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Preface 

7
th

 Chaotic Modeling and Simulation  

International Conference 

7 – 10 June 2014, Lisbon Portugal 

It is our pleasure to present the Proceedings of the 7
th
 International 

Conference (CHAOS2014) on Chaotic Modeling, Simulation and 

Applications. We support the study of nonlinear systems and dynamics 

in an interdisciplinary research field and very interesting applications 

were presented. A forum to exchange ideas, methods, and techniques in 

the field of Nonlinear Dynamics, Chaos, Fractals and their applications 

in General Science and in Engineering Sciences was established.  

The principal aim of CHAOS2014 International Conference was to 

expand the development of the theories of the applied nonlinear field, the 

methods and the empirical data and computer techniques, and the best 

theoretical achievements of chaotic theory as well.  

Chaotic Modeling and Simulation Conferences continue to grow 

considerably from year to year thus making a well established platform 

to present and disseminate new scientific findings and interesting 

applications. We thank all the contributors to the success of this 

conference and especially the authors of this Conference Proceedings  of 

CHAOS 2014. 

Special thanks to the Scientific Committee, the ISAST Committee, the 

Conference Secretary Mary Karadima and all the members of the 

Secretariat.  

September 2014  

Christos H. Skiadas 

Conference Chair 
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Governance of Alteration of the Deformation Field 

States of Fractal Volumetric Structures 

in a Multilayer Nanosystem 
 

Olga P. Abramova, Sergey V. Abramov 

 

Donetsk National University, Ukraine 

E-mail: oabramova@ua.fm 

 
Abstract: For a multilayer nanosystem various types of fractal volumetric structures are 

obtained. The singular points (attractors) of the deformation field of these structures are 

located on fractal quasi-two-dimensional surfaces. This uses the theory of fractional 

calculus and the concept of fractal. The influence of translation and rotation on the 

deformation field states of these structures is shown. The interaction of nodes both in the 

plane of the basic rectangular discrete lattice and the interplanar interactions is taken into 

account. Using spatial rotation (external governance) the alteration of the states of fractal 

volumetric structures can be carried out. This allows also to fulfill a stochastic (due to 

changes in the internal parameters, the process of self-organization) governing of the 

alteration of these structures. The analysis in terms of averaged functions makes it 

possible to identify the features of the behavior and conditions of the transition from one 

structure to another. 

Keywords: fractal volumetric structures, stochastic deformation field, averaged 

functions, alteration of the structure, multilayer nanosystem. 

 

1. Introduction 
Investigating the fundamental properties of multilayer nanosystems and 

nanomaterials [1 - 4] is actual for the modern areas of nanotechnology, 

structural and non-linear mechanics [5]. The active nanostructural elements in 

real and artificial nanosystems are clusters, pores, quantum dots, wells, two-

dimensional quantum billiards (quantum corrals) [6]. These elements can find 

their application in quantum information science, nanomechanics, quantum 

optics, and for the quantum computers, molecular spin memory devices [3]. The 

theoretical description of the chaotic states in the structural mechanics, analysis 

of nonlinear dynamical models of attractors and the chaotic simulation are 

discussed in the books [5 - 8]. 

Fractal dislocation [9 - 12] is one of the non-classical active nanostructural 

objects in a model nanosystem. In paper [10] the possibility of an appearance of 

quasi-two-dimensional structures of fractal elliptic and hyperbolic dislocations, 

fractal quantum dot was investigated. The analysis of the behavior of the 

averaged functions allows to determine the critical values of the governing 

parameters. In papers [11 - 13] a possibility of governing the alteration of the 

deformation field of fractal quasi-two-dimensional structures in model 

nanosystems was shown. In this case accounting the interplanar interactions in 

multilayer nanosystem can lead to the formation of fractal volumetric structures. 

The possibility of constructing fractal nanotraps based on quasi-two-

dimensional fractal structures and governing the behavior of coupled systems: 

_________________ 
7th CHAOS Conference Proceedings, 7-10 June 2014, Lisbon Portugal 
C. H. Skiadas (Ed) 
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fractal trap – fractal structure were discussed in [12]. 

The purpose of this paper is to describe the features of the behavior of 

deformation fields of fractal volumetric structures, the study of the possibilities 

of external and internal governance of structure alteration in the multilayer 

model nanosystem. 

2. Classification of fractal volumetric structures 
We consider a model nanosystem [10, 11]: volumetric discrete lattice 

1 2 3N N N× × , whose nodes are given by integers , ,n m j
 

( 11,n N= ; 

21,m N= ; 31,j N= ). Dimensionless variable displacement u  of lattice node is 

described by analogy with [10], but with a changed value Q  

2
0(1 )(1 2sn ( , )) /u u u k Qα= − − − .                              (1) 

Here α  is the fractal dimension of the deformation field u  along the Oz -axis 

( [0,1]α ∈ ); 0u
 
is the constant (critical) displacement; k  is the modulus of the 

elliptic sine. The changed value Q  considers both the interaction of the nodes in 

the main plane of rectangular discrete lattice and the interplanar interactions. 

This allows to fulfill a stochastic (due to changes in the internal parameters, the 

process of self-organization) governing of the alteration of emerging structures. 

The initial expression for Q  has the form 

2 2 2

0 0 0
0 1 2 3 1 2 3

c c c

n n m m j j
Q p p n p m p j b b b

n m j

′ ′ ′     − − −
′ ′ ′ ′= + + + − − −     

     
.   (2) 

The expression (2) has thirteen parameters. The parameter 0p′  is independent of 

the variables , ,n m j ; parameters 1 2 3, ,p p p′ ′ ′  are included in the linear form; 

parameters 1b , 2b , 3b , 0n , cn , 0m , cm , 0j , cj  determine the behavior of 

the quadratic form. Parameters cn , cm , cj  play the role of semi-axes of fractal 

volumetric structures in a new coordinate system O n m j′ ′ ′ ′ . The original 

coordinate system Onmj  is described in terms of variables , ,n m j . 

Perform spatial axis rotation of the coordinate system around axis Oj , move 

from the system Onmj  to the system O n m j′ ′ ′ ′  by the formulas 

1 1 1 1 1 1 1 1cn( , ) sn( , ) cn( , )n n k u k m u k j k u kβ β β′ ′= ⋅ − ⋅ + ⋅ ; 

1 1 1 1 1 1 1 1sn( , ) cn( , ) sn( , )m n k u k m u k j k u kβ β β′ ′= ⋅ + ⋅ + ⋅ ; 

1 1j n k j k′ ′= − ⋅ + ⋅ ; 1 1 1sn( , )k u kθ θ= ; 1 1 1cn( , )k u kθ θ′ = ; 
2 2
1 1 1k k ′+ = .   (3) 
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Here the dimensionless displacement 1u β  is connected with the polar angle 

1βϕ  in the plane Onm  by relation 1 1 1( , )u F kβ βϕ= ; F  is an incomplete 

elliptic integral of the first kind; the dimensionless displacement 1u θ  is 

connected with the effective angle 1θ  by relation 1 1 1( , )u F kθ θθ= ; 1 1,k k θ  are 

modules of elliptic functions. The dimensionless displacement 1u β  is a 

nonlinear function of the two parameters 1βϕ  and 1k , that define the different 

mechanisms of alteration of fractal volumetric structure and governing it. Here 

the parameter 1k  is a nonlinear function of 1u θ  and 1k θ . As a result, the 

displacement 1u β  becomes a complex function depending on three parameters 

1βϕ , 1u θ , 1k θ . Note that for 1 0k θ =  from (3) we obtain 

1 1 1sn( ,0) sink u θ θ= = ;   1 1 1cn( ,0) cosk u θ θ′ = = .                  (4) 

For 1 1nθθ π= , where 1 0; 1; 2;...nθ = ± ±  from expressions (3) by using (4) 

follow relations 

1 0k = ;  1
1 ( 1)

n
k θ′ = − ;  1 1 1sn( , ) sinu kβ βϕ= ;  1 1 1cn( , ) cosu kβ βϕ= ; 

1
1 1( 1) cos sin

n
n n mθ

β βϕ ϕ′= ⋅ − − ⋅ ; 1
1 1( 1) sin cos

n
m n mθ

β βϕ ϕ′= ⋅ − + ⋅ ; 1( 1)
n

j j θ′ = − . (5) 

Expressions (5) for even values 1 0; 2;...nθ = ±  earlier used to describe the 

effect of rotation in the plane Onm  on the deformation field state of fractal 

quasi-two-dimensional structures. In contrast to (5) of the expression (3) take 

into account the spatial rotation of volumetric structure. For 

1 1(2 1) / 2nθθ π= +  from expressions (3) by using (4) follow relations 

1
1 ( 1)

n
k θ= − ;  1 1 1sn( , ) th( )u k uβ β= ;  1 1 1cn( , ) sech( )u k uβ β= ;  1( 1)

n
j n θ′ = − − ; 

1
1 1th( ) ( 1) sech( )

n
n m u j uθ

β β′ =− ⋅ + ⋅ − ; 1
1 1sech( ) ( 1) th( )

n
m m u j uθ

β β′ = ⋅ + ⋅ − . (6) 

If 1 1k θ = , then for 1 1,k k ′  from (3) we obtain 

1 1 1sn( ,1) th( )k u uθ θ= = ;   1 1 1cn( ,1) sech( )k u uθ θ′ = = .              (7) 

It follows that if 1 0u θ = , then 1 0k = , 1 1k ′ = . For 1u θ → ±∞  we obtain 

1 1k = ± , 1 0k ′ = , respectively. Finite values 1 10 0u uθ = ≠  define specific 

intermediate values 1 10th( )k u= , 1 10sech( )k u′ = . 
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Performing spatial axis rotation of the coordinate system around axis Om , we 

move from the system Onmj  to the system O n m j′ ′ ′ ′  by the formulas 

2 2 2 2 2 2 2 2cn( , ) sn( , ) cn( , )j j k u k n u k m k u kβ β β′ ′= ⋅ − ⋅ + ⋅ ; 

2 2 2 2 2 2 2 2sn( , ) cn( , ) sn( , )n j k u k n u k m k u kβ β β′ ′= ⋅ + ⋅ + ⋅ ; 

2 2m j k m k′ ′= − ⋅ + ⋅ ; 2 2 2sn( , )k u kθ θ= ; 2 2 2cn( , )k u kθ θ′ = ; 
2 2
2 2 1k k′+ = .   (8) 

Here the dimensionless displacement 2u β  is connected with the polar angle 

2βϕ  in the plane Ojn  by relation 2 2 2( , )u F kβ βϕ= ; the dimensionless 

displacement 2u θ  is connected with the effective angle 2θ  by relation 

2 2 2( , )u F kθ θθ= ; 2 2,k k θ  are modules of elliptic functions. 

Performing spatial axis rotation of the coordinate system around axis On , we 

move from the system Onmj  to the system O n m j′ ′ ′ ′  by the formulas 

3 3 3 3 3 3 3 3cn( , ) sn( , ) cn( , )m m k u k j u k n k u kβ β β′ ′= ⋅ − ⋅ + ⋅ ; 

3 3 3 3 3 3 3 3sn( , ) cn( , ) sn( , )j m k u k j u k n k u kβ β β′ ′= ⋅ + ⋅ + ⋅ ; 

3 3n m k n k′ ′= − ⋅ + ⋅ ; 3 3 3sn( , )k u kθ θ= ; 3 3 3cn( , )k u kθ θ′ = ; 
2 2
3 3 1k k ′+ = .   (9) 

Here the dimensionless displacement 3u β  is connected with the polar angle 

3βϕ  in the plane Omj  by relation 3 3 3( , )u F kβ βϕ= ; the dimensionless 

displacement 3u θ  is connected with the effective angle 3θ  by relation 

3 3 3( , )u F kθ θθ= ; 3 3,k k θ  are modules of elliptic functions. 

Note that the formulas for the spatial rotations for cases when
 2 0k θ = , 

2 1k θ =  from (8) and 3 0k θ = , 3 1k θ =  from (9) are written by analogy as the 

expressions (4) - (7) with the parameters 2nθ  and 3nθ , respectively. 

Earlier in the works [10, 11] the location of the singular points (attractors) of the 

deformation field in the core of fractal structures is typical for linear dislocation, 

real ellipse, hyperbola or an imaginary ellipse. In this paper, the singular points 

are located on fractal quasi-two-dimensional surfaces whose equations depend 

on three arguments , ,n m j′ ′ ′ . If in expressions (5) we put 1 0βϕ =  for even 

values 1 0; 2;...nθ = ± , then n n′ = , m m′ = , j j′ = , then the coordinate 

system On m j′ ′ ′  coincides with the original one Onmj .This allows us to 
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classify the original fractal structures (see table). In the table the sign «+» 

indicates a positive value of the parameter, the sign « ± » indicates that the value 

of the parameter can be either positive or negative. Values of the parameters 

1 0p′ ≠ , 2 0p′ ≠ , 3 0p′ ≠  lead to the appearance of other fractal bulk structures. 

Further use of parameters 1 0βϕ ≠  and 1 0k ≠  allows performing 

investigations of the alteration of states of these fractal structures. Fig. 1 shows 

an example behavior of the displacement function u  for the original fractal 

volumetric structure type of the fractal ellipsoid (FE) for the following 

parameters: 0 1.0123p′ = ; 1 0u β = ; 1 0u θ = ; 1 0k θ =  and the layer number in 

the multilayer nanosystem 1,19,30, 44,67j = . 

 

Table. Classification of the original fractal volumetric structures 
 

Title of the fractal volumetric structure 
0p′  1p′  2p′  3p′  1b  2b  3b  

Fractal ellipsoid (FE) + 0 0 0 1 1 1 

Fractal one-sheet hyperboloid (FOH) + 0 0 0 1 1 -1 

Fractal two-sheet hyperboloid (FTH) + 0 0 0 1 -1 -1 

Fractal elliptic cylinder (FEC) + 0 0 0 1 1 0 

Fractal hyperbolic cylinder (FHC) + 0 0 0 1 -1 0 

Fractal elliptic paraboloid (FEP) + 0 0 ±  1 1 0 

Fractal hyperbolic paraboloid (FHP) + 0 0 ±  1 -1 0 

Fractal quantum dot (FQD) + 0 0 0 -1 -1 -1 

Fractal stochastic state (FSS) + 0 0 0 0 0 0 

 

The solution of the nonlinear equation (1) with the value of function Q  in the 

form (2) is obtained by the iterations method for fixed values 0.5α = ; 0.5k = ; 

0 29.537u = . The iterative procedure on the index m  simulates a stochastic 

process on a rectangular discrete lattice with size 1 2 30 40N N× = × . The 

initial parameters were the following: 0 14.3267n = ; 9.4793cn = ; 

0 19.1471m = ; 14.7295cm = ; 0 31.5279j = ; 11.8247cj = . 

Displacement function u  for the boundary layers 1j =  and 67j =  is smooth 

with the maximum values 
44.2 10u −= ⋅  (Fig. 1a) and 

42.8 10u −= ⋅  (Fig. 1f) 

near the node 0 0( , ) ( , )n m n m= , respectively. As the number increases 1j >  

at first there is the amplitude growth u . On the background of regular behavior 

of structures inside the elliptic region with semiaxes (19)c cn n′ < , 

(19)c cm m′ <  for 19j =  (Fig. 1b,g), there is a strongly pronounced stochastic 

behavior. Maximal amplitudes of displacement nodes are achieved near 0j j= . 

In this case the dislocation core (singular points) with a pronounced stochastic 

behavior is located on the ellipse with semiaxes (30)c cn n′ ≈ , (30)c cm m′ ≈  

(Fig. 1c,h). Within this region there is the inclined elliptical strip structure with 

5



steps. With further increase of j  decrease of amplitudes u  takes place. Into an 

elliptical area with semiaxes (44)c cn n′ < , (44)c cm m′ <  for 44j =  (Fig. 1d,i), 

another strongly pronounced stochastic behavior compared to (Fig. 1b,g) 

appears. Further increase j  leads to a decrease in amplitude and a change in 

curvature of the surface (Fig. 1e) as compared to the curvature of the surface 

(Fig. 1a,f). Note that the selected values of layers 019 cj j j= ≈ −
 

and 

044 cj j j= ≈ +  correspond to transitions from regular to stochastic and from 

stochastic to the regular behavior of the deformation field, respectively. The 

layer 30j =  is located near the plane 0j j= . 

 

   
a) 1j =  b) 19j =  c) 30j = ; [ 50,50]u∈ −  

   
d) 44j =  e) 50j =  f) 67j =  

   
g) 19j =  h) 30j =  i) 44j =  

 

Fig. 1. Dependencies of the displacement function u  (a-f) and cuts [0,1]u∈
 
(g-i, top 

view) on the lattice indexes n , m  original structure FE for different j . 

 
Original fractal structures, which rotations are described by (3), (8), (9) for 

1 2 3 0β β βϕ ϕ ϕ= = =  and 1 2 3 0k k k= = =  coincide. 
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3. External and internal governance of the structure 
An example of alteration structure that cuts fractal ellipsoid (FE) through 

various spatial rotations (external control) for layer 30j =  is shown in Fig. 2. 

The spatial rotation around the axis Oj  (Fig. 2 a,b,c) is described by formulas 

(3). The spatial rotation around the axis Om  (Fig. 2 d,e,f) is described by 

formulas (8). The spatial rotation around the axis On  (Fig. 2 g,h,i) is described 

by formulas (9). Here the parameters of rotations and displacements are the 

following. The first alteration mechanism: the initial displacements are not zero 

1 2 3 / 8u u uβ β β π= = = − , the effective angles are equal to zero 

1 2 3 0θ θ θ= = =  (Fig. 2 a, d, g). The second alteration mechanism: the initial 

displacements are equal to zero 1 2 3 0u u uβ β β= = = , the effective angles are 

not zero 1 2 3 / 16θ θ θ π= = =  (Fig. 2 b,e,h). The third alteration mechanism: 

the initial displacements are not zero 1 2 3 / 8u u uβ β β π= = = −  and the 

effective angles are not zero 1 2 3 / 16θ θ θ π= = =  (Fig. 2 c,f,i). 

 

   
a) b) c) 

   
d) e) f) 

   
g) h) i) 

 

Fig. 2. Dependencies cuts of the displacement function [0,1]u∈  (top view) on n , m  

structure FE for the rotation around axes Oj  (a, b, c), Om  (d, e, f), On  (g, h, i); 30j = . 

 
A comparative analysis of Fig. 1h and Fig. 2 confirms the possibility of 

realization various alteration mechanisms of the fractal ellipsoid structure. 
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To investigate the behavior of the stochastic deformation field of fractal 

volumetric structures in multilayer nanosystem in terms of the statistical 

approach, averaged functions are introduced by analogy with paper [10]. 

The necessity of averaging is connected with the fact that the elements of the 

lattice nodes displacement matrix are in general case random real functions. 

In the case of averaging over the nodes in a plane rectangular discrete lattice 

1 2N N×  the operators fields of displacement 1̂u  and density of states 1ρ̂  are 

introduced. These operators are coincided to the rectangular matrix 1̂u  and 1ρ̂  

with dimensions 1 2N N×  and 2 1N N× , matrix elements nmu  and 

2 11 /mn N Nρ = , respectively. 

In the case of averaging over the nodes in a plane 2 3N N×  the operators fields 

of displacement 2û  and density of states 2ρ̂  with dimensions 2 3N N×  and 

3 2N N× , matrix elements mju  and 3 21 /jm N Nρ = , respectively, are 

introduced. 

In the case of averaging over the nodes in a plane 3 1N N×  the operators fields 

of displacement 3û  and density of states 3ρ̂  with dimensions 3 1N N×  and 

1 3N N× , matrix elements jnu  and 1 31/nj N Nρ = , respectively, are 

introduced. For a homogeneous distribution operators 1 2 3ˆ ˆ ˆ, ,ρ ρ ρ  are given by 

1 2 1 2 1
ˆ ˆˆ /T
N N N Nρ ξ ξ= ;  2 3 2 3 2

ˆ ˆˆ /T
N N N Nρ ξ ξ= ;  3 1 3 1 3

ˆ ˆˆ /T
N N N Nρ ξ ξ= .   (10) 

where «T » denotes transposition; 1
ˆ
Nξ , 2

ˆ
Nξ , 3

ˆ
Nξ  are row-vectors with 

elements equal to one. Averaged functions 1 2 3, ,M M M  have the form 

1 1 1ˆ ˆ( ) ( )M j Sp uρ= ;   2 2 2ˆ ˆ( ) ( )M n Sp uρ= ;   3 3 3ˆ ˆ( ) ( )M m Sp uρ= .   (11) 

Here Sp  is an operation of calculating the trace of a square matrix. 

The behavior of averaged functions 1M M=  on j  for 1 0k θ =  without taking 

into account from the process of self-organization ( 1 0u β = , 1 0u θ = ) is shown 

in Fig. 3 a,d. In this case for the specific layer j  the matrix 1̂u  with elements 

nmu  is filled in rows (for iteration m ) or columns (for iteration n ). 

Inside the range (19;44)j∈  the stochastic behavior and the main peak down at 

40j =  with values 1 20.0807M = −  (Fig. 3 a) and 1 3.1498M = −  (Fig. 3d) 

are observed. The comparison of the behavior of the averaged functions 

1M M=  (Fig. 3 a,d) shows that the choice of the iterative procedure (either on 

m , either on n ) leads to various stochastic processes. 
This makes it possible to realize the stochastic governance of the alteration of 

8



the structure. The behavior of the averaged function (Fig. 3 a) agrees with 

behavior of the displacement function of Fig. 1. Further taking into account the 

process of simple self-organization type of 1u uβ = , 1 0u θ =  (Fig. 3 b,e) or 

type of 1 0u β = , 1u uθ =  (Fig. 3 c,f), respectively, leads to significant changes 

in the behavior of functions 1M  within the specified intervals. 

 

   

 
 

Fig. 3. The behavior of functions 1M M=  on j  accounting for the process of simple 

self-organization for 1 0k θ = : iteration on m  (a, b, c); iteration on n  (d, e, f). 

 
Accounting for related processes (for effective displacement 1u β  and 1u θ  

through u ) the self-organization of type 1 1u uβ βχ= , 1u uθ =  (Fig. 4) leads to 

a further change in the behavior of the stochastic structure within the interval 

(19;44)j∈ . The coefficient 1βχ  can be interpreted as a compression factor 

( 1 1βχ < ) or extension factor ( 1 1βχ > ) for the function u .  

Accounting for the shift ( 1 0u β′ ≠ , 1 0u θ′ ≠ ) for the effective displacement 1u β , 

1u θ  in the process of the related self-organization (Fig. 5) leads to significant 

changes in the behavior of the function 1M  compared with the behavior on 

Fig. 4 b. For the related self-organization of type 1 1u u uβ β′= − , 1u uθ =  

(Fig. 5 a, b, c) within the interval (19;44)j∈  there is a change of the stochastic 

behavior to the regular one when parameter 1u β′  is being varied. The maximum 

of the function 1M  is near 0j j=  (Fig. 5 c). For the related self-organization of 

type 1u uβ = , 1 1u u uθ θ′= −  (Fig. 5 d,e,f) when changing parameter 1u θ′  the 

interval stochastic behavior shifts and further stochastic behavior is changed to 

regular. In this case the maximum of the function 1M  is near cj j=  (Fig. 5 f). 
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Fig. 4. The behavior of functions 1M M=  on j  accounting for the process of related 

self-organization of type 1u uθ = , 1 1u uβ βχ=  for 1 0k θ = : iteration on m  (a, b, c); 

iteration on n  (d, e, f). 

 

 

   

   
 

Fig. 5. The behavior of functions 1M M=  on j  accounting for the process of related 

self-organization with shift for 1 0k θ = : 1 1u u uβ β′= − , 1u uθ =  (a, b, c); 

1u uβ = , 1 1u u uθ θ′= −  (d, e, f). Iteration on m . 

 

4. Conclusions 
The iterative nonlinear equations for a multilayer nanosystem are obtained. 
These equations take into account the interaction of nodes both in the plane of 

the basic rectangular discrete lattices and the interplanar interactions. In this 

case, the fractal volumetric structures are formed, for which singular points are 

located on the core structure of fractal surfaces. On an example of volumetric 
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structure of type fractal ellipsoid (FE) the possibility of alteration of the 

deformation field states in the multilayer nanosystem using various spatial 

rotation (external control) is shown. Averaged functions for the averages in 

three main planes are introduced. The analysis of various types of internal 

governance of the structure is made. So for example, the possibility of FE 

stochastic governance of the structure due to the choice of the iterative process 

is shown. Also the internal governance of the structure through various 

processes of self-organization (simple, related, with a shift) is considered. 
Features of the behavior of averaged functions make it possible to determine the 

conditions of transition from one structure to another, and the characteristic 

parameters. 
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Abstract: Within the framework of the two-point model the states of deformation and 

stress fields of a fractal quantum dot, the stochastic state of discrete lattice in a model 

multilayer nanosystem are investigated. This uses the theory of fractional calculus and 

the concept of fractal. Accounting for the effect of bifurcation of solutions of nonlinear 

equations leads to the appearance of four branches of the lattice nodes displacement 

function. The numerical modelling of the complex deformation field behaviour is 

fulfilled on a rectangular discrete lattice. It is shown that for inverse (with a negative 

fractal index) states of nonlinear fractal oscillator there is an interval of change of this 

index with anomalous behaviour of the deformation field: there is no effective 

attenuation within the interval. The possibility of appearance of different transition 

effects such as induction, avalanches, supernutation, echo in the model multilayer 

nanosystem with nonlinear fractal oscillator is shown. 

Keywords: fractal quantum dot, stochastic state of discrete lattice, deformation and 

stress fields, inverse states of fractal oscillator, model multilayer nanosystem. 

 

1. Introduction 
The actuality of fundamental research of individual quantum systems [1-9] is 

related to the possible use of them in quantum information technology [2-4]. As 

the information carrier (units, bits) the quanta of light – photons [1] are used. The 

recording and subsequent reading of quantum information (encoded in the 

polarization states of photons) are carried out on quantum states of single atoms 

or collective quantum states of the atomic ensemble. In the theoretical model 

description the main object is a qubit – two-level quantum system [5]. In the 

study of spontaneous parametric scattering, correlations and entanglement in 

quantum states of the system other model objects of types qutrit and ququarts 

[6] – the number of quantum systems with more than two levels – have been 

used. The quanta of vibrational excitations of the lattice – phonons, fractons [7] 

– can be used as another media. There are various mechanisms of relations and 

mutual transformations of some information carriers (photons) into others 

(phonons) in active nanostructured elements of quantum systems [8]. In [2] the 

behavior of the Fermi gas of ultracool atoms 
40

K, trapped in an optical trap is 

studied. The existence of Dirac points when changing the lattice anisotropy and 

minimum energy gap within the Brillouin zone is shown. In [3] the Dirac 

fermions and topological phase in molecular graphene are studied. Near singular 

points Dirac fermions in molecular graphene show quantum and statistical 

features of behavior. In [9] the interaction of a single localized electron with 

Bose-Einstein condensate has been studied. It was shown that this electron can 

excite phonons and collective oscillations of all condensation. Individual 
_________________ 
7th CHAOS Conference Proceedings, 7-10 June 2014, Lisbon Portugal 
C. H. Skiadas (Ed) 
© 2014 ISAST                               
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quantum systems are also intensively studied on the base of organic 

semiconductors for the purpose of their application in quantum electronics, 

optics, spin information technology (spintronics). So, in [4] by the spin echo 

method the system of spin quantum qubits based on copper (CuPc – cupper 

phthalocyanine) in organic films is studied. Physical properties of the arising 

transient processes of a spin type induction, echo were studied. Physical 

properties of these quantum systems (nanosystems) are essentially nonlinear. 

The methods of nonlinear dynamics have been applied to the theoretical 

description of the chaos [10] in structural mechanics [11], the analysis of 

nonlinear chaotic models [12], rare attractors and nonlinear oscillators [13]. In 

[14] it is proposed to use fractal nanotraps to capture individual particles or 

groups of particles in order to study their physical properties. At the same time 

it becomes necessary to conduct experimental and theoretical study of the 

properties of fractal quasi-two-dimensional and volumetric structures in the 

model multilayer nanosystems. In [14-20], the models of fractal dislocation [15-

18] and fractal quasi-two-dimensional structures were considered as active 

elements in nanosystems [19]. In order to describe possible correlation effects 

and statistical properties of the deformation field of fractal dislocation a two-

point model was proposed [18]. At excess of critical parameter values there are 

possible effects of bifurcation [17] solutions – the appearance of several 

branches in the energy spectrum. From the analysis of the behavior of the 

correlation functions of the first and second order on the dimensionless time the 

possibility of transition effects such as induction, avalanches, self-induced 

transparency, echo, effects of supernutation and propagation of linear fractal 

dislocation is shown [8]. 

The aim of this article is to study the deformation fields (after the bifurcation of 

solutions) of the fractal quantum dot, stochastic discrete lattice state, transient 

processes in model multilayer nanosystem with nonlinear fractal oscillator. 

2. Nonlinear fractal oscillator in nanosystem 
At construction of model of fractal dislocation in the [14-20] the Hamilton 

operator 2Ĥ  from [15, 20] was used for the energy spectrum of fractal dislocation 

2 1 1 2 2 3 3
ˆ ˆ ˆ ˆH n n nε ε ε ′= + + ; 1 1 1ˆ ˆ ˆn a a+= ;  2 2 2ˆ ˆ ˆn a a+= ;   3 3 33ˆ ˆ ˆn a a+′ = ;  3 33 3ˆ ˆ ˆn a a+= .   (1) 

2 1 0 3
ˆˆ ˆH H b bα= + ;    1 2 1 2 3 3

ˆ ˆ ˆ ˆ( )H n n nε ε= + + . 

Here 1 2 3ˆ ˆ ˆ, ,n n n  are the operators of occupation  numbers of states of dislocation with non-

dimensional own energies 1 2ε ε= , 3ε . The relations between the new 1 2 3ˆ ˆ ˆ, ,a a a+ +
 and old 

1ˆ ˆ ˆ, ,c cψ +
 operators are defined by expressions 

1 11 1 21 31ˆˆ ˆ ˆa t t c t cψ+ += + + ; 2 12 1 22 32ˆˆ ˆ ˆa t t c t cψ+ += + + ;  3 23 33ˆ ˆ ˆa t c t c+= + ;  1̂ zDαψ = .   (2) 

In expressions (2) the elements ijt  of the matrix T̂  are defined by the relations 

  11t k ′= ;   12t k= − ;   13 0t = ;   21 ( , )t k cn u kα= ;   22 ( , )t k cn u kα′= ; 

23 ( , )t sn u kα= − ;   31 ( , )t k sn u kα= ;   32 ( , )t k sn u kα′= ;   33 ( , )t cn u kα= .   (3) 

Here k  and ( , )u F kα αϕ=  are the module and the argument of the Jacobi 
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elliptic functions ( , )sn u kα , ( , )cn u kα ; 
2 2( ) 1k k′ = − ; F  is an incomplete 

elliptic integral of the first kind; αϕ  is the polar angle. Using (2), we find the 

commutation relations for the new operators 

3 3 3 3 0 3
ˆˆ ˆ ˆ ˆ[ , ]a a n n b bα

+ ′= − = ;  0 301 2b n= − ;  
2

30 ( , )n sn u kα= ; 

3 2
ˆ ˆ ˆ ˆˆ[ , ] (1 ) [ , ]zb z I c cα
α ψ α += = − = ;  

1
2ˆ zD αψ −= ;  

1
2 1

ˆ ˆ ˆ[ , ] zb z I α
α ψ α −= = ,   (4) 

where ẑ  is the coordinate operator. The structure of operators of fractional 

partial derivative (integral) of the Riemann-Liouville zDα
 ( zIα ) on 

dimensionless coordinate z  with the index order α  is defined as 

0
( ) | | / (1 )

z
z z z

D z dα αξ ξ ξ α−Φ=∂ Φ − Γ −∫ ,   1

0
( ) | | / ( )

z
z z

I z dα αξ ξ ξ α−Φ= Φ − Γ∫ ,   (5) 

where z∂  is the operator of ordinary partial derivative on z ; Γ  is gamma function. 

Indices , 1α α−  have the meaning of fractal dimensions along the axis Oz . Acting 

by the operator 2 2
2ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ{ , }c c cc c c z ψ+ + += + = −  to the function cαΦ , we obtain 

the equation a fractal oscillator 
2 2 2 1 1

2ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) (2 1)c z z c c c cz z D D cc c c nα α
α α α α αψ − − + +− Φ = − Φ = + Φ = + Φ .   (6) 

Here ,c cnα αΦ  are the eigenvalues (generally fractional values, may depend on z , 

α ), eigenfunctions of the fractal oscillator. Acting by the operator 3
ˆ

zD bα α  on the 

left to the function cαΦ , we obtain the nonlinear equation 

3
ˆ ˆ ˆ[ , ] (1 )z c z c cD b D c cα α
α α α αα+Φ = Φ = − Φ .                        (7) 

To find the eigenvalues cnα  and eigenfunctions cαΦ  the equations (6), (7) must be 

solved together. These equations are fundamental to describe the nonlinear fractional 

oscillator. Dimensionless displacement u  of points of fractal dislocation 

(deformation field) is connected with a parameter αλ  (stress field) by model 

relations (Hooke's law) 0/ ( , )u F kαλ λ ϕ= = , 0u u uα = − , where 0λ  is the 

normalization parameter; 0u  is the constant (critical) displacement. 

In this two-point model [18] based on the Hamiltonian 2Ĥ  (1) the deformation 

fields of the stochastic discrete lattice state, the fractal quantum dot in a model 

sample of finite nanosize with volumetric discrete lattice 1 2 3N N N× ×  is 

investigated. The deviations of the lattice nodes from the state of equilibrium in a 

separate plane 1 2N N×  for two different points of 1( , )zz j j  and 2 ( , )zz j j  are 

described by non-hermitian displacements operators
 1ˆ( )u z  and 2ˆ( )u z , 

corresponding to the rectangular matrix with dimensions 1 2N N× , 3[1, ]j N∈ . 

The value of zj  plays the role of dimensionless current discrete time [8, 20]. 

The original rectangular matrix displacement 1ˆ( )u z  and 2ˆ( )u z  with elements 

1 1( ) ( )nm su z u zε= , 2 2( ) ( )nm su z u zε=  ( 1,2,3, 4s = ) in volumetric lattice 

1 2 3 30 40 67N N N× × = × ×  were obtained by the method of iterations on an 
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index m  for the four branches of the dimensionless complex displacement 

function by the formulas in [17, 20], respectively 

  1 1 2 4( ) ( ) ( ) / 2u z u z g g gε= = − + ;      2 1 2 4( ) ( ) ( ) / 2u z u z g g gε= = − − ; 

3 1 2 5( ) ( ) ( ) / 2u z u z g g gε= = − − + ;   4 1 2 5( ) ( ) ( ) / 2u z u z g g gε= = − − − .    (8) 

Functions 1 2 3 4 5, , , ,g g g g g  by analogy with [17, 20] are modeled by expressions 

2
1 0( , ) (1 )(1 2sn ( , )) /g u u u k Qα α= − − − ;                                 (9) 

2 3 1/2
2 ( , ) 2 3 | | ( 1/ 3) ( 2 / 3) / ( 1/ 2)cg z z zα α αα α α π α− − −= − Γ + Γ + Γ + ;  (10) 

3 1/2 2
3( , ) 3 2| | ( 1/ 3) ( 2 / 3) /cg z z zα αα α α π− −= − Γ + Γ + ; 

2 1/2
4 1 2 3[( ) ]g g g g= + − ;   

2 1/2
5 1 2 3[( ) ]g g g g= − + − ;            (11) 

The initial expression for Q  has the form 

2 2 2

0 0 0
0 1 2 3 1 2 3

c c c

n n m m j j
Q p p n p m p j b b b

n m j

′ ′ ′     − − −
′ ′ ′ ′= + + + − − −     

     
.   (12) 

The expression (12) has thirteen parameters. The parameter 0p′  is independent 

of the variables , ,n m j ; parameters 1 2 3, ,p p p′ ′ ′  are included in the linear form; 

parameters 1b , 2b , 3b , 0n , cn , 0m , cm , 0j , cj  determine the behavior of the 

quadratic form. Parameters cn , cm , cj  play the role of semi-axes of fractal 

volumetric structures in a new coordinate system O n m j′ ′ ′ ′ . The original 

coordinate system Onmj  is described in terms of variables , ,n m j . 

Performing spatial axis rotation of the coordinate system around axis Oj , we 

move from the system Onmj  to the system O n m j′ ′ ′ ′  by the formulas 

1 1 1 1 1 1 1 1cn( , ) sn( , ) cn( , )n n k u k m u k j k u kβ β β′ ′= ⋅ − ⋅ + ⋅ ; 

1 1 1 1 1 1 1 1sn( , ) cn( , ) sn( , )m n k u k m u k j k u kβ β β′ ′= ⋅ + ⋅ + ⋅ ; 

1 1j n k j k′ ′= − ⋅ + ⋅ ; 1 1 1sn( , )k u kθ θ= ; 1 1 1cn( , )k u kθ θ′ = ; 
2 2
1 1 1k k ′+ = .   (13) 

Here the dimensionless displacement 1u β  is connected with the polar angle 

1βϕ  in the plane Onm  by relation 1 1 1( , )u F kβ βϕ= ; F  is an incomplete 

elliptic integral of the first kind; the dimensionless displacement 1u θ  is 

connected with the effective angle 1θ  by relation 1 1 1( , )u F kθ θθ= ; 1 1,k k θ  are 

modules of elliptic functions. The dimensionless displacement 1u β  is a 

nonlinear function of two parameters 1βϕ  and 1k , that define the different 

mechanisms of alteration of fractal volumetric structure and governing it. Here 

the parameter 1k  is a nonlinear function of 1u θ  and 1k θ . As a result, the 

displacement 1u β  becomes a complex function depending on three parameters 
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1βϕ , 1u θ , 1k θ .In the calculations it should be: 1 0.053 ( 33)z zz h j= + + ; 

2 6.653 ( 33)z zz h j= − + ; 0.1zh = , which corresponds to the forward and 

backward waves of displacements 1( )nmu z , 2( )nmu z ; 1,30n = ; 1, 40m = . For 

0zj =  we have 1 2 3.353z z= = . 

Averaged functions sMε  have the form [15, 16, 20] 

1ˆ ˆ( ) ( )s s s sM M j Sp u M iMε ε ε ερ ′ ′′= = = + ;   1 2 1 2 1
ˆ ˆˆ /T
N N N Nρ ξ ξ= .   (14) 

Here Sp  is an operation of calculating the trace of a square matrix; «T » 

denotes transposition; 1
ˆ
Nξ , 2

ˆ
Nξ  are row-vectors with elements equal to one; 

Re( )s sM Mε ε′ = , Im( )s sM Mε ε′′ = . 

3. Stochastic state of the multilayer nanosystem 
For the investigation of transient processes in multilayer nanosistem with 

nonlinear fractal oscillator the initial parameters were as follows: 0.5k = ; 

0 29.537u = ; 0 14.3267n = ; 9.4793cn = ; 0 19.1471m = ; 14.7295cm = ; 

0 31.5279j = ; 11.8247cj = ; 1 0p′ = ; 2 0p′ = ;
 3 0p′ = . In modeling the 

stochastic state deformation field of volumetric lattice it was assumed: 

0 1.0123p′ = ; 1 2 3 0b b b= = = . For a negative fractal index 0.5α = −  the behavior 

of four branches (8) of displacement function u  for forward and backward 

waves is given in Fig. 1, 2. These results were obtained for variant with 1 0u β = ; 

1 0u θ = ; 1 0k θ = . From (14) it follows that the spatial rotation of the coordinate 

system is missing: n n′ = ; m m′ = ; j j′ = . It was also assumed that zj j′= , 

therefore, the displacement function 

( ) ( ( , )) ( ( , )) ( ( , ))zu z u z j j u z j j u z j j′= = = = ( )w j=  becomes a function on j . Note 

that the imaginary part of the displacement u  is zero for all four branches, 

which indicates the anomalous behavior of the inverse structural states (with 

negative indices ( 2 / 3; 1 / 3)α ∈ − − ) of the deformation field. When 5j =  for 

the forward wave (Fig. 1a,b,c) the behavior of displacement function for all 

branches is regular: along the axis Om  for branches 3, 4 oscillations are 

observed; for branches 1, 2 the output on constant values with increasing m  is 

characteristic (Fig. 1c). For the backward wave (Fig. 1d,e,f) besides regular 

behavior of branches 1, 2, 3 the pronounced stochastic behavior of branch 4 is 

observed. Note that for backward wave parameter 2| |cz z−  from the expression 

(10), (11) has a minimum for 5j = , and the parameter 1| |cz z−  changes 

monotonically on j . Behavior projection displacement u  as functions of m  for 

various j  of the backward wave (Fig. 2) clearly demonstrates the presence and 

features of transient processes (such as of structural alteration) in the model 

multilayer nanosystem. When 0zj j j′= = =  (Fig. 2a) the displacement 

function for all branches of the backward and forward waves coincide. With 
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increasing j  the behavior of branches for the forward and backward waves 

begins to differ (Fig. 1). 

 

   

a) b) c) 

   

d) e) f) 
 

Fig. 1. Dependencies of the displacement function u  and projections on planes nOu , 

mOu  for forward (a, b, c) and backward (d, e, f) waves on the lattice indexes n , m : 

1 – branch 1uε , 2 – branch 2uε , 3 – branch 3uε , 4 – branch 4uε ; 5j = , 0.5α = − . 

 

   

a) 0j =  b) 44j =  c) 45j =  

   

d) 51j =  e) 52j =  f) 67j =  
 

Fig. 2. Dependencies of the projections on plane mOu  function u  on m  for different j : 1 – 

branch 1uε , 2 – branch 2uε , 3 – branch 3uε , 4 – branch 4uε ; 0.5α = − , backward wave. 

 

For backward wave the change of order of the branches is сharacteristic: for 

44j =  (Fig. 2b) branch 2 is located above  branch 4 and for 45j =  (Fig. 2c) 
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branch 2 becomes below branch 4; for 51j =  (Fig. 2d) branch 1 is located 

below branch 3 and for 52j =  (Fig. 2e) branch 1 becomes above branch 3. This 

behavior is confirmed by the intersection of the dependence of the average 

functions M  for backward wave (Fig. 3b). For forward wave the crossing effect 

and the changing of location order branches of the displacement function for 

values 33j = , 34j =  and 41j = , 42j =  are confirmed by the dependencies 

of the average functions M  (Fig. 3a). 

 

   
a) b) c) 

 

Fig. 3. Dependencies of functions M  on j  for four branches of displacement function u  

for forward (a) and backward (b) waves: curves 1, 2 (thick lines) - 1Mε , 2Mε ; curves 3, 4 

(thin lines) - 3Mε , 4Mε , respectively, 0.5α = − . Effect of rotation, backward wave (c). 

 

On the dependencies of the average functions 1Mε , 2Mε  for forward and 

backward waves (Fig. 3a,b) there are features such as "inclined steps" that is 

characteristic of the hysteresis phenomena. For backward wave on the curves 

1Mε , 2Mε , (Fig. 3b) for 5j =
 

the local minimum, maximum are also 

observed, respectively, which is typical for the type of behavior of the soft mode 

[20]. By choosing the parameters 1 / 8u θ π= , 1 1k θ = , 1 0u β =  the rotation of 

the coordinate system is carried out. The influence of this rotation on the 

behavior of the averaged functions ( )M j  for backward wave is given in 

Fig. 3c. Effects of shifting and broadening of the main features in comparison 

with Fig. 3b are observed. For values of the fractal index ( 1; 2 / 3)α ∈ − −  and 

( 1/ 3;1)α ∈ −  all branches are characterized by the presence of both real and 

imaginary parts of the displacement function. For backward wave for 0.5α =  

the dependencies of the average complex functions are shown in Fig. 4. These 

results were obtained for the variant with parameters 1 0uβ = ; 1 0uθ= ; 1 0kθ =  

(excluding the effect of rotation). For all branches the presence of their critical 

value kj j=  is characteristic. Within the regions of changes [1; ]kj j∈  the 

behavior of functions is stochastic. On the dependencies sMε′ , sMε′′  of the 

dimensionless time zj j j′= =  transient processes with the formation of complex 

shapes signals are observed, which allow the interpretation of the type of fractal 

induction, nutation, supernutation, echo, avalanches, self-induced transparency [7]. 
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a) [ 3;4]M ∈ −  b) 

  
c) d) 

 

Fig. 4. Dependencies of M  on j  for four branches of u : a) 1 [ 3;5]Mε ∈ − ; b) 2Mε ; c) 3Mε ; 

d) 4Mε . Curve 1 (thick lines) - sMε′ , curve 2 (thin lines) - sMε′′ ; 0.5α = , backward wave. 

 
When kj j>  the behavior of functions ( )sM jε′ , ( )sM jε′′  is almost regular with 

monotonic changes in the laws, close to power dependences. Note that the 

strongest changes of the averaged functions ( )sM jε′ , ( )sM jε′′  are observed 

near 5j = . At the same value j  for inverse states with 0.5α = −  (Fig. 3) the 

behavior of the soft mode type is observed [20]. 

4. Quantum dot in multilayer nanosystem 

For quantum dot the basic parameters were as follows:
11

0 3.457 10p −′ =− ⋅ ; 

1 2 3 1b b b= = = . Other parameters were the same as for the stochastic state. The 

choice of parameters corresponds to the location of the singular points of the 

deformation field on the fractal imaginary ellipsoid. First, we consider the state 

of a quantum dot with a fractal negative index 0.5α = − . On Fig. 5 there is an 

example of the behavior of the averaged functions M  for the four branches (8) 

of forward (Fig. 5a) and backward (Fig. 5b) waves. These results have been 

obtained for the variant with 
 1 0u β = ; 1 0u θ = ; 1 0k θ = . On the dependencies 

3 ( )M jε , 4 ( )M jε  of the forward and backward waves (Fig. 5a,b) such features as 

"blurry steps" are observed compared with features such as "inclined steps" on the 

curves 1( )M jε , 2 ( )M jε  from Fig. 3a,b. On the dependencies 1( )M jε , 2 ( )M jε  

(Fig. 5a,b) peak up, peak down for 31j =  appear, respectively. For backward wave 
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for 5j =
 
at all four branches (Fig. 5b) local minima, maxima are additionally 

observed, which is typical for the behavior of the soft mode type [20]. 
 

   
a) b) c) 

 

Fig. 5. Dependencies of M  on j  for four branches of u  for forward (a) and backward (b) 

waves, 0.5α =− : curves 1, 2 (thick lines) - 1Mε , 2Mε ; curves 3, 4 (thin lines) - 3Mε , 

4Mε ; effect of rotation for backward wave (c). 

 

Between branches 1 and 3, 4 and 2 there is crossing of branches (Fig. 5a,b). By 

choosing the parameters 1 / 8u θ π= , 1 1k θ = , 1 0u β =  the rotation of the 

coordinate system is carried out. The influence of this rotation on the behavior 

of the averaged functions ( )M j  for backward wave is given in Fig. 5c. The 

effects of shifting and broadening of the main features in comparison with 

Fig. 5b are observed. Below the behavior of the four branches (8) of 

displacement function u  of forward wave for the characteristic values 31j =  

(Fig. 6) and 42j =  (Fig. 7) is given. The imaginary part of the displacement 

function u  for all branches is zero. For branch 1 (Fig. 6a) the presence of peak 

up localized near node 0 0( , )n m  with a large amplitude and stochastic behavior 

in the quantum dot region (Fig. 6b) is characteristic. For branch 2 (Fig. 6c) a 

peak down is observed, which is also localized near the node 0 0( , )n m  with 

other amplitude and stochastic behavior in the quantum dot region. For branch 3 

(Fig. 6d) almost regular behavior with small positive amplitudes and minimum 
near the node 0 0( , )n m  is observed. For branch 4 (Fig. 6e) almost regular 

behavior with small negative amplitudes and maximum near the node
 0 0( , )n m  

is observed. On Fig. 6f the section [ 2;2]u∈ −  of all four branches together is 

given: branches 1 and 3 generally have positive values, 2 and 4 – negative. 

There is the crossing of the four branches of the displacement function at 

separate points. Between the branches of the displacement function gaps are 

observed. With an increase of j  the behavior of all four branches of the 

displacement function changes (Fig. 7). This is due to the change ( )Q j  (13) and 

the parameter | ( ) |cz j z−  from expressions (10), (11) for four branches of the 

displacement function (8). The changes in the values of gaps between the 

branches of displacement function are also observed. Note that the behavior of 
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the four branches of the displacement function, the gaps between the branches, 

the location of the singular points are qualitatively similar to the behavior of the 

physical parameters close to the Dirac points [2, 3]. It is also possible to have 

the physical interpretation of the displacement function as a function of the 

dimensionless wave number ( ) /z c cq z z z= − . 

 

 
 

 
a) 1u uε=  b) 1 [0;2]uε ∈  c) 2u uε=  

   

d) 3u uε=  e) 4u uε=  f) [ 2;2]u∈ −  
 

Fig. 6. Dependencies of u  on the lattice indexes n , m  for forward wave: (a) 1 – branch 

1uε , (b) cut 1 [0;2]uε ∈  (top view), (c) 2 – branch
 2uε , (d) 3 – branch 3uε , (e) 4 – 

branch 4uε , (f) dependences of the four branches; 31j = , 0.5α = − . 

 

  

 

 
a) b) c) 

 

Fig. 7. Dependencies of u  (a), the projections on planes nOu  (b) and mOu  (c) on the 

lattice indexes n , m  for forward wave: 1 – branch 1uε , 2 – branch 2uε , 3 – branch 3uε , 

4 – branch 4uε ; 42j = , 0.5α = − . 

 

When 0.5α =  the displacement function u  is complex. Each of the functions sMε′ , 

sMε′′  (Fig. 8) has the characteristic range of values 0 0( ; )ks ksj j j j j∈ − + , within the 

behavior of these functions are very different. Here ksj  is some critical value. 
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a) b) 

  
c) d) 

Fig. 8. Dependencies of M  on j  for four branches of u : a) 1Mε ; b) 2Mε ; c) 3Mε ; d) 

4Mε . Curve 1 (thick lines) - sMε′ , curve 2 (thin lines) - sMε′′ ; 0.5α = , forward wave. 

 

So functions 1Mε′′ , 2Mε′′ , 3Mε′′  within specific intervals have pronounced stochastic 

behavior, and the behavior of functions 1Mε′ , 3Mε′ , 4Mε′ , 4Mε′′  is almost regular. 

Function 2Mε′  describes the formation of a signal with a complex shape. On dependencies 

2Mε′ , 3Mε′ , 2Mε′′  near the value 0j  pronounced peaks are observed. The behavior of the 

functions (Fig. 8) demonstrates the possibility of the appearance of various transient processes 

in a model multilayer nanosystem with quantum dot. The analysis of these dependencies 

allows us to estimate the critical values ksj , that are associated with the dimensionless 

relaxation times of each of the branches suε  of the complex displacement function u . 

Outside characteristic intervals all functions practically change monotonous by its laws. 

5. Conclusions 
The behavior of the four branches of the complex displacement function on the 

dimensionless time for the stochastic state and the fractal quantum dot in model 

multilayer nanosystem is investigated. The appearance of four branches is 

connected with the bifurcation effect of solutions of nonlinear equations system 

for multilayer nanosystem with fractal oscillator. For values of the fractal index 

( 1; 2 / 3)α ∈ − −  and ( 1/ 3;1)α ∈ −  all branches are characterized by the presence 

of both real and imaginary parts of the displacement function. It is shown that 

changing the dimensionless time may cause transient effects such as fractal 

induction, nutation, supernutation, echo, avalanches, self-induced transparency. 

Within the range of variation of the fractal index ( 2 / 3; 1/ 3)α ∈ − −  the 

imaginary part of displacement function is zero for all four branches, which 

indicates the anomalous behavior of the inverse structural states. The analysis of 
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the behavior of the averaged functions and displacement functions allows to 

reveal features such as soft mode, "inclined steps", the presence of hysteresis, 

gaps between the branches of displacement function, the presence type of 

singular Dirac points. By increasing the dimensionless time the change of the 

structure of the displacement field of each of the four branches, the change of 

the gaps between the branches, the crossing of the branches in selected areas 

(transient processes type of structural alteration) take place. 
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Abstract: Bitcoin was introduced in 2009 as an open source, peer-to-peer payment 
network for sending payments using a client software. Bitcoin has lower transaction fees 
compared to credit card processors which makes it a preferable transaction agency for 
merchants. In this paper, daily exchange prices of bitcoin in the years of 2011 to 2014 for 
different currencies have been analyzed using nonlinear time series analysis techniques. 
To apply the analysis, phase space is reconstructed by using delay time obtained from 
mutual information and autocorrelation of data with an embedding dimension suggested 
by the false nearest neighbors method. Calculated positive Lyapunov exponents indicate 
a possible chaotic behavior. 
Keywords: Chaotic modeling, Time series analysis, Mutual information, Embedding 
dimension,Dynamical systems.  
 
1. Introduction 
Bitcoin’s main purpose is to create a payment mode which is not controlled by 
any agency (by bank, government etc.). They are not printed, like dollars or 
euros. They are produced by lots of people running computers all around the 
world. Currently, twenty five new Bitcoins are released with each block every 
ten minutes. However, this will be halved to 12.5 BTC (Bitcoin unit) during the 
year 2017 and halved continuously every four years after until a hard limit of 
twenty one million Bitcoins is reached. An algorithm that becomes 
exponentially more difficult over time controls the rate of supply. 
In this paper we involve time series analysis of experimental data from the 
average daily currency data of Bitcoin in the international software market. For 
now, we examine USD and Euro parity of Bitcoin in given time interval. 
2. Theory and application 
We must first examine the delay time in order to construct the phase space. If 
the time delay is taken too short then components of the reconstructed vectors 
will be close to each other, causing the state space picture to appear on the 
diagonal line, therefore we will have loss of information about the real system. 
On the other hand using a too long delay time will cause the correlations 
between the components of reconstructed vectors to be lost and signals will be 
mistakenly recognized as random. Information between a random variable and 
another random variable called mutual information. We can only observe our 
_________________ 
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sending information to a channel by getting back the information coming from 
that channel. For example, let X and Y be random variables with common 
distribution p(X,Y). The joint probability of observing x by a measurement of X 
and observing y by a measurement of Y, Pxy(x;y), should be different from the 
product of the individual probabilities of measuring x and y out of the sets X 
and Y respectively, P(x) and P(y) if there is correlation between the two sets. 
The logarithm of that ratio in bits is therefore called the average mutual 

information of X and Y given by
)()(
);(

log2 yPxP
yxPXY . The weighted average of the 

average mutual information is given by the following Formula; 
 

                             I(X;Y) =- )()(
);(log);( 2 yPxP

yxPyxP XY

y
XY

x
∑∑  

To apply this formula to time series analysis, we assume that S(n) is Set X and 
S(n+t) is Set Y. Here we obtain the average mutual information as follows: 

                                    I(t) =- 
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Where p(x) and p(y) are the probability distributions and the entropy is the 
distance between actual distribution and the distribution where the mutual 
informations are equal. Figure 1 shows parity prices between 2011 and 2014 
taken from bitcoincharts.com. 
 

                  
                               Fig. 1. Daily parity of Euro versus Bitcoin 
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Then by using the TISEAN programming tool package, we find the mutual 
information as shown in Figure 2. 
 

                    
                          Fig. 2. Mutual information of parity Euro versus Bitcoin 
 
To estimate the delay time we find the minimum of the mutual information 
which is four. The delay time is needed for finding the embedding dimension. If 
the embedding dimension is less than the actual dimension, points which are not 
neighbors on the original attractor fall into same neighborhood. Then finding 
false-nearest neighbors of all points on embedded attractor is necessary. We can 
show time delayed vector of nearest neighbors and distance in d+1 dimension of 
between two neighbors can be calculated like this; 
 

[ ]))1((),.....,(),()( ττ −++= dkSkSkSky NNNNNNNN

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Rd+1(k) can be expressed in terms of Rd(k) as 
 
(Rd+1(k))2=(Rd(k))2+(SNN(k+(m)t)-S(k+(m)t))2 . 
 
From this result we can define a threshold value RT(k) using  
 

 (k)R
  )  )(m)t  k  S( - )(m)t  k  (S (

m

NN ++ 〉  RT(k). 

Note that we are embedding a one dimensional signal originating from a system 
with arbitrarily dimensionality, hence we use this criterion to find the 
appropriate embedding dimension in the delay vector, by looking at the point 
where the number of false neighbors stabilize. 
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Chaoticity is expressed in terms of Lyapunov exponents. To calculate this, we 
start with two nearby trajectories separated by a distance |x(0)|. At time t, 
separation is δx(t)=δx(0) exp(μt). The average of μ, the rate of exponential 
separation over the trajectory is the Lyapunov Exponent. In an N dimensional 
system, we can change δx(0) in N independent ways so that there are N 
Lyapunov exponents. 
The Lyapunov Exponent is calculated as follows, First, find a reference point 
Sn0 and let U be a hyper sphere in a distance ε. 

 
 If ε is too small, we cannot find neighbors, if it is too large, a periodic 
component may be missed. Secondly, for different values of ε, if the graph of 
S(Δn) vs Δn has positive slope, we have positive Lyapunov exponent. Positive 
Lypaunov exponent means that there is a chaos.  
 
 

                               
                                  Fig. 3. False Nearest neighbors of Euro/bitcoin 
 
 

                              
                                      Fig. 4. Lyapunov exponent of Euro/bitcoin 
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As you can see in Fig. 4. Lyapunov exponent shows a positive increase 
therefore, we can conclude chaotic behavior. The same analysis is made for US 
Dollar parity and we can again see a positive Lyapunov exponent  
 
 

                              
 
                                      Fig. 5. Daily parity of US Dollar vs Bitcoin 
 
In Fig. 5. Daily parity of dollar is shown and mutual information and false 
nearest neighbors are observed and finally positive Lyapunov exponent is 
observed in Fig. 6.  
 
 
 

                         
 
                                Fig. 6.  Lyapunov exponent of US Dollar/Bitcoin 
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With the globalization and last decades, financial markets have become more 
sensitive and interactive. Furthermore, digital currency becomes important role 
for financial market because of its better purposes.  In this study, the Bitcoin 
parity has been analyzed through chaos theory and nonlinear time series to 
investigate whether bitcoin also follows typical market trends these methods 
really determines market behavior. The results of the analyses show that 
methods based on chaos theory explain the financial data better than classical 
time series analyses methods. 

 
 
3. Conclusions 
Daily average currency flow data from USD and Euro parity of Bitcoin are 
examined. The data expands through the years nearly 2011-2014. The values 
obtained for delay time, embedding dimension and maximal Lyapunov 
exponents are shown. Calculated positive maximal Lyapunov exponent 
indicates a possible chaotic behavior for the Bitcoin currency dynamics. A 
further study can be on the dimension of the attractor will reveal more 
information about the chaotic behavior of the digital currency.  
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Abstract.  
We discuss the 2-component model of population growth when different types of 

dynamics are attributed to rural and urban population respectively. We suppose the birth 

rate to be higher for rural areas, and death rate to dominate for cities. The flow between 

areas compensates these effects. This approach can reduce the number of parameters 

usually used for population growth behavior. We also discuss the socio-economic aspects 

of the model: the ability to control population size by adjusting the flow of people from 

the city to the countryside, and the trends in the urban and rural population. Finally the 

Earth population model is proposed.  

 

Keywords: population growth, chaotic simulation, modeling of socio-economic 

processes.  
 

1. Introduction 
 

The problem of numerical simulation of population dynamics attracts a 

lot of attention in both natural and social sciences. Particularly this issue was 

supposed to be of great importance when it was proved that the population 

growth rates were increasing, and the simplest modeling of such dynamics 

inevitably leads to overpopulation of the planet (eg, a Malthusian crisis). 

Furthermore, a precise date of overpopulation was esteemed as 2004.  

Thus, the “overpopulation problem” initiated a thorough statistical 

study of the dynamics of population growth, as well as many theoretical works 

arose, clarifying model representation of such dynamics. Along with Malthus 

classic work, it should be mentioned Verhulst model [1], Kapitsa model [2], 

Forrester world-system model [3] and many others. As it turned out, the rate of 

population growth crucially determines the growth rate of GDP, and this fact 

has largely spurred interest in the subject [4,5].  
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The most interesting dynamics is connected with so called 

“demographic transition point” when population growth sharply decreases and 

number of people achieves stable value. At the same time, all proposed model 

are unlikely to describe the entire dynamics of the population: the explosive 

growth of the initial time, saturation stage (demographic transition point) and 

then subsequent stabilization of the population. Statistical data are used to adjust 

the model, and often numerical simulation is reduced to finding appropriate 

coefficients that would fit the observed results (see, e.g. [6]). 

We argue that much more productive approach may be based on 

physical arguments; in particular, we believe that the population should be 

considered as two-phase system – “rural population” and “urban population”, 

with each phase to behave under its own laws of growth, having, however, a 

flow between two phases. This view of the population dynamics growth can 

decrease the number of arbitrary parameters in the model, and also give 

additional arguments and levers to control the pace of population growth that is 

important for countries experiencing problems with overcrowding and/or 

depopulation challenges. In addition, it becomes possible to construct a 

universal model describing population dynamics on the Earth. 

 In this paper we propose and discuss the 2-component model of 

population growth when different types of dynamics are attributed to rural and 

urban population respectively. We exclude from consideration the initial stage 

of human civilization, when the population was too small to introduce residents’ 

differentiation, and not consider the case of population stabilization. 

 We assume that the entire population can be divided into two relatively 

independent groups (phases), focused respectively on the intensive and 

extensive ways of development - urban and rural areas. Note that these concepts 

are not geographical, and probably reflect the attitude of the population to the 

production of wealth and investing in future generations and lifestyles. The most 

important characteristic that allows extracting these two groups, apparently, is 

the population density per square kilometer. The problem to calculate/evaluate 

this value would be another interesting task that we will not consider in our 

work.  

 

2. Statement of the problem 
We suppose there is a closed area (no emigration) with an unlimited 

resources supply (i.e., country). Let us denote urban population as x, the rural 

population as y, and the time variable as t. 

Then, in the general case, we can write 

   

   



,,,,

,,,,

yxwyxg
dt

dy

yxwyxf
dt

dx





   (1) 

Here   is the institutional parameter responsible for the particular worldview 

of people and their relationship to birth, death, change of residence, and taking 

into account both objective (laws and restrictions) and subjective (the desire to 
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move to the big city, or, conversely, the nature) factors. The functions 

describing the change of the urban population and the rural population are f and 

g respectively. The function of the population flow from one community to 

another is w. We stress that function w is greatly influenced by authorities, and 

can differ from country to country. Note that time is not explicitly included in 

the functional relationship. Our task is to study the possibility of governing the 

dynamics of the system changing function w (i.e., changes in public policy). 

 Using qualitative considerations (based on common approach to 

describe the dynamics of living organisms like predator-prey system, the game 

"Life", etc.) we can conclude that for a fixed urban population x function w(y) is 

strictly increasing function without saturation (i.e. is convex and the derivative 

does not change its sign). The qualitative form of the function w(y) is shown in 

Figure 1a. Similarly, in the case of constant values of rural population y we 

construct qualitative form of the function w (x), the population flow increases 

linearly for small values of x and subsequently begins to decrease due to 

resource constraints and increasing population density in the city (Fig. 1b). 

 

  
Typical behavior of w(y), x3> x2> x1 .   Typical behavior of w(x), y3>y2>y1 .. 

 

Fig. 1. The behavior of the function w. 

 

Based on the qualitative analysis of the figures 1a,b we propose the 

following form of the function w, satisfying all the properties listed above: 

 
22

,,






x

xy
yxw    (2) 

Here the numerator xy is proportional to the number of meetings between urban 

and rural residents, that can be treated as a "reassurance" of a resident to change 

his/her address with probability  . The denominator in the formula (2) 

imposes restrictions on the movement of villagers into the town with a large 

urban population. In extreme cases, when the frequency of meetings has no 

effect on the decision of the villagers move to the city, all of them with some 

degree of probability take the decision to move. However inures limiting factor 

associated with the limited space and high population density in urban areas, 

which is directly proportional to x
2
. Term 

2
  is introduced to eliminate 

peculiarity at x=0, and reflects the minimum number of people needed the 

population becomes “city”. Estimates of population dynamics (parameter fitting 
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formula for hyperbolic growth) give us the number of 60-70 thousand people 

(the size of the human community, when main role play statistical factors rather 

than personal ones). 

For the sake of convenience, we will assume the function w always 

positive, but in general negative function is also possible, and it would represent 

the flow in reverse (from city to the countryside). 

  Thus, the proposed model reduces the institutional parameter  to two 

parameters   and  . Note that we do not consider the simplest case when 

w=const.  

Let us choose the functions f and g in the simplest form:  

axf  , 2
cybyg      (3) 

The meaning of this choice is that the urban population decreases, while the 

rural population is growing, but there is a limit due to the finite resources. In 

practice, the choice of functions (3) permits us to formulate one of the 

differences between urban and rural areas: the countryside is a source of 

replenishment of the population, it possesses a positive population growth, and 

the city is characterized by a decline in population, as it is more inclined in the 

production and creation tools/services, both for city’s sake and for the village.  

Thus, the proposed two-component (two-phase) model can be rewritten 

in a following form: 
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xy
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x

xy
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   (4) 

These equations however, do not exhibit complex behavior, and only 

have stable points solutions; the model initially contains no "points of 

demographic transition" or “overpopulation problem”. This is close to the 

reality, but needs some improvement: we assumed that the response of the 

system is instantaneous for variables x and y. To account for the effects 

associated with the maturation of people, and make the complex dynamics 

possible, we take into account the presence of delay in the system. Namely, we 

rewrite system (4) as a 
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   (5) 

The meaning of the last term in this case is that the move from rural to 

urban areas is carried out by adults, usually without family. Accordingly, the 

decision shall be taken in the "meetings" with the same people over the age of 

the city (almost, it comes to comparing features/lifestyles in the countryside and 

in the city for people of the same age group). At the same time limiting factor 

(the denominator in the last term) still depends on the current urban population.  
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Also to reduce the number of control parameters we use following 

renormalization. 

yyxxtt  ,,   
And introducing the notations: 

2
,,,   DcCbBaA  

Then, omitting the primes in the new variables, we obtain the system: 
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   (6) 

System of equations (6) will be the final mathematical formulation of the 

proposed model.  

 From the physical meaning of the system, all variables must be positive 

(on the parameters A, B, C, D this requirement was imposed initially). Lag time 

now is always 1. In numerical simulation we expect that the most typical regime 

still to be stationary mode or with mild oscillations near the equilibrium point 

(the latter is quite typical of early human societies lived slash agriculture, where 

the population is growing at the beginning, and then, because of the 

impoverishment of resources began to decrease).  

 This model contains now modes of complex dynamics, they are 

possible in this system due to the presence of external feedback. Oscillatory or 

"chaotic" modes in this system are associated with huge costs (depopulation in 

towns or villages, the collapse of infrastructure, etc.) In practice, if a 

management decision could transfer the system from stable stationary mode to 

complex dynamics, it would mean that the proposed action is a mistake.  

Let us estimate the numerical values of the parameters in the system (6). 

The parameters A, B, C are responsible for the share increase (decrease) of the 

population in a time where, in comparison with available statistics, we find that 

they all vary from zero to one. Greatest arbitrariness is related to the choice of 

the parameter D, because it depends on a set of institutional factors such as 

persuasion factor   or  .  
 

3 The stability points analysis 
Let us analyze the system (6) for stability. There are always two trivial 

solutions: x=y=0, and  х=0, CBy  . The first solution corresponds to the lack 

of human civilization or the initial point, and second corresponds to collapse of 

urban civilization. For the classification of other solutions we obtain the 

following equation for fixed points (recall that within the framework of our 

model x> 0): 

 1
2
 x

D

A
y ,      02

224
 BDCAxDxBDCACAx   (7) 

To find the exact analytically solution in this case is impossible, 

however, we can give the following estimates.  If  CA-BD> 0, the solutions of 
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(7) does not exist. If CA-BD <0, but 2CA-BD> 0, then there is one solution, but 

if  2CA-BD <0, it is possible one or the two solutions. Type the appropriate 

parameter plane shown in the figure below. We note that there are 3 areas that 

can perform different dynamics. For the first area with 2 stationary points one of 

them is always unstable, thus resulting regime is expected to be constant. In the 

second area 2 different stable solutions are possible. And in the last area 

complex dynamic and interchange between different stable stationary points are 

possible. 

 
Fig. 2. Parameter plane for stationary points at Ox-axis. Stability analysis. 

 

4. Numerical simulation 
Further we will discuss the results of numerical simulations conducted 

by the Runge-Kutta of 4th order. Time step is 01.0dt , and the parameters 

values are given in figure captions. Note that at this stage we do not set the task 

to find the exact quantitative relationship between real data and parameters used 

for computer modeling,  we are focusing on the opportunity to effectively 

control the dynamics, to change between regimes, etc. In numerical simulations 

we proceed as follows: for the time 1 (dimensionless time delay) we 

numerically solve the system (6) without delay, and starting at time 1, we 

consider the term with delay. Thus we can avoid the need to set the initial 

conditions in the interval (0, 1). 

Below we represent the parameter plane for fixed values of A, B with 

varying D. We note a good agreement with theoretical calculations (compare 

fig. 2 and 3). In the lower region, where the number of fixed points is large, it is 

possible to realize the complex dynamics. Thus, we mark the area of chaotic 

oscillations with red, and periodic oscillations with different period with green. 

Unstable (nonphysical) behavior is also present. We note that the region of 

periodic oscillations is adjacent to the area of chaotic behavior, hence the 

periodic oscillations in the system can be regarded as precursors of the onset of 

chaos and/or unstable solutions. The last ones due to the nature of studied 

system should be avoided in reality.  

We also plotted 3 regions with stable solutions: the first one with 2 

stationary points is characterized by the situation when after transient proves 

x=0, and y=const. It is pure rural community, when all population is 
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concentrated in countryside, AC>BD that means death and restriction of the 

rural population growth (parameter C) play more important role than birth rate 

and population flow. People are more likely to die than to survive, and the rest 

of population settles in rural areas. In the second area stable solution is 

represented with stable rural and urban population, but rural people dominate. 

This situation can be regarded as traditional society when cities are rare and 

most of population prefer to live in countryside. However with the increase of D 

and/or decrease of C (the flow grows and/or limitations for rural population 

become weaker) the stable solution for urban population begins to overcome the 

rural one. It could occur either because of the cities to become more “popular” 

(parameter D), or when rural area cannot support more number of people 

(decrease of C). Both tendencies make people to go away from the countryside. 

Also near abscissa (low C) there is a narrow area of stable solution when x=0, 

y=const. It happens when because of the decrease of C the number of people 

that can survive in rural area becomes too small to be enough for both phases. 

People thus have to choose where to live, and they prefer to stay where they are 

born rather than to move away. 

 
Fig. 3. Parameter region at A = 0.2. B = 0.5 

 

 Typical time series are presented in fig. 4-9. Urban population is 

represented by red, rural – by green, and total number of people – by black solid 

line. Initial conditions were chosen x=0,1, y=0,9. 

 Usually after short transient process a stable solution is observed. 2 

typical situation are presented in fig. 4 and 5. In the first case there are both 

rural and urban people, in the second case cities disappear.  

 Oscillations though being rather rare can also be observed. They are 

more likely to damp with very long transient process (fig. 7), but also can be 

stable (fig. 6). This dynamics can be attributed to Neolithic societies when 

people use the land as much as they could and having depleted it they started to 

starve and consequently die. However it is not typical for nowadays 
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communities, and thus should be avoided. Complex and even chaotic behavior 

can also be found, but we present it here as an example of non-physical 

dynamics, since in usual life this would be the signal of wrong managerial 

solutions. We should note that area of complex dynamics is very small, and that 

can also be treated as model adequacy. 

  
Fig. 4. A=0.2; B=0.5; C=0.1; D=0.4 

Transition to stationary mode where  

rural population exceeds the urban 

Fig. 5. A=0.2; B=0.5; C=1.1; D=0.4; 

Transition to stationary mode, when the 

urban population disappears. 

 

  
Fig. 6. A=0.2; B=0.5; C=0.3; D=1.1 

Periodic oscillations  

Fig. 7. A=0.2; B=0.5; C=0.45; D=1.1; 

Damped oscillations. 

 

 
 

Fig. 8. A=0.2; B=0.5; C=0.1; D=1.6; 
Chaotic oscillations 

Fig. 9. A=0.2; B=0.5; C=0.19; D=1.5;  

Multi periodic oscillations (2-period) 
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5 The problem of controlling the system dynamics 
The most serious problems associated with population growth faced by 

governments is a overpopulation problem and demographic crisis or extinction 

of the population. In this connection let us consider how to manage the system 

dynamics. Suppose the government implements measures that can be reflected 

as a change in the values of the system parameters A, B, C, D and/or the sudden 

change in the number of x, y (artificially people moved from the countryside to 

the city, or vice versa). Clearly, the parameters A, B, C can not be changed 

dramatically; they are responsible for the traditional approach to family 

formation (B, C) or reflect the outcome of long-term policy in the field of 

medicine (A). Their variations are insignificant and they are extended in time. 

For these reason we will call this group of parameters as adiabatic. 

On the other hand, the parameter D can be changed quite drastically: 

for example, the frequency of "meetings" can be increased or decreased by 

creating artificial barriers to entry the city or leave the village (strict registration 

rules), or one can modify   providing residents of the city more "rustic" 

conditions related to population density (buildings as the private sector). 

Parameter D also could include a variety of unrealistic events (meteor fall, 

epidemics, etc.).  

In the numerical simulation we will implement all the parameter 

changes at time t = T/2. Some results are presented below. 

First, we consider additional flow added to the natural one. We studied both 

constant summand, and summand proportional to rural population. System 

dynamics does not change, and new system can be reduced to the old one by re-

normalization (fig. 10). Then we study the case when there is a 10% shift of the 

population (people are forced to move from countryside to the cities. The 

similar situation occurred in collectivization in Russia or during fencing in 

England). Since mostly solution are stable this momentary shift does not 

influence system dynamics, and after rather short transient process system 

returns to its initial state (fig. 11). In both case the system damps the abrupt 

changes, thus we conclude that such hard measures cannot give expected results. 

Quite fast "curb overpopulation" can be achieved by cross-flow of the 

rural population in the urban population in a city where the birth rate is 

significantly reduced. Suppose, for example, at some point in mortality fell, 

reaching 96% of the original level. In this case, there would be an increase in 

urban population, but at the same time the rural population would slightly 

decrease, too (that happens because of the limiting factor inversely proportional 

to the square of the urban population). Total number of people, however, 

increases. This mode is shown on Fig.12. Similar behavior can be observed and 

if the birth rate in villages increased by 4% (fig. 13). In that case rural 

population grows and thus increases the number of citizens. Qualitatively 

similar behavior can be seen if we increase death rate in cities of decrease birth 

rate in countryside: both population in rural and urban areas decreases, and total 

number of people diminishes. It is interesting to note that the change in life 

conditions in villages influences the system dynamics (and the total number of 
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people) more than similar changes in urban life (we plotted the time series for 

the change of 4% in comparison to the initial values – both in 

decrease/increase). 

 

  
Fig. 10. A=0.2; B=0.5; C=0.9; D=0.5;  
Shift is 0.1 in dimensionless variables 

when to the "natural" overflow adds an 

additional inflow of artificially created 

Fig. 11. A=0.2; B=0.5; C=0.9; D=0.5;  
Shift is 0.1 in dimensionless variables.  
Sharp one-time change in the number 

of cities and villages population 

 

 
 

Fig. 12. A=0.2; B=0.5; C=0.9; D=0.5;  
Mortality in city fell, reaching 96% of 

the original (parameter A) 

Fig. 13. A=0.2; B=0.5; C=0.9; D=0.5;  
Birth rate in the countryside is 

growing at 4% (parameter B) 

 

The obtained results may, in particular, explain why the increase in life 

expectancy in urban areas (ie, a mortality decrease) does not lead to such 

dramatic changes as a decline in fertility in the village. We stress that the 

situation in the countryside (source of population) is decisive. At the same time, 

our results show that the policy can be directed only one of the population 

groups to achieve the result and do not necessarily affect both the city and the 

countryside, moreover, it may be advantageous to use that institutional 

arrangements to only one part of the population. 

42



We also studied the case when the parameters A, B, C remain 

unchanged, but at time t/2 parameter D varies. As it turned out, the system is 

very sensitive to changes in this parameter. Especially one can achieve periodic 

oscillations from stationary ones, or even chaotic. Some examples are presented 

in fig. 14. 

 
Fig. 14. A=0.2; B=0.5; C=0.43; D=1.1; An example when the parameter D varies 

by only 4%, but damped oscillations become stable. 

 

The changes in institutional parameters can be implemented easier, and can 

be performed in a short period of time. However adiabatic parameters evolve 

over time, allowing the system to adapt to the new situation. They are thus 

highly rigid. Obviously, the best way to influence the dynamics of the system 

lies in the combination of exposure to adiabatic and institutional parameters. 

 

6 Two-component model of population growth of the 

Earth 
On a base of the foregoing observations, it is possible to formulate a 

model of population growth of the Earth in the form of a chain of equations 

describing each country separately. Obviously, just scaling the resulting model 

is not possible, since the processes of flow of the population in different 

countries has quite different nature. In addition we have the processes of 

migration between countries. Apart from introducing such a model term 

describing the flow of rural population in the city, we must also take into 

account immigration, i.e. overflow of the population of one country to another. 

For some countries, this flow is the main source of population growth (e.g. the 

U.S.). This term is logical to take in a similar term describing the flow of rural 

population in the city as in a single country. 

We assume the process of emigration occurs regularly, and go into 

exile in the first place for economic reasons: travel for higher wages, better 

living conditions, the medicine. And emigration has its source mainly in urban 
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residents who know foreign languages, and have better opportunity to travel. 

Besides these processes emigration can occur because of war, natural disasters 

and other force majeure, but they will not be taken into account at this stage. 
Given all this system of equations will have the following form: 
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  (8) 

Here i = 1,2,3, ..... N denotes the total number of countries in the world. Totally 

turns out  2N differential equations. The Earth's population will be calculated as 

a simple sum of all (xi +yi). Analysis of the system (8) can be carried out 

numerically, similar to the analysis of the system (6). Detailed analysis of this 

system will be presented in further publications. 

 

Conclusions 
The discussed approach to study population dynamics allows 

introducing less numbers of variables to describe population growth. It also can 

explain some peculiarities in population dynamics and can be used for more 

effective managerial solutions in social aspects of human life. 
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Abstract: In recent years DNA has attracted much attention for its potential application 

in molecular electronics and nanotechnology. Numerous mechanisms have been carried 

out for studying the charge transport in DNA. Among which a polaron hopping 

mechanism has turned out to be a prospective candidate for modeling the coupling 

between electronic and lattice configuration. In this regard, Su-Schrieffer-Heeger (SSH) 

model describes the coupled structural and electronics aspects of DNA. In this work 

Mean Lyapunov exponent (MLE) theory is proposed to study the charge transfer 

mechanism in DNA through SSH model. The spatial pattern of the system is disordered 

when MLE is large and ordered when it is small. Also, Landauer resistance is related to 

Lyapunov exponent via the transmission coefficient of the system. The obtained results 

based on the MLE theory express the effect of the temperature and external field on 

charge transfer and the resistance of DNA. Also it yields the best range for the field 

parameters. 

  

 

Keywords: Charge transfer in DNA, Landaure resistance, Chaos theory, Mean 

Lyapunov exponent.  

 

1. Introduction 
Investigations of DNA conducting properties are very important for both 

classical radiobiology and quite a new science of nanobioelectronics [1]. There 

is clear evidence that charge injection and migration in DNA is associated with 

damage, mutation and repair of DNA [2]. In nanotechnology, DNA junctions 

have the potential of application in DNA-based drug delivery [3]. By studying 

the aspects of DNA single molecule conductance, it is inferred that DNA is 

suitable for the design of functional nanostructures in nanoelectronical devices, 

nanosensors, nanocercuits as well as in electrical DNA sequencing [4]. For 

different conditions the experimental data observed by different groups are often 

contradictory. Then, the argument whether DNA is a conductor [5], a 

semiconductor [6] or an insulator [7] and even superconductor [8] is still 

ambiguous. Therefore applying the physical rules in determining the charge 

transfer phenomena in DNA is challenging issue. May be considering the chaos 
_________________ 
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theory tools could open the new horizon in understanding the problem of charge 

transfer in DNA. Numerous theoretical mechanisms have been carried out for 

studying the charge transport in DNA. Among which a polaron hopping 

mechanism has turned out to be a prospective candidate for modeling the 

coupling between electronic and lattice configuration. The tight-binding 

Peyrard–Bishop–Holstein (PBH) [9,10] and Su–Schrieffer–Heeger (SSH) 

[11,12] are two effective models, which are all based on a polaron.  In the two 

models, overlapping   orbitals  of the DNA base pairs are thought to provide a 

channel for migration of charge in it. In the current study, we have used SSH 

model to describe the coupled structural and electronics aspects of DNA. Also, 

it is important to understand how the electron transport in DNA is affected by 

the environmental phonons. In this model, a tight-binding nanoscale linear chain 

is used, which is weakly coupled to the vibrational phonon modes from the 

environment (reservoir) via electron– phonon (e–ph) interaction. The model, 

characterizes the atomic displacements as classic oscillators and charge transfer 

phenomena with nearest neighbor tight-binding model. 

 Most of the introduced Hamiltonians in DNA charge transfer and the 

corresponding equations of motion are extremely nonlinear and have a high 

sensitive behavior to chosen coefficients. Also, analysis of bioinformatics data, 

such as the sequences derived from the structure of DNA molecules, reveals that 

these data are “chaotic” in the sense that along a molecule the spatial variation is 

analogous to the temporal variation in chaotic systems. The Lyapunov exponent 

is one of the most popular concepts of the nonlinear dynamics to measure how 

stable the systems are. In 1999 Hiroshi Shibata introduced mean Lyapunov 

exponent (MLE) in order to characterize the chaos in systems described by 

partial differential equations [13, 14]. The MLE theory has attracted researcher’s 

attention and has been successfully applied in several fields [15, 16]. In this 

work, MLE theory is proposed to study the charge transfer mechanism in DNA 

through the SSH model. Also, Landaure resistance is related to Lyapunov 

exponent via the transmission coefficient of the system. By considering the 

behavior of MLE, we have studied the variation of resistance of DNA in the 
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framework of SSH model with external phonon coupling. In the other hand, 

applying the electrical field, the effect of the amplitude and frequency of the 

field on charge transfer and resistance of DNA is studied so the best range for 

field parameters is selected. 

  

2. The Model and Simulations 
The studied system is consisting of the DNA lattice and an environmental 

optical phonon source. The Hamiltonian of the system can be modeled as 

                               PhePhSSH HHHH                                  (1) 

The first term, so-called SSH model [11, 12], has been used to simulate charge 

transfer in DNA with strongly internal e–ph interaction represented in classical 

scheme 
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where m is the mass of base pairs, 0t  is the hopping integral, the energy 0 is 

the orbital energy level of the molecule,  nx  is the atomic displacement for the 

nth molecule, nc  and 


nc  are creation and annihilation operators of an electron 

at the site n  and  is the internal e–ph coupling constant. The last term in Eq. 

(2) represents the spring potential with an effective spring constant sk .  

Two last terms in Hamiltonian represent the vibrational mode at frequency 0  

coming from the external sources and the local external e–ph interaction term, 

respectively. 

                
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where nb  and 


nb  are creation and annihilation operators of an phonon at the 

site n  and 0  is the external e–ph coupling constant. 

47



In the current study, we propose the effect of electrical field on charge transfer 

in DNA. In this regard, an AC field is applying so it provides an extra degree of 

freedom (frequency of field) in studying the effect of field. The corresponding 

Hamiltonian has the following form 

                           nn

n

field cacnteEH  )cos(0                            (4) 

where 0E  and   are the amplitude and the frequency of the field, respectively 

and Aa 4.3  is the distance between the base pairs in lattice. 

The corresponding equations of motion have the following forms: 
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where )(tn  accounts for thermal noise, 0)( tn , 

)(2)()( ttTkmtt nkBkn
   , with T  as the bath temperature. 

 

Stability analysis 

The Lyapunov exponent is defined as the average rate of divergence of two 

initially nearby trajectories.  It has been calculated for a single starting point. If 

we compute the Lyapunov exponent for a sample of starting points and then 

average those results, we define the mean Lyapunov exponent (MLE) for the 

system [17]. Then MLE will be a true indicator of the chaotic or nonchaotic 

behavior of the system. It expresses the disorderness of the spatiotemporal 

patterns of nonlinear systems. In order to investigate the characteristics of 

Lyapunov exponents, we have used the Jacobi matrix. Jacobi matrix, gives the 

linear stability of the system and the disorderness of the field variables of the 

system. The eigenvalues of matrix give the Lyapunov exponents [13, 14].‏ To 
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analyze the equations, it is convenient to transform the second order differential 

equations into an autonomous system of first order differential equation and use 

the finite difference method. Then we have  
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Then we consider the 4N × 4N Jacobian matrix written as: 
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The MLE is defined as

 

                                      Nkk B
N

,ln
1

                                         (8)                                                                                     

where NkB ,  means the determinant of matrix NkB ,  [13,14]. A positive MLE 

indicates the instability of the system but its negative amount indicates the stabe 

system.  

On the other hand, the transmission coefficient of the system )(T  is given as  

                                             )2exp( NT k                                               (9) 

where N is the number of base pairs in DNA lattice. 

Transmission coefficient is related to the Landauer resistance via  

                                                  
T

T


1
                                                     (10) 

in units of the quantum resistance )13(2 2  keh [18].  

 

Results and discussions 

By analyzing the MLE theory, one could obtain the range of the parameters to 

have the best ordered field variables[14]. The growth of MLE corresponding to 

increasing the disorderness of the system then the best range for the parameters 

of the system is where the MLE takes its smaller values, which means that 

spatial pattern of system is ordered. 

Figs. 1(a) and 1(b) show the variation of MLE and Landauer resistance with 

respect to the temperature in absent the external field, respectively. We  have 

considered the case of homopolymer DNA and a length of N=100 base pairs in 

our numerical calculations.  By considering the figures, we could see the 

inherently charge transfer in DNA and stability regions of the system even in 

absent the external current. The minimal value of the MLE and DNA resistance 

is about where the DNA is denatured )350340( KT  . 
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Fig. 1(a). Mean Lyapunov exponent versus the temperature in absent the external field. 

01.0,01.0,2.0,85.0,4.0 000  kt . 

 
Fig. 1(b). Landauer resistance versus the temperature in absent the external field. 

01.0,01.0,2.0,85.0,4.0 000  kt . 

 

Following figures appear the effect of external field with different parameters on 

charge transfer and resistance of DNA. We could see applying the external field 

decrease the resistance of DNA but the minimal value of resistance is again 

about where DNA is denatured. 
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Fig. 2(a). Mean Lyapunov exponent versus the temperature in present the external field. 

1,10,01.0,01.0,2.0,85.0,4.0 0000   Ekt . 

 
Fig. 2(b). Landauer resistance versus the temperature in absent the external field. 

1,10,01.0,01.0,2.0,85.0,4.0 0000   Ekt . 

 

On the other hand, by analyzing the MLE theory the best range for the 

parameters of the electrical field is selected, as charge current is encountered 

with minimal resistance.  

Figs. 3 and 4 show the variations of MLE and resistance with respect to the field 

parameters. 
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Fig. 3(a). Mean Lyapunov exponent versus the amplitude of the external field. 

Ketemperaturkt 300,1,01.0,01.0,2.0,85.0,4.0 000   . 

 
Fig. 3(b). Landauer resistance versus the amplitude of the external field. 

Ketemperaturkt 300,1,01.0,01.0,2.0,85.0,4.0 000   . 
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Fig. 4(a). Mean Lyapunov exponent versus the frequency of the external field. 

KetemperaturAmVEkt 300,3.2,01.0,01.0,2.0,85.0,4.0 0000   . 

 
Fig. 4(b). Landauer resistance versus the frequency of the external field. 

KetemperaturAmVEkt 300,3.2,01.0,01.0,2.0,85.0,4.0 0000   . 

 

3. Conclusions 

By considering the MLE, the relation between the system parameters and spatial 

pattern of the system is evaluated. According to the obtained results, the spatial 

pattern of the system is varied with respect to the parameters. In the current 

study, the effect of external field on charge transfer and resistance of DNA is 

studied. The variation of MLE and thus Landauer resistance with respect to the 

different parameters such as temperature, amplitude and the frequency of 

external field are appeared. It becomes apparent that MLE and Landauer 
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resistance are minimal about where the DNA is denatured. On the other hand, 

our results show the sensitivity of MLE to the field parameters. Then, by 

considering the MLE, the best range of the system parameters is selected. 
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Abstract. Anomalous diffusion was distinguished by the behavior of the maximum 

of distributions of nv  that can be described by a new exponent α. The existence of a 

characteristic exponent α ≠1/2 imply the anomalous transport, moreover if  α >1/2 we 

expect a sub-diffusive transport and if α<1/2 we expect a superdiffusive transport. 

Keywords: Dynamical system, Hamiltonian chaos, Anomalous transport. 

 

 

 
 

 

1  Introduction 
 

Anomalous transport refers to non equilibrium processes that can not be 

described by using standard methods of statistical physics Zaslavsky [1], Leoncini 

&  Zaslavsky [2]. The theoretical description of such different phenomena leads, 

in turn, to the prediction of novel physical and mathematical properties such as 

sub and super diffusion that can be described by an exponent α Leoncini & al.[3]. 

In Bouchara & al.[4] we have shown that transport in the standard map can be 

multifractal.  In this work we show you the nature of transport for the long time 

in the case of the standard map for two parameter of control k=10 and k=1.5.  

Recall that, The transport in Hamiltonian systems has been already studied by 
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Chirikov [5], Venegeroles [6], Mackay & al [7], Karney [8] Lichtenberg & Lieberman 

[9] (and many others). We often seek to achieve a very long time to have a 

general idea about the nature and behavior of the transport. 

 

 

 

2  Standard map 
 

The standard map arises naturally as a Poincaré mapping of the kiked rotor 

model. Whose Hamiltonian write  

 

 

𝐻 =
𝑝2

2
− 𝑤0 cos 𝑞  𝛿(𝑡 − 𝑛𝜏)

+∞

𝑛=−∞

                                                (1) 

 

 

Where w0   is somme frequency, 𝜏 somme characteristic period and 𝛿 is the 

Dirac function. We will consider the motion on the torus. The equations of the 

standard map are writes: 

 

                         2pisin1 nnn qk+p=p                                                      (2) 

 

                         2pi11 +nnn p+q=q                                                             (3), 

  

where k is parameter that characterizes the force amplitude [5], [6]. The chaos 

takes over as k grows.  

 

 

 

2  Results 
 

 

We consider two cases when 10=k and 1.5=k and can through consider an 

analog of the norm of the phase space speed  

 

                         2/1222sin p+qk=v                                                            (4) 
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we shall now consider the average of v along a typical trajectory. The 

probability density of the distribution of the average of v represented 

respectively for 10=k  and 1.5=k in the figure 1.  

 

 

 

 

Figure 1. Distributions of nv for flatest to thinest 
310=n ,

3108 ,

4103.2 ,
510 1.28 .Left : 10=k  Right : 1.5=k . 

 

 

 
 

We consider the distribution of finit time averages. This means that we shall 

compute averaves of v over finite times. Leoncini & al [3] directly have relation 

between the second moment 𝜇 and the new parameter α which write  

 

                                         𝛼 = 1 −
𝜇

2                                                                      (5) 

If  𝛼 ≠ 1
2  the transport is anomal, moreover 

                           - if 𝛼 >
1

2
 the transport is subdiffusive  

              - if 𝛼 <
1

2
 the transport is superdiffusive 

else if 𝛼 = 1
2  the transport is diffusive. 

 

In our cases the transport is found  to  be regular and  diffusive  in  the  case   

10=k   with α =1/2 with long times. In the case 1.5=k  the transport is found 

to be superdiffusive with a characteristic exponent α =0.38 (Figure 2). 
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Figure 2. Evolution of  nρmax versus n in logarithmic scale. Left : 10=k  

Right : 1.5=k . 

 

 

 

3  Conclusion 

 

The transport is found superdiffusive with  α<1/2 for the case k=1.5, wich 

correspond to situation of mixed phase. The Gaussian transport for the fully 

chaotic regime is giving with  α =1/2. Using the most known parameter α 

conveys good information relative to the nature of the transport. We find that 

the nature of the transport, in considered cases, is similar in Bouchara & al [4] 

by using parameter 𝜇. 
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Abstract: The Belousov-Zhabotinsky (BZ) reaction is one of the most studied reaction-

diffusion systems able to display periodic oscillations when continued stirred and target

patterns and/or  spirals  in spatially extended systems.  Once the BZ reaction is  placed
inside nanometric micelles surrounded by an anionic surfactant and dispersed in an oleic
system, the variety of spatial  patterns increase considerably.  The diversity on pattern
formation is originated by the two different  diffusion  mechanisms  available  depending
on the reagents  charge nature. Non-polar chemicals may diffuse through the membrane
and into the octane while polar chemicals diffuse within the entire nanodroplet, almost
two orders of magnitude slower. On changing the confinement conditions where the BZ

reaction takes place, the BZ-AOT system is able to present different dynamics, ranging

from  Turing  structures (such  as  spots,  stripes  or  labyrinthine) to  standing  waves,
antispirals and packet waves.

Keywords: Reaction  Diffusion  systems.  Belousov-Zhabotinsky  reaction.  Active
microemulsion. 

1. Introduction
The Belousov-Zhabotinsky (BZ) reaction is considered a  prototype system for

studies  of  reaction–diffusion phenomenon.  This  oscillatory chemical  reaction

involves  the  bromination and consequently oxidation of  an organic substrate
(originally citric acid) by bromate ions immersed into a strongly acidic solution
[1].  Typically the catalysts used in the BZ reaction are cerium or ferroin, but the
presence  of  ruthenium  bipyridyl  [Ru(bpy)3+2]  complex  has  demonstrated
photosensitive features in the BZ reaction. The presence of a redox indicator
exhibiting different colors in the reduced and oxidized state of catalyst helps to
visualize  periodical  temporal  oscillations  while  the  reaction  is  continuously
stirred or spatiotemporal patterns when the reaction is kept unstirred [2].
_________________ 
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The possibility to encapsulate the BZ reaction into nanodroplets of nanometric
micelles bridges the gap between reaction diffusion systems and the effects of
confinements. Thus, the BZ reagents are confined into nanometer-sized aqueous
droplets  surrounded  by  a  surfactant  monolayer  and  soaked  in  a  continuous
hydrophobic  phase  (octane).   Here,  the polar  surfactant  heads  are  orientated
inwards  (towards  the  droplet  core),  while  the  hydrophobic  tails  face  the  oil
continuous phase [3]. 

There are two important parameters that define the reverse microemulsions. One
of them is the hydrodynamic radius of the nanodroplets (Rd), which is defined as
the addition of the size of the surfactant monolayer and the water nanodroplet 
core (Rw) [4]. The former is determined by the surfactant size (typically the 
anionic  sodium bis(2-ethylhexyl) sulfosuccinate also known as AOT) and the latter is 
proportional to the molecular ratio between the aqueous and oil phase (ω0):

07.1 wR
The other main characteristic is the volume fraction of the water phase, defined
as 

 OW

W
w VV

V
  

where Vw and Vo are the volume of  the aqueous and oil phases of the system.  
of the micro-emulsion system. These properties of the micro-emulsion have a 
direct influence in the measurable features of the BZ reaction [5-7]

The so-called BZ-AOT system presents two different diffusive mechanisms of
the  chemical  components.  Polar  BZ reagents  are  confined  into  the  aqueous
phase of the reverse microemulsion and diffuse with the water nanodroplets.
The diffusion coefficient is then determined by the Stokes-Einstein equation:

d

B
d R

TKD 6

where  KB,  T,  η  are  Boltzmann  constant,  the  absolute  temperature  and  the
viscosity of the solvent, respectively.

In the course of the reaction several nonpolar intermediates are generated These
non-polar chemicals are able to diffuse through the membrane and into the oleic
phase  as  single  molecules  with  exhibiting  diffusion  coefficients  almost  two
orders of magnitude faster than usual nanodroplets. Among the intermediates
are  the Br2  and BrO2,  which  are  known as  fast-diffusing  inhibitor  and fast-
diffusing activator, respectively [3].
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2. The Model and Simulations

In order to model the main characteristics of the BZ-AOT system, Vanag and
Epstein have  proposed a variation of the well-known Oregonator  model  [8].
Thus, their model accounts those species able to migrate into the oleic phase in
addition  to  the  “ordinary”  chemical  reactions  occurring  in  the  aqueous
compartments.  The  dynamics  achieved  in  the  BZ-AOT  system  can  be
expressed by the following set of differential equations [3]:
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where x,z are the dimensionless concentrations of HBrO2 and the catalyst of the
reaction (i.e. ferroin, Ru(bpy), cerium), while s and u are the species soluble into
the oleic phase: the inactive form of activator (BrO2) and the inhibitor (Br 2),
respectively.  To account the differences in the diffusion rates we used Ds=Du

>> Dx=Dz 

The homogeneous steady state concentrations can be achieved by finding the
solutions of the equations (1)-(4) once the temporal and spatial derivatives are
setted  to  zero,  i.e.,   by  solving  F(x,z,s,u)=0,  G(x,z,s,u)=0,  H(x,z,s,u)=0  and
K(x,z,s,u)=0.  The stability  of  each  one  of  the  possible  steady states  will  be
determined by the eigenvalues obtained through the characteristic equation [9]:

  0det 2  DIA k   
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where I is the identity matrix, D is the matrix of the diffusion coefficients here
consider  diagonal  (neglecting  cross-diffusion  effects  (even  though they have
been experimentally observed in the BZ-AOT systems) and  A is the Jacobian
matrix of equations (5)-(6): 
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We observed that  although Turing and Hopf instabilities may coexist  in our
range of parameters, the predominant mode differs according to the diffusion
coefficient  ratio  (Figure 1).  Thus, when the diffusion coefficient  of the non-
polar  species  is  almost  two-fold  larger  than  the  diffusion  of  the  entire
nanodroplet  the  dispersion  relationship  exhibits  a  predominant  Turing  mode
slightly  predisposed  by  Hopf  domain  (purple  curve  in  Figure  1).  However,
decreasing the ratio of diffusion coefficients the Hopf mode prevails (red curve)
until the Turing mode vanishes (black curve).

Figure 1. Dispersion relations exhibiting the interaction between the Turing and
Hopf instabilities for different ratios between nonpolar intermediates and polar
species confined in the microemulsion (Ds/Dx):80 (violet curve),  40 (red),  8
(black)  .  The  model  parameters  to  obtain  this  dispersion  relations  are  α=8;

β=0.34; γ=0.2; χ=0.;��=1.1;��=0.001; ε=0.37; εs2=1.5; ε3=0.006;
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Initially, we will consider the set of equations (1)-(4) in the absent of diffusion,
i.e.  without special considerations. This case resembles those reactions carried
out under continuously stirring conditions in beakers.  To do that,  we use an
Euler method with a time step of 0.01 time units (t.u.). Under these conditions,
the BZ-AOT model exhibits an oscillatory solution with a characteristic period.
Figure  2  (top)  demonstrates  this  periodically  behavior  of  the  species
concentration oscillating between a maximum and a minimum values.  

Once diffusion was considered, simulations of equations (1)-(4) were performed
by a Dufort-Frankel method in addition to Dirichlet and Newman conditions:
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Under  Turing  conditions  (violet  curve  in  Figure  1)  we  observed  stationary
patterns separated an equidistant wavelength.  In Figure 2 (left panel) we show
two characteristic Turing structures obtained by tunning the model parameters.
The white (black) color in these figures stands for a high (low) concentration of
the  oxidized  catalyst.   Both  kind  of  Turing  patterns,  spots  and  stripes,  are
experimentally achieved in the BZ-AOT system once the active micro-emulsion
is  sandwiched  between  two  optical  windows  (Figure  2  right  panel).  The
similitude between  numerical  and experimental  patterns suggests that  model
(1)-(4) is a good candidate to display those structures obtained in the BZ-AOT
system.  

In addition to stationary Turing structures, the BZ-AOT system exhibits a rich
variety of  dynamics  not  possible  without  the confinement  into nanodroplets,
such as  dashed waves, standing and packet waves, oscillons, segmented waves,
etc [10-13] 
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Figure 2. Model simulations of equations (1)-(4).  Top: periodically temporal
oscillations  obtained  in  absence  of  diffusion.  Middle  and  bottom:   Two
dimensional structures achieved numerically (left  panel)  and the comparative
with experimental results (right panel) .
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3. Conclusions
.The  confinement  of  a  chemical  oscillator  into  a   micro-emulsion  system
generates  a  variety  of  spatial  patterns  not  accessible  without  the
compartmentalization.  The diversity on pattern formation is understood by the
presence of two different diffusion mechanisms. While Non-polar species may
diffuse into the oleic phase, polar reagents  are restricted to diffuse inside the
nano-droplet system, being their diffusion coefficient considerably  slower.  The
differences in the diffusion coefficients have been accounted by a four variable
model,  composed  by  two  fast-diffusing  species  and  two  slow  ones.  We
demonstrate the presence of Turing structures, which are patterns stationary in
time  with  a  characteristic  spatial  wavelength.  Furthermore,  we  also  present
experimental  results  that  qualitatively  agree  with  our  numerical  simulations,
validating our  four variable model. It is remarkable to mention that there are
several  models to represent compartment active systems. They are have been
indiscriminately used to characterize  the arising of new dynamics as well as the
influence of external  forcing into the well-known patterns  [14-18].  Recently,
cross-diffusion of the chemical  reactants  was considered one of the probable
mechanisms to achieve such diversity of pattern formation and has been added
to the model scheme [19].

References

1. B. P. Belousov,  Collected Abtracts on Radiation Medicine.Moscow:Medgiz: A. V.
Lebedinskii. Page 145 (1959.)

2.  A.N.  Zaikin, and A. M. Zhabotinsky,. Nature (London), 225, 535. ( 1970)

3.  V. K. Vanag, Phys.-Usp., 2004, 47, 923–941.

4.  A.M.  Cazabat, D. Langevin,  D. and D.Pouchelon, . J. Colloid Interface Sci.,73, 1.
( 1980)

5.  V.K. Vanag, and D.V. Boulanov,  . JPhys. Chem.,1998, 1449 (1994)

6.  E. Villar-Alvarez,  et al.  The Journal of Chemical Physics,134 094512 (2011)

7.  J. Carballido-Landeira, P. Taboada and A. P. Muñuzuri, , Phys. Chem. Chem. Phys.,
13,4596, (2011)

8.  R.J. Field, and R.M. Noyes, J. Chem. Phys.,60,1877 ( 1974)

9. Strogatz, S. 1994. Nonlinear Dynamics and Chaos. Massachusetts: Perseus Books. 

10. V. K. Vanag and I. R. Epstein, Phys. Rev. Lett. 87, 228301 (2001).

11. J. Carballido-Landeira et al. , Phys. Chem. Chem. Phys., 10,1094-1096, (2008)

12. V. K. Vanag and I. R. Epstein, Phys. Rev. Lett. 88, 088303 (2002).
13. V. K. Vanag and I. R. Epstein Phys. Rev. Lett 92, 128301 (2004) 

14.  J. Guiu-Souto et al. , Phys. Rev. E,82, 066209, (2010)

15. J. Carballido-Landeira, V. K. Vanag and I. R. Epstein, Phys. Chem.Chem. Phys,12,
3656-3665, (2010)

69



16. A.  Kaminaga,  V.K. Vanag,  and I.R. Epstein.  Angew. Chem. Int. Ed.,118, 3159–
3161.( 2006)

17. J. Guiu-Souto et al., Soft Matter,DOI: 10.1039/c3sm27624d (2013)

18.  J. Carballido-Landeira, P. Taboada and A. P. Munuzuri, Soft Matter, 8, 2945 (2012)

19. V. K. Vanag, F. Rossi, A. Cherkashin, and I. R. Epstein, J. Phys. Chem. B 112(30), 
9058 (2008).

 

70



Bottom Particles Segregation: Experiments and 
Numerical Simulations Using Non-linear Diffusion 

Equation.  
 

Tien Dat Chu, François Marin, Armelle Jarno-Druaux 
 

UMR CNRS 6294,  University of Le Havre, Le Havre,  France 
 

Djillali Tiguercha, Anne-Claire Bennis, Alexander B. Ezersky 
 

UMR CNRS 6143, University of Caen and Basse Normandie, Caen, France 
E-mail: Alexandr.Ezersky@unicaen.fr  

 
Abstract:  We report experimental and theoretical results on segregation of particles in 
sandy bottom under the action of oscillating velocity field due to surface waves. 
Experiments were performed in-situ and in wave flume. Segregation in the mixtures of 
light and heavy particles  of the  same diameter and small and large particles of the same 
density was observed. It was found that segregation appears on the background of sand 
ripples generation in the upper «active»  zone of the bottom.  The  thickness of this zone 
is proportional to the amplitude of velocity oscillation. The topology of segregation 
patterns depends on particle size differences,  on particle density differences as well as  
on  particle percentage composition in the mixture. It was revealed that small particles 
with small percentage are concentrated below sandy ripples crest.  If percentage 
composition of small and large particles are approximately equal, the large particles are 
concentrated below the ripples crests. Light particles  quite the «active» zone where 
concentration of heavy particles increases. To investigate the segregation of particles we 
use non-linear diffusion equations in the presence of gravity field like it was done 
recently in paper of Fernandez et al ( Physica A, 2003,  327, 94–98).   The main idea of 
this model is to take into account the different sizes and densities of particles using 
mobility coefficients in diffusion equations for concentration of particles.  We extended 
one dimensional model of Fernandez et al for two dimensional case. Numerical 
simulations demonstrate good qualitative coincidence with experimental data. In 
particular,  zones with high concentration of small and large particles below ripples crest 
were obtained in numerical simulations depending on percentage composition of 
particles. Formation of  the  layer where the concentration of light particles sufficiently 
decreases  was also found in numerical simulations. Importance of segregation processes 
for biological and environmental problems is discussed. 

  
Keywords:  Segregation, sand ripples, surface wave, sea bottom, non-linear diffusion 
equation.  
 
 

 
1. Introduction 
Interest in segregation of particles is associated with a large number of different 
practical applications. For example segregation is widely used to sort materials 
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in the mineral processing and building industries. To date, the most thoroughly 
studied patterns are the ones that result from the segregation in a dry mixture of 
solid particles with different properties: size, density, and shape. The process of 
segregation occurs in the mixture of particles subjected by an external field. It 
can be vibration, gravity forces, rotation, or another external influence. It should 
be noted that under the influence of external fields, one could observe the 
appearance of segregation more often than mixing. Mixture of particles in 
external field can be considered as a non-equilibrium dissipative media that is 
far from equilibrium. Spatially homogeneous state in this media may be 
unstable. As a result of this instability of mixture of particles spatial patterns 
appear. The dynamics of these patterns has been investigated for granular 
materials when interaction of particles includes a dry friction. This paper is 
devoted to pattern formation in a mixture of solid particles immersed in a 
viscous fluid. It should be noted that the number of studies on segregation 
pattern formation in such systems is sufficiently small. However, these 
problems appear very important for different processes that take place on the 
ocean bottom. It is obvious that such segregation is significant for understanding 
the problems of sediment transport and erosion of the seabed. The segregation 
may also lead to the redistribution of micro-and meso benthos on the seabed. 
Segregation of particles is important for environmental issues, because 
concentration pattern formation can lead to an abnormally high localization of a 
particular type of particles in limited areas where conditions can change 
significantly for the flora and fauna on the seabed. This paper aims to examine 
the conditions under which it is possible to observe the segregation of particles 
on the seabed and to investigate the characteristics of emerging patterns on the 
bottom. The paper is organized as follows. At the beginning some experimental 
results on particle-size and particle-density segregation are presented. Then we 
discuss a theoretical model describing segregation and present some results of 
numerical simulations. Numerically obtained results are compared with 
experimentally observed patterns. 
 
 
2. Experimental results 

Experiments were conducted in a 10.7-m-long, 0.5-m-wide wave flume 
[1]. Surface waves are generated by an oscillating paddle at one end of the 
flume; an absorbing beach is located at the other end (Fig.1). The water depth at 
rest h is 0.24 m. The height and the period of the wave are measured with two 
resistive probes. Ripples were generated on the bottom from an initially flat bed, 
which consisted in a 4-cm layer of mixtures. Two kinds of mixtures were used: 
for the first mixture (mixture 1): sand of density ρ1 =2.65 103 Kg/m3 ,  diameter 
d1=0.17mm and polyvinyl chloride (PVC) grains of density ρ22 = 1.35 103 kg.m-3

,  
median diameter d1=0.17mm . The volume concentration for this mixture are 
C1=96%, C2=4%. For the second mixture (mixture 2), we used yellow sand with the 

following properties: d1= 0.34 mm, ρ1 =2.65 103 Kg/m3  , and red sand: d2=0.15mm, ρ2 
=2.5 103 Kg/m3 ; the volume concentrations were C 1=90%,C2=10% in this case.      
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Patterns appearing on the bottom are shown in Fig.2. Observations of 
segregation patterns were possible since the side walls were made of glass and  
the particles with different properties had different colors. Fig. 2 shows the 
patterns arising from homogeneous mixtures (Fig. 2ac) of particles under the 
influence of surface waves. In both mixtures , ripples with spatial period of 10 
cm and height 2 cm formed rapidly along the flume once the wave maker was  

 
Fig.1 Experimental set-up 

 
 
 

 
a)  b)  

 
c)  d)  

 
Fig. 2 Segregation patterns appearing from homogeneous mixtures: a) mixture 
of sand and PVC, b) pattern in mixture (a) appearing after sand ripples 
generation, c) mixture of yellow sand and red sand, d) pattern in mixture ( c) 
appearing after sand ripples generation.  
 
switched on. The size and shape of ripples were approximatly the same along 
the flume. For the first type of mixture, a layer where concentration of PVC is 
very low appeared near the boundary between sand and water (Fig. 2ab). For the 
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second type of mixture, the segregation resulted in an increase of concentration 
of red sand (the finest sand in mixture 2) under the ripples crest (Fig.2cd). It 
should be emphasized that the generation of sand ripples at the bottom is a quite 
fast process (characteristic time: tens of minutes), whereas the segregation 
patterns are forming during several hours. 
 
3. Theoretical model.  
 
 

To describe the particle segregation by currents induced by surface 
waves, we use the approach developed in [2,3]. A mixture of particles is 
considered as a gas with a temperature T that is in the field of potential forces. 
To a mixture of particles can be calculated the entropy S and free energy 

F: TSUF −= , where U is potential energy. The volume concentrations 2,1C of 

particles may be found using variation derivatives of functional ℑ [2,3]: 

                              ∫=ℑ FdQ  
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 where 2,1µ  are chemical potentials and 2,1Γ  are mobilities of particles.   

In these equations particle mobilities 2,1Γ are not defined. In [2,3] a 

phenomenological mobility depending on the concentration is used to calculate 
the concentration of particles. The basic assumption is that there is some limit 
particle concentration above which the mobility of the particles is zero. 
Physically, this means that there is a dense packing of particles which totally 
eliminates their movement.  The mobility may be presented  as: 

( ) 2,1)/(1))(( 2,1
2121

2,1
2,102,1

Φ+−⋅+−ΘΓ=Γ cc CCCCCCC  

 where 2,1Φ  are constants discussed in [2,3].  
After these assumptions, the non-linear diffusion equation (NLDE) was 

found for particle concentrations. In [2] segregation of particles was investigated 
in a one-dimensional case, when the concentrations depend on vertical 

coordinate z and on time t: ),(2,12,1 tzCC = . It was found that NLDE could 

describe the effect of Brazil nuts: vibrations of particle mixture leads to the fact 
that larger particles tend to settle over small ones. A qualitative explanation of 
this effect is quite simple: the small particles fall between large particles.  

In the case of sand ripples the problem is much more complicated, 
because the system is fundamentally two-dimensional. Experiments have shown 
that the appearance of sand ripples develops much faster than the process of 
particle segregation. Therefore, for the correct application of the NLDE it is 
necessary to take into account the sand ripples. How to take into account the 
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existence of sand ripples in NLDE? Imagine that there is a border between 
oscillating water and sand ripples. The sandy bottom is a porous medium, where 

the correlation between the velocity field V
r

 and pressure field p is determined  

by Darcy law [4]: pKV ∇−= ρν
r

, where K  is the permeability of the porous 

medium, ρ  the water density and ν  the kinematics viscosity.  

In the sand layer, under the action of oscillating velocity a mean 
pressure field P is generated. For small amplitude a of sand ripples this mean 
pressure field may be calculated as:   

))(exp()cos(
2
1 2 hzkkxakUP a −⋅= ρ  

 where a is for amplitude of sand ripples, aU  is the amplitude of oscillating 

velocity field near the bottom, h the average sand height (see Fig.3), and k  the  
wave number of sand ripples. 
 

 
 

Fig.3 Schematic represatation of integration domaine (0<x<L, 0<z<H) and the 
boundary between water and sand, z=h corrsponds to the averaged  level of the 
bottom.  

 
The mean force caused by the pressure field acting on a particle with 

diameter d is expressed as PdF ∇−= 3

6
1π

r
, whereas the component of the 

force due to the velocity field is zero. The mean pressure may be considered as 
potential depending on horizontal and vertical coordinates. For our two 
dimensional case, NLDE concentrations of particles can be described by the 
following equation:  
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for water density, Bk  is Boltzmann constant, T  is effective temperature of 

particle mixture  
Using this system of equations with boundary conditions at x=0,L and 

z=H, different regimes of particle segregation have been found.  
 
4. Numerical results.  

 
Since the onset of sand ripples in the experiments occurs much faster 

than the segregation of particles, the initial conditions for the numerical 
simulations correspond to periodic sand ripples of final amplitude in 
homogeneous mixture (Fig. 5). We suppose that structure is periodic along x 

coordinate and 0
)1,0(2,1 =∂

=∂
x

xC
. For vertical coordinate z conditions of zero 

particle flux 0
)1,0(2,1 =∂

=∂
z

zC
, or constant concentration 0)1,0(2,1 ==zC are 

used.  . The evolution equations for the volume concentrations are discretized 
with the finite difference method and an explicit time scheme is used. 

 
 

 
a) Initial conditions of particle                  b)Total concentration of particles 
concentrations under the crest of ripples  

Fig. 5 

76



 The first series of experiments was performed to model the segregation 
in the mixture of sand PVC particles. In these experiments parameters 

2,1Φ determined by dimensions of particle are equal 1.32,1 =Φ , as it was done 

in [2,3]. Critical concentration of particles above which mobility is zero was 

84.0=crC . Results are presented in Fig. 6. The main feature of final steady 
concentration is the following.  In the upper part of sand layer x>0.52 (this point 
is indicated by an arrow in Fig.6c) the concentration of light (PVC) particles 
decreases sufficiently in comparison with initial concentration Fig.6c.  This 
pattern may be compared with pattern presented in Fig. 2ab. The concentration 
of PVC in the layer corresponding non-zero mobility deceases with time.  
 
 

  
a) Final distribution of heavy particles   b)Final distribution of light particles 

 
 

c) Dependence of particle concentrations on vertical coordinate z under the crest 
of sand ripples x=0.5 

Fig. 6 
 
The second series of experiments was performed to model segregation 

in the mixture of sand particles with different diameters. In this case, we have 
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the following values of the parameters 41=Φ , 22=Φ , 21 33,1 dd = . Results 

are shown in Fig.7. Segregation leads to the formation of pattern with large 
concentration of small particles under the crest of ripples (Fig.7b). In this region 
(indicated by an arrow in Fig.7c), the concentration of large particles decreases. 
This pattern may be compared with pattern shown in Fig. 2cd. Red sand 
particles during the process of segregation tend to be concentrated under the 
crests.  

    
a) Final distribution of large particles      b) Final distribution of small particles  

 
c) Dependence of particle concentrations on vertical coordinate z under the crest 
of sand ripples x=0.5 

Fig.7 

 
Conclusions 
 
 Using nonlinear diffusion equation, we have found two dimensional 
segregation patterns for mixtures of particles with different diameters and 
different densities. Patterns observed in numerical simulations are similar to 
patterns investigated in physical experiments. At least it is possible to find the 
same topological features in experimentally and numerically obtained patterns. 
The main problem is connected with the choosing of coefficients in differential 
equations. By now there is no any regular method to determine these 
coefficients.  
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