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Abstract: Several studies have shown that chaotic signals can become alterative of several usual cryptosystems; this is 

due to their random behavior and their high sensitivity to initial conditions. A chaotic signal is obtained 

from a deterministic system, it is possible to reconstruct algorithmically putting themselves in the same 

conditions as those who helped create it, and thus to recover the information. In this work, we will study the 

chaos through the Pickover's attractor and the possibility to use it in the stream cipher as a random stream 

generator to encrypt data to secure. 

1 INTRODUCTION 

There are many studies that have shown that chaotic 

systems can be an alternative in the future secure 

communications, because several of the 

cryptographic systems [1, 2, 3, 12] are based on the 

generation of pseudo-random sequences to hide 

messages. The chaotic attractors with its intrinsic 

characteristics such as high sensitivity to initial 

conditions and the randomness of the generated 

signals; became able to replace its pseudorandom 

generator in the stream cipher. With the restriction 

that the onset of chaos is only possible from an 

initial state (seed) and after a transitional regime, the 

attractor plays the role of generating random data if 

we can applying to it [7] a sampling then the 

quantification and finally the coding so that it meets 

the requirement of sensitivity to initial conditions. 

In this chaotic cryptosystem we choose one of 

the temporal functions the dynamics characterizing 

the Pickover's attractor, thus, it gives us a chaotic 

flow (random) which will be added to the secure 

data. 

2 CHAOS THEORY  

The chaos is generally defined as a particular 

behavior of a nonlinear deterministic and dynamical 

system [4]. 

Mathematically, a dynamic system is defined 

from a set of variables that make up the state vector: 

x = {xi ∈ R}, i = 1...n      (1) 

Where n represent the dimension of the vector. 

These sets of variables are the property to 

completely characterize the instantaneous state of 

the dynamic system generic. Associating in the more 

a coordinate system, we obtain the state space that is 

also called the phase space [5, 6]. 

It is a space of two or three dimensions in which 

each coordinate is a state variable of the system 

considered. Conjunction with state space a dynamic 

system is also defined by an evolution law, generally 

this dynamic characterizes the evolution of the 

system state in time. 

A dynamical system is a typical system that 

evolves over time or in continuous (continuous time) 

described by differential equations which, however, 

are discretized for the purpose of computing: They 

are simulated by a time step very small compared to 

the scale time of the study phenomenon. Either 

discretely or in discrete time, they are the iterated 

applications. 

An iterated application is a reduced description (in 

terms of information) of the system dynamics: 

 The state of the system is described by a 

sequence of state vectors Xn, obtained by a 
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Poincare section of the state space which 

belongs to the state vector X (t): in practice, the 

vector X (t) is sampled   at instants tn = n T, 

which may for example be obtained by 

experimental measurements;  

 The iterated application can then go from Xn 

state to Xn+1 state, it can for example be 

constructed retrospectively from a large 

enough following vector Xn;  

The interesting point is that the numerical 

simulation from the iterated application can bring 

back a resolution problem for a differential equation 

(non-linear) to problem significantly simpler, the 

equations with recurrences. In spite of   reduction of 

information it requires on knowledge of the exact 

dynamics of the system, this simulation can 

nevertheless highlight a chaotic behavior, and the 

transition to chaos associated with it [4, 5, 6]. 

A dynamic system usually has one or more 

parameters called "control", which act on the 

characteristics of the transition function. Depending 

on the value of the control parameter, the same 

initial conditions lead to trajectories corresponding 

to qualitatively different dynamical regimes. 

Changing the control parameter may lead to a 

change in the nature of dynamical regimes 

developed in the system. 

The notion of determinism comes from the fact 

that a system is completely characterized by its 

initial state and its dynamics. A necessary condition 

for the appearance of chaos is that the system is non-

linear. From an initial state    (seed) and after a 

transitional regime, the trajectory of a dynamic 

system reaches a limited region of phase space. This 

asymptotic behavior obtained for t, k → ∞ is one of 

the most important features [5] for any dynamic 

system. 

3 PICKOVER’S ATTRACTOR  

An example for an iterative application is the chaotic 

attractor of Pickover given by the system below. 

{   

        (    )       (    )               
 

        (    )       (    )               
 (2) 

For having chaotic behavior, Pickover chooses 

the values of the control parameters of the system as 

follows: 

a= -0.96,     b=2.87,      c=0.76,     d=0.74. 

Figure 1 represents the Pickover's attractor for 

(x0, y0) = (1,1). 

 

Fig.1 : Pickover's Attractor with 50000 iterations 

The evolution of x(k) and y(k) for this attractor 
and for the first 200 iterations are given by Figures 2 
and 3 respectively.  

 

Fig.2 : Evolution of the  signal x(k) 

 

Fig.3: Evolution of the signal y(k). 

We note that the two signals x(k) and y(k) are 

evolving in a chaotic way according of k, this 

behavior is accompanied by a high sensitivity to 

initial conditions as shown in Figure 4  (two signals 

x(k) and x'(k) are generated by two initial conditions 

of a difference of 10
-10

): 

 

 

Fig.4: Sensitivity of the attractor Pickover to initial 

conditions 
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We note that a very small error on the 

knowledge of the initial state (x0, y0) in the phase 

space will be rapidly amplified, and gives us two 

widely different signals. Quantitatively, the error 

growth is locally exponentially for strongly chaotic 

systems (sensitivity to initial conditions). 

Note that the error on the initial conditions in 

this case is        and this is the smallest value for 

Matlab work with only 52 bits, but the system can be 

sensitive to values smaller than       according to 

the work environment. 

4 CHAOTIC CRYPTO-SYSTEM 

PROPOSED: 

The principle of operation of a chaotic 

cryptosystem proposed [7] is identical to the stream 

cipher. Encryption algorithms continuously convert 

the encrypted data one bit at a time [8]. This type of 

generator produces a stream of known length of 

numbers (streamkeys), logic zeros and logic ones: 

K1, K2, K3, ..., Ki ... with certain properties of 

chance, it is potentially difficult to identify the 

groups of numbers following a certain rule (group 

behavior). The output of such a generator is not 

completely random, but only they approached to the 

ideal properties of completely random sources. It is 

said random because this sequence is arbitrary. This 

stream is combined with exor function to the bit 

stream of the plaintext m1, m2, m3, …, mi; to 

produce the bit stream of encrypted data. 

Ci = mi   Ki                   (3) 

Sides of decipherment, the encrypted data bits 

are oxored, with a stream data identical to a 

process's cipher to retrieve bits of plaintext: 

m i =Ci         Ki = (m i     Ki )      Ki = m i       (4) 

All the synchronous stream ciphers use the 

encryption keys (secret key) and generate the same 

stream data for encryption and decryption. This 

stream is generated independently of the message 

flow.  

System security depends entirely on internal 

details of the pseudo-random number generator. In 

this chaotic cryptosystem, we choose a time function 

by the Law characterizing the dynamic attractor 

(Pickover in our case) so that it gives us a chaotic 

flow (random), which will be added [7] to the data 

secure. 

It may be noted that the data we will elect are 

random, so ideal for a perfect encryption. Also there, 

knowing the definition of chaos, chaotic flow that 

data has the following characteristics [7]: 

1. Long period,  

2. No rehearsals, 

3. Local linear complexity, 

4. Criteria for non-linear Boolean functions. 

We will now use the chaotic generator made to 

encrypt a message; using the evolution of the signal 

x(t)  of the signal of the Pickover's attractor as the 

encrypting signal; as shown in Figure 5:  

 

Fig. 5: Chaotic Crypto-system 

4.1 Encryption Principle 

Noted the M is the plaintext, is the message to 

encrypt: is a sequence of bits, a text file, a digitized 

voice recording or a digital video image anyway M, 

is nothing other than the binary information.  This 

information is represented by the ASCII code for 

each character alphanumeric for text file and a pixel 

for images with BMP extension. In both forms we 

have a byte as the unit and which is represented by 8 

bits. Consequently, the plaintext is a suite finished 

bytes, and each byte is in this form:  

P1 P2 P3 P4 P5 P6 P7 P8 

For a given integer k, we take the value of the 

byte mk. 

1) We permute the positions of the pixel Pi or the 

character. 

In mathematics, the notion of permutation 

expresses the idea of rearranging objects discernible. 

A permutation of n distinct objects arranged in a 

certain order, corresponds to a change in the order of 

succession of n objects. A permutation of n elements 

(where n is a natural number) is a bijection from a 

finite set of cardinality n on itself. 

Let X be a finite set of n elements. Even perform 

numbering, swap elements of X is equivalent to 

permute only the integers from 1 to n. The 

traditional notation of permutations is to place the 
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elements that will be swapped in the natural order on 

a first line, and the images mapped on a second line. 

For example: 

  (
  
  

        
         

  
      

    
  

)          (5) 

The   application is defined by:  (1) = 3 ;  (2)=4; 

 (3)=5 ;  (4)=6 ;  (5)=7 ;  (6)=8 ;  (7)=1 ;  (8)=2. 

After the permutation, we compute the pixel value 

permuted, it is noted mpk. 

2) In this step and for given initial conditions (x0,y0, 

a, b, c, d) for the attractor of Pickover. We Take the 

actual value of the sample xk.  

The reproduction in floating point describes a 
system for representing real numbers which supports 
a wide range of values. Generally, numbers are 
approximately represented by a fixed number of 
significant digits on a scale determined by an 
exponent. We use the IEEE 754 [9] for floating-
point arithmetic. Both formats defined by the IEEE 
754 are the 32-bit for a single precision and the 64-
bit for a double precision. The single-precision 
floating number is stored in a 32 bit word: 1 sign bit, 
8 bits for the exponent, and 23 for the mantissa. The 
exponent is shifted 2

8
-1-1 = 127 in this case. The 

exponent of a normalized number is therefore -126 
to 127. A normalized floating-point number has a 
value v given by the formula [9] as follows: 

v = s × 2
e
 × m       (6) 

 s= ±1 represents the sign (depending on the 

sign bit); 

 e is the exponent before his shift to 127 ; 

 m = 1 + mantissa: represents the significant 

part (in binary), with 1≤ m <2 (mantissa is 

the decimal part of the significant part of 

between 0 and 1.). 

3) In our case and for encrypting the actual value of 

the sample xk, first, it is multiplied by the value of 

the amplifier AM of the Ali-Pacha's generator [7]: 

xk = AM*xk                   AM >1             (7) 

4) We choose the decimal part of this value, ie, one 

that takes its mantissa of 23 bits, and converts it to a 

number in base 10, it is noted as: 

  ̌  ⌊  ⌋                                (8) 

Then we calculate: 

      (  ̌     )             (9) 

yk is also represented by 8 bits. 

5) In what follows we calculate as follows cpk: 

       (          )             (10) 

6) Apply the inverse permutation  
-1

 to cpk. 

Let n distinct elements in a certain order. Apply a 

permutation σ returns to change the order. Return to 

the original order is also done with a permutation; 

thereof is denoted σ
-1

. More generally, this 

application σ
-1

 is the inverse bijection of σ. if we 

applied σ and then σ
-1

, or σ
-1

 and then σ, it is 

equivalent to applying the identity permutation. The 

permutation σ
-1

 is called the reciprocal 

permutation or the inverse permutation of σ.  

    (
  
  

        
        

    
        

    
   

)                (11) 

In other words, we compute the ciphertext 

associated the mk pixel as follows: 

ck =σ
-1

(cpk)              (12) 

4.2 Fields of Key Encryption 

In this case, the choice of the encryption key [7] 

must be following these fields: 

1. Choice of a, b, c, and d 

2. The initial state x0 and y0,  

3. The value of the amplifier AM, 

4. The permutation σ. 

5. The start time: k, where it begins 

the encryption process. 

The increment (step) sampling [7] is equal to 1 for 

digital systems. 

If we take 32 bits for a, b, c and d and x0, y0, AM, 

and 10 bits for, k, and 24 bits for the permutation σ. 

The length of the key is:   

 (32 *6) +32+10+24= 258 bits. 

Practically, we chose the encryption key in our 

cryptosystem as follows:  

 Making a choice for one on four control 

parameter (parameter selection (00a, 01b, 

10c, 11d), plus the value of this parameter. 

In other words, 2 bits for the selecting 

parameter and 32 bits for this value,  

 We take the value of AM in the (1<AM<2); 

and it will be encoded on 23 bits.  

 We keep the other parameters unchanged, we 

have the key length as follows : 

2+(32 *3) +23+10+24= 155 bits. 
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5 INTERPRETATIONS RESULTS 

If we take as a  key data encryption : 

 σ= [7 , 8, 1, 2, 3, 4, 5, 6],  

 Choice of Parameter : 00 et a= -0.959   
 x0=1.000005,   y0= 1 
 AM = 1.60719 

 The time where encryption begins k=97.  

1) We have secured the Lena's image and the 

Emir Abdelkader's image in our cryptosystem. 

Histograms of plaintext images and encrypted 

images, showing that the proposed cryptosystem 

works correctly. 

 

Fig. 6: Plaintext image and encrypted image of 

l’Emir Abdelkader 

2) If we take the Plain Text in French as follows: 

«La cryptologie a connu une rapide évolution à 

notre époque surtout en ce qui concerne ces deux 

facteurs». This meant "Cryptology experienced a 

rapid evolution in our time especially in regard to 

these two factors." 

Its cryptogram is: « ~m4hcwfm`} etgq(a!k{`z|!ufp-

`jcepo1/9dcx• dyv{.*|abjj1àcadlu0ya• gdfy4)!qe2np

(qt`4n|gruk{k3jw|8rkgr3jrifk`k| ». 

The cipher text is incomprehensible. 

6 VALIDATION OF THE 

CRYPTOGRAPHIC SYSTEM 

We work with the images clear and encrypted of 

Lena. 

6.1 Histogram of Images: Information 
Entropy  

For a monochrome image, that is to say with a single 

component, the histogram is defined as a discrete 

function that maps to each value intensity, the 

number of pixels of this value. The determination of 

the histogram is carried out by counting the number 

of pixel intensity for each of the image. The 

histogram can then be seen as probability density. 

The entropy was founded by Shannon in 1948 [10, 

11] and is given in the following equation: 

 ( )  ∑    
    
        (

 

   
)                    (12) 

Where P(mi) represents the probability of symbol 

mi. The entropy H(m) is expressed in bits. The 

entropy of the plaintext of Lena (figure 7) is equal to 

7.4455. 

 

Fig. 7 : Image of Lena and its Histogram 

 

Fig. 8 : Encrypted Image of Lena and its histogram 

From figure 8: the encrypted image has a 

uniform histogram, which means that the gray levels 

have the same number of occurrences and hence the 

entropy is the maximum. Therefore, a gray scale 

image, where each pixel is represented by 8 bits, 

must have entropy for the encrypted image, the 

closest possible 8 bits/pixel. The encrypted Lena 

image is equal to 7.9987 ≈ 8 bits/pixel. The 

obtained value is very close to the theoretical one.  

Referring to the results, we can clearly see that 

the plaintext image (H (m) = 7.4455) differs 

significantly from her corresponding encrypted. 

Moreover, the histogram of the encrypted image (H 

(m) = 7.9987) is quite uniform which makes it 

difficult the statistical extraction of pixels of the 

plaintext image. 

Histograms are resistant to a number of 

transformations on the image [12]. They are 

invariant to translations and rotations, as well as to a 

lesser extent to changes in perspective and changes 

of scale. 

6.2 Correlation of the Adjacent Pixels  

In probability and in statistics, to study the 

correlation between two random variables or 

numerical statistics is to study the strength of the 

 

587



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

 

bond that can exist between these variables. The 

searched link is an affine relationship, it is the linear 

regression. For example, we calculate the correlation 

coefficient between two sets of the same length 

(typical case: a regression). Assume we have the 

following table of values: X(x1, …, xn) and Y(y1, …, 

yn)  of each of the two series. A measure of this 

correlation is obtained by calculating the linear 

correlation coefficient of Bravais-Pearson [12]. 

For the correlation coefficient linking these two sets, 

we apply the following formula: 

    (   )  
   (   )

√ ( ) √  
         (13) 

Covariance between x and y is given as follows: 

   (   )  
 

 
∑ ((    ( )) (    ( )))
 
      

(14) 

The average of X is :  

 ( )  
 

 
∑   
 
        (15a) 

The average of Y is :  

 ( )  
 

 
∑   
 
       (15b) 

The standard deviation of X is : 

 ( )  
 

 
∑ (    ( ))

  
        (16a) 

The standard deviation of Y is : 

 ( )  
 

 
∑ (    ( ))

  
        (16b) 

The correlation coefficient is between -1 and 1. 

Intermediate values provide information on the 

degree of linear dependence between two variables. 

Closer the coefficient is close to extreme values -1 

and 1, the closer the correlation between variables is 

strong we simply use the term "highly correlated" to 

describe the two variables. A correlation equal to 0 

means that the variables are not correlated.  

To test the correlation coefficient, we selected 

randomly 1500 pairs of two adjacent pixels in both 

encrypted and clear picture. 

Both Figures 8 and 9 show the correlation 

between two horizontally adjacent pixels of the 

image clear and encrypted. We see that the 

neighboring pixels in the image have a clear 

correlation (coeff = 0.95247), while in the encrypted 

will have one little correlation (coeff = 0.0037). This 

low correlation between two neighboring pixels in 

the encrypted image makes the attack of our 

cryptosystem difficult. 

 

Fig. 9 : Correlation between the horizontally adjacent 

pixels of the plaintext image 

 

Fig. 10 : Correlation between the horizontally adjacent 

pixels of the encrypted image 

Also, it is clear that in the image clear, several lines 

can be adjusted to scatter but among all these lines 

can be retained which has a remarkable property 

giving rise to the right of the form (y = a*x + b) 

representing a linear correlation. 

6.3 Confusion and Diffusion 

The proposed cryptosystem satisfies both concepts 

(Confusion and Diffusion) that have been identified 

by Claude Shannon in his paper Communication 

Theory of Secrecy Systems published in 1949.  

 Confusion: Introduced in step 3 of the 

encryption (eq. 8) consisting in making a 

modular addition or exclusive. 

 Permutation: introduit dans l'étape 1 (eq. 5) 

et à l'étape 4 (éq. 9) dans le processus de 

chiffrement, et consistent à faire la 

permutation σ alors la permutation σ
-1

 

respectivement.  

7 CONCLUSION 

The theory of nonlinear dynamical systems is far 
from being the panacea that some researchers 
imagined in its infancy. It nonetheless its interesting 
concepts can be applied to problems targeted by the 
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use of mathematical methods carefully chosen and 
adapted to the systems under study. Chaos theory 
teaches us the contrary it does not lie in the opposite 
of the order, but also contains its own order as long 
as he is allowed to occur. A field as complex as the 
cryptology, can benefit from the addition of such 
methods of investigation if their forces, and 
especially their limitations are understood. 

In this work we have implemented in Matlab 

6.0.1 a chaotic cryptosystem based on the Ali-Pacha 

generator and on the Pickover's attractor in order to 

drown the data to encrypt. Tests done on the 

proposed algorithm shows good behavior of the 

algorithm as regards to the aspect of confidentiality. 
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Synchronized Attractors and Phase Entrained Chaos

M. Abdul1, ∗ and F. Saif1
1Department of Electronics Quaid-i-Azam University, 45320 Islamabad, Pakistan†

We find that the coupled logistic equations, symmetrical in nature, produce identical, synchronized
chaotic attractors that are orthogonal to each other. Chaotic attractors are in pairs for certain range
of controlling parameters. As we change coupling strength within a certain range, periodicity, quasi-
periodicity and chaoticity of chaotic attractors appear in a sequence. Beyond the range of controlling
parameters and critical coupling strength synchronization breaks, indicating onset of spatiotemporal
chaos, that displays symmetry breaking. Quantitative measures of transition from synchronization
chaos are provided by mean of period bifurcation.

PACS numbers: 05.45.Gg, 05.45.Pq, 42.60.Jf

Synchronization phenomena in coupled dynamical sys-
tems have been studied especially in laser, electronics cir-
cuits, heart and mind, chemical and biological system, se-
cure communication. Complete synchronization mean co-
incidence of states and chaotic attractors in phase space
of interacting systems, x(n) = y(n) [1, 4]; it display only
if interacting systems are identical, if the parameters of
coupled oscillators slightly mismatch, the state are close
‖x(n) − y(n)‖ ≈ 0 but remain different [2]. The phase
synchronization and entrained have explained in [3, 5, 6]
also found in our dynamical system, whereas their (at-
tractors) amplitudes remain chaotic and correlated [3]. In
our dynamical coupled oscillators we have observed that,
increasing coupling strength which is common between
them, first the transition from non-synchronous state to
phase synchronization state but periodicity remain in-
variant beyond certain value of coupling. For larger values
of parameters including coupling strength new regimes
which we can say lag synchronization is found, cause of
crises. It is a requirement of self-consistency that a quasi-
stationary field should be maintained by the induced po-
larization that leads to the equations which determine the
amplitudes and frequencies of multimode oscillation as a
functions of various parameters characterizing the field
growth. The study of real spatially extended systems
that are accurately described by a finite set of coupled
ordinary differential equations provides insight into the
nature of spatiotemporal chaos [7, 8].

In this paper we consider spontaneous emergence of
synchronized chaotic attractors in a spatially distributed
two-mode nonlinear system. In general in the absence of
coupling, each behaves like a single mode. We find that
there is a certain range of coupling strength for which
synchronized chaos exists. Beyond this range of coupling
strength synchronization breaks down, and the system
enters a regime of turbulence chaos [7, 9]. Hence, we
report that in two-mode or coupled identical dynamical
system synchronization oscillates between quasi-periodic,
intermittency state, period bifurcation and chaoticity, by

∗Electronic address: mabdul_10@yahoo.com
†Electronic address: fsaif@camp.nust.edu.pk

fixing controlling parameters and changing the coupling
strength. Here, we also discuss period fusing and emerg-
ing because of crises where strange attractors fluctuate
corresponding to the change of parameters. If we have
coupled logistic equations [10], i.e.,

xn+1 = xn + 2λ1xn(1− xn)− γxnyn = f
(1)
λ1,γ

(xn, yn),

yn+1 = yn + 2λ2yn(1− yn)− γxnyn = f
(2)
λ2,γ

(xn, yn),
(1)

where, λi and γ = 2ξλi, (i = 1, 2) are the character-
istic parameters, therefore, the system is controlled by
mean of three parameters. A mapping of bilinear and
linear coupling terms have been shown to exhibit com-
plicated dynamical behavior including quasi periodicity,
phase locking, intermittency, period adding, long-lived
chaotic transitions and then periodicity [11, 12]. Follow-
ing we explain necessary terms and their symbols used in
our later discussion.

Fixed points: A fixed point x is a point in the space
defined by function f , so that fn(x) = x, ∀ n.

Periodic motion: A periodic motion (P) of a system
is defined as fn(x) = fn+1(x).

Quasi-periodic motion (QP) of a dynamical system
is defined as f : R → Rn, dynamical function can be
represented in the form f = H(ω1, ......, ωn), where H
is periodic with period 2π in each argument, and the
real numbers (ω1, ..., ωn) describe the finite set of base
frequencies [13, 14].

Phase Locking: The process of phase locking exists
whenever the chaotic actions of the individual subsystems
shift to the ordered actions of the collective system [16,
17]. Sometimes phase entrainment is called phase locking
or synchronization.

Chaotic motion: In the chaotic system, there occurs
sensitive dependence to initial conditions, i. e, chaotic
trajectories locally diverge away from each other and
small changes in starting conditions build up exponen-
tially fast into large deviations in the evolution [18].

There occurs a fascinating behavior of the coupled
equations (1) for various values of λi and γ. The key to
understand the structure of these equations in xy-space
is a careful analysis of fixed points of the mapping func-
tions as well as their iterates. Since the function f (1) and
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f (2) are symmetrical, we expect symmetrical behavior in
x and y. The two fixed points [19], corresponding to Eq.
(1) are,

x
(1)
1 = 0, and x

(1)
2 =

2γ − 2λ1

(γ2/λ2 − 4λ1)
. (2)

These are stable if they follow the condition,

‖(dxn+1

dxn
− dxn+1

dyn
)‖ < 1 . (3)

In case λ1 = λ2 these fixed points become,

x
(1)
1 = 0, and x

(1)
2 =

1
γ

2λ
− 1

, (4)

which overlap for λi = 0. By fixing λ and varying γ
we have found evidence for a boundary crises in our sys-
tem, like or similar to what was found in Henon’s maps
by Grebogi, Ott and Yorke [12, 20]. A boundary crises
occurs in our case through the collision of a chaotic at-
tractor with the basin boundaries that separate it from
the several other coexistent periodic attractors, in addi-
tion with another chaotic attractor [21, 22]. An increase
of γ beyond its critical value for the onset of crises, re-
sults in disappearance of the chaotic attractors and its
basin while the basins of remaining attractors undergo a
sudden expansion.

FIG. 1: Phase space (xn, yn) is plotted by solving Eq. (1)
for λ1 = λ2 = 1.19 and γ = 0.660. We note that the system
displays a 4P to 2P behavior through period bifurcation by
means of crises. In the plot on right hand side, we present y
axis of the phase space as a function of number of iterations
n.

We report chaotic behavior in our system correspond-
ing to various values of the parameters. We explain
the behavior and classify our discussion in two cases:
In the first case we fix λi and vary γ over a range
0.001 ≤ γ ≤ 0.999 for x0 = 0.1 and y0 = 0.11 [23, 24].
At λi = 0.25 the trajectory in phase space (x, y) con-
verges to a fixed point. The asymptotic character of the
solution is typical 1P. For λi = 1.0, system shows os-
cillatory behavior between QP and 2P character upto
γ = 0.999. There is still 2P character for λi = 1.190
and in the interval γ ∈ [0.001, 0.21]. At the upper range
of this interval, it show QP 2 Torus, 4P and 2P respec-
tively at γ = 0.22, 0.222, 0.6851. Periodic bifurcation

FIG. 2: Phase space (xn, yn) is plotted by solving Eq. (1) for
λ1 = λ2 = 1.25, and (a) γ = 0.1845, (b) γ = 0.2. Isolated
points in (a) and (b) are part of transient evolution. The
plots on right hand side shows behavior of our system, which
is going from 4P state to chaos through QP in which each
attractor shows nine wing pattern as in Fig. 2(a) and fluctu-
ates up to certain values of coupling strength. The attractors
expand as a function of increasing coupling strength, γ, as
shown in Fig. 2(b), corresponding to frequency locking.

phenomena at γ = 0.660 is also observed, as shown in
the Fig. 1. There is no chaotic behaviors seen but
our coupled system oscillates between 2P to 4P through
quasi-periodicity. It is clear that if coupling strength is
increased periodicity fuses and comes out of the crises,
finally we get period 2 at γ = 0.999.

For λi = 1.25 and γ = 0.001 the four chaotic at-
tractors grow as coupling strength increases. They are
synchronized (mirror image of each other) as well as or-
thogonal, and the trajectory in phase space converges to
4P. When γ = 0.1750 transition from 4P to 8P takes
place, which shows quasi periodicity in which each at-
tractor displays curious nine wing pattern before settling
to the asymptotic 8P state. They also fluctuate and
expand at γ = 0.179 which generates mirror image of
laser attractors. At γ = 0.1845, transient solution again
show curious nine wing pattern before going to periodic
regime. At γ = 0.2 the lasing system shows chaotic be-
havior through QP and laser attractors in phase space
have exact mirror image of each other, as shown in Fig.
2(a,b). In laser chaos there exists inner crises, a bound-
ary crises where a strange attractor collides with unstable
fixed points on the boundary of basin of attraction, caus-
ing disappearance of both [20? ]. But in our case when
they collide unstable fixed points disappear and shape
of the strange attractor remains invariant that becomes
unstable as parameters increases. However, at γ = 0.269
each period (line) split into eight to four to two and then
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FIG. 3: Phase space (xn, yn) is plotted by solving Eq. (1)
for λ1 = λ2 = 1.25, and (a) γ = 0.2690, (b) γ = 0.4450.
Our dynamical system is going from unstable state to stable
state through QP and trajectory of basin boundary remains
invariant after crises. The plots on the right hand side show
that (a) there occurs 32P state and (b) QP state after crises.

finally fused in 4P and chaotic attractors remain mirror
images to each other, as shown in the Fig. 3(a,b). It
has been observed that our coupled nonlinear system got
synchronized to each other during these intervals, such
that γ ∈ [0.26, 0.27] and [0.29, 0.3] [11, 25]. Chaotic
attractors are mirror images of each other in the inter-
val, i. e, [0.319, 0.445]. While the trajectory changes at
γ = 0.384 and increases above this value as we get dif-
ferent form of trajectory, i. e, chaotic attractors are not
mirror images [25]. The coalesce (8C → 4C → 2C) chaos
to chaos is analogous to the band emerging in a logistic
map [11]. Therefore, periodicity of coupled lasing system
oscillates (4P to 32P, each line of period 4 bifurcate then
multi-bifurcation behavior and then converges to 4P at
γ = 0.999) 4P to 8P to 16 to 32P through QP and chaotic
and then comes at 4P at last value of γ, and attractors
rotate clockwise direction.

For λi = 1.26 and γ ∈ [0.001, 0.15] it has same
behavior as for λi = 1.25 for all value of γ. From
γ = 0.152 to 0.2271, the trajectory converges to a pe-
riodic solution with the period equal to 4 but strange
attractors are not mirror image of each other. How-
ever for γ = 0.2275 to 0.2279 system remains chaotic
and then converges to exactly 20 iteration (20P and 20
attractors) at γ = 0.2285. Chaoticity and periodicity
(20P) oscillate in the interval [0.2285,0.2395] and some
other complicated phenomena also happened [? ]. At
γ = 0.2398, there exists transient state in which phase
space trajectory and periodicity change because of crises
as shown in Fig. 4(b). When γ is increased in the interval
[0.295,0.445] having 20P, chaotic behavior through inter-

FIG. 4: Phase space (xn, yn) is plotted by solving Eq. (1) for
λ1 = λ2 = 1.26, and (a) γ = 0.09, (b) γ = 0.2398. Isolated
points in (a) and (b) are part of transient evolution. The
plots on the right hand side show behavior of our system
that is going from stable state to stability through chaotic
and QP states. Here trajectory and periodicity of our system
dramatically change because of crises. Here exterior crises is
observed between two trajectories.

FIG. 5: Phase space (xn, yn) is plotted by solving Eq. (1) for
λ1λ2 = 1.26 and γ = 0.4490. Isolated points are part of tran-
sient evolution, intermittency state corresponds to strange at-
tractors are synchronized as well as mirror images of each
other. The plot on the right side in phase space shows inter-
mittency state in (y, t) plane.

mittency which occurs at γ = 0.449, as shown in Fig. 5
and QP at γ = 0.510 and then converges to 4P at all
above values of γ = 0.575. Therefore, for this fixed value
of controlling parameters and changing coupling strength
our system remains chaotic in between 4P.

For λi = 1.27 and γ ∈ [0.001, 0.011] the trajectory
in the phase space converges to four strange attractors
corresponding to it has asymptotic character of solution
is 4P as shown in the Fig. 6. At the upper range of
this interval our system shows chaotic behavior through
nodal period, QP and 20P. Lasing system shows chaotic
behavior for small interval of time and comes back to
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FIG. 6: Phase space (xn, yn) is plotted by solving Eq. (1)
for λ1 = λ2 = 1.27, and (a) γ = 0.045, (b) γ = 0.6099.
As we mentioned earlier, isolated points in (a) and (b) are
part of transient evolution. The plots on the right side of
(a) shows stability and (b) shows intermittency state of the
system. Therefore, our dynamical system is going from stable
state to unstable state through QP because of crises.

its initial state when the coupling strength reaches its
maximum value for small values of parameters.

FIG. 7: Phase space (xn, yn) is plotted by solving Eq. (1) for
λ1 = λ2 = 1.28, and (a) γ = 0.0321; (b) γ = 0.0445. The
plots on the right hand side show our system is going from
unstable state to stable state through chaotic and QP states.

For λi = 1.28 and in this interval γ ∈ [0.001, 0.017]
the trajectory converges to the 8QP or torus correspond-
ing to periodicity it has as 8P asymptotic character of so-

lution. Here, we observe QP (from 8P to 16P) and then
(16P to 8P) in the interval [0.018,0.0321] and then chaotic
behavior at γ = 0.0445 through intermittency state at
γ = 0.0429 [26]. From Fig. 7(a), there are 16 chaotic
attractors which are not mirror images at γ = 0.0321
and correspond to intermittence state and show QP after
crises, i.e, 16C coalesce into 4T at γ = 0.0445, which are
mirror image as well as synchronized [12, 22]. Moreover,
initially chaos come through QP and intermittency state
when system transit from 8P to 16P and after that our
system shows chaoticity, but when it returns to its period
16 from chaoticity (infinite periods), no QP and intermit-
tency state is observed up to four decimal places and then
periods 8. It is also seen that periodicity, intermittency
and chaoticity oscillate in the interval [0.365,0.37]. We
observe a transitions from 8P to 4P because of crises at
γ = 0.6777 and then come back to it initial state of 8P at
final value of γ = 0.9999 through QP and chaotic states.
At the upper range of this interval λi ∈ [1.29, 1.32] our
system transits permanently to chaotic regime for all val-
ues of coupling strength.

Thus, we can say that there exists such type of
transition in which we observe ”cycle → (doubling)....→
longer cycle → Hopf bifurcation → torus → various fre-
quency locking → chaos → evolution of chaos → chaos
(fusion) and then hyper-chaos in our system [11]. If one
analyzes the two dimensional plots (xn, yn) as Poincare
surfaces of section for the continuous system, the se-
quence can be described as: The 2P corresponds to a sta-
ble limit cycle. As the γ increasing further, the limit cycle
become unstable and bifurcates into a four-loop limit cy-
cle and then evolve into a eight-loop torus through a Hopf
bifurcation. The torus represents quasi-periodic behav-
ior of our system and is responsible for the four invariant
orbit on the Poincare surfaces of section. The four in-
termittency periodic behavior is obtained when the four
characteristic frequencies on the torus are in ratio of two
small integers [24]. Higher bifurcation of the torus oc-
curs as the system moves out of quasi-periodic region, by
increasing γ (Ruelle-Takens-Newhouse scenario) [24].

When λ1 and λ2 are not equal to each other then ir-
regular behaviors displayed by means of period doubling
bifurcation [24]. But in our dynamical system we have in
region for which, λ1 = 1.5 = λ2 start at same values for
γ = 0.051. If γ is fixed and λi is varied from 1.5 to 4, we
have detected period doubling bifurcation which leads to
64P solutions and then to chaos. Thus, from the above
two cases we conclude that when, λ1 = λ2 and varia-
tion exists in γ, chaos emerges through quasi-periodicity,
however, when λ1 6= λ2, chaos emerges by mean of period
doubling bifurcation sequence.

I. CONCLUSION

In this paper, we here provided detailed study of
transition from stability to chaos and torus to chaos
in two-dimensional mapping. It is seen that transition
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FIG. 8: Bifurcation diagram for the coupled lasers Eq. (1)
with λ1 = λ2 = 1.5 range from 2.5 to 2.9 and γ = 0.051. For
each value of λi we used the final point of the previous λi value
and 1600 iterates are plotted. This shows the period-doubling
sequence as well as QP and chaotic regions.

from periodicity (stability) and quasi-periodicity (torus)
to chaos occurs with frequency locking. Through our nu-
merical calculations for two-mode ring lasers, we have
concluded following points: (i) Torus appears by way of
Hopf bifurcation; (ii) Shape of strange attractors changes
as controlling parameter changes or torus is distorted
as γ change. At certain values they expand and after
that reduce in size; (iii) Chaos appears through a period-
doubling bifurcation of some frequency-locked cycle at

some value of the bifurcation parameter; (iv) Our dy-
namical system oscillate from 2P to 4P and then 4P to
2P through quasi-periodicity and intermittency state, at
λ ∈ [0.25, 1.23] and for all values of γ ∈ [0.001, 0.999];
(v) Above this value of λi our system shows random be-
haviors through QP and some other complicated states.
At some place we get periodicity and then chaoticity
and then again periodicity not through QP but direct
change of the state; (vi) Synchronization destroyed and
reinforced due to crises, corresponding to change of the
coupling parameter.

There are two pairs of laser attractors in phase space,
which are totally different from each other at certain val-
ues of parameters, whereas synchronized as well as mir-
ror images of each other at other values of characteristic
parameters. For λi = 1.26 and γ ∈ [0.001, 0.15] they dis-
play approximately same behavior as mentioned above,
the difference is that it remains chaotic at γ = 0.2279 and
obtain asymptotic solution of 20P at γ = 0.2285. There-
fore, our dynamical system shows periodicity, quasi-
periodicity, intermittency state to chaotic, to periodic
state and then show permanently chaotic behavior at
λi = 1.3 and all higher values, and for all positive values
of γ ∈ [0.001, 0.999]. In coupled laser logistic equations,
periodicity changes during frequency locking because of
interior crises.
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Sensing through dynamic Brillouin gratings
sustained by chaotic lasers

M. Santagiustina1 and L. Ursini1

Department of Information Engineering, University of Padova, 35131 Padova, Italy
(E-mail: marco.santagiustina@unipd.it)

Abstract. A method, based on the thumbtack correlation properties of chaotic laser
signal, is presented to induce permanently sustained, localized dynamic Brillouin grat-
ings in polarization maintaining optical fibers. A numerical analysis of two possible
experimental setups, all-optical and electro-optical, is performed. The possibility to
apply the permanent grating in sensing is explored.
Keywords: Chaos, Nonlinear Optics, Sensing.

1 Introduction

Dynamic Brillouin gratings (DBG) in polarization maintaining fibers (PMFs)
[1] are a powerful technique to realize fiber sensing [2–5] and to obtain uncon-
ventional signal processing [6] or delay lines [7].

In stimulated Brillouin scattering (SBS) the interaction through electrostric-
tion of two counter-propagating optical waves at frequency νw1 and νw2 =
νw1 − νB , where νB is the Brillouin shift, generates an acoustic wave that lon-
gitudinally modulates the fiber refractive index, thus creating the grating (DBG
writing process). The DBG decays on a time scale of several ns and moves at
the sound speed; so, over its short lifetime, it can be considered static. Another
light beam injected into the fiber can be backscattered by the DBG (reading
process). In PMFs, the DBG writing and reading processes are decoupled by
launching write and read signals on orthogonal states of polarization aligned
to the fiber birefringence axes [1]. In fact, the acoustic wave equally scatters
all light polarizations owing to its longitudinal nature.

The possibility to localize the DBG at a desired position is a particularly in-
teresting feature for sensing applications.This has been achieved through pulse
collision, frequency modulation or finally stress induced changes of the SBS
frequency shift [4,5]. However, all those techniques present drawbacks. Pulse-
generated DBGs require high peak powers (of the order of few hundreds Watts)
and the DBG is refreshed periodically, so its amplitude oscillates with time.
Frequency modulation techniques at practical frequencies actually lead to cre-
ate multiple DBGs.

More recently two techniques have been introduced to localize the DBGs
at predefined positions within the fiber. They exploit the auto-correlation
properties of chaotic [9] or pseudo-random [10] signals.

The application of pseudo-random modulation in sensing has been pointed
out in [11]. Here, the method based on chaotic laser (CL) emision is first
studied in detail by comparing two possible experimental setups, and then the
characteristics of sensing with CLs are assessed.

597



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

MOD

PG

A

CL

�
w1

Pol.

P
M
F

P
M
F

CL

MOD

BPF
+

PBC

PBC

PBC

PBC

AO

EO

Pol.

Pol.

Pol.

Pol.

MOD

BPF
+

LD

LD

READ

�
r

PD

O
U
T

-MOD�

-MOD�
�
w1

�
w2

�
w2

Fig. 1. All-optical (AO) and electro-optical (EO) setup. LD: laser diode; CL: chaotic
laser; MOD: modulator; A: optical amplifier; PG: pulse generator; PD: photodiode;
PBF: passband filter; PBC: polarization beam combiner; FBG: fiber Bragg grating;
PMF: polarization maintaining fiber.

The localization is based on the the peculiar features of CLs [12], so far
applied mainly in optical cryptography [13–17], in particular, on the aperiodic,
ultrawideband, thumbtack autocorrelated, time evolution of CLs emission, pre-
viously exploited in RADAR, LIDAR and OTDR systems [18–20].

2 Theoretical model

Two possible setups are proposed and numerically investigated; their simplified
diagrams are sketched in Fig. 1. The first option is an all-optical (AO) scheme:
a semiconductor laser (CL) at frequency νw1 is induced to chaotic emission
[13,16]; part of the waveform is launched into the slow axis of a PMF and part is
modulated and filtered to obtain a replica of the chaotic waveform, downshifted
at frequency νw2. The second option is an electro-optical (EO) scheme: the
photodetected CL emission drives two optical modulators, that modulate the
phase of a laser signal at frequency νw1 and a sideband at frequency νw2. The
biases of the modulators are adjusted such that the applied phase shift is zero
at the mean value of the driving electrical signal. Phase modulators are used
because the scheme proposed exploits the constructive-destructive convolution
that is operated by the SBS interaction, as it will be shown below.

The aim, in both schemes, is to generate very similar (ideally identical)
counter-propagating optical waves, which do not repeat in time to avoid mul-
tiple DBG formation. The AO scheme offers the advantage of requiring a
reduced equipment set however the EO scheme yields better performance as
shown below.

The CL is routed to chaotic emission by an external optical feedback and
this situation is theoretically described by the Lang-Kobayashi (LK) dynamical
equations [12,13,16]:
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dE

dt
= (1− jα)

[
G(t)− 1

τp

]
E(t)

2
+ γE(t−∆t) exp(jω0∆t) +

√
RF (t) (1)

dN

dt
=

I

e
− N(t)

τc
−G(t)|E(t)|2 (2)

where E(t) is the intracavity complex envelope of the laser electric field,
normalized such that |E|2 is the photon number, N(t) is the carrier number and
G(t) = g[N(t)−N0]/[1+ϵ|E(t)|2. Moreover in Eqs. 1 and 2: α is the linewidth
enhancement factor, G(t) is the saturated gain, g is the differential gain, N0 is
the carrier number at transparency, ϵ is the gain suppression coefficient, τp is the
photon lifetime, γ is the coupling rate of the optical feedback, ω0 is the optical
carrier angular frequency, ∆t is the external cavity delay, I is the pump current,
and e is the electron charge, τc is the carrier lifetime. The spontaneous emission
noise is included with the Langevin noise term F (t), i.e. a complex white
noise of zero mean and correlation function < F (t)F ∗(t′) >= δ(t − t′), where
angle brackets represent ensemble averages, δ(t) is the Dirac delta function,
and the star denotes complex conjugation. The spontaneous emission rate is
R = gN(t).

The LD is also modeled by the LK equations without the optical feed-
back. The simulations are performed by numerically integrating LK equations
through a Runge-Kutta method [16]. The values of the CL parameters are
defined as in [21], except for the external-cavity delay fixed at ∆t = 330 ps.

The process of DBG creation and readout in a PMF is governed by the
following set of equations [6]:

∂zAw1 + β1s∂tAw1 = −ηgBQAw2, (3)

−∂zAw2 + β1s∂tAw2 = ηgBQ
∗Aw1, (4)

∂zAout + β1f∂tAout = −ηgBQAr, (5)

−∂zAr + β1f∂tAr = ηgBQ
∗Aout, (6)

2τB∂tQ+Q = Aw1A
∗
w2 +AoutA

∗
r , (7)

where Aw1, Aw2, Ar, Aout are the slowly varying envelopes of the optical waves,
whose carrier frequencies must satisfy SBS matching conditions in PMFs, i.e.
νw1 = νw2 + νB , νr = (1 − ∆n/ns)νw1 and νout = νr + νB , where ∆n is
the effective index difference between the slow and fast axes due to the fiber
birefringence [1]. The optical waves, as well as the normalized acoustic wave,
Q, are functions of time t and space z. The parameters used in simulations are:
fiber length L = 1 m, λw1 = 1550 nm, fiber birefringence ∆n = 5 · 10−4, SBS
frequency shift νB = 10.93 GHz, SBS gain coefficient gB = 5 · 10−11 m/W ,
acoustic wave lifetime τB = 5 ns. The coefficient η = 2 · 10−3 Ω−1 is an
amplitude normalization factor, while β1i (i = s, f) are the group delays per
unit length for the slow and fast axis. The mean power of input writing chaotic
waveforms is set to 100 mW . Eqs. 3-7 are integrated through a split-step
method.
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Fig. 2. Left: DBG peak amplitude as a function of time for the AO setup (blue
curve) and the EO setup (black curve). The dashed, red curves are the theoretical
value Q0(t). Right: DBG time-space contour plot, for the AO (right) and EO (left)
scheme. The DBG amplitude is normalized to its maximum value.

3 Results and analysis

The generation of DBGs can be studied by setting Ar = Aout = 0. In the ideal
condition (identical counter-propagating signals) there exists a unique position
within the fiber (z0) at which the condition Aw1(z0, t) = Aw2(z0, t) = E(t −
β1sz0) is satified at all times, i.e. there exists a unique position where waveforms
are perfectly correlated. The acoustic wave at Q(z0) = Q0 is therefore governed
by eq. 7 which then reads:

∂τQ0(τ) = −Q0(τ) + C(τ) (8)

where τ = t/(2τB) and C(τ) = Aw1(τ)A
∗
w2(τ) represents the correlation of

the two input waveforms. In the hypothesis that Aw1(z0, τ) = Aw2(z0, τ) =
E(t− β1sz0), C(τ) = |Aw1|2 = |E|2. Eq. 8 has no analytical solution because
C(τ) is a chaotic waveform, however by writing C(τ) = C0+∆C(τ), where C0 =√
Pw1Pw2/ηAeff (Pwi, i = 1, 2 are the powers of the pump waves and Aeff the

fiber effective area) is the mean of C(τ) and ∆C(τ) the chaotic fluctuations
around the mean value, and by averaging eq. 8, the acoustic wave mean value
can be estimated: Q0(τ) = C0[1 − exp(−τ)]. Therefore, after the transient
regime, a permanent DBG is sustained at the location z0 within the fiber.

In Fig. 2 (left), the analytical solution is compared with the numerical
solutions of Eqs. 3-7: the agreement is excellent. In the AO scheme fluctuations
around the mean value can be observed; they stem from the small differences
in the writing waves, due to the modulation and filtering processes realized to
generate the waveform Aw2. At the time t = 60 ns (indicated by arrows in
Fig. 2 left) a short, high power reading pulse is backscattered from the DBGs
(see below); the DBG is very weakly depleted and the asymptotic value C0 is
rapidly recovered.

The DBG is very well localized in space, as shown in Fig. 2 (right), where
a time-space contour diagram is shown. Sidelobes appear for the AO scheme
at a time interval of about 350 ps ≃ ∆t. Their presence is due to the fact
that the chaotic spectrum presents a peak near the relaxation frequency of
the external cavity (≃ 1/∆t) [13]. In the EO scheme this detrimental effect is
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highly reduced, because CL amplitude fluctuations are transformed into phase
modulations and the term Aw1(z, τ)A

∗
w2(z0, τ), very sensitive to the waveform

phases, can also lead to DBG distruction for z ̸= z0.
Eventually, if a short, reading pulse Ar is launched on the fast axis, the

backscattered waveform Aout retains the features of the DBG, thus enabling
sensing. In Fig. 3, |Ar(z = 0, t)|2 (red curve) is a Gaussian pulse (FWHM
120 ps, peak power 100 W ); |Aout(z = 0, t)|2 for the EO (AO) scheme is
represented by the black (blue) curve (all curves are normalized to the peak
values). In the AO scheme the DBGs sidelobes appear also in the backscattered
pulse; the peak to sidelobe ratio is about 7.5 dB. For the EO scheme the ratio
increases to 15 dB. Better optical signal to noise ratios (OSNRs) could be
obtained by modifying the chaos spectrum so to reach performance similar to
pseudo-random orthogonal sequences [22].
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Fig. 3. Pulse backscattered by the DBG for the AO setup (blue curve) and the EO
setup (black curve). The red curve refers to the input pulse.

The reflectivity of the DBG is estimated to be ρ = |Aout/Ar|2 = (gBC0Leff )
2,

[9] where Leff is the DGB effective length (approximated by half the real
length). In this case we had −57 dB for the EO scheme and −60 dB for the
AO. The large decrease in ρ, with respect to what is achieved with continuous
waves, has to be traded for the strong localization of the DBG. However, ρ in-
creases with C0, i.e., with the product of input powers; so the reflectivity gains
6 dB per each doubling of the injected powers. Finally, the DBG reflectivity
can be increased by about 40 dB in nonsilica fibers [23] and waveguides [24],
because gB can be up to 2 orders of magnitude larger than in silica. The tuning
of the DBG position can be achieved by inserting a delay line [15].

4 Sensing through DBGs

Optical fibers present several interesting properties with regard to sensing:
they are small, chemically inert and immune to electromagnetic interference;
moreover they present a low-cost and low losses. Because of these features
optical fiber can be deployed over large areas, and in harsh environments.
Sensing is often based on DBGs [2–5] since SBS is sensitive to temperature and
stress.

The main properties of a temperature or stress sensor based on a chaotic
waveform generated DBG are addressed below: resolution, OSNR, dynamic
range, temperature and stress sensitivity.
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The measurement resolution is probably the most valuable property of the
chaotically generated DBGs. It physically corresponds to the effective length
of the DBG that is fixed by the chaos bandwidth Bchaos which determines
the width of the correlation peak Leff = (2β1sBchaos)

−1. For the EO setup
of Fig. 3, in which sidelobes do not appear, the resolution is Leff ≃ 0.8cm
since Bchaos ≃ 12GHz, comparable to that achieved with pseudo-random sig-
nals [11]. Using very broadband optical chaos 32.5GHz [25], the resolution
could be further reduced to 3mm, a value comparable to frequency domain
backscattering techniques.

The main source of noise governing the OSNR in this technique stems from
the fact that though the DBG has zero mean intensity, outside the correla-
tion peak, nonetheless the variance of DBG intensity is not zero [11,22]. So
for each realization of the reflection the achieved OSNR is given by the ratio
between the signal backscattered by the DBG at the correlation peak and that
backscattered by the rest of the fiber. From the results of Fig. 3, in the EO
setup, the OSNR is 15dB, however this value can be made larger in specific ap-
plications. For example, if a localized temperature increase must be detected,
like in [11], one has to take into account that if the DBG is placed at the sens-
ing position (hot spot) and so the remaining section of the fiber gives a much
weaker contribution, due to the SBS gain coefficient frequency dependence. In
fact Eqs. 3 to 7 and the results of Fig. 3 refer to the case in which the pump
powers frequencies yield the maximum gain over the entire fiber. Therefore,
the OSNR can be increased in detecting localized temperature gradients. By
assuming the typical Lorentzian SBS gain shape, with a shift of 1.36MHz/Co,
a gain FWHM bandwidth of 35MHz at 20Co and a bandwidth reduction of
0.1MHz/Co [26], and since the power reflectivity is directly proportional to
g2B, the OSNR increase (with respect to the reference temperature of 20Co) is
calculated as gB(T )

2/gB(20C
o)2/ and it is reported in Fig. 4 (left). The same

OSNR increase is calculated for stress detection, using a shift of 594MHz/%
(and no bandwidth change), in Fig. 4 (right). The dynamic range is dictated
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Fig. 4. Enhancement of the OSNR as a function of the hot spot temperature (left)
of of the local strain applied (right)

by the DBG reflectivity and by the OSNR. With ρ ≃ −57dB the fiber length
should be limited to a few meters, in order to detect a reflected pulse. How-
ever, by increasing the pump powers to 500mW , the peak reflectivity is about
−45dB which would enable to increase the fiber lenght to several km. However,
the OSNR decrase with the fiber length; for example if the acceptable OSNR
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is about 10dB for measuring temperatures larger than 80Co the OSNR margin
of 30dB is reacghed at a length of about 1km similarly to [11].

As for the temperature and stress sensitivity these are determined by the
change of the reflectivity due to the variations of gB . Using the results of Fig.
4 the temperature sensitivity, almost constant, is about 0.4dB/Co while for the
strain it ranges from 200dB/%, for small strain values, down to 25dB/% for
large elongation values.

5 Conclusions

In conclusion, a method to induce one stable and localized dynamic Brilluoin
grating in a polarization maintaining fiber, exploiting optical chaos, is intro-
duced. Two experimental setups were compared: all-optical and electro-optical.
The analytical predictions well compare with all the simulations of the full in-
teraction model, based on Brillouin equations. The grating is permanently
sustained, stable and well localized in space. The EO scheme provides superior
performance with respect to the AO setup. In particular, correlation sidelobes
and DBG fluctuations are greatly reduced. The grating reflectivity depend on
the applied temperature and stress then enabling sensing applications.

The research was funded by: the University of Padova (Signal processing
and sensing based on dynamic Brillouin gratings in optical fibers - CPDA119030),
MAE (Directorate General for the Promotion of the National Economy), Fon-
dazione Cassa di Risparmio (SMILAND project) and in the framework of the
agreement with ISCTI, Rome.
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Abstract. A central configuration q = (q1, q2, ..., qn) is a particular configuration of
the n-bodies where the acceleration vector of each body is proportional to its position
vector and the constant of proportionality is the same for n-bodies. In the three-body
problem, it is always possible to find three positive masses for any given three collinear
positions given that they are central. This is not possible for more than four-body
problems in general. In this paper we model a symmetric five-body problem with with
position coordinates for the five bodies as (−x, 0), (0, y), (x, 0), (0,−y) and (c1, c2).
(c1, c2) is the centre of mass of the system. Regions of central configurations, where it
is possible to choose positive masses, are derived using both analytical and numerical
tools. We also identify regions in the phase space where no central configurations
are possible. A certain relationship exists between the mass placed at the center of
mass of the systems i.e (c1, c2) and the remaining four masses. This relationship is
investigated both numerically and analytically. Similarly restrictions on the geometry
and restrictions on the inter-body distances are investigated.

Keywords: Central Configurations, n-body problem, five-body problem, inverse
problem of central configurations.

1 Introduction

The classical equation of motion for the n-body problem has the form

mi
d2qi

dt2
=

∂U

∂qi
=

∑
j ̸=i

mimj (qj − qi)

|qi − qj |3
i = 1, 2, ..., n, (1)

where the units are chosen so that the gravitational constant is equal to one,
qi is a vector in three space,

U =
∑

1≼i<j≼n

mimj

|qi − qj |
(2)

Received: / Accepted:
c⃝ 2012 CMSIM ISSN 2241-0503

605



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 2 Shoaib, Sivasankaran and Abdel-Aziz

is the self-potential, qi is the location vector of the ith body and mi is the mass
of the ith body.

A central configuration q = (q1, q2, · · · , qn) is a particular configuration of
the n-bodies where the acceleration vector of each body is proportional to its
position vector, and the constant of proportionality is the same for the n-bodies,
therefore

n∑
j=1,j ̸=i

mj(qj − qk)

|qj − qk|3
= −λ(qk − c) k = 1, 2, ..., n, (3)

where

λ =
U

2I
, I =

n∑
i=1

mi||qi||2, and c =

∑n
i=1 miqi∑n
i=1 mi

. (4)

So far, in the non-collinear general four and five-body problems the main fo-
cus has been on the common question: For a given set of masses and a fixed
arrangement of bodies does there exist a unique central configuration ([7],[6]).
In this paper, we ask the inverse of the question i.e. given a four or five-body
configuration, if possible, find positive masses for which it is a central config-
uration. Similar question has been answered by Ouyang and Xie (2005) for
a collinear four body problem and by Mello and Fernades (2011) for a rhom-
boidal four and five-body problem. For other recent studies on the rhomboidal
problem see [1],[2],[4], and [5]. In this paper we state and prove the following
theorems.

Theorem 1. Consider five bodies of masses (m1,m2,m3,m4,m0) located at
(−x, 0), (y, 0), (x, 0), (0,−y) and (0, 0) respectively. The mass m0 is taken to be
stationary at the centre of mass of the system. Let m1 = m3 = 1,m2 = m4 =
m.

1. In this particular set up, using polar coordinates, of the rhomboidal five
body problem where m(θ) > 0, m0(θ) > 0 and r = 1 will form central
configuration when θ ∈ (−1.94,−1.04)∪ (0.74, 1.04). For all other values of
θ at least one of the masses will become negative.

2. For r ̸= 1, the central configuration region is given in figure (1).

Theorem 2. Let five bodies of masses m1 = m3 = M,m2 = m4 = m be
placed at the vertices m1(−1, 0),m2(y, 0),m3(1, 0),m4(0,−y) and m0(0, 0) of a
rhombus. The mass m0 is taken to be stationary at the centre of mass of the
system. There exist a region

R1 = (R1m ∪R∗
1m) ∩ (R1M ∪R∗

1M ). (5)

in the ym0−plane where it is possible to choose positive masses which will make
the configuration central, where

R1m = {(y,m0)|m0 >
y3

(
8−

(
1 + y2

)3/2)
−8y3 + (1 + y2)

3/2

and y ∈ (0, 2−
√
3) ∪ (2 +

√
3,∞)}, (6)
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R∗
1m = {(y,m0)|m0 <

y3
(
8−

(
1 + y2

)3/2)
−8y3 + (1 + y2)

3/2
and y ∈ (2−

√
3, 2 +

√
3)},(7)

R1M = {(y,m0)|m0 >
8y3 −

(
1 + y2

)3/2
−8 + (1 + y2)

3/2
(8)

and y ∈ (0, 2−
√
3) ∪ (2 +

√
3,∞)},

R∗
1M = {(y,m0)|m0 <

8y3 −
(
1 + y2

)3/2
−8 + (1 + y2)

3/2
and y ∈ (2−

√
3, 2 +

√
3)}. (9)

In the complement of this region no central configurations exist for m,m0 >
0.

Theorem 3. Consider five bodies of masses (m1,m2,m3,m4,m0) located at
(−x, 0), (y, 0), (x, 0), (0,−y) and (0, 0) respectively. The mass m0 is taken to be
stationary at the centre of mass of the system. Let m1 = m3 = M,m2 = m4 =
m. There exist a region

R3 = ((Rd ∩R3m) ∪ (Rc
d ∩Rc

3m)) ∩ (Rd ∩R3M ) ∪ (Rc
d ∩Rc

3M ), (10)

in the xy−plane where it is possible to choose positive masses which will make
the configuration central. Here

R3m = {(x, y)|r(x, y) > 2y 3

√
m0 + x3

m0 + y3
, x > 0, y > 0,m0 > 0}, (11)

R3M = {(x, y)|r(x, y) > 2x 3

√
m0 + y3

m0 + x3
, x > 0, y > 0,m0 > 0}. (12)

In the complement of this region no central configurations exist for M,m,m0 >
0.

Let’s consider five bodies of masses mi, i = 0, 1, 2, 3, 4. Four of the masses
are placed at the vertices of a rhombus and the fifth mass m0 is stationary at
the centre of mass of the system. The coordinates for the five bodies are chosen
as below:

q0 = (c1, c2),q1 = (−x, 0),q2 = (0, y), (13)

q3 = (x, 0),q4 = (0,−y), (14)

Using (3) and (13) we obtain the following equation for central configura-
tions.

m0q1

x3
+

m2q12(√
x2 + y2

)3 +
m3q13

8x3
+

m4q14(√
x2 + y2

)
3
= −λ(q1 − c), (15)

m0q2

y3
+

m1q21(√
x2 + y2

)3 +
m3q23(√
x2 + y2

)3 +
m4q24

8y3
= −λ(q2 − c), (16)
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m0q3

x3
+

m1q31

8x3
+

m2q32(√
x2 + y2

)3 +
m4r34(√
x2 + y2

)3 = −λ(q3 − c), (17)

m0q4

y3
+

m1q41(√
x2 + y2

)3 +
m2q42

8y3
+

m3q43(√
x2 + y2

)3 = −λ(q4 − c). (18)

2 Proof of Theorem 1.

Let m1 = m3 = 1,m2 = m4 = m . As CC’s are invariant up to translation
and re-scaling therefore we assume that the centre of mass is at the origin.
This assumption leads to some simplifications in the CC equations. Therefore
from the four CC equations ((15 to 18) the following two linearly independent
equations are obtained.

− 1

4x2
+

m0

x2
− 2mx

(x2 + y2)
3/2

= −xλ, (19)

m

4y2
− m0

y2
+

2y

(x2 + y2)
3/2

= yλ. (20)

Let λ = 1. Equations (19 and 20) are solved to obtain m and m0 as
functions of x > 0 and y > 0.

m(x, y) =
8y3 −

(
x2 + y2

)3/2
(1− 4x3 + 4y3)

8x3 − (x2 + y2)
3/2

(21)

m0(x, y) =
32x3y3(2−

(
x2 + y2

)3/2
)−

(
x2 + y2

)3
(1− 4x3)

4 (x2 + y2)
3/2

(
8x3 − (x2 + y2)

3/2
) . (22)

It is not possible to explicitly solve for x and y therefore we use polar
coordinates to re-write m(x, y) and m0(x, y) as m(r, θ) and m0(r, θ), where
x = r cos θ and y = r sin θ.

m(r, θ) =
1 + 4r3 cos3 θ − 4

(
2 + r3

)
sin3 θ

1− 6 cos θ − 2 cos 3θ
. (23)

m0(r, θ) =

(
1− 6 sin 2θ + 2 sin 6θ − r3(3 cos θ − 3 sin 2θ + cos 3θ + sin 6θ)

)
4 (1− 6 cos θ − 2 cos 3θ)

.

(24)
Let r = 1. The denominator of both m(θ) and m0(θ) becomes zero at θ =
−π

3 ,
π
3 . The denominator is negative when θ ∈ (−π

3 ,
π
3 ) and is positive else-

where. The numerator of m(θ) when r = 1 is given by 1 + cos3 θ − 12 sin3 θ.
This has real zeros at θ = −2.61 and θ = 0.673. The numerator is positive
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Fig. 1. left: m0(r, θ) > 0. Centre: Region, when m(r, θ) > 0 Right: Region,
when m0(r, θ) > 0 and m(r, θ) > 0

when θ ∈ (−2.61, 0.673). Therefore m(θ) is positive when θ ∈ (−2.61,−1.04)∪
(0.673, 1.04).

The numerator of m0(θ) when r = 1 is given by −1 + 3 cos θ + cos 3θ +
3 sin 2θ − sin 6θ. This has real zeros at θ = −2.541, θ = −1.935, θ = −0.449,
and θ = 1.248. The numerator of m0(θ) is positive when θ ∈ (−π,−2.54) ∪
(−1.935,−0.449)∪(1.248, π). Thereforem0(θ) is positive when θ ∈ (−π,−2.54)∪
(−1.935,−1.04) ∪ (−0.449, 1.04) ∪ (1.248, π).

Hence, this particular set up of the rhomboidal five body problem where
m(θ) > 0, m0(θ) > 0 and r = 1 will form central configuration when θ ∈
(−1.94,−1.04)∪ (0.74, 1.04). For all other values of θ at least one of the masses
will become negative.

In the case when r ̸= 1,The central configuration region is given in figure
(1)

3 Proof of Theorem 2.

Let λ = x = 1. Solve equations (19 and 20) to obtain m and M as functions
of m0 and y .

m(y,m0) =
4
(
1 + y2

)3/2
Nm(y,m0)

(1− 4y + y2) (1 + 4y + 18y2 + 4y3 + y4)
, (25)

M(y,m0) =
4
(
1 + y2

)3/2
NM (y,m0)

(1− 4y + y2) (1 + 4y + 18y2 + 4y3 + y4)
, (26)

where

Nm(y,m0) = y3
(
−2 +

√
1 + y2

)(
5 + y2 + 2

√
1 + y2

)
+m0

((
−2y +

√
1 + y2

)(
1 + 5y2 + 2y

√
1 + y2

))
, (27)

NM (y,m0) =
(
−2y +

√
1 + y2

)(
1 + 5y2 + 2y

√
1 + y2

)
+m0

((
−2 +

√
1 + y2

)(
5 + y2 + 2

√
1 + y2

))
. (28)
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 6 Shoaib, Sivasankaran and Abdel-Aziz

The factor 1−4y+y2 of the denominator of m(y,m0) and M(y,m0) is positive
when y ∈ (0, 2 −

√
3) ∪ (2 +

√
3,∞) and is negative when y ∈ (2 −

√
3, 2 +√

3). Therefore to find the sign of m(y,m0) and m(y,m0) we need to analyze
Nm(y,m0) and NM (y,m0). The component of the numerator of m(y,m0),

Nm(y,m0), has two factors i.e. −2 +
√
1 + y2 and −2y +

√
1 + y2 which can

become negative and hence can make Nm(y,m0) negative. The factor −2 +√
1 + y2 > 0 when y ∈ (

√
3,∞) and −2y +

√
1 + y2 > 0 when y ∈ (0, 1√

3
). As

both the intervals have empty intersection therefore we must have the following
bound on m0 for Nm(y,m0) to be positive.

m0 >
y3

(
8−

(
1 + y2

)3/2)
−8y3 + (1 + y2)

3/2
. (29)

Hence m(y,m0) will be positive in the following two regions.

R1m = {(y,m0)|m0 >
y3

(
8−

(
1 + y2

)3/2)
−8y3 + (1 + y2)

3/2

and y ∈ (0, 2−
√
3) ∪ (2 +

√
3,∞)}, (30)

R∗
1m = {(y,m0)|m0 <

y3
(
8−

(
1 + y2

)3/2)
−8y3 + (1 + y2)

3/2

and y ∈ (2−
√
3, 2 +

√
3)}. (31)

Similarly M(y,m0) is positive in the following two regions

R1M = {(y,m0)|m0 >
8y3 −

(
1 + y2

)3/2
−8 + (1 + y2)

3/2

and y ∈ (0, 2−
√
3) ∪ (2 +

√
3,∞)}, (32)

R∗
1M = {(y,m0)|m0 <

8y3 −
(
1 + y2

)3/2
−8 + (1 + y2)

3/2
and y ∈ (2−

√
3, 2 +

√
3)}.(33)

Hence, the central configuration region for this particular set up of the rhom-
boidal five body problem where both m(x, y,m0) and M(x, y,m0) are positive
is given by

R1 = (R1m ∪R∗
1m) ∩ (R1M ∪R∗

1M ). (34)

This completes the proof of theorem 2. This central configuration region is
given in figure (2)

4 Proof of Theorem 3.

Let λ = 1. Solve equations (19 and 20) to obtain m and M as functions of x, y
and m0.
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Fig. 2. left: m(y,m0) > 0. Centre: M(y,m0) > 0 Right: m(y,m0) > 0 and
M(y,m0) > 0

m(x, y,m0) =

4
(
x2 + y2

)3/2  y3
(
−8x3 +

(
x2 + y2

)3/2)
+m0

(
−8y3 +

(
x2 + y2

)3/2)


(x2 − 4xy + y2) (x4 + 4x3y + 18x2y2 + 4xy3 + y4)
(35)

M(x, y,m0) =

4
(
x2 + y2

)3/2  x3
(
−8y3 +

(
x2 + y2

)3/2)
+m0

(
−8x3 +

(
x2 + y2

)3/2)


(x2 − 4xy + y2) (x4 + 4x3y + 18x2y2 + 4xy3 + y4)
(36)

It can be immediately seen that the denominator of both m(x, y,m0) and
M(x, y,m0) becomes singular at y = (2 ±

√
3)x. Therefore y = (2 ±

√
3)x

will form two singular curves for the two masses m and M. Therefore the
denominator will be positive in region Rd given below and will be negative in
its complement.

Rd = {(x, y)|0 < y < (2−
√
3)x or y > (2 +

√
3)x, x > 0}. (37)

It is not possible to explicitly solve the numerator of either m(x, y,m0) or
M(x, y,m0) for x or y therefore we choose the inter body distance x2 + y2 to
find regions of central configuration where both m and M are positive. In the
numerator of m(x, y,m0) the factor

y3
(
−8x3 +

(
x2 + y2

)3/2)
+m0

(
−8y3 +

(
x2 + y2

)3/2)
= N3m

can be become negative. By taking r =
√
x2 + y2, the factor N3m is sim-

plified as below.

N3m = y3
(
−8x3 + r3

)
+m0

(
−8y3 + r3

)
(38)

After some algebraic manipulation it can be shown that N3m is positive in the
following region.

R3m = {(x, y)|r(x, y) > 2y 3

√
m0 + x3

m0 + y3
, x > 0, y > 0,m0 > 0}. (39)
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N3m is negative in the complement of R3m. Therefore, in this particular set
up, the central configuration region where m is positive is given by

(Rd ∩R3m) ∪ (Rc
d ∩Rc

3m). (40)

SimilarlyN3M = x3
(
−8y3 +

(
x2 + y2

)3/2)
+m0

(
−8x3 +

(
x2 + y2

)3/2)
is pos-

itive in the following region.

R3M = {(x, y)|r(x, y) > 2x 3

√
m0 + y3

m0 + x3
, x > 0, y > 0,m0 > 0}. (41)

N3M is negative in the complement of R3M . Therefore, in this particular set
up, the central configuration region where M is positive is given by

(Rd ∩R3M ) ∪ (Rc
d ∩Rc

3M ). (42)

Hence, the central configuration region for this particular set up of the rhom-
boidal five body problem where both m(x, y,m0) and M(x, y,m0) are positive
is given by

R3 = ((Rd ∩R3m) ∪ (Rc
d ∩Rc

3m)) ∩ (Rd ∩R3M ) ∪ (Rc
d ∩Rc

3M ). (43)

In the complement of this region no central configurations are possible as at
least one of the masses will become negative. This completes the proof of
theorem 3.
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Abstract: Theory of strange attractors is shown to be adequately applied to analyze 

kinetics of physical ageing revealed in structural relaxation of Se-rich As-Se glasses 

below glass transition. Kinetics of enthalpy losses induced by prolonged storage in 

natural conditions is used to determine phase space reconstruction parameters. The 

observed chaotic behaviour (involving chaos and fractal consideration such as detrended 

fluctuation analysis, attractor identification using phase space representation, delay 

coordinates, mutual information, false nearest neighbours, etc.) reconstructed via 

TISEAN is treated within potential energy landscape as diversity of multiple transitions 

between different basins-metabasins towards more thermodynamically equilibrium state, 

minimizing the free energy of the system.  

 

Keywords: Chaotic behaviour, Physical ageing, Chalcogenide glass, Relaxation kinetics.  

 

1. Introduction 
Chalcogenide glasses (ChG) belong to promising kind of low-phonon-energy 

materials transparent from visible to infrared, which are perspective for 

advanced IR telecommunication and different fibre-optic applications [1]. This 

feature of ChG is due to the heavier chalcogen atoms (S, Se, Te), which are the 

main constituents of their covalent networks. However, the chalcogen-rich 

glasses possess a pronounced natural physical ageing (NPhA) at the ambient 

conditions hindering their practical implementation [2,3]. The related structural 

relaxation is a reason for uncontrolled drift in the exploitation characteristics of 

ChG-based devices and can have extended kinetics from few hours up to tens of 

years depending on ChG composition and ageing temperature. In general, the 

PhA originates from non-equilibrium metastable nature of glassy state, causing 

all ChG prepared by conventional melt-quenching route to approach with time 

the most equilibrium structure of corresponding supercooled liquid [2,3]. 

One of possible ways to resolve this problem is an analysis of underlying PhA  

kinetics. Since the ChG belong to a wide class of disordered solids, which are 
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typical nonlinear systems being far out of thermodynamic equilibrium, the 

theory of chaos [4-6] can be used to analyse their time evolution. The N-particle 

system such as ChG can be imagined in terms of a hypothetical energy 

hypersurface of 3N+1 dimensions (energy/enthalpy landscape [7,8]), where the 

system’s energy is determined by positions of all constituting particles and its 

dynamics is viewed as motion of “state point” described by coordinates of these 

particles along landscape surface [8]. Such landscape of complex glassy-like 

system consists of many local minima of energy (inherent structures or 

attractors) and associated basins. If the system with broken ergodicity can 

explore more than one (but finite) number of inherent structures at a particular 

temperature, they can be grouped together in larger metabasins [8]. In such 

consideration, the NPhA can be viewed as a problem of transitions between 

different basins/metabasins tending ChG towards thermodynamically 

equilibrium state, minimizing free energy of the system. In other words, all the 

trajectories of the particles should be finished within basin of attractions 

accessible under certain conditions after a sufficiently long time period.  

In this work, we shall try to use nonlinear time series analysis [4-6] successfully 

applied previously for different solid systems including some polymers, such as 

polymethylmethacrylate and polyethylene glycol [9,10], to analyze kinetics of 

below-Tg relaxation in Se-rich As-Se glasses as typical representatives of ChG.  

 

2. Real-time NPhA kinetics in g-As-Se   
The samples of glassy g-As10Se90, g-As20Se80 and g-As30Se70 were prepared by 

conventional melt quenching route in evacuated quartz ampoules from a mixture 

of high purity precursors as was described in more details elsewhere [3]. The 

amorphicity and compositional identity of these ChG were tested by character 

conch-like fracture, data of X-ray diffraction and photoelectron spectroscopy. 

In order to determine the kinetics of enthalpy losses ∆H, the differential 

scanning calorimetry (DSC) patterns were detected using NETZSCH 404/3/F 

calorimeter calibrated with a set of standard elements. The DSC traces were 

recorded in the ambient atmosphere with 5 K/min heating rate, the same 

calibration procedure being repeated each time during each routine 

measurement. Three independent DSC signals with ChG samples of close 

masses were performed to confirm the reproducibility of the results.  

Typical DSC signals of enthalpy losses ∆H caused by long-term NPhA of g-

As10Se90 is shown in Figure 1. The NPhA behaviour is revealed by DSC 

technique as appearance of strong endothermic peak superimposed on 

endothermic step of glass transition signal and its displacement towards higher 

temperatures with PhA duration [2,3]. Difference in the area under DSC signal 

of aged and rejuvenated ChG is directly proportional to the enthalpy losses ∆H.  

It was established that microstructural origin of NPhA in Se-based ChG relies 

on twisting of bridge chalcogen atoms between specific configuration states 

possessing a so-called double-well potentials in nearest-atomic interaction 

[11,12]. From this point, three possible environments for Se atom can be 

distinguished in g-As-Se: Se-Se-Se fragments within Sen chains (number n of Se 

atoms in the chain means number of chalcogen atoms inserted between As 
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atoms), As-Se-Se and As-Se-As. Each double-well potential associated with 

these fragments has different energetic barrier and configurational parameters of 

state. Therefore, the activation energies for over-barrier transitions or tunnelling 

of Se atoms between two neighbouring states within double-well potential are 

different, giving variety of possibilities to be externally activated during 

prolonged NPhA. It is shown that twisting of Se atoms within double-well 

potential associated with floppy Se-Se-Se fragments is responsible for fast 

component of NPhA [12]. Such twisting leads to alignment of longer Sen≥3 

chains, their better space utilization followed by a fast shrinkage of surrounding 

glassy network. According to “chains crossing” model [3], long Sen chains with 

n ≥ 3 should fully disappear in g-AsxSe100-x at x ≥ 25. This leads to vanishing of 

relatively fast alignment-shrinkage in these ChG. On the other hand, twisting of 

Se atoms within double-well potential of As-Se-Se fragments and associated 

shrinkage of under-constrained glassy network (g-As-Se with Z < 2.4 are 

considered as under-constrained networks in full respect to Phillips-Thorpe 

rigidity theory [13,14]) are shown to have very slow kinetics in a dark (as 

testified by NPhA at room temperature) [3,15,16]. The kinetics of changes in 

glass transition temperature Tg, partial area A under the endothermic peak in 

DSC experiments, enthalpy losses ∆H and fictive temperature TF caused by dark 

storage of Se-rich g-As-Se at room temperature exhibited a well-expressed step-

wise character, showing some kinds of plateaus and steep regions [16]. The 

phenomenological description was sufficiently derived from alignment-

shrinkage mechanism of NPhA, showing that relaxation kinetics of 

experimentally obtained enthalpy losses ∆H is caused by a superposition of  

parallel/sequent alignment-shrinkage processes with different relaxation times. 
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Fig. 1. DSC curves showing kinetics of room-temperature NPhA in g-As10Se90.  
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3. Chaotic behavior observed in NPhA of g-As-Se   
We observe irregular transient enthalpy losses ∆H characteristics for g-As-Se 

under NPhA as shown in Figure 2. One way to understand this irregularity is to 

take increasing enthalpy losses ∆H as a slowly varying parameter with the data 

split into equal time periods using a so-called nonlinear time series analysis [4-

6,17]. After splitting, the delay times (referred to as delay or lag) are analysed 

using the delay-coordinate embedding theorem by F. Takens and T. Sauer et al. 

[18,19]. If the embedding is performed correctly, the theorem guarantees that 

the reconstructed dynamics of the system should be identical to true dynamics 

and dynamical invariants should be also identical.  

 
Fig. 2. Enthalpy vs. time ∆H-t graph for NPhA  

in g-As10Se90 (red curve), g-As20Se80 (green curve) and g-As30Se70 (blue curve). 

 

To work on time series at first we build up the delay vectors x(T), x(T + t), …., 

x(T + (m − 1)t), here t and m represents delay time and embedding dimension, 

respectively. The reconstructed invariants (basically, its fractal dimension) of 

the attractor as found by this approach remain unchanged (invariant) with 

respect to the unknown, original system that generated the series. 

 

3.1. Mutual information 
In contrast to linear dependence measured by autocorrelation, the mutual 

information I(t), provides a measure of general dependence [17]. Therefore I(t) 

is expected to provide a better measure of the transition from small to large 

times t with nonlinear systems. Mutual information answers the following 

question: given the observation of S (T), at time T, how accurately can one 

predict S(T + t) after a delay of t, so that successive delay coordinates are 

interpreted as relatively independent when the mutual information is small?  
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According to mutual information identification as shown in Figure 3, the delay 

time of NPhA in all As-Se ChG are quite similar being close to 250 time steps 

despite glass composition. This specificity can be explained by preferential 

input of the same structural entities responsible for primary changes associated 

with long-term NPhA in all ChG. In respect to microstructure study on NPhA in 

Se-rich g-As-Se [11,12], these governing ageing-related relaxation events can be 

associated with twisting of central Se atoms inserted in heteropolar environment 

(As and Se) within character double-well potential (As-Se-Se fragments).   

 
Fig. 3. Average mutual information vs. delay time graphs I-t for NPhA  

in g-As10Se90 (red curve), g-As20Se80 (green curve) and g-As30Se70 (blue curve). 

 

3.2. Embedding Dimension 

Most of the systems in nature wander chaotically on a set of points called 

strange attractors. A related difficulty with attractor reconstruction involves the 

choice of the embedding dimension m. After choosing an acceptable time delay, 

we need a sufficiently large embedding dimension for the reconstructed phase 

space that avoids projecting the system onto a lower dimensional space. As 

mentioned before, the embedding theorem [18,19] tells us that if the box 

counting dimension of the attractor defined as n, an embedding dimension m 

that is greater 2n, will absolutely allow unfolding the system in the 

reconstructed phase space. Normally, one has no a priori knowledge regarding 

the topological dimension, and it is unclear what a proper value of m would be.  

One needs a criterion for the minimum embedding dimension, sufficient to 

unfold the attractor. At this point the false nearest neighbors method [17] is a 

useful tool to give an estimate for the embedding dimension. Suppose that a 

space reconstruction in dimension m > m0 is carried out, where m0 is the 

minimum dimension that unfolds the reconstructed attractor. In m-dimensional 
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space, the reconstructed attractor becomes one to one image of the attractor in 

the original phase space. Conservation of topological properties in actual phase 

space satisfies mapping neighboring points of a given point of the original 

system onto neighbors of the image of that given point in the reconstructed 

space [17]. This is usually understood as equivalent tangent spaces.  

By taking the delay time as given above, we analyzed the minimum embedding 

dimension to reconstruct the attractor by the false neighbors method (Figure 4). 

One may choose the smallest embedding dimension m that yields a convergent 

result. Due to the fact that chaotic systems are stochastic when embedded in a 

phase space that is very small to accommodate the true dynamics, we assume 

the embedding dimensions m as 4, 3 and 2 in that given order for NPhA for g-

As10Se90, g-As20Se80 and g-As30Se70. It is important to note that this sequence in 

m values corresponds to smoothing tendency in NPhA kinetics, when multiple 

step-wise trends observed in more Se-rich ChG (especially in g-As10Se90) 

disappear in samples with greater Se content (g-As20Se80 and g-As30Se70) [15].  

It should be mentioned that the general structure of similar results for polymer 

matewrials studied previously [9,10] is the same as those for ChG samples. 

 
Fig. 4. Fraction of false nearest neighbors vs. embedding dimension graphs  

for NPhA in g-As10Se90 (red curve), g-As20Se80 (green curve)  

and g-As30Se70 (blue curve). 

 

3.3. Detrended Fluctuation Analysis (DFA) 
Confirmation of these characteristics mentioned in previous sections requires a 

more detailed analysis of short- and long-range structural correlations in ChG. 

To investigate this, we have applied a scaling analysis used to estimate long-

range power-law correlation exponents known as DFA method [17]. 

It was established that ChG subjected to NPhA have different characteristic 

properties concerning more than one regime as it follows from Figure 5.  
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Fig. 5. DFA for for NPhA  

in g-As10Se90 (red curve), g-As20Se80 (green curve) and g-As30Se70 (blue curve). 

 

The starting stages of NPhA in g-As10Se90 and g-As20Se80 samples has similar 

characteristics with slope of ∼1.57, changing this slope towards ∼1.90 with 

further stages of NPhA, which is also the slope for NPhA in g-As30Se70 sample. 

Figure 6 gives details about Rescaled Range Analysis (R/S-Hurst) of NPhA for 

studied g-As-Se ChG.  

 
Fig. 6. R/S for NPhA  

in g-As10Se90 (red curve), g-As20Se80 (green curve) and g-As30Se70 (blue curve). 

Slope is 0.25 

Slope is 0.42 

Slope is 1.90 

Slope is 1.57 
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The NPhA of g-As20Se80 and g-As30Se70 demonstrate one-regime behaviour with 

similar characteristics and ∼0.42 slope, but NPhA in g-As10Se90 has smaller 

∼0.25 slope at the end of ageing demonstrating a character two-regime 

behaviour. The fact that R/S-Hurst analysis for g-As10Se90 gives final point that 

is too low compared to the remaining ones may also be noticed (see Figure 6). 

Finally, in order to ascertain whether the linear interpolation caused this 

uniformity, we have added 5% noise and used a stretched exponential 

extrapolation to construct the data set. The results and slopes are given in Figure 

7. Except increase in the embedding dimension and appearance of two distinct 

regions (attributable to the noise introduced), the similar conclusions follow.  

 
 Fig. 9. DFA graph of NPhA (in ∆H determination)  

for As10Se90, As20Se80, As30Se70 glasses and glass data with 5% noise added.  

 

4. Conclusions 
Typical DSC traces of enthalpy losses ∆H caused by long-term NPhA of Se-rich 

As-Se glasses demonstrate an obvious evidence of chaotic behaviour with (1) 

character delay time in mutual information presentation close to 250 time steps 

despite glass composition and (2) embedding dimensions decreasing in 4-3-2 

sequence in a row of As10Se90-As20Se80-As30Se70 glasses (with increase in 

average covalent bonding). Within Detrended Fluctuation Analysis, it was 

established that starting stages of NPhA in g-As10Se90 and g-As20Se80 has similar 

characteristics with slope of ∼1.57, tending towards ∼1.90 with further stages of 

ageing, which is also the slope for g-As30Se70. In contrast, within Rescaled 

Range Analysis, it was demonstrated that NPhA of g-As20Se80 and g-As30Se70 

show one-regime behaviour with similar characteristics and ∼0.42 slope, while 

NPhA in g-As10Se90 demonstrates typical two-regime behaviour expressed in 

smaller slope of ∼0.25 at the end of ageing.  

Slope is 1.90 

Slope is 1.57 

Slope is 0.56 

Slope is 1.90 
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Observed chaoticity in NPhA of Se-rich As-Se glasses is attributed to complex 

nature of underlying structural transformations evolving multiply-repeated 

cycles of Se atoms twisting within nearest-neighbour chain environments of 

double-well potentials followed by atomic shrinkage at larger length scales. This 

chaotic behaviour in NPhA can be treated within potential energy landscape as 

diversity of transitions between different basins-metabasins towards more 

thermodynamically equilibrium state, minimizing free energy of the system.  
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Abstract. Due to collisional singularities appearing in gravitational few-body prob-
lems, one needs regularisation techniques for their stable approximate solution. We
present an efficient computational approach for numerically integrating a symmetri-
cal five body problem called the Caledonian Symmetric Five Body Problem (CS5BP)
which is a five-body system with a symmetrically reduced phase space. The proposed
global regularisation scheme consists of adapted versions of several known regularisa-
tion transformations such as the Levi-Civita-type coordinate transformations together
with a time transformation which enables the numerical exploration of the systems as
they pass through two-body close encounters. An algebraic optimisation algorithm is
adapted for numerically implementing the regularisation scheme which make use of
the reverse mode algorithmic differentiation. We show that the proposed regularisa-
tion algorithm is numerically and computationally very efficient in handling various
two-body close encounters appearing in the CS5BP.
Keywords: Regularisation, singularity, celestial mechanics, few-body problem, op-
timisation.

1 Introduction

There is a growing interest in studying gravitational few-body problems (with
n > 3) which makes use of the symmetric boundary conditions to reduce the
mathematical complexity of the problem [13],[14], [8], [7].

Several papers in the last decade have studied the the Caledonian Symmet-
ric Four-Body Problem (CSFBP) which is a restricted coplanar four-body sys-
tem with a symmetrically reduced phase space [5], [12]. The model involves two
pairs of non-equal masses moving in coplanar, initially circular orbits, starting
in a collinear arrangement [5]. The authors have shown that the global stability
of the CSFBP system depends on a parameter called the Szebehely constant

C0. The Szebehely constant C0 = − c2E
G2M5 is a dimensionless function of the

total energy (E) and the magnitude of the angular momentum of the system
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(c), where G is the gravitational constant, and M is the total mass. A gener-
alization of the CSFBP named the Caledonian Symmetric Five-Body problem
(CS5BP) was done by introducing a stationary mass to the centre of mass of
the CSFBP with the same analytical stability criteria [8].

Existing numerical integration schemes were inadequate to study orbits with
strong close encounters, as the numerical integration fails due to collision sin-
gularities [15], [16]. In gravitational few-body problems, singularities normally
appear when the distance between objects undergoing orbital motion becomes
very small. As a result, the equations describing the dynamics of the system
tend towards singular and the numerical integration falls apart [3]. Use of regu-
larisation algorithms to numerically integrate gravitational few-body problems
which involve near collisions or close encounters has been widely acknowledged
[3], [1]. Recently a global regularisation scheme for the CSFBP is prsented
in [11]. In this paper, we extend the regularisation scheme to the Caledonian
Symmetric Five-Body problem (CS5BP).

2 Definition of the Caledonian Symmetric Five Body
Problem(CS5BP)

Let us consider five bodies P0,P1,P2,P3,P4 of masses m0,m1, m2,m3,m4 re-
spectively existing in three dimensional Euclidean space [6]. The radius and
velocity vectors of the bodies with respect to the centre of mass of the five
body system are given by ri and ṙi respectively, i = 0, 1, 2, 3, 4. Let the centre
of mass of the system be denoted by O.

The CS5BP involves two types of symmetries; past-future symmetry and
dynamical symmetry [8]. Past future symmetry exists in an n-body system
when the dynamical evolution of the system after t = 0 is a mirror image of
the dynamical evolution of the system before t = 0. It occurs whenever the
system passes through a mirror configuration, i.e. a configuration in which the
velocity vectors of all the bodies are perpendicular to all the position vectors
from the centre of mass of the system [5].

Dynamical symmetry exists when the dynamical evolution of two bodies
on one side of the centre of mass of the system is paralleled by the dynamical
evolution of the two bodies on the other side of the centre of mass of the system.
The resulting configuration is always a parallelogram, but of varying length,
width and orientation [8]. See Figure 1 for the configuration of the CS5BP for
t > 0.

The CS5BP has the following conditions:

1. All five bodies are finite point masses with:

m1 = m3, m2 = m4 (1)

2. P0 is stationary at origin O, the centre of mass of the system. P1 and P3

are moving symmetrically to each other with respect to the centre of mass
of the system. Likewise P2 and P4 are moving symmetrically to each other.
Thus dynamical symmetry is maintained for all time t;
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Fig. 1. The configuration of the coplanar CS5BP for t > 0

r1 = −r3, r2 = −r4, r0 = 0,

V1 = ṙ1 = −ṙ3, V2 = ṙ2 = −ṙ4, V0 = ṙ0 = 0. (2)

3. At time t = 0 the bodies are collinear with their velocity vectors perpendic-
ular to their line of position. This ensures the past-future symmetry and
is described by:

r1 × r2 = 0, r1 · ṙ1 = 0, r2 · ṙ2 = 0. (3)

We define the masses as ratios to the total mass. Let the total mass M of the
system be

M = 2 (m1 +m2) +m0 (4)

Let µi be the mass ratios defined as µi =
mi

M for i = 0, 1, 2, 3, 4 and µ = µ1

µ2
.

Equation (4) then becomes

2 (µ1 + µ2) + µ0 = 1, (5)

and
0 ≤ µ0 ≤ 1, 0 ≤ µ1 ≤ 0.5, 0 ≤ µ2 ≤ 0.5. (6)

3 The regularisation scheme

The proposed regularisation scheme consists of a combination of several known
regularisation techniques: a Levi-Civita type coordinate transformation, a time
transformation function similar to that of [1] and the global formulation of [3].
In general, the proposed scheme follows the transformations described in [4].
We extend the regularisation procedure of the CSFBP [11] into the case of the
CS5BP.

627



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 4 A. Sivasankaran and M. Shoaib

Let the position coordinates of the four bodies in cartesian coordinates
be r1 = (x1, x2), r2 = (x3, x4), r3 = (−x1,−x2), r4 = (−x3,−x4), with corre-
sponding momenta (ω1, ω2) = µ1M(ẋ1, ẋ2), (ω3, ω4) = µ2M(ẋ3, ẋ4), (−ω1,−ω2),
(−ω3,−ω4).

For simplicity, we set the gravitational constant G and total mass M to
be equal to unity. According to the symmetrical restrictions, the Hamiltonian
function can be written as

H =
1

µ1M
(ω2

1 + ω2
2) +

1

µ2M
(ω2

3 + ω2
4)− 2Gµ1µ2M

2

(
1

r12
+

1

r14

)
(7)

− Gµ2
1M

2

r13
− Gµ2

2M
2

r24
− 4Gµ0M

(
µ1M

2r13
+

µ2M

2r24

)
,

where the corresponding inter-body distances are given by

r12 =
(
(x1 − x3)

2 + (x2 − x4)
2
)1/2

= r34,

r14 =
(
(x1 + x3)

2 + (x2 + x4)
2
)1/2

= r23,

r13 =
(
(2x1)

2 + (2x2)
2
)1/2

,

r24 =
(
(2x3)

2 + (2x4)
2
)1/2

. (8)

These four inter-body distances result in collision singularities which is charac-
terised by the following four types of two-body close encounters [10].

1. “12”-type double binary collision: collisions occurring in the binary formed
between P1 and P2 and the symmetrical binary formed between P3 and P4.

2. “14”-type double binary collision: collisions occurring in the binary formed
between P1 and P4 and the symmetrical binary formed between P2 and P3.

3. “13”-type single binary collision: collision occurring in the binary formed
between P1 and P3.

4. “24”-type single binary collision: collision occurring in the binary formed
between P2 and P4.

Note that P0 is stationary at O, the centre of mass of the system and thus P0

has no influence in deciding the kinetic energy of the system and the collisions.
In order to regularise these singularities first we will map the (xi, ωi) phys-

ical plane into the (Qi, Pi) parametric plane using a series of transformation
equations so that the new Hamiltonian function will have no singularities as it
passes through a two-body close encounter. There are three important steps
in the regularisation scheme [9].

Step 1: Coordinate transformation
We first transform the coordinate system to inter-body coordinates.

q1 = x1 − x3, q2 = x2 − x4, (9)

q3 = x3 + x1, q4 = x4 + x2, (10)

q5 = 2x1, q6 = 2x2, (11)

q7 = 2x3, q8 = 2x4. (12)
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This will make sure that all the possible two-body close encounters in the
CS5BP system are regularised [11].

We introduce a generating function F1(pk, qk) to obtain conjugate momenta
pk of the corresponding qk

F1(pk, qk) = pkqk = (x1 − x3)p1 + (x2 − x4)p2 + (x3 + x1)p3 + (x4 + x2)p4

+ 2x1p5 + 2x2p6 + 2x3p7 + 2x4p8, (13)

which will give

ωi =
∂F1

∂xi
, (14)

where i=1 to 4 and k=1 to 8.
Next we find an expression for new momenta, pk’s, in terms of old momenta,

ωi, using an arbitrary relation which is similar to that for the q’ s (i.e. q5 −
q7 − 2q1 = 0, q5 + q7 − 2q3 = 0, q6 + q8 − 2q4 = 0, q6 − q8 − 2q2 = 0), we set

p5 − p7 − 2p1 = 0,

p5 + p7 − 2p3 = 0,

p6 + p8 − 2p4 = 0, (15)

p6 − p8 − 2p2 = 0.

Using equation (14) and (15), we can deduce a set of new conjugate momenta
p’s as

p1 =
1

6
(ω1 − ω3) , p2 =

1

6
(ω2 − ω4) ,

p3 =
1

6
(ω1 + ω3) , p4 =

1

6
(ω2 + ω4) ,

p5 =
1

3
ω1, p6 =

1

3
ω2, (16)

p7 =
1

3
ω3, p8 =

1

3
ω4.

Now we perform the Levi-Civita type coordinate transformation on each
inter-body coordinate. We introduce the regularising function using the Levi-
Civita transformation, in a complex form

qj + iqj+1 = (Qj + iQj+1)
2
, (17)

where j= 1,3,5,7. Here note that (qj , qj+1) refers to a physical plane and
(Qj , Qj+1) refers to a parametric plane. Their corresponding conjugate mo-
menta Pk’s are given by

Pk =
∂F2(pk, Qk)

∂Qk
(18)

where k= 1 to 8 and F2(pk, Qk) is the generating function of the form

F2(pk, Qk) = pjf(Qj , Qj+1) + pj+1g(Qj , Qj+1)
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Using these relations, we can write

Pj = 2pjQj + 2pj+1Qj+1,

Pj+1 = −2pjQj+1 + 2pj+1Qj , (19)

Step 2: Time transformation
In the next step, we introduce a fictitious time τ , which is a key factor for the
regularising effect. The basic principle of regularisation theory is to transform
physical coordinates to a parametric plane and physical time to an artificial
time by a differential time transformation, which consequently smooths collision
effects in the Hamiltonian system. In the literature, we can find a variety of
choices for the time transformation function which has a general form

dt = gdτ = Rndτ,

where R is the separation between the colliding binaries, g is the time re-scaling
factor and n has various choices according to the application. We had tried a
few arbitrary values for g and we found that, to preserve conservation of energy,
it is advantageous to choose a time re-scaling factor of the form

dt

dτ
= g =

r12r13r14r24

(r12 + r13 + r14 + r24)
5/2

(20)

=
(Q2

1 +Q2
2)(Q

2
3 +Q2

4)(Q
2
5 +Q2

6)(Q
2
7 +Q2

8)

(Q2
1 +Q2

2 +Q2
3 +Q2

4 +Q2
5 +Q2

6 +Q2
7 +Q2

8)
5/2

.

Step 3: Fixing the energy
With the introduction of the time rescaling factor, the new Hamiltonian H̃(Qi, Pi)
takes the following form in the extended phase space

Γ (Qi, Pi) = g(H̃ − h0), (21)

where Γ is the transformed Hamiltonian H̃(Qi, Pi) in the extended phase space
and h0 is the total energy or the initial value of H̃. For any particular orbit,
H̃(τ) = h0, a constant and Γ (τ) = 0. We have not shown the transformed
Hamiltonian Γ (Qi, Pi) in this paper, as the right hand side of the expression
is very lengthy due to a large number of multiplicative terms. The numerator
terms in the time rescaling factor g cancel out the singular terms in the de-
nominator of the Hamiltonian function and prevent the increase of the velocity
to infinity at the collision stages.

We can derive the Hamilton equations of motion with respect to the ficti-
tious time, using this transformed Hamiltonian in the new set of parametric
coordinates:

dQi

dτ
=

∂Γ

∂Pi
, (22)

dPi

dτ
= − ∂Γ

∂Qi
.

Equation (22) is the final regularised equation of motion, which is a set of
ordinary differential equations whose solution is a function of the fictitious time
τ and these equations are regular, for any qi → 0.
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There can be singularities when all qi → 0, where i= 1 to 8. This situa-
tion is only possible for a CS5BP system with C0 = 0. This corresponds to a
singularity at the origin in the physical plane. For C0 ̸= 0; regions of forbid-
den motion appear very close to the origin and a total central collision is not
theoretically possible.

4 Optimisation of the regularised Hamiltonian

An optimisation strategy is not generally required for restricted few-body prob-
lems for n < 4, since the equations of motion derived using standard regulari-
sation schemes usually contain algebraic terms which can be easily handled by
most of the standard numerical integrators. However, the transformed Hamilto-
nian Γ (Qi, Pi) in Equation (21) is determined using a large number of algebraic
multiplications. It is evident that the symbolic differentiation to derive the gra-
dient of Γ (Qi, Pi) will produce a large number of additive and multiplicative
terms, leading to an inefficient evaluation of the right hand side of the Equa-
tion (22). The direct numerical integration of the regularised Equation (22)
(i.e. without using any optimisation techniques) required an excessive amount
of computational time even for a very small time period of 10 due to the large
number function evaluations involved.

We adapt an algebraic optimisation algorithm of [2] to simplify the Equation
22. The first step in the optimisation process is to rewrite the regularised
Hamiltonian Γ (Qi, Pi) in terms of the most frequently appearing terms as a
MAPLE procedure [9]. Then we split up the product terms in the MAPLE
procedure in calculating the regularised Hamiltonian to avoid the generation
of common subexpressions while computing its partial derivatives [2].

We also make use of the reverse-mode algorithmic differentiation to reduce
the total number of multiplicative operations (multiplication and addition) to
derive the partial derivatives of the regularised Hamiltonian Γ (Qi, Pi). The
reverse-mode of automatic differentiation allows computation of gradients at a
small cost of computing functions by decomposing the function into a sequence
of elementary assignments. The forward-mode differentiation of Γ (Qi, Pi) will
generate more than 2100 multiplicative terms, whereas the reverse mode algo-
rithmic differentiation leads to a procedure with only about 320 multiplications.
Then we convert repeating symbolic expressions into computation sequences
needed for the algorithmic differentiation using the built-in MAPLE functions.
In general, this algebraic optimisation procedure can be extended to majority
of the global regularisation schemes used in gravitational few-body problems
(with n ≥ 3) and fast numerical realization can be achieved.

5 Numerical experiments

We show some preliminary numerical results using the non-regularised and
regularised integration schemes for a regular quasi-periodic orbit. The initial
conditions for integrating equation (20) and (22) were fixed using the energy
and angular momentum equations of the CS5BP. Numerical experiments were
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Fig. 2. A quasi-periodic orbit over the time [0, 20] (µ = 1, µ0 = 0, E = −7, C0 = 60
initial r1 = 0.80 and r2 = 0.06); with a) non-regularised; b) regularised equations. I.
Trajectories of P1(green) and P2 (blue) in the xy-plane of motion; II. Energy error
over the time period [0, 20]
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Fig. 3. Time step variations over the time [0, 20] with a) non-regularised; b) regu-
larised equations.

conducted using the standard MATLAB multi-step integrator ode113 which
is a variable order Adams-Bashforth-Moulton PECE solver. The orbital tra-
jectories in the xy-plane of motion are shown in Figure 2.1.A central binary
is formed (with P2 and P4) and the other symmetrical pair P1 and P3 orbit
around the binary’s centre of mass. Only the positions of masses m1 (x1, x2)
(green) and m2 (x3, x4)(blue) are shown. The orbits are well separated and
remained bounded for some reasonable amount of integration time.

Figure 2.II shows the numerical energy error versus time over a 20 time
unit period. Although the orbital trajectories appear to be identical, the regu-
larised integration scheme exhibits a better energy error profile by a factor of
100. Figure 3 shows the corresponding time step variations for the above inte-
grations. The regularised integration scheme has improved the CPU workload
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Fig. 4. Comparisons of the errors with variable absolute tolerance error and relative
tolerance error; green (non-regularised) and blue (regularised).

by a factor of 1.4 by allowing the integrator to choose bigger step-sizes resulting
in decreased number of time steps. Figure 4 shows a comparison between the
CPU time and the maximum observed energy error for the given simulation
time. It is clear that the regularised scheme allows better accuracy with im-
proved CPU run time. Despite the regularity of the orbit and the absence of
extreme close encounters, our numerical tests indicate that the overall CPU
workload has been improved. The computational cost involved in each time
step differs for both the non-regularised and regularised integrations, since the
regularised scheme has twice as many equations in the non-regularised scheme
and it involved a large number of algebraic multiplications and additions due
to several coordinate transformations forward and backwards. The regularised
treatment combined with the algebraic optimisation scheme outperforms the
non-regularised approach in terms of computational efficiency and numerical
accuracy.

6 Conclusions

We developed a global regularisation scheme that consists of adapted versions
of several known regularisation transformations such as the Levi-Civita-type
coordinate transformations; that together with a time transformation, removes
all the singularities due to colliding pairs of masses in the CS5BP. An al-
gebraic optimisation algorithm is proposed for numerically implementing the
regularisation scheme. Regardless of the nature of the orbits, it was found that
the regularised integration scheme outperformed the standard non-regularised
integration schemes in terms of computational performance and improved nu-
merical accuracy characterized by stable energy profiles.
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Abstract: Complex reaction-transport dynamics can lead to the formation of ordered 
structures. A constant dissipation of free energy is a requirement for sustaining 
macroscopic order, especially in solution. In the solid phase, the evolved pattern can be 
locked for days, months or even years. Liesegang bands are stratified stripes of 
precipitate that appear and persist, when co-precipitate ions interdiffuse in a gel medium. 
A host of interesting properties characterize such rich dynamical systems: band spacing 
laws (direct and revert), band splitting, rhythmic multiplicity, multiple precipitate 
formation and band redissolution are but a few manifested characteristics, emerging from 
a complex dynamics with a great diversity of scenarios. 
The familiar and well-known band formation in rocks could be the result of a complex 
coupled diffusion-percolation-chemical reaction mechanism. Similarities between 
geochemical self-organization and the Liesegang phenomenon are surveyed and 
analyzed. The simulation of band generation in a rock bed is realized and carried out in-
situ, by injection and infusion of the reagent components into the rock medium. 
Ramified, tree-like structures (dendrites) are obtained during the electrodeposition or 
simple electroless redox deposition of metal systems. A great variety of morphologies 
just resembling tree branches are observed and characterized as fractal structures. 
Keywords: Liesegang, dendrites, reaction-diffusion, rock banding. 

 
1. Liesegang Banding 
In 1896, Raphael Eduard Liesegang discovered an intriguing phenomenon [1] 
whereby precipitation in a gel medium takes place in banded form, just like the 
superb display of bands that we commonly observe in rocks [2-4]. Various 
specimens of Liesegang patterns, prepared for different precipitates, are shown 
in Fig. 1.  
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Figure 1: A panorama of colorful Liesegang patterns in gel. 

 
In the laboratory, the Liesegang experiment [5-7] is quite simple: a concentrated 
electrolyte containing a certain co-precipitate ion (say Pb2+) is allowed to diffuse 
into a gel containing its insoluble salt counterpart (such as I− to form PbI2); 
normally one order of magnitude more dilute.  Due to the coupling of diffusion 
to a cycle of supersaturation, nucleation and depletion, known as the Ostwald 
cycle [8], the precipitation takes place in the form of beautifully stratified bands, 
as displayed in Fig. 1. 
We highlight the main features of such a rich dynamical phenomenon, but also 
shed light on abnormalities, curiosities and strange behavior exhibited by such 
systems under certain conditions. The observations common to most Liesegang 
systems are summarized by the four well-known empirical laws [9,10]: 
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where n denotes band number, x is location and w is band width. The spacing 
law formula suggests that the spacing between consecutive bands increases as 
we move away from the electrolytes junction. Although 90% of the Liesegang 
patterns follow this so-called Jablczynski spacing law [11], some systems 
exhibit an opposite trend, known as revert spacing [12,13]. The distinction 
between direct and revert spacing Liesegang patterns is depicted in Fig. 2. 
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a.  b.  

c.  d.  
Figure 2: a. Liesegang pattern of CuCrO4 showing direct (normal) spacing. b. Plot of 
fraction of adsorbed CrO4

2− on the copper chromate precipitate (h) with band number. c. 
Liesegang patterns of PbCrO4 showing revert spacing. d. Plot of fraction of adsorbed 
CrO4

2− on the lead chromate precipitate (f) with band number. We see that h decreases 
while f increases. 
  
In a recent study [13], we showed that the fraction of CrO4

2− adsorbed (f) on the 
lead chromate precipitate increases with band number n (see Fig. 2d); whereas 
the opposite trend was observed for the adsorption on copper chromate (the 
fraction h decreases with band number n; as seen in Fig. 2b). Hence the 
increased extent of adsorption causes the bands to form closer and closer as n 

increases. It seems that more CrO4
2− adsorbed attract the Pb2+ in the gel closer 

than in the preceding band, thus causing the precipitate band to from closer, and 
the spacing to become narrower. The opposite behavior (decreasing extent of 
adsorption with band number as in Fig. 2b) results in a normal Liesegang 
pattern with direct spacing (Figure 1a). 
Liesegang systems exhibit a great diversity of special features. A pattern of 
bands seemingly 'migrates' if redissolution of the bands at the top is 
synchronized with the band formation. Such scenario occurs in systems where 
the precipitate redissolves to form a complex ion. Typical studied examples 
include the Co(OH)2 [14,15], Cr(OH)3 [16] and HgI2 [17] systems. When 
Co(OH)2 is precipitated from Co2+ and NH4OH, the precipitate redissolves in 
excess NH4OH to form the hexaammine cobalt (II) complex ion, Co(NH3)6

2+, 
according to the reaction:  
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Co(OH)2 (s)  + 6 NH4
+ (aq)   →  Co(NH3)6

2+  (aq)  + 4 H+   (aq)  + 2 H2O 
 

a.  b.  

c.  d.  
Figure 3: a. Propagating Co(OH)2 Liesegang pattern via a concerted band formation and band 
redissolution scenario. b. Correlation plot showing the linear correlation between the distance of 
last band (dlb) and distance of first band (dfb). c. Plot of dfb versus time. d. Plot of dlb versus 
time. The two parameters are controlled by diffusion. 

 
 

The precipitation-redissolution-propagation of the Co(OH)2 pattern  of bands is 
illustrated in Fig. 3a.  The distance of the top edge of the propagation zone (dfb) 
and the distance of the last band (dlb) are plotted versus time in days. The plots 
are shown in Figs. 3c and 3d. We see that the propagation at the top and the 
bottom is dominated by diffusion. The correlation between dfb and dlb is almost 
perfectly linear [14], as revealed by the correlation plot in Fig. 3b. 
A host of other diverse features are observed in Liesegang systems. To name but 
a few, we report secondary banding [18], spiral and helicoidal patterns [19] and 
two-precipitate dynamics [20]. 
 
2. Geochemical Banding 
Perhaps the most common and most spread resemblance between Liesegang 
patterns and natural phenomena is the landscape of bands that we observe in 
rocks [21,2,3]. Many studies have emphasized such similarity, presented 
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coherent explanations and proposed  mechanisms. Theoretical modeling studies 
are extensive in the literature [21]. Possible scenarios range from 
cyclicity in large mafic-ultramafic layered  intrusions, to fractional 
crystallization in magmatic processes, to temperature-pressure changes in both 
first and second-order phase transitions,  to nonlinear reaction-diffusion 
dynamics. 
In a recent work, we attempted to simulate geochemical banding (or self-
organization) in-situ, i.e. inside the rock bed [22,23]. 

 
Figure 4: Liesegang bands in a rock bed behind a reaction front. The infiltrating water 
carries a co-precipitate ion that meets its counter ion in the rock medium and thus 
precipitation takes place; but it does so but in banded form, just resembling a Liesegang 
pattern.  

 
 
Consider a porous rock infiltrated from one side by an inlet flow of reactive 
water, that causes the dissolution of certain constituent rock minerals. The water 
flow, acting as a sink of co-precipitate ions for the altered rock, can provoke the 
precipitation and deposition of other insoluble minerals. In many such 
situations, the minerals deposition occurs in banded form, in a way that just 
resembles the Liesegang bands obtained in a lab experiment. Such a plausible 
scenario is illustrated in Fig. 4. 
In the lab, a ferruginous limestone rock with a planar surface (Figure 5) was 
infiltrated through a thin tube inserted at its center by a 4.30 M H2SO4 solution 
by means of a multi-rate infusion pump. The acid causes the dissolution of 
calcite (CaCO3) and the precipitation of the acid-insoluble gypsum (CaSO4) and 
anhydrite (CaSO4.2H2O) according to the reaction: 
 

CaCO3   +   H2SO4   (aq)   →    CaSO4    +   CO2   +   H2O 
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Due to the spatio-temporal flow, the deposition of CaSO4 is anticipated to occur 
in banded form in accordance with the above described Liesegang dynamics 
(Sect. 1). 
The experiment was kept running for about two years (692 days). The 
appearance of the various banded zones at t = 202 days is depicted in Fig. 5a. 
The latter were delineated and labeled by tracing contours defining the inner and 
outer edges of each zone (Figure 5b at 692 days). The gypsum/anhydrite content 
of regions 1 through 7 of Fig. 5b was determined by powder X-ray diffraction. 
The results are shown in Table 1. 
 
 

Table 1: CaSO4 composition over the various zones of Fig. 5 
Region 1 2 3 4 5 6 7 
% CaSO4 100 97.5 98.9 28.4 85.8 17.6 5.4 

 

 
Figure 5: Acidization of a ferruginous limestone rock, by slow injection of H2SO4 at the 
center causing the dissolution of calcite (CaCO3). The front is accompanied by the 
deposition of gypsum (CaSO4) and anhydrite (CaSO4.2H2O). a. At t = 202 days. b. 
'Concentric' deposition zones exhibiting oscillation in the CaSO4 content at t = 692 days. 
 

   
We clearly see that beyond the central region where the deposition of CaSO4 is 
maximal (bands 1-3), the CaSO4 content starts oscillating. 
Very few other simulations of rock banding in-situ were attempted by a number 
of investigators. Rodriguez-Navarro et al. [24] observed Liesegang rings by 
monitoring the slow carbonation of traditional, aged lime mortars. A portlandite 
[Ca(OH)2]/quartz mortar kept for a long time under excess, CO2-rich water 
gives rise to a calcite (CaCO3) deposit, via the reaction: 
 

Ca(OH)2   +   CO2  (aq)    →    CaCO3    +   H2O. 
 

The carbonation process yields 3D Liesgeang patterns consisting of concentric 
ellipsoids of alternating calcite and calcite-free zones. The rings exhibit revert 
spacing instead of direct spacing and obey Jablczynski’s spacing law. The revert 
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nature of the pattern was attributed to the decrease in CO2 uptake and diffusion 
as the process progresses toward the core.   
 
3. Dendritic Metal Deposits  
 
Another intriguing class of pattern formation in solid structures is the ramified, 
tree-like structures we observe in metal deposits [25,26]. Two routes are known 
for obtaining metal deposits: electrolytic and electroless. In the former, metal 
ions are reduced by standard electrolysis at the cathode. In the latter, a 
spontaneous redox reaction is carried out in the supporting medium. We 
perform such a study on Ag metal deposits, by growing the latter via both 
methods.  
Electroless 
Silver metal was deposited by reduction of Ag+ with metallic copper according 
to the following scheme: 
 
 Oxidation:     Cu  →  Cu

2+
   2 e⁻       V34.00

/2 +=+
CuCu

E  

 Reduction:     Ag⁺  +   e⁻   →  Ag      V80.0
/

+=+ AgAg
E  

The overall reaction is: 
Cu   + 2 Ag

+   →  2 Ag   +   Cu
2+   (1) 

 
To that end, a shallow methacrylate glass (plexiglass) dish of 10.5 cm diameter 
was manufactured, mounted with a peripheral ring of 0.3 mm height acting as a 
spacer, on top of which a plexiglass cover can rest. The solution layer thickness 
will thus be 0.3 mm. The cover has a 1.50 cm hole, wherein a well-fitted 
metallic disc (here Cu) can be inserted. 
With the perforated cover on, a solution of silver nitrate of known concentration 
(say 0.10 M), was carefully poured through the cover hole, until it spread evenly 
and without air bubbles throughout the dish area. Once such a thin solution film 
is achieved, the copper disk is placed at the center, marking the start of the 
spontaneous reaction (1). One important variant from other electroless growth 
experiments is the bare solution medium, without soaking in a filter paper to 
lock the pattern. After big experimental challenges, the preliminary appearance 
of the fractal growth (seemingly promising) is displayed in Fig. 6.  
 

  
Figure 6: Silver deposits showing dendritic structure growth. a. Circular disc of reductant 
(Cu). b. Square Cu disc. 

641



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

 
    

An interesting observation is that the ramifications display straight, stringy 
branches in the circular core, whereas they exhibit curved branching with the 
square core. Different regions of the Ag deposits were cut, and the images 
transformed into black and white, for good contrast. Samples are depicted in 
Fig. 7. 

 
Figure 7: Selected regions from the deposits in Fig. 6a after transformation of the image 
to black and white. The three regions (a-c) essentially exhibit the same value of the 
fractal dimension. 
 
The dendrites exhibited a fractal dimension of 1.58 ± 0.04.  

 

 

a. 

 
b. 

Figure 8: a. Ag deposits by electrolysis in a circular field with potential difference of 
3.09 V. b. Ag deposits via reduction of Ag+ by Cu in a horizontal magnetic field of 0.50 
T. 

 
Electrolysis 
Figure 8a shows a 'rosette' obtained by electrodeposition at a graphite electrode 
immersed in the solution at the dish center. The anode is a circular tungsten wire 
electrode of 0.5 mm diameter thickness. 
 
Figure 8b displays electroless Ag deposits from the reduction of Ag+ by metallic 
Cu, in the presence of a horizontal magnetic field of 0.50 T applied across the 
dish. The striking differences in the morphology reveal the importance, 
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complexity and rich dynamics of metal deposition and growth. These 
observations are under continuing investigation  at the present time. 
Other dynamical studies of complex fractal structure in metal deposition 
systems include the simultaneous growth  of two metals [27,28] and the effect 
of electric [29] and magnetic fields [30,31] in electroless and electrolytic 
systems.  
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Abstract: The asymptotic mean square stability of stochastic synchronization of chaotic recurrent

neural networks with time varying delays using adaptive feedback control is analyzed. In this paper, by

utilizing tracking controller,the adaptive synchronization control is designed. Which ensures that the

synchronization error of chaotic recurrent neural network system is asymptotically mean square stable.
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1. Introduction

Chaos occurs in dynamics nonlinear deterministic systems. The causes that determine the oc-

currence of chaos are not fully known. There are three possible causes identified for determine the

occurrence of chaos; first one is the growth of control factor to a high value, second one is the nonlinear

interaction of two or more physical operations and another one is the effect of noise presence.A chaotic

process is highly sensitive to the variations of the parameters describing the initial state [13, 14]. For

example any change of the initial conditions of today’s atmosphere conditions will causes of major

change of the tomorrow’s atmosphere conditions. A chaotic process is initially generated in deter-

ministic system yet its evolution in time is apparently random [11]. A chaotic system dimension in

the phase state is characterized by the value called Lyapunov exponent. A chaotic process will have

at least one positive Lyapunov exponent. Its magnitude versus time indicates the starting movement

from which the process become chaotic. A negative Lyapunov exponent indicates how rapidly the

system restores its initial state after a perturbation.

1Corresponding author: Email:mrpsuresh83@gmail.com, Phone: 91-044-24355648,24334845,Fax:24357591.
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A neural network is a mathematical model relaying on the model of biological neurons. A neural

networks can acquire knowledge from the environment through a learning process and the inter neu-

ron connection strength is used to store the knowledge. Artificial neural networks offer qualitative

methods for business and economic systems. Chaotic dynamics have been observed in many arti-

ficial neural systems either in a continuous systems [1, 12, 15] or discrete systems [2, 7, 8, 16].The

idea of chaotic synchronizing of two independent copies of identical chaotic dynamical systems have

been increasing recent interest. Chaotic synchronization plays a crucial role in information process-

ing in living organisms and could lead to important applications in speech and image processing.

Moreover due to the important role that secure communications plays in industrial and banking com-

munications, the potential application of neuro chaotic synchronization to secure communications is

receiving increased attention. Recently the synchronization of chaotic recurrent neural networks with

time varying delays using adaptive feedback control was proposed [3, 10] .In this paper, synchroniza-

tion of noise-perturbed synchronization of chaotic recurrent neural networks with time varying delays

using adaptive feedback control is analytically investigated.In this paper we organize a synchronization

strategy by noise-perturbed synchronization of chaotic recurrent neural networks with time varying

delays using adaptive feedback control in section 2. In section 3 we present control design and outline

of stochastic synchronization in recurrent neural network with time varying delays. Finally concluding

remarks and references close the paper.

2. The synchronization description and preliminaries

Consider the chaotic neural network

dx(t) = [−cx(t) +Af(x(t)) +Bf(x(t)) +Bf(x(t− τ(t)) + J ]dt (1)

where x(t) = (x1(t), x2(t), x3(t), ..., xn(t))
T ∈ R

nis the state vector of the neural network; C is a

diagonal matrix with ci > 0, i = 1, 2, 3, ..n., A = (aij)n×n is a weight matrix; B = (bij)n×n is the

delayed weight matrix;J = (J1, J2, ..., Jn)
T ∈ R

n is the input vector function; τ(t) is the transmission

delay;f(x(t)) is the activation function.

In order to obtain our main results,assume the following condition hold.

(A1) The activation function f is bounded and satisfy the Lipschitz condition

|f(x1)− f(x2)| ≤ kj |x1 − x2|, ∀x1, x2 ∈ R,
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(A2).τ(t) ≥ 0 is a differential function with τ∗ = max(τ(t)) and 0 ≤ τ̇ (t) ≤ σ < 1 , for all t.

According to the drive-response concept,the controlled chaotic neural network system can be described

by the following equation

dy(t) = [−cy(t)+Af(y(t))+Bf(y(t))+Bf(y(t−τ(t))+J+u(t)]dt+

n
∑

i=1

[σij(t, e(t), e(t−τ(t)))]dwj(t)

(2)

where y(t) = (y1(t), y2(t), y3(t), ..., yn(t))
T ∈ R

n and u(t) is driving signal,then the initial condition of

the controlled network system can be described by

yi(t) = χi(t) (3)

Let us define the synchronization error e(t) = x(t) − y(t).Therefore, the dynamics of synchronization

error between the master and slave systems given in equations (1) and (2) can be described by

ė = Ẋ − Ẏ (4)

de(t) = dx(t) − dy(t) (5)

de(t) = [−cx(t) +Af(x(t)) +Bf(x(t)) +Bf(x(t− τ(t)) + J ]dt−

[[−cy(t) +Af(y(t)) +Bf(y(t)) +Bf(y(t− τ(t)) + J + u(t)]dt

+

n
∑

i=1

[σij(t, e(t), e(t− τ(t)))]dwj (t)]

de(t) = [−c(x(t)− y(t)) +A(f(x(t)) − f(y(t))) +B[f(x(t− τ(t))) − f(x(t− τ(t))) − u(t)]dt

−

n
∑

i=1

[σij(t, e(t), e(t− τ(t)))]dwj (t)] (6)

de(t) = [−c(e(t)) +A(g(e(t))) +B[g(e(t− τ(t))) − u(t)]dt−

n
∑

i=1

[σij(t, e(t), e(t− τ(t)))]dwj(t)] (7)

Lemma 2.1. (Schur Complement) Given constant matrices Ω1,Ω2 and Ω3 with appropriate

dimensions, where ΩT
1 = Ω1 and ΩT

2 = Ω2 > 0, then

Ω1 +ΩT
3 Ω

−1
2 Ω3 < 0
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if and only if






Ω1 ΩT
3

∗ −Ω2






< 0, or,







−Ω2 Ω3

∗ Ω1






< 0.

Lemma 2.2. [6] Let
∑

1,
∑

2,
∑

3be the real matrices of appropriate dimensions with
∑

3 > 0, then

for any vectors x and y with appropriate dimensions

2xTΣT
1 Σ2y ≤ xTΣT

1 Σ3Σ1y + xTΣT
2 Σ

−1
3 Σ2y

Lemma 2.3. [5] Given a continuous non linear system ẋ = g(x(t), t) where x(t) is an n × 1 vector;

let v(x,t) be the associated Lyapunov function with the following properties

(λ1 ‖x‖)
2 ≤ v(x, t) ≤ (λ2 ‖x‖)

2, ∀x, t ∈ R
n × R (8)

v̇(x, t) ≤ −λ3v(x, t) + λ4e
−αt, ∀x, t ∈ R

n × R, (9)

where λ1, λ2, λ3, λ4 and α are positive constants. If the Lyapunov function satisfies (8) and (9), the

state x(t) is exponentially stable in the sense that

‖x‖ ≤ [(
λ2

λ1
‖x(0)‖)2e−λ3t +

λ4

λ2
1

e−αt]
1

2 , λ3 = α

≤ [(
λ2

λ1
‖x(0)‖)2e−λ3t +

λ4

λ2
1(λ1 − α)

(e−αt − e−λ3t)]
1

2 , λ3 6= α (10)

3. main result

Controller design and adaptive synchronization scheme:

The controller should have perfect tracking capacity in order to allow the possibility of tracking

convergence. This means that eq → 0 as t → ∞ and for ėq → 0 as t → ∞.An adaptive controller

differs from an ordinary controller in that the controller parameters are time-varying and there is a

mechanism for adjusting these parameters. The basic idea in adaptive control is to estimate uncertain

signals and use the estimated parameters in the controller computation. For adaptive control the

unknown parameters have to be constants or must vary considerably slower than the controller is to

achieve proper tracking control behavior in systems.For the possibility of tracking convergence the

controller should define the adaptive control u(t)

u(t) = γPe(t) +
1

2
ρ
‖e(t− τ(t)‖2 ‖M‖

P ‖e(t)‖
−

1

2

k2eT (t)e(t)P−1QT
1 Q1e(t)

k ‖Q1‖ ‖e(t)‖
2
+ ǫe−αt
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Theorem 3.1. Suppose (A1) and (A2) hold.Consider system (7) with the control law(12). Then

the controlled slave system(2) will be globally synchronized with the master system(1) in the sense of

equation(10) with

λ1 =
√

λmin(P ), λ2 =
√

λmax(P ), λ3 =
λmin(Ω)

λmax(P )
, λ4 = ǫ

and if λ3 < 1 and here exist matrices P , Q1, Q2 a diagonal matrix K > 0 and a positive scalar

γ > 0,τ > 0 and ρ > 0 such that the following LMI holds



















−PC − CTP + 1+τ∗

1−σ
KTQ2K +KTQ1K +MTρM P PA PB

∗ γ−1 0 0

∗ 0 −Q1 0

∗ 0 0 −Q2



















< 0.

proof : Consider the following Lyapunov functional

V (t) = eT (t)Pe(t) +
1

1− σ

∫ t

t−τ(t)

gT (e(s))Q2g(e(s))ds,

then its derivative can be obtained by ito formula, that

dV (t) = LV (t)dt+ 2eT (t)Pσ(e(t), e(t− τ(t))dw(t),

where

LV (t) = Vt(e(t), t) + Ve(e(t), t)f(t) +
1

2
trace[σ(e(t), e(t− τ(t)))Veeσ

T (e(t), e(t− τ(t)))],

here,Vt(e(t), t) =
gT (e(t))Q2g(e(t))

1−σ
− gT (e(t− τ(t)))Q2g(e(t− τ(t))) , Ve(e(t), t) = 2eT (t)P and

Vee(e(t), t) = 2P , then the equation (15) become

LV (t) =
1

1− σ
gT (e(t))Q2g(e(t))− gT (e(t− τ(t)))Q2g(e(t− τ(t))) +

2eT (t)P [−c(e(t)) +A(g(e(t))) +B[g(e(t− τ(t))) − u(t)] +

trace[σ(t, e(t), e(t − τ(t)))PσT (t, e(t), e(t− τ(t)))]

= 2eT (t)P [−c(e(t)) +A(g(e(t))) +B[g(e(t− τ(t))) − u(t)] +

1

1− σ
gT (e(t))Q2g(e(t))− gT (e(t− τ(t)))Q2g(e(t− τ(t))) +
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trace[σ(t, e(t), e(t − τ(t)))PσT (t, e(t), e(t− τ(t)))]. (16)

consider the assumption

trace[σ(t, e(t), e(t− τ(t)))PσT (t, e(t), e(t− τ(t)))] ≤ ρ[eT (t)MTMe(t) + eT (t− τ(t))MTMe(t− τ(t)),

substitute the consideration in equation(16),we get

≤ eT [−PC − CTP ]e(t) + 2eT (t)PA(g(e(t))) + 2eT (t)PBg(e(t− τ(t))) − 2eT (t)Pu(t) +

1

1− σ
gT (e(t))Q2g(e(t))− gT (e(t− τ(t)))Q2g(e(t− τ(t))) +

ρ[eT (t)MTMe(t) + eT (t− τ(t))MTMe(t− τ(t)),

from lemma (2.3) and tacking Σ3 as the identity matrix

2eT (t)PA(g(e(t))) ≤ eTPAQ−1
1 ATPe(t) + gT (e(t))Q1g(e(t))

2eT (t)PBg(e(t− τ(t))) ≤ eTPBQ−1
2 BTPe(t) + gT (e(t− τ(t)))Q2g(e(t− τ(t))),

therefore the equation become

LV (t) ≤ eT (t)[−PC − CTP + PAQ−1
1 ATP + PBQ−1

2 BTP ]e(t) + gT (e(t))Q1g(e(t)) +

gT (e(t− τ(t)))Q2g(e(t− τ(t))) − 2eT (t)Pu(t) +
1

1− σ
gT (e(t))Q2g(e(t))−

gT (e(t− τ(t)))Q2g(e(t− τ(t))) + ρ[eT (t)MTMe(t) + eT (t− τ(t))MTMe(t− τ(t))

= eT (t)[−PC − CTP + PAQ−1
1 ATP + PBQ−1

2 BTP +MTρM ]e(t) +

1

1− σ
gT (e(t))Q2g(e(t)) + eT (t− τ(t))MT ρMe(t− τ(t)) − 2eT (t)Pu(t). (17)

consider the assumption

gT (e(t))Q1g(e(t)) ≤ eT (t)KTQ1Ke(t)

gT (e(t))Q2g(e(t)) ≤ eT (t)KTQ2Ke(t).

whereKis a positive constant matrix, then the equation (17) become
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LV (t) ≤ eT (t)[−PC − CTP + PAQ−1
1 ATP + PBQ−1

2 BTP +MTρM ]e(t) + eT (t)KTQ1Ke(t) +

1

1− σ
eT (t)KTQ2Ke(t) + eT (t− τ(t))MT ρMe(t− τ(t)) − 2eT (t)Pu(t)

= eT (t)[−PC − CTP + PAQ−1
1 ATP + PBQ−1

2 BTP +MTρM +KTQ1K +

1

1− σ
KTQ2K]e(t) + +eT (t− τ(t))MT ρMe(t− τ(t)) − 2eT (t)Pu(t)

≤ eT (t)[−PC − CTP + PAQ−1
1 ATP + PBQ−1

2 BTP +MTρM +KTQ1K +

1

1− σ
KTQ2K +

τ∗

1− σ
KTQ2K]e(t) + +eT (t− τ(t))MT ρMe(t− τ(t)) −

1

1− σ
KTQ2K +

τ∗

1− σ
KTQ2K − 2eT (t)Pu(t)

≤ −eT (t)[PC + CTP − PAQ−1
1 ATP − PBQ−1

2 BTP −MTρM −KTQ1K −

1

1− σ
KTQ2K −

τ∗

1− σ
KTQ2K]e(t) + ‖eT (t− τ(t))‖

2
ρ ‖M‖ −

1

1− σ
KTQ2K +

τ∗

1− σ
KTQ2K − 2eT (t)Pu(t).

now substitute nonlinear adaptive feed back control

u(t) = γPe(t) +
1

2
ρ
‖e(t− τ(t)‖

2
‖M‖

P ‖e(t)‖
−

1

2

k2eT (t)e(t)P−1QT
1 Q1e(t)

k ‖Q1‖ ‖e(t)‖
2 + ǫe−αt

,

then,

LV (t) ≤ −eT (t)[PC + CTP − PAQ−1
1 ATP − PBQ−1

2 BTP −MTρM −KTQ1K −

1

1− σ
KTQ2K −

τ∗

1− σ
KTQ2K]e(t)−

τ∗

1− σ
gT (e(t))Q2g(e(t)) +

k| ‖e(t)‖2 | ‖Q1‖ ǫe
−αt

k| ‖e(t)‖
2
| ‖Q1‖+ ǫe−αt

≤ −eT (t)Ωe(t) +
k| ‖e(t)‖2 | ‖Q1‖ ǫe

−αt

k| ‖e(t)‖
2
| ‖Q1‖+ ǫe−αt

−
τ∗

1− σ
KT eT (t)Q2Ke(t)

≤ −eT (t)Ωe(t) +
k| ‖e(t)‖2 | ‖Q1‖ ǫe

−αt

k| ‖e(t)‖
2
| ‖Q1‖+ ǫe−αt

−
τ∗

1− σ
KT eT (t)Q2Ke(t),
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where Ω = PC+CTP−PAQ−1
1 ATP−PBQ−1

2 BTP−MTρM−KTQ1K− 1
1−σ

KTQ2K− τ∗

1−σ
KTQ2K,

LV (t) =
k| ‖e(t)‖

2
| ‖Q1‖ ǫe

−αt

k| ‖e(t)‖
2
| ‖Q1‖+ ǫe−αt

−
τ∗

1− σ
KT eT (t)Q2Ke(t)

dV (t) ≤ [
k| ‖e(t)‖

2
| ‖Q1‖ ǫe

−αt

k| ‖e(t)‖
2
| ‖Q1‖+ ǫe−αt

−
τ∗

1− σ
KT eT (t)Q2Ke(t)]dt+ 2eT (t)Pσ(e(t), e(t − τ(t))dw(t). (18)

Taking expectation to equation(18), then

V̇ (t) = [
k| ‖e(t)‖

2
| ‖Q1‖ ǫe

−αt

k| ‖e(t)‖
2
| ‖Q1‖+ ǫe−αt

−
τ∗

1− σ
KT eT (t)Q2Ke(t)]

=
k| ‖e(t)‖

2
| ‖Q1‖ ǫe

−αt

k| ‖e(t)‖
2
| ‖Q1‖+ ǫe−αt

−
1

1− σ

∫ t

t−τ(t)

gT (e(t))Q2ge(t)dt,

using the relation 0 ≤ ab
a+b

≤ a and by an lemma (2.3),we get

V̇ (t) ≤ −
λmin(Ω)

λmin(P )
v(t) + ǫe−αt

by using Lyapunov stability theorem, the error dynamic system is exponentially mean square stable

and the controlled slave system is globally synchronized with the master system.

4. Numerical Simulation

Consider the master chaotic neural network system [9] is ẋ(t) = [−cx(t) + Af(x(t)) + Bf(x(t)) +

Bf(x(t− τ(t)) + J ],where

C =







1 0

0 1






A =







2.1 −0.12

−5.1 3.2






, B =







−1.6 −0.1

−0.2 −2.4






J = −







0.01

0.1






,

x(t) =







sinhx1(t)

sinhx2(t)






, f(x(t)) =







tanhx1(t)

tanhx2(t)







therefore the master chaotic system is described by

ẋ1(t) = −sinhx1(t) + 2.1tanhx1(t)− 0.12tanhx2(t)− 1.6x1(t− τ(t)) − 0.1x2(t− τ(t)) − 0.01

ẋ2(t) = −sinhx2(t) + 5.1tanhx1(t) + 3.2tanhx2(t)− 0.2x1(t− τ(t)) − 2.4x2(t− τ(t)) − 0.1
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and their corresponding slave chaotic network system is

ẏ(t) = [−cy(t) +Af(y(t)) +Bf(y(t)) +Bf(y(t− τ(t)) + J + u(t)]dt+ Zdw(t), where

Z =







−0.001

0.001






,

here the adaptive feed back control u(t) = 0.00136 then the slave chaotic system is described by

ẏ1(t) = −sinhy1(t) + 2.1tanhy1(t)− 0.12tanhy2(t)− 1.6y1(t− τ(t)) − 0.1y2(t− τ(t)) − 0.01− 0.001dw(t)

ẏ2(t) = −sinhy2(t) + 5.1tanhy1(t) + 3.2tanhy2(t)− 0.2y1(t− τ(t)) − 2.4y2(t− τ(t)) − 0.1 + 0.001dw(t).

Now we assume the values τ∗ = 0.1, σ = 0.5, γ = 3
4

K =







0.2 0

0 0.2






and M =







0.1 0

0 0.2






.

Solving the LMI(13) in theorem(3.1) by invoking the MATLAB LMI control Toolbox[4], we obtain

the solution as ρ = 0.00136

P = 1.0e− 0004×







0.1380 0.0120

0.0120 0.0218






, Q1 = 1.0e− 0003×







0.1844 −0.0235

−0.0235 0.1435






and

Q2 = 1.0e− 0004×







−0.1312 0.0280

0.0280 −0.1440






.

When ρ is 0.00136, the stochastic recurrent neural system is marginally synchronized and the ρ value

is less than zero the system is exponentially mean square stable. The above results show that all con-

ditions stated in theorem (3.1) have been satisfied and hence the synchronization of chaotic recurrent

neural networks with stochastic time varying is exponentially mean square stable. The synchro-

nization portrait between the master and corresponding slave chaotic system with initial condition

[0.1, 0.1]T ,noise [0.01, 0.01]T ,and their corresponding time delay τ = 1is as follows
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5. Conclusion

A new sufficient condition is derived to guarantee the exponential mean square stability of the

equilibrium point for Stochastic synchronization of chaotic recurrent neural networks with time vary-

ing delays. To the best of our knowledge, the results presented here have been not appeared in the

related literature. The synchronization stability criteria is expressed in terms of LMIs, which is less

conservative and can be easily verified by using MATLAB LMI control Toolbox.
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Dynamics of multiple pendula without gravity
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Abstract. We present a class of planar multiple pendula consisting of mathematical
pendula and spring pendula in the absence of gravity. Among them there are systems
with one fixed suspension point as well as freely floating joined masses. All these
systems depend on parameters (masses, arms lengths), and possess circular symmetry
S1. We illustrate the complicated behaviour of their trajectories using Poincaré sec-
tions. For some of them we prove their non-integrability analysing properties of the
differential Galois group of variational equations along certain particular solutions of
the systems.

Keywords: Hamiltonian systems, Multiple pendula, Integrability, Non-integrability,
Poincaré sections, Morales-Ramis theory, Differential Galois theory.

1 Introduction

The complicated behaviour of various pendula is well known but still fascinating,
see e.g. books [2,3] and references therein as well as also many movies on youtube
portal. However, it seems that the problem of the integrability of these systems
did not attract sufficient attention. According to our knowledge, the last found
integrable case is the swinging Atwood’s machine without massive pulleys [1]
for appropriate values of parameters. Integrability analysis for such systems is
difficult because they depend on many parameters: masses mi, lengths of arms
ai, Young modulus of the springs ki and unstretched lengths of the springs.
In a case when the considered system has two degrees of freedom one can
obtain many interesting information about their behaviour making Poincaré
cross-sections for fixed values of the parameters.

m

m 1

2

a1

x

y

1

a2

φ

φ 2

Fig. 1. Simple double pendulum.

However, for finding new integrable cases
one needs a strong tool to distinguish values of
parameters for which the system is suspected
to be integrable. Recently such effective and
strong tool, the so-called Morales-Ramis theory
[5] has appeared. It is based on analysis of dif-
ferential Galois group of variational equations
obtained by linearisation of equations of mo-
tion along a non-equilibrium particular solution.
The main theorem of this theory states that
if the considered system is integrable in the
Liouville sense, then the identity component
of the differential Galois group of the variational equations is Abelian. For a
precise definition of the differential Galois group and differential Galois theory,
see, e.g. [6].
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The idea of this work arose from an analysis of double pendulum, see Fig. 1.
Its configuration space is T2 = S1 × S1, and local coordinates are (φ1, φ2)
mod 2π. A double pendulum in a constant gravity field has regular as well as
chaotic trajectories. However, a proof of its non-integrability for all values of
parameters is still missing. Only partial results are known, e.g., for small ratio
of pendulums masses one can prove the non-integrability by means of Melnikov
method [4]. On the other hand, a double pendulum without gravity is integrable.
It has S1 symmetry, and the Lagrange function depends on difference of angles
only. Introducing new variables θ1 = φ1 and θ2 = φ2 − φ1, we note that θ1 is
cyclic variable, and the corresponding momentum is a missing first integral.

The above example suggests that it is reasonable to look for new integrable
systems among planar multiple-pendula in the absence of gravity when the S1
symmetry is present. Solutions of such systems give geodesic flows on product
of S1, or products of S1 with R1. For an analysis of such systems we propose
to use a combination of numerical and analytical methods. From the one side,
Poincaré section give quickly insight into the dynamics. On the other hand,
analytical methods allow to prove strictly the non-integrability.

In this paper we consider: two joined pendula from which one is a spring
pendulum, two spring pendula on a massless rod, triple flail pendulum and
triple bar pendulum. All these systems possess suspension points. One can also
detach from the suspension point each of these systems. In particular, one can
consider freely moving chain of masses (detached multiple simple pendula), and
free flail pendulum. We illustrate the behaviour of these systems on Poicaré
sections, and, for some of them, we prove their non-integrability. For the double
spring pendulum the proof will be described in details. For others the main
steps of the proofs are similar.

In order to apply the Morales-Ramis method we need an effective tool
which allows to determine the differential Galois group of linear equations. For
considered systems variational equations have two-dimensional subsystems of
normal variational equations. They can be transformed into equivalent second
order equations with rational coefficients. For such equations there exists an
algorithm, the so-called the Kovacic algorithm [7], determining its differential
Galois groups effectively.

2 Double spring pendulum

m

m 1

2

a1

x

y

x

θ 1

2)

2θθ 1
+

k(x −a−

Fig. 2. Double spring pendulum.

The geometry of this system is shown in Fig. 2.
The mass m2 is attached to m1 on a spring
with Young modulus k. System has S1 sym-
metry, and θ1 is a cyclic coordinate. The cor-
responding momentum p1 is a first integral.
The reduced system has two degrees of free-
dom with coordinates (θ2, x), and momenta
(p2, p3). It depends on parameter c = p1.

The Poincaré cross sections of the reduced
system shown in Fig. 3 suggest that the system is not integrable. The main
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(a) E=0.00005 (b) E=0.001

Fig. 3. The Poincaré sections for double spring pendulum. Parameters: m1 = m2 =
a1 = a2 = 1, k = 0.1, p1 = c = 0 cross-plain x = 1.

problem is to prove that in fact the system is not integrable for a wide range of
the parameters. In Appendix we prove the following theorem.

Theorem 1. Assume that a1m1m2 6= 0, and c = 0. Then the reduced sys-
tem descended from double spring pendulum is non-integrable in the class of
meromorphic functions of coordinates and momenta.

3 Two rigid spring pendula

x

x

x 1a

a2

m 2

m 1

θ

y

2

1 1(

(

−

−−k

−k )

2)

Fig. 4. Two rigid spring pendula.

The geometry of the system is shown in Fig. 4.
On a massless rod fixed at one end we have
two masses joined by a spring; the first mass
is joined to fixed point by another spring. As
generalised coordinates angle θ and distances
x1 and x2 are used. Coordinate θ is a cyclic
variable and one can consider the reduced
system depending on parameter c - value of momentum p3 corresponding to θ.
The Poincaré cross sections in Fig. 5 and in Fig. 6 show the complexity of the
system. We are able to prove non-integrability only under assumption k2 = 0.

Theorem 2. If m1m2k1c 6= 0, and k2 = 0, then the reduced two rigid spring
pendula system is non-integrable in the class of meromorphic functions of
coordinates and momenta.

Moreover, we can identify two integrable cases. For c = 0 the reduced Hamilton
equations become linear equations with constant coefficients and they are
solvable. For k1 = k2 = 0 original Hamiltonian simplifies to

H =
1

2

(
p21
m1

+
p22
m2

+
p23

m1x21 +m2x22

)
and is integrable with two additional first integrals F1 = p3, F2 = m2p2x1 −
m2p1x2.
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(a) E=0.12, (b) E=0.2.

Fig. 5. The Poincaré sections for two rigid spring pendula. Parameters: m1 = m2 =
a1 = a2 = 1, k1 = k2 = 1/10, p3 = c = 1/10, cross-plain x1 = 0, p1 > 0.

(a) E=0.15, (b) E=4

Fig. 6. The Poincaré sections two rigid spring pendula. Parameters: m1 = 1, m2 = 3,
k1 = 0.1, k2 = 1.5, a1 = a2 = 0, p3 = c = 0.1, cross-plain x1 = 0, p1 > 0

4 Triple flail pendulum

m

m

θ 3

1

x

y

θ1
+

θ1
+ θ

θ1

m

2

3

2

2

a

a

1

a

2

+
3θ

Fig. 7. Triple flail pendulum.

In Fig. 7 the geometry of the system is shown.
Here angle θ1 is a cyclic coordinate. Fixing value
of the corresponding momentum p1 = c ∈ R, we
consider the reduced system with two degrees of
freedom. Examples of Poincaré sections for this
system are shown in Fig. 8 and 9. For more plots
and its interpretations see [11]. One can also
prove that this system is not integrable, see [9].

Theorem 3. Assume that l1l2l3m2m3 6= 0, and m2l2 = m3l3. If either (i)
m1 6= 0, c 6= 0, l2 6= l3, or (ii) l2 = l3, and c = 0, then the reduced flail
system is not integrable in the class of meromorphic functions of coordinates
and momenta.
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(a) E=0.01, (b) E=0.012.

Fig. 8. The Poincaré sections for flail pendulum. Parameters: m1 = 1,m2 = 3,m3 =
2, a1 = 1, a2 = 2, a3 = 3, p1 = c = 1, cross-plain θ2 = 0, p2 > 0.

(a) E=0.0035, (b) E=0.0363.

Fig. 9. The Poincaré sections for flail pendulum. Parameters: m1 = 1,
m2 = m3 = 2, a1 = 2, a2 = a3 = 1, p1 = c = 1

2
, cross-plain θ2 = 0, p2 > 0.

5 Triple bar pendulum

a

x

y

θ 1 1

m 1 a 3

θ 1
+ θ 2

θ 1
+ θ 2

m 2

a 2 m 3

d

d 1

2

+ θ 3

Fig. 10. Triple bar pendulum.

Triple bar pendulum consists of simple pen-
dulum of mas m1 and length a1 to which
is attached a rigid weightless rod of length
d = d1 + d2. At the ends of the rod there
are attached two simple pendula with masses
m2,m3, respectively, see Fig.10. Like in pre-
vious cases fixing value for the first integral
p1 = c corresponding to cyclic variable θ1, we
obtain the reduced Hamiltonian depending only on four variables (θ2, θ3, p2, p3).
Therefore we are able to make Poincaré cross sections, see Fig. 11, and also to
prove the following theorem [10].:
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(a) E=0.008, (b) E=0.009.

Fig. 11. The Poincaré sections for bar pendulum. Parameters: m1 = m2 = 1,
m3 = 2, a1 = 1, a2 = 2, a3 = 1, d1 = d2 = 1, p1 = c = 1

2
, cross-plain θ2 = 0, p2 > 0.

Theorem 4. Assume that l2l3m1m2m3 6= 0, and m2l2 = m3l3, d1 = d2. If
either (i) c 6= 0, l2 6= l3 or (ii) l2 = l3, and c = 0, then the reduced triple bar
system governed by Hamiltonian is not integrable in the class of meromorphic
functions of coordinates and momenta.

6 Simple triple pendulum

m 1

a1

x

y

θ

2a

m 2

m 3

a3

1

θ 2
+

1θ

θ 3
+θ 2

+θ 1

Fig. 12. Simple triple pendulum.

Problem of dynamics of a simple triple pen-
dulum in the absence of gravity field was nu-
merically analysed in [8]. Despite the fact that
θ1 is again cyclic variable, and the correspond-
ing momentum p1 is constant, the Poincaré
sections suggest that this system is also non-
integrable, see Fig.13. One can think, that the
approach applied to the previous pendula can
be used for this system. However, for this pen-
dulum we only found particular solutions that
after reductions become equilibria and then
the Morales-Ramis theory does not give any
obstructions to the integrability.

7 Chain of mass points
a

a

m

θ 4

m 4

m n

θ n

a

θ 3

2

2

3

n

m 3 a 4

C

2θ

m 1

,1x y1)(

Fig. 14. Chain of mass points

We consider a chain of n mass points in a plane.
The system has n+ 1 degrees of freedom. Let
ri denote radius vectors of points in the center
of mass frame. Coordinates of these vectors
(xi, yi) can be expressed in terms of (x1, y1)
and relative angles θi, i = 2, . . . , n. In the
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(a) E=0.0097 (b) E=0.011

Fig. 13. The Poincaré sections for simple triple pendulum: m1 = 2, m2 = 1, m3 =
1, a1 = 2, a2 = a3 = 1, p1 = c = 1, cross-plain θ2 = 0, p2 > 0.

centre of mass frame we have
∑
miri = 0, thus we can expressed (x1, y1) as

a function of angles θi. Lagrange and Hamilton functions do not depend on
(x1, y1), (ẋ1, ẏ1), and θ2 is a cyclic variable thus the corresponding momentum
p2 is a first integral. The reduced system has n−2 degrees of freedom. Thus the
chain of n = 3 masses is integrable. Examples of Poincaré sections for reduced
system of n = 4 masses are given in Fig. 15. In the case when m3a4 = m2a2
a non-trivial particular solution is known and non-integrability analysis is in
progress.

(a) E=0.04, (b) E=0.045.

Fig. 15. The Poincaré sections for chain of 4 masses. Parameters: m1 = m3 = 1,
m2 = 2,m4 = 3, a2 = 1, a3 = 1, a4 = 3, p2 = c = 3

2
, cross-plain θ3 = 0, p3 > 0.

661



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

8 Unfixed triple flail pendulum

m 3

a

a 3

4

a 2

m 4
θ 3

m 2

θ 4

θ 2

C

m 1

,y11x( )

Fig. 16. Chain of mass points

One can also unfix triple flail pendulum de-
scribed in Sec.4, and allow to move it freely.
As the generalised coordinates we choose coor-
dinates (x1, y1) of the first mass, and relative
angles, see Fig. 16. In the center of masses
frame coordinates (x1, y1), and their derivatives
(ẋ1, ẏ1) disappear in Lagrange function, and θ2 is a cyclic variable. Thus we
can also consider reduced system depending on the value of momentum p2 = c
corresponding to θ2. Its Poincaré sections are presented in Fig. 17. One can
also find a non-trivial particular solution when a3 = a4. The non-integrability
analysis is in progress.

(a) E=0.24, (b) E=0.3.

Fig. 17. The Poincaré sections for unfixed flail pendulum. Parameters: m1 = 2,
m2 = 1,m3 = 2,m4 = 1, a2 = a3 = a4 = 1, p2 = c = 3

2
, cross-plain θ3 = 0, p3 > 0.

9 Open problems

We proved non-integrability for some systems but usually only for parameters
that belong to a certain hypersurface in the space of parameters. It is an
open question about their integrability when parameters do not belong to
these hypersurfaces. Another problem is that for some systems we know only
very simple particular solutions that after reduction by one degree of freedom
transform into equilibrium. There is a question how to find another particular
solution for them.
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10 Appendix: Proof of non-integrability of the double
spring pendulum, Theorem 1

Proof. The Hamiltonian of the reduced system for p1 = c = 0 is equal to

H =
[
m2p

2
2x

2 + 2a1m2p2x(p2 cos θ2 + p3x sin θ2) + a21(m1(p22 + x2(p23

+km2(x− a2)2)) +m2(p2 cos θ2 + p3x sin θ2)2
]
/(2a21m1m2x

2),
(1)

and its Hamilton equations have particular solutions given by

θ2 = p2 = 0, ẋ =
p3
m2

, ṗ3 = k(a2 − x). (2)

We chose a solution on the level H(0, x, 0, p3) = E. Let [Θ2, X, P2, P3]T be
variations of [θ2, x, p2, p3]T . Then the variational equations along this particular
solution are following

Θ̇2

Ẋ

Ṗ2

Ṗ3

 =


p3(a1+x)
a1m1x

0
a2
1m1+m2(a1+x)2

a2
1m1m2x2 0

0 0 0 1
m2

− p2
3

m1
0 −p3(a1+x)

a1m1x
0

0 −k 0 0



Θ2

X
P2

P3

 , (3)

where x and p3 satisfy (2). Equations for Θ2 and P2 form a subsystem of normal
variational equations and can be rewritten as one second-order differential
equation

Θ̈ + PΘ̇ +QΘ = 0, Θ ≡ Θ2, P =
2a1p3(a1(m1 +m2) +m2x)

m2x(a21m1 +m2(a1 + x)2)
,

Q =
k(a1 + x)(x− a2)

m1a1x
− 2a21p

2
3

m2a1x(a21m1 +m2(a1 + x)2)
.

(4)

The following change of independent variable t −→ z = x(t) + a1, and then a
change of dependent variable

Θ = w exp

[
−1

2

∫ z

z0

p(ζ) dζ

]
(5)

transforms this equation into an equation with rational coefficients

w′′ = r(z)w, r(z) = −q(z) +
1

2
p′(z) +

1

4
p(z)2, (6)

where

p = [a21m1(−4E + k(2a22 + 3a1(a1 − 2z) + 5a2(a1 − z)) + 3kz2) +m2z(2a1a
2
2k

+ a1(−4E + a1k(2a1 − 3z)) + kz3 + a2k(a1 − z)(4a1 + z))]/[(a21m1 +m2z
2)

× (z − a1)(−2E + kz2 − (a1 + a2)k(2z − a1 − a2))],

q =
m2(a21m1(4E − k(2(a1 + a2)− 3z)(a1 + a2 − z)) + km2(a1 + a2 − z)z3)

a1m1(−2e+ k(a1 + a2 − z)2)(z − a1)(a21m1 +m2z2)
.

663



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

We underline that both transformations do not change identity component of
the differential Galois group, i.e. the identity components of differential Galois
groups of equation (4) and (6) are the same.

Differential Galois group of (6) can be obtained by the Kovacic algorithm
[7]. It determines the possible closed forms of solutions of (6) and simultanously
its differential Galois group G. It is organized in four cases: (I) Eq. (6) has an
exponential solution w = P exp[

∫
ω], P ∈ C[z], ω ∈ C(z) and G is a triangular

group, (II) (6) has solution w = exp[
∫
ω], where ω is algebraic function of degree

2 and G is the dihedral group, (III) all solutions of (6) are algebraic and G is
a finite group and (IV) (6) has no closed-form solution and G = SL(2,C). In
cases (II) and (III) G has always Abelian identity component, in case (I) this
component can be Abelian and in case (IV) it is not Abelian.

Equation (6) related with our system can only fall into cases (I) or (IV)
because its degree of inifinity is 1, for definition of degree of infinity, see [7].
Moreover, one can show that there is no algebraic function ω of degree 2 such
that w = exp[

∫
ω] satisfies (6) thus G = SL(2,C) with non-Abelian identity

component and the necessary integrability condition is not satisfied.
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9.M. Przybylska, W. Szumiński. Non-integrability of flail triple pendulum. Chaos,
Solitons & Fractals. After revision. arXiv:1211.6045 [nlin.CD].
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Abstract: Using the recently developed method, which presents the combination of the 

modulation technique with synchronous differential thermal measurements, we have 

demonstrated experimentally the existence of thermal surface energy (TSE) in metallic 

blocks with signal-to-noise ratio of several thousands. The TSE arises when there are 

changes of energy and momentum of the coupled field-particle system inside the material 

artifact, produced by the irradiation of the artifact surface by an external EM field. It is 

shown that the magnitude of TSE and the direction of its increase are defined by the 

Poynting vector of the external field. The fundamental features of the TSE - the lack of 

symmetry in space and the irreversible character of the process of its creation in time – 

are sufficient for the observation of the thermal hysteresis effect, whose hysteresis loop is 

reported. As the principle of superposition is demonstrated to be invalid in case of TSE, 

the thermal hysteresis curve converts in case of a continuous sweep in time into helical-

type curve, for which the form and the magnitude of each cycle are slightly different as a 

result of the non-linear interaction of heat sources of the Universe through TSE. As a 

result of non-linear character of interaction of quantum objects with EM field 

(established theoretically by N. F. Ramsey and experimentally by P. Kusch), the self-

ordering evolution process, observed for the thermal EM field, inevitably results in the 

same type of the evolution process in the whole energy spectrum of the EM field. The 

number of influence parameters in case of TSE is absolutely enormous, in confirmation 

of the previous theoretical studies of F. W. Cummings and Ali Dorri.   

Keywords: surface energy, thermodynamic temperature, hysteresis, synthesis.  

 

1. Introduction 

This communication we want to start with reminding of the theoretical 

prediction by Albert Einstein made in [1] that “classical thermodynamics can no 

longer be looked upon as applicable with precision…For the calculation of the 

free energy, the energy and the entropy of the boundary surface should also be 

considered”. The advancement of these ideas we find in [2a], where the thermal 

surface energy (TSE) is defined as the energy of boundary zones, located 

between the macroscopic parts of the system (sub-systems), in which the quasi-

equilibrium thermal conditions are realized. It is stated in [2a] that the TSE is 

proportional to the area of contact between the two sub-systems, and that the 

internal energy of the system can be considered as additive, only when the value 

of the TSE can be regarded as negligible. It is clear that in case of experimental 

demonstration of the TSE, the concept of thermodynamic temperature [2b] 

should be somehow modified and it should be, at least, in agreement with the 

notion of “temperature”, which is traditionally used in the J. Fourier thermal 

conduction theory [2c] and which definitely refers to thermal non-equilibrium 
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conditions. Meanwhile, in accordance with A. Einstein requirements formulated 

in [3], thermodynamics can be applied only to isolated systems, and 

additionally, when all the transients are finished [3]. 

 

2. 2. Experiment. 
The presented studies are based on the variation principle - one of the most 

general and powerful principles in experimental Physics. We have used a 

recently developed multi-channel synchronous detection technique (MSDT) 

[4a], which presents some modification of the famous R. Dicke’s method of 

synchronous detection. The specific feature of MSDT is that the modulation of 

the heat input to the system is realized through thermometer in one of the 

channels, and the detection is realized by several temperature sensors of the 

other channels [4a], which are located at different positions relative to the 

modulation source (Fig.1). In this case, the temperature information from the 

modulation channel can be used to find the synchronous temperature differences 

between the different points of the system, and, consequently, the propagation 

of the thermal signals can be precisely characterized both in time and in space.  

 
                        Fig.1. Simultaneous records of the resistance variations of the platinum resistance 

thermometer (PRT) and of two thermistors R6 and R3, located symmetrically relative to 

the PRT on the surface of the gauge block (as shown in the insert). During the current 

modulation cycle in the PRT, its current for ¼ of the modulation period is kept at the 

level of 5mA and ¾ of the period is kept at 1mA. The sensitivities of the thermistors are 

equal. The location of one of the gauging surfaces is shown by the arrow. 

 

A schematic outline of our experimental set-up and an example of unprocessed 

results of the measurements, performed on a homogeneous steel artifact, are 

presented in Fig.1. A steel (or tungsten carbide) gauge block (GB), with 

dimensions 9x35x100 mm, is located horizontally on three small-radius, 

polished spheres inside a closed Dewar. The Dewar is kept in a temperature 

controlled room, where typical temperature variations can be characterized by a 
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standard deviation σ of ~ 50mK. Two thermistors R6 and R3, belonging to 

channels 1 and 2 respectively, are installed on the surface of the GB in copper 

adapters, whose axes are parallel to the gauging surfaces. A 100-Ohm platinum 

resistance thermometer (PRT), also in a copper adapter, is located parallel to 

thermistors and at equal distances from their adapters. The PRT is connected to 

MI-bridge T615 (Canada), in which the current I is changed by step from 1 to 

5mA (Fig.1). The period of the modulation cycle is ~148 minutes, and for 37 

minutes the current I is 5mA, and for the rest of the modulation cycle it is held 

at 1mA level. In Fig.1, the PRT measurements correspond to the record with 

faster transients. Two other records show the variations of resistances of the two 

temperature calibrated thermistors R6 and R3, which have negative temperature 

coefficients. The thermistors are connected to high-precision multi-meters HP- 

35a, and are calibrated together with the multi-meters, using the procedure 

described in [4a]. Both thermistors have, practically, equal sensitivities. From 

Fig.1 it follows that the temperature difference between the channels T[1,2] for 

the last 25 minutes of the first cycle (shown in Fig.1) was 465.6µK with the 

standard deviation σ for a single measurement point 3.3µK. For the last 25 

minutes of the next cycle, the value of T[1,2] was 469.5µK, with a σ-value of 

2.3µK. Using a linear fit to the indicated reference points, the induced 

temperature variations ∆T[1,2] (at I=5mA) can be determined very precisely. 

When our detection system was moved as a whole, a fast decrease of the TSE 

with increase of the distance from the nearest gauging surface was found.  

y = 0.0006x + 0.0437
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Fig.2. Variations in time of the vector quantity ∆V[1,2], observed during the heating 

period (I=5ma) of the modulation cycle (dots)  and during the cooling period (I=1mA) of 

the modulation cycle (rhombi). Reference points are shown as squares.  
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In Fig.2 we present the dependence of the vector quantity ∆V[1,2], which 

corresponds to the difference in temperature velocities, observed in the channels 

1 and 2. This quantity describes the difference in the energy current densities, 

entering the elementary volumes inside the artifact in the vicinity of the 

thermistors R6 and R3. This follows from the Poynting’s theorem (see 

eq.(6.109) in [5]) and the continuity equation, written for the total energy 

density of a field-particle system [6]. The theorem says that the rate of change of 

the EM energy plus the total rate of work of the fields over the charged particles 

within the volume of a material artifact is equal to the flux of the Poynting 

vector, S, entering the volume of the artifact through its boundary surface (see 

eq.(6.111) in [5]). The vector S describes the energy current density of a 

dielectric material with arbitrary level of losses [6], and the continuity equation 

for the total energy density for the coupled field-particle system can be 

presented in the form (see eq.(2.17) in [6]): 

            (1). 
Here, W presents the total energy density, which contains the kinetic and 

potential energy densities of the of the optic vibrational mode and the energy 

density of the EM field; s is the relative spatial displacement field of two ions in 

the primitive unit cell; m is the reduced mass of two ions in the primitive unit 

cell, and Γ is the damping rate of the optical mode.  

 The rate of energy variations, described by the first two terms, is detected by 

resistance thermometers and corresponds to the experimentally measured 

thermal velocity at the specified point of the material artifact, as the reading of a 

thermometer depends on the power, absorbed from the external EM field. 
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Fig.3. The dependences of the quantity ∆V[1,2] on the PRT increment in power, 

obtained for the separations of the R6 axis from the nearest gauging surface of L=4.5mm 

(squares) and L=13.5mm (dots). 
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The dependences of Fig.3 demonstrate the established experimentally linear 

relation between the Poynting vector S of the external EM field and the vector 

quantity ∆V[1,2]. It is important that the excessive anti-symmetric energy flux 

does exist only at the beginning of the heating and cooling periods of the cycle. 
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Fig.4. Experimental demonstration of the anti-symmetric property of the quantity 

∆V[1,2] on the heat source position: squares are used to show the dependence, 

corresponding to the separation of the R6 axis from the nearest gauging surface of 

L=4.5mm, while dots correspond to the same separation of the R3 axis from the other 

gauging surface. 

 

Two dependencies in Fig.4 show that the vector quantity ∆V[1,2] presents an 

anti-symmetric function of the position of the heat source relative to the centre 

of the corresponding surface of the block. It means that the total thermal energy 

has no symmetry in space, as the major part of it is a symmetric function.  

Under the approximations of [6], for one dimensional case the cycled-averaged 

value of the total-energy current density in the z-direction <Sz> (the only 

nonzero component of the Poynting vector) is related to the cycle-averaged 

energy density <W> (see Eq. (2.19) in [6]) by a simple relation (4.16): 

 

<Sz> = ve <W>             … (3), 
where ve is the velocity vector of the energy propagation in the material. Both 

parameters, velocity ve and the energy density W, can be precisely determined 

from our experimental data. So, the energy current density of a guided EM 

wave, which cannot be calculated theoretically (as constitutive relations for the 

medium are not known [5]), can be measured experimentally. This also refers to 

the cycle averaged value of the corresponding component of wave momentum 

density <Gz>, which is equal to the ratio of total-energy density <W> and the 

value of the phase velocity vp. As the cycle-averaged rate of the energy 

conversion into heat <RH> [6] is given by the ratio <Sz > / L, (where L is 

the characteristic length of the decay of the field intensity), and <RH> defines 

the force density in the medium, the thermal hysteresis loop can be presented. 
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Fig.5. The thermal hysteresis loop for the quantity ∆T[1,2], corresponding to the 

temperature records of Figs. 1 and 2. The heating period of the cycle is shown by dots, 

while the cooling part is presented by rhombi. The time interval for the data points 

between arrows 1 and 3 is increased, as the temperature variations are negligible. 

 

The result of primary importance is illustrated by the dependences of Fig.6, 

from which it follows that the principle of superposition of EM fields is not 

valid for thermal energy.  
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Fig.6. .   The records of the quantity ∆T[1,2], that were obtained for the tungsten carbide 

block for the temperature differences between the channels T[1,2], which were produced 

by an external heat source and which were equal to -1.72mK (dots); -7.2mK (squares) 

and -12mK (rhombi).  
Here, we present the variations of the quantity ∆T[1,2] as a function of time in 

the presence of an additional heat source, when the measurements were 
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performed on a 100-mm tungsten carbide (TC) block, in which the process of 

the build-up of the TSE is found to be about 3 times faster than in the steel GB. 

From the plots of Fig.6 we infer that the induced temperature variations 

(produced by the PRT current modulation) are also affected by the presence of 

the auxiliary source of energy. As it follows from Figs.1-7, the evolution 

process is specific for any point inside the artefact, is irreversible in time and is 

described by enormous (practically, infinite) number of external parameters. 

(The distances and the orientations of all the interacting bodies are the necessary 

influence parameters for the description of TSE.) 

 

3. Conclusions 
Thermal evolution process, with the spiral-type curve and with the lack of 

symmetries in time and space, results from the existence of the surface energy 

and irreversible character of the Earth’s rotation.  

Experimental confirmation of the whole series of theoretical papers [7-9], 

dealing with the interaction of the EM field with an ensemble of atoms has been 

obtained. In agreement with [7,8], the evolution process is shown to depend on 

the number of particles, it is irreversible in time, and is characterized by the 

infinite number of influence parameters, as predicted by [9].  
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Abstract. By using double fixed point theorem, we study the existence of at least
two positive solutions of a second order multi-point boundary value problem.
Keywords: Positive solutions, Fixed point theorem, Boundary value problems.

1 Introduction

In this paper we consider the second order multi-point boundary value problem
(BVP) 

(φ(u′(t)))′ + q(t)f(t, u(t)) = 0, t ∈ (0, 1),

φ(u′(0)) =

m−2∑
i=1

aiφ(u′(ξi)), u(1) =

m−2∑
i=1

biu(ηi),
(1)

where ξi, ηi ∈ (0, 1)(i = 1, 2, ...,m− 2) with 0 < ξ1 < ξ2 < ... < ξm−2 < 1, 0 <
η1 < η2 < ... < ηm−2 < 1, φ : R → R is an increasing homeomorphism and
homomorphism with φ(0) = 0. A projection φ : R → R is called an increasing
homeomorphism and homomorphism if the following conditions are satisfied:
(i) If x ≤ y, then φ(x) ≤ φ(y), for all x, y ∈ R;
(ii) φ is continuous bijection and its inverse mapping is also continuous;
(iii) φ(xy) = φ(x)φ(y), for all x, y ∈ R, where R = (−∞,∞).

We assume that the following conditions are satisfied:

(A1) f ∈ C([0, 1]× R+,R+), q ∈ C[0, 1] is nonnegative,

(A2) ai ∈ [0,∞), bi ∈ [0,∞), i = 1, 2, ...,m − 2 with 0 <

m−2∑
i=1

ai < 1 and

0 <

m−2∑
i=1

bi < 1.

The study of multi-point boundary value problems for linear second-order
ordinary differential equations was initiated by Il’in and Moiseer [1]. Since
then, there has been a lot of recent attention focused on the study of nonlinear
multi-point boundary value problems, see [2–5]. We cite some appropriate
references here [6–9].
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In [8], Ji et al. studied the existence of multiple positive solutions for one-
dimensional p-Laplacian boundary value problem

(φ(u′(t)))′ + q(t)f(t, u(t)) = 0, t ∈ (0, 1),

u(0) =

n∑
i=1

αiu(ξi), u(1) =

n∑
i=1

βiu(ξi).
(2)

The authors established the existence of multiple positive solutions (2) by using
fixed point theorem in a cone.

In [9], Ma et al. studied the existence of positive solutions for multi-point
boundary value problem with p-Laplacian operator

(φ(u′(t)))′ + q(t)f(t, u(t)) = 0, t ∈ (0, 1),

u′(0) =

n∑
i=1

αiu
′(ξi), u(1) =

n∑
i=1

βiu(ξi).
(3)

In this paper, motivated by the above research efforts on multi-point bound-
ary value problems, criteria for the existence of at least two positive solutions
of the BVP (1) are established by using the double fixed point theorem. Thus,
our results are new for differential equations.

This paper is organized as follows. In Section 2, we give some preliminary
lemmas which are key tools for our proof. The main result is given in Section
3.

2 Preliminaries

In this section, we give some lemmas which are useful for our main result.
We consider the Banach space B = C1[0, 1] endowed with the norm

‖u‖ = max
0≤t≤1

|u(t)|.

Define the cone P ⊂ B by

P = {u ∈ B : u is a concave, nonnegative and nonincreasing function,

u(1) =
∑m−2
i=1 biu(ηi)}.

Lemma 1. If u ∈ P, then min
0≤t≤1

u(t) ≥M‖u‖, where M =

m−2∑
i=1

bi(1− ηi)

1−

m−2∑
i=1

biηi

.

Proof. Since u ∈ P, nonnegative and nonincreasing ‖u‖ = u(0), min
0≤t≤1

u(t) =

u(1). On the other hand, u(t) is concave on [0, 1]. So, for every t ∈ [0, 1], we
have

u(t) ≥ (1− t)u(0) + tu(1).
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Therefore,

m−2∑
i=1

biu(ηi) ≥
m−2∑
i=1

bi(1− ηi)u(0) +

m−2∑
i=1

biηiu(1).

This together with u(1) =
∑m−2
i=1 biu(ηi), implies that

u(1) ≥

m−2∑
i=1

bi(1− ηi)

1−
m−2∑
i=1

biηi

u(0).

So, the proof of Lemma is completed. �

Lemma 2. Assume that (A1), (A2) hold. Then u ∈ C1[0, 1] is a solution to
problem (1) if and only if u is a solution to the integral equation:

u(t) =

∫ 1

t

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds

+
1

1−
m−2∑
i=1

bi

m−2∑
i=1

bi

∫ 1

ηi

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds, (4)

where

A =
1

1−
m−2∑
i=1

ai

m−2∑
i=1

ai

∫ ξi

0

q(s)f(s, u(s))ds. (5)

Proof. First, suppose that u ∈ C1[0, 1] is a solution of problem (1). Integrating
the equation (1) from 0 to t, one has

−φ(u′(t)) + φ(u′(0)) =

∫ t

0

f(s, u(s))ds. (6)

and taking t = ξi in (6), we get

m−2∑
i=1

aiφ(u′(ξi)) =

m−2∑
i=1

aiφ(u′(0))−
m−2∑
i=1

ai

∫ ξi

0

q(s)f(s, u(s))ds

Since φ(u′(0)) =

m−2∑
i=1

αiφ(u′(ξi)), we have

φ(u′(0)) = − 1

1−
m−2∑
i=1

αi

m−2∑
i=1

αi

∫ ξi

0

q(s)f(s, u(s))ds = −A (7)
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Substituting (7) into (6), we get

u′(t) = −φ−1
(∫ t

0

q(s)f(s, u(s))ds+A

)
. (8)

Integrating the equation (8) from t to 1, one has

u(t) = u(1) +

∫ 1

t

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
, (9)

and taking t = ηj in (9), we get

m−2∑
i=1

biu(ηi) = u(1)

m−2∑
i=1

bi +

m−2∑
i=1

bi

∫ 1

ηi

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds.

Since u(1) =

m−2∑
i=1

biu(ηi),

u(1) =
1

1−
m−2∑
i=1

bi

[

m−2∑
i=1

bi

∫ 1

ηi

φ−1

(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds. (10)

Substituting (10) into (9), we get (4), which completes the proof of sufficiency.
Conversely, if u ∈ C1[0, 1] is a solution to (4), apparently

(φ(u′(t)))′ = −q(t)f(t, u(t)),

φ(u′(0)) =

m−2∑
i=1

aiφp(u
′(ξi)), u(1) =

m−2∑
i=1

biu(ηi).

The proof is complete. �

Now define an operator T : P −→ B by

Tu(t) =

∫ 1

t

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds

+
1

1−
m−2∑
i=1

bi

m−2∑
i=1

bi

∫ 1

ηi

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds. (11)

Lemma 3. Assume that (A1) − (A2) hold. Then T : P → P is a completely
continuous operator.

Proof. It is clear that TP ⊂ P and T : P → P is a completely continuous
operator by a standard application of the Arzela-Ascoli theorem.
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3 Main Results

In this section we state and prove our main result. The following fixed point
theorem is fundamental and important to the proof of main result.

For a nonnegative continuous functional γ on a cone P in a real Banach
space B, and each d > 0, we set

P(γ, d) = {x ∈ P| γ(x) < d}.

Lemma 4. (Double Fixed Point Theorem) [10] Let P be a cone in a real Ba-
nach space B. Let α and γ be increasing, nonnegative, continuous functionals
on P, and let θ be a nonnegative, continuous functional on P with θ(0) = 0
such that, for some c > 0 and M > 0,

γ(u) ≤ θ(u) ≤ α(u) and ‖u‖ ≤Mγ(u)

for all u ∈ P(γ, c). Suppose that there exist positive numbers a and b with
a < b < c such that

θ(λu) ≤ λθ(u), for 0 ≤ λ ≤ 1 and u ∈ ∂P(θ, b)

and

T : P(γ, c)→ P

is a completely continuous operator such that:

(i) γ(Tu) > c, for all u ∈ ∂P(γ, c);
(ii) θ(Tu) < b, for all x ∈ ∂P(θ, b);

(iii) K(α, a) 6= ∅, and α(Tu) > a, for all u ∈ ∂K(α, a).

Then T has at least two fixed points, u1 and u2 belonging to P(γ, c) such that

a < α(u1), with θ(u1) < b,

and

b < θ(u2), with γ(u2) < c.

Let us define the increasing, nonnegative, continuous functionals γ, β, and
α on P by

γ(u) = min
0≤t≤ξ1

u(t) = u(ξ1),

β(u) = max
ξ1≤t≤ξn−2

u(t) = u(ξ1),

α(u) = max
0≤t≤ξn−2

u(t) = u(0).

It is obvious that for each u ∈ P,

γ(u) ≤ β(u) ≤ α(u).
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In addition, from by Lemma 1, for each u ∈ P,

‖u‖ ≤ 1

M
min
0≤t≤1

u(t) ≤ 1

M
min

0≤t≤ξ1
u(t) =

1

M
γ(u).

Thus,

‖u‖ ≤ 1

M
γ(u), ∀u ∈ P.

For the convenience, we denote

K = (1− ξ1)φ−1

(∫ ξ1

0

q(τ)dτ

)
,

L =
1

1−
m−2∑
i=1

bi

φ−1

(
1

1−
∑m−2
i=1 ai

∫ ξ1

0

q(τ)dτ

)
.

Theorem 1. Suppose that assumptions (A1), (A2) are satisfied. Let there exist
positive numbers a < b < c such that

0 < a <
K

L
b <

KM

L
c,

and assume that f satisfies the following conditions

(A3) f(t, u) > φ
(
c
K

)
, for all (t, u) ∈ [0, ξ1]× [c, 1

M c],

(A4) f(t, u) < φ
(
b
L

)
, for all (t, u) ∈ [0, 1]× [0, 1

M b],
(A5) f(t, u) > φ

(
a
K

)
, for all (t, u) ∈ [0, 1]× [0, a].

Then the boundary value problem (1) has at least two positive solutions u1 and
u2 satisfying

a < α(u1) with β(u1) < b, b < β(u2) with γ(u2) < c.

Proof. We define the completely continuous operator T by (11). So, it is easy
to check that T : P(γ, c)→ P. We now show that all the conditions of Lemma
4 are satisfied. In order to show that condition (i) of Lemma 4, we choose
u ∈ ∂P(γ, c). Then γ(u) = min

0≤t≤ξ1
u(t) = u(ξ1) = c, this implies that c ≤ u(t)

for t ∈ [0, ξ1]. Recalling that ‖u‖ ≤ 1
M γ(u) = 1

M c, we get

c ≤ u(t) ≤ 1

M
c, t ∈ [0, ξ1].

Then assumption (A3) implies f(t, u) > φ
(
c
A

)
, for all (t, u) ∈ [0, ξ1] ×

[c, 1
M c]. Therefore,

γ(Tu) = min
t∈[0,ξ1]

(Tu)(t) = (Tu)(ξ1)

≥
∫ 1

ξ1

φ−1

(∫ ξ1

0

q(τ)f(r, u(r))dτ

)
ds >

c

K
(1− ξ1)φ−1

(∫ ξ1

0

q(τ)dτ

)
= c.
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Hence, condition (i) is satisfied.
Secondly, we show that (ii) of Lemma 4 is satisfied. For this, we select

u ∈ ∂P(β, b). Then, β(u) = max
t∈[ξ1,ξn−2]

u(t) = u(ξ1) = b, this means 0 ≤ u(t) ≤ b,

for all t ∈ [ξ1, 1]. Noticing that ‖u‖ ≤ 1
M γ(u) = 1

M β(u) = 1
M b, we get

0 ≤ u(t) ≤ 1

M
b, for 0 ≤ t ≤ 1.

Then, assumption (A4) implies f(t, u) < φ
(
b
L

)
. Therefore

β(Tu) = max
t∈[ξ1,ξm−2]

(Tu)(t) = (Tu)(ξ1)

≤ 1

1−
m−2∑
i=1

bi

φ−1

 1

1−
m−2∑
i=1

ai

∫ 1

0

q(τ)f(τ, u(τ))dτ



<
b

L

1

1−
m−2∑
i=1

bi

φ−1

 1

1−
m−2∑
i=1

ai

∫ 1

0

q(τ)dτ

 = b.

So, we get β(Tu) < b. Hence, condition (ii) is satisfied.
Finally, we show that the condition (iii) of Lemma 4 is satisfied. We note

that u(t) = a


m−2∑
i=1

bi − 1

1−

m−2∑
i=1

biηi

t+ 1

 , 0 ≤ t ≤ 1 is a member of P(α, a), and so

P(α, a) 6= ∅. Now, let u ∈ ∂P(α, a). Then α(u) = max
t∈[0,ξn−2]

u(t) = u(0) = a.

This implies

0 ≤ u(t) ≤ a, t ∈ [0, 1].

By assumption (A5), f(t, u) > φ
(
a
A

)
. Then,

α(Tu) = max
t∈[0,ξn−2]

(Tu)(t) = (Tu)(0)

≥
∫ 1

ξ1

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ

)
ds

> (1− ξ1)
a

A
φ−1

(∫ ξ1

0

q(τ)dτ

)
= a.

So, we get α(Tu) > a. Thus, (iii) of Lemma 4 is satisfied. Hence, the boundary
value problem (1) has at least two positive solutions u1 and u2 satisfying

a < α(u1) with β(u1) < b, and b < β(u2) with γ(u2) < c.

�

679



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

References

1.V. A. Il’in and E. I. Moiseer. Nonlocal boundary value problem of the second kind
for a Sturm-Liouville operator. Differential Equations, 23:979-987, 1987.

2.C. Bai and J. Fang. Existence of multiple positive solutions for nonlinear m-point
boundary value problems. J. Math. Anal. Appl., 281:76-85, 2003.

3.C. Bai and J. Fang. Existence of multiple positive solutions for nonlinear m-point
boundary value problems. Appl. Math. Comput., 140:297-305, 2003.

4.K. Q. Lan. Multiple positive solutions of semilinear differential equations with sin-
gularities. J. London Math. Soc., 63:690-704, 2005.

5.R. Ma. Existence theorem for a second order m-point boundary value problem. J.
Math. Anal. Appl. 211:545-555, 1997.

6.J. Y. Wang and W. J. Guo. A singular boundary value problem for the one-
dimensional p-Laplacian. J. Math. Anal. Appl. 201:851-866, 1996.

7.Y. Wang and C. Hou. Existence of multiple positive solutions for one-dimensional
p-Laplacian. J. Math. Anal. Appl. 315:144-153, 2006.

8.D. Ji, M. Feng and W. Ge. Multiple positive solutions for multipoint boundary
value problems with sign changing nonlinearity. Appl. Math. Comput., 196:511-
520, 2008.

9.D. Ma, Z. Du and W. Ge. Existence and iteration of monotone positive solutions for
multipoint boundary value problem with p-Laplacian operator. Comput. Math.
Appl., 50:729-739, 2005.

10.R. I. Avery and J. Henderson. Two positive fixed points of nonlinear operators on
ordered Banach spaces. Comm. Appl. Nonlin. Anal., 8:27-36, 2000.

680



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

Adaptive Backstepping Controller Design for an 
Electro Hydraulic Servo System 

 
Touati Brahim A. 

 
Department of automation, University of Boumerdes  Boumerdes, Algeria  
E-mail: ammar.touati@yahoo.fr 
 

Kidouche M. 
 
Department of automation, University of Boumerdes  Boumerdes, Algeria  
E-mail: kidouche_m@hotmail.com 
 
Abstract: In this paper, an adaptive backstepping controller with tuning functions is 
designed to enhance tracking performance of electro hydraulic servo system (EHSS). A 
complete fifth-order nonlinear model of EHSS is presented, in addition to the use of 
valve dynamics, the friction force considered is nonlinear and the adaptive controller 
handles with viscous friction and the external disturbance. Simulation results are 
presented verifying the effectiveness of the developed controller. 
Keywords: adaptive backstepping control, tuning functions, electro-hydraulic servo 
system, nonlinear friction force 
 

1. Introduction 
Electro hydraulic servo systems (EHSS) have been widely used in industrial 
applications by virtue of their small size-to-power ratios and the ability to apply 
very large forces and torques with fast response times. However, hydraulic 
systems also have a number of characteristics which complicate the 
development of high performance closed-loop controllers such as the highly 
nonlinear dynamics of hydraulic systems [1]. The system may be subjected to 
non-smooth and discontinuous nonlinearities due to control input saturation, 
directional change of valve opening, friction, and valve overlap. Valves also 
contain non-measurable states (position and velocity). Aside from the nonlinear 
nature of hydraulic dynamics, EHSS also have large extent of model 
uncertainties, such as the external disturbances and leakage that cannot be 
modelled exactly; and the nonlinear functions that describe them may not be 
known. In the past, much of the work in the control of hydraulic systems uses 
linear control theory [2, 3, 4] and feedback linearization techniques [5, 6]. In 
[7], nonlinear adaptive control is applied to the force control of an active 
suspension driven by a double-rod cylinder where only the parametric 
uncertainties of the cylinder are considered in [8] an adaptive sliding mode 
controller combined with novel-type Lyapunov function has been developed to 
compensate nonlinear uncertain parameters caused by the various original 
control volumes. In [9] novel approach has decomposed the  EHSS  into two 
subsystems using graph theoretic decomposition then back integrating to 
construct the Lyapunov function . 
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During the last decade, backstepping based design have emerged as powerful 
tools for stabilizing nonlinear systems for tracking and regulation purposes [10]. 
In [11] integrator backstepping is used to construct a controller which includes 
the friction compensation. In [12, 13] an adaptive backstepping control of 
hydraulic manipulators with friction compensation is presented. A third-order 
nonlinear dynamic model is used for the controller design while LuGre dynamic 
friction model characterizes the friction forces. In [14], Choux and Hovland 
developed an adaptive backstepping controller for a nonlinear hydraulic-
mechanical system considering valve dynamics and linear friction force. 
In this paper, we develop an adaptive backstepping controller for a complete 
fifth order dynamic model of an electro-hydraulic servo system.  In addition to 
the use of valve dynamics, the friction force considered is nonlinear and the 
adaptive controller handles with viscous friction and the external disturbance. 
Simulation results are presented verifying the effectiveness of the developed 
controller. 
 
2. System dynamics 
In this paper the hydraulic-mechanical system shown in Fig.1 is considered [1]. 
The goal of the controller is to make the mass position  xL track the reference. 
The system is given by the following state equations 
 

 

P1 P2

PL=P1‐P2 

PS

P1  Q1 P2  Q2

S

xL

PT

Servo valve 

 
Fig. 1. A hydraulic actuator with four-way valve configuration. 
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Certain particular assumptions are also considered as follows: 

Assumption 1: The nonlinear function   is defined by the 

inequality ,and  ([7,15]). As 

maximum value we can consider . 
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Assumption 2: Assuming a symmetrical valve, where only positive spool 

displacement ( ) can be studied the valve flow equation can now be simplified 
as 

vx

LPS PvCxLQ     

Under the above assumption the system (6) can be written as 

)7(.),(
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3. Adaptive backstepping controller design 
System in (7) is in strict feedback form with an unknown non constant virtual 
control coefficient )(3 xb  . An extension of the tuning functions design 

presented in [10] for the above system is described as follows: 
Step 1. Introducing the first two error variables 

)9(.

)8(.
)1(

122

11

r

r

xxz

xxz





  
We rewrite  , the first equation of (7), as  )( 1121 xxx T

)10(.)( 11121  xwzz T  
where, for uniformity with subsequent steps, we have defined the first regressor 
vector as 

)11(.0)( 111   xw T

 
Our task in this step is to stabilize (10) with respect to the Lyapunov function 

)12(.
2

1

2

1 12
11   TzV

 
where  is a positive definite matrix and  ˆ~

 . 
The derivative of (12) along the solutions of (10) is 

)13(.21
2
111 zzzcV 

 

We can eliminate from , with the update law   Where ~ 1V 1
ˆ  

)14(.0)( 1111  zxw  
If were our actual control, we would let 2x 02 z , that is, 12 x . Then to 

make  , we would choose 2
111 zcV

)15(.111 zc  
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But since is not our control we have2x 02 z  , and we do not use , 

as an update law. Instead, we retain 
1

ˆ  

1 as our first tuning function and tolerate 

the presence of ~ in  : 1V

)16().ˆ(ˆ
1

1
21

2
111     TzzzcV  

The second term  in  will be cancelled at the next step. With 
21 zz 1

V 1 as in 

(14), the -system becomes 1z
)17(.2111 zzcz    

Step 2. We now consider that  is the control variable in the second equation 

of (7). Introducing 
3x
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233 rxxz    

We rewrite  as  ),( 21232 xxxx T

)19(.ˆ
ˆ

)1(11
2

1

1
2232 r

r

T x
x

x
x

wzz



















 


 
Where the second regressor vector  is defined as 2w
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Our task in this step is to stabilize the -system (17), (19) with respect to ),( 21 zz
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We retain 2  as our second tuning function in the term 2 , which replaces  . 

However, we do not use as an update law, so that the resulting  is 

̂

2
ˆ   2V

)23).(ˆ(
~

)ˆ(
ˆ

1
22

1
232

2
22

2
112 


  



 TzzzzczcV

 

the  becomes 2z
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Step 3. Proceeding to the third equation in (7) we introduce 

)25(.
)(

ˆ )3(
344 rx

x
xz


   

684



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

where
3

1
ˆ

b
 ,and rewrite  as 

                                                                                    (26) 

 ),()( 323433 xxxxbx T

)3(
rx233 xz  

 

 where the third regressor vector is defined as  3w

)27(.
2

1

2
33 j

j jx
w 


 

 


  

Our task in this step is to stabilize the -system with respect to ),,( 321 zzz

)28(.~
2

~

2

1

2

1 232
3

2
323 


b

bzVV   

Whose derivative )ˆ(
~ 1

332
2
22

2
113    wzzczcV T

 

)29(.~)))((()(ˆ 3
33

3
3433 


 b

zrxbzzxb    

We can eliminate ̂ from with the update law 3V

 )30())()((ˆ .33
3

3 zrxbsign    

the becomes 3z

3432333

~
)(ˆ wzxbzzcz T   

 

)31(.)(
~~))(( 433

3
3 zxbrxb     

Step 4. we introduce  

)32(.
)(

ˆ )4(
455 rx

x
xz


    

and  rewrite as Txx 454 







 








 3
44

)3(
454

ˆ~

)(

ˆ TT
r wx

x
zz







 ˆ
)(2

ˆ
)(2

ˆ 32

)3(

432

)3(
Trr

x

x

s

m
xb

x

x

s

m


 

)33(.ˆ
ˆ
3

3

1

3)(
3

1
)1(

3
1

3

1

3 




 

















 





T
k

k k

k
r

k
k

r
k

k k x
x

x
x

x

 

where the third regressor vector  is defined as 4w
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Step 5. At the final step, we introduce 
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5. Simulation results 
Results of simulations are presented in this section, the dynamics model of the 
valve is represented by a second order transfer function, the friction in the 
cylinder is nonlinear and moreover the compressibility of the fluid is not 
neglected  inside the load and thus can the cylinder accumulate fluid. The values 
of the system parameters used in the model are in [17]. 
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Fig 5. Position tracking using                                     Fig 6. . Controller effort using 
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5. Conclusion 
A systematic methodology for the design of a nonlinear adaptive backstepping 
controller for single rod electro-hydraulic servo actuator has been presented in 
this work. The model used for the controller design is a nonlinear fifth-order 
system model which takes into account the valve dynamic system. The friction 
force is considered nonlinear which has enhanced the modelling and as result 
the transient performance. Finally, the simulations confirm that the new 
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proposed control law is effective and robust against parametric uncertainties and 
achieves satisfactory the tracking task in different reference inputs 
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Approche probabiliste de la fonction conduite d’un aquifère hétérogène. 
Exemple de la plaine d’Annaba-Algérie 
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Résumé : Encaissée dans un bassin subsident, la plaine d’Annaba renferme un système aquifère multicouche à structure 
complexe. Les alluvions grossières s’y  concentrent en chenaux extrêmement productifs mais dans les interfluves, les 
formations  marneuses forment de hauts fonds à potentiel hydraulique médiocre. Bien qu’il existe une continuité 
hydraulique au sein des sédiments, la forte hétérogénéité qui les caractérise, induit une répartition chaotique de leurs 
propriétés hydrodynamiques. Face à un tel désordre, la fonction  de transfert de l’aquifère est identifiée par une 
approche probabiliste, basée sur la théorie des variables régionalisée [1]. L’approche choisie porte sur la quantification des 
lois spatiales de ce paramètre hydrodynamique et l’estimation de ses valeurs moyennes par la technique du krigeage ordinaire.  
L’évaluation de ce paramètre est ensuite affinée grâce à la géostatistique multivariable (cokrigeage, méthode régressive) qui permet 
l’implication de procédés géophysiques fiables et peu onéreux. La recherche fournit dans un cadre probabiliste, les éléments 
cartographiques indispensables à une implantation judicieuse d’ouvrages de captage. 
 
Mots clés:   Seybouse - Théorie des variables régionalisées – Transmissivité- Résistance Transversale.  
 
1. Un aquifère hétérogène  
 
L’étude géologique révèle la nature complexe des matériaux comblant la plaine d’Annaba-centre (Fig.4d). On y 
reconnaît, des niveaux discontinus de graviers et sables d’âge plio-quaternaire,  séparés parfois par de faibles 
épaisseurs d’argile lenticulaire [2]. Exploités par une centaine de forages, ils constituent un réservoir économiquement 
intéressant [2]. L’hétérogénéité du milieu justifie le recours à la théorie des fonctions aléatoires. 
 
2. Méthodologie 
 
2.1. Le krigeage ordinaire : La valeur estimée d’une variable régionalisée est donnée par une moyenne pondérée de 

valeurs mesurées, selon la formule [3 & 4]: ( )Z Z x Zi
i

i

n

0 0 0
1

∗ ∗

=
= = ∑λ  

Z0
∗  est l’estimation de la valeur exacte Z0 au point x0. Le problème consiste à trouver les poids λi qui donneront la 

meilleure estimation possible.  

 
Fig. 1- Variogramme expérimental et 

ajustement théorique- γ(h) = 0.15 Lin(16) +0.075 
 
La reconnaissance optimale du champ des transmissivités  requiert les étapes successives suivantes [5] : 1) 
-Transformation logarithmique des transmissivités, en vertu d’une  corrélation plus forte de Z = LogT ; 2) - Estimation 
du variogramme expérimental à partir d’un échantillonnage  discret du paramètre étudié  (Fig. 1); 3) - ajustement 
d’une fonction théorique au variogramme brut (Fig. 1) ; 4) - contrôle par « validation croisée » de la pertinence des 
modèles retenus. [7, 8] ; 5)- cartographie des Transmissivités par krigeage ordinaire, avec un « voisinage glissant » [6].  
 
2.2.  La Géostatistique multivariable : Il s’agira ici de régénérer le champ des transmissivités dans des secteurs où 
l’information hydrodynamique fait défaut par absence de forages, en ayant recours à la prospection électrique 
(Résistance Transversale) (F.ig. 4a, b et c).  
 
Krigeage associé à une régression linéaire : La méthode est appliquée dès lors qu’on aie pu dégager des relations 
linéaires évidentes entre la transmissivité et la résistance transversale (Fig.2 & 4ab )  
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Fig. 2-  Droite d’ajustement par régression linéaire 

LogT = 0.719 LogRt – 4.875 – 
 

Le cokrigeage permet, lui, d’estimer une variable régionalisée en utilisant en même temps les mesures de plusieurs 
variables (Fig.3). Dans le cas de K variables, l’estimation pour la rième variable s’écrit [7 & 8]: 

( ) ( )Z x Z xr i
p

p i
i

n

p

K p
∗

==
= ∑∑0

11
λ  

 

 
Fig.3-Variogramme croisé.                              

 
3. Discussion 
 
Krigeage ordinaire: La carte krigée relative à la plaine d’Annaba (non reproduite ici) est peu nuancée. On y distingue 
néanmoins une zone de bonnes transmissivités le long de la vallée de la Seybouse.  
 
Méthode régressive : La carte des transmissivités relative à la plaine de la Seybouse (Fig.5a) parait plus nuancée, avec 
des valeurs fluctuant dans une gamme plus large (0.8 10-3 à 8.5.10-3 m2/s). On notera l’apparition d’une anomalie à 
fortes valeurs (8.10-3 m2/s) au sud-ouest des Salines tandis que toute la partie orientale du domaine,  est caractérisée 
par des valeurs plus basses (2 à 4.10-3 m2/s).  
 
Le cokrigeage : La carte en courbes isovaleurs, (Fig. 5b) se révèle nettement plus différenciée que les précédentes. La 
carte montre trois secteurs distincts qui coïncident avec des zones de subsidence bien précises.  
- Le secteur occidental qui englobe la vallée de l’oued Seybouse, concorde avec l’axe du bassin d’effondrement de 
Ben-Ahmed. Il se caractérise par les valeurs de transmissivité les plus élevées (710-3  à 10,6. 10-3 m2/s). Dans ce 
secteur fortement subsident, l’oued Seybouse a creusé de véritables canyons dans les argiles de la plaine. Ces canyons 
ont été, par la suite, remblayés de dépôts grossiers à forte perméabilité. Erosion et sédimentation ont, au cours du 
quaternaire,  aboutit à la formation d’un paléo-chenal allongé, à écoulement préférentiel.  
- Le secteur central correspond au haut fond qui sépare le fossé d’effondrement de Ben Ahmed à l’ouest, du fossé 
d’effondrement de Ben M’Hidi à l’est. Ce  horst qui est représenté à l’affleurement par la butte numidienne de 
Daroussa tend à s’ennoyer sous les sédiments à mesure que l’on se rapproche de la mer. Dans ce secteur, partiellement 
épargné par les phases d’érosion et de comblement,  les forages ont une productivité relativement faible.  
- Le secteur oriental, enfin, correspond au fossé d’effondrement de Ben-M’Hidi dont l’axe est orienté selon la direction 
NE-SW. Les apports détritiques grossiers sont ici de nouveau abondants mais leur perméabilité moins importante, ce qui 
contribue à accroître de façon modérée la transmissivité du système aquifère.   
On remarquera en conclusion, que la structure des nappes profondes est assez bien rendue et les nombreuses anomalies 
concentriques prouvent bien l’existence de poches graveleuses très perméables au sein d’un encaissant plus stérile.  
 
4. Conclusion 
 
La géostatistique, utilisée ici sous différentes formes, s’avère un outil intéressant pour décrire la variabilité spatiale des 
transmissivités.  Le cokrigeage qui intègre des informations géophysiques bien  réparties, offre semble-t-il les 
estimations les plus nuancées et les plus réalistes.  
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Fig. 4- Réseau de mesures et coupe géologique simplifiée. 
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Fig. 5- Carte des transmissivités obtenues par la méthode régressive (a) et par cokrigeage (b). 
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