the experimental errors. Therefore, the question
”Can one hear the shape of a graph?” is answered in negative.

This work was partially supported by the Ministry of Science and Higher
Education grant No. N N202 130239 and the European Union within Eu-
ropean Regional Development Fund, through the grant Innovative Economy
POIG.01.01.02.00-008/08.

5 Appendix

For brevity of notation we denote the wave propagating through an edge (bond)
e by Ψe, i.e. use edges to index the waves rather than corresponding vertices
as in Eq. (2). Propagation in each edge is described by the free Schrödinger
equation

− d2

dx2
e

Ψe(xe) = k2Ψe(xe), (4)

where xe is a coordinate parameterizing the edge e. The propagation in the
whole graph is governed by the Laplace operator on the graph which is the
sum of one-dimensional Laplacians, −d2/dx2

e, each acting on the corresponding
edge.
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The solution of (4) for each edge takes the form

Ψe(xe) = aine exp(−ikxe) + aoute exp(ikxe). (5)

Also for the two leads L∞
1 and L∞

2 , we have

Ψl(xl) = ainl exp(−ikxl) + aoutl exp(ikxl), l = 1, 2. (6)

If the wave with a wave number k propagates in the whole graph, i.e. k2 is
an eigenvalue of the graph Laplacian (for a scattering graph the spectrum of
eigenvalues is, in general, continuous), the solutions (5) and (6) satisfy the
vertex boundary conditions for a particular graph. Imposing the conditions,
we obtain a linear set of equations connecting the amplitudes aine and aoute of
the forward and backward propagating waves in the edges, as well as incoming
and outgoing amplitudes ainl and aoutl in the leads. The equations can be solved
for aout1,2 in terms of ain1,2,(

aout1

aout2

)
=

(
S1,1(k) S1,2(k)
S2,1(k) S2,2(k)

)(
ain1
ain2

)
. (7)

Applying this procedure to the graphs in Fig. 1a and Fig. 1b we get, respectively

S
(I)
1,1(k) =

(
−1 + e4ibk

) (
−1 + e4ick

)
− 2

(
−1 + e4i(b+c)k

)
cos (2ak) − 2i

(
−1 + e2i(b+c)k

)2
sin (2ak)(

−3 + e4ibk + e4ick + e4i(b+c)k
)
cos (2ak) − i

(
−5 + e4ibk + e4ick + 4e2i(b+c)k − e4i(b+c)k

)
sin (2ak)

,

S
(I)
1,2(k) =

2
(
−e2ibk − e2ick + e2i(2b+c)k + e2i(b+2c)k

)
sin(2ak)

i
(
−3 + e4ibk + e4ick + e4i(b+c)k

)
cos(2ak) +

(
−5 + e4ibk + e4ick + 4e2i(b+c)k − e4i(b+c)k

)
sin(2ak)

,

S
(I)
2,1(k) = S

(I)
1,2(k),

S
(I)
(2,2)

(k) =

−
(
−1 + e4ibk

) (
−1 + e4ick

)
− 2

(
−1 + e4i(b+c)k

)
cos(2ak) − 2i

(
−1 + e2i(b+c)k

)2
sin(2ak)(

−3 + e4ibk + e4ick + e4i(b+c)k
)
cos(2ak) − i

(
−5 + e4ibk + e4ick + 4e2i(b+c)k − e4i(b+c)k

)
sin(2ak)

,

for the graph 1a, and

S
(II)
1,1 (k) =

−
2i sin ((b + c)k)

[(
1 − e4iak

)
cos ((b − c)k) +

(
1 + e4iak

)
cos ((b + c)k) − i

(
1 − e4iak

)
sin ((b + c)k)

]
1 − e4iak + cos (2(b − c)k) +

(
−2 + e4iak

)
cos (2(b + c)k) + 2i sin (2(b + c)k)

,

S
(II)
1,2 (k) =

2e2iak sin(2bk) sin(2ck)

1 − e4iak + cos(2(b − c)k) +
(
−2 + e4iak

)
cos(2(b + c)k) + 2i sin(2(b + c)k)

,

S
(II)
2,1 (k) = S

(II)
1,2 (k),

S
(II)
2,2 (k) =

−
2i sin ((b + c)k)

[(
−1 + e4iak

)
cos ((b − c)k) +

(
1 + e4iak

)
cos ((b + c)k) − i

(
1 − e4iak

)
sin ((b + c)k)

]
1 − e4iak + cos (2(b − c)k) +

(
−2 + e4iak

)
cos (2(b + c)k) + 2i sin (2(b + c)k)

,

for the graph 1b.
The optical lengths of the bonds of the microwave networks are denoted

respectively by a, b, and c.
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31. R. Blümel, P. M. Koch, and L. Sirko, Foundation of Physics 31, 269 (2001).
32. Y. Hlushchuk, L. Sirko, U. Kuhl, M. Barth, and H.-J. Stöckmann, Phys. Rev. E
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Fig. 1. A pair of isoscattering quantum graphs and the pictures of two isoscattering
microwave networks are shown in the panels (a-b) and (c-d), respectively. Using
the two isospectral graphs, (a) with n = 6 vertices and (b) with n = 4 vertices,
isoscattering quantum graphs are formed by attaching the two infinite leads L∞

1 and
L∞

2 (dashed lines). The vertices with Neumann boundary conditions are denoted by
full circles while the vertices with Dirichlet boundary conditions by the open ones.
The two isoscattering microwave networks with n = 6 and n = 4 vertices which
simulate quantum graphs (a) and (b), respectively, are shown in the panels (c-d).
The connection of the microwave networks to the Vector Network Analyzer (VNA)
was realized by means of the two microwave coaxial cables (see panel e).
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Fig. 2. (a) The amplitude of the determinant of the scattering matrix obtained for
the microwave networks with n = 6 (blue full squares) and n = 4 (red open circles)
vertices. The solid line shows the resonances of the amplitude of the determinant
of the theoretically evaluated scattering matrix for the quantum graph with n = 4
vertices. The results are presented in the frequency range 0.01−2 GHz. The positions
of the theoretical poles (see panel (b)) are marked by big solid circles. The right
vertical axis of Fig. 2a shows the imaginary part ∆ν of the poles of the graph. (b)
The contour plot shows the positions of scattering poles of the amplitude of the
determinant of the theoretically evaluated scattering matrix for the quantum graph
with n = 4 vertices.
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Abstract. The Newtonian and special-relativistic Lyapunov exponents are compared for 

a low speed system – the periodically-delta-kicked particle. We show that although the 

agreement between the Newtonian and special-relativistic transient Lyapunov exponents 

rapidly breaks down initially, they converge to values which are very close to each other.  
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approximation 
 

 

 

1  Introduction 
 

It is conventionally believed [1-3] that if the speed v of a dynamical system 

is low compared to the speed of light c, that is, v << c, then the special-

relativistic dynamical predictions for the system will be well-approximated by 

the Newtonian predictions. However, it was shown in recent numerical studies 

[4-9] that, contrary to the conventional belief, the agreement between the 

Newtonian and special-relativistic dynamical predictions for a single trajectory 

[4-7] and for an ensemble of trajectories [8,9] can break down completely 

although the speed of the system is low. Here, we extend the previous studies 

[4-9] to a comparison of the Newtonian and special-relativistic predictions for 

the Lyapunov exponent of a prototypical chaotic Hamiltonian system – the 

periodically-delta-kicked particle – at low speed. Details of the system and 

calculations will be given next, followed by the results and discussion. 

 

 

2  Method 
 

In the Newtonian framework, the equations of motion for the periodically-

delta-kicked particle are reducible to an exact mapping, which is called the 

standard map [10,11]: 

( )
11

2sin
2

−− −=
nnn

X
K

PP π
π

     (1) 
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( ) 1 mod  
1 nnn

PXX += −      (2) 

where Xn and Pn are, respectively, the dimensionless scaled position and 

momentum of the particle just before the nth kick (n = 1, 2, …), and K is a 

dimensionless positive parameter.  

 

In the special-relativistic framework, the equations of motion for the 

periodically-delta-kicked particle are also reducible to a mapping, which is 

called the relativistic standard map [12,13]: 

( )
11

2sin
2

−− −=
nnn

X
K

PP π
π

     (3) 

1 mod  
1

22
1 














+
+= −

n

n

nn

P

P
XX

β
    (4)   

where β, like K, is also a dimensionless positive parameter. 

 

The transient Lyapunov exponent for a map is generally defined [14] as 

( )[ ]
nn

M
n

 traceabsln
1

=λ       (5) 

where Mn = Jn Jn-1 … J2 J1 and Jn is the Jacobi matrix. In the limit n → ∞, λn 

yields [14] the largest Lyapunov exponent. A hallmark of chaos is the existence 

of a positive Lyapunov exponent. For the standard map in Eqs. (1) and (2), the 

Jacobi matrix is 

( )
( )







−

−
=

n

n

n
XK

XK
J

π
π
2cos11

2cos1
.     (6) 

For the relativistic standard map in Eqs. (3) and (4), the Jacobi matrix is 

( )
( ) ( ) ( )[ ]







+−+

−
= −

+

−

+ nnn

n

n
XKPP

XK
J

πββ
π

2cos111

2cos1
2/32

1

22/32

1

2
.  (7) 

 

In each theory, the transient Lyapunov exponent [Eq. (5)] is calculated 

twice to determine its accuracy. The calculation for the transient Lyapunov 

exponent is first performed in 32-significant-figure precision and then repeated 

in quadruple (35 significant figures) precision. The accuracy of the transient 

Lyapunov exponent is determined by the common digits of the 32-significant-

figure-precision and quadruple-precision calculations. For example, if the 

former calculation yields 1.234… and the latter calculation yields 1.235…, the 

transient Lyapunov exponent is accurate to 1.23. 

 

 

3  Results and discussion 
 

Here we will present an example to illustrate the typical result. In this 

example, X0 = 0.5, P0 = 99.9, K = 7.0 and β = 10
-7

. For these initial conditions 

and parameters, both the Newtonian and special-relativistic trajectories are 
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chaotic. In this case, the speed of the particle is low, about 10
-5

c, up to 8800 

kicks. 

 

Fig. 1, which plots the Newtonian and special-relativistic transient 
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Fig. 1. Newtonian (squares) and special-relativistic (diamonds) transient 

Lyapunov exponents versus kick. 

 

Lyapunov exponents for the first 30 kicks, shows that the two transient 

Lyapunov exponents agree with each other for the first 10 kicks but the 

agreement breaks down from kick 11 onwards. The agreement between the 

Newtonian and special-relativistic transient Lyapunov exponents breaks down 

rapidly because the difference between the two grows, on average, 

exponentially – see Fig. 2. The exponential growth constant of the difference 
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Fig. 2. Difference between the Newtonian and special-relativistic transient 

Lyapunov exponents versus kick. 
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between the two transient Lyapunov exponents, measured from kick 1 to kick 

10, is 0.96.  

 

However, asymptotically, the Newtonian and special-relativistic transient 

Lyapunov exponents converge to values which are very close to one another. In 

particular, at kick 8800, the Newtonian and special-relativistic transient 

Lyapunov exponents are both accurate to 1.27, which is quite close to the 

analytical estimate [10] of the asymptotic Newtonian Lyapunov exponent given 

by ln(K/2) = 1.253. This result is surprising since the chaotic trajectories 

predicted by the two theories agree only for the first 16 kicks, which suggests 

that the two asymptotic Lyapunov exponents should not agree. 

 

 

Conclusions 
 

We have shown that although the agreement between the Newtonian and 

special-relativistic transient Lyapunov exponents rapidly breaks down initially, 

the asymptotic special-relativistic Lyapunov exponent is well-approximated by 

the asymptotic Newtonian value. The same result should hold for other low-

speed chaotic Hamiltonian systems since the periodically-delta-kicked particle 

is a prototype. 
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