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Abstract. Over the last two decades, a considerable number of methods have been 

proposed for synchronizing chaotic systems. Most of them have concentrated on studying 

continuous synchronization. Different from this, impulsive synchronization requires 

small synchronizing impulses which are sampled from the state variables of the drive 

system at discrete moments. This drastically reduces the amount of information 

transmitted from the master system to the slave one, which makes this approach more 

attractive in chaos-based secure communication and other real-life applications. In the 

paper, we present and apply an efficient impulsive synchronization scheme, called 

selective synchronization, to selectively use only those time periods of driving signals 

which strong synchronizing effect to the driven system. By doing this, one can 

synchronize chaotic systems which cannot be synchronized by continuous schemes under 

similar conditions. Numerical examples are given to illustrate the effectiveness of the 

proposed scheme. 

Keywords: Selective synchronization, Conditional Lyapunov exponents, Discrete and 

continuos-time chaotic systems. 
 

 

1  Introduction 
 

Nowadays, chaos synchronization is a topic of huge interest in the nonlinear 

science, owing to its observation in a large variety of phenomena of different 

nature or to its various potential applications (Feki [3], Pecora and Carroll[11],  

Womelsdorf and Fries[12], Yang and Chua[13]). Many reviews on chaos 

synchronization are currently available (Boccaletti et al.[1], Mosekilde et 

al.[9]). A considerable number of methods have been proposed for 

synchronizing chaotic systems. The most widely used techniques are continuous 

synchronization schemes, including Pecora-Carroll method, back-stepping 

design technique, active and adaptive synchronization schemes, sliding mode 

control technique, and so on (Chen and Lu[2], Kanishi et al.[6], Zhang[14]). In 

all these approaches, two or more chaotic systems are coupled to each other 

continuously such that the synchronization errors can be controlled for converge 

to zero.  
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More recently, experimental and numerical evidences showed that 

synchronization can be achieved using intermittent coupling. Two approaches, 

impulsive and selective synchronization, have attracted the attention of the 

researchers in the field. In an impulsive synchronization scheme only samples of 

state variables, called synchronization impulses, are used to synchronize the 

chaotic systems. The bandwidth or time slot needed to transmit synchronization 

signals dramatically reduced in impulsive synchronization when compared to 

continuous synchronization (Itoh et al.[4], Panas et al.[10]). In a selective 

synchronization scheme, the synchronizing signal is chosen in the time periods 

when the Lyapunov exponents of variational synchronization error system are 

negative. Since only driving signals in the time periods when synchronization 

error can be reduced are selected and those in the time periods when the 

synchronization error can be increased are not used, the selective 

synchronization scheme are capable to achieve synchronization even in the 

cases when the continuous synchronization schemes fail to work (Itoh and 

al.[5]). 

Because there is little work about this kind of synchronization, the aim of the 

present paper is to bring additional numerical evidences to those existing in the 

literature. In order to prove that selective scheme can synchronize chaotic 

systems which cannot be synchronized by a continuous approach under similar 

conditions, we numerically simulated the two-dimensional chaotic Lorenz map 

and a three-dimensional flow, which has a broad spectrum of chaotic behaviors 

with the Lorenz and the Chen systems as the extremes of the spectrum. 

 

2  Selective Synchronization of Chaotic Systems: Basic Idea. 
 

In this section, we briefly discuss the selective synchronization of two identical 

chaotic systems (hereafter, called master and slave) by using notations specific 

to a discrete system only. 

Suppose that the state variables of the dynamical system can be separated into 

two parts,  nx  and  ny . The general form of the master system is as follows 
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where pRx  and qRy  are the state variables, while f and g  are continuous 

nonlinear functions. Consider now that the samples of the state variables my  

are sent to the slave system. This happens when the master signal is detected to 

be more likely to decrease the synchronization errors. For these time periods, 

the slave system is governed by 
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while for the time periods when the two systems evolve independently the slave 

system is described by 
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The variational system are given by 
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where      nnn m sxxu   and      nnn m syyv  . According to Pecora 

and Carroll, the master and slave systems will synchronize if all the conditional 

Lyapunov exponents of the variational system are negative.  

Practically, the master signal will be transmitted to the slave system if all the 

eigenvalues of the variational system have modulus smaller than unity (for 

maps) or have negative real parts (for flows). 

 

3  Systems description and numerical simulations 
 

As models for our numerical study on selective synchronization we consider 

here two typical nonlinear dynamical systems which exhibit chaotic behavior. 

They are as follows: 

 

3.1. Lorenz map 
 

The Lorenz discrete-time system is given by difference equations 
 

                    nynxbnxbanx  11  ,        nxbnybny 211       (6) 
 

with a and b parameters. This system is chaotic for 05.1a  and 75.0b , as 

shown in Figure 1(d) ( its maximal Lyapunov exponent is 258.0max ).  This 

map was iterated for 32,000 times and the first 2,000 iterations were discarded.  

We transmitted impulses sampled from y state variable of the master system to 

the slave system every time the condition   dnybba m 1  was fulfilled. 

The variable d was used as a controlling parameter indicating the percentage of 

the used driving signal (see Figure 1(b)). It was found that the synchronization 

error has vanished not only for d = 1, but for  795.1,495.0d . With just few 
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exceptions, encountered at the borders of this interval, the conditional Lyapunov 

exponent (CLE) was negative, as depicted in Figure 1(a). There was a small 

range,  511.0,495.0d , where desynchronization bursts were presented 

although the CLE was negative. The logarithm of the synchronization time (in 

number of iterations) is reported in Figure 1(c). The criterion for 

synchronization was selected to be          nynynxnx smsm , with 

610 . It is worth noting that just 18% of driving signal was used for 

synchronization in the case .511.0d  
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Fig. 1. Selective synchronization of two identical Lorenz maps 

a)Conditional Lyapunov exponent versus d;  b) Used driving signal versus d; 

c) Logarithm of the synchronization time versus d; d) (x, y) phase-plane. 
 

For 4.1d , the identical synchronization was achieved in 133 iterations, using 

45/55% of driving signal (see Figure 2(a)). A series of simulations was 

performed to verify if the above-mentioned percentage can be reduced by 

keeping the two systems in a synchronized state. 

To do this, we first switched-off the connection between master and slave 

systems every time a random sub-unitary variables had values greater than 0.75. 

Sometimes, the two systems were synchronized and other times they run 

independently, as shown in Figures 2(b) and 2(c). The unused driving signals 

are represented by yellow color. Secondly, we cut the driving signal in the range 
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 4.1,1d  by maintaining the restrictive condition on the random variable, and 

succeeded to synchronize the two systems using just about 36% of driving 

signal (see Figure 2(d)).   
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Fig. 2. Selective synchronization of two identical Lorenz maps for d =1.4 

 

3.2. The unified chaotic system 
 

Recently, Lu et al. [7, 8] found a unified three-dimensional continuous 

dynamical system that has a broad spectrum of chaotic behaviors with the 

Lorenz and Chen systems as two extremes cases. It is described by 
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When  8.0,0 , the system (7) is called the generalized Lorenz system (for 

0 , it is the Lorenz system); when 8.0 , it becomes the generalized Lu 

system; when  1,8.0 , the system (7) is called the generalized Chen system 
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(for 1 , it is the Chen system). Some of these situations are plotted in Figure 

3.  
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Fig. 3. The unified chaotic attractor. a) 0 , b) 58.0 , c) 8.0 , d) 1  

 

As  changes continuously from 0 to 1, the resulting system (7) remains to be 

chaotic, as illustrated in Figure 4 (left panel), where only the first and the third 

Lyapunov exponents are plotted (the second is equal to zero).  
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the unified system (7) on  ; Right:  The dependence of the first and the third 

conditional Lyapunov exponents of the unified system (7) on  . 
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To synchronize two identical unified systems, we transmitted impulses sampled 

from z state variable of the master system to the slave system every time the 

condition dz m  was verified. The variable d acts again as a controlling 

parameter. For 627d , the eigenvalues of the variational system have 

negative real parts. As in the case of Lorenz map, a continuous transmission of 

driving signal cannot synchronize the two systems because the maximal 

conditional Lyapunov exponent is greater than zero (see Figure 4 (right panel)). 
 

Table 1. Synchronization time and used driving signal for a successful selective 

synchronization of two unified chaotic systems (7) 

 

  d Used driving signal (%) Synchronization time 

0.0 245.19   6.416.58   9.869.18   

0.58 265.17   1.249.87   9.9860  

0.8 5.2014  3.691.90   783.23   

1.0 245.22   0.483.58   1.686.47   

 

First, we focused our attention on the selective synchronization of two identical 

systems (7) for  0.1,8.0,58.0,0.0 . The case 58.0  was selected because 

it presents the smallest maximal Lyapunov exponent, as shown in Figure 4(a).  

In every situation, we succeeded to find a range for d so the two systems evolve 

in a synchronized manner. The plots for synchronization time and used driving 

signal versus d  are given in Figure 5. Additionally, some relevant values for 

these parameters are presented in Table 1. 
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Fig. 5. Selective synchronization of two unified chaotic systems (7). 

Synchronization time (left panel) and used driving signal (right panel) versus d 

for selected  . 
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Secondly, we chose 25 equidistant values for   between 0 and 1, and repeated 

the previous numerical investigation. The obtained results are reported in Figure 

6, where ranges for d and the used driving signal are displayed for every 

considered  , if the synchronization was realized. 
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Fig. 6. Selective synchronization of two unified chaotic systems (7). 

d (left panel) and used driving signal (right panel) versus   

 

Finally, we settled 0.0  and wanted to find the maximal amount of 

information needed to be transferred to the slave system so the synchronization 

can be achieved. For 23d , the two systems synchronized in 18.8 s by using 

45.2% of driving signal (see Figure 7(a)). For 27d , both the eigenvalues of 

the variation system have negative real parts. We tried to discard so many 

possible driving signals points in the range  27,23mz , by maintaining the 

two systems in a synchronized state. The result was that more than 80% of the 

driving signals may be neglected without destroying the synchronization (see 

Figure 7(b)). 
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Fig. 7. Selective synchronization of two unified chaotic systems (7) for 0.0 . 
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Conclusions 
 

In the paper we have shown that chaotic systems can be synchronized by using a 

selective scheme, where only those driving signals with strong synchronizing 

effect are sent to the slave system. Two important merits of this approach, 

highlighted by properly chosen examples, are as follows: 

a) The amount of information transmitted from the master system to the 

slave system is significantly reduced, which makes the scheme more 

safe and efficient in some sort of applications like secure 

communications; 

b) It can synchronize chaotic systems that cannot be synchronized by a 

continuous scheme under similar conditions. 

We also discussed the performance of selective synchronization scheme from 

the viewpoints of synchronization time and used driving signal. Computer 

simulation results, based on Lorenz chaotic map and on a unified continuous 

chaotic system which has the Lorenz and Chen systems as extreme cases, are 

given to demonstrate the effectiveness of the selective synchronization scheme.  
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strongly DM soliton interactions 
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Abstract: We study the interaction between a pair of gaussian pulses by means of a 
variational approximation propagating in a strongly dispersion managed (DM) optical 
fiber with periodically spaced lumped amplification. Results are studied for a 
prototypical model with two neighboring pulses equally spaced in time. By means of the 
ordinary differential equations (ODEs) obtained through the variational method and its 
associated parameters, it is shown that the location of the amplifier significantly affects 
the energy enhancement and pulsewidth evolution of each DM pulse. Besides, suitably 
positioning the amplifier can lead to extend the interaction distance between both pulses. 
Moreover, for higher bit-rate transmission systems we need to include the effect of third 
order dispersion (TOD) in the variational model. We find that TOD usually reduces the 
interaction distance between both solitons. However, there is a net increase in the 
interaction distance as we place an amplifier at specific positions of the dispersion map 
period for some  values of the dispersion difference. We study this result in terms of 
energy enhancement and pulsewidth evolution and, finally, compare the variational 
approximation predictions for the single-channel systems with direct simulations of the 
underlying partial differential equations and find an excellent agreement. 
 
Keywords: Optical solitons, Dispersion management, variational approximation, third 
order dispersion, optical fiber communication 
 
1. Introduction 
It is well known that periodically alternating the sign of the group-velocity 
dispersion along an optical fiber, a technique called Dispersion Management 
(DM), can extend greatly the transmission distance and has become a 
fundamental technology for high-speed soliton transmission in long-haul optical 
communication links [1], [2]. The potential offered by this technique comes 
from the fact that there is an energy enhancement compared with that of the 
conventional soliton [3], [4], [5], [6]. This periodic compensation of the group-
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velocity dispersion in a long fiber-optic telecommunication link raises the 
signal-to-noise ratio (SNR) and reduces the noise induced timing jitter and four 
wave mixing (FWM). 
However, there are several system penalties associated with DM propagation in 
a single frequency channel. One of the most important arises from a large pulse 
stretching accompanied with an overlap of neighboring pulses that causes a 
reduction in the interaction distance [7]. Besides, as transmission bit rates move 
to higher standards of the synchronous digital hierarchy (SDH), the impact of 
third order dispersion (TOD) effects becomes increasingly important, even for a 
single channel, due to the even greater reduction of pulse width [8, 9]. Now, in 
this work, we extend previous analyzes of the effect of the TOD on the 
interaction length [10] to the case where lumped amplification is present in the 
transmission link and compare the results with those mentioned in terms of 
energy enhancement and pulsewidth evolution.  
Our study is based in an ODE model obtained by means of a variational method 
[11] which takes into account third order dispersion [12]. Using a set of ODEs 
which capture the general evolution of the main parameters of each pulse in an 
approximate manner, with different amplifier locations and considering only 
two pulses transmitted in the system, we obtain conditions for stable pulse 
transmission under strong dispersion management regime, in terms of energy, 
chirp and pulsewidth. After that, we extend the analysis taking into account 
interaction distances between two pulses with and without TOD and with 
different amplifier locations. Finally, these results are verified versus direct 
numerical simulations.  
Previous results found that the amount of interaction between stretching pulses 
is dependent on the amplifier position in an unit cell of the dispersion map [13]. 
Now we find that, besides the enhancement of interaction distance due to a 
careful election in the location of the amplifier, there is also an improve in the 
collapse distance for certain values of averaged TOD along the line. 
 
2. Variational approximation 
We analyze a DM optical fiber made up of alternating segments of equal length 
with normal and anomalous dispersion. We insert lumped amplifiers in different 
locations within the unit cell of the dispersion map with intervals the same as 
the period of the variation of the dispersion. These amplifiers are moved inside 
the unit cell in each simulation in order to examine the effect of changing their 
position in terms of energy enhancement and pulsewidth evolution, taking into 
account the effect of third order dispersion. The normalised complex envelope 
of two adjacent optical pulses, where l = 1, 2, u(z, t) = u1(z, t) + u2(z, t), evolves 
in a periodic dispersion map, neglecting the phase-dependent effects and taking 
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into account only the SPM and XPM induced by the Kerr effect, according to a 
system of two coupled generalised NLS equations 
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where δ(Z) models the effect of TOD and D(Z), T and Z represent the fibre 
dispersion, the retarded time and  propagation distance, respectively. S(Z) 
accounts for the effects of gain and loss. D(Z) defines the dispersion map and is 
a periodic function of the propagation distance with alternating values D+ and 
D- in sections of fiber with lengths Z+ and Z- and average value Dav. ∆D = 
D+−|D-| and Z0 = Z++Z- is the map period. TOD effects arise from 

3 3/d dβ ω where β(ω) is the mode propagation constant at frequency ω. For the 
sake of simplicity, we assume a constant value for the TOD parameter δ. 
Numerical simulations performed for different values of δ periodically changing 
with Z have shown that the relevant parameter is its average value. We also 
assume that interaction behavior is dictated by self-phase modulation (SPM) and 
cross-phase modulation (XPM) effects alone. This model is only valid in the 
strong dispersion management regime (|∆D > 10|) due to the fast oscillating 
movement of both pulses. 
The variational method [11] permits to reduce the full complexity of the 
generalized NLS equation to that of system of ODEs which capture the most 
relevant features of the evolving solutions in an approximate manner. We 
assume that under strong dispersion management (∆DZ0>10; ∆DZ0<45) the 
pulse is well approximated by a Gaussian shape [15] and use the ansatz 
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where El, pl(Z), Cl(Z), ωl(Z), Tl(Z), θl(Z) are the energy, inverse pulse width, 
linear chirp, centre frequency, centre position and phase of the pulse, 
respectively.  
 
Skipping routine details, we obtain the equations of motion [12] 
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Fig. 1.  Pulse separation versus transmission distance for three different values 

of ∆D. The amplifiers are located at Za = 0. Z+ = Z− = 0.5 and Dav = 1 with 
initial pulse separation |T1 − T2| = 4.25. 
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3. Results and discussion 
The main effect observed in the above equations, in terms of mutual interaction 
between both pulses, is the change in the pulse frequency, which is translated to 
the time shift via the dispersion. Besides, considering strong dispersion 
management, the interaction is independent of the initial phase difference. The 
mechanism of this mutual interaction can be described as follows, taking into 
account only the XPM effect during the collision: The simultaneous presence of 
two pulses produces a shift of their center frequencies, caused by XPM, and a 
corresponding displacement of their center positions due to group velocity 
dispersion in the transmission medium. These two closely adjacent pulses attract 
each other and collide. We will measure this effect in terms of the interaction 
distance (Zi) defined as |T1 − T2|=0.5. 
We know that TOD induces two main effects in DM soliton propagation: an 
asymmetric distortion in the shape of the pulse and energy radiation. For the 
sake of simplicity we have neglected these effects in this variational 
approximation. As we introduce TOD effects in the ODE system described, the 
evolution equations derived in the previous section reveal a correction of the 
effective dispersion as Deff = D −6δω and a change in the tranverse velocity of 
each pulse as Vl = −Dωl + 3δωl

2. With the values obtained in these equations, 
we study the effect of pulse separation, pulse position evolution and energy 
enhancement in order to explain the changes in interaction distance versus the 
amplifier location, as we change the amplifier location and consider TOD 
effects. 

 
Fig. 2.  Pulse separation versus transmission distance for three different values 

of δ. The amplifiers are located at Za = 0. Z+ = Z− = 0.5 and Dav = 1 with initial 
pulse separation |T1 − T2| = 4.25. 
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3.1 Pulse separation 
In the ODE equations obtained, and demanding that the pulse’s width returns to 
the original values after passing one DM period for stationary pulse evolution, 
we set E2 = 0 and solve the ODES keeping only the results of the parameters for 
the l = 1 pulse. We consider p(0) = 1 pulses launched in a normalized map with 
Z+ = Z-=0.5 and Dav = 1 with initial pulse separation |T1 − T2| = 4.25. 
 
With those values we can obtain a complete picture of the four main parameters 
of the pulse: pulsewidth evolution, chirp and center position. In Figure 1 we can 
see an example of pulse separation in terms of interaction distance, versus 
transmission distance. The values of dispersion difference are ∆D = 12, 20, 30 
in the strong dispersion management regime. The amplifiers are located in the 
middle of the dispersion cell unit. The input pulse energy of a conventional 
soliton with the same average dispersion Dav = 1 is E0 = 2.5086 and the energy 
of the DM solitons with ∆D = 12, 20, 30 are E0 = 2.6646, 2.9128, 3.3947. We 
can see that the interaction distance, at which the pulse separation becomes 
lower than the half-FWHM pulse width (|T1 − T2| <= 0.5) decreases 
significantly as ∆D grows, mainly because a large amount of overlap between 
the pulses when they stretch. If we add TOD to the equations and find the 
interaction distance for a fixed dispersion difference ∆D = 30, we find that for 
some values of δ there is a significant increasing in the interaction distance.  
 
In Figure 2 we can see that the interaction distance grows from Zi = 54 with δ = 
0 to Zi = 57 with δ = 0.1. This occurs mainly due to an enhancement in the 
displacement of the center position of both pulses. This effect is shown in 
Figure 3. Numerical analysis obtained by the numerical integration of the full 
PDE are shown in Figure 4, showing good agreement with our variational 
approximation. Finally, in Figure 5 we can see the stable propagation of a single 
pulse with a lumped amplifier located at the middle of the dispersion map period 
with TOD. 
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Fig. 3.  Evolution of the center pulse position versus transmission distance for 
three different values of δ. The amplifiers are located at Za = 0. Z+ = Z− = 0.5 

and Dav = 1. 
 
 
 
 

 
Fig. 4.  Evolution of the main parameters of the pulse as obtained both through 

the ODE system and the full integration of the PDE. 
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Fig. 5.  Evolution of the intensity of the pulse for ∆D = 30 and an amplifier 

located at Za = 0 with Z+ = Z− = 0.5 and δ= 0.01. 
 

3.2 Pulsewidth evolution 
Figure 6 shows the interaction distance when the amplifier location is varied 
within the dispersion map for ∆D = 30. The amplifier location is measured 
starting from the middle of the anomalous dispersion map. Za =0.25 and Za = 
0.75 means that the amplifier is located at the beginning or the end of the 
normal dispersion map. Za = 0.5 means that the amplifier is located at mid-point 
of the normal dispersion map. This Figure shows clearly that the interaction 
distance can be extended by suitably positioning the amplifier as explained in 
reference [13]. The interaction distance is smaller when the amplifier is located 
at the beginning (Za =0.25) or the end (Za =0.75) of the dispersion cell unit, than 
when it is located at the middle of the anomalous (Za =1) or normal (Za =0.5) 
fiber segment.  
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Fig. 6.  Pulse separation versus transmission distance for different amplifier 

locations with and without TOD (δ = 0, 0.05). ∆D = 30 and initial pulse 
separation |T1 − T2| = 4.25. 

 

 
Fig. 7.  Inverse pulsewidth evolution calculated by the variational 

approximation for different amplifier locations within the dispersion map. 
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This can be understood by the pulsewidth evolution along the fiber, as shown in 
Figure 7, which shows a single pulse in the steady state. For each curve in this 
Figure, the origin of the distance is set at the location of the amplifier. 
We can see that the maximum pulse stretching occurs at distances closer to the 
amplifier, where the pulses have larger amplitude, Za =0.25 and Za = 0.75, 
beginning and end of the dispersion cell unit, respectively, causing larger pulse-
to-pulse interaction. Besides, most of the frequency change is induced near the 
junction between the anomalous and normal segments of the fiber where 
maximum pulse stretching occurs. Now, it can be easily seen that if we add the 
effect of third-order dispersion to the above pictures, as in Figure 6, with a 
significant amount of TOD, we can obtain an enhancement in the interaction 
distance, for some specific values of dispersion difference and amplifier 
locations. This improvement in the interaction distance is not due to energy or 
chirp, but mainly due to a greater displacement of the pulse center position as 
shown in Figure 3. 

3.3 Energy enhancement 
In Figure 8 we show the interaction distance of two neighboring pulses and the 
energy enhancement versus the amplifier location in a dispersion unit cell for an 
initial normalized pulse separation |T1 −T2| = 4.25 and dispersion difference ∆D 
= 30. This Figure shows clearly that the interaction distance is dependent on the 
amplifier location. And it also shows that short interaction distances accompany 
large energy enhancements. This is because we have pulse stretching when 
power is high and the energy enhancement is large. So, although, as explained 
in [13], small pulse-to-pulse interaction and large energy enhancement are not 
achieved simultaneously, we can position the amplifier location so we can 
increase the interaction distance and reduce the interaction, with a small 
degradation of the energy enhancement. Besides, as shown in Figure 8, for some 
locations of the amplifier and some values of TOD, we can even decrease 
further, as explained in above paragraphs, the pulse-to-pulse interaction, without 
any further degradation of the energy enhancement. 
 
4. Conclusion 
In summary, we have analyzed interaction distance, pulsewidth evolution and 
energy enhancement for two pulse interaction propagating in strongly dispersion 
managed single channeled optical transmission systems by means of a 
variational approximation. The energy enhancement obtained for the DM 
soliton contibutes to an extension of the interaction distance for some values of 
the dispersion difference. 
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We have found that the interaction distance can be extended by positioning the 
amplifier location at some specific places inside the dispersion cell unit. 
Besides, as me move to higher bit-rate transmission hierarchies, we must take 
into account third-order dispersion effects even for a single channel system. If 
we include TOD effects in the variational approximation, the evolution 
equations that describe the four main parameters of each pulse: inverse of the 
pulsewidth, chirp, center position and center frequency, show a change in chirp 
and center position. This enhancement of center pulse position helps to increase 
even further the interaction distance for some positions of the amplifier. 

 
Fig. 8.  Interaction distance of two neighboring pulses with initial pulse 

separation |T1 −T2| = 4.25 and energy enhancement factor of a single pulse in 
the steady state for different amplifier locations in the dispersion map with and 

without TOD (δ = 0, 0.1) and ∆D = 30. 
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Abstract. The aim is to determine characteristics of tremor determined as fast 
involuntary shaking and arising during the performance of the motor task by healthy 
subjects and patients with akinetic–rigid form of Parkinson’s disease. The motor task is 
to keep the force by hands under isometric conditions (without finger movement in 
space). The tremor (the fast component) isolated from the registered trajectory of the 
isometric force varies by the amplitude for healthy and parkinsonian subjects but it 
poorly differs by frequency making difficulties in distinguishing frequency spectra. The 
wavelet multilevel decomposition and multifractal analysis allowed us to compare the 
numerically expressed energy and multifractal parameters of tremor instead of the 
registered trajectories. At each decomposition level the energy parameters of 
physiological tremor are less than for parkinsonian tremor. The parkinsonian impairment 
degree correlates with deviation of the parameter values from the values obtained for the 
healthy persons. Antiparkinsonian drug administration in the dose usual for the 
parkinsonian patients leads to a decrease of differences between both the energy and 
multifractal parameters for the healthy and parkinsonian subjects. Thus, the considered 
energy and multifractal characteristics can underlie an express diagnostics of the human 
motor dysfunction and determine the strategy of selection of optimal drugs for relieving 
parkinsonian tremor. 
Keywords: Parkinson’s disease, Tremor, Wavelet decomposition, Multifractal.  
 
1  Introduction 

 
Involuntary shaking (tremor) of a body part can accompany some motor tasks, 
e.g., sustaining effort of fingers [1]. The mechanism underlying these 
involuntary oscillations appears to be related to discharges in feedback loops 
between motor cortical areas and basal ganglia and in the transcortical loop 
between the somatosensory and motor cortical areas [1, 2, 3]. Tremor may result 
from mechanical resonance in muscles and mobile parts of the skeleton, with the 
resonance frequency depending on the stretching strength applied to the limbs 
[4]. Under normal conditions, involuntary shaking has a small amplitude and 
does not impair motor performance [5]. The dispersion of frequency of 
involuntary oscillations from 8 to 12 Hz indicates asynchronous firing of 
individual motor units and a delay of the spread of impulses along feedback 
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loops [6, 7]. If a task requires fine control of the steady positions of fingers, 
tremor in the 16÷50 Hz range is added [8]. The appearance of high frequency 
oscillations is usually related to the involvement of sensory information 
processing.  
Pathological tremor disrupting the movement performance or posture 
maintenance is specified by a higher amplitude than physiological tremor has. It 
is related to an increasing synchronization of motor units. For example, 
synchronization of neurons in the nuclei of the thalamus and basal ganglia, from 
which descending signals are indirectly transmitted to the muscles explains the 
large tremor of 3–6 Hz typical for patients with Parkinson’s disease [1]. We 
studied tremor arising during keeping the force by hands under isometric 
conditions (without finger movement in space). Sometimes, especially in the 
case of akinetic–rigid parkinsonian form this considerably nonstationary tremor 
does not differ noticeably in frequency in comparison with healthy subjects [9].  
The aim of the work is to find scores giving evaluation of differences in 
involuntary shaking of fingers by performing a motor task by a healthy subject 
and a patient with Parkinson’s disease. For estimating the nonstationary signal 
features we use methods of nonlinear dynamics, namely, wavelet transform and 
multifractal analysis, which allow us to compare the numerically expressed 
energy parameters and scaling exponents of tremor. This analysis may serve as 
the basis for a diagnostics of the human motor dysfunction.  
 
2  The experimental procedure 
We used the results of testing 12 healthy subjects aged 43-54 years and 10 
parkinsonian patients with bilateral akinesis and tremor aged 45–62 years. The 
motor task was to control the isometric muscle effort with the strength of muscle 
contraction shown by the positions of marks on a monitor. The subjects sat in 
front of a monitor standing on a table and pressed on platforms containing stress 
sensors with their fingers. The sensors transformed the pressure strength of the 
fingers of each hand into an electric signal. The rigidity of the platforms made it 
possible to record the effort in the isometric mode, i.e., without noticeable 
movement of fingers at the points of contact with the sensors. The isometric 
effort was recorded for 30 s in tests of two types: in the first test, the subject’s 
fingers sustained an upward muscle effort, with the back of each hand pressing 
against the base of the platform; in the second test, the effort was downward. In 
both cases, the subject’s arms were straightened. 

The patients with Parkinson’s disease did not take any drugs before the test on 
the day of testing. Usually, these patients received nakom, an antiparkinsonian 
preparation containing levodopa and carbidopa (a decarboxylase inhibitor) at 
doses of 200 and 50 mg, respectively, three times a day to compensate for 
dopamine deficiency. 
The recorded trajectory of isometric effort consisted of a slow trend and a fast 
involuntary component (tremor), which was isolated from the recorded 
trajectory using the MATLAB software. 
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3  Wavelet transform and multifractality 

3.1 Estimation of parameters of the energy spectral density of 
tremor 

The algorithm of multilevel wavelet decomposition and reconstruction of a 
signal allows to represent the analyzed signal as the sum 

),(...)()()( 1 iimimi tDtDtAtx +++=  

where the component Am(ti) gives the coarse approximation to the initial signal 
at the mth level of decomposition and D1(ti), … and Dm(ti)  determine details. 
The component D1(ti) characterizes details at the highest frequencies. Thus, the 
algorithm permits to elucidate features of the signal at various frequencies. The 
central frequency of the wavelet corresponding to the jth  level of decomposition 
was calculated as    mjff j

Sr ....,1  ,2/ = ,     where            fS =50 Hz   is the 
sampling frequency and   fr = 0.71     is the central frequency of the mother 
Daubechies wavelet   db4   used in this work. To analyze the tremor details we 
used the method for estimating parameters of the energy spectral density of a 
signal [9]. 

Let S(f) be the energy spectral density of the component D(t) equal to the square 
of the Fourier transform: 

2
2)()( ∫ −= dtetDfS iftπ . 

Then the total energy accumulated in the frequency range [f1, f2]  is  
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As an energy parameter of the energy spectral density we use the value 
),)/(( max12max fffek −=  

 
where fmax is the frequency value corresponding to emax  and the frequencies f1 
and f2 correspond to values 0.05*Smax and 0.95*Smax. Thus, the frequency range 
[f1, f2] specifies the energy spectrum kept after 5% filtration of noise. 
The parameter k  describes the relation between the maximal accumulation of 
the signal energy, the frequency corresponding to the maximum of the energy 
spectral density, and the frequency range [f1, f2] at which the energy is 
accumulated. 
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3.2 Estimation the global wavelet spectrum of the tremor 
 
To evaluate the difference between physiological and pathological tremors, we 
used the wavelet transform modulus maxima (WTMM) method [10] based on 
the continuous wavelet transform of a time series describing the examined 
tremor x(t): 

( )( ) ,/)(),( 0
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0 dtatttxataW −= ∫
+∞

∞−

− ψ  

 
where a and t0  are the scale and space parameters, ψ((t- t0)/a) is the wavelet 
function obtained from the basic wavelet ψ(t) by scaling and shifting along the 
time, symbol * means the complex conjugate. As the basic wavelet we use the 
complex Morlet wavelet: 
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The value ω0=2π gives the simple relation between the scale a and the 
frequency f:          f=1/a. 
The modulus of the wavelet spectrum  |W(f, t0)|  characterizes the presence and 
intensity of the frequency f at the moment t0 in the signal and |W(f, t0)|2   

describes the instantaneous distribution of the tremor energy over frequencies, 
that is, the local spectrum of the signal energy at the time t0.. 
The value   
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determines the global wavelet spectrum, i.e., the integral distribution of the 
wavelet spectrum energy over frequency range on the time interval [t1 , t2 ].  
 
3.3 Estimation the tremor multifractality 
 
Information about possible multifractal feature of the signal and its localization 
t0 reflects in the asymptotic behavior of coefficients |W(a, t0)|  at small a 
values and large f values, respectively. The faster the wavelet coefficients 
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decrease at  f→¶,  the more regular the signal is around that point. Abnormal 
small decrease of the wavelet coefficients at  a→0   in a neighborhood of the 
point t0   testifies about singularity of the signal at the point. Thus, the rate of the 
change of the modulus of the wavelet coefficients enables to analyze the 
presence or absence of singularities of the signal.  
The degree of singularity of the signal x(t) at the point t0 is described by the 
Hölder exponent, h(t0),  the largest exponent such that the analyzed signal in a 
neighborhood of the point t0 can be represented as the sum of the regular 
component (a polynomial Pn(t) of order n < h(t0)) and a member describing a 
non - regular behavior [10]:  
 

)(
0 0)()( th

n ttctPtx −+= . 
 

The value h(t0) is the measure of singularity of the signal at the point  t0  since 
the smaller  h(t0) value, the more singular the signal. 
In view of the simple dependence )(

0 0~),( thataW  at a→0 [10], the Hölder 
exponent can be calculated by  
 

.log),(log~)( 100100 ataWth  
 

However, with increasing the scale a the influence of neighbouring 
nonregularities can lead to inaccuracy, that is why we determined the Hölder 
exponents on the basis of statistical description of local singularities by partition 
functions [11].  
The algorithm consists of the following procedures.  
1) The continuous wavelet transform of the time series is used. 
2) A set L(a) of lines of local modulus maxima of the wavelet coefficients is 
found at each scale  a 
3) The partition functions are calculated by the sum of  q - powers of the 
modulus maxima of the wavelet coefficients along the each line at the scales 
smaller the given value a: 
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tl(a*) determines the position of the maximum corresponding to the line l at this 
scale 
4) By the fact that the partition function is )(~),( qaaqZ τ at a→0 [11], the 
scaling exponent can be extracted as  
 

.log),(log~)( 1010 aaqZqτ  
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5) Choosing different values of the power q one can obtain a linear dependence 
τ(q) with a constant value of the Hölder exponent  
 

constdqqdqh == )()( τ  
for monofractal signals and nonlinear dependence )()()( hDqqhq −=τ with 
large number of the Hölder exponents for multifractal signals. 
6) The singularity spectrum (distribution of the local Hölder exponents) is 
calculated from the Legendre transform [11]:   
 

).()()( qqqhhD τ−=  
 
Using the global wavelet spectra and the WWTM algorithm for the different 
tremor recording we obtain the maximum of the global tremor energy (Emax ) and 
two multifractal parameters: 
a) the width of the singularity spectrum     
 

∆h = hmax – hmin , 
 

where  hmax  and hmin  are the maximal and minimal values of the Holder 
exponent corresponding to minimal and maximal tremor fluctuation, 
respectively;  
b) the asymmetry of the singularity spectrum  
 

∆ = | ∆2 – ∆1 |, 
 

where    ∆1 = hmax – h0    and  ∆2 = h0 – hmin ,      h0 = h (q = 0).  
Smaller Δh indicates that the time series tends to be monofractal and larger Δh 
testifies the enhancement of multifractality. The asymmetry parameter ∆ 
characterizes where, in the region of strong singularities  (q > 0 ) or in the region 
of weak singularities (q < 0), the singularity spectrum is more concentrated. 
To compare the mean values in each of the examined group of subjects the 
Student criterion was applied. 
 
4  Results and discussion 
 
Two components of oscillations of the isometric force trajectory of the human 
hand, namely, slow trend and tremor, are given in Fig. 1 for the healthy subject 
(Fig. 1a) and for the parkinsonian patient before (Fig. 1b) and after nakom 
medication (Fig. 1c). The amplitude of parkinsonian tremor is nearly twice 
larger than physiological tremor isolated for the healthy subject. Two hours after 
nakom medication the parkinsonian tremor reduced by amplitude to the values 
specified for the healthy subject. The differences in slow components were not 
essential. 
The right column of Fig. 1 shows the curves τ (q) (Fig. 1d), h(q) (Fig. 1e) and 
the singularity spectra D(h) for the same subjects. The nonlinear dependence  
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τ (q)  indicates the large number of Hölder exponents. These dependences and 
the form of singularity spectгum  D(h) testifies the multifractality of both 
physiological and parkinsonian tremor. However, the Holder exponents differ 
for the two subjects. The differences are maximal at weak fluctuations (q < 0).  
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Fig. 1. Examples of two components of the isometric force trajectory of the 
human hand (slow trend and tremor) for a healthy subject (a) and for a patient 

with Parkinson disease before the drug administration (b) and after (c). 
Multifractal curves for tremor:  τ (q) (d), h(q) (e) and singularity spectra D(h). 

 
 
The healthy tremor is characterized by the largest width ∆h and, therefore, by 
the significant degree of multifractality. The decline in the width of the 
singularity spectrum shows a reduction of nonuniformity of the parkinsonian 
tremor and a fall in the multifractality degree.  
The singularity spectrum asymmetry ∆ is also larger for healthy tremor and for 
parkinsonian one the value of    ∆   is close to 0.1. 
The decrease of the both parameters in tremor of patients with Parkinson’s 
disease is due to decreasing contribution of weak fluctuations (for q < 0). 
In healthy tremor the singularity spectrum is expanded so that the dynamics of 
persistent sequences exhibits both anticorrelated (for h < 0.5) and correlated (for 
h > 0.5) behavior. 
The decrease of hmax in parkinsonian tremor as compared with the physiological 
one testifies about the enhancement of the anticorrelation degree so that the 
tremor tend to become more random and less smooth. The consequent values 
are anticorrelated (h < 0.5), i.e., persistent sequences in pathological tremor are 
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characterized by stochastically up - down patterns in which large values are 
more likely to be followed by small values and vice versa.  
Antiparkinsonian drug administration leads to the increase of the multifractal 
parameters increasing both the width and the asymmetry of the singularity 
spectrum.  
The energy parameter   k  enhances with increasing the decomposition level 
(Fig. 2). For the healthy tremor the means of k values are less than for the 
parkinsonian one on all the levels. The differences between the parameter k 
values for the healthy and parkinsonian subjects reduce with increasing the 
decomposition level. Maximal differences (in three orders) are observed at the 
first level that is for the high frequency details. This level specifies frequencies 
located near 17.8 Hz. At the last decomposition level the means of  k values 
distinguish much less. But even at the fourth level with frequencies close to 2.2 
Hz the values differ. 
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Fig.2 Dependences of mean values of the energy parameter k on the 

decomposition level. The solid line corresponds to the healthy 
tremor, the dashed lines specifies the parkinsonian tremor before and after 

nakom administration. 
 
Antiparkinsonian drug administration in the dose usual for the parkinsonian 
patients leads to a decrease of differences between means of k for the healthy 
and parkinsonian subjects at all the decomposition levels. This testifies that two 
hours after medication of the drug compensating deficit of dopamine in basal 
ganglia tremor arising during maintenance of isometric force by the 
parkinsonian subject becomes similar to physiological tremor by the energy 
parameter of the spectral density of the tremor detail components.  
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Calculation of the instantaneous frequency - time distributions  |W(f, t0)|2    and 
global wavelet spectra E(f) enables us to find the enormous enhancement (about 
in 300 times) of the maximal global energy Emax   in parkinsonian tremor as 
compared with the healthy one (Fig.3).  
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Fig. 3. Examples of the instantaneous frequency-time distributions  of the 
tremor energy |W(f, t0)|2   (left column)  and global wavelet spectra E(f) (right 

column)  for the same subjects as in  Fig.1. 
 
 
The maximal value  Emax   of physiological tremor is in the frequency range of 
alpha rhythm [8, 14] Hz. For the pathological tremor Emax    is shifted in the 
theta range [4, 7.5] Hz. Two hours later after antiparkinsonian drug medication 
the energy value dramatically reduces to the value specified for the healthy 
volunteers. 
The similar dynamics of the energy and multifractal parameters is observed for 
all the examined subjects. It enables us to use the common practice of averaging 
the recordings of all subjects for testing significant variations among the groups.  
The values of Emax ,   ∆h  and    ∆ averaged by subjects in every group are given 
in Table 1. The significant distinctions between the states (pathological or 
physiological tremor) are identified by all the three parameters (p=0.02, p=0.03   
and   p=0.01, respectively). 
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state test hand Emax* 
10-4 

∆h ∆ clinical 
manifes- 
tation of 
tremor 

right 7.5≤0.3 0.75≤0.06 0.37≤0.03 1 
left 6.8≤0.2 0.82≤0.07 0.42≤0.04 
right 8.7≤0.3 0.78≤0.07 0.38≤0.04 

healthy 

2 
left 7.9≤0.3 0.69≤0.05 0.45≤0.05 

no 

right 2150≤115 0.34≤0.03 0.14≤0.03 1 
left 2397≤146 0.29≤0.02 0.19≤0.01 
right 1976≤101 0.38≤0.02 0.11≤0.01 

parkinsonian 

2 
left 2110≤131 0.41≤0.03 0.15≤0.01 

yes 

right 5.2≤0.1 0.81≤0.08 0.51≤0.05 1 
left 8.2≤0.3 0.86≤0.07 0.56≤0.05
right 9.3≤0.3 0.71≤0.07 0.41≤0.04

parkinsonian  
2 hours after  
drug  
medication 
(68% 
patients) 

2 
left 7.3≤0.2 0.74≤0.07 0.54≤0.04

no 

right 1870≤106 0.43≤0.03 0.13≤0.011 
left 1687≤92 0.35≤0.02 0.17≤0.01
right 1933≤113 0.42≤0.02 0.22≤0.01

parkinsonian  
2 hours after 
drug  
medication 
(32% 
patients) 

2 
left 1881≤103 0.37≤0.02 0.15≤0.01

yes 

 
Table 1. Comparison of the mean values, averaging over subjects inside the 

every examined group. The subject’s fingers sustained an upward muscle effort 
(test 1) and downward effort (test 2). 

 
Our results demonstrate that clinical manifestation of tremor is correlated with 
the significant enhancement of the maximal global energy and the decrease of 
the width and the asymmetry of the singularity spectrum. The disappearance of 
the clinical features of the pathological tremor in 68 % of the examined patients 
is accompanied by approximation of the multifractal and energy parameters to 
the values obtained for the healthy subjects. 
We have shown that parkinsonian damage of the brain leads to the characteristic 
breakdown or modification in the long–range correlations of neuronal activity 
that can be a useful indicator of a dysfunctional network in the central nervous 
system.  
The long–range correlations can be related to fractality of intracellular process 
defining the amplitude and the velocity of the action potential propogation. So, 
the long–rang correlations of sequences of life time of ion channels and 
dynamics of change in the membrane - binding calcium concentration have been 
shown in [12]. The long-term memory in ion channel dynamics leads to the 
memory in fluctuations of a nerve fiber excitability [13]. An increase of the 
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number of excitable fibers during propagation of rhythmical impulses is 
accompanied by a decrease of the long-range correlations in sequences of the 
action potential amplitudes and an increase of correlations in the velocities of 
the action potential propagation [14]. It may underlie the reduction of the long–
term memory for parkinsonian disruption of the central control by movements 
as evidenced by the increasing synchronization and decrease of the 
multufractality of involuntary oscillations. 

 

Conclusions 
Our examination of differences in physiological and pathological tremor arising 
during the maintenance of isometric force by hands of a healthy subject and a 
subject with Parkinson’s disease demonstrates that the energy parameters and 
multifractal characteristics can serve as estimations of the human motor 
dysfunction since their values reflect the degree of deviation of pathological 
involuntary oscillations from the normal ones.  
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Abstract. The problem of estimating reachable sets of nonlinear dynamical control
systems with quadratic nonlinearity and with uncertainty in initial states is studied.
We assume that the uncertainty is of a set-membership kind when we know only
the bounding set for unknown items and any additional statistical information on
their behavior is not available. We present approaches that allow finding ellipsoidal
estimates of reachable sets. The algorithms of constructing such ellipsoidal set-valued
estimates and numerical simulation results are given in two cases, for control systems
with classical controls and for measure driven (impulsive) control systems.
Keywords: Nonlinear Control Systems, Uncertainty, State Estimation, Ellipsoidal
Calculus, Funnel Equations, Trajectory Tubes, Simulation.

1 Introduction

In this paper we study control systems with unknown but bounded uncer-
tainties related to the case of a set-membership description of uncertainty
(Bertsekas and Rhodes[1], Kurzhanski and Valyi[11], Schweppe[13], Walter and
Pronzato[15]). The motivation to consider the set-membership approach is that
in traditional formulations the characterization of parameter uncertainties re-
quires assumptions on mean, variances or probability density function of errors.
However in many applied areas ranged from engineering problems in physics
to economics as well as to biological and ecological modeling it occurs that a
stochastic nature of the error sequence is questionable. For instance, in case
of limited data or after some non-linear transformation of the data, the pre-
sumed stochastic characterization is not always valid. Hence, as an alternative
to a stochastic characterization a so-called bounded-error characterization, also
called set-membership approach, has been proposed and intensively developed
in the last decades.
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The solution of many control and estimation problems under uncertainty
involves constructing reachable sets and their analogs. For models with linear
dynamics under such set-membership uncertainty there are several constructive
approaches which allow finding effective estimates of reachable sets. We note
here two of the most developed approaches to research in this area. The first
one is based on ellipsoidal calculus (Chernousko[2], Kurzhanski and Valyi[11])
and the second one uses the interval analysis (Walter and Pronzato[15]).

Many applied problems are mostly nonlinear in their parameters and the
set of feasible system states is usually non-convex or even non-connected. The
key issue in nonlinear set-membership estimation is to find suitable techniques,
which produce related bounds for the set of unknown system states without
being too computationally demanding. Some approaches to the nonlinear set-
membership estimation problems and discrete approximation techniques for dif-
ferential inclusions through a set-valued analogy of well-known Euler’s method
were developed in Dontchev and Lempio[3], Veliov[14]. In this paper the mod-
ified state estimation approaches which use the special quadratic structure of
nonlinearity of studied control system and use also the advantages of ellipsoidal
calculus (Kurzhanski and Valyi[11], Chernousko[2]) are presented.

2 Preliminaries

In this section we introduce the following basic notations. Let Rn be the n–
dimensional Euclidean space and x′y be the usual inner product of x, y ∈ Rn
with prime as a transpose, ‖ x ‖ = (x′x)1/2. We denote as B(a, r) the ball in
Rn, B(a, r) = {x ∈ Rn : ‖ x− a ‖ ≤ r}, I is the identity n× n-matrix. Denote
by E(a,Q) the ellipsoid in Rn, E(a,Q) = {x ∈ Rn : (Q−1(x−a), (x−a)) ≤ 1}
with center a ∈ Rn and symmetric positive definite n× n–matrix Q.

Consider the following system

ẋ = Ax+ f (1)(x)d(1) + f (2)(x)d(2), x0 ∈ X0, t0 ≤ t ≤ T, (1)

where x ∈ Rn, ‖x‖ ≤ K (K > 0), d(1) and d(2) are n-vectors and f (1), f (2) are
scalar functions,

f (1)(x) = x′B(1)x, f (2)(x) = x′B(2)x,

with symmetric and positive definite matrices B(1), B(2). We assume also that

d
(1)
i = 0 for i = k + 1, . . . , n and d

(2)
j = 0 for j = 1, . . . , k where k (1 ≤ k ≤ n)

is fixed. This assumption means that the first k equations of the system (1)
contain only the nonlinear function f (1)(x) (with some constant coefficients

d
(1)
i ) while f (2)(x) is included only in the equations with numbers k+ 1, . . . , n.

We will assume further that X0 in (1) is an ellipsoid, X0 = E(a,Q), with a
symmetric and positive definite matrix Q and with a center a.

We will need some auxiliary results.

Lemma 1. The following inclusion is true

X0 ⊆ E(a, k21(B(1))−1)
⋂
E(a, k22(B(2))−1) (2)

where k2i is the maximal eigenvalue of the matrix (B(i))1/2Q(B(i))1/2 (i = 1, 2).
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Proof. The proof follows directly from the properties of quadratic forms and
from the inclusions

E(a,Q) ⊆ E(a, k21(B(1))−1), E(a,Q) ⊆ E(a, k22(B(2))−1),

which should be fulfilled with the smallest possible values of k1 ≥ 0 and k2 ≥ 0.

Lemma 2. The following equalities hold true

max
z′B(1)z≤k21

z′B(2)z = k21λ
2
12, max

z′B(2)z≤k22
z′B(1)z = k22λ

2
21, (3)

where λ212 and λ
2
21 are maximal eigenvalues of matrices (B(1))−1/2B(2)(B(1))−1/2

and (B(2))−1/2B(1)(B(2))−1/2 respectively.

Proof. The formulas follow from direct computations of maximal values in (3).

Theorem 1. (Filippova[6]) For all σ > 0 and for X(t0+σ) = X(t0+σ, t0, X0)
we have the following upper estimate

X(t0 + σ) ⊆ E(a(1)(σ), Q(1)(σ))
⋂
E(a(2)(σ), Q(2)(σ)) + o(σ)B(0, 1), (4)

where σ−1o(σ)→ 0 when σ → +0 and

a(1)(σ) = a(σ) + σk21λ
2
12d

(2), a(2)(σ) = a(σ) + σk22λ
2
21d

(1), (5)

a(σ) = (I + σA)a+ σa′B(1)ad(1) + σa′B(2)ad(2), (6)

Q(1)(σ) = (p−11 +1)(I+σR)k21(B(1))−1(I+σR)′+(p1+1)σ2||d(2)||2k41λ412·I, (7)

Q(2)(σ) = (p−12 +1)(I+σR)k22(B(2))−1(I+σR)′+(p2+1)σ2||d(1)||2k42λ421·I, (8)

R = A+ 2d(1)a′B(1) + 2d(2)a′B(2) (9)

and p1, p2 are the unique positive solutions of related algebraic equations

n∑
i=1

1

p1 + αi
=

n

p1(p1 + 1)
,

n∑
i=1

1

p2 + βi
=

n

p2(p2 + 1)
(10)

with αi, βi ≥ 0 (i = 1, ..., n) being the roots of the following equations

det((I + σR)k21(B(1))−1(I + σR)′ − ασ2||d(2)||2k41λ412 · I) = 0, (11)

det((I + σR)k22(B(2))−1(I + σR)′ − βσ2||d(1)||2k42λ421 · I) = 0. (12)

We may formulate now the following scheme that gives the external estimate
of trajectory tube X(t) of the system (1) with given accuracy.

Algorithm 1. Subdivide the time segment [t0, T ] into subsegments [ti, ti+1]
where ti = t0 + ih (i = 1, . . . ,m), h = (T − t0)/m, tm = T .

• Given X0 = E(a,Q), take σ = h and define ellipsoids E(a(1)(σ), Q(1)(σ))
and E(a(2)(σ), Q(2)(σ)) from Theorem 2.
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• Find the smallest (with respect to some criterion, Kurzhanski and Valyi[11],
Chernousko[2]) ellipsoid E(a1, Q1) which contains the intersection

E(a(1)(σ), Q(1)(σ))
⋂
E(a(2)(σ), Q(2)(σ)) ⊆ E(a1, Q1).

• Consider the system on the next subsegment [t1, t2] with E(a1, Q1) as the
initial ellipsoid at instant t1.
• Next steps continue iterations 1-3. At the end of the process we will get

the external estimate E(a(t), Q(t)) of the tube X(t) with accuracy tending
to zero when m→∞.

3 Main results

3.1 Control system under uncertainty

Consider the following control system in the form of differential inclusion (Kurzhan-
ski and Filippova[10])

ẋ ∈ Ax+ f (1)(x)d(1) + f (2)(x)d(2) + P, x0 ∈ X0 = E(a,Q), t0 ≤ t ≤ T, (13)

with all previous assumptions being valid. We assume also that P is an ellip-
soid, P = E(g,G), with a symmetric and positive definite matrix G and with
a center g.

In this case the estimate for X(t0+σ) (the analogy of the formula (4)) takes
the form.

Theorem 2. The following inclusion is true

X(t0 + σ) ⊆ E(a(1)(σ), Q(1)(σ)) ∩ E(a(2)(σ), Q(2)(σ))

+ σE(g,G) + o(σ)B(0, 1),
(14)

where σ−1o(σ) → 0 when σ → +0 and the parameters a(i), Q(i) (i = 1, 2) are
described in (5)–(9).

Proof. The inclusion follows from the Theorem 1 and from the properties of
the trajectory tubes of related differential inclusions (see also techniques in
Filippova[7]).

We should modify now the previous scheme (Algorithm 1) in order to for-
mulate a new procedure of external estimating of trajectory tube X(t) of the
system (13).

Algorithm 2. Subdivide the time segment [t0, T ] into subsegments [ti, ti+1]
where ti = t0 + ih (i = 1, . . . ,m), h = (T − t0)/m, tm = T .

• Given X0 = E(a,Q), take σ = h and define ellipsoids E(a(1)(σ), Q(1)(σ))
and E(a(2)(σ), Q(2)(σ)) from Theorem 2.

• Find the smallest (with respect to some criterion (Kurzhanski and Valyi[11],
Chernousko[2]) ellipsoid E(a∗, Q∗) which contains the intersection:

E(a(1)(σ), Q(1)(σ))
⋂
E(a(2)(σ), Q(2)(σ)) ⊆ E(a∗, Q∗).
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• Find the ellipsoid E(a1, Q1) which is the upper estimate of the sum (Kurzhan-
ski and Valyi[11], Chernousko[2]) of two ellipsoids, E(a∗, Q∗) and σE(g,G):

E(a∗, Q∗) + σE(g,G) ⊆ E(a1, Q1).

• Consider the system on the next subsegment [t1, t2] with E(a1, Q1) as the
initial ellipsoid at instant t1.

• Next steps continue iterations 1-3. At the end of the process we will get
the external estimate E(a(t), Q(t)) of the tube X(t) with accuracy tending
to zero when m→∞.

3.2 Examples

Consider three examples illustrating the techniques of ellipsoidal estimating.
For simplicity we take here d(2) = 0 so only one quadratic form is present at
the right-hand side of the dynamic equations (13).

Example 1. Consider the following control system:{
ẋ1 = 2x1 + u1,
ẋ2 = 2x2 + x21 + x22 + u2,

x0 ∈ X0, t ∈ [t0, T ]. (15)

Here we take t0 = 0, T = 0.35, X0 = B(0, 1) and put P (t) ≡ U = B(0, 0.5)
in the control constraint. The trajectory tube X(t) and its external ellipsoidal
estimate E(a(t), Q(t)) are given at Figure 1.
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Fig. 1. Trajectory tube X(t) and its ellipsoidal estimate E(a(t), Q(t)).

The following example illustrates the case where the reachable set may
lose convexity with increasing time t > t0. Nevertheless the related external
estimate is also true.
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Example 2. Consider the following control system:{
ẋ1 = 2x1 + u1,
ẋ2 = 2x2 + 4x21 + x22 + u2,

x0 ∈ X0, t ∈ [t0, T ]. (16)

Here we take t0 = 0, T = 0.25, X0 = B(0, 1) and P (t) ≡ U = B(0, 1).
The trajectory tube X(t) and its external ellipsoidal estimate E(a(t), Q(t)) are
given at Figure 2.
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Fig. 2. Nonconvex-valued trajectory tube X(t) and its external ellipsoidal estimate
E(a(t), Q(t)).

The following example illustrates the main procedure of the new Algo-
rithm 2 of Section 3.1.

Example 3. Consider the following control system with two quadratic forms
in its dynamical equations:{

ẋ1 = 1.5x1 + x21 + 2x22 + u1,
ẋ2 = 1.5x2 + 2x21 + x22 + u2,

x0 ∈ X0, t ∈ [t0, T ]. (17)

Here we take t0 = 0, T = 0.3, X0 = B(0, 1) and U = B(0, 0.1). Steps of the
Algorithm 2 of constructing the external ellipsoidal estimate E(a(t), Q(t)) of
the reachable set X(t) are shown at Figure 3.

The resulting ellipsoidal estimate E(a(T ), Q(T )) is shown at Figure 4. A
parameter ρ indicated at Fig. 4 depends on a type of the optimality criterion
which we use in constructing the external ellipsoid E(a∗, Q∗) at the iterations
2-3 of the first step of Algorithm 2, see also Kurzhanski and Valyi[11] and
Chernousko[2]. Here we see that the reachable set X(T ) is nonconvex and is
contained in the ellipsoid E(a(T ), Q(T )) for any value of the parameter ρ as
shown at Fig. 4.
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Fig. 3. Reachable set X(t0 + σ) and its estimate E(a1(σ), Q1(σ)) at the first step of
Algorithm 2 (iterations 1-3).

Fig. 4. Reachable set X(T ) and its external ellipsoidal estimate E(a(T ), Q(T )).
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3.3 Impulsive systems under uncertainty

Consider the following control system

dx(t) = (Ax(t) + f̃(x)d+ u(t))dt+Bdv(t), x ∈ Rn, t0 ≤ t ≤ T, (18)

where f̃(x) = x′B̃x with positive definite and symmetric matrix B̃, parameters
d,B are n-vectors, d,B ∈ Rn. Here the function v : [t0, T ]→ R is of bounded
variation on [t0, T ], monotonically increasing and right-continuous. We assume
that µ > 0 and

V art∈[t0,T ] v(t) = sup
{ti|t0≤t1≤...≤tk=T}

{
k∑
i=1

|v(ti)− v(ti−1)|} ≤ µ.

We assume also

X0 = E(a, k2B̃−1) (k 6= 0), U = E(â, Q̂). (19)

Consider the following auxiliary equation:

d

dη

(
z
τ

)
∈ H(τ, z), (20)

z(t0) = x0 ∈ X0 = E(a, k2B̃−1), τ(t0) = t0, t0 ≤ η ≤ T + µ,

H(τ, z) =
⋃

0≤ν≤1

{
(1− ν)

(
Az + f̃(z)d+ E(â, Q̂)

1

)
+ ν

(
B
0

) }
. (21)

Denote the reachable set of the system (20)–(21) as W (t0 + σ) = W (t0 +
σ; t0, X0 × {t0}).

Theorem 3. (Filippova[4]) The following inclusion holds true for σ > 0:

W (t0 + σ) ⊆
⋃

0≤ν≤1

(
E(a+(σ, ν), Q+(σ, ν))

t0 + σ(1− ν)

)
+ o(σ)Bn+1(0, 1),

limσ→+0 σ
−1o(σ) = 0.

(22)

Here
a+(σ, ν) = a(σ, ν) + σ(1− ν)â+ σνB,

Q+(σ, ν) = (p−1 + 1)Q(σ, ν) + (p+ 1)σ2(1− ν)2Q̂,
(23)

where p = p(σ, ν) is the unique positive root of the equation

n∑
i=1

1

p+ λi
=

n

p(p+ 1)
,

and λi = λi(σ, ν) ≥ 0 satisfy the equation |Q(σ, ν)− λσ2(1− ν)2Q̂| = 0,

a(σ, ν) = a+ σ(1− ν)(Aa+ (a′B̃a)d+ k2d),

Q(σ, ν) = k2(I + σR)B̃−1(I + σR)′, R = (1− ν)(A+ 2da′B̃).
(24)
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The following lemma explains the construction of the auxiliary differential in-
clusion (20).

Lemma 3. (Filippova[4]) The set X(T ) = X(T, t0, X0) is the projection of
W (T + µ) at the subspace of variables z:

X(T ) = πzW (T + µ).

Different variants of algorithms of ellipsoidal estimating for the system simi-
lar to (18) basing on the above results are given in Filippova and Matviychuk[9],
Matviychuk[12],

Theorem 3 can be generalized to the case of a more complicated form

dx(t) = (Ax(t) + f (1)(x)d(1) + f (2)(x)d(2) + u(t))dt+Bdv(t),
x ∈ Rn, t0 ≤ t ≤ T,

(25)

where B ∈ Rn, V art∈[t0,T ]v(t) ≤ µ, d(1), d(2) ∈ Rn and

f (1)(x) = x′B(1)x, f (2)(x) = x′B(2)x.

The above generalization is based on a combination of the techniques de-
scribed above and the results of Filippova[7].

4 Conclusions

The paper deals with the problems of state estimation for uncertain dynamical
control systems for which we assume that the initial system state is unknown
but bounded with given constraints.

The solution is studied through the techniques of trajectory tubes of related
differential inclusions with their cross-sections X(t) being the reachable sets at
instant t to control system.

Basing on the results of ellipsoidal calculus developed earlier for linear un-
certain systems we present the modified state estimation approaches which use
the special nonlinear structure of the control system and allow to construct the
external ellipsoidal estimates of reachable sets.
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Mode locking, chaos and bifurcations in
Hodgkin-Huxley neuron forced by sinusoidal

current
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Abstract. The action potentials in a sinusoidaly forced Hodgkin-Huxley neuron are
known to possess mode locked or chaotic oscillations depending on the values of
forcing parameters. We have numericaly studied the spiking dynamics of the sinu-
soidaly forced Hodgkin-Huxley neuron by making fine variations in the amplitude
while keeping the frequency fixed. We find that the dynamics of the neuron is far
richer than previously known. Increasing the resolution of forcing amplitude (I0) un-
covers 1/m mode locked oscillations with increasingly larger values of m. Moreover,
a mode locked oscillation of type 1/m can exist over multiple disconnected intervals
of forcing amplitude. Chaotic oscillations are found interspersed with mode locked
oscillations. By varying I0 we have further explored the transition between qual-
itatively different types of oscillations. On increasing I0, every 1/m mode locked
oscillation is found to go through a sequence of period doubling bifurcations giving
rise to 1/2m, 1/4m, ... mode locked oscillations and finally chaos. Chaotic oscillations
further undergo a transition to a 1/m′ mode locked oscillation through a tangent
bifurcation. The observed spiking patterns in mode-locked oscillations are unusual
and encode the stimulus strength.

Keywords: Hodgkin-Huxley model, Neurons, Bifurcation.

1 Introduction

Hodgkin Huxley model serves as a paradigm for axonal membranes of spik-
ing neurons. The model arose from the electrophysiological experiments of
Hodgkin-Huxley with squid giant axons. Consequently, a lot of experimental
work with squid axons and theoretical work with the Hodgkin-Huxley (HH)
model has been carried out.

A nerve membrane is an excitable system. An appropriate stimulus evokes
a strong response (action potential) resulting in a train of spikes in the mem-
brane potential. For forcing by a steady current, a subcritical Hopf bifurcation
causes the rest state of the neuron to become unstable giving rise to a periodic
train of spikes (a limit cycle) (Xie et. al.[1]). Periodically varying stimuli evoke
a rich variety of response. Mode-locked (periodic), chaotic, and quasiperiodic
oscillations of membrane voltage have been found in experiments with squid gi-
ant axons (Kaplan et. al. [2], Matsumoto et. al.[3], Aihara and Matsumoto[4],
Guttman et. al.[5]) and in numerical simulations of the HH model (Lee[6],
Borkowski[8], Borkowski[7], Parmananda et. al.[9]).
_________________ 
7th CHAOS Conference Proceedings, 7-10 June 2014, Lisbon Portugal 
C. H. Skiadas (Ed) 
© 2014 ISAST                               
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A periodicaly stimulated neuron does not fire action potentials unless the
forcing amplitude is above a threshold value. The threshold amplitude depends
on the forcing frequency. The firing threshold curve (in forcing parameter
space) of a HH neuron under sinusoidal forcing has been explored extensively.
Firing onset occurs through a variety of bifurcation mechanisms(Lee[6]). The
firing region in parameter space is dominated by mode locked oscillations of
the type 1/1, 1/2, and 1/3 while there is a smaller region that exhibits chaotic
oscillations. Bifurcations mechanisms that bring about a change in the mode-
locking ratio of the periodic oscillations have not been explored so far. Our
work explores this question.

In their simulations Lee[6] carried out a characterization of the HH neuron’s
firing response in the forcing amplitude-frequency parameter space. However,
there exists a strip in parameter space lying between the 1/1 and 1/2 mode
locked regions that has not been explored adequately. In order to uncover the
bifurcations between various mode-locked oscillations, it is imperative to carry
out an exhaustive investigation of this strip. We have found that a complex
structure of interwoven periodic and chaotic dynamics connected by period
doubling and tangent bifurcations exist in this strip.

2 Hodgkin-Huxley Model

The Hodgkin-Huxley model of an axon describes the dynamics of its membrane
voltage (V ), activation variable (m) and the inactivation variable (h) of its
sodium channels, and the activation variable (n) of its potassium channels.
The model consists of the following set of four coupled differential equations

C
dV

dt
= −ḠNam

3h(V − VNa)− ḠKn
4(V − VK)− ḠL(V − VL) + Iext, (1)

dm

dt
= αm(1−m)− βmm, (2)

dh

dt
= αh(1− h)− βhh, (3)

dn

dt
= αn(1− n)− βnn, (4)

where,

αm =
0.1(25− V )

exp [(25− V )/10]− 1
, βm = 4exp [−V/18] , (5)

αh = 0.07exp [−V/20] , βh =
1

exp [(30− V )/10] + 1
, (6)

αn =
0.01(10− V )

exp [(10− V )/10)]− 1
, βn = 0.125exp [−V/80] . (7)
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Capacitence of the axonal membrane C = 1µF/cm2. The reversal po-
tentials of sodium, potassium, and leakage channels are VNa = 115mV ,
VK = −12mV , and VL = 10.5995mV respectively. The maximal conduc-
tances of the membrane for sodium, potassium, and leakage currents are ḠNa =
120mS/cm2, ḠK = 36mS/cm2, ḠL = 0.3mS/cm2 respectively. In our work
we stimulate the neuron with a sinusoidal current Iext = I0sin(2πνf t), where
I0 is the forcing amplitude and νf is its frequency.

In our work we choose the frequency νf = 50Hz and the amplitude I0 is
varied in the range 1.6µA/cm2 − 2.0µA/cm2. At the lower and upper end of
this range, the neuron exhibits 1/1 and 1/2 mode locked spiking oscillations
(Lee [6]). By carrying out fine variations in the amplitude over this range,
we have uncovered a complex dynamical structure between these two periodic
spiking oscillations.

We carry out numerical simulations of the Hodgkin-Huxley equations (Eq.
1- 4) using the fourth order Rungke-Kutta method. We choose the time step
dt in our simulations as dt = Tf/1000.

3 Results

Dynamics of forced nonlinear systems are often studied by sampling their
phase space trajectory stroboscopically. Following this approach, we sample
the phase space trajectory of the HH model once every time period of the
sinusoidaly varying external current. Doing so, yields a sequence of voltage
values V0, V1, V2, ..., Vi, .... For periodic oscillations, a repetitive sequence will
be present. Let T be the the time taken for the neuron’s phase space trajec-
tory to complete one full cycle. For periodic oscillations Tf/T = 1/m. We
will characterize periodic oscillations by this ratio and refer to these as 1/m
mode locked oscillations. The repetitive sequence of voltage values for a 1/m
oscillation will contain m distinct values.

We have plotted the stroboscopically generated voltage sequences against
the forcing amplitude as a bifurcation parameter. The resulting bifurcation
plot is shown in Figure 1 over the amplitude range I0 = (1.6 − 2.0)µA/cm2.
Two ends of the plot display the 1/2 and 1/1 mode locked oscillations, known
from Lee’s work (Lee [6]). This interval is believed to contain a rich dynamical
structure (Lee [6], Parmananda et. al. [9]) but very few details are known.

Figure 1 shows that the amplitude interval between the known 1/1 and
1/2 oscillations contain many more periodic oscillations. Infact, the interval
is dominated by periodic oscillations. On increasing the forcing amplitude
from I0 = 1.6µA/cm2 onwards we observe 1/2, 1/3, 1/4, 1/5, ..., 1/m, 1/(m +
1), ... mode locked oscillations. A 1/m oscillation contains m branches in the
bifurcation diagram. A new branch gets added to the bifurcation diagram on
crossing over from a 1/m to a 1/(m + 1) oscillation. Figure 1 suggests the
presence of a 1/m mode locked oscillation for every positive integer m.

The amplitude interval lying between 1/m and 1/(m + 1) oscillations de-
scribed above contains a rich dynamical structure not discernible in Fig. 1.
We see an instance of this richness on magnifying the amplitude interval lying
between 1/3 and 1/4 mode locked oscillations (see Fig. 2(a)). This interval
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Fig. 1. Bifurcation diagram with variation in forcing amplitude I0 with forcing fre-
quency fixed to ν = 50Hz.

contains a myriad of periodic and chaotic oscillations. The region between ev-
ery 1/m and 1/(m+ 1) oscillations of Fig. 1 contain such periodic and chaotic
oscillations.

In Fig. 2(a)-(b) we observe that the 1/3 mode locked oscillations (on the
extreme left of the figure) undergo a cascade of period doubling bifurcations
giving rise to a sequence of 1/6, 1/12,... oscillations finally converging to chaos.
Similar period doubling bifurcations are present in other periodic windows in
Fig. 2(a). In general, starting from a 1/n periodic window, period doublings
will result in 1/(2n), 1/(4n),... oscillations. Each successive periodic oscillation
obtained through period doubling takes double the time to go around its phase
space trajectory once. Each cascade of period doublings finally converges to
chaos.

Periodic windows in Fig. 2(a) emerge from chaotic oscillations through a
tangent bifurcation. The bifurcation is identified by plotting a return map be-
tween Vi and Vi+n if a 1/n mode locked oscillation results from the bifurcation.
Close to tangent bifurcation, the return map has n curve segments tangent to
a 450 line. After the tangent bifurcation occurs the return map crosses the 450

line at 2n points. Half of these points lie on a stable trajectory and the other
half like on an unstable trajectory. All periodic windows arise in the same
manner. Once a periodic oscillation is created through a tangent bifurcation,
the subsequent changes in the qualitiative dynamics of the membrane voltage
arise from period doubling bifurcation.

Typical spike sequences generated due to sinusodial forcing are depicted in
Figs. 3 and 4. Figure 3(a) shows a 1/3 mode locked oscillation obtained with
forcing parameters chosen from the large region of 1/3 oscillations in Lee’s
paper. Here a spike occurs once every three cycles of forcing. In our work we
have found a novel set of spike patterns.
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Fig. 2. (a) Bifurcation diagram for the amplitude interval lying between the 1/3 and
1/4 mode locked oscillation of Fig. 1. (b) Panel (a) figure is further magnified over
its initial amplitude interval to depict period doubling.

Fig. 3. Some typical spike sequences for periodic oscillations. Each figure gives the
result for a different I0 (in units of µA/cm2) and ν = 50Hz. The sinusoidal curve in
each figure indicates the profile of this current (a)I0 = 4, (b) I0 = 1.7, (c) I0 = 1.78,
(d) I0 = 1.82. Repeating units of spike sequences in (a)-(d) are of form {1..} , {2.},
{3.}, and {4.} respectively.

The spike sequences in Fig. 3(b)-(d) are representative of the 1/m periodic
oscillations that dominate the amplitude interval in Fig. 1. In each of these
periodic oscillations, we find that a spike occurs consecutively over (m − 1)
forcing cycles, following which there is no spike in the mth forcing cycle. We
will represent this spike pattern by {(m − 1).}, with (m − 1) representing the
group of consecutive (m − 1) spikes and the dot ′.′ representing the missing
spike in the mth forcing cycle. The {(m − 1).} pattern repeates itself every
m forcing cycles and thus we will regard it as a repeating unit. The 1/3 and
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1/4 mode locked oscillations in Figs. 3(b) and (c) have {2.} and {3.} as their
repeating units respectively. In contrast, the 1/3 oscillation [Fig. 3(a)] from
Lee’s work has a repeating unit of the form {1..}.

Fig. 4. Each figure gives the result for a different I0(in units of µA/cm2) and ν =
50Hz. (a) and (b) show some typical spike sequences of the fundamental oscillation
of a periodic window. Here I0 = 1.6518 in (a) and I0 = 1.7345 in (b). In (c) we see
an intermittent spike sequence for I0 = 1.73365. A few sequences {3.2.2.2.} appear
intermittently here.

Figure 4 shows spike patterns of oscillations in periodic windows. Here
the repeating units have a form different from the ones in Fig. 3. A typical
repeating unit is of the form {m1.m2.m3.}, with multiple groups of spikes,
whereas oscillations in Fig. 3 contain only one group of spikes. Here we have
shown three groups of spikes containing m1, m2, and m3 spikes each separated
by a missing spike. However, the number of groups can be more or less (but
not less than two) than represented by {m1.m2.m3.}. Figure 4(a) and (b)
shows a 1/8 and 1/13 oscillations with repeating units {2.2.1.}, and {3.2.2.2.}
respectively.

Figure 5 shows the typical changes in V (t) that accompany period doubling
bifurcations. As an illustrative example we choose the period doubling cascade
starting from the 1/3 mode locked oscillation in Fig. 2. The repeating unit
is {2.} here. We find that the number of spikes per group remain unchanged
(equal to two) across all period doubling bifurcations starting from the 1/3
oscillation. However, the amplitudes of spikes undergoes a change. Hence, the
repeating unit for 1/6, and 1/12 are {2.2.} and {2.2.2.2.} respectively. Likewise,
in a period doubling of any other periodic oscillation with a repeating unit
{m1.m2.m3.}, every period doubling doubles the length of the repeating unit
to {m1.m2.m3.m1.m2.m3.}.

130



Fig. 5. Changes in the repeating unit of spike sequences across a period doubling
bifurcation are shown here. All the figures are plotted for ν = 50Hz and I0 is in units
of µA/cm2(a) I0 = 1.731 gives 1/3 mode locking (b) I0 = 1.7324 gives 1/6 mode
locking, and (c) I0 = 1.73315 gives 1/12 mode locking, (d)-(e) show the variation in
spike amplitude for (a)-(c) respectively by plotting V (t) on a smaller scale.

A tangent bifurcation is known to be preceded by intermittency. We find
that intermittency occurs through an interesting set of changes in spike patterns
as we approach the bifurcation point on varying the forcing amplitude A. Far
from the bifurcation point V (t) is chaotic. The spike sequence is of the same
form as that for peridic oscillations. However, there exists no repetitive se-
quence for chaotic oscillations. As the amplitude is brought closer to the bifur-
cation point the frequency of a specific spike sequence {m1.m2.m3.} within the
chaotic sequence increases. Once the tangent bifurcation occurs {m1.m2.m3.}
becomes the repeating unit. Every periodic window arises through a similar
increase in the frequency of some unit.

4 Discussion

In the paper we presented a few results of stimulating a HH neuron by a si-
nusoidal current in the regime where it evokes action potentials. We found a
complex structure of 1/m mode locked and chaotic oscillations between the 1/1
and 1/2 oscillations of Lee’s work(Lee[6]). Chaotic oscillations arise through
the period doubling route to chaos. Periodic windows emerge through a tan-
gent bifurcation preceded by an intermittent spike sequence. Starting from 1/2
mode locked oscillations, period doubling cascade gives rise to 1/4, 1/8,.. mode
locked oscillations. Across a period doubling bifurcation, spike sequences do
not undergo any change. However, the amplitudes of the spikes undergo an
alteration. Intermittent spike sequences before a tangent bifurcation contain
glimpses of the spike sequences that are finally realized in the periodic oscilla-
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tion across the bifurcation. Infact, the neuron enters the 1/1 oscillation through
a tangent bifurcation.

In our work the ratio 1/m for a periodic oscillation is the ratio of time taken
for one forcing cycle to the time taken for the neuron to go once around its
closed orbit in phase space. In going around the limit cycle once the neuron
may fire several spikes. However, in literature 1/m usually implies that the
neuron fires one spike in every m cycles of forcing.

The spike sequences presented in our paper are distinct from those obtained
earlier. Spikes are organized in groups where each group may contain a different
number of spikes. These sequences of spikes alone can carry information about
the forcing amplitude. Implying that no knowledge of the rate of spiking or
that of the interpsike interval is necessary to extract information about the
forcing parameters.
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Abstract. In this paper, we study the dynamics of the Chern-Simons Inflation Model
proposed by Alexander, Marciano and Spergel. According to this model, inflation be-
gins when a fermion current interacts with a turbulent gauge field in a space larger
than some critical size. This mechanism appears to work by driving energy from the
initial random spectrum into a narrow band of frequencies, similar to the inverse en-
ergy cascade seen in MHD turbulence. In this work we focus on the dynamics of the
interaction using phase diagrams and a thorough analysis of the evolution equations.
We show that in this model inflation is caused by an over-damped harmonic oscillator
driving waves in the gauge field at their resonance frequency.

Keywords: Turbulance modeling, Cosmology, Chern-Simons Modified Gravity, Sim-
ulation, Chaotic simulation.

1 Introduction

According to accepted cosmological theory, the early universe went through a
period of inflation where it’s size increased by at least 60 e-folds in a small
fraction of a second [9]. There is a wealth of observational data providing
evidence that inflation occurred [1]. In addition, Inflation is needed to satisfy
several fundamental problems in cosmology such as the flatness and horizon
problems. Unfortunately, most theories of inflation involve the existence of
a scalar field and are difficult to distinguish by observation or experiment.
Also, there are still many unanswered questions about where the scalar field
came from or why it disappeared after inflation ended. Recently, Alexander
et al. [3] suggested a new theory of cosmic inflation based on Chern-Simons
modified gravity [4] Unlike scalar field theories of inflation, the theory proposed
by Alexander et al. utilizes the interaction between a gauge field and fermion
current to drive inflation and does not depend on the existence of a scalar field.
This is not the only theory of inflation derived from a vector field interaction [6]
but it is unique in that it involves elements that are known to exist in practice
and not just in theory.
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The Chern-Simons Inflation theory works by suggesting that the energy
density from the interaction between the gauge field and fermion current be-
haves like vacuum energy. This is possible in Chern-Simons modified gravity.
The gauge field starts with a random white noise spectrum but then the energy
is transported to a few low frequency modes. In the early version of the pa-
per by Alexander et al, the spatial parts of the gauge field and fermion current
where used to derive the energy density. They later changed that and based the
energy density on the temporal parts of the gauge field and fermion current.
This author believes that the motivation for this change may have been the
belief that the spatial part of the fermion current dropped to zero too quickly
to be effective in driving inflation. We find this to not be the case. We also
find that the temporal part of the gauge field and fermion current may not be
sufficient to drive a 60 e-fold increase in scale factor.

Our code utilizes the Adler-Bell-Jackiw (ABJ) chiral anomaly [2,5] to model
the decrease in fermion current associated with changes in the scale factor and
gauge field. This is a small quantum mechanical violation of the conservation
of axial-vector current. This violation occurs due to tunneling of fermions from
one vacuum to another and is partially responsible for the gentle ending of the
inflation event. It is the means by which the gauge field converts to leptons
during inflation resulting in lepto-genesis. As the current decreases during
inflation, the negative pressure driving inflation should decrease as well unless
the decrease in current is offset by an increase in the gauge field.

The overall goal of the study presented here is to understand the dynamics of
the system and strengthen our physical interpretation of the theory presented
here. The author’s previous paper on the Numerical Simulation of Chern-
Simons Inflation [7] served to prove the feasibility of the theory. Additional
work is being planned to more thoroughly study the version of the theory
involving the temporal part of the gauge field and fermion current both alone
and in conjunction with the spatial part. In the following sections, we will
describe in more detail what we believe is the most promising model of Chern-
Simons Inflation as well as the results of computer simulations of this model.
In the final section, we will discuss these results and how they may be used in
future research.

2 Model and Simulations

The code utilized in these simulations is based on the Cactus framework [8] used
for Numerical Relativity research. While Cactus is an extremely sophisticated
code containing millions of lines of code, all the physics is contained in code
written by the author. This code has been thoroughly tested and the results
are self-consistent and reliable.

The inflation model developed by Alexander, Marciano and Spergel utilizes
a gauge field which interacts with fermions in the early universe to produce an
effective scalar field that generates inflation [3]. See the recent article by Garri-
son and Underwood for a complete description of how the numerical equations
for this model are derived [7].
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For the numerical calculation, we use natural units but later evaluate the
data in terms of SI units so that the results can be easily compared to the
established values. In order to use this model in our code, we separated the
equations of motion for the gauge field, ABJ chiral anomaly, Chern-Simons
term and the Friedman equations into a system of first order in time differential
equations.

dA

dt
=

Z

a
(1)

dZ

dt
= Ja3 +∇2A/a− a2 θ̇

M∗
B (2)

dJ0

dt
=

E ·B
4π2a2

−∇ · J − 2HJ0 (3)

dD

dt
=

E ·B
4a3M2

∗
− 3HD − 2

m2

M∗
θ (4)

dθ

dt
= DM∗ (5)

da

dt
= aH (6)

dH

dt
=

8π

3
ρ̄/a−H2 (7)

Here the gauge field is represented with A, the current is J , a is the scale
factor and H is the Hubble parameter. Current is assumed to depend simply
on the charge density according to the equation J = J0v. E represents the
hyper charged electric field, E ≡ Ȧ. B is the hyper charged magnetic field,
B ≡ ∇×A term. M∗ is the mass scale identified with the UV cut-off scale of
the effective field theory and θ is responsible for CP violation. m is on the order
of the GUT energy scale. Finally, The average energy density is calculated as

ρ̄ = 1
N

∑N
k=1

E2
k+B

2
k

2a4 + |Ak · Jk/a|. Here N represents the total number of grid
points in the computational domain. The scale factor and Hubble parameter
therefore depend on the average energy density and not the local field dynamics.

The initial gauge field was composed of a random (white noise) spectrum.
In order to generate the initial gauge field, we used a random number generator
to create a random spectrum with amplitude up to the calculated maximum
amplitude, |A|, in each direction. The magnitude of the gauge field was then
held equal to the initial amplitude |A|. The initial values for the variables used
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in this study are given below.

|A| = 1.0× 10−5MP (8)

J0 = 10−10M3
P (9)

v = 10−10(x̂+ ŷ + ẑ) (10)

θ̇

M∗
= 2.18× 10−5MP (11)

a = 1.0 (12)

H =

√
8π

3
|A · J | (13)

Z = Ha× random number(−1, 1) (14)

m = 4.15× 10−6MP (15)

M∗ = 4.15× 10−6MP (16)

The code was then run on the University of Houston′s Maxwell cluster using
a variety of time-steps, grid sizes and resolutions in order to obtain consistent
results. A fourth order finite differencing scheme was used to test convergence
for high and low resolution simulations. Because the initial units were entered
as Planck units, we assumed that the physical grid (horizon) size corresponded
to Planck lengths and the timing output could be interpreted as Planck time.

3 Results

The previous article by Garrison and Underwood [7] focused on demonstrat-
ing the feasibility of the model and verifying that the apparent inverse energy
cascade occurred as predicted. Previous data have shown that this is an in-
teresting chaotic system which is highly dependent on initial conditions but
numerically stable for a large range of initial data. As in the previous paper,
Figure 1 shows the life-cycle of the evolution as our virtual universe experiences
inflation. This is demonstrated by the scale factor and Hubble parameter.

Fig. 1. The scale factor and Hubble Parameter for the inflationary period (log scale).

Figure 2 shows how the gauge field increases and charge density decreases
with time. The net result of this is that the dot product of the gauge field and
charge density yields a nearly constant energy density (and therefore Hubble
parameter) until inflation ends. The gauge field evolution equation is essentially

an inhomogenous wave equation driven by the θ̇
M∗

B term and the Ja3 term.
Understanding how inflation occurs is directly connected to the dynamics of
these two terms. The first term is much more dynamic and could explain why
inflation begins and ends. Also, given our initial conditions, the first term is
∼ 10−5B while the second term is ∼ 10−20 so the first term should normally
dominate since B starts around 10−9 and increases as quickly as the gauge
field.
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Fig. 2. The Gauge Field Amplitude and Charge Density (log scale).

Without the θ term Chern Simons modified gravity reduces to ordinary
General Relativity and the effective vacuum energy disappears. Much of the
gauge field dynamics is therefore the result of the θ term and it’s time deriva-
tives. The phase diagram in Figure 3 shows that this term acts like a dampened
driven harmonic oscillator. The frequency of this system is ω =

√
2m the damp-

ening term is γ = 3
2H and the driving term is F = E·B

4a3M∗
. Given our initial

conditions, ω ≈ 10−6, γ ≈ 10−12 → 10−5 and F is insignificant because E ·B
is unmeasurably small. This is therefore an under-damped harmonic oscillator
that transitions into an over-damped harmonic oscillator as the Hubble param-
eter increases. The θ term vanishes quickly after γ exceeds ω and the gauge
field’s rate of growth slows while current continues to decrease at a constant
rate resulting in a decreasing energy density and an end to inflation. Maintain-

ing the Chern Simons term, θ̇
M∗

, for as long as possible appears to be essential
to the inflation process.

Fig. 3. Phase diagram of the θ and θ̇
M∗

terms.

In Figure 4, we see the spectrum of the gauge field as a function of time.
Notice that the initial gauge field starts off with an evenly distributed spectrum
and then sometime later the spectrum peaks at low frequencies to resemble an
inverse energy cascade. Later the peak of the power spectrum moves to higher
frequencies as the Chern Simons term decays. The peak follows the changing
frequency of the Chern Simons term to maintain resonance until it decays to
zero and inflation ends.

Fig. 4. Power Spectral Density of the gauge field at various times. The vertical axis
is the log of the deviation from the mean. The horizontal axis is frequency in Plank
units.

4 Conclusions

An important result of this study is that we now know why inflation only
appears to occur when the computational grid is sufficiently large. Our analysis
of the θ term’s dynamics show that it’s natural oscillatory frequency is on the
order of 10−6. This corresponds to a grid size of about 106 units. If the
computational grid is smaller than this minimum, the gauge field cannot come
into resonance with the driver θ and explode in amplitude.

Information from this study may also be useful in better determining what
initial conditions led to inflation in our universe. By varying the initial condi-
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tions, the forcing term, dampening term and frequency of θ may be altered to
extend our simulated inflation and better conform to observation.
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Abstract. A deterministic epidemic model for the spread of gonorrhea is investigated in 
discrete-time by taking into account the interval between successive clinical cases. It is 
shown that the discrete-time dynamical system exhibits far more complex dynamics than 
its continuous analogues. Stability analysis is obtained in order to investigate the local 
stability properties of the fixed points; it is verified that there are phenomena of Fold and 
Flip bifurcations. Numerical simulation tools are used in order to illustrate the stability 
analysis results and find some new qualitative dynamics. We come across the 
phenomenon of “intermittency route to chaos”. The density of infected individuals goes 
through quasi-periodicity and a strange attractor appears in the system. Chaos control is 
obtained in order to see how the male latex condom use during sexual intercourse affects 
the incidence of gonorrhea. It is shown that male latex condom use stabilizes the chaotic 
vibrations of the system to a point where the number of infected individuals remains 
stable and is significantly small or zero, leading to the control of disease. 
Keywords: Gonorrhea dynamics, Dynamical system, Bifurcations, Chaotic dynamics, 
Strange attractor, Chaos control, Serial interval, Male latex condom 
 
1  Introduction 

 
Gonorrhea is one of the oldest known human infections. The organism Neisseria 
gonorrhoeae was first described by Neisser in 1879 and cultivated in 1982 [25]. 
Neisseria gonorrhoeae causes an estimated 62 million cases of gonorrhea 
worldwide each year [16]. Furthermore, the financial impact of gonorrhea is 
high. Only the direct medical cost for gonorrhea treatment in the Unites States is 
estimated at $1,051,000,000 annually [9]. Infections due to Neisseria 
gonorrhoeae are a major cause of pelvic inflammatory disease (PID) in the 
United States. PID can lead to serious outcomes in women such as tubal 
infertility, ectopic pregnancy, and chronic pelvic pain. In men gonorrhea can 
cause a painful condition called epididymitis in the tubes attached to the 
testicles [7]. Further, if left untreated, gonorrhea can also spread to the blood 
and cause disseminated gonococcal infection (DGI), a condition that can be life 
threatening. Moreover, the organism Neisseria gonorrhoeae has the ability to 
develop resistance against all clinically useful antibiotics. William Smith [31] 
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suggests that we are on the verge of a highly untreatable gonorrhea epidemic. 
Although gonorrhea was easily cured with antibiotics years ago, however 
bacteria develop resistance to treatments. Furthermore, the World Health 
Organization recently put out an alert with regards to the reported cases of 
resistance to cephalosporin antibiotics - the last treatment option against 
gonorrhea - in several countries including Australia, France, Japan, Norway, 
Sweden and the United Kingdom [40]. According to Dr. Manjula Lusti-
Narasimhan from the Department of Reproductive Health and Research at 
WHO, gonorrhea is becoming a major public health challenge due to the high 
incidence of infections accompanied by dwindling treatment options. And after 
the failure from this last effective treatment, as there are no new therapeutic 
drugs in development, if gonococcal infections become untreatable the health 
implications will be significant. Mathematical models have been widely used 
from epidemiologists over the years to predict epidemics of infectious diseases. 
Hethcote and Yorke [20] monograph is an excellent work in the context of 
gonorrhea transmission dynamics and control. They used nonlinear differential 
equations to model the transmission dynamics of gonorrhea in a heterosexually-
active population with two distinct levels of sexual activity. Continuous-time 
epidemic models have been widely used over the years in the investigation of 
the transmission of infectious diseases due to their mathematical tractability 
([5], [22], [26]). However, discrete-time models are often directly applicable to 
time-series data and may represent contacts, which are restricted to a specific 
time or time period more accurately [4]. Therefore, it may be easier to compare 
the output of discrete-time models with statistical real-world data. Several works 
have based their models on difference equations in order to investigate the 
gonorrhea transmission dynamics ([13], [23]). However, discrete-time SIS 
epidemic models sometimes are capable of generating complex dynamics such 
as period-doubling and chaotic behavior, in contrast with continuous-time 
epidemic models. In this paper we study a discrete-time version of Hethcote and 
Yorke [20] gonorrhea model using discrete time steps, based on the duration of 
the serial interval of gonorrhea infection. 
 
2  Basic Gonorrhea Model Description 
 
Hethcote and Yorke [20] studied a continuous-time dynamical system for the 
spread of gonorrhea. They divided population into two groups, females at risk 
(Nf) and males at risk (Nm); and each group into two subgroups, susceptible 
females (N f S f ) & infective females (N f I f ) and susceptible males (N m S m ) & 
infective males (N m I m ). They modeled the dynamics of the spread of gonorrhea 
by the 4-dimensional system: 

   

N f
!S f = −λ f ⋅S f ⋅NmIm + N f I f d f

N f
!I f = λ f ⋅S f ⋅NmIm − N f I f d f

,    
Nm
!Sm = −λm ⋅Sm ⋅N f I f + NmIm dm

Nm
!Im = λm ⋅Sm ⋅N f I f − NmIm dm

 

    

(1) 
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where, the sexually active population Nf and Nm is constant and equals the 
number of susceptible plus the number of infective individuals (Nf = Sf + If and  
Nm = Sm + Im); λf and λm indicate the transmission rate of infection of susceptible 
females and males respectively; df and dm indicate the average duration of 
infection for females and males respectively. Since the population is constant, 
the system (1) reduces to the 2-dimensional dynamical system: 

  

dI f

dt
=
λ f

r
1− I f( ) Im −

I f

d f

,
dIm

dt
= rλm 1− Im( ) I f −

Im

dm

           

(2) 

where, Sf = 1 – I f  and Sm = 1 – I m  since the total population size remains 
constant and r = Nf / Nm. The limiting system (2) has two equilibrium points, a 
trivial and a non-trivial. If the nontrivial equilibrium point exists, it is 
asymptotically stable and gonorrhea dies out. If the nontrivial equilibrium point 
does not exist, then the trivial equilibrium point is asymptotically stable and 
gonorrhea remains endemic. 
 
3  Discrete Gonorrhea Model 
 
According to Ramani et al. [28], discretizing an epidemic model has the 
following advantages: (a) the epidemic statistics are collected from given time 
intervals, not continuously, (b) the discrete-time models provide natural 
simulators for the continuous-time models, (c) with discrete-time models one 
can use the entire arsenal of methods that have been developed for the study of 
mappings and lattice equations, either from integrability and/or chaos points of 
view. There are several ways to discretize a continuous-time model. However, 
the approach of discretizing the differential equations of a dynamical system has 
the advantage that can keep track of the known properties of the continuous time 
system [19]. 
Thus, in order to discretize Hethcote and Yorke model, we replace dI f  / dt and 
dI m  / dt by the difference quotients (I f

n + 1  –  I f
n ) / δ and (Im

n + 1  –  Im
n) / δ in 

the dynamical system (2). Time is measured in “generations”. We obtain a 
deterministic discrete gonorrhea model defined by the 2-dimensional map: 

  
In+1

f = In
f +δ

λ f

r
1− In

f( ) In
m −

In
f

d f

⎛

⎝
⎜

⎞

⎠
⎟ , In+1

m = In
m +δ rλm 1− In

m( ) In
f −

In
m

dm

⎛

⎝⎜
⎞

⎠⎟
 

     

(3) 

where, δ is the length of each discrete-time step, where the number of infective 
individuals grow by the addition of the newly infective individuals; I f

n , I m
n  is 

the number of infective females and males in one time step respectively; I f
n + 1 , 

I m
n + 1  is the number of infective females and males at the next time step 

respectively; the infection rates of susceptible males and females (λf, λm) indicate 
the average number of individuals with whom an infectious individual makes 
adequate contact1 during a unit time interval [3]. The map (3) has two fixed 

                                                
1 Adequate contact is a direct or indirect contact that is sufficient for transmission of 
infection, if the individual contacted is susceptible. The concept of a sufficient contact is 
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points, which are identical to the equilibrium points of the analogous continuous 
model (2), a disease-free equilibrium E1 and an endemic equilibrium E2: 

  
E1 : I f

* , Im
*( ) = 0,0( ) , 

  

E2 : I f
* , Im

*( ) = λ f λmd f dm −1
λmdmr + λ f λmd f dm

,
λ f λmd f dm −1( )r

λ f λmd f dmr + λ f d f

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

In order to study2 the local behavior around each of the two fixed points, we 
calculate the Jacobian matrix at E1, E2. If λ1, λ2 are the eigenvalues of the 
Jacobian matrix at each fixed point, then the fixed point is stable, if |λ1| < 1 and 
|λ2| < 1. By using Vieta’s equations: λ1 + λ2 = Tr(J), λ1 · λ2 = Det(J) (i.e. TR(J) 
and Det(J) are the trace and the determinant of the Jacobian matrix) and 
applying Jury’s conditions [21], the fixed point is linearly asymptotically stable 
if and only if: 
-TrJ(I*

f, I*
m)<1+DetJ(I*

f, I*
m), TrJ(I*

f, I*
m)<1+DetJ(I*

f, I*
m) and DetJ(I*

f, I*
m)<1  

 
5  Numerical Simulations for the Discrete-Time Model 
 
A series of numerical simulations3 (using the numerical simulation tools: 
parametric basins of attraction, bifurcation diagrams, phase plots and 
Lyapunov exponent diagrams) are introduced in order to illustrate the results of 
the analytical stability analysis and to find some new qualitative dynamics of the 
discrete-time model (3) as the parameters are varied. The rates of infection λm 
and λf should be different, because transmission efficiency is gender dependent. 
The average probability of transmission of gonococcal infection during a single 
sexual exposure (a) from an infectious woman to a susceptible man in estimated 
to be about 0.2 – 0.3, while (b) from an infectious man to a susceptible woman 
is about 0.5 – 0.7 [37]. Hence, we use the following values for the rate of 
infection parameters: λf = 0.6 and λm = 0.25. However, the probability of 
transmission of gonococcal infection is increased for individuals, who have ever 
had gonorrhea or other STI, for individuals who are street-involved youth and 
for individuals having sex with many partners, with sex workers, or with a 
partner coming from a country where gonorrhea is frequent [17]. The average 
durations of infection dm and df have also to be different, because (a) 90% of all 
the men who have had gonococcal infection notice symptoms within a few days 
after exposure and promptly seek medical treatment, while (b) up to 75% of 
women with gonorrhea fail to have symptoms and remain untreated for some 
time [27]. In particular, when symptoms occur in men, they usually occur 3-5 
days after sexual contact with an infected individual; while women, who 
develop symptoms, usually experience them within 10 days of sexual contact 

                                                                                                         
necessary since transmission of infection sometimes does not occur during sexual 
intercourse between an infective and a susceptible [20]. 
2 The results of the stability analysis have been exhibited by using the software package 
wxMaxima 12.04.0 (http://maxima.sourceforge.net/). 
3 Numerical simulations have been exhibited by using the software E&F Chaos 1.02 [12]. 
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with an infected individual [38]. So we fix the average duration of infection for 
females and males at df = 10 and dm = 3 respectively. 
 

 
Fig. 1. Time course of a single gonorrhea infection; Individual A becomes 

infected, transmits the infection to individual B and receives treatment. 
 

Gonorrhea affects males and females almost equally4. So we assume that the 
number of males and females at risk (N m , N f ) is equal with ratio r = 1. We also 
assume that the initial number of infective individuals is the same both for males 
and females. Therefore, we use for initial conditions the values (I f

0 , I m
0 ) = (0.5, 

0.5). Finally, in order to accurately describe the gonorrhea transmission 
dynamics, the size of the discrete time step should match the epidemiology of 
the disease [34]; that is, whether the dynamic of infection is a matter of days or 
hours. Thus, we assume that the discrete time step δ corresponds to the 
generation time of gonorrhea, that is, the time from the moment one person 
becomes infected until that person infects another person [29]. This time 
interval is well-known as the serial interval (Figure 1), that is, the time period 
between successive clinical cases [14]. In other words, this is the average time 
between the observation of symptoms of gonorrhea in one person and the 
observation of symptoms in another person that has been infected from the first. 
The serial interval is important in the interpretation of infectious disease 
surveillance and trend data, in the identification of outbreaks and in the 
optimization of quarantine and contact tracing [14]. Furthermore, the symptoms 
of gonorrhea usually appear two to five days after infection (i.e. incubation 
period) [25]. Thus, since an infected individual remains infectious until he/she 
receives treatment, we assume that infections occur during the infectious period 
(Figure 1). Moreover, although a range of values for the serial interval is 
possible, the average serial interval can be estimated as: (average incubation 
period) + (half the average infectious period), assuming that the maximum 
infectiousness occurs at the middle of the infectious period [30]. So the serial 
interval could be estimated by the incubation period. Therefore we define the 
length of the discrete time step between infection and subsequent transmission 
as 2 < δ < 5 days. Using these values for our parameters, we observe that the 
dynamics of the basic model (2) alters significantly in discrete time for time 

                                                
4 Global estimated incidence of gonorrhea, occurred in 1999, is 62.35 million infected 
people annually. Particularly gonorrhea affected 33.65 women and 28.70 men [39]. 
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interval length between successive clinical cases (2 < δ < 4) days, as the rate of 
infection of susceptible females increases (Figure 2).  

 
Fig. 2. The basins of attraction diagram for δ ϵ [2, 4] and λ f  ϵ [0, 2.25]. 

 
For small values of the infection rate parameter (0 < λf < 0.4), the solutions 
converge either to a disease-free fixed point or to an endemic fixed point (light-
blue area) for every value of time interval between clinical cases. For average 
values of the infection rate parameter (0.4 < λf < 1.46), as λf increases, the light-
blue area is being replaced with the dark-blue area and the solutions converge to 
an attracting cycle of period 2. Moreover, for specific step size values (2.25 < δ 
< 3), further increase in the infection rate parameter λf  gives rise to non-periodic 
behavior (white area). For large values of the infection rate parameter (λf > 1.85) 
as the value of λf increases, any periodic and non-periodic behavior is being 
replaced with divergence to infinity (black area). This abrupt behavior is not 
meaningful, but it could be taken as some kind of catastrophe causing the 
extinction of the infected population. Thus, for sufficiently low infection rate of 
susceptible females, the behavior of solutions of the discrete-time model is 
qualitatively the same with the basic model. However, as the infection rate 
increases, the discrete-time model exhibits the same behavior as the continuous-
time model only for certain short time interval between successive clinical cases 
of gonorrhea (δ < 2.25). 
Fixing the time period between clinical cases at δ = 2.65 (2 < δ < 4 days) and let 
the rate of infection of susceptible females parameter increasing in the interval λf 
ϵ [0, 1.59], we observe bifurcations occurring in the system (Figure 3). 
The value λf ≈ 0.1333 is a bifurcation point at which a “fold” bifurcation occurs: 
For exceptionally small values of the varying parameter (λf < 0.1333), the 
disease-free fixed point E1: (0, 0) is locally asymptotically stable (stable node) 
and the endemic (negative) fixed point E2: (I *

f ,  I *
m ) is unstable (saddle). Some 

solutions converge to the attracting disease-free fixed point; there are no 
infective individuals and gonorrhea dies out. Hence, the initial infective 
population sizes (I f

0 , I m
0 ) = (0.5, 0.5) lead to the extinction of the disease due to 

the low probability of infection. Near the value λf ≈ 0.1333 both fixed points E1: 
(0, 0) and E2: (– 0.0001, – 0.0001) undergo a “fold” bifurcation and become 
non-hyperbolic with eigenvalues of the Jacobian matrix (λ1 = – 0.1483, λ2 = 
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0.9999 ≈ +1) and (λ1 = – 0.1483, λ2 = 1.0001 ≈ +1) respectively. Hence, for this 
critical value, the system has only one non-hyperbolic fixed point Ε1 ≈ Ε2: (0, 
0). For 0.1333 < λf < 1.1035, the system has again two fixed points, the trivial 
and a non-trivial positive fixed point. The fixed points have exchanged their 
stability. The disease-free fixed point E1 is now unstable (saddle), while the 
endemic fixed point E2 is locally asymptotically stable (stable node). The initial 
infective population sizes (I f

0 , I m
0 ) = (0.5, 0.5) converge to the attracting 

endemic fixed point, where both infected males and females are fixed in time. 
Moreover, the number of infective females is larger than the number of infective 
males (I*

f > I*
m) likely due to the fact that the infection rate of females is larger 

than the infection rate of males (λf > λm) and the duration of infection is larger in 
females than in males (df > dm). As the parameter λf increases in this interval, the 
number of infective individuals (I*

f, I*
m) increases continuously and gonorrhea 

remains endemic. Near the value λf ≈ 1.1035 the saddle disease-free fixed point 
E1: (0,0) becomes non-hyperbolic (λ1 = – 0.9999, λ2 = 1.8516) and for λf > 
1.1035 is an unstable node. The value λf ≈ 1.2961 is a bifurcation point at which 
a “flip” bifurcation occurs: At λf ≈ 1.2961 the endemic fixed point E2: (0.8329, 
0.3845) undergoes a “Flip bifurcation” and becomes non-hyperbolic with 
eigenvalues of the Jacobian matrix (λ1 = – 0.9999 ≈ –1, λ2 = – 0.0207). For 
1.2961 < λf < 1.59 the endemic fixed point E2 becomes unstable (saddle) and a 
stable cycle of period 2 appears in the system. Both infective males and females, 
now, converge to different 2-period cycles, while both periodic cycles become 
wider, as the parameter increases at this particular interval. 
 

 
Fig. 3. The bifurcation diagrams (λf, I *

f ) and (λf, I *
m ) for δ = 2.65 as λf increases 

in the interval λf ϵ [0, 1.59]. 
 

For higher values of the rate of infection of susceptible females λf ϵ [1.59, 1.72], 
we come across the phenomenon of “intermittency route to chaos”, which 
according to Manneville and Pomeau [24], is characterized by regular (laminar) 
phases alternating with irregular bursts. In particular, as the varying parameter 
increases, the endemic fixed point remains unstable (saddle), while periodic 
behavior of high periods, cascades of period-doubling bifurcations and 
deterministic chaos appear eventually in both infected males and females 
(Figure 4). For 1.59 < λf < 1.6402 the Lyapunov exponents vary among negative 
and exceptionally small positive values λi

+ < 0.001 and the behavior of solutions 
appears to be slightly chaotic. For 1.6402 < λf < 1.6544 the map exhibits the 
familiar infinite sequence of period-doubling bifurcations (32 · 2n): (32-period 
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cycle, 64-period cycle, 128-period cycle, etc.) followed by chaotic oscillations, 
where the Lyapunov exponents take higher positive values λi

+ < 0.05. At λf ≈ 
1.6544 a second series of period-doubling bifurcations (10 · 2n): (10-period 
cycle, 20-period cycle, 40-period cycle, etc.) route to chaos once again, while 
the Lyapunov exponents at this parameter interval (1.6544 < λf < 1.6763) vary 
among larger positive values λi

+ < 0.1. At λf ≈ 1.6763 another series of period-
doubling bifurcations (12 · 2n): (12-period cycle, 24-period cycle, 48-period 
cycle, etc.) lead to even more chaotic behavior, where the oscillations in the 
density of infected individuals can be hard to predict. The Lyapunov exponents 
take even larger positive values and reach the maximum value λmax ≈ 0.1849 for 
the parameter value λf ≈ 1.7172 for which the variations in the number of 
gonorrhea cases are the less predictable (fully developed chaos). At this point, 
the exceptionally high infection rate of susceptible females leads the number of 
infected individuals sometimes close to extinction and other times close to 
overgrowth (i.e. gonorrhea outbreaks). 
 

   
Fig. 4. The bifurcation diagrams (λf, I*

f), (λf, I*
m) and the Lyapunov exponent 

diagram (λf, λ) as λf increases in the interval λf ϵ [1.59, 1.72] for δ = 2.65. 
 

Furthermore, as the rate of infection of susceptible females increases in the 
interval λf ϵ [1.59, 1.72] for the same time interval between clinical cases  
(δ = 2.65), the system goes through quasi-periodicity and a strange attractor 
appears in the system (Figure 5). The stable period-2 orbit (Figure 5.a) near the 
value λf ≈ 1.59 loses stability via a supercritical Neimark-Sacker bifurcation, 
giving rise to two attracting closed invariant curves. At this point the number of 
infected males and females oscillates between all the states of the two invariant 
curves. The invariant curves grow in size (i.e. the amplitudes of oscillations in 
the number of infected individuals are increasing), interact with the saddle non-
trivial fixed point (I*

f, I*
m) ≈ (0.86, 0.39) and near the value λf ≈ 1.6375 become 

noticeably kinked (Figure 5.b). The kinked curves have a split, lock into a stable 
periodic orbit due to the first sequence of period-doubling occurring in the 
system (32 · 2n) and reappear slightly deformed (Figure 5.c). They have another 
split, due to the second series of period-doubling (10 · 2n), which gives rise to a 
motion of period-10 (Figure 5.d). The motion of period-10 forms into two 
weakly chaotic contiguous bands (Figure 5.e), while successive enlargements of 
the attractor can show its fine structure, which looks identical in all scales (i.e. 
self-similarity). The chaotic contiguous bands become more and more 
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complicated, merging to form a strange attractor (Figure 5.f) for a value of the 
varying parameter (λf ≈ 1.717) in the chaotic domain (Figure 4). For higher 
values of the infection rate parameter, the successive iterates diverge to infinity 
(i.e. both infected males and females become extinct through some kind of 
catastrophe) and the attractor disappears. 

 

(a)  (b)  

(c)  (d)  

(e)   (f)  
Fig. 5. The phase plot (If, Im) for δ = 2.65 as λf increases in the interval  

λf ϵ [1.59, 1.72]. 
 

So, we observe that the behavior of the discrete-time gonorrhea model (3) 
differs significantly from its continuous counterpart (2). Particularly, a time 
period 2 < δ < 4 days between successive clinical cases of gonorrhea and a 
sufficiently large infection rate of susceptible females allow for infinite 
sequences of period-doubling and chaotic behavior in the density of infected 
individuals. 
 
6  Chaos Control 
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Chaos may be undesirable, as the chaotic oscillations in the density of infected 
individuals can make the disease uncontrollable and, consequently, harmful to 
the people’s health throughout the world. Therefore, the number of infected 
individuals needs to be under control. A method of controlling chaos has been 
proposed by Güémez and Matias [18], known as the G.M. algorithm5, which 
performs changes in the system variables allowing the stabilization of chaotic 
behavior. In addition, Codreanu and Danca [11] applied the G.M. method to a 
prey-predator model supporting its use in biological systems. The G.M. control 
algorithm consists of the application of a proportional feedback6 (γ) to the 
variables of the system in the form of pulses [18]. We apply the G.M. control 
algorithm to the discrete map (3) by modifying the system variables I f

n , I m
n  in 

the following form: 
  
In

f → In
f 1+ γ 1( ), In

m → In
m 1+ γ 2( ) . Hence, our discrete-time 

gonorrhea model (3) becomes: 

  

In+1
f = In

f 1+ γ 1( ) +δ λ f r( ) 1− In
f 1+ γ 1( )( ) In

m 1+ γ 2( )− In
f 1+ γ 1( ) d f( )( )

In+1
m = In

m 1+ γ 2( ) +δ rλm 1− In
m 1+ γ 2( )( ) In

f 1+ γ 1( )− In
m 1+ γ 2( ) dm( )( )

⎧
⎨
⎪

⎩⎪
    (4) 

where, γ1, γ2 represent the strength of the feedback for If , Im. For sexually active 
persons, male latex condoms are the most commonly used contraceptive method 
to prevent7 sexually transmitted infections [10]. So from a practical point of 
view, the modification in the system variables could be interpreted as the use of 
male latex condoms during each sexual intercourse. Hence, the new terms γ 1 I f

n , 
γ 2 I m

n  are associated with condom use during sexual intercourse protecting 
males and females from gonorrhea transmission and reducing the number of 
infected individuals (–1 ≤ γ1, γ2 < 0), while the terms I f

n , I m
n  are associated with 

sexual intercourse without condom use. Furthermore, for the sake of simplicity, 
we assume that the protection from gonorrhea transmission by condom use from 
female to male and vice versa is the same (γ1 = γ2 = γ). The condition γ = –1 
corresponds to an ideal situation where all sexually-active individuals use latex 
condoms during sexual intercourse consistently and correctly. 
Thus, in order to see how the condom use affects the incidence of gonorrhea, we 
apply the G.M. method for the parameter values δ = 2.65 and λf = 1.717 (the 
other parameters remain unchanged) for which the system’s behavior is chaotic  
(Figure 5.f). Let the control parameter (γ) to vary. We illustrate the results by 
plotting the bifurcation diagram (Figure 6) along with the time series before (γ = 
0) and after (γ < 0) the action of chaos control algorithm (Figure 7). Without 
condom use during sexual intercourse (γ = 0) the number of infective males and 
females appears irregular oscillations (Figure 7). As the intensity of pulses 
increases (i.e. condom use increases), the control parameter (γ) is taking smaller 

                                                
5 Güémez and Matias [18] considered the logistic map and the exponential map. 
6 Depending on the sign of γ, in particular, some part of the system variables is injected 
or withdrawn depending on the value of the variables at the moment n [18]. 
7 In vitro studies indicate that latex condoms provide an effective mechanical barrier to 
passage of infectious agents comparable in size to or smaller than STI pathogens [8]. 
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and smaller negative values, some part of If or Im is injected from the map 
depending on the value of I f

n  or I m
n  at that moment and through sequences of 

reverse period-doubling bifurcations, the chaotic domains give rise to regular 
behavior (Figure 6), where the oscillations in the density of infected individuals 
become predictable. Particularly, near the value γ ≈ – 0.066 the behavior of 
solutions becomes periodic (cycle of period-2). In the parameter interval  
– 0.5432 < γ < – 0.2091 solutions converge to endemic equilibrium (Figure 7).  

 
Fig. 6. The bifurcation diagrams (γ, I*

f), (γ, I*
m) as γ decreases in the interval  

γ ϵ [– 0.6, 0], for δ = 2.65 and λf = 1.717. 

  
Fig. 7: The time series (n, I f), (n, Im) for the first n ϵ [0, 500] iterations; for  

γ = 0 (without control) and γ = – 0.3 (with control), for δ = 2.65 and λf = 1.717. 
 
Finally, the decline in the number of infective individuals leads to the end of the 
disease (gonorrhea-free equilibrium) for – 1 < γ < – 0.5432 (Figure 6). Hence, 
for exceptionally high infection rate of susceptible females and time interval 
between clinical cases 2 < δ < 4 days, as the condom use during sexual 
intercourse increases slowly among individuals, the oscillations in the number 
of infective males and females decrease rapidly, leading to the reduction of 
gonorrhea incidence and the control of disease. So, we observe that condom use, 
just by a fraction of the population 50%, can reduce substantially the risk of 
gonorrhea transmission even for exceptionally high infection rates. 
 
Concluding Remarks and Discussion 
 
In this paper we have discretized the gonorrhea model of Hethcote and Yorke 
[20] and studied its dynamical characteristics using as a discrete-time step the 
interval between successive clinical cases (i.e. serial interval). We showed that 
the discrete-time model could result in a much richer set of patterns than the 
corresponding continuous-time model. The analytical stability analysis and the 
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numerical simulation results showed that the discrete-time model undergoes: 
“fold”, “flip” bifurcations and the number of infective males and females can 
behave chaotically. In particular, we showed that: (a) for low rate of infection of 
susceptible females gonorrhea remains endemic or dies out, while (b) for high 
rate of infection of susceptible females chaotic oscillations and gonorrhea 
outbreaks appear in the system. 
The results of our study reflect the real-world large fluctuations, which appear in 
the number of gonorrhea cases throughout the years. For instance, in Sweden 
from 2007 to 2011 the number of gonorrhea cases increased by 48% (from 642 
to 951 cases) [35]. The factors that might have been contributed to this increase 
in gonorrhea incidence seem to be: (a) the increased number of sexual partners 
over time, (b) the increased number of new casual sexual partners and (c) the 
low level of condom use with casual sexual partners [33]. Moreover, Alaska’s 
outbreak of Neisseria gonorrhoeae (GC) infection began in 2008 and peaked in 
2010 with a total 1,273 GC cases reported to Alaska Section of Epidemiology 
[2]. The 2009 case rate demonstrated a 69% increase from the 2008 rate, 
representing the greatest single-year increase in reported GC infection in Alaska 
since the 1970s; the rate increased in both sexes, among all races, in all age 
groups and in nearly all regions of the state [1]. Another example is the 
variations in the number of gonorrhea cases in the Onondaga County, NY, USA. 
According to the Onondaga County Health Department (OCHD) the number of 
cases of gonorrhea more than doubled in the county between 2011 and 2012. 
There were 602 cases in the first nine months up from 253 cases for the same 
period of 2011 [32]. Hence, the proposed discrete-time model seems to be more 
effective in practice and gonorrhea, despite the fact that it is a non-fatal disease, 
is likely to have a strong negative effect on life history evolution. Moreover, the 
results of our study show that the time interval between successive clinical cases 
is important in case of gonorrhea emergency situations. However, few are 
known about clinical onset serial intervals of gonorrhea. Therefore, collected 
data on serial intervals of gonorrhea could provide useful information to guide 
any public health action. 
Moreover we have stabilized the unstable periodic orbits, existing within the 
strange attractor and the unstable steady states (both endemic and disease-free), 
using a series of proportional feedbacks on the system’s variables. The chaos 
control results could be definitely regarded as those, which are obtained with the 
use of male latex condom during sexual intercourse. Our chaos control results 
show that condom use reduces the risk of gonorrhea transmission to a point 
where the number of infected individuals remains stable and is significantly 
small or zero. This reflects what many studies have shown, such as Barlow’s 
study [6], which showed that a 71% reduction in gonorrhea was associated with 
consistent and correct condom use (i.e., for every 100 cases of gonorrhea 
infection that would happen without condom use, only 29 would happen when 
condoms are used consistently). However, one of the paradoxes in modeling 
infectious diseases is that, despite their quantitative nature, the best that we can 
often expect is qualitative insights [15]. Quantifying the relation between the 
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number of condoms used and the incidence of gonorrhea is often difficult. For 
instance, Warner et al. [36] reviewed studies, published from 1966 to 2004, to 
assess risk reduction for gonorrhea associated with male condom use. They 
found that, although most studies showed that condom use was associated with 
reduced risk for gonorrhea among men and women, however the exact 
magnitude of risk reduction is difficult to quantify because of limitations and 
variations in the methods and design of these studies. 
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Abstract. The present work continues studies of the mathematical model of a metabolic 

process of the Krebs cycle. We study the dependence of its cyclicity on the cell 

respiration intensity determined by the formation level of carbon dioxide. We constructed 

the phase-parametric characteristic of the consumption of a substrate by a cell depending 

on the intensity of the metabolic process of formation of the final product of the 

oxidation. The scenarios of all possible oscillatory modes of the system are constructed 

and studied. The bifurcations with period doubling and with formation of chaotic modes 

are found. Their attractors are constructed. The full spectra of indices and divergencies 

for the obtained modes, the values of KS-entropies, horizons of predictability, and 

Lyapunov dimensions of strange attractors are calculated. Some conclusions about the 

structural-functional connections of the cycle of tricarboxylic acids and their influence on 

the stability of the metabolic process in a cell are presented. 

. 

Keywords: Krebs cycle, metabolic process, self-organization, strange attractor, 

bifurcation, Feigenbaum scenario. 
 

1  Introduction 
One of the possible problems of synergetics is the study of the internal 

dynamics of metabolic processes in cells. Its solution allows one to find the 

structural-functional connections defining the self-organization of these 

processes and to answer the question how the catalyzed enzymatic reactions 

create the internal space-time ordering of the cell life. 

The most general metabolic process in cells is the cycle of tricarboxylic 

acids [1]. This is the key stage of the respiration of all cells. In its course, the di- 

and tricarbon compounds, which are formed as intermediate products in the 

transformation of carbohydrates, fats, and proteins, are transformed up to CO2. 

In this case, the released hydrogen is oxidized further up to water, by taking the 

direct participation in the synthesis of ATP, being the universal energy source. 

Studies of the functioning of the Krebs cycle were carried out both 

experimentally and theretically in [2-10]. 
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In the study of the given process, we use the mathematical model of the 

growh of cells Candida utilis on ethanol, which was developed by Professor 

V.P. Gachok [11, 12]. With the help of this model, the unstable modes in the 

cultivation of cells observed in experiments were considered. The kinetic curves 

of the chaotic dynamics obtained with the help of computational experiments 

were in agreement with experimental data [13]. 

Then the given model was modified and refined in [14] due to the account 

for the influence of the CO2 level on the respiration intensity. With the help of 

the model, the structural-functional connections of the metabolic process in a 

cell, which cause the appearance of complicated oscillations in the metabolic 

process, were investigated. It was concluded that the given oscillations arise on 

the level of redox reactions of the Krebs cycle, reflect the cyclicity of the 

process, and characterize the self-organization in a cell. The fractality of the 

dynamics of oscillations of the Krebs cycle was studied as well.  

The analogous oscillatory modes were observed in the processes of 

photosynthesis and glycolysis, variations of the calcium concentration in a cell, 

oscillations in heart muscle, and other biochemical processes [15-19]. 

 

2  Mathematical Model 
 

The general scheme of the process is presented in Fig. 1. According to it 

with regard for the mass balance, we have constructed the mathematical model 

given by Eqs. (1) - (19). 

 
Fig. 1. General scheme of the metabolic process of growth of cells Candida 

utilis on ethanol. 
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where )1/()( XXXV +=  is the function that describes the adsorption of the 

enzyme in the region of a local coupling. The variables of the system are 

dimensionless [11, 12]. 

The internal parameters of the system are as follows: 

;3.01 =k  ;3.02 =k  ;2.03 =k  ;6.04 =k  ;16.05 =k  ;7.06 =k  ;08.07 =k  

;022.08 =k ;1.09 =k  ;08.010 =k  ;08.011 =k  ;1.012 =k  ;7.014 =k  ;27.015 =k  

;18.016 =k  ;14.017 =k  ;118 =k  ;1019 =k  ;07.01 =n  ;07.02 =n  ;2=L  

;21 =L  ;5.22 =L  ;23 =L  ;5.2=K  ;35.01 =K  ;22 =K  ;11 =M  ;35.02 =M  

;13 =M  ;6.01 =N  ;03.02 =N  ;01.03 =N  ;37.11 =µ  ;3.02 =µ  ;01.03 =µ  

;7.0=γ  ;7.01 =γ  ;5.01 =β  ;4.02 =β  ;4.03 =β  ;2
01 =E  .2

02 =E  

The external parameters determining the flow-type conditions are chosen as 

;05055.00 =S  ;06.0
02 =O  ;002.0=α  ;02.01 =α  ;004.02 =α  ;01.03 =α  

;01.04 =α  ;01.05 =α  ;01.06 =α  .0001.07 =α        

The model covers the processes of substrate-enzymatic oxidation of ethanol 

to acetate, cycle involving tri- and dicarboxylic acids, glyoxylate cycle, and 

respiratory chain. 

The incoming ethanol S  is oxidized by the alcohol dehydrogenase enzyme 

1E  to acetaldehyde 1S  (1) and then by the acetal dehydrogenase enzyme 2E  to 

acetate 2S  (2), (3). The formed acetate can participate in the cell metabolism 

and can be exchanged with the environment. The model accounts for this 
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situation by the change of acetate by acetyl- CoA . On the first stage of the Krebs 

cycle due to the citrate synthase reaction, acetyl- CoA  jointly with oxalacetate 

8S  formed in the Krebs cycle create citrate 3S  (4). Then substances 4S  - 8S  

are created successively on stages (5)-(9). In the model, the Krebs cycle is 

represented by only those substrates that participate in the reduction of NADH  

and the phosphorylation ATPADT → . Acetyl- CoA  passes along the chain to 

malate represented in the model as intramitochondrial 7S  (8) and cytosolic 9S  

(10) ones. Malate can be also synthesized in another way related to the activity 

of two enzymes: isocitrate lyase and malate synthetase. The former catalyzes the 

splitting of isocitrate to succinate, and the latter catalyzes the condensation of 

acetyl- CoA  with glyoxylate and the formation of malate. This glyoxylate-linked 

way is shown in Fig. 1 as an enzymatic reaction with the consumption of 2S  

and 3S  and the formation of 7S . The parameter 3k  controls the activity of the 

активность glyoxylate-linked way (3), (4), (8). The yield of 7S  into cytosol is 

controlled by its concentration, which can increase due to 9S , by causing the 

inhibition of its transport with the participation of protons of mitochondrial 

membrane. 

The formed malate 9S  is used by a cell for its growth, namely for the 

biosynthesis of protein X  (11). The energy consumption of the given process is 

supported by the process ADPATP → . The presence of ethanol in the external 

solution causes the “ageing” of external membranes of cells, which leads to the 

inhibition of this process. The inhibition of the process also happens due to the 

enhanced level of the kinetic membrane potential ψ . The parameter 0µ  is 

related to the lysis and the washout of cells. 

In the model, the respiratory chain of a cell is represented in two forms: 

oxidized, Q , (12) and reduced, q , ones. They obey the integral of motion 

3)()( LtqtQ =+ . 

A change of the concentration of oxygen in the respiratory chain is 

determined by Eq. (13). 

The activity of the respiratory chain is affected by the level of NADH  (14). 

Its high concentration leads to the enhanced endogenic respiration in the 

reducing process in the respiratory chain (parameter 15k ). The accumulation of 

NADH  occurs as a result of the reduction of +NAD  at the transformation of 

ethanol and in the Krebs cycle. These variables obey the integral of motion 

2)()( LtNADHtNAD =++ . 

In the respiratory chain and the Krebs cycle, the substrate-linked 

phosphorylation of ADP  with the formation of ATP  (15) is also realized. The 

energy consumption due to the process ADPATP →  induces the biosynthesis 

of components of the Krebs cycle (parameter 18k ) and the growth of cells on the 

substrate (parameter 19k ). For these variables, the integral of motion 
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1)()( LtADPtATP =+  holds. Thus, the level of ATP  produced in the redox 

processes in the respiratory chain ATPADP →  determines the intensity of the 

Krebs cycle and the biosynthesis of protein. 

In the respiratory chain, the kinetic membrane potential ψ  (16) is created 

under the running of reducing processes qQ → . It is consumed at the substrate-

linked phosphorylation ATPADP →  in the respiratory chain and the Krebs 

cycle. Its enhanced level inhibits the biosynthesis of protein and process of 

reduction of the respiratory chain. 

Equations (17) and (18) describe the activity of enzymes 1E  and 2E , 

respectively. We consider their biosynthesis (
01E  and 

02E ), the inactivation in 

the course of the enzymatic reaction ( 1n  and 2n ), and all possible irreversible 

inactivations ( 5α  and 6α ). 

Equation (19) is related to the formation of carbon dioxide. Its removal 

from the solution into the environment ( 7α ) is taken into account. Carbon 

dioxide is produced in the Krebs cycle (5). In addition, it squeezes out oxygen 

from the solution (13), by decreasing the activity of the respiratory chain. 

The study of solutions of the given mathematical model (1)-(19) was 

performed with the help of the theory of nonlinear differential equations [20, 21] 

and the methods of mathematical modeling of biochemical systems applied and 

developed by the authors. in [22-38]. 

 

3  The results of Studies 
 

For one cycle, there occurs the full oxidation of a molecule of acetyl- CoA  

up to malate and the formation of a new molecule of acetyl- CoA  at the input. In 

such a way, the continuous process of functioning of the Krebs cycle is running. 

This process has the autooscillatory character. 

The studies of the model with the help of computational experiments 

showed that if system’s parameters vary, the appearance of autooscillations with 

various frequencies, as well as chaotic oscillations, becomes possible. 

Oscillations with the same frequency will occur in all components of the given 

metabolic process.  In the present work, we will study the dependence of 

autooscillations of the system on the parameter 8k , which determines the level 

of formation of CO2 in the cycle of tricarboxylic acid. 

The different types of obtained autooscillatory modes are studied with the 

help of the construction of phase-parametric diagrams. The abscissa axis shows 

the values of parameter 8k , and the axis of ordinates gives the values of chosen 

variable )(1 tE , for example. Moreover, we used the method of cutting. In the 

phase space of trajectories of the system, we place the cutting plane 8.02 =S . 

Such a choice is explained by the symmetry of oscillations of acetate relative to 

this plane in a lot of earlier calculated modes. For every given value of 8k , we 
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observe the intersection of this plane by the trajectory in a single direction, 

when it approaches the attractor. The value of )(1 tE  is put onto the phase-

parametric diagram. In the case where a multiple periodic limiting cycle arises, 

a number of points can be observed on the plane, and they will be the same in 

the period. If the deterministic chaos arises, the points of the intersection of the 

plane by the oscillating trajectory will be positioned chaotically.  

In Fig. 2,a-d, we show the phase-parametric diagrams for the variable )(1 tE  

versus the parameter 8k  changing in the appropriate intervals. 

 

 
Fig. 2. Phase-parametric diagram for the variable )(1 tE : a - )8.0.,0(8 ∈k ; b - 

)4.0.,0(8 ∈k ; c - )3.0,25.0(8 ∈k ; d - )28.0,273.0(8 ∈k . 

As the parameter 8k  decreases, there occurs the subsequent doubling of the 

multilicity of the autoperiodic process. Such a sequence of the appearance of 

bifurcations creates a cascade of bifurcations, namely the Feigenbaum sequence 

[39]. After the multiple doubling of a period, the modes of aperiodic oscillations 

are eventually observed in the system. In other words, a chaos arises. As the 

parameter 8k  decreases further, we see the appearance of the windows of 

periodicity on the phase-parametric diagrams. The deterministic chaos is 

destroyed, and the periodic and quasiperiodic modes are established. The 

trajectory of a strange attractor in the chaotic mode is tightened to a regular 

attractor of the autoperiodic mode. We observe the self-organization in the 

system.  Then the windows of periodicity are destroyed, and the chaotic modes 

arise again. Moreover, the transitions “order—chaos” and “chaos—order” 
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happen. There occurs the adaptation of the metabolic process to varying 

conditions. 

It is seen from the presented figures that, as the scale decreases, every 

subsequent phase-parametric diagram with doubling of a cycle and its windows 

of periodicity are identicat to those of the previous diagram, as the scale 

decreases. The given sequence of bifurcations has a self-similar fractal structure. 

In Figs. 3,e-f and 4, we present the examples of the projections of phase 

portraits for some values of parameter 8k , according to the phase-parametric 

diagram in Fig. 2. 

In Fig. 5, we show the constructed kinetic curves for a strange attractor 

formed at 12.08 =k . 

These figures indicate a variation of the dynamics of a metabolic process of 

the Krebs cycle, which depends on the intensity of formation of the final 

oxidation product, CO2. 
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Fig. 3. Projections of system’s phase portraits: a – regular attractor 122 ⋅ , 

5.08 =k ; b – regular attractor 222 ⋅ , 3.08 =k ; c - regular attractor 422 ⋅ , 

28.08 =k ; d - regular attractor 822 ⋅ , 278.08 =k ; e -  regular attractor 1622 ⋅ , 

277.08 =k ; f - strange attractor x22 ⋅ , 275.08 =k . 

 
Fig. 4. Projection of the phase portrait 

of the strange attractor x22 ⋅  for 

12.08 =k . 

Fig. 5. Kinetic curve for the 

components 1S , 2S , and ψ  of the 

Krebs cycle in the mode of the strange 

attractor x22 ⋅  for 12.08 =k . 

 

In order to uniquely identify the type of obrained attractors and to 

determine their stability, we calculated the full spectra of Lyapunov indices and 

their sum ∑
=

=Λ
19

1j

jλ  for the chosen points. The calculation was carried out by 

Benettin’s algorithm with the orthogonalization of the vectors of perturbations 

by the Gram--Schmidt method [21]. 

The calculation of Lyapunov indices from this multidimensional system on 

a personal computer meets certain difficulties. The mathematical model of the 

given biochemical system contains many variables and parameters. The 

limitations in the solution of such problems arise due to the insufficient random-

access memory of a computer in the processing of the nn×  matrix of small 

perturbations. In addition, any inaccuracy on the stage of programming will 

essentially affect the redefinition of the vectors of perturbations, their 

orthogonalization, and, as a consequence, the result of calculations. 

Nevertheless, we solved the problem and obtained certain results. Below for the 

sake of comparison, we present the spectra of Lyapunov indices for some modes 

of the system. For brevity without any loss of information, we give the values of 

indices up to the fourth decimal point. 

The ratios of the values of Lyapunov indices 19321 ... λλλλ >>>>  serve 

as the criterion of the validity of calculations. For a regular attractor, we have 

obligatorily 01 ≈λ . The remaining indices can be also 0≈  in some cases. In 
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some other cases, they are negative. The zero value of the first Lyapunov index 

testifies to the presence of a stable limiting cycle. 

For a strange attractor, at least one Lyapunov index must be positive. After 

it, the zero index follows. The next indices are negative. The presence of 

negative indices means the contraction of system’s phase space in the 

corresponding directions, whereas the positive indices indicate the dispersion of 

trajectories. Therefore, there occurs the mixing of trajectories in narrow places 

of the phase space of the system, i.e., there appears the deterministic chaos. The 

Lyapunov indices contain obligatorily the zero index, which means the 

conservation of the aperiodic trajectory of an attractor in some region of the 

phase space and the existence of a strange attractor. 

For 01.08 =k , the strange attractor x22 ⋅  arises. We have 191 λλ − :  .0007;  

.0000;  -.0040;  -.0125;  -.0196;  -.0200;  -.0290;  -.0299;  -.0317;  -.0416;  -

.0416; -.0416;  -.0458;  -.0816;  -.0874;  -.0874;  -.1181;  -.1539;  -.2222; 

0672.1−=Λ . 

For 075.08 =k  –  regular attractor 
023 ⋅  (see the window of periodicity in 

Fig. 2,b). 191 λλ − :  .0000;  -.0004;  -.0040;  -.0117;  -.0194;  -.0211;  -.0285;  -

.0285;  -.0326;  -.0406; -.0406; -.0406;  -.0451;  -.0819;  -.0883;  -.0883;  -.1182;  

-.1563;  -.2241; 0702.1−=Λ . 

For 12.08 =k  – strange attractor x22 ⋅ ; 191 λλ − :  .0008;   .0000;   -.0040;  

-.0125; -.0192;  -.0210;  -.0287;  -.0300;  -.0324; -.0406;  -.0406; -.0406;  -

.0457;  -.0822;  -.0879;  -.0879;  -.1172;  -.1542;  -.2212; 0653.1−=Λ . 

For 27.08 =k  – strange attractor x22 ⋅ ; 191 λλ − : .0002;  .0000;  -.0040;  -

.0125;  -.0192;  -.0219;  -.0281;  -.0310;  -.0320;  -.0387;  -.0387; -.0387;  -

.0436;  -.0842;  -.0889;  -.0889;  -.1185;  -.1541;  -.2209; 0638.1−=Λ . 

For 275.08 =k  – strange attractor x22 ⋅ ; 191 λλ − : .0001;  .0000;  -.0040;  -

.0125;  -.0192;  -.0219;  -.0280;  -.0312;  -.0323;  -.0383;  -.0383; -.0383;  -

.0434;  -.0842;  -.0890;  -.0890;  -.1184;  -.1540;  -.2212; 0631.1−=Λ . 

For 278.08 =k  – regular attractor 822 ⋅ ; 191 λλ − : .0000;  .0000;  -.0041;  -

.0123;  -.0193;  -.0219;  -.0283;  -.0308;  -.0320;  -.0384;  -.0384; -.0384;  -

.0435;  -.0842;  -.0890;  -.0890;  -.1187;  -.1538;  -.2212; 0634.1−=Λ . 

For 278.08 =k  – regular attractor 822 ⋅ ; 191 λλ − : .0000;  .0000;  -.0041;  -

.0123;  -.0193;  -.0219;  -.0283;  -.0308;  -.0320;  -.0384;  -.0384; -.0384;  -

.0435;  -.0842;  -.0890;  -.0890;  -.1187;  -.1538;  -.2212; 0634.1−=Λ . 

For 28.08 =k  – regular attractor  422 ⋅ ; 191 λλ − : .0000;  .0000;  -.0041;  -

.0123;  -.0193;  -.0219;  -.0282;  -.0307;  -.0322;  -.0384;  -.0384; -.0384;  -

.0436;  -.0842;  -.0890;  -.0890;  -.1186;  -.1540;  -.2212; 0633.1−=Λ . 

The presented results of calculations indicate that the sum Λ  of all indices, 

which determine the flow divergencies and, hence, the evolution of the phase 

volume along the trajectory, is maximal for the regular attractor 023⋅ . It arises 

162



 

 

in the window of periodicity for 075.08 =k  ( 0702.1−=Λ ). For the strange 

attractors on the left and on the right (for 01.08 =k  and 12.08 =k ), the 

divergencies are, respectively, 0672.1−=Λ  and 0653.1−=Λ . This means that 

the phase volume element for the given attractor is contracted, on the whole, 

stronger along the trajectory. Here, we observe the self-organization of a stable 

cycle from chaotic modes. The Krebs cycle is adapted to the varying conditions. 

By the given Lyapunov indices for strange attractors, we determine the 

KS-entropy (the Kolmogorov--Sinai entropy) [40]. By the Pesin theorem [41], 

the KS-entropy h corresponds the sum of all positive Lyapunov characteristic 

indices: 

The KS-entropy allows us to judge about the rate, with which the 

information about the initial state of the system is lost. The positivity of the 

given entropy is a criterion of the chaos. This gives possibility to qualitatively 

estimate the properties of attractor’s local stability. 

We determine also the quantity inverse to the KS-entropy, mint . This is the 

time of a mixing in the system. It characterizes the rate, with which the initial 

conditions will be forgotten. For  mintt << , the behavior of the system can be 

predicted with sufficient accuracy. For mintt > , only a probabilistic description 

is possible. The chaotic mode is not predictable due to the loss of the memory of 

initial conditions. The quantity mint  is called the Lyapunov index and 

characterizes the “predictability horizon” of a strange attractor. 

In order to classify the geometric structure of strange attractors, we 

calculated the dimension of their fractality. The strange attractors are fractal sets 

and have the fractional Hausdorff-Besicovitch dimension. But its direct 

calculation is a very labor-consuming task possessing no standard algorithm. 

Therefore, as a quantitative measure of the fractality, we calculated the 

Lyapunov dimension of attractors by the Kaplan--Yorke formula [42, 43]: 

1

1

+

=

∑
+=

m

m

i

i

F mD
r λ

λ

,                                                                                            (11) 

where m  is the number of the first Lyapunov indices ordered by their 

decreasing. Their sum 0

1

≥∑
=

m

i

iλ , and 1+m  is the number of the first Lyapunov 

index, whose value 01 <+mλ . 

For the above-considered strange attractors ∞2 , we obtained the following 

indices. 

For 01.08 =k : 0007.0=h , 6.1428min =t , 175.2=
rFD . 

For 12.08 =k : 0008.0=h , 1250min =t , 2.2=
rFD . 
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For 27.08 =k : 0002.0=h , 5000min =t , 05.2=
rFD . 

For 275.08 =k : 0001.0=h , 10000min =t , 025.2=
rFD . 

By these indices, we can judge about the difference of the given strange 

attractors. 

 

Conclusions 
 

With the help of the mathematical model of the Krebs cycle, we have studied 

the dependence of the cyclicity of the metabolic process on the amount of a final 

product of the oxidation, i.e., on the amount of the formed carbon dioxide. The 

multiplicity of the cycle is doubled by the Feigenbaum scenario, until the 

аperiodic modes of strange attractors arise. From them as a result of the self-

organization, the stable periodic modes appear. This means that the system is 

adapted to the varying conditions. We have calculated the full spectra of 

Lyapunov indices and the divergencies for various modes. For the  strange 

attractors, we have determined the KS-entropies, “predictability horizons,” and 

Lyapunov dimensions of attractors. The results obtained allow us to study the 

structural-functional connections of the cycle of tricarboxylic acids, their 

influence on the cyclicity of metabolic oscillations in a cell, and the physical 

laws of self-organization in it. 
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