
 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

Simulation of a Network Circulars Patch Antennas 

for the Wireless Communications 
 

Adnane Latif  

 

Cadi Ayyad University,  Marrakech, Morocco  

E-mail: a.latif@uca.ma, latif_adnane@yahoo.fr 

 

Abstract:  

The  objective of this paper is the design a linear network of  3 circular patch antennas 

and the study its radiation diagrams which  is formed by multiplying a diagram  of a 

single patch antenna by the factor of a  linear network in the  two planes E  and H .In fact 

, the change excitation phase β which is considered as very important parameter in the 

patch antenna network design  is adjusted while all the other factors are fixed, thus, the 

different radiation diagrams of the network in two planes are obtained . 

Keywords: Patch antenna, Array antennas, Wireless communications, Radiation 

Diagramm,  Simulation of antenna  network.  

 

1. Introduction 
The use of a single patch antenna is often insufficient to meet the constraints 

imposed by radiation. Specific characteristics such as high gain or a main lobe 

comply can usually be obtained only by grouping several sources radiating to 

form a system called "network". A network of antennas consists of a group of 

identical sources. The spacing of the sources called “network step” which is a 

basic parameter in the design of a network patch antenna. 

These sources are fed by a splitter (distribution system) which defines a law of 

supply in module and in phase. The major advantage of the network of antennas 

is the ability to create a radiation beam adjustable and shaped   in all directions 

according to the law of supply and the number of elements. The group in the 

simplest network is obtained with a number of identical sources that are 

deduced from each other by translation to form linear networks and plans. 

For the linear network, we seek to conform the radiation diagram only in the 

plane containing the sources. In a modification of the radiation diagram over the 

entire hemisphere, the elementary sources must be arranged in the two-

dimensional network. 

In an antennas network, the energy is distributed between various sources 

radiating in a given law: the radiation characteristics of the system depends on 

the radiation diagram of the base element, the coefficients of excitation in 

amplitude and in phase on each source and the distance between elements. 

These networks consist of circular radiating elements connected in chain with 

each other by short cut of microstrip line. The supply network of the antenna 

will aim to bring energy to the various sources according to the law of 

weighting (balance). The simplest technique is to feed the radiating elements by 

microstrip lines. 
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2. Radiation Diagram of a Network of Circular Patch Antenna  

 
A linear network with uniform spacing is illustrated in Figure 1.1 where N 

isotropic radiating elements are excited by a plane wave generated from source 

situated in a far field. The field radiated by an antenna network is the vector 

summation of fields radiated by each element. By properly selecting the spacing 

between the elements and power law, we can change the directivity and the 

radiation direction of the network.  

 
Figure 1 .Network of  N circular patch aligned along the z axis 

 

 θ: The angle between the z axis is the direction of radiation 

 φ:    The angle between the projection of the direction of radiation and x-axis 

 β:    The phase of current between two successive elements in the network 

 

3. Simulation of a Linear Network Formed by Three Circular 

Patch Antennas  
The simulation of linear network will be made on two softwares MATLAB and 

PCAAD. The used parameters of this antenna are: 

 

The ray of the patch          a =3cm 

The dielectric constant     ɛr =2.33 

The thickness dielectric     h=0.159cm 

Frequency of resonance   fr =2.3 GHz 

Length of wave                 λ =3cm 

 

For this network the number of patches is N = 3 is the spacing between the 

elements is fixed at 7cm. 

The results of the program developed in MATLAB are mounted in the figures 2 

and 3, in which  visualizes the network factor of the 3 antennas patch polar 

coordinates and Cartesian coordinates, and the radiation diagram of  a single 

circular patch antenna and the radiation diagram of the  network of 3 circular 

patch antennas.  
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3.1 In the E Plane(φ=0)  

For different values of phase network  , it visualizes the diagram of radiation 

observed in the network plan E. The result is shown on the figures below: 
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Figure 2. Diagram of radiation linear network with  N = 3  in the E plane 

(MATLAB) 

 

For the results we have found for the same values of phase network   using the 

software PCAAD are shown below Fig.3: 

329



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

                   
                     360,0                                                           45  

                           
                                90                                                            130  

                                                                                         
                   300 °                                    345  

 

Figure 3. Diagram of radiation linear network with N = 3 in the E plane 

(PCAAD) 

 

One observes from these figures that the simulation results for a linear array of 3 

three antennas circular patch found by our program developed in MATLAB and 

the results found by the software PCAAD are almost the same 

3.2 In the H Plane (φ=90°) 

For different values of phase network  , it visualizes the diagram of radiation 

observed in the network plan H. The result is shown on the figures below: 
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Figure 4.  Diagram of radiation linear network with N = 3 in the E plane 

(MATLAB) 

 

333



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

For the results we have found for the same values of phase network   using 

the software PCAAD are shown below Figure 5: 
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Figure 5.  Diagram of radiation linear network with N = 3 in the H plane 

(PCAAD) 

 

The simulation results for the linear network of 3 circular patch antennas in H 

plan our program developed in MATLAB and the results found by the PCAAD 

software are almost the same. 
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4. Conclusions 
In E plane:  According to the result given by the software PCAAD and those 

found by MATLAB: We observe that the phase variation of excitation 

influences only on the directivity pattern.  a good directivity of the radiation 

diagram is observed for 0  (12.0 dB).  We observe also an increase in 

modulus of the deflection angle is obtained by varying the phase excitation from 
00   (where the deflection angle equal to  

00  )  to 
0130  (or 

deviation angle equal to 
033 ) after it decreases from 

0300  (where 

deflection angle equal to
015 ). On the main lobe amplitude is reduced by 

increasing the phase excitation from
00  to 

0130 at the same time the 

amplitude of side lobes increases, but the main lobe amplitude starts has 

increased from
0300 . 

In H plane:  According to the result given by the software MATLAB and 

PCAAD: It is observed that an increase in excitation phase has an effect only on 

the directivity of the network diagram, on the other hand the width of 3dB beam 

remains constant during this phase variation of excitation (76.7 °) as well as 

deflection angle of main lobe is always zero (0 °). In order the directivity 

remains constant for the value  = 0 °, 45 ° (its value equal to 12dB), begins to 

decline after increasing the excitation phase (  = 90 ° for the value of 

directivity is 11.8dB, for = 130 No value of directivity is 11.1dB), after 

beginning to increase for   = 300 ° (11.9dB), and  = 345 (12dB). 
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Abstract: The kINPen MED atmospheric pressure plasma jet is now undergoing clinical 

studies that are designed to investigate its suitability as a device for use in plasma 

medicine treatments. This paper describes dimensionless studies of the synchronizing 

oscillatory gas flow through the nozzle followed by electro-acoustic measurements 

coupled with the discharge photo emission. The plasma jet operates in the burst mode of 

2.5 KHz (duty cycle = 50%), within a neutral argon Strouhal number of 0.14 to 0.09 and 

Reynolds number of 3570 to 5370. In this mode the jet acts like a plasma actuator with 

an anisotropic far field noise pattern that is composed of radiated noise centered at 17.5 

kHz; +20 dB, and the expanding visible plasma plume and cooled gas recombine along 

the jet axial flow (1-2 kHz peak that diminishes at a rate of -1.7 dB.kHz-1). 

Keywords: atmospheric pressure plasma jet, plasma medicine, gas flow dynamics, 

acoustic resonance. 

 

1. Introduction 
Cold atmospheric plasmas have shown enormous potential in Plasma Medicine 

for surface sterilization, for wound healing, for blood coagulation and in cancer 

treatment [1, 2]. This paper is focused on an atmospheric pressure plasma jet 

(APPJ) system called kINPen MED, which is being targeted for use in Plasma 

Medicine [3]. However to keep the medical device safe and easy to handle the 

fixed repetitive pulsed power source is used and the gas supply is limited to 

argon flow rate of 4-6 standard liters per minute (SLM). To help underpin the 

ongoing clinical trials this paper presents dimensionless analysis of the jet along 

with the jets electro-acoustic and polychromic emission.  

It has been shown that within the cold limit of ions that the speed of sound can 

be approximated to the neutral gas molecular temperature [4, 5], see equation 1. 

Here the fluctuation in the speed of neutrals and ions generate both sound waves 

and an oscillatory electric field, both of which contribute to the overall local 

sound pressure level. In the plasma production zone the difference between 

neutrals and ions, is that the latter (and electrons) absorb electrical energy from 

the electrical electro-magnetic field as the plasma gas expands and loses 

electrical energy, when the electrical power is turned off. Whereas the neutral 

gas gains energy thereby allowing radicals and metastable species to be formed 

from the electron-neutral energy transfer per second in the plasma volume and 

so the electron-neutral reaction acts as an acoustic source. In The kinPen09 [3] 

and the Med version an argon plasmas comprises Ar
+
 ions and hydroxyl (OH) 

radicals. 
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RT
c

gas

sound

γ
=    (1) 

 

Where Sound is the speed of sound in the gas medium, R is the gas constant 

(8.314 J K
-1

 mol
-1

), Tgas is the gas temperature in Kelvin, M is the molar mass in 

kilograms per mole of the gas (argon = 0.03994 kg mole
-1

), and γ adiabatic 

constant of the gas (argon and helium = 1.6).  

The Strouhal number (St) [11, 12] of the kINPen MED was compared with 5 

other commercial APPJs: the kINPen09 [3], the PVA Tepla air Plasma-Pen
TM

 

[6], the air-PlasmaTreat
TM

 [7, 8], and two helium linear jets [9, 10]. The St is a 

dimension-less measure as defined in equation (1), where 1, fd is the drive 

frequency, and D is the length scale of the nozzle diameter and v is the gas (in 

this argon) velocity. Thus for St ~ 1, the drive frequency is synchronized 

through the nozzle orifice to the velocity of the gas exiting the nozzle. For low 

St, the quasi steady state of the gas dominates the oscillation. And at high values 

of St the viscosity of the gas dominates fluid flow (“fluid plug”). Thus St acts as 

a comparator when the jets have similar values of D. Of the 5 plasma jets 

studied only the kINPen MED has a compound nozzle (double open-end 

ceramic tube within a steel-steel outer body with a central electrically driven 

wire electrode. The linear jets are configured as double open-ended glass tubes. 

 

v
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Fig 1: St numbers for 6 air and helium APPJs as a function of fd and D: 1.7 to 4 

mm. 

338



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

Figure 1 show the log-log graph relationship between St and fd for the 6 APPJs, 

which have a D value between 1.7 to 4 mm. There are two observations of note 

within the plot. First, the gas type (air, argon and helium) are normalized 

through their gas velocities (equation 2) and thus there is gas correlation; 

Second using the Plasma-Pen as references point two interpolation lines are 

used to map the upper and lower boundary of the data points with the kINPen 

forming the lower rate boundary (exp
0.6

) and the PlasmaTreat
TM

 forming the 

upper rate boundary (exp
0.9

). From these observations and an examination of 

equation 1, it can be deduced that the rates corresponded to the length scale D. 

 

2. Experiments 
As with aircraft jet engines, low frequency driven APPJs produce two types of 

acoustic emission patterns within the overall radiated noise emission. The 

acoustic noise patterns originate from the jet nozzle and from axially aligned jet 

turbulence. To measure the aircraft jet engine noise patterns the jet engine is 

normally placed within an anechoic chamber and both near-field microphones 

and a linear array of far field microphones in are used to measure the noise 

pattern [11, 12]. In contrast the acoustic noise of APPJs has been measured with 

a single microphone in some preferred position with the result that the boundary 

between the two acoustic production sources is ill-defined. Furthermore there 

has no report of an APPJ being employed as plasma actuator, where the St is an 

indicator of the acoustic spectrum is attenuation. 

For the purpose of this study, a single condenser mini-microphone is used to 

measure both the electro-magnetic emission and acoustic emission from kINPen 

MED which uses argon as the ionization gas. The microphone acts as both an E-

probe and a sound energy sensor, where both measured quantities are distance 

dependent. In ordered to capture the nozzle Omni-directional sound energy and 

sound energy being propagated along the discharge axis, acoustic far field 

measurement is scaled to a distance of 20 x the jet diameter between 90
o
 

perpendicular to the jet exit nozzle to 180
o
 where the microphone is facing the 

gas flow. From a process control perspective 90
o
 position has a number of 

advantages; (a) the microphone measures the radiated plasma sound energy 

emanating from the nozzle; (b) the microphone does not mechanically interfere 

with the movement of the jet over the treatment surface and; (c) the 90
o
 allows 

capture of the deflected sound energy from the treated surface to be used as a 

nozzle to surface height indicator [7, 8], thus by inference the treated surface 

temperature. In addition to the electro-acoustic measurements, a photodiode 

(PD) is used to evaluate the jets time-dependent polychromic emission and 

acoustic pattern is correlated with “overspill” [13] of the plasma jet on treated 

Polyethylene-terephthalate (PET) polymer using water contact angle 

measurements. Finally the electro-acoustic and PD measurements where 

digitally processed using LabVIEW software and correlated as previously 

described [7, 14]. 

 

3. Results 
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3.1. Electro-acoustic analysis 
Figure 2 shows the typical electro-acoustic from the APPJ at a microphone 

angle 90
o
 with the plasma turned-off, and on, with the argon flowing at 5 SLM 

(nozzle velocity = 36.78 m.s
-1

) in both cases. For the plasma conditions the first 

feature of note is that the fd (2.5 kHz) has Q-factor (f/∆f ~ 100) followed by its 

harmonics: here observed up to20 kHz. The second feature of note is that 5
th

 and 

6
th

 harmonic of the fd straddle the broad asymmetric structure (f/∆f ~ 35) 

centered on 17.5 kHz. Turning off the electric power to the nozzle not only 

removes the drive frequency component but also reduces the broadband 

structure at 17.5 kHz by 20 dB. An independent measurement using a sound 

pressure level meter (YF-20) indicates this reduction equates a drop of 4 to 6 dB 

in the audible range. A photo of the argon discharge and ceramic nozzle is 

shown as an insert in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Argon plasma formed using the kINPen MED along with the associated 

plasma acoustic response. 

 

Using the 2 electro-acoustic traces and the knowledge of the nozzle geometry it 

possible to model the acoustic response (fn) and it overtones (fn) of the nozzle of 

as either an open-ended gas column (equation 3) or as a Helmholtz resonator 

(equation 4) [7]. At room temperature (20
o
C) the speed of sound (c) in argon 

and air equates to 323 to 346 m.s
-1

. 
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In equations 3: L is the length of the ceramic tube beyond the drive electrode 

(0.01 m), and r is the tube radius end-correction (0.0005 m). Lastly m denotes 

the resonate mode within the tube (1 = fullwave and 2 = halfwave resonant 

mode etc...) and n is the overtone number. Whereas in equation 4: A is the area 

of nozzle, and Vo is the volume of the nozzle. 

Equations 3 yields a value range of fn between 16.5 to 17.7 kHz for a halfwave 

resonant mode (m =2). This calculation agrees well with the broad acoustic peak 

at 17.5 kHz which is enhanced in amplitude by onset of the plasma. By 

comparison equation 4 yields a fo range between 2.57 and 2.75 kHz which is a 

factor of 5-6 times lower than the observed broadband response. This 

comparison of the two mathematical models suggests that the open ended nozzle 

model provides the most representative and robust visualization of the nozzle 

acoustic response. 

 

3.2. Photodiode analysis 
Using a Hamamatsu MPPC photo diode (PD) with a rise time of 10 ns and a 

spectral range between 320 and 900 nm we now turn to the examining the effect 

of 2.5 kHz pulse drive frequency on the time-dependent plasma polychromic 

emission. Discharge emission was collected via a fibre optic and collimating 

lens focused at the plasma discharge at 1 mm downstream of the nozzle exit. 
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Fig 3: kINPen MED polychromic emission at 1 mm from nozzle. 
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The measurement results for 5 SLM of argon is shown in figure 3. Here it can 

be seen that the polychromic emission has a 2.5 kHz pulse; with a periodic duty 

cycle of 50% response (duration of the emission to the total period of a repeat 

signal) with an envelope rise- and fall-time of microseconds. Within the 

emission envelope four dips in emission can be also seen. The flat top of the 

pulse enveloped appears to represent the DBD self-current-limiting 

characteristic that prevents spark formation within the reactor tube. That is, the 

plasma is extinguished unless the magnitude of the applied voltage continuously 

increases. For limited range investigated, varying the argon flow rate from 4 to 6 

SLM does not alter the height of the envelope or the emission between the 

envelopes; nor does it alter the drive (2.5 kHz)  or harmonics frequencies. 

 

3.3. Anisotropic acoustic emission pattern 
With the drive frequency and its harmonics isolated from the acoustic emission 

response, the next sets of measurements are aimed to delineate the radiated 

sound energy from the jet turbulence sound energy. The delineation is achieved 

by recording electro-acoustic measurement between 90 and 180
o
 (in-line) in 

steps of 10
o
 degrees. The results of these measurements are shown in figure 4.  

Here it can be seen that the sound radiation energy does not alter significantly 

from 90 to 160
o
. The 170

o
 measurement however increases in amplitude and 

exhibits a number of additional resonances peaks. In the case of the 180
o
 the 

measurement acoustic noise amplitude has increased above the electrical 

emission resulting in the loss of electrical information. In this position, 

resonance information is also lost and noise amplitude becomes inversely 

proportional to frequency at a rate of -1.7 dB.kHz-1. The peak at 1.5 kHz varies 

by ± 1 kHz due to the jet gas flow dynamics over the microphone body. 
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Fig 4: 90 to 180

o
 far field measurements. 

The measurements reveal that the neutral argon flow forms an expanding cone 
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with internal angle of 10 degrees to the jet axis. This is in contrast to the 10 mm 

in length visible pencil-like plasma plume, see figure 2 picture insert. 

An investigation was carried out to determine the correlation between the area / 

diameter treated by the kINPen MED gas plume and the water contact angle of 

the PET placed under the jet. Measurements were obtained 1 hour after plasma 

treatment as a function of the gap distance (5, 10, and 15 mm) between the jet 

and the PET substrate. The contact angle obtained for the untreated PET was 

85
o
. Table 1 shows the results of the measurements and the computed internal 

cone angel for the treatment gap. This limited gap distance analysis reveals that 

the treated diameter is much larger than the pencil-like diameter of the plasma 

plume (~ 2 mm), with an overspill ratio (plasma/treatment diameter) of 8 to 10. 

The treatment becomes less effective with gap distance. Correlating these results 

with the acoustic mapping it appears that the argon gas passing through the 

plasma zone and entering the expanding argon cone has a chemical ‘spillover 

effect’on the surface properties of PET thus possibly differentiating between ion 

exposure and radicals and metastable treatment mechanisms. 

 

Table 1: PET WCA as a function gap distance. The photograph demonstrates 

the increased water droplet width after the plasma treatment (2 mm scale bar). 

 No Plasma 5 mm 10 mm 15 mm 20 mm 

WCA 85
o
 45

o
 59

o
 70

o
  

Overspill diameter N/A 16 mm 20 mm 18 mm  

Treatment angle N/A 160 90 62  

Overspill ratio N/A 8 10 9  

 
 

4. Conclusion 
This paper examined the kINPen MED argon flow dynamics using 

dimensionless analysis, electro-acoustic and photodiode measurements. The St 

analysis of the plasma jet (with 5 other APPJs with similar nozzle diameters (D 

= 1.7 to 4 mm) reveal similar nozzle oscillating flow mechanisms that produce 

St values that are proportionally to Hz 
(0.6 to 0.9)

 between 100 Hz to 1.1 MHz 

where the rate is defined by the scale length of the nozzle. Electro-acoustic and 

polychromic emission measurements reveal the APPJ nozzle is operating with a 

low St < 0.5 for an argon flow of 4-6 SLM. The nozzle resonant frequency can 

be modeled as a closed end column where resonance amplitude undergoes 

amplification when plasma is applied. One possible mechanism for this acoustic 

amplification may be due to electric winds [4] that are generated by the positive 

and negative edges of the drive pulse and which are synchronized to the neutral 

argon velocity to produce an enhanced molecular vibration at the nozzle exit. 

The plasma jet therefore appears to act like a dielectric barrier discharge plasma 

actuator. Electro-acoustic far field pattern measurements reveal an anisotropic 

acoustic emission which is composed of sound radiation energy from the nozzle 

and the axially aligned gas jet pressure. It has been shown that gas passing 
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through the visible plasma zone and entering the expanding argon cone alters 

the hydrophobicity of PET when placed cone region. 
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Abstract: Pancreatic β-cells located in islets of Langerhans in the pancreas are responsible for the synthesis 
and secretion of insulin in response to a glucose challenge. Bursting electrical activity is also important for 

pancreatic β-cells as it leads to oscillations in the intracellular free calcium concentration, which in turn leads 

to oscillations in insulin secretion. The minimal model for a single pancreatic  β-cell was extended by 

introducing one additional ionic current was considered. The synchronization behaviors of two identical 
pancreatic β-cells connected by electrical (gap-junction) and chemical (synaptic) couplings, respectively, are 

investigated based on bifurcation analysis by extending the fast-slow dynamics from single cell to coupled 

cells. Various firing patterns are produced in coupled cells under proper coupling strength when a single cell 

exhibits tonic spiking or square-wave bursting individually, no matter the cells are connected by electrical or 
chemical coupling. The above analysis of bursting types and the transition may provide us with better insight 

into understanding the role of coupling in the dynamic behaviors of pancreatic beta-cells. 

Keywords: Pancreatic β-cell, Coupling, Calcium oscillation, Bursting, Synchronization, Transition. 

 

1. Introduction 

Pancreatic β-cells located in islets of Langerhans in the pancreas are responsible for the synthesis 

and secretion of insulin in response to a glucose challenge. Like nerve and endocrine cells, 

pancreatic β-cells are electrically excitable and the electrical firing patterns typically come in the 

form of bursting, characterized by an active phase of fast spiking followed by a quiescent phase 

without spiking. It is well-known that bursting can be exhibited by a wide range of nerve and 

endocrine cells and is likely one of the most important and distinctive firing patterns in dynamic 

behaviors. Bursting electrical activity is also important for pancreatic β-cells as it leads to 

oscillations in the intracellular free Ca
2+

 concentration, which in turn leads to oscillations in insulin 

secretion.  

2. The Model 

The minimal model for a single pancreatic β-cell was extended by introducing one additional 

ionic current, namely, the ATP-sensitive K
+
 current IK(ATP). This modified model described by 

the following equations: 

),(),(),()( )( pvIsvInvIvI
dt

dv
ATPKskCa                               (1) 

])([ nvn
dt

dn
                                                        (2) 

svs
dt

ds
s   )(                                                          (3) 

Three variables in this system are the membrane potential (v), the delayed rectifier activation 

(n), and a very slow variable s which has been postulated to be the intracellular Ca
2+

. 

Depending on the value of the parameter gs, the system either undergoes a spiking solution or 

generates bursting oscillations, both of which can be explained by using fast-slow dynamics 

analysis.  

3. Main Results 

The synchronization behaviors of two identical pancreatic β-cells connected by electrical 

(gap-junction) and chemical (synaptic) couplings, respectively, are investigated based on 

bifurcation analysis and numerical simulations by extending the fast-slow dynamics from 

single cell to coupled cells. Various firing patterns are produced in coupled cells under proper 

coupling strength when a single cell exhibits tonic spiking or square-wave bursting 
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individually, no matter the cells are connected by electrical or chemical coupling.  

For two electrically coupled cells, when an isolated single cell exhibits continuous spiking 

individually, with the coupling strength increasing, there exists synchronization transition 

path including at least four different synchronous states, including  two kinds of bursting 

synchronization with totally different bifurcation structure of the fast subsystem, and another 

two synchronous spiking regimes with continuous anti-phase and in-phase rhythms, 

respectively.  

For two chemically coupled cells, two spiking cells can transit to bursting under weak 

chemical coupling condition. Moreover, an interesting inverse period-adding bursting 

sequence is found when the isolated cell exhibits square-wave bursting. In addition, the two-

cell model with proper chemical coupling strength can produce the ―fold/Hopf‖ type of 

bursting. 

In summary，on the one hand, cells could burst synchronously for both weak electrical and 

chemical couplings when an isolated single cell exhibits tonic spiking itself. Especially, for 

electrically coupled cells, under the variation of the coupling strength there exist complex 

transition processes of synchronous firing patterns, including the anti-phase continuous 

spiking, then another type of bursting, and finally the in-phase tonic spiking. On the other 

hand, it is shown that when an individual cell exhibit square-wave bursting, modest coupling 

strength can make the electrically coupled system generate ―fold/Hopf‖ bursting via 

―fold/fold" hysteresis loop while the chemically coupled system generate ―fold/Hopf‖ 

bursting. Especially, chemically coupled bursters could exhibit inverse period-adding bursting 

sequence.  

4. Conclusion 

The above analysis of bursting types and the transition may provide us with better insight into 

understanding the role of coupling in the dynamic behaviors of pancreatic β-cells. It is noticed 

that these results are obtained when the slow variables of two cells are very near and could be 

taken as the bifurcation parameter. In fact, this assumption is valid mostly except the inverse 

period-adding bursting sequence occurring in the chemically coupled situation. The latter case 

is worthy of further research. 
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Abstract: Chaos cryptography is implemented by torus automorphisms with strictly 
positive entropy production. For any given entropy production 0h >  we explicitly 
construct integer valued automorphisms with entropy ( )S ≥  . We identify 
compatibility conditions between the values of the entropy production and the lengths of 
the messages in terms of the grid size and we propose constructive ways to encrypt 
messages of arbitrary length in terms of torus automorphisms with any given desired 
entropy production. We moreover prove that the restrictions of chaotic maps with the 
same entropy have the same period for a fixed grid size. 
Keywords: Entropy, Cryptography, Chaos, Cryptography with Chaos.  
 
1. Introduction 
Chaos cryptography was proposed by Shannon in his classic 1949 mathematical 
paper on Cryptography where used chaotic maps as models - mechanisms for 
symmetric key encryption. Of course Shannon did not employ the term Chaos 
which emerged in the 1970s. This remarkable intuition was based on the 
paradigm of the Baker’s map introduced by Hopf in 1934 as a simple 
deterministic mixing model with statistical regularity. Shannon observed that 
using chaotic maps, encryption is achieved via successive mixing of the initial 
information which is uniformly “spread” all over the available state space. In 
this way it is becoming exponentially hard to recover the initial message if the 
reverse transformation is not known. Baker’s map is the simplest example of 
chaotic Torus Automorphisms with constant Entropy production equal to one bit 
at every step. The Entropy production theory of Torus Automorphisms and 
general Chaotic maps was developed later by Kolmogorov and his group 
[Arnold and Avez, 1968; Katok ea, 1995; Lasota ea, 1994], following 
Shannon’s earlier foundation of Information Theory in 1948. Baker’s map has 
also served as a toy model for understanding the problem of Irreversibility in 
Statistical Mechanics [Prigogine, 1980]. Chaos cryptography with 2-
dimensional maps deal with image encryption [Guan D. ea, 2005; Xiao G. ea , 
2009] and text encryption [Kocarev ea, 2003; Kocarev ea, 2004; Kocarev L. and  
Lian S., 2011;Li S., 2003]. We have proposed a new implementation method for 
Chaos Cryptography based on Chaotic torus automorphisms, applicable for both 
image and text encryption simultaneously [Makris G, Antoniou I, 2012a] and 
designed torus automorphisms with desired entropy production [Makris G, 
Antoniou I, 2012b]. Part of these results is summatized in section 1. 
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As the grid discretizations of chaotic Torus automorphisms are periodic, for 
effective implementation we have to examine the conditions for reliable 
cryptography implementation. The objectives of this work are: a) to examine the 
dependence of the period on the entropy production and on the grid size 
(Section 2), b) to provide conditions for admissible grid discretizations (Section 
3) and c) to provide algorithms for the construction of integer torus 
automorphims with desired entropy production  (Appendix A) and for adapting 
the image size to the appropriate grid size (Appendix B) for customized 
implementation of chaotic cryptography).  
 
The automorphisms of the 2-torus [ ) [ )0,1 0,1Y = ×  are defined by the formula: 

( )1

1

: :  1 , n n

n n

x x
S Y Y A mod n

y y
+

+

   
→ = ∈   

   
 (1) 

Where
a b

A
c d
 

=  
 

is a real invertible matrix with inverse: 

1 d b1A
c aad bc

− − 
=  − −

 

Chaotic Torus automorphisms (1) have one eigenvalue greater than 1, according 
Pesin’s 1977 Formula. 
Lemma:  

1) The class of chaotic automorphisms (1) with ad bc 1− =  consists of the 
matrices: 

a b
, , {0}, 21 d

A a b d aad
b

 
 = ∈ ∈ − > −− 
 

        (2) 

 
2) The entropy production of the Chaotic automorphisms (2) is: 

( ) ( ) ( )
2 1 2

2

2

2a d a d 4
log log log

( ) ( ) 4
2 2

tr A tr A
λ

+ + + − + −
= == , 

, , 2a b d a∈ ∈ > −     (or ( ) 2tr A > )      (3) 
 

3) The chaotic automorphisms (2) are expressed in terms of the entropy 
production as a parameter  by the formula: 

( )
a b

 , a , {0}, 0a 2 2 a 1
2 2 a

A b

b

−
−

 
 = ∈ ∈ − >⋅ + − − + −  

 
 

   (4) 

4) For the class of chaotic automorphisms Α with one eigenvalue greater 
than 1 and ad bc 1− = −  we have the corresponding formulas: 
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a b
, , {0}, 1 d

A a b d aad
b

 
 = ∈ ∈ − > −+ 
 

        (5) 

 

           
( ) ( ) ( )

2 1 2

2

2

2a d a d 4
log log log

( ) ( ) 4
2 2

tr A tr A
λ

+ + + +
= =

+ +
= , 

, ,a b d a∈ ∈ > −     (or ( ) 0tr A > )      (6) 
 

( )
a b

 , a , {0}, 0a 2 2 a 1
2 2 a

A b

b

−
−

 
 = ∈ ∈ − >⋅ − − + − −  

 
 

   (7) 

Formulas (2),(3),(4) are proven in [Makris G, Antoniou I, 2012b]. The 
corresponding formulas for the case ad bc 1− = − are obtained in a similar way. 
From formulas (3),(6) we see that  
Corollary 
Two Chaotic Torus Automorphisms have the same Entropy Production (are 
isomorphic), if and only if they have the same trace 
 
2. Entropy production and the period of the discretization 
restrictions of integer Torus Automorphisms 
The implementation of cryptographic algorithms requires discretization of the 
chaotic maps onto the selected N N×  grid. In order to preserve the grid 
structure we shall consider torus automorphisms with integer matrix elements. 
Given a desired entropy production value not less than h we may construct 
integer torus automorphisms with entropy production h from formulas (4),(7) 
using the algorithms presented in appendix A.  
The coordinates of pixels are elements of the NxN lattices N N×  . The 
restriction of any integer torus automorphism to N N×  (mod N): 

( ) ( )
'

mod mod
'

x x a b x
A N N

y y c d y
       

= =       
       

 (8) 

is a periodic transformation, called the NxN discretization automorphism of (1).  
The period of the discretization automorphisms (8) is the minimal number T  
which satisfies the formula: 

( ) 2

1 0
mod

0 1

Ta b
N

c d
   

= Ι =   
   

(9) 

 
Theorem 1: All discretization automorphisms (8) with the same trace have the 
same period T  which depends only on the size N of the grid.  
Proof: 
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First we shall show that the discretization automorphisms (8) of isospectral 
matrices have the same period. It is enough to show that the matrices A (9) and  

1

2

0
0
λ

λ
 

∆ =  
 

(10) 

define discretization automorphisms (8)  with the same period. 
We have: 

1A B B−= ⋅∆ ⋅  
Where B is a diagonalization transformation of A.  
If T is the period of (8), from (9) and (10) we have: 

( )1 1TT TA B B B B− −= ⋅∆ ⋅ = ⋅∆ ⋅  
and:  

( ) ( )1 1

2

1 00
mod mod

0 10

T T

T

a b
N B B N

c d
λ

λ
−     

= =           
 

Therefore:  

( )1

2

1 00
mod

0 10

T

T N
λ

λ
   

=   
  

 

Therefore the discretizations (8) of Δ and A have the same period T . From the 
eigenvalue formulas (3) and (6), we see that the eigenvalues 1 2,λ λ  depend only 
on the trace of A. Therefore any two matrices with the same trace define 
discretizations (8) with the same period. ■ 
 
3. Entropy Production and Grid size  
 
We observe that torus automorphisms with different entropy production may 
have identical discretizations (8). For example, applying formula (6) we see that 

the torus automorphisms with matrices 1

2 1
4093 2047

A  
=  
 

and 

2

2 1
93 47

A  
=  
 

have entropy productions 1 11.0007h =  

and 2 5.6141h = correspondingly. However their discretizations (8) to the grid 
100 100× are identical:  

2 1 2 1
mod100 mod100

4093 2047 93 47
   

≡   
   

. 

The same is true for the grids 200 200× , 500 500× , 1000 1000× and others. 
This is an undesirable fact because only equivalent chaotic torus automorphisms 
should have identical grid discretization (8). We found that this requirement is 
true only for  certain values of the entropy production h and grid size N . The 
result is the following: 
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Theorem 2: An necessary and sufficient condition for   one to one 
correspondence between torus automorphisms and their grid discretizations (8) 
is:  { }, ,max ,N a b c d> (11) 
Equivalently in terms of entropy production, using (3) and (6) we have the 
conditions: 

( )a 2 2 a 1
, ,x 2 ,ma 2h hN a b a

b

−
−

⋅ + − −  > 
  

− +
 

for det( ) 1A =  (12) 

( )a 2 2 a 1
, ,x 2 ,ma 2h hN a b a

b

−
−

⋅ − − +  > 
  

− −
 

 for det( ) 1A = −  (13) 

Prof:  

( ) ( ) ( )
( ) ( ) ( )

( )

mod mod
mod mod

mod mod

modb

c d

a N b Na b x x
N N

c N d Nc d y y

x
N

y
αυ υ
υ υ

      
= =      

      
   

=    
  

 

As the remainders  , , ,b c dαυ υ υ υ are always not greater than a,b,c,d 

correspondingly, we have: b
d

c d

a b
tr a d tr

c d
α

α

υ υ
υ υ

υ υ
  

= + ≥ + =   
   

 

Therefore, from (3) and (6) we have: b

c d

a b
h h

c d
αυ υ
υ υ
  

≥   
   

 

b

c d

a b
h h

c d
αυ υ
υ υ
  

=   
   

 if and only if: a N< and b N< and c N< and d N< , 

from which follows the desired result. ■ 
 
The natural question now arises what are the possible values of entropy 
production for automorphisms satisfying (11) 
Without significant loss of generality we consider the simpler class of integer 
torus automorphisms with 1b = . Formulas (12) and (13) are written : 
 

( ) ( )2
2log 4 1 , 0h a N a N a N < + + + − − < <  

, det( ) 1A =  (14) 

 

( ) ( )2
2log 4 1 , 0h a N a N a N < + + + + − < <  

, det( ) 1A = −  (15) 

 
Therefore given the grid size N  we know the maximal entropy production from  
(14),(15) for automorphisms with b=1 and conversely given a desired entropy 
production value we know the minimal grid size from (12),(13). The relation 
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between entropy production and grid size is shown in figure 1. We shall call the 
discretizations (8) with grid size N N× admissible discretizations if and  only 
if the conditions (12) , (13) hold. 
 
 

Entropy Production and Grid Size, 
det( ) 1A =  

Entropy Production and Grid Size, 
det( ) 1A = −  
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Figure 1: Entropy Production and Grid Size 

In case the grid N N× for  admissible discretization (8) of the constructed 
torus automorphisms is larger than the message size n m×  we may  enlarge 
and adapt the message size to the grid size using the algorithm presented in 
appendix B. 
 
5. Conclusions 
After extending our previous results [Makris G, Antoniou I, 2012b] on the 
entropy production on torus automorphisms (Lemma and Corollary), we show 
that the period of grid discretizations of chaotic automorphisms depends only on 
the entropy production and on the grid size (Theorem 1). In order to avoid the 
undesirable fact that torus automorphisms with different entropy production 
may have the same discretization, we provide a necessary and sufficient 
condition of admissible grid discretizations (Theorem 2). For customized 
implementation of chaotic cryptography, we provide algorithms for the 
construction of integer torus automorphims with desired entropy production  
(Appendix A) and for adapting the image size to the appropriate grid size 
(Appendix B). These results are necessary for implementation of chaotic 
cryptographic algorithms of desired entropy production. Based on Theorem 2 
and Appendix B we can automatically adapt the message size to admissible 
discretization for effective cryptography.  
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Appendix A: Construction of integer torus automorphisms 
with entropy production not less than any desired positive real 
number  
 
Torus automorphisms have been applied to NxN grids and the periods has been 
related to the grid size N [Vivaldi, 1989; Dyson FJ and  Falk H, 1992; Akritas 
ea, 2001;Antoniou ea, 1997; Xiao ea, 2009]. According to formula (2) we 

should have a 1d
b
−

∈ for any integer values a,b,d. , ie. : ( )a   1d mod b =   

For any given entropy production 0h > we construct integer matrixes A with 
entropy ( )A ≥   according to the following algorithm.  
 
Algorithm 1. Construction of integer matrices A with ( )det 1A =   
Step 0: inputs: (0, ), a,∈ ∞ ∈  b  

Step 1: Set ( ) 2 2x tr A − = = +    
   , z    is the ceiling of z 

Step 2: Set d=x-a 
Step 3: if [ d>2-a and ( b=1 or (a )  1d mod b = ) ] goto Step 9 
Step 4: if [ a  0 and   0mod b b mod a≠ ≠ ] goto Step 7 
Step 5: Set x=x+1 and d=x-a 
Step 6: goto Step 3 
Step 7: Set a=a+1 and d=x-a 
Step 8: goto Step 3  

Step 9: return 
a b

A 1 dad
b

 
 = − 
 

  

Step 10: return λ1(A)=
( ) ( )2a d a d 4

2
+ + + −

 

Step 11: return ( ) ( )2 1logA Aλ=  
 

Input Output 

  a b  
a b

A 1 dad
b

 
 = − 
 

  λ1(A) ( ) A  

1.2 1 1  
1 1

A
1 2
 

=  
 

  2.6180 1.3885 

1.2 2 3  
2 3

A
1 2
 

=  
 

  3.7321 1.9000 
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3.5 1 1 
1 1

A
10 11
 

=  
 

 11.9161 3.5748 

3.5 5 1 
5 1

A
34 7
 

=  
 

 11.9161 3.5748 

3.5 5 3 
5 3

A
13 8
 

=  
 

 11.9161 3.5748 

11 2 1 
2 1

A
4093 2047
 

=  
 

 2049 11.0007 

Table 1: Examples of Algorithm 1 

According to formula (4) we should have a 1d
b
+

∈ for any integer values 

a,b,d. , ie. : ( ) ( )a 1   0 a   1d mod b d mod b b+ = ⇒ = −   

Algorithm 2. Construction of integer matrices A with ( )det 1A = −   
Step 0: inputs: (0, ), a,∈ ∞ ∈  b  

Step 1: Set ( ) 2 2x tr A − = = −   
   , z    is the ceiling of z 

Step 2: Set d=x-a 
Step 3: if [ d>-a and ( b=1 or (a )  1d mod b b= − ) ] goto Step 9 
Step 4: if [ a  0 and   0mod b b mod a≠ ≠ ] goto Step 7 
Step 5: Set x=x+1 and d=x-a 
Step 6: goto Step 3 
Step 7: Set a=a+1 and d=x-a 
Step 8: goto Step 3  

Step 9: return 
a b

A 1 dad
b

 
 = + 
 

  

Step 10: return λ1(A)=
( ) ( )2a d a d 4

2
+ + + +

 

Step 11: return ( ) ( )2 1logA Aλ=  
Input Output 

  a b  
a b

A 1 dad
b

 
 = + 
 

  λ1(A) ( ) A  

1.2 1 1 
1 1

A
2 1
 

=  
 

 2.4142 1.2716 
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1.2 2 3 
2 3

A
1 1
 

=  
 

 3.3028 1.7237 

3.5 1 1 
1 1

A
12 11
 

=  
 

 12.0828 3.5949 

3.5 5 1 
5 1

A
36 7
 

=  
 

 12.0828 3.5949 

3.5 5 3 
5 3

A
12 7
 

=  
 

 12.0828 3.5949 

11 2 1 
2 1

A
4093 2046
 

=  
 

  2048 11.0000 

Table 2: Examples of Algorithm 2 

 

Appendix B: Algorithm to Enlarge image size from ( )n m×  to 
( )N N× : 
Step 0: inputs: ( ), ,image N c , N: new image size, c: color of new pixels   

Step 1: calculate ( ),n m =image size 
Step 2: hW N n= −  

Step 3: Create an new blank image1 with size  
2

hW m × 
 

and color c to every 

pixel. 
Step 4: Create an new image2 with vertical quote of three images: 

1
2

1

image
image image

image

 
 =  
 
 

 . Image2 size= ( )N m×  

Step 5: wW N m= −  

Step 6: Create a new blank image3 with size 
2

wW N × 
 

and color c to every 

pixel. 
Step 7: Create a new_image with horizontal quote of three images : 

( )_ 3 2 3new image image image image=  . new_mage size= ( )N N×  
 

Image 
(342 x 454) 

Image1 
( 79 x 454) 

Image2 
(500 x 454) 

Image3 
(500 x 23) 
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Inputs New_image 

(500 x 500) Output 

Image 
N=500 
c=white 
 
Calculations  

158hW N n == −  
46wW N m= − =   

New_image 

 
The advantage of adding pixels in an image is to keep the original information. 
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Abstract: Digital image watermarking along with image encryption is a growing 

research area. The use of chaos in image watermarking and image encryption algorithms 

has seen tremendous advantages. In this paper a chaos based image watermarking to 

provide authentication and chaos based watermarked image encryption to provide 

security is proposed. The performance of the image watermarking and encryption is 

mainly based on the randomness properties of chaotic binary sequences. Chaotic binary 

sequences are derived from chaotic discrete sequences using logistic map equation. In 

order for a complex imaging system to cope with these concerns, a cryptography 

algorithm able to manage the vast amounts of data involved in image processing is 

required. This paper proposes a new image watermarked encryption algorithm based on 

Logistic map equation, in which the key space is 2212 which improves the security against 

exhaustive attacks. Also good encryption speed is achieved using the proposed 

algorithm. The experimental results and the security analysis including Key space, 

Information entropy and key sensitivity proves that the proposed algorithm is secure, 

authenticated and more efficient.  

 

Keywords: Watermarking, Image encryption, Logistic map, Chaos  

 

 

1. Introduction 
The growth of the digital technology and the associated need for information 

integrity, authenticity and secrecy encourages the development of secure image 

encryption systems. After the advent of the Internet and especially nowadays, 

security of data and protection of privacy has become a major concern for 

everyone‟s life. Combining the properties of cryptography and chaos theory it is 

possible to design an image encryption algorithm that provides security, 

authentication and privacy in image and video applications. Cryptography deals 

with watermarking techniques to provide authentication and encryption 

techniques to provide security. Chaos theory provides the suitable non linear 

binary sequences that can be applied to watermarking and encryption algorithm. 

Chaos is a deterministic, random like process found in non-linear, dynamical 

system which is non-periodic, non-converging and bounded. Chaotic signals are 

random like but they are produced by deterministic systems and can be 

reproduced. Chaotic systems are sensitive to initial conditions and thus even 

with a small difference in initial conditions will lead to the generation of very 

different signals from the same dynamical system. The broad band, noise like 

nature of chaos offers several advantages when used for generating key stream 

for watermark and encryption algorithm. Chaotic sequences are non-repeatable; 

if only part of the sequence is recovered then it is nearly impossible to 
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regenerate the whole sequence. This means that any unintended receiver 

subjected to these sequences will encounter noise like waveforms whose 

spectrum have no features that can be exploited for signal interception.  

 

The chaos based image watermarking and encryption is discussed in [1] – [6] 

and [12] – [13].  A watermarking procedure for digital image in the Complex 

Wavelet Domain is discussed in [1]. The proposed watermark algorithm needs 

three keys: a sub-image, a random location matrix and spread spectrum 

watermark. The first and the second ones ensure the security of watermarking 

procedure and the third one guarantees its robustness.  

 

A new robust watermarking scheme based on a chaotic function and a 

correlation method for detection, operating in the frequency domain is discussed 

in [2]. This scheme is blind and comparing to other chaos related watermarking 

methods, experimental results exhibit satisfactory robustness against a wide 

variety of attacks such as filtering, noise addition, geometric manipulations and 

JPEG compression with very low quality factors. The scheme also outperforms 

traditional frequency domain embedding both in terms of robustness and 

quality. 

 

A digital image watermark algorithm based on discrete wavelet transform and 

chaos theory is referred [3]. During the embedding of the watermarking, discrete 

wavelet transform is done firstly and extract low frequency part as the 

embedding field; then the chaotic sequence is used to encrypt the watermark and 

transform the encrypted part and extract the low frequency; finally, embed the 

low frequency part into that of the original image.  

 

An efficient, secure color image coder incorporating Color-SPIHT (C-SPIHT) 

compression and partial encryption is presented in [4]. Confidentiality of the 

image data is achieved by encrypting only the significance bits of individual 

wavelet coefficients for K iterations of the C-SPIHT algorithm. By varying K, 

the level of confidentiality vs. processing overhead can be controlled.  

 

A new approach for image encryption based on chaotic logistic maps in order to 

meet the requirements of the secure image transfer is discussed in [5]. Here an 

external secret key of 80-bit and two chaotic logistic maps are employed. The 

initial conditions for the both logistic maps are derived using the external secret 

key by providing different weightage to all its bits.  

 

A digital image encryption algorithm four arry chaotic array is presented in [6] 

and uses chaotic maps to generate four value chaotic array whose size as big as 

image.  

 

Combined with two chaotic maps, a novel alternate structure is applied to image 

cryptosystem in paper [7]. A general cat-map is used for permutation and 

diffusion, as well as the OCML (one-way coupled map lattice), which is applied 
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for substitution. These two methods are operated alternately in every round of 

encryption process, where two sub-keys employed in different chaotic maps are 

generated through the master-key spreading.  

 

A paper on the utilization Pixels Arrangement and Random Permutation to 

encrypt medical image for transmission security is presented in [8]. The 

objective of this scheme is to obtain a high speed computation process and high 

security. In this paper a new chaos based watermarked image encryption 

algorithm is proposed. First the watermark is embedded in the image and then 

the image is encrypted using two steps, first the image is position permuted and 

then the substitution is done by XOR
ring

 each pixel. The key streams are 

generated using logistic map equation. 

 

The organization of the paper is as follows. Section 2 discusses the architecture 

of the proposed scheme. Section 3 presents experimental results. Security 

analysis is discussed in section 4. Finally the paper is concluded in section 5.   

 

 

2. Architecture 
Fig. 1 shows the block diagram of chaos based image encryption scheme with 

embedded watermark. In this diagram there are two parts. One that is used to 

embed the watermark in the plain image using LSB insertion and the other that 

encrypts the watermarked image using chaotic logistic map equation. LSB 

insertion is randomly done and the LSB keystream is generated using chaotic 

logistic map equation. The advantage of using LSB insertion is that it is possible 

to embed a large watermark as compared to other techniques. In the 

watermarked image encryption, mainly two steps are involved. First the image 

is position permuted and then the substitution is done by Bitwise XOR
ring

 each 

pixel with Key stream 3 to obtain an encrypted image. The Key stream 1 is used 

for row permutation and Key stream 2 is used for column permutation.  

Generation of Key streams is explained in Section 2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Proposed Encryption Scheme 
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Fig. 2 shows the watermark extraction. Here the decryption of the watermarked 

image is exactly the reverse process and the same Key streams are used. The 

watermark is also extracted with the same LSB Key stream. It is also possible to 

know whether the watermark/image is tampered by comparing the extracted 

watermark and the reference watermark. Hence the proposed algorithm not only 

provides the required security but also provides the authentication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Watermark detection 

 

2.1. Key stream generator 

Key stream generator is as shown in Fig. 3. In this paper Logistic map is used 

for generating chaotic real valued discrete sequence by selecting a key. 

 

 

 

 

 

 

 

 

 

Fig. 3. Key Stream Generation 
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The most commonly used chaotic map is Logistic map equation is given by, 

 

x k+1 = r * x k * (1- x k) ,     0 < x < 1               (1) 

 

where x0 is the initial value, r is the bifurcation parameter and depending on the 

value of r, x0 the dynamics of the generated chaotic sequence can change 

dramatically. For 3.57 < r ≤ 4, the sequence is found to be non periodic and non-

converging [9]. The probability density function of Logistic map is symmetric 

and hence the binary conversion is done as shown in equation (2). 

 

bi = 0 for xk  <  0.5 

                             and     bi = 1 for xk  ≥  0.5              (2) 

where 0 < i < n , n = length of the chaotic sequence.  

 

Key = {key1, key2, key3} is composed of three sub-keys, where sub-key1 is 

used as initial value for generating key stream1, sub-key2 is used as initial value 

for generating key stream2 and sub-key3 is used as initial value for generating 

key stream3. Key stream mapping for generating key stream1, 2 and 3 are as 

shown in Fig. 4. 

 

 
 

Fig. 4.  Key Stream Mapping 

 

Where B1, B2…etc denotes decimal numbers obtained by combining k-binary 

numbers for each streams respectively. Thus if the Image to be encrypted is of 

size 2
M

 X 2
N
 then required length of key Stream 1 which is used for row 

permutation is
 
2

M
 and the range is [0, 2

M
 -1], required length of key Stream 2 

used for column permutation is 2
N 

and the range is [0, 2
N
 -1] and the required 

length of key Stream 3 which is used for bitwise XOR
ring

  is 2
M

 X 2
N
 X 8 and 

the range is [0, 255]. 

 

During the key stream 1 and 2 generation, it must be guaranteed that there is no 

duplicate element in the two streams by discarding the repeated sequence. 

The LSB key stream is similar to key stream 3 and mainly depends on the size 

of the watermark.  

 

3. Experimental Results 
In order to test this algorithm we considered standard 512 X 512 Lena bmp 

image. In this Lena image a watermark „R‟ of size 14 X 14 is embedded. The r 
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value is taken as 3.99 and the initial values to generate key streams 1, 2 and 3 

respectively is taken as key = {key1, key2, key3} = {0.6532245, 0.9874562, 

0.416745}. For generating the LSB key stream the initial value is taken as 

0.62343242.  

 

Fig. 5 shows the input image, watermark embedded image, watermark and 

watermark extract.  

 
Fig. 5. Input image and Watermark 

 

Fig. 6 to Fig. 9 shows the histogram of the input image, encrypted image, 

encrypted image histogram and decrypted image respectively.  

 

 
 

           Fig. 6. Input Image Histogram         Fig. 7. Encrypted Image 
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       Fig. 8. Encrypted image histogram                     Fig. 9. Decrypted image 

 

 

The encryption and Decryption time in Matlab for a 512 X 512 bmp image was 

found to be 0.679 seconds. 

 

4. Security Analysis 
A good encryption schemes should resist all kinds of known attacks such as 

known/chosen plain text attacks, cipher text only attack, statistical attack and 

various brute force attacks. We will present some security analysis on the 

proposed encryption scheme in this section.  

 

4.1. Key space analysis 
Considering most commonly used PC platform as an example, the computation 

precision is 16 decimal digits, therefore a chaos-based cryptosystem can only 

provides 10
16

≈2
53

 size key space [10], which is a little smaller than DES(2
56

) 

and by far smaller than AES(2
128

). Since key = {key1, key2, key3} and LSB key 

which is composed of four sub-keys, the key space size is (10
16

)
4 
≈ 2

212
, which is 

larger than the acknowledged most security AES algorithm. Besides, the scheme 

is secure against known/chosen-plaintext attack, since it adopts both 

permutation and substitution operations. 

 

4.2. Information entropy 
Entropy of a random image source is expected to be eight for an image in which 

each pixel is 8-bits [11]. The entropy of the input image in was found to be 

7.3465 and the entropy of the encrypted image was found to be 7.9963, which is 

very close to the theoretical value. The entropy of the encrypted image of the 

proposed scheme is very close to the ideal one. Also the entropy of the 

watermarked image is equal to 7.3466 which is almost same as that of the input 

image.  
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4.3. Key Sensitivity 
A good crypto-system should be sufficiently sensitive to small changes in the 

key. In the proposed scheme with a small change in the key it is not possible to 

decrypt the image. This was observed by selecting the key = {0.6532245, 

0.9874562, 0.41674500001}                and by decrypting the image with a 

wrong key, key3 is not possible. Fig. 10 shows the decrypted image with a 

wrong key and its histogram. 

 

 

                

 

 

 

 

 

 

 

                 
 

Fig. 10. Decrypted image and its histogram with a wrong key 

 

 

5 Conclusions 
In this paper a new a good performance chaos based security algorithm for 

images is proposed. The algorithm proposed in this paper provides security as 

well as authenticity. The advantage of this algorithm is that the key space is 

enlarged to 2
212

, which improves the security against exhaustive attack and also 

the good encryption speed which is enhances the performance when image size 

is large. The entropy of the encrypted image of the proposed scheme is very 

close to the ideal one and hence the encrypted image appears to be highly 

random which is observed from the histogram of encrypted image. The 

simulation result shows that the proposed scheme has very good key sensitivity 

which provides good security for color images. By comparing the extracted 

watermark with the reference watermark it is easy to find whether the 

image/watermark is tampered or not.  
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An attractor and a superattractor in the contemporary 

pan-humanitarian space 

Abstract: The work purpose is clearing up the possibility of adequate use of the 

applied synergetics results in the sphere of philosophical and social knowledge. On 

the basis of the contemporary Russian researchers' works the author analyzes the 

concept of an attractor and a superattractor as the goal of a complex system, 

considers prospects of synergetics methodology use in the epistemological scientific 

field. 

Keywords: attractor, superattractor, synergetics, socio-humanitarian systems, post-

nonclassical paradigm 

1. Introduction: One of the major defining concepts in the contemporary 

synergetics, namely the attractor, can be developed in the area of both applied and 

abstract and philosophical knowledge. An attractor as an emergent formation shows 

qualitative changes in the process of evolutionary development of any system, 

including non-natural, general social systems. According to the author, an attractor 

represents a system innovation [1,2], - a conceptual change in the system which 

radically alters its behaviour. 

For more "evident" confirmation of the idea the author offers to use the Darwinian 

concept of selection which if applied to socio-humanitarian systems is interpreted as 

occurrence of bifurcation points, branching of the system associated with 

uncertainty in its further development when the most suitable variant satisfying the 

"natural" laws of development defines further vector of movement. The system 

evolution process is a process of movement on the way chosen in the bifurcation 

point. Thus, the universal mechanism of evolution is revealed at the moment of 

bifurcation by selecting structures capable of bringing the system to a totally new 

level. An attractor, or an innovation is a conceptual change most suitable for novelty 

features. Such an attractor represents rather stable state of the system, a balance 

between instability and steady state.  

2. Essence of the attractor in socio-humanitarian systems. In comparison with 

applied synergetics, use of synergetic methodology in humanitarian knowledge has 

a number of peculiarities. In particular, social systems have a higher level of 

complexity as they include "the human" factor, namely a role of a man as the 

subject of knowledge. Taking into account such a feature of «human» systems it is 

offered  to consider the attractor to be not a point but K. Lorenz's strange attractor 

having a limited area of its existence, a certain field of possible decisions. If, by 

analogy with applied synergetics, the attractor is understood to be the system goal, it 

will allow to show pluralistic character of social processes with a great number of 

various goals at different levels of the action. 

Laws of social systems functioning are associated with processes of apprehending 

by the subject the activity results in its total variety. In this case it is inevitably 

necessary to touch upon the question on the goal essence and on necessity of its 

understanding change according to scientific trends of the postnonclassical 

scientific paradigm. If we understand the social system goal to be the strange 

attractor, it is necessary to reveal its features in this context. 
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First, it is necessary to note conventionality of the concept of the local goal of self-

organizing systems of any nature. The concept of the goal assumes availability of an 

external subject which sets this goal. Sinergetic systems of such a subject do not 

have and cannot have. Therefore, in accordance with the results of the researches 

[3], complex self-organizing systems of a social nature can be referred to the group 

of teleonomic systems. These are systems which evolve to some final condition 

without a specific initial programme. 

In this case, the concept of "the goal" can be defined as an internally determined 

condition of a social system and a direction of its change and development, that is 

the system trend to the order. In the process of evolutionary development the similar 

"goal" reasons play the increasing role, accordingly the factors named the order 

parametres,  become complicated as well. Along with their complication,  the 

system “goals” become more complicated, their quantity set by the strange attractor 

increases.  

Every social attractor forms its area of attraction, therefore intrasystem relations 

based on coherent collective movement of the system components arise. 

3.A superattractor and its meaning in the contemporary reality. According to 

N.I. Moiseyev [4], a social system can have a great number of attractors. Proceeding 

from it, it is logical to differentiate local attractors as intermediate goals of 

evolutionary processes, and global, that is consolidating the whole process of the 

system functioning. Taking into account complexity of non-natural systems, it 

seems to be pertinent to clear up social parametres of such a global attractor as a 

goal-like structure. 

In this connection Russian scientist V.P. Bransky [5] determines the concept of a 

superattractor. A superattractor is fundamentally important when considering social 

systems as it defines availability of the global "goal" of the whole  system which 

can be understood as a general meaning of the evolution. A global attractor (a 

superattractor) can be presented as an asymptotically stable point in the evolution 

spiral which movement incessantly approaches this point.  

The incessant aiming for a superattractor is caused by complexity of its nature, non-

linearity of movement to it. In the interpretation of social processes V.P. Bransky 

understands a superattractor as a limit of the mankind cultural development, a 

meaning of global self-organization, the order and chaos synthesis, more precisely, 

the order which is stable against the chaos. 

The concept of a superattractor defines the system integrity, representing the 

concept of holistic synergistic system  world outlook. 

According to V.P. Bransky, a superattractor is a much  broader category in 

comparison with the concept of the system goal. In the conception of synergistic 

historicism [5] a superattractor is interpreted as a public ideal and analyzed 

particularly from the view point of its subjective spiritual characteristics associated 

with axiological categories. According to such conception, the most general concept 

concerning social processes is the concept of the ideal including a number of value 

and world outlook characteristics.  

From this view point the ideal acquires a global comprehensive character. V.P. 

Bransky notes that in the XX-th century philosophy there was a trend to replace the 

concept of "the ideal" with the concepts of "the project", "the plan" that does not 

correspond to global essential characteristics of the ideal – a superattractor 

including all the scale of axiological categories, such as value, meaning, truth, as 

well as a doubtless strategic component.  

Taking into account the complex nature of a superattractor in social systems, in my 

opinion, it is pertinent to make emphasis on understanding of a superattractor as the 

global goal of the system dealing with world outlook and value systems in the social 

processes. In this case the term "the ideal" in the best way possible corresponds to 

such a concept including complex subjective social characteristics.  
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So, from the view point of synergetics and the conception offered by V.P. Bransky, 

development can be interpreted as the directed non-linear movement to a 

superattractor fulfilled through the change of local attractors by means of self-

organization. 

For example, for today, such a broad social phenomenon as globalization can be 

understood, proceeding from the synergistic paradigm, as a social self-organization 

of the wide range.  

The concept of a global superattractor of the social system is used as a consolidating 

parametre uniting the scope of self-organization processes at various being levels 

and determiming the evolution in its integrity. On this basis the contemporary 

synergistic world outlook becomes truly holistic: any object is as the universal 

component which "strives" for a superattractor. 

4. Conclusion. Defining an attractor as one of the crucial concepts of the 

contemporary synergetics in the pan-humanitarian supplement is caused by its goal-

like behaviour and backbone characteristics. In this context the concept of «a 

superattractor» offered by the Russian philosophical school, which allows to 

interpret the unified process of the universal evolution from the view point of the 

synergistic methodology is challenging. 
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Abstract. The Cauchy problem for systems of differential equations with stochastic
perturbations is studied. Weak regularized solution are constructed for the case of
systems with operators generating R-semigroups; generalized and mild solutions are
introduced.
Keywords: white noise process; Wiener process; weak, regularized, generalized and
mild solutions; Gelfand-Shilov spaces.

1 Introduction

Let (Ω,F , P ) be a random space. We consider the Cauchy problem for the
systems of differential equations with stochastic perturbations :

∂X(t, x)

∂t
= A

(
i
∂

∂x

)
X(t, x) +BW(t, x), t ∈ [0, T ], x ∈ R, (1)

X(0, x) = f(x), (2)

where A
(
i ∂
∂x

)
is a matrix operator: A

(
i ∂
∂x

)
=

{
Ajk

(
i ∂
∂x

)}m

j, k=1
generating

different type systems in the Gelfand-Shilov classification [3], Ajk

(
i ∂
∂x

)
are lin-

ear differential operators in L2(R) of finite orders; W = {W(t), t ≥ 0} is a ran-
dom process of white noise type in Ln

2 (R): W(t) = (W1(t, x, ω), . . .W1(t, x, ω)),
x ∈ R, ω ∈ Ω; B is a bounded linear operator from Ln

2 (R) to Lm
2 (R); f is an

Lm
2 (R)-valued random variable; X = {X(t), t ∈ [0, T ]} is an Lm

2 (R)-valued
stochastic process X(t) = (X1(t, x, ω), . . . Xm(t, x, ω)), x ∈ R, ω ∈ Ω, which is
to be determined.

This problem usually is not well-posed for several reasons. The first one
is caused by the fact that the differential operators A

(
i ∂
∂x

)
generally do not

generate semigroups of class C0 and the corresponding homogeneous Cauchy
problem is not uniformly well-posed in Lm

2 (R), they generate only some regu-
larized semigroups. By this reason we look for a regularized solution of (1)–(2).
The second reason is the irregularity of a white noise process, because of this
we need to consider not the original equation (1) but the integrated one, that is

⋆ The work was supported by the Ministry of Education and Science of Russian
Federation (Program 1.1016.2011) and by RFBR, project 13-01-00090
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an equation in the Ito form with a Wiener process W being a kind of primitive
of white noise W:

X(t, x) = f(x) +

∫ t

0

A

(
i
∂

∂x

)
X(τ, x) dτ +BW (t, x), t ∈ [0, T ], x ∈ R. (3)

In addition, we can not expect the stochastic inhomogeneity be in the domain
of A

(
i ∂
∂x

)
, by this reason we have to explore weak regularized solutions to the

integrated problem (3).

2 Necessary definitions and preliminary results

We consider the problem (1)–(2) as an important particular case of the abstract
Cauchy problem

X ′(t) = AX(t) +BW(t), t ∈ [0, T ], X(0) = f, (4)

and the problem (3) as that of the abstract integral one (written as usually in
the form of differentials):

dX(t) = AX(t)dt+BdW (t), t ∈ [0, T ], X(0) = f, (5)

with A being the generator of a regularized semigroup in a Hilbert space H, es-
pecially an R-semigroup (see, exp., Melnikova[4], Melnikova and Anufrieva[6]).
Thus, we continue investigations of Da Prato[2], Melnikova et al. [5], Alshan-
skiy and Melnikova[1]. We assume in this paper H = Lm

2 (R).

Definition 1. Let A be a closed operator and R be a bounded linear operator
in Lm

2 (R) with a densely defined R−1. A strongly continuous family S :=
{S(t), t ∈ [0, τ)}, τ ≤ ∞, of bounded linear operators in Lm

2 (R) is called an
R-regularized semigroup (or R-semigroup) generated by A if

S(t)Af = AS(t)f, t ∈ [0, τ), f ∈ domA, (6)

S(t)f = A

∫ t

0

S(τ)f ds+Rf, t ∈ [0, τ), f ∈ Lm
2 (R). (7)

The semigroup is called local if τ < ∞.

Definition 2. LetQ be a symmetric nonnegative trace class operator in Ln
2 (R).

An Ln
2 (R)-valued stochastic process {W (t), t ≥ 0} is called a Q-Wiener process

if
(W1) W (0) = 0 Pa.s. ;
(W2) the process has independent increments W (t)−W (s), 0 ≤ s ≤ t,

with normal distribution N (0, (t− s)Q);
(W3) W (t) has continuous trajectories Pa.s.

Definition 3. Let {Ft, t ≤ ∞} be a filtration defined by W . An Lm
2 (R)-valued

Ft-measurable process X = {X(t), t ∈ [0, T ]} is called a weak R-solution of
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the problem (3) with A
(
i ∂
∂x

)
generating an R-semigroup {S(t), t ∈ [0, τ)} in

Lm
2 (R) if the following conditions are fulfilled:

1) for each t ∈ [0, T ], k = 1,m,
∫ t

0
∥Xk(·, τ)∥L2(R) dτ < ∞ Pa.s.;

2) for each g ∈ domA∗, X satisfies the weak regularized equation :

⟨X(t), g⟩ = ⟨Rf, g⟩+
∫ t

0

⟨X(τ), A∗g⟩ dτ + ⟨RBW (t), g⟩ Pa.s. , t ∈ [0, T ]. (8)

It is proved by Melnikova and Alshanskiy[1] that a weak R-solution of the
abstract stochastic Cauchy problem (5) with densely defined A being the gener-
ator of an R-semigroup and W being a Q-Wiener process exists and is unique.
In our case of the problem (3) we have the following result.

Theorem 1. Let {W (t), t ≥ 0} be a Q-Wiener process in Ln
2 (R) and A

(
i ∂
∂x

)
be the generator of an R-semigroup {S(t), t ∈ [0, τ)} in Lm

2 (R) satisfying the
condition ∫ t

0

∥S(τ)B∥2HS dτ < ∞, (9)

where ∥ · ∥HS is the norm in the space of Hilbert-Schmidt operators acting from

the space Q
1
2Ln

2 (R) to Lm
2 (R). Then for each F0-measurable Lm

2 (R)-valued
random variable f

X(t) = S(t)f +

∫ t

0

S(t− τ)B dW (τ), t ∈ [0, T ], (10)

is the unique weak R-solution of (5).

We see in (10) that the main part of constructing an R-solution is con-
structing an R-semigroup generated by A. It is not an easy task to construct
R-semigroups generated by given operators A in the general case. But for dif-
ferential operators A

(
i ∂
∂x

)
such semigroups can be constructed and we describe

a way to do this in the present paper.
Our methods are based on investigations of the differential systems:

∂u(t, x)

∂t
= A

(
i
∂

∂x

)
u(t, x), t ∈ [0, T ], x ∈ R, (11)

provided by the generalized Fourier transform technique in [3]. So, let us apply
the Fourier transform to the system (11) and consider the dual one:

∂ũ(t, s)

∂t
= A(s)ũ(t, s), t ∈ [0, T ], s ∈ C. (12)

Let the functions λ1(·), . . . , λm(·) be characteristic roots of the system (12)
and Λ(s) := max

1≤k≤m
ℜλk(s), s ∈ C. Then solution operators of (12) have the

following estimation

etΛ(s) ≤
∥∥∥etA(s)

∥∥∥
m

≤ C(1 + |s|)p(m−1)etΛ(s), t ≥ 0, s ∈ C. (13)
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Definition 4. A system (11) is called
1) correct by Petrovsky if there exists such a C > 0 that Λ(σ) ≤ C, σ ∈ R;
2) conditionally–correct if there exist such constants C > 0, 0 < h < 1,

C1 > 0 that Λ(σ) ≤ C|σ|h + C1, σ ∈ R;
3) incorrect if the function Λ(·) grows for real s = σ in the same way as for

complex ones: Λ(σ) ≤ C|σ|p0 + C1, σ ∈ R.

Finally, note that the operator i ∂
∂x is self-conjugate in L2(R):

(
i ∂
∂x

)∗
= i ∂

∂x .
Hence the differential operator of (1) has the following conjugate one

A∗
(
i
∂

∂x

)
=

{
Akj

(
i
∂

∂x

)}m

k,j=1

,

obtained of {Ajk

(
i ∂
∂x

)
}mj,k=1 by replacing components with conjugate operators

and by further transposition.

3 Construction of R-semigroups generated by A
(
i ∂
∂x

)
Since for the problem (12) solution operators of multiplication by etA(·), t ≥ 0,
generally have an exponential growth (13), one can not obtain propagators of
the problem (11) in the framework of the classical inverse Fourier transform.
That is why we introduce an appropriate multiplierK(·) into the inverse Fourier
transform :

GR(t, x) :=
1

2π

∫ ∞

−∞
eiσxK(σ)etA(σ) dσ, (14)

providing the uniform convergence of this integral with respect to t ∈ [0, T ] in
Lm
2 (R)× Lm

2 (R) =: Lm
2 . For this purpose we require K(·)etA(·) ∈ Lm

2 .
The matrix-function GR(t, x) obtained in (14) is a regularized Green func-

tion. If its convolution with f is well-defined, then the convolution gives a
regularized solution of (11). In addition to the above condition, we introduce
K(·) providing∫ ∞

−∞
eiσxK(σ)etA(σ)f̃(σ) dσ ∈ Lm

2 (R), t ∈ [0, T ], (15)

for each f̃ ∈ Lm
2 (R). These conditions hold, for example, if K(·)etA(·) ∈ Lm

2

and is bounded.
Now we show that the family of convolution operators with GR(t, x):

(S(t)f)(x) := GR(t, x) ∗ f(x), t ∈ [0, τ), (16)

forms a local R-semigroup in Lm
2 (R) for any τ < ∞. To begin with, we verify

the strong continuity property of the family {S(t), t ∈ [0, T ]}, T < ∞ : for
arbitrary f ∈ Lm

2 (R) we show that ∥S(t)f − S(t0)f∥Lm
2 (R) → 0 as t → t0.

∥S(t)f − S(t0)f∥2Lm
2 (R) =
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=

∫
R

(
1

2π

∫ ∞

−∞
eiσxK(σ)

[
etA(σ)f̃(σ)− et0A(σ)f̃(σ)

]
dσ

)2

dx.

Let us split the inner integral into the three integrals:∫
|σ|≥N

eiσxK(σ)etA(σ)f̃(σ) dσ −
∫
|σ|≥N

eiσxK(σ)et0A(σ)f̃(σ) dσ

+

∫
|σ|≤N

eiσxK(σ)
[
etA(σ) − et0A(σ)

]
f̃(σ) dσ. (17)

Note that the functions hN (x, t) :=

∫
|σ|≥N

eiσxK(σ)etA(σ)f̃(σ) dσ and

gN (x, t) :=

∫
|σ|≤N

eiσxK(σ)
[
etA(σ) − et0A(σ)

]
f̃(σ) dσ

are elements of Lm
2 (R) for all t ∈ [0, T ] as the inverse Fourier transform of the

functions from Lm
2 (R)

h̃N (σ, t) =

{
0, |σ| ≤ N,

K(σ)etA(σ)f̃(σ), |σ| > N,

and g̃N (σ, t) = K(σ)etA(σ)f̃(σ) − h̃N (σ, t), respectively. Further, since

K(·)etA(·) ∈ Lm
2 and f̃(·) ∈ Lm

2 (R), the integral (15) is convergent uniformly
with respect to x ∈ R and t ∈ [0, T ], then for any ε > 0

|hN (x, t)| < ε/4, x ∈ R, t ∈ [0, T ],

by the choice of N . So, sum of absolute values of the first two integrals in (17)
is less than ε/2. Now fix N . Since

(
e(t−t0)A(σ) − 1

)
→ 0 as t → t0 uniformly

with respect to σ ∈ [−N,N ], we can take

|gN (x, t)| < ε/2, x ∈ R, t ∈ [0, T ].

To obtain the estimate for

∥S(t)f − S(t0)f∥2Lm
2 (R) =

1

4π2

∫
R
(hN (x, t)− hN (x, t0) + gN (x, t))

2
dx

we consider the difference hN (x, t)− hN (x, t0) =: ∆N (x, t, t0), t, t0 ∈ [0, T ], as
a single function, then ∆N (·, t, t0) ∈ Lm

2 (R) and for a fixed N by the choice of
t0, |∆N (x, t, t0)| < ε/2, x ∈ R. In these notations we have:

4π2∥S(t)f − S(t0)f∥2Lm
2 (R) =

=

∫
R
∆2

N (x, t, t0) dx+ 2

∫
R
∆N (x, t)gN (x, t, t0) dx+

∫
R
g2N (x, t) dx.

On the way described above one can show that every of these three integrals is
an infinitesimal value. That is the integrals over the infinite intervals |x| > M
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are small by the choice of M because of their uniform convergence with respect
to t ∈ [0, T ]. Integrals on compacts [−M,M ] are small because the integrands
are small, that provided by the sequential choice of M and t ∈ [0, T ]. This
completes the proof that operators of the family (16) are strongly continuous.

Next, we show that the obtained operators commute with A
(
i ∂
∂x

)
on f ∈

domA
(
i ∂
∂x

)
. By properties of convolution, a differential operator may be ap-

plied to any components of convolution, so we applyA
(
i ∂
∂x

)
to f ∈ domA

(
i ∂
∂x

)
:

A

(
i
∂

∂x

)
(S(t)f)(x) = GR(t, x) ∗A

(
i
∂

∂x

)
f(x) = S(t)A

(
i
∂

∂x

)
f(x).

Hence, the equality (6) holds. In conclusion, we show the R-semigroup equation
(7). For an arbitrary f ∈ domA

(
i ∂
∂x

)
consider the equality:

∂

∂t
(S(t)f)(x) =

∂

∂t
[GR(t, x) ∗ f(x)] =

1

2π

∂

∂t

∫ ∞

−∞
eiσxK(σ)etA(σ)f̃(σ) dσ.

Since the integral converges uniformly with respect to t ∈ [0, T ], we can differ-
entiate under the integral sign :

∂

∂t
(S(t)f)(x) =

1

2π

∫ ∞

−∞
eiσxK(σ)etA(σ)A(σ)f̃(σ) dσ.

The condition f ∈ domA
(
i ∂
∂x

)
provides A(·)f̃(·) ∈ Lm

2 (R), hence the inverse

Fourier transform of A(σ)f̃(σ) is A
(
i ∂
∂x

)
f(x) and

∂

∂t
(S(t)f)(x) = GR(t, x) ∗A

(
i
∂

∂x

)
f(x) =

= A

(
i
∂

∂x

)
[GR(t, x) ∗ f(x)] = A

(
i
∂

∂x

)
(S(t)f)(x).

Integration with respect to t gives the equality

(S(t)f)(x)− (S(0)f)(x) =

∫ t

0

A

(
i
∂

∂x

)
(S(τ)f)(x) dτ.

Since A
(
i ∂
∂x

)
is closed in Lm

2 (R) and differentiable functions are dense there,
this equality holds for any f ∈ Lm

2 (R) :

(S(t)f)(x)− (S(0)f)(x) = A

(
i
∂

∂x

)∫ t

0

(S(τ)f)(x) dτ, t ∈ [0, T ].

Put operator R in Lm
2 (R) equal to S(0), then by the strong continuity property,

Rf(x) =
1

2π

∫ ∞

−∞
eiσxK(σ)f̃(σ) dσ.

So, we have an R-semigroup generated by A
(
i ∂
∂x

)
constructed in Lm

2 (R).
Now for all types of systems (11) – correct by Petrovsky, conditionally-

correct and incorrect – we introduce appropriate correcting functions K(σ) as
follows:
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- for systems correct by Petrovsky we take K(σ) = 1
(1+σ2)d/2+1 , where d =

p(m− 1),

- for conditionally-correct systems we takeK(σ) = e−a|σ|h , where a > const·T ,
- for incorrect systems — K(σ) = e−a|σ|p0 , where a > const · T .

4 Some remarks on generalized solutions and solutions
of quasi–linear equations

In the previous section we have studied R-solutions to the problem (5) with dif-
ferential operators A

(
i ∂
∂x

)
that are generators of R-semigroups in H = Lm

2 (R),
and we focused ourself on the construction of these R-semigroups. If not a reg-
ularized, but a genuine solution of the problem is needed, then we have to
construct the solution in spaces, where operator R−1 is bounded.

How difficult it is to construct R-semigroups in general, we have noted.
Constructing the required spaces in the general case, the same challenge. Nev-
ertheless, in the case of the differential operators A

(
i ∂
∂x

)
suitable spaces can be

chosen among those constructed by Gelfand[3] on the basis of the generalized
Fourier transform technique. If to take f being an Lm

2 (R)-valued random vari-
able, for systems correct by Petrovsky we can construct a generalized solution
X(t, ·, ω) = (X1(t, ·, ω), . . . Xm(t, ·, ω)), t ∈ [0, T ], ω ∈ Ω, in S ′×· · ·×S ′, where
S ′ is known as the space of distributions of slow growth. For conditionally-

correct systems these are spaces
(
Sα,A
β,B

)′
of distribution increasing exponen-

tially with order 1/β dual to Sα,A
β,B — the space of all infinitely differentiable

functions satisfying the condition : for any ε > 0, δ > 0

|xkφ(q)(x)| ≤ Cε, δ(A+ ε)k(B + δ)qkkαqqβ , k, q ∈ N0, x ∈ R,

with a constant Cε, δ = Cε, δ(φ). And for incorrect systems the required space
is Z ′, that is dual to the space Z of all integer functions φ(·) of argument z ∈ C,
satisfying the condition

|zkφ(z)| ≤ Cke
b|y|, k ∈ N0, z = x+ iy ∈ C,

with some constants b = b(φ), Ck = Ck(φ).

Now consider the Cauchy problem for a quasi–linear equation :

dX(t) = AX(t)dt+ F (t,X)dt+BdW (t), t ∈ [0, T ], X(0) = f, (18)

with A being the generator of an R-semigroup in a Hilbert space H, in par-
ticular with A = A

(
i ∂
∂x

)
generating one of the constructed R-semigroups in

H = Lm
2 (R). Here F (t,X) is a nonlinear term satisfying the following condi-

tions:
(F1) ∥F (t, y1) − F (t, y2)∥H ≤ C∥y1 − y2∥H , t ∈ [0, T ], y1, y2 ∈ H (the

Lipschitz condition);
(F2) ∥f(t, y)∥2H ≤ C∥1 + y∥2H , t ∈ [0, T ], y ∈ H (the growth condition).

Let us introduce a definition of a mildR-solution for the quasi–linear Cauchy
problem (18). In the sense of this paper terminology it will be a strong solution.
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Definition 5. An H-valued Ft-measurable process {X(t), t ∈ [0, T ]}, X(t) =
X(t, ω), ω ∈ Ω, is called a mild R-solution of the problem (18) with A gener-
ating an R-semigroup S := {S(t), t ∈ [0, τ)} if

1)
∫ T

0
∥X(τ)∥H dτ < ∞ Pa.s.;

2) for each t ∈ [0, T ], X(t) satisfies the following equation

X(t) = S(t)f +

∫ t

0

S(t− s)F (s,X(s)) ds+

∫ t

0

S(t− s)B dW (s) ds Pa.s. (19)

A unique mild R-solution to (18), in particular to the problem with A =
A
(
i ∂
∂x

)
and with F satisfying the conditions (F1)–(F2), can be constructed

by the method of successive approximations, similarly to the case of strongly
continuous semigroups considered by Da Prato[2] and Ogorodnikov[8].

As for mild solutions, they can be obtained only in spaces, where operator
R−1 is defined, and similarly to the case of the linear problem above, these
spaces must be special spaces of generalized functions or even more general
spaces, where nonlinear operations on generalized functions are possible. That
is the problem for further investigations. The beginning to the investigations
of generalized solutions to quasi-linear problems

X ′(t) = AX(t) + F (t,X) +BW(t), t ≥ 0, X(0) = f,

was laid in the paper Melnikova and Alekseeva[7] due to construction of abstract
stochastic Colombeau spaces.
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Abstract. We show that the fractional Laplacian (FL) −(−∆)
α
2 is the principal

characteristic operator of harmonic systems with self-similar interparticle interac-
tions. We demonstrate that the FL can be rigorously defined by Hamilton’s varia-
tional principle as “fractional continuum limit” of a spring model with self-similar, in
some cases fractal harmonic interactions which we introduced recently (Michelitsch
et al.[5]). We generalize that approach to the multi-dimensional physical space of
dimensions n = 1, 2, 3, ... In this way we demonstrate the interlink between fractal
discrete behavior (discrete self-similar Laplacian) and its fractional continuum field
counterpart (FL) and give the latter a physical justification. The dispersion rela-
tion of the discrete model is obtained as self-similar Weierstrass-Mandelbrot fractal
function which takes in the fractional continuum limit the form of a smooth self-
similar power law. The density of states (density of normal modes) takes the form
of a characteristic scaling law which depends only on the scaling exponent of the FL
and the dimension of the physical space. The approach has a wide range of interdis-
ciplinary applications of self-similar dynamic problems such as anomalous diffusion
(Levi flights), self-similar wave propagation, and may also be useful to model self-
similar chaotic processes and dynamics in turbulence.
Keywords: Fractional Laplacian, fractional continuum limit, linear chain, Fractals,
Weierstrass-Mandelbrot function, self-similarity, scaling laws.

1 Introduction

Despite fractional calculus has a long history, recently a new increasing interest
has emerged to employ fractional operators and the so called fractional Lapla-
cian (FL) (often also referred to as Riesz fractional derivative) −(−∆)

α
2 where

α indicates a fractional in general non-integer exponent. The reason for this
new interest is the conclusion that the fractional approach is a highly pow-
erful mathematical tool to model complex and chaotic phenomena in various
disciplines.

The goal of this note is to demonstrate that the FL is the “natural” char-
acteristic linear operator, in a sense most basic operator that can be generated
from a physical “self-similar” spring model and its generalizations. Due to its
non-local “long tail” and self-similar invariant characteristics of the FL we raise
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the question what is the interlink of the FL with fractal and chaotic features
often chosen in nature.

Recently many models where developed which employ the FL in various
physical contexts, among them the description of “complex” dynamic phe-
nomena including anomalous diffusion (Lévi flights) [1–3,8,10] and see also the
numerous references therein.

This note is organized as follows: As point of departure we introduce a 1D
harmonic spring model with harmonic elastic potential energy which describes
self-similar interparticle interactions which we developed recently [5]. This
discrete model leads to fractal dynamic vibrational characteristics such as a
dispersion relation of the form of Weierstrass-Mandelbrot fractal functions.
Application of Hamilton’s variational principle defines a discrete self-similar
Laplacian with all good properties of a Laplacian: The self-similar Laplacian
is self-adjoint, elliptic, negative (semi-) definite (indicating elastic stability),
and translational invariant. We introduce a fractional continuum limit which
yields in rigorous manner the FL. In this way the FL is physically justified
being a continuum description of a self-similar spring model. The approach is
generalized to n dimensions of the physical space.

2 Linear chain model with self-similar harmonic
interactions

We consider an infinite sequence of points {hp} generated by a non-linear map-
ping with (initial value h = h0)

hp+1 = N(hp) = Np(h), hp+1 = N−1(hp) = N−p(h) (1)

where we exclude for convenience periodic orbits and fixed points. All points
of the sequence are assumed to fulfil hp ̸= hq for p ̸= q (−∞ < p < ∞). Define
a function Φ for a arbitrary generated by the series

Φ(h) =

∞∑
s=−∞

a−δsf(hs) (2)

where the sum is performed over the infinite sequence of points hs of (1). Φ(h)
is defined (convergent) for sufficiently good functions f . Function Φ behaves
self-similar under the (in general non-linear) transformation h → N(h) of its
argument, namely

Φ(N(h)) = aδ
∞∑

s=−∞
a−δ(s+1)f(hs+1) = aδΦ(h) (3)

For the sake of simplicity but without loss of generality let us consider here a
sequence generated by a linear mapping

N(h) = ah, a > 1 (4)
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Then we introduce the self-similar elastic potential in the form of a self-similar
function (3), namely

W(x, h) =
1

4

∞∑
s=−∞

a−δs
{
(u(x+ has)− u(x))2 + (u(x− has)− u(x))2

}
(5)

which is self-similar in the sense of (3) with respect to h. The elastic potential
describes a homogeneous mass distribution where each material point x is con-
nected with other material points x±has by a self-similar distribution of linear
springs of spring constants ∼ a−δs. In general this potential can be defined
also for nonlinear sequence hs of (1). The notion of self-similarity at a point
was coined by Peitgen et al.[9].

The total elastic energy of (5) is given by

V (h) =

∫ ∞

−∞
W(x, h) dx (6)

A self-similar Laplacian is then defined by Hamilton’s principle

∆δ,hu(x) = − δV

δu(x)
(7)

where δ(..)
δu stands for a functional derivative, and where

∆(δ,a,h)u(x) =
∞∑

s=−∞
a−δs (u(x+ has) + u(x− has)− 2u(x)) , 0 < δ < 2

(8)
fulfilling self-similarity condition ∆δ,ah = aδ∆δ,h. This Laplacian has all re-
quired good properties. The dispersion relation (negative eigenvalues) of this
Laplacian are obtained in the form of Weierstrass-Mandelbrot functions

ω2
(δ,a)(kh) = 4

∞∑
s=−∞

a−δs sin2 (
khas

2
), 0 < δ < 2 (9)

which are self-similar ω2
(δ,a)(kah) = aδω2

(δ,a)(kh) within its entire interval of

existence 0 < δ < 2. The dispersion relation (9) is within 0 < δ < 1 a nowhere
differentiable fractal function of estimated Hausdorff dimension 2 − δ [4,5].
In figures 1-3 cases of increasing fractal dimension (decreasing δ) are plotted.
Note that for 1 ≤ δ < 2 (9) is a non-fractal function of Hausdorff dimension
D = 1 (see figure 1). For increasing fractal dimension D (decreasing exponent
δ) fractal dispersion curves have increasingly erratic characteristics. For more
details we refer to our paper Michelitsch et al.[5].
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Fig. 1. Dispersion relation (9) for a non-fractal case.
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Fig. 2. Dispersion relation (9) for a non-fractal case.
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Fig. 3. Dispersion relation (9) for a fractal case.
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3 The FL as fractional continuum limit of the discrete
chain Laplacian and its generalization to n dimensions

Now we define the fractional continuum limit as follows [6,7]

Λa(h) = lim
a→1

∞∑
s=−∞

a−δsf(ash) ≈ hδ

ζ

∫ ∞

0

f(τ)

τ δ+1
dτ (10)

where a = 1 + ζ → 1 and 0 < ζ << 1. The fractional continuum limit of the
elastic potential (5) takes then the form

W(x, h) ≈ hδ

4ζ

∫ ∞

0

(u(x+ τ)− u(x))2 + (u(x− τ)− u(x))2

τ δ+1
dτ, 0 < δ < 2

(11)
which can be generalized to n dimensions as

W(x, h, α) ≈ hα

4ζ

∫ ∞

0

(u(x+ r)− u(x))2 + (u(x− r)− u(x))2

τα+n
dnr (12)

where 0 < α < 2. Hamilton’s principle yields from (12) the fractional contin-
uum limit of the self-similar Laplacian in n dimensions

∆n,α,hu(x) =: − δV

δu(x)
=

hα

2ζ

∫ ∞

0

(u(x+ r) + u(x− r)− 2u(x))

τα+n
dnr (13)

with 0 < α < 2. (13) recovers for n = 1 also the fractional continuum
limit of the self-similar Laplacian (8). The dispersion relation is obtained by
∆n,α,he

ikx = −ω2
n,α,h(kh)e

ikx and yields [8] a power-law of the form

ω2
n,α,h(kh) = An,αk

α, 0 < α < 2 (14)

with the positive constant [8]

An,α =
hα

ζ

π
n
2

2α−1α

Γ (1− α
2 )

Γ (α+n
2 )

> 0, 0 < α < 2 (15)

The positiveness of this constant is a consequence of the elastic stability.
The following observation is crucial: The fractional continuum limit Lapla-

cian (13) coincides (up to a normalization factor) with the FL which is defined,
e.g. [2,3,10]

∆n,α,h = −An,α (−∆)
α
2 (16)

where the constant (15) is consistent with the normalization factor given by in
the literature e.g. [2,3,10] and where (13) recovers with (16) and (15) the stan-
dard representation of the FL. Our self-similar chain model represents hence
a discrete lattice counterpart which corresponds in the fractional continuum
approximation the FL fractional approach.
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With (15) it is straight-forward to obtain the density of normal modes
(“density of states”) D(ω) where D(ω)dω measures the number of eigenmodes
of frequency ω. It is obtained as [8]

Dα,n(ω) = Bn,αω
2n
α −1, 0 < α < 2 (17)

with

Bn,α =
22−n

π
n
2 Γ (n2 )αA

n
α
n,α

(18)

We observe that the state density Dα,n(ω) scales as ∼ ω
2n
α −1 with a positive

exponent where 0 < n − 1 < 2n
α − 1 depending only on physical dimension n

and α. Because of 0 < α < 2 the scaling exponent of the self-similar density of
states (17) is always greater than the exponent n−1 of the standard Laplacian
which is asymptotically approached by (17) when α approaches the forbidden
value α → 2.

4 Conclusions

We have demonstrated in this brief note that the fractional Laplacian can be
rigorously defined as the fractional continuum limit by a self-similar linear
spring model and its generalization to n = 1, 2, 3.. dimensions. In this way a
physical justification for the FL is introduced. The model also reveals the in-
terlink between fractal vibrational Weierstrass-Mandelbrot characteristics and
its smooth fractional continuum counterpart. The present approach allows to
develop a smooth fractional field theory of phenomena with fractal and erratic
- chaotic features [8]. Especially noteworthy is a vast potential of applications
which include dynamic processes such as anomalous diffusion (Lévi flights),
wave propagation and turbulence problems.
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Abstract: B. Alspach, C.C. Chen and Kevin Mc Avaney [1] have discussed the 

Hamiltonian laceability of the Brick product C(2n, m, r) for even cycles. In [2], the 

authors have explored the Hamiltonian laceability properties of (m,r)-Brick Product 

C(2n+1, 1, r) for r=2,3. In [3] the authors have established Hamiltonian laceability 

properties of C(2n+1, 1, r) for r=3,4. In this paper we present the Hamiltonian 

laceability properties of C(2n+1, 1, r) for r=5,6,and 7.  
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.  

 

1. INTRODUCTION  

 

Let G be a finite, simple, connected and undirected graph. Let u 

and v be two vertices in G. The distance between u and v in G, 

denoted by d(u,v) is the length of a shortest u-v path in G. G is 

Hamiltonian laceable if there exists in G a Hamiltonian path 

between every pair of distinct vertices in G at an odd distance. G is 

Hamiltonian-t-laceable (Hamiltonian-t*-laceable) if there exists a 

Hamiltonian path between every pair of distinct vertices (at least 

one pair of distinct vertices) u and v in G with the property 

d(u,v)=t , 1 ≤ t ≤ diamG.  Hamiltonian laceability in the Brick 

product of even cycles was studied by B.Alspach, C.C.Chen and 

Kevin McAvaney in [1]. In [2] and [3], the authors have discussed 

the Hamiltonian laceability properties of the (m,r)-Brick Product 

of odd cycles C(2n+1,m,r) for r=2,3 and 4. In this paper we 

explore the Hamiltonian-t-laceability of the (m,r)-Brick Product 

C(2n+1,1,r) for r=5,6 and 7. 

 

Definition 1: (Brick Product of even cycles):  

Let m, n and r be a positive integers. Let C2n- a0,a1,a2,a3…..a(2n-1)a0 

denote a cycle of order 2n. The (m,r)-brick product of C2n denoted 
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by C(2n,m,r) is defined as follows. For m=1, we require that r be 

odd and greater than 1. Then, C(2n,m,r) is obtained from C2n by 

adding chords a2k(a2k+r), k=1,2,….n, where the computation is 

performed under modulo 2n.  

 

From the definition above, it is clear that the Brick product 

of even cycles is a connected three regular graph. 

 

 The following figure 1 shows the Brick product of the 

cycle C10 for r = 5. 

 
 

Fig. 1: Brick product C(10,1,5) 

  

Definition 2: (Brick Product of odd cycles):  

Let m,n and r be positive integers. Let C2n+1=a0 a1 a2 a3………a2n a0 

denote a cycle of order 2n+1 (n>1). The (m,r)-brick product of 

C2n+1, denoted by C(2n+1,m,r) is defined as follows. For m=1, we 

require that 1< r < 2n. Then C(2n+1,m,r) is obtained from C2n+1 by 

adding chords ak(ak+r), 0 ≤ k ≤ 2n where the computation is 

performed  under modulo 2n+1. 

 

From the definition above, it is clear that the Brick product 

of odd cycles is a connected four regular graph. 
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The following figure 2 shows the Brick product of the 

cycle C13 for r=2. 

 
Fig.2:  The Brick product C (13, 1, 2) 

 

Definition 3: Let u and v be two distinct vertices in a connected 

graph G. Then u and v are attainable in G if there exists a 

Hamiltonian path in G between u and v. 

 

Terminologies used in the Brick Product to determine the 

Hamiltonian path:  

For m=1, if ai is any vertex of C (2n+1, m, r), then the following 

are defined. 

(ai) P[m] = (ai)( ai+1)( ai+2) . . . . . . . .(ai+m-1)     

(ai) P
-1

[m] = (ai)(ai-1)( ai-2) . . . . . . . . (ai-m+1)      

(ai) [J] = (ai)( ai+r)  and  (ai)[J
-1

] = (ai)( ai-r)        

(ai) [K] = (ai)( ai+2) and (ai)[K
-1

] = (ai)( ai-2)        

Example: For n= 4, consider the graph C(2n+1, 1, 4). For the 

vertices ai and aj in G, we have  d(ai, aj) = 2 for i =1 and j =3. 

Using the above notations, a Hamiltonian path in G between the 

vertices a1 and a3 is given by (ai) P(2) J [P
-1

(2)]
2
 J

-1
 [P

-1
(2)]

2(n-3)
 J

-1
 

= a1-a2-a6-a5-a4-a0-a8-a7-a3 under modulo 2n+1. 

  

The following figure 3 shows the Hamiltonian path 

between the vertices a1 and a3. 
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Fig.3:  Hamiltonian path from vertex a1 to a3 in the Brick 

Product C(9,1,4) 

 

Definition 4: Let ai and aj be any two distinct vertices in a 

connected graph G. Let E
’
 be a minimal set of edges not in G and 

P be a path in G such that P  E
’ 
is a Hamiltonian path in G from 

ai to aj. Then | E
’
| is called the t-laceability number (t) of ),( ji aa  

and the edges in E
’
 are called the t-laceability edges with respect 

to ),( ji aa . 

 

2. RESULTS  

 

 In [2] the authors proved the following result: 

 

Theorem 5: The graph G=C(2n+1, 1, 2) is Hamiltonian-t-

laceable for 1≤t≤diamG.  

 

 In [3] the authors proved the following results: 

 

Theorem 6: The graph C(2n+1, 1, 3) is Hamiltonian-t-laceable 

for t=1,2 if n=3 and is Hamiltonian-t-laceable for t=1,2,3 if n≥6 

such that (2n+1)1(mod 3). 
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Theorem 7: The graph C(2n+1, 1, 3) is Hamiltonian-t-laceable 

for t=1,2,3. Where n≥5 such that (2n+1) 2(mod 3). 

 

Theorem 8: The graph C(2n+1, 1, 4) is Hamiltonian-t-laceable 

for t=1,2 if n = 4 and is Hamiltonian-t-laceable for t=1,2,3 if n ≥ 

6 such that (2n+1) 1(mod 4). 

 

Theorem 9: The graph C(2n+1, 1, 4) is Hamiltonian-t-laceable 

for t=1,2,3. Where n ≥ 5 such that (2n+1)3(mod 4). 

 

 We now prove the following results: 

 

Theorem 10: The graph G=C(2n+1,1,5) for n≥5 and n≠7+5k is 

Hamiltonian-t-laceable for t=1. For t=2, G is Hamiltonian-t-

laceable with (t)=1, where k is a non negative integer. 

 

Proof: Consider the graph G= C(2n+1, 1, 5). 

Let d(ai, aj) = t, (0 ≤ i < j ≤ 2n). For convenience we take j>i.  

 

Claim 1: G is Hamiltonian-t-laceable for t=1 

 

Case (i): j - i = 1 or (2n+1)-(j-i) =1 

If j - i = 1 or (2n+1)-(j-i) =1 in C2n+1 then, ai and aj are attainable in 

G, since (ai) [P
-1

(2)]
2n 

 
 
is  the Hamiltonian path. 
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Fig.4:  Hamiltonian path from vertex a0 to a1 in the Brick 

Product C(13,1,5) 

 

Case (ii): j - i = 5 or (2n+1)-( j - i) =5 

If j - i = 5 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P(2)]
4
 J

-1
[(P

-1
(2)]

2n-5
  is the Hamiltonian path. 

If (2n+1)-( j - i) =5 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1

(2)]
4
 J [P(2)]

2n-5
  is the Hamiltonian path. 

 

Claim 2: G is Hamiltonian-t-laceable for t=2 

 

Case(i):  j - i = 2 or (2n+1)-( j - i) =2 

If  j - i = 2 or (2n+1)-( j - i) =2 in C2n+1 then, ai and aj are attainable 

in G, since (ai) P(2) K
-1

 [P
-1

(2)]
2(n-1)

 is  a Hamiltonian path with t-

laceability edge K
-1

. 

Case(ii):  j - i = 6 or (2n+1)-( j - i) = 6 

If  j - i = 6 or (2n+1)-( j - i) = 6 in C2n+1 then, ai and aj are attainable 

in G, since (ai) J [P
-1

(2)]
4 

K
-1

[P
-1

(2)]
n+5

 is the Hamiltonian path 

with t-laceability edge K
-1

.
 

Case(iii):  If j - i = 4 or (2n+1)-( j - i) =4 

If  j - i = 4 or (2n+1)-( j - i) =4 in C2n+1 then, ai and aj are attainable 

in G, since (ai) J [P(2)]
n+6

 K [P(2)]
8
 is the Hamiltonian path with t-

laceability edge K. 
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Hence the proof. 

         

Theorem 11: The graph G=C(2n+1,1,6) for n ≥ 6 and n ≠7+3k 

is Hamiltonian-t-laceable for t=1. For t=2, G is Hamiltonian-t-

laceable with (t)=1, where k is a non negative integer. 

 

Proof: Consider the graph G= C(2n+1, 1, 6). 

Let d(ai, aj) = t, (0 ≤ i < j ≤ 2n). For convenience we take j>i.  

 

Claim 1: G is Hamiltonian-t-laceable for t=1 

 

Case (i): j - i = 1 or (2n+1)-(j-i) =1 

If j - i = 1 or (2n+1)-(j-i) =1 in C2n+1 then, ai and aj are attainable in 

G, since (ai) [P
-1

(2)]
2n 

 
 
is  the Hamiltonian path.  

Case (ii): j - i = 6 or (2n+1)-( j - i) =6 

If j - i = 6 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P(2)]
5
 J

-1
[(P

-1
(2)]

2n-6
  is the Hamiltonian path. 

If (2n+1)-( j - i) = 6 in C2n+1 then, ai and aj are attainable in G, 

since (ai) [P
-1

(2)]
5
 J [P(2)]

2n-6
  is the Hamiltonian path. 

 

Claim 2: G is Hamiltonian-t-laceable for t=2 

 

If n=6 then (ai) J [P(2)]
6
 K [P(2)]

5
 is  a Hamiltonian path with t-

laceability edge K. If n ≥ 7 then 

Case(i):  j - i = 2 or (2n+1)-( j - i) =2 

If  j - i = 2 or (2n+1)-( j - i) =2 in C2n+1 then, ai and aj are attainable 

in G, since (ai) P(2) K
-1

 [P
-1

(2)]
2(n-1)

 is  a Hamiltonian path with t-

laceability edge K
-1

. 

Case(ii):  j - i = 5 or (2n+1)-( j - i) = 5 

If  j - i = 5 or (2n+1)-( j - i) = 5 in C2n+1 then, ai and aj are attainable 

in G, since (ai) J [P
-1

(2)]
n-7 

K
-1

[P
-1

(2)]
n+5

 is the Hamiltonian path 

with t-laceability edge K
-1

.
 

Case(iii):  If j - i = 7 or (2n+1)-( j - i) =7 

If  j - i = 7 or (2n+1)-( j - i) =7 in C2n+1 then, ai and aj are attainable 

in G, since (ai) J [P
-1

(2)]
2(n-3)

 K [P
-1

(2)]
n-8

 is the Hamiltonian path 

with t-laceability edge K.  
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Hence the proof. 

          

Theorem 12: The graph C(2n+1,1,7) is Hamiltonian-t-laceable 

for t=1 if n ≥ 7 and n ≠10+7k where k is a non negative integer.  

 

Proof: Consider the graph G= C(2n+1, 1, 7). 

Let d(ai, aj) = t, (0 ≤ i < j ≤ 2n). For convenience we take j>i.  

Case (i): j - i = 1 or (2n+1)-(j-i) =1 

If j - i = 1 or (2n+1)-(j-i) =1 in C2n+1 then, ai and aj are attainable in 

G, since (ai) [P
-1

(2)]
2n 

 
 
is  the Hamiltonian path. 

 
Fig.5:  Hamiltonian path from vertex a0 to a1 in the Brick 

Product C(19,1,7) 

 

Case (ii): j - i = 7 or (2n+1)-( j - i) =7 

If j - i = 7 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P(2)]
6
 J

-1
[(P

-1
(2)]

2n-7
  is the Hamiltonian path. 

If (2n+1)-( j - i) = 7 in C2n+1 then, ai and aj are attainable in G, 

since (ai) [P
-1

(2)]
6
 J [P(2)]

2n-7
  is the Hamiltonian path. 

Hence there exists Hamiltonian path between an every pair of 

vertices in G such that d(ai,aj)=1. Therefore G is Hamiltonian-t-

laceable for t=1.  

 

Hence the proof. 
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Some aspects of stochastic calculus
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Abstract. Frequently when we refer to chaos and chaotic and complex
systems to describe the comportment of some natural phenomena, in fact
we consider phenomena of the type of a Brownian motion which is a more
realistic model of such phenomena. Thus one can talk about a passing from
chaotic and complex systems to Brownian motion. Some aspects regardind
the Brownian motion and its Markovian nature will be developed, in short, in
this paper; we try also to emphasize their impact for some practical problems.

Keywords: stochastic differential equations, stochastic calculus, Markov
processes, Brownian motion.

1 Introduction

It is known that a chaotic perpetual motion of a Brownian particle is the
result of the collisions of particle with the molecules of the fluid in which
there is.

But this particle is much bigger and also heavier than the molecules of the
fluid which it collide, and then each collision has a negligible effect, while the
superposition of many small interactions will produce an observable effect.

On the other hand, for a Brownian particle such molecular collisions ap-
pear in a very rapid succession, their number being enormous. For a so high
frequency, evidently, the small changes in the particle’s path, caused by each
single impact, are too fine to be observable. For this reason the exact path
of the particle can be described only by statistical methods.

We emphasize that L. Bachélier derived the law governing the position of a
single grain performing a 1-dimensional Brownian motion starting at a ∈ R
at time t = 0; and A. Einstein also derived the same law from statistical
mechanical considerations and applied it to the determination of molecular
diameters.
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Also Paul Lévy found a construction of the Brownian motion and given
a profound description of the fine structure of the individual Brownian path.
D. Ray obtained some results in the case when the motion is strict Markov;
and W. Feller obtained that the generator of a strict Markovian motion with
continuous paths (diffusion) can be expressed as a differential operator.

And in the last time we can speak about Markov processes from Kiyosi
Itô’s perspective (according to D.W. Stroock). The usual class of Markov
processes which we consider has many times some restrictions which do not
cover many interesting processes. This is the reason for which we try often
to obtain some extensions of this notion.

Researches in this direction are due especially to K. Itô and in this context
we shall refer below, in short, to some of them.

2 On Markov processes - an extended defini-

tion

Let S be a state space and consider a particle which moves in S. Also, suppose
that the particle starting at x at the present moment will move into the set
A ⊂ S with probability pt(x,A) after t units of time, “irrespectively of its
past motion”, that is to say, this motion is considered to have a Markovian
character.

The transition probabilities of this motion are {pt(x,A)}t,x,A and we con-
sidered that the time parameter t ∈ T = [0,+∞).

The state space S is assumed to be a compact Hausdorff space with a
countable open base. The σ-field generated by the open sets (the topological
σ-field on S) is denoted by K(S). Therefore, a Borel set A is a set in K(S)
(i.e. A ∈ K(S)).

The mean value
m = M(µ) =

∫
R
xµ(dx)

is used for the center and the scattering degree of a one-dimensional proba-
bility measure µ having the second order moment finite, and the variance of
µ is defined by

σ2 = σ2(µ) =
∫
R

(x−m)2µ(dx).

On the other hand, from the Tchebychev’s inequality, for any t > 0, we
have

µ(m− tσ,m+ tσ) ≤ 1

t2
,

so that several properties of 1-dimensional probability measures can be de-
rived.
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Remark 2.1 In the case when the considered probability measure has no
finite second order moment, σ becomes useless. In such a case one can in-
troduce the central value and the dispersion that will play similar roles as m
and σ for general 1-dimensional probability measures.

The dispersion δ is defined as follows

δ = δ(µ) = − log
∫ ∫

R2
e−|x−y|µ(dx)µ(dy).

Furthermore it is assumed that the following conditions are satisfied by
the transition probabilities {pt(x,A)}t∈T,x∈S,A∈K(S):

1 for t and A fixed,
a) the transition probabilities are Borel measurable in x;
b) pt(x,A) is a probability measure in A;

2 p0(x,A) = δx(A) (i.e. the δ-measure concentrated at x);

3 pt(x, ·)
weak−→ pt(x0, ·) as x→ x0 for any t fixed, that is

lim
x→x0

∫
f(y)pt(x, dy) =

∫
f(y)pt(x0, dy)

for all continuous functions f on S;
4 pt(x, U(x)) −→ 1 as t↘ 0, for any neighborhood U(x) of x;
5 the Chapman-Kolmogorov equation holds:

ps+t(x,A) =
∫
S
pt(x, dy)ps(y, A).

We can give now the definition of a Markov process as follows:

Definition 2.1 A ”Markov process” is a system of stochastic processes

{Xt(ω), t ∈ T, ω ∈ (Ω, K, Pa)}a∈S,

that is for each a ∈ S, {Xt}t∈S is a stochastic process defined on the proba-
bility space (Ω, K, Pa).

It can be observed that a definition as it is given above not correspond
to many processes that are of a real interest so that it is useful to obtain an
extension of this notion. An extended notion has been proposed by K. Itô
and it is given below.

Let E be a separable Banach space with real coefficients and norm || · ||
and let also L(E,E) be the space of all bounded linear operators E −→ E.
It can be observed that L(E,E) is a linear space.
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Definition 2.2 The collection of stochastic processes

X = {Xt(ω) ≡ ω(t) ∈ S, t ∈ T, ω ∈ (Ω, K, Pa)}a∈S

is called a ”Markov process” if the following conditions are satisfied:

1) the ”state space” S is a complete separable metric space and K(S) is a
topological σ-algebra on S;

2) the ”time internal” T = [0,∞);

3) the ”space of paths” Ω is the space of all right continuous functions T −→
S and K is the σ-algebra K[Xt : t ∈ T ] on Ω;

4) the probability law of the path starting at a, Pa(H), is a probability mea-
sure on (Ω, K) for every a ∈ S which satisfy the following conditions:

4a) Pa(H) is K(S)-measurable in a for every H ∈ K;

4b) Pa(X0 = a) = 1;

4c) Pa(Xt1 ∈ E1, · · · , Xtn ∈ En) =∫
. . .
∫
ai∈Ei

Pa(Xt1 ∈ da1)Pa1(Xt2−t1 ∈ da2) . . .

. . . Pan−1(Xtn−tn−1 ∈ dan) for 0 < t1 < t2 < . . . < tn.

Remark 2.2 Evidently there are some differences between this definition and
Definition 2.1 of a Markov process. Thus

i. The space S is not necessary to be compact;

ii. it is not assumed the existence of the left limits of the path;

iii. the transition operator f −→ Gtf(·) = E.(f(Xt)) do not necessarily
carry C(S) into C(S) (C(S) being the space of all real-valued bounded
continuous functions on S).

3 The Markovian nature of the Brownian path

In his study Bachélier found some solutions of the type ψ(x). He derived1

the law governing the position of a single grain performing a 1-dimensional
Brownian motion starting at a ∈ R1 at time t = 0:

Pa[x(t) ∈ db] = g(t, a, b)db (t, a, b) ∈ (0,+∞)×R2, (1)

1Bachélier, L. Théorie de la spéculation. Ann. Sci. École Norm. Sup., 17, 1900, 21-86.
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where g is the source (Green) function

g(t, a, b) =
e−

(b−a)2

2t

√
2πt

(2)

of the problem of heat flow:

∂u

∂t
=

1

2

∂2u

∂a2
(t > 0). (3)

Bachélier also pointed out the Markovian nature of the Brownian path
expressed in

Pa[a1 ≤ x(t1) < b1, a2 ≤ x(t2) < b2, · · · , an ≤ x(tn) < bn] =

=

b1∫
a1

b2∫
a2

· · ·
bn∫
an

g(t1, a, ξ1) g(t2 − t1, ξ1, ξ2) · · ·

· · · g(tn − tn−1, ξn−1, ξn) dξ1 dξ2 · · · dξn, 0 < t1 < t2 < · · · tn (4)

and used it to establish the law of maximum displacement

P0

[
max
s≤t

x(s) ≤ b
]

= 2

b∫
0

e−
a2

2t

√
2πt

da t > 0, b ≥ 0. (5)

It is very interesting that A. Einstein, in 1905, also derived (1) from
statistical mechanical considerations and applied it to the determination of
molecular diameters.2

As we already emphasized, a rigorous definition and study of Brownian
motion requires measure theory. Consider the space of continuous path
w : t ∈ [0,+∞)→ R with coordinates x(t) = w(t) and let B be the smallest
Borel algebra of subsets B of this path space which includes all the simple
events B = (w : a ≤ x(t) < b), (t ≥ 0, a < b). Wiener established the
existence of nonnegative Borel measures Pa(B), (a ∈ R, B ∈ B) for which
(4) holds3. Among other things, this result attaches a precise meaning to
Bachélier’s statement that the Brownian path is continuous.

Paul Lévy found another construction of the Brownian motion and gives
a profound description of the fine structure of the individual Brownian path.

The standard Brownian motion can be now defined.

2see: A. Einstein, Investigations on the theory of the Brownian movement, New York,
1956.

3N. Wiener, Differential space, Math. Phys. 2, 1923, pp. 131-174
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Definition 3.1 A continuous-time stochastic process {Bt | 0 ≤ t ≤ T} is
called a ”standard Brownian motion” on [0, T ) if it has the following four
properties:

i B0 = 0.

ii The increments of Bt are independent; that is, for any finite set of
times 0 ≤ t1 < t2 < · · · < tn < T, the random variables

Bt2 −Bt1 , Bt3 −Bt2 , · · · , Btn −Btn−1

are independent.

iii For any 0 ≤ s ≤ t < T the increment Bt−Bs has the normal distribu-
tion with mean 0 and variance t− s.

iv For all ω in a set of probability one, Bt(ω) is a continuous function of
t.

The Brownian motion can be represented as a random sum of integrals of
orthogonal functions. Such a representation satisfies the theoretician’s need
to prove the existence of a process with the four defining properties of Brow-
nian motion, but it also serves more concrete demands. Especially, the series
re-presentation can be used to derive almost all of the most important ana-
lytical properties of Brownian motion. It can also give a powerful numerical
method for generating the Brownian motion paths that are required in com-
puter simulation.

Remark 3.1 Let us consider R ∪ {∞}. Then one can define

pt(x, dy) =
1

t
√

2π
e−

(y−x)2

2t2 dy in R

pt(∞, A) = δ∞A.

Let us observe that the conditions 1b) and 2-5 assumed on the transition
probabilities {pt(x,A)}t∈T,x∈S,A∈K(S), given in Section 2, are satisfied in this
case for ”Brownian transition probabilities” where R ∪ {∞} is considered as
the one-point compactification of R.

Finally we shall give an interesting result regarding to a 3-dimensional
Brownian motion.

Let X be a Markov process in a generalized sense as it is given in Def-
inition 2.2. Let us denote by B(S) the space of all bounded real K(S)-
measurable functions and let us consider a function f ∈ B(S).
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It is supposed that

Ea

( ∞∫
0

|f(Xt)|dt
)

(6)

is bounded in a. Then, the following

Uf(a) = Ea

( ∞∫
0

f(Xt)dt
)

(7)

is well-defined and is a bounded K(S)-measurable function of a ∈ S. The
Uf is called the potential of f with respect to X. Having in view that
Uf = limα↓0Rαf , it is reasonable to write R0 instead of U . Based on this
fact, Rαf will be called the potential of order α of f .

It is useful to retain that Rαf ∈ B(S) for α > 0; and generally f ∈ B(S)
while R0f(= Uf) ∈ B(S) under the condition (6).

Now the name potential is justified by the following theorem on the 3-
dimensional Brownian motion.

Theorem 3.1 Let X be the 3-dimensional Brownian motion. If f ∈ B(S)
has compact support, then f satisfies (6) and

Uf(a) =
1

2π

∫
R3

f(b)db

|b− a|
=

1

2π
×Newtonian potential of t. (8)

We do not insist on these aspects. But more details, proofs and related
problems can be found in [1], [2], [3], [4], [14], [6], [13], [12].

Conclusion 3.1 As we have said at the beginning, we think that when, in
various problems, we say ”chaos” or ”chaotic and complex systems” or we
use another similar expression to define the comportment of some natural
phenomena, in fact we imagine phenomena similarly to a Brownian motion
which is a more realistic model of such phenomena. And this opinion lie at
the basis of this paper.
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Abstract: This article proposes stabilization of an inductorless Chua’s chaotic 

circuit via sliding mode control (SMC). Modeling of the circuit and its 

electronic circuit design are presented. During controller design process, 

stability guarantee is required simultaneously. Since the second method of 

Lyapunov’s is applied, coefficients of the Lyapunov function candidates and 

their derivatives are obtained via metaheuristic search. Adaptive tabu search 

(ATS) metaheuristic has been applied for the purposes, and the design is 

formulated as an optimization problem with nonlinear constraints. The paper 

gives details of algorithm implementation, control design, electronic circuit 

design and simulation results with discussions. 

Keywords:, Chua’s Circuit, Stabilization, Sliding Mode Control.  

 

1. Introduction 

Research in chaos has been a very active topic in recently years. Leon O Chua 

introduced a chaotic circuit in 1983 [1] becoming a famous circuit nowadays. 

The circuit is a simple and typical third-order autonomous system that exhibits 

chaotic and bifurcation phenomena [2],[3]. Proper use for a chaotic system may 

need its chaotic behavior during a certain period of time alternating to well-

behaved (or stabilized) dynamic. Therefore, stabilization techniques are needed 

for chaotic systems. Among those in literature, it has been possible to use 

traditional feedback control approach for the purpose [4]. Nonlinear feedback 

control approach has been proposed with stability analysis using Hurwitz matrix 

[5]. Another possibility for control and stabilization of a chaotic system is to use 

backstepping method [6, 7]. Recently, sliding mode control (SMC) has been 

successfully applied due to its robustness property [8-12]. The SMC forces a 

system under control to be on a sliding manifold, and remain there till its 

dynamic reaches an equilibrium. The method is applied to find controller 

parameters with stability simultaneously guaranteed, for instance the work 

reported by Wang (2009) [9]. Our proposed works employ the SMC together 

with a kind of metaheuristics namely adaptive tabu search (ATS) [13]. The ATS 

is an efficient intelligent search method which has been successfully applied to 

                                                 
*
Paper included in Chaotic Systems: Theory and Applications, C.H. Skiadas and 

I. Dimotikalis, Eds, World Scientific, pp 302—308, 2010. 
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various real-world problems [14],[15]. The simulation results from PSIM are 

provided to show the effectiveness of the proposed approach. 
 

2. Mathematic Model of Chua’s chaotic circuit 

The standard form of Chua’s circuit shown in Fig.1 consists of two main parts 

that are linear elements ,R L  and C  and a nonlinear element
2

( )cg V  called 

Chua’s diode. The piecewise-linear (PWL) function of Chua’s diode is shown in 

Fig. 2(a). The double scroll chaotic behavior in Fig. 2(b) will be occurred when 

adjusting R into a suitable value.  
 

1C 2C

R
2cV

1cVLi 2
( )g ci V

2
( )cg VL

    
Fig.1 Standard unforced Chua’s circuit.  

0.002

0.001

0
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-0.002

2Vc

2( )gi Vc

-4 -2 0 2 4

bG

pB aG

pB

 
(a)                                                    (b) 

Fig.2 (a) Piecewise-linear function of the 
2

( )cg V ,  

(b) Phase portrait of double scroll attractor in three dimensional view. 
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6R

5R

4R

3R

2R

Chua’s Diode

3C

 
Fig.3 Inductorless Chua’s chaotic circuit with controller input indicated. 

 

The modified Chua’s circuit is developed by changing the inductor to a 

Gyrator circuit composed of two resistors, a capacitor and an operational 

amplifier to compact the size of experimental circuit, and illuminate the noise 

voltage across the inductor. Likewise, Chua’s diode can be realized by six 

resistors and two operational amplifiers [2]. Furthermore, the controller inputs 
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have been added into standard form in order to stabilize the chaotic Chua’s 

circuit [3]. The schematic diagram of modified Chua’s circuit with controller 

input indicated is illustrated in Fig.3.  

       By applying Kirchoff’s laws to the circuit, the controlled Chua’s circuit can 

be represented by 

 

  

1

2 1

1

2 2

1 2

1

7 1 1 1

2

3

7 2 2 2

1
( )

1
( )

( )1
( )

c L
c c

L
c

c g c
c c

dV i u
V V

dt R C C C

di
V u

dt L

dV i V u
V V

dt R C C C


    




   



    
       

       (1). 

2 2 2 27( ) [ (1 2)( )(| | | |)]c b c a b c p c pf V R G V G G V B V B     
 
 (2) 

 

where 
1 2
,c cV V  are the voltages across capacitors 1C and 2C , respectively, Li  is 

the current through inductor L, The nonlinearity function 
2

( )cf V  is an I-V 

characteristic representing three segments PWL curve. The inner slopes aG , the 

outer slope bG  and the breakpoint voltage pB  can be obtained from Fig.2(a). 

Inputs
 1 2,u u and 3u  are sliding mode controllers. 

      To simplify (1) and (2), the circuit can be normalized by the following the 

new notation: 

          
1t t RC   ,           1 1,x Vc 2 ,Lx i 3 2x Vc

 
  

2 7 2x R x
   1 7 1u R u ,   3 2 7 1 3(1 )( )u C R C u

                        
(3) 

     23 7( ) ( )g cf x R i V ,         
7 am R G ,           

7 bn R G , 

Substitutes (3) into (1) and (2), so that the main bifurcation parameters of 

Chua’s circuit can be obtained as 
1 2C C   and 2

1R C L  . Normalized circuit 

can be reformulated as follows 
 

1
1 2 3 1

2
1 2

3
1 3 3 3

( )

( ( ))

dx
x x x u

dt

dx
x u

dt

dx
x x f x u

dt






     




   
 


     

         (4) 

          
3 3 3 3( ) (1 2)( )(| | | |)p pf x nx m n x B x B       .                 (5) 

 

The schematic diagram in Fig.3 is overall an circuit of the proposed method. 

The value of electronic components are selected as 
1 90C nF ,

2 10C nF ,

3 0.01C µF ,
1 2, 220R R   ,

3 2.4R k  ,
4 5, 39R R k  ,

6 3.3R k  ,
7  2R K  .

8 1R   ,
9 1.8R M  . In this case, Chua’s circuit will generate the double scroll 

409



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

when 7 1.6R k  . Parameters from PWL function can be obtained as, 
pB 1.16 ,

aG  -47.22 10  and 4= 3.92 10bG   . Therefore, the main bifurcation parameters 

of Chua’s circuit are  15.6  ,  28  , 1.139m    and 0.711n   .  
 

3. Sliding Mode Control of Chua’s circuit 

To stabilize a Chua’s system by using SMC, there are two modes to be 

designed, reaching and sliding modes, respectively. As a result of the reaching 

mode, one obtains a switching function (or sliding surface) designated as an 

equivalent control, equ . To achieve a total control requires the sliding mode 

design, which results in a complete control signal governing system's dynamic 

to reach the sliding surface, and then slide along the surface to an equilibrium 

point. 

From last section, the controlled Chua’s circuit represented by (3), (4) can be 

unified as  
 

( )  x Ax f x Bu                                                    (6) 

where

1 1 1

0 0

0



 

 
  
 
  

A ,

3

0

( ) 0

( )

x

f x



 
  
 
  

f  ,

0 0 0

0 1

0 0 1

0

 
 


 
  

B  , 
1 2 3[ ]Tx x xx  

and 1 2 3[ ]Tu u uu  

 

     Since the controlled circuit is nonlinear, this work applies the direct method 

of Lyapunov's to guarantee stability. The system (6) is said to be globally 

asymptotically stable at origin if there exists a scalar function ( )V x , such that 

( ) 0, 0,V x  x ( ) 0, 0V x  x and ( )V x for x ‖ ‖ . If Lyapunov 

function, ( )V x
 
is not known, stability cannot be concluded. Most works in 

literatures assume a quadratic form of Lyapunov function, i.e. ( )V x  1
2

( )T
x x . 

Its associative ( )V x  along the solution trajectory is expressed by 
 

 
1

( ) ( )
2

T TV x  x x x x  (7) 

 

Although the forms of the functions are known, their coefficients are not. This 

has introduced difficulties in stability analysis because the parameters cannot be 

easily determined. Such circumstances are common when ones apply SMC 

because the reaching mode can be assumed via the above stability conditions as 

an alternative. In other words, the system dynamic is guaranteed to reach the 

sliding surface 0s  according to the SMC method if there exists a Lyapunov 

function 1
2

( ) ( )TV s s s , and ( ) 0, 0V   s s . The designed sliding surfaces 

further direct the system states to an equilibrium point. 
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       Sliding surface or switching function is a desirable scheme to force the 

system dynamic to converge to an equilibrium point. A sliding surface with a 

compensator inclusive is represented by 
 

  s Cx z  (8) 
 

with its dynamic described by 
 

 s = C + zx  (9) 
 

in which the compensator dynamic [12] is described by  z Kx z . For a 

design, the matrices C and K must be found to comply with the reaching 

condition, 0s . Consequently, an equivalent control, equ , is 

 

 ( )eq     u CAx Cf x Kx z  (10) 
 

Replace u   in (6) by equ in (10), the system under sliding mode control can be 

obtained as 
 

 

  ( ) ( ) .t    x A BCA BK BC x                         (11) 

 

The derivative of Lyapunov function (7) can be expressed by 
 

 
1

( )
2

TV x  x Qx  (12) 

where  

.T T T T T T T T       Q A BCA BK BC A A C B K B C B             (13) 
 

As a necessity, on the sliding surface C and K  must satisfy the following 

conditions: 0 0V  Q and 0s . According to such conditions, the 

controlled system is asymptotically stable. 

      Reaching law is another necessary scheme of SMC since it governs the 

system state(s) to converge to the sliding surface. One basic form of the 

reaching law is constant plus proportional rate. Practically, the sgn
 
function 

generates chattering. To avoid this, one can implement a boundary layer 

method, i.e. s ‖ ‖ , where   represents the boundary width. This helps smooth 

the switching behavior. Therefore, the reaching law can be written a 
 

1
1 2( ) sq q K    s s s

  
                      (14) 

 

where 1q   and 
2q are positive constants, 0sK  , representing total gain. The 

law (14) is much simpler than that proposed by [12]. To guarantee stability, we 

consider a Lyapunov function ( ) (1 2)( )TV s s s . Its derivative is obtained as 
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2
( ) ( )T T

sV K   s s s s s s‖ ‖  (15) 

which is negative definite for 0sK  . Equating (9) and (14), we obtain the 

following control signal   

 

 ( ) .s sK K      U CAx Cf x Kx Z Cx Z  (16) 
 

From (16), one realizes that ,C K and sK  must be found to satisfy 

asymptotically stable conditions. This requires an efficient computing method. 

Among many existing methods, metaheuristics called adaptive tabu search [13] 

is our choice, and described next.  
 

3. Search for controller parameters 

ATS is chosen as a tool to find suitable controller parameters. Since the 

algorithm has been known, we omit review of the ATS. Detailed explanation of 

the algorithm with applications can be found in [13-15]. We apply the ATS to 

search for the matrices  and  resulting in  and , as well as a 

positive constant .   

An important issue of algorithm implementation is objective function. 

Regarding this, the following procedures represent the objective function. 
 

Step1. Receive parametric values of , and  from ATS. 

Step2. Assign parameters to the state equation in (6). 

Step3. Calculate  using (13) and eigenvalues of . 

Step4. Based on obtained eigenvalues, determine the negative definiteness of . 

    If then (substitute , and in (16) by the current parameters). 

     - Solve the system model for the states and *. 

     - Calculate cost value: . 

    If  then . 

Step5. Return , , and  to ATS 

*Remarks: Forth-order Runge-Kutta method with is used for solving 

equations. The maximum iteration is . 
 

      The ATS repeatedly search for solutions. It stops when either or 

search iteration hits 1,000. Using Intel® core™ i7-2620M CPU 2.70 GHz, 

RAM 8 GB, the ATS coded in MATLAB spent 7 iterations, 411.52 seconds to 

reach for 
0            0    0

C= 10.667   1    0

16.422   0    1

 
 
 
  

,
 0             0              0

K= 10.880  17.923  17.145  

3.796   -14.314  11.062

 
 
 
  

, = 1.3631 with 

. The parameters C , K and sK  can be substituted into U  in 

(2.16). This results in 

C K 0Q 0V 

sK

C K
sK

Q Q

Q

( 0)Q C K sK

1 2,x x 3x

max max max1 2 3( ) i i if s x x x  

( 0)Q   4( 10 )set f s 

C K sK  f s

0.01t s 

max 1,000i 

  310f s 

sK

  544.53 10f s  
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1

2 1 2 3

3 1 2 3

0

 1.141 29.953 27.812 0.363

9.0 18.76  2.108 19.848   0.726

u

u x x x

u gx x x x

   
       
   
         

              (17) 

 

4 Simulation results 
 

Both Chua system and controllers are realized as electronics circuit. The main 

electronic components are op-amps (LF351), analog multipliers (AD633), Rs 

and Cs. Fig.4 shows the schematic diagram of the controlled Chua’s circuit. The 

diagram is used for simulation using PSIM.  The sub circuit of the obtained 

controller u2 and u3 are electronically applied by using differential and 

inverting amplifier circuit based on equation (17). We are interested in the states 

1 2,x x and 3x . PSIM provides the results as illustrated in Fig.5. The curves 

showing the states in figure 8 indicate that when the controller is switched on at 

0.6t s  all the states are governed to the equilibrium nicely.  
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Fig.4 Schematic diagram of controlled Chua’s circuit. 
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Fig.5 Time response of states (a) 1,x (b) 2x and (c) 3x in PSIM. 

 

5. Conclusion 

Successful stabilization for a chaotic Chua’s circuit has been presented by this 

article. The effective control utilizes sliding mode method. The article proposes 

simple reaching law which can completely avoid chattering has been proposed. 

To obtain controller parameters with stability guaranteed simultaneously 

requires complicated computing. Regarding this, the ATS has been applied to 
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search for the controller parameters as well as ( )V x  and ( )V x  simultaneously. 

The theoretical approach has been tested using electronic circuit 

implementation. Simulation results agree very well indicating successful 

stabilization without drawing excessive control signals. 
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Ag-containing polyacrylonitrile films
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Abstract: The surface of thin gas-sensitive Ag-containing polyacrylonitrile films is
investigated by a method of atomic force microscopy. The assumption of existence in the
studied spatial distributed system of signs of the determined chaos is confirmed with
calculation of parameters of nonlinear dynamics. The interrelation between extent of self-
organization in films of polyacrylonitrile and their gas-sensitive properties is found.
Keywords: electroconductive organic polymers, gas-sensitive materials, self-
organization, theory of information, atomic force microscopy.

1. Introduction
Nanocomposite films of metallcontaining polyacrylonitrile (PAN), representing
an organic matrix, which structure and properties change at influence of various
temperatures, and the particles of a modifying additive dispersed in it, are a
perspective material for microelectronics [1]. Ag-containing PAN films
fabricated by pyrolysis method under the influence of incoherent IR-radiation
from film-forming solutions, undergo transition from a liquid state of substance
to the solid-state – this stage is process of self-organization of a material. The
structure of the disorder material is formed in nonequilibrium conditions, the
substance when hardening changes the properties in time and is distributed non-
uniformly in space, and thus in the disorder environment occurs a spatial
ordered structure [2]. Methods of nonlinear dynamics and theory of information
are applied to the analysis of processes of self-organization in structure of
materials: surface structure research of materials with various structural
organization and revealing long-range correlations in these structures [3]. It is
possible to investigate dynamics of system, measuring any of dynamic variables
in  one  point  at  regular  intervals.  Thus  the  look and dimension of  an  attractor,
number of degrees of freedom, correlation and fractal dimensions of a surface,
Lyapunov exponents, average mutual information and other parameters of
dynamics are defined. These methods which have been originally developed for
research of behavior of systems, changing the condition in time, are adapted for
studying of the spatial distributed systems what surfaces of the materials are.

2. Results and discussion
For carrying out researches a set of samples of Ag-containing PAN films using
different technological regimes was fabricated.
Sensitivity of the films was evaluated using factor of gas-sensitivity S, which is
calculated as:
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S  = (Rо – Rg)/Rо, Rо > Rg,

where Ro – value of resistance of a film on air, Rg – value of resistance of a film
in the atmosphere of detected gas.
In view of the material surface is a fractal object general idea of fractal objects
is used for its analysis [4].
Well-known in the theory of nonlinear systems Takens method is used to
research the dynamics of formation of solid phase of gas-sensitive material of
PAN films [2]. Patterns of self-organization processes at the formation of
disordered materials, which the PAN films are, can be studied by means of the
study of their surface, because their surface is a "snapshot" processes of
solidification. Proceeding from this, the fractal dimension Df  of Ag-containing
PAN films on the profile surface obtained with scanning probe microscope
Solver P47 Pro (NT-MDT) in tapping mode on the air in the size of areas 5×5
mkm2 was measured. Step of scanning determined the choice of the linear
dimensions of the scanning area and used a number of steps. Surface scan
carried out with a fixed number of points N = 256 × 256 regardless of the
scanned area. Distribution function of the altitude profile of the surface ρ = f(h)
of studied film, begins on some level h, taken as a zero. Using Image Analysis
package processed 65536 points in a surface image of each sample for
constructing this feature. This number of points is sufficient to identify the
topology of attractor [2]. As a result of measurement of height profile for the
samples, which were carried out along the surface through discrete intervals, get
a three-dimensional image of the square surface. In the course of the processing
of three-dimensional images of square surface areas by using the Image
Analysis program received a graph of the distribution function of the height
profile. For data processing Grassbergera-Prokaččia algorithm was used [2].
The first Lyapunov exponent lr was calculated using Wolf’s algorithm [5].
Lyapunov exponents are topological invariants that characterize the spatio-
temporal evolution and stability of the system: dynamics of formation of solid-
state is determined by the spatial-temporal chaos of a small dimension.
Calculation of the average mutual information I (AMI) was carried out by
methods  of  the  theory  of  information,  described  in  [3].  AMI  is  the  main
characteristic of the correlations in nonlinear systems. AMI invariant relative to
the different technologies and allows you to evaluate the impact of different
technological factors on the structure of the material.
Studies have shown that application of different temperature and time regimes at
forming the polymer nanocomposite films and modifying its transition metal
with different percentage concentration lead to significant changes in the
morphology of its surface.
Fig. 1 presents the image, obtained by AFM measurements of the surface
morphology of a sample of Ag-containing PAN film. The distribution function
of height profile h (ρ is the density of probability) (Fig.2) and the dependence of
the correlation dimension D = f(log2r) (Fig. 3) are given too.
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Fig. 1. AFM-image of the surface morphology of Ag-containing PAN film

Fig. 2. Distribution function of height profile of Ag-containing PAN film

of

Fig. 3. Dependence D = f(log2r) of Ag-containing PAN film

Dependence of correlation dimension D = f(log2r) allows to testify the presence
or absence of self-organizing structures in nanocomposite materials PAN/Ag.
The analysis showed the presence of deterministic chaos in the system. It is
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noted  that  the  surface  of  the  films  with  the  best  gas-sensing  properties  formed
by three levels of self-similar structures.
Studies of the samples revealed that AMI has rather big range in values. AMI
increases with increase of height of surface profile of films. Samples with
disordered structure represent hundredths of units in AMI values that
correspond to theoretical calculations for the amorphous material. Sufficiently
high AMI values are observed in the samples with small value of the height of
the surface profile (up to 30 nm) and good gas sensitivity (S = 0,46 ÷ 0,53).
High AMI values prove presence of long-range correlations in the system,
which may be evidence of order as a result of self-organization processes [3].
Dependence of factor of gas-sensitivity on chlorine (107 ppm) and AMI value
from silver content by weight in PAN films fabricated at the same technological
regimes, is resulted on fig. 4. Character of the received dependences is similar.
The  maximal  AMI  value  corresponds  the  maximal  value  of  factor  of  gas-
sensitivity.
Thus, the calculation of AMI allows to reveal correlations in disordered
materials, which conclude a certain interrelation of electrophysical and gas-
sensing properties of PAN/Ag films with its morphology of the surface.

Fig. 4. Dependence of factor of gas-sensitivity (S) and AMI values (I) from
silver content by weight in PAN films

For investigated samples Lyapunov first spatial exponent λr which  have
appeared positive have been calculated. It means, that distribution of substance
in space differs from equilibrium. The analysis of Lyapunov exponent testifies,
that stability of structure of a material depends on technological parameters of
its formation: higher values of temperature of second stage of IR-annealing tend
to increase Lyapunov exponent. It is necessary to note absence of correlation
between values of spatial Lyapunov exponent and percentage concentration of
the modifying additive in samples.
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3. Conclusions
The structure of the disorder materials is formed in strongly non-equilibrium
conditions with violation of symmetry in the thermodynamically open, non-
linear system. This is all the properties inherent in the self-organization. As a
result of complex researches the presence of the spatially-ordered structures in
the disorder amorphous organic matrix of polymer is confirmed.
During research it has been established, that greater value of the average mutual
information and higher degree of self-organizing answers more ordered
structure of the material and the highest values of factor of gas-sensitivity.
Thus, on the basis of knowledge of type of dynamics management of nonlinear
system of synthesis of a material should be carried out coordinated with internal
dynamic processes of substance. It will allow not only to operate effectively
process of growth of the disorder materials, but also to program synthesis of
materials for micro - and nanoelectronics with new unique properties.
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Exponential dichotomy and bounded solutions
of the Schrödinger equation
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Abstract. Necessary and sufficient conditions for existence of bounded on the
entire real axis solutions of Schrödinger equation are obtained under assumption
that the homogeneous equation admits an exponential dichotomy on the semi-axes.
Bounded analytical solutions are represented using generalized Green’s operator.

Keywords: exponential dichotomy, normally-resolvable operator, pseudoinverse
Moore-Penrose operator.

Numerous papers deal with problems of the existence of bounded solutions
of linear and nonlinear differential equations in Banach spaces and condition
of exponential dichotomy on both semi-axes. We note the well-known pa-
per [1], where such problems were considered in finite-dimensional spaces.
Boundary value problems for linear differential equations in Banach spaces
which admit exponential dichotomy on both semi-axes with bounded and
unbounded operators in linear part was investigated in [2], [3]. The normal
solvability of a differential operator was considered in [4]. The present paper
dealt with the derivation of necessary and sufficient conditions for the ex-
istence of generalized bounded solutions of the Schrödinger equation in the
Hilbert space.

1 Linear case

1.1 Statement of the Problem

Consider the next differential Shrödinger equation

dϕ(t)
dt

= −iH(t)ϕ(t) + f(t), t ∈ J (1)

in a Hilbert space H, where, for each t ∈ J ⊂ R, the unbounded operator
H(t) has the form H(t) = H0 + V (t) ( here H0 = H∗0 is unbounded self-
adjoint operator with domain D = D(H0) ⊂ H), the mapping t → V (t) is
strongly continuous. Define as in [5] operator-valued function

Ṽ (t) = eitH0V (t)e−itH0 .
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In this case for Ṽ (t) Dyson’s [5, p.311] representation is true and its propaga-
tor we define as Ũ(t, s). If U(t, s) = e−itH0Ũ(t, s)eisH0 then ψs(t) = U(t, s)ψ
is a weak solution of (1) with condition ψs(s) = ψ in the sense that for any
η ∈ D(H0) function (η, ψs(t)) is differentiable and

d

dt
(η, ψs(t)) = −i(H0η, ψs(t))− i(V (t)η, ψs(t)), t ∈ J.

The present part dealt with the derivation of necessary and sufficient
conditions for the existence of weak (in different senses) bounded solutions
of the inhomogeneous equation (1) with f ∈ BC(J,H) = {f : J → H; the
function f is continuous and bounded }. Here the boundedness is treated in
the sense that |||f ||| = supt∈J ||f(t)|| <∞. For simplicity we suppose that D
dense in H. The operator U(t, s) is a bounded linear operator for fixed t, s,
and since the set D is dense in H, we find that it can be extended to the entire
space H by continuity, which is assumed in forthcoming considerations. The
extension of the family of evolution operators to the entire space is denoted
in the same way.

1.2 Bounded solutions

Throughout the following, we use the notion of exponential dichotomy in the
sense of [6]. It is of special interest to analyze the exponential dichotomy on
the half-lines R−s = (−∞, s] and R+

s = [s;∞). [In this case, the projection-
valued functions defined on half-lines will be denoted by P−(t) for all t ≥ s
and P+(t) for all t < s with constants M1, α1 and M2, α2, respectively (α1, α2

- entropy or Lyapunov coefficients on the half-lines).] Most of the results
obtained below follows directly from [3]. The main result of this section can
be stated as follows.

Theorem 1. Let {U(t, s), t ≥ s ∈ R} be the family of strongly continuous
evolution operators associated with equation (1). Suppose that the following
conditions are satisfied.

1. The operator U(t, s) admits exponential dichotomy on the half-lines
R+

0 and R−0 with projection-valued operator-functions P+(t) and P−(t), re-
spectively.

2. The operator D = P+(0)− (I − P−(0)) is generalized-invertible.
Then the following assertions hold.
1. There exist weak solutions of equation (1) bounded on the entire line

if and only if the vector function f ∈ BC(R,H) satisfies the condition∫ +∞

−∞
H(t)f(t)dt = 0, (2)

where H(t) = PN(D∗)P−(0)U(0, t).
2. Under condition (2), the weak solutions of (1) bounded on the entire

line have the form

ϕ0(t, c) = U(t, 0)P+(0)PN(D)c+ (G[f ])(t, 0)∀c ∈ H, (3)
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where

(G[f ])(t, s) =



∫ t

s
U(t, τ)P+(τ)f(τ)dτ −

∫ +∞
t

U(t, τ)(I − P+(τ))f(τ)dτ+
+U(t, s)P+(s)D+[

∫∞
s
U(s, τ)(I − P+(τ))f(τ)dτ+

+
∫ s

−∞ U(s, τ)P−(τ)f(τ)dτ ], t ≥ s∫ t

−∞ U(t, τ)P−(τ)f(τ)dτ −
∫ s

t
U(t, τ)(I − P−(τ))f(τ)dτ+

+U(t, s)(I − P−(s))D+[
∫∞

s
U(s, τ)(I − P+(τ))f(τ)dτ+

+
∫ s

−∞ U(s, τ)P−(τ)f(τ)dτ ], s ≥ t

is the generalized Green operator of the problem on the bounded, on the entire
line, solutions

(G[f ])(0+, 0)− (G[f ])(0−, 0) = −
∫ +∞

−∞
H(t)f(t)dt;

L(G[f ])(t, 0) = f(t), t ∈ R

and

(Lx)(t) =
dx

dt
− iH(t)x(t),

D+ is the Moore-Penrouse pseudoinverse operator to the operator D; PN(D) =
I −D+D and PN(D∗) = I −DD+ are the projections [7] onto the kernel and
cokernel of the operator D.

Remark 1. A similar theorem holds for the case in which the family
of evolution operators U(t, s) admits exponential dichotomy on the half-lines
R+

s and R−s .
Now we show that condition 2 in theorem 1 can be omitted and in the

different senses equation (1) is always resolvable. From the proof of the
theorem 1 follows that equation (1) have bounded solutions if and only if the
operator equation

Dξ = g, (4)

g =
∫ 0

−∞
U(0, τ)P−(τ)f(τ)dτ +

∫ +∞

0

U(0, τ)(I − P+(τ))f(τ)dτ

is resolvable and its number depends from the dimension of N(D).
Consider next 3 cases.
1) Classical strong generalized solutions.
Consider case when the operator D is normally-resolvable (R(D) = R(D)

is the set of values of D). Then [7] g ∈ R(D) if and only if PN(D∗)g = 0
and the set of solutions of (4) can be represented in the form [7] ξ = D+g +
PN(D)c,∀c ∈ H.

2) Strong generalized solutions.
Consider the case when R(D) 6= R(D). We show that operator D may

be extended to D in such way that R(D) is closed.
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Since the operator D is bounded the next representations of H in the
direct sum are true

H = N(D)⊕X,H = R(D)⊕ Y,

with X = N(D)⊥ and Y = R(D)
⊥

. Let E = H/N(D) is quotient space of
H and P

R(D)
is orthoprojector, which projects onto R(D). Then operator

D = P
R(D)

Dj−1p : X → R(D) ⊂ R(D),

is linear, continuous and injective (here p : X → E is continuous bijection
and j : H → E is a projection. The triple (H,E, j) is a locally trivial bundle
with typical fiber PN(L)H). In this case [8, p.26,29] we can define strong
generalized solution of equation

Dξ = g, ξ ∈ X.

We complete the space X with the norm ||ξ||X = ||Dξ||F , where F = R(D)
[8]. Then the extended operator

D : X → R(D), X ⊂ X

is a homeomorphism of X and R(D). Operator D := DPX : H → H is
normally-resolvable. By the construction of a strong generalized solution [8],
the equation

D ξ = g,

has a unique generalized solution, which we denote D
+
g which is called the

strong generalized solution of (4). Then the set of strong generalized solutions
of (4) has the form

ξ = D
+
g + PN(D)c,∀c ∈ H.

3) Strong pseudosolutions.
Consider an element g /∈ R(D). This condition is equivalent PN(D∗)g 6= 0.

In this case there are elements from H that minimize norm ||Dξ − g||H for
ξ ∈ H :

ξ = D
+
g + PN(D)c,∀c ∈ H.

These elements are called strong pseudosolutions by analogy of [7].
Remark 2. It should be noted that in each cases 1) - 3) the form of

bounded solutions (4) isn’t change.
Remark 3. As follows from 1) and 3) the notion of exponential di-

chotomy is equivalent of existence of bounded on the entire real axis solutions
of (1).
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2 Main result (Nonlinear case)

In the Hilbert space H, consider the differential equation

dϕ(t)
dt

= −iH(t)ϕ(t) + εZ(ϕ, t, ε) + f(t). (5)

We seek a bounded solution ϕ(t, ε) of equation (5) that becomes one of the
solutions of the generating equation (1) for ε = 0.

To find a necessary condition on the operator function Z(ϕ, t, ε), we im-
pose the joint constraints

Z(·, ·, ·) ∈ C[||ϕ− ϕ0|| ≤ q]×BC(R,H)× C[0, ε0],

where q is some positive constant.
Let us show that this problem can be solved with the use of the operator

equation for generating constants

F (c) =
∫ +∞

−∞
H(t)Z(ϕ0(t, c), t, 0) = 0. (6)

Theorem 2 (necessary condition). Let the equation (1) admits exponen-
tial dichotomy on the half-lines R+

0 and R−0 with projection-valued operator
functions P+(t) and P−(t), respectively, and let the nonlinear equation (5)
have a bounded solution ϕ(·, ε) that becomes one of the solutions of the gen-
erating equation (1) with constant c = c0, ϕ(t, 0) = ϕ0(t, c0) for ε = 0. Then
this constant should satisfy the equation for generating constants (6).

The proof of this theorem is the same as in [3, Theorem 1].
To find a sufficient condition for the existence of bounded solutions of (1),

we additionally assume that the operator function Z(ϕ, t, ε) is strongly dif-
ferentiable in a neighborhood of the generating solution (Z(·, t, ε) ∈ C1[||ϕ−
ϕ0|| ≤ q]).

This problem can be solved with the use of the operator

B0 =
∫ +∞

−∞
H(t)A1(t)U(t, 0)P+(0)PN(D)dt : H → H,

where A1(t) = Z1(v, t, ε)|v=ϕ0,ε=0 (the Fréchet derivative).
Theorem 3 (sufficient condition). Suppose that the equation (1) admits

exponential dichotomy on the half-lines R+
0 and R−0 with projection-valued

functions P+(t) and P−(t), respectively. In addition, let the operator B0

satisfy the following conditions.
1. The operator B0 is Moore-Penrose pseudoinvertible.
2. PN(B∗

0 )PN(D∗)P−(0) = 0.
Then for an arbitrary element of c = c0 ∈ H satisfying the equation for

generating constants (6), there is exists bounded solution. This solution can
be found with the use of the iterative process
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yk+1(t, ε) = εG[Z(ϕ0(τ, c0 + yk, τ, ε))](t, 0),

ck = −B+
0

∫ +∞

−∞
H(τ){A1(τ)yk(τ, ε) +R(yk(τ, ε), τ, ε)}dτ,

R(yk(t, ε)) = Z(ϕ0(t, c0) + yk(t, ε), t, ε)− Z(ϕ0(t, c0), t, 0)−A1(t)yk(t, ε),

R(0, t, 0) = 0, R(1)
x (0, t, 0) = 0,

yk+1(t, ε) = U(t, 0)P+(0)PN(D)ck + yk+1(t, 0, ε),

ϕk(t, ε) = ϕ0(t, c0)+yk(t, ε), k = 0, 1, 2, ..., y0(t, ε) = 0, ϕ(t, ε) = lim
k→∞

ϕk(t, ε).

2.1 Relationship between necessary and sufficient conditions

First, we formulate the following assertion.
Corollary. Let a functional F (c) have the Fréchet derivative F (1)(c) for

each element c0 of the Hilbert space H satisfying the equation for generating
constants (6). If F 1(c) has a bounded inverse, then equation (5) has a unique
bounded solution on the entire line for each c0.

Remark 4. If assumptions of the corollary are satisfied, then it follows
from its proof that the operators B0 and F (1)(c0) are equal. Since the oper-
ator F (1)(c) is invertible, it follows that assumptions 1 and 2 of Theorem 3
are necessarily satisfied for the operator B0. In this case, equation (5) has
a unique bounded solution for each c0 ∈ H. Therefore, the invertibility con-
dition for the operator F 1(c) relates the necessary and sufficient conditions.
In the finite-dimensional case, the condition of invertibility of the operator
F (1)(c) is equivalent to the condition of simplicity of the root c0 of the equa-
tion for generating amplitudes [7].

In such way we obtain the modification of the well-known method of
Lyapunov-Schmidt. It should be emphasized that theorem 2 and 3 give us
possible condition of chaotic behavior of (5) [9].
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Abstract: A method is proposed for the recovery of coupling architecture and coupling 
values in ensembles of interacting time-delay systems. The method is based on the 
reconstruction of the model equations for ensemble elements and diagnostics of 
significance of couplings from time series of elements oscillations. 
Keywords: Dynamical modeling; Time series analysis; Time-delay systems; Ensembles 
of oscillators; Coupling detection.  
 
1. Introduction 
The behavior of complex systems composed of several interacting elements 
depends on not only the properties of the elements, but also on the character of 
their coupling. For example, the structure and intensity of couplings in an 
ensemble of oscillating systems determines the possibility of their 
synchronization and the formation of different spatial and temporal structures 
[1]. In recent years, much attention has been paid to the problem of revealing 
the presence of couplings in ensembles of multielement systems and 
determining their structure and characteristics from time series [2–4]. Usually 
this problem is solved using the methods based on the phase dynamics 
modeling. Here, we propose a method for reconstructing the coupling values 
and architecture in large ensembles of interacting systems based on a method for 
reconstructing the model equations of ensemble elements from time series of 
their oscillations. Using this method we reconstructed for the first time the a 
priori unknown architecture of couplings in an ensemble of chaotic time-delay 
systems with a complex coupling structure. 
 
2. Method Description  
Let us consider an ensemble composed of diffusively coupled time-delay 
systems, where each system is described by the equation: 
 

 ( ) ( ) ( )( ) ( ) ( )( )
1( )

M

i i i i i i i, j j i
j j i

ε x t = x t f x t τ k x t x t
= ≠

− + − + −∑� , (1) 
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where  M is the number of elements in the ensemble, εi is the 
parameter characterizing the inertial properties of the system, τi is the delay 
time, fi is a nonlinear function, and ki,j are the coupling coefficients.  

1, , ,i = … M

x

To determine all coupling coefficients in the ensemble we propose a method 
based on reconstructing model equation (1) for each element. First, we 
reconstruct the delay times. In [5] we have found out that there are practically 
no extrema separated by the delay time in time series of isolated (ki, j = 0) time-
delay systems of type (1). Having determined, for different τ values, number Ni 
of situations where the points of a chaotic time series, spaced by time interval τ, 
are simultaneously extremal and having plotted dependence Ni(τ), we can find 
delay time τi as a value at which this dependence exhibits an absolute minimum 
[5]. The validity of this method for reconstructing τi in a chain of coupled time-
delay systems was substantiated in [6]. According to our results, this method for 
determining the delay time remains efficient for ensembles of systems (1) with 
an arbitrary number of couplings between elements, provided that the 
interaction of systems does not induce a large number of additional extrema in 
chaotic time series of their oscillations. This assumption remains valid for weak 
coupling  even in the case of globally coupled systems (1). Note that 
the condition of weak coupling and the absence of synchronization between 
ensemble elements is necessary for almost all methods for revealing couplings 
[4]. 

,i j ik �

Having determined τi, one can reconstruct parameter εi, nonlinear function fi, 
and the coupling coefficients ki,j of the ith time-delay system (1), knowing the 
time series of oscillations of all ensemble elements. For that we propose the 
following approach. Let us write (1) in the form: 
 

 

  ( ) ( ) ( ) ( )( ) ( )(
1( )

M

i i i i, j j i i i i
j j i

ε x t x t k x t x t f x t τ
= ≠

+ − − = −∑� )

)

. (2) 

 
If one plots the dependence of the left-hand side of (2) on xi(t–τ i), it will 
coincide with the function fi. Since εi and ki,j are a priori unknown, we will 
search for them by minimizing the parameter: 
 

   ( ) (( )1 2 2
, , 1 , , 1

1
( , )

S

i i i j i n i n i n i n
n

L k y y z zε
−

+ +
=

= − + −∑ ,     (3) 

 
This parameter characterizes the distance between the points in the (yi, zi) plane, 
which are sorted with respect to the coordinate yi. Here, yi = xi(t–τ i),  
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 ( ) ( ) ( ) ( )(
1( )

M

i i i i i, j j i
j j i

z ε x t x t k x t x t
= ≠

= + − −∑� )    (4) 

 
n is the point number and S is the number of points. When the εi and ki,j values 
are chosen incorrectly, the points in the (yi, zi) plane do not lie on one-
dimensional curve fi. Therefore, the Li(εi, ki,j) value is larger than that for true εi 
and ki,j. 
For εi and ki,j we set starting conjectures and then refine them by the simplex 
method with minimization of (3), which minimum is denoted as Li,M. For M ≤ 4 
and the absence of noise, all parameters are reconstructed with a high accuracy. 
However, at M > 4 the situation in which the method does not allow one to 
reveal the absent couplings between ensemble elements becomes typical. These 
couplings are identified as weak because of the presence of indirect couplings 
via other elements.  
Insignificant couplings can be rejected by the method of successive trial 
exclusion of the coefficients ki,j from model (1). We hypothesize that the two 
elements are not coupled (by excluding the corresponding coupling coefficient 
ki,j) and reconstruct the other parameters of the model finding the minimum 
Li,j,M–1 of function (3). This procedure is then repeated by excluding another ki,j 
at a fixed i, etc., for all  (1, ,j M= … j i≠ ). Finally, we determine the exclusion 
of which ki,j yields  and estimate the statistical significance 

of the magnitude 

, 1 ,mini M i jj
L − = , 1ML −

, 1 ,i M i ML L L−=

, 1i ny +

 based on the following considerations. At 
large S, the differences ,i ny−  and , 1 ,i n i nz z+ −  in (3) are distributed 
according to the close to normal law, where S/2 of these differences can be 
considered as independent because they have no common coordinates. In 
addition, Li,M depends on M parameters of model (2), a fact that reduces the 
number of independent values in (3) to S/2 – M. Then, taking into account that 
the sum of squares of K independent normally distributed values obeys the chi-
square law with K degrees of freedom [7], we find that the Li,M values obtained 
at different parameters and/or in the presence of noise are distributed according 
to the chi-square law with S/2 – M degrees of freedom and the Li,M–1 values are 
distributed according to the chi-square law with S/2 – M + 1 degrees of freedom. 
The parameter X, which is a ratio of two independent random values distributed 
according to the chi-square law with v and w degrees of freedom, is known to 
obey the Fisher–Snedecor distribution with the distribution function 
 

 ( )
2 2v,w d
v wF X = B ,⎛ ⎞

⎜
⎝ ⎠

⎟  (5) 
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where B is the incomplete β function and ( )d = vX vX w+  [8]. Therefore, the 
magnitude L is described by distribution function (5) with X = L, v = S/2 – M + 1 
and w = S/2 – M. We denote the L value at which ( ), 1 1v w pF L − p= −  as L1–p (p is 
the statistical significance level). Then, if L > L1–p, one can conclude at the 
significance level p that the elements are coupled and, therefore, all ki,j ≠ 0. In 
the opposite case we conclude that the corresponding elements are not coupled 
and check the significance level for other couplings, successively excluding the 
remaining couplings of the ith element one by one. The procedure is repeated 
until all couplings become significant. This approach makes it possible to 
reconstruct the coupling architecture, parameters of all elements, and their 
nonlinear functions. 
If the number of couplings between ensemble elements is known to be small, 
the method of successive trial addition of the coefficients ki,j to model (1) is 
preferred for reconstructing the coupling architecture and values. At first, we 
find the minimum Li,1 of function (3) under the assumption that all ki,j are absent 
in (1) (i.e., there are no couplings). Then we successively (one by one) introduce 
ki,j into (1) and find the minimum Li,j,2 of function (3). Running over all j ≠ i, we 
find ,2 , ,2mini j

L Li j= . If L > L1–p, where ,1 ,2i iL L L= , and Fv,w is plotted at 

v = S/2 – 1 and w = S/2 – 2, the coupling introduced is nonzero at significance 
level p. This procedure is repeated until next coupling added to the model turns 
out to be insignificant. 
 
3. Method Application  
As an example, we consider the reconstruction of the coupling architecture in an 
ensemble of coupled Mackey-Glass systems described by (1) with the function 
 

 ( ) 10

( )( )
(1 ( ))

i i i
i i i

i i i

a x tf x t
b x t

ττ
τ

−
− =

+ −
 (6) 

 
and ε i = 1/bi. These systems are affected by independent normal noises ξi(t) with 
a zero mean and dispersion 2

iσ . The parameters of the elements were specified 
randomly: integer τi ∈ [300, 400], εi ∈ [8, 12], ai ∈ [0.2, 0.25], ki,j ∈ [0.08, 0.12] 
and . At these parameter values all elements oscillate chaotically. The 
time series of each element contains 10 000 points with a sampling step of 1. 
Fig. 1 shows the architecture of randomly chosen couplings in an ensemble of 
M = 10 elements. 

2 10iσ −= 4
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Fig. 1. Coupling architecture in an ensemble of ten elements. Forty of ninety 
possible couplings are present. Bidirectional and unidirectional couplings are 

shown in black and gray, respectively. 
 
The results of reconstruction of one element with the parameters τ5 = 348, 
ε5 = 9.5, k5,1 = 0.112, k5,3 = 0.085, k5,6 = 0.116, k5,7 = 0.090, and k5,j = 0 (j = 2, 4, 5, 
8, 9, and 10) are shown in Fig. 2. Having calculated number N5 of times when 

5 ( )x t�  and 5 (x t )τ−�  simultaneously turn to zero for different τ, taken with a step 
of 1, we plot the dependence N5(τ) (Fig. 2a). To estimate the time derivative 
from time series we used a local parabolic approximation. The minimum of 
N5(τ) is observed at the true delay time τ = τ5 = 348. 
Fig. 2b shows the nonlinear function f5 reconstructed in the (y5, z5) plane with 

5 5 5(y x t )τ ′= −  and 
 

 ( ) ( ) ( ) ( )(
10

5 5 5 5 5 5
1( 5)

, j j
j j

z ε x t x t k x t x t
= ≠

′ ′= + − −∑� )  (7) 

 
Function f5 obtained as the result of reconstruction of (1) under the assumption 
that all ensemble elements are uncoupled is shown with gray color. The function 
is plotted at the following parameters obtained during reconstruction: 5 348τ ′ = , 

5 8.4ε ′ = , and  ( ;5, 0jk ′ = 1, ,10j = … 5j ≠ ). Function f5 reconstructed using the 
method of successive trial addition of the coupling coefficients to the model at 
p = 0.05 is shown with black color. It is plotted at the following parameters 
obtained during reconstruction: 5 348τ ′ = , 5 9.6ε ′ = , 5,1 0.111k ′ = , 5,k 3 0.085′ = , 

, k , and 5,6 0.105k ′ = 5,7 0.0′ = 80 5, jk 0′ =  (j = 2, 4, 5, 8, 9, and 10). 
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Fig. 2. (a) Number N5 of pairs of extrema in the time series of the variable x5(t) 
(spaced by τ) normalized to the total number of extrema in the time series. (b) 

Reconstructed nonlinear function f5. 
 
Taking into account the coupling architecture significantly improves the quality 
of reconstruction of the nonlinear function and the accuracy of the model 
parameters estimation. The inaccuracy of the parameters recovery is mainly 
caused by the presence of noise. 
The results of reconstructing the coupling architecture in the entire ensemble, 
obtained using the method of adding of couplings, are shown in Fig. 3. A square 
with the coordinates (j, i) illustrates the influence of the jth element on the ith 
element, except for the squares in the diagonal, which carry no information. At 
the significance level p = 0.05 we found 39 of the 40 existing couplings (Fig. 1). 
Only one coupling was missed and spurious couplings were absent. 
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Fig.3. Diagram of the results of recovering the coupling architecture in an 
ensemble of ten Mackey–Glass systems obtained at the significance level 

p = 0.05 using the method of successive trial addition of coupling coefficients to 
the model. Correctly recovered couplings, correctly found absent couplings, and 

missed couplings are shown in black, white, and gray, respectively. 

 
Note that reconstructing the coupling architecture from the same time series 
using the method of excluding of couplings, we obtained many spurious 
couplings at the same p. The method of excluding of couplings is more efficient 
for reconstructing ensembles where the number of existing couplings is many 
times larger than the number of absent couplings. On the contrary, the method 
of adding of couplings is most efficient when the number of couplings in an 
ensemble is small. It works well even in the case of large ensembles (M = 50). 
The case under consideration, in which the numbers of existing and absent 
couplings are comparable, is the most complicated for reconstruction. In these 
situations the method of adding of couplings is more efficient. 
 
3. Conclusions 
We have proposed the method for the reconstruction of coupling architecture in 
ensembles of interacting time-delay systems. Besides the coupling values, the 
method allows one to recover the delay times, parameters of inertia, and 
nonlinear functions of each element of the ensemble. For the diagnostics of 
significance of couplings we have used the method of successive trial addition of 
coupling terms to the model and the method of successive trial exclusion of 
coupling terms from the model. The method is successfully applied to the 
reconstruction of the coupling architecture in the ensemble of coupled 
nonidentical Mackey-Glass systems from chaotic time series of their oscillations. 
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Abstract: We have developed an experimental system for secure communication with 
nonlinear mixing of information signal and chaotic signal of a time-delay system based 
on programmable microcontrollers with digital transmission line. The proposed scheme 
allows one to transmit and receive speech and musical signals in a real time without 
noticeable distortion. 
Keywords: Chaotic communication, Time-delay systems, Chaotic synchronization.  
 
1. Introduction 
The development of communication systems employing the phenomenon of 
synchronization of chaotic oscillations has attracted a lot of attention [2, 4, 7, 8] 
due to the broadband power spectrum of chaotic signals, high speed of 
information transmission, and tolerance to sufficiently high levels of noise. 
Besides, many chaotic communication schemes are simply realized and 
demonstrate a rich variety of different oscillating regimes. 
Different approaches for the transmission of information signals using chaotic 
dynamics have been proposed. Nonlinear mixing of information signal and 
chaotic signal is one of the most widespread among them [4]. However, one of 
the main disadvantages of communication systems with nonlinear mixing is 
their comparatively low interference immunity [4]. It is explained by the fact 
that, in order to ensure the security of transmitted data, the level of information 
signal must be significantly lower than that of the chaotic carrier. Under these 
conditions, the presence of noise in the communication channel leads to an 
appreciable distortion of the message signal at the scheme output. 
We propose a scheme of data transmission with nonlinear mixing, in which the 
information signal is added to a chaotic signal that is formed as a result of 
digital calculations on a microcontroller. The receiver, whose parameters are 
identical with those of the transmitter, receives a digital signal from which the 
information component is extracted using again digital calculations. Such 
communication system exploits masking of the information signal by a chaotic 
signal and possesses sufficiently high stability to noise that is inherent in digital 
systems of data transmission. 
In order to increase the level of security of hidden data transmission it has been 
proposed to employ time-delay systems, demonstrating chaotic dynamics of 
very high dimension, in private communication [5, 6, 9, 11]. For this reason, we 
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have considered in the present paper a communication scheme with nonlinear 
mixing based on chaotic oscillator with delayed feedback. 
 
2. Communication Scheme 
A block diagram of the communication system with nonlinear mixing is shown 
in Figure 1. A transmitter represents a ring system composed of a delay line, a 
nonlinear element, and a linear low-pass filter. The information signal m(t) is 
added to the chaotic signal f(x(t–τ)) with the help of a summator and the signal 
s(t) = f(x(t–τ))+m(t) is transmitted into the communication channel and 
simultaneously injected into the feedback circuit of the transmitter whose 
dynamics is described by a first-order delay-differential equation 
 

( )( ) ( ) ( ) ( )x t x t f x t m tε = − + − +τ ,                          (1) 
 
where x(t) is the system state at time t, f is a nonlinear function, τ is the delay 
time, and ε is a parameter that characterizes the inertial properties of the system. 
With this nonlinear mixing the information signal is directly involved in the 
formation of a complicated dynamics of the chaotic system. 
 

 
 

Fig. 1. Block diagram of the communication system with nonlinear mixing: 
(I) transmitter, (II) receiver, (DL) delay lines, (ND) nonlinear devices, and 

(F) filters. 
 
A receiver is composed of the same elements as the transmitter, except for the 
summator that is replaced by a subtracter breaking the feedback circuit. The 
receiver equation is 
 

( )( ) ( ) ( ) ( )y t y t f x t m tε = − + − +τ .                         (2) 
 
At the output of the subtracter we have the extracted information signal 
m’(t) = f(x(t–τ))+m(t)– f(y(t–τ)). If the transmitter and the receiver are 
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composed of identical elements, they become completely synchronized after the 
transient process. The difference between the oscillations of systems (1) and (2), 
Δ(t) = x(t)–y(t), decreases in time for any ε>0, since ( ) ( )t t εΔ = −Δ . As the 
result of synchronization we have x(t) = y(t) and, hence, f(x(t–τ)) = f(y(t–τ)) and 
m’(t) = m(t) . It should be noted, that the quality of the extraction of message 
m(t) does not depend on its amplitude and frequency characteristics. By this is 
meant that the considered communication scheme allows one to transmit 
complicated information signals without distortion. 
The nonlinear element in our scheme provides a quadratic transformation. In 
this case the transmitter equation takes the form 
 

( )2( ) ( ) ( ) ( )x t x t x t m tε λ τ= − + − − + ,                        (3) 
 
where λ is the parameter of nonlinearity. The transmitter parameters were 
chosen to obtain a regime of developed chaotic oscillations. 
We used a programmable microcontroller to implement the transmitter. Since 
this device has no built-in facilities supporting the floating-point operations, one 
should use integer calculations in microcontroller in order to increase the speed 
of response. For this purpose the variables and parameters of Eq. (3) were scaled 
as follows. For small ε, the allowable limits of variation of the parameter λ for 
which system (3) has a periodic or chaotic attractor are from 0 to 2. Within this 
range of λ variation the dynamical variable x(t) can take values from –2 to +2. 
Let us pass to integer arithmetic and transform Eq. (3) in such a way that the 
dynamical variable would be placed in a 16-bit memory location, whereby its 
integer values vary between –215 and 215. It can be done by substituting 
variables as X(t) = 214x(t) and M(t) = 214m(t). Then, Eq. (3) takes the following 
form: 

2

14 14 14 14

( ) ( ) ( ) ( )
2 2 2 2
X t X t X t Mε τλ −⎛ ⎞= − + − +⎜ ⎟

⎝ ⎠
t .                 (4) 

 
Multiplying both sides of Eq. (4) by 214 and introducing parameter Λ = 214λ, we 
obtain the following equation: 
 

2

14

( ( ))( ) ( ) ( )
2

X tX t X t M tτε −
= − + Λ − + .                    (5) 

 
This differential equation can be reduced to a difference equation, which is more 
convenient for program implementation on a microcontroller: 
 

(1 1 (n n n k
t t )) nX X F X M
ε ε+ −
Δ Δ⎛ ⎞= − + +⎜ ⎟

⎝ ⎠
,                    (6) 
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where n is the discrete time, Δt is the time step, k is the discrete delay time in 
units of sampling time Δt, and 2 1( ) 2n k n kF X X− −= Λ − 4 . 
Figure 2 shows a block diagram of the transmitter based on a programmable 
microcontroller. At the first step of microcontroller program operation the 
circular buffer array (containing the values from Xn – k to Xn) is initialized by a 
certain constant value as the initial condition. Then, the nonlinear function 
F(Xn – k) is calculated and summed with the information signal Mn. After that, the 
obtained sum Sn is transmitted into the communication channel that is organized 
as a serial digital interface. The subsequent value of the discrete dynamic 
variable Xn + 1 is calculated in accordance with relation (6) and fed into the 
circular buffer. After k cycles the process of initialization is accomplished and 
the buffer is filled by actual values. 
 

 
 

Fig. 2. Block diagram of the transmitter implemented on a microcontroller: 
(Σ) summator, a and b are constant multipliers, where a = 1–Δ t/ε and b = Δ t/ε. 

 
The linear transformation of the signal in our scheme was performed using a 
digital low-pass first-order Butterworth filter. It should be noted that 
employment of high-order filters with an infinite or finite pulse characteristic 
usually allows one to increase the security of the communication scheme. The 
greater the number of coefficients in the equation that describes the filter, the 
greater the number of previous values of the variable involved in calculations of 
the next value and, hence, the higher the security level of transmitted data. The 
nonlinear transformation can also be of various types. For example, one can use 
a Bernoulli map, a tent map, or other maps with chaotic dynamics. 
 
3. Extracting Information Signal Mixed with Chaotic Signal 
In our scheme the transmitter was implemented on a programmable 
microcontroller of the Atmel megaAVR family. As the information signal we 
choose a musical information signal (a song). Part of the time series of this 
audio signal is presented in Figure 3(a). The analog information signal m(t) is 
fed to the input of an analog-to-digital converter (ADC) and the signal Mn from 
its output is mixed with the chaotic signal of the transmitter. The calculations 
are performed in terms of integer arithmetic, with the chaotic signal amplitude 
varying within 16 bits and the information signal within 12 bits. 
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Fig. 3. (a) Oscillograms of temporal realizations of musical information signal 
m(t) at the transmitter input (on top) and the extracted information signal m’(t) 
at the receiver output (below). (b) Time series of chaotic signal Sn. (c) Power 

spectra of signals Mn (1), Sn (2), and Mn’ (3). The spectrum of Mn’ is shown by 
grey color. 

 
Figure 3(b) shows a part of the time series of a chaotic signal Sn = F(Xn – k)+Mn 
generated by the oscillator with delayed feedback at λ = 1.9, Δt/ε = 0.5, and 
k = 100. This signal had a digitization frequency of 20 kHz (Δt = 50 mcs) and 
was transmitted over a digital communication channel at a rate of 115.2 kbit/s 
using RS-232 interface. If one passes this signal through a digital-to-analog 
converter (DAC) and reproduce, he will hear only noise without any signs of 
speech and music. 
The receiver was implemented on the same programmable microcontroller as 
the transmitter. At the subtracter output of the receiver we have the extracted 
information signal Mn’ = F(Xn – k)+Mn–F(Yn – k) . If the receiver parameters are 
identical with those of the transmitter and noise is absent, then F(Yn – k) = F(Xn – k) 
and Mn’ = Mn . Passing the digital signal Mn’ through a DAC we obtain the 
analog information signal m’(t) at its output. Part of the time series of m’(t) is 
also displayed in Figure 3(a). As it can be seen from Figure 3(a), the time series 
of the original and extracted information signals are very similar. Aurally the 
original musical signal m(t) and the signal m’(t) at the receiver output are 
indistinguishable. 
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Figure 4(c) shows the power spectra of the chaotic signal Sn, musical 
information signal Mn, and the signal Mn’ extracted in the receiver. The 
amplitude of the musical information signal comprises about 25% of the 
amplitude of the chaotic carrier and the presence of audio signal is not 
noticeable in the power spectrum of the transmitted signal Sn. The power spectra 
of the signals Mn and Mn’ are very close. 
Thus, the quality of hidden information extraction at the receiver output is good 
enough in spite of the presence of noise inherent in a real system. The proposed 
scheme allows one to transmit and receive speech and musical signals in a real 
time without noticeable distortion. 
 
4. Extraction of Information Signal at the Mismatch of the 
Receiver and Transmitter Parameters 
In the example considered in the previous section the identity of the parameter 
values in the transmitter and receiver ensures the high quality of hidden message 
extraction for the authorized listener. The identity of the receiver and transmitter 
parameters is very important for communication schemes based on 
synchronization of chaotic systems. With the increase of mismatch of the 
receiver and transmitter parameters, the quality of chaotic synchronous response 
of the receiver deteriorates leading to a worse quality of the information signal 
extraction [4]. Beginning with a certain value of mismatch, the extraction of 
hidden message becomes impossible. The advantage of the proposed digital 
communication scheme is the employment of programmable microcontrollers 
that allows us to achieve the complete identity of the receiver and transmitter 
parameters, which is practically unattainable in the case of constructing the 
receiver and transmitter from analog elements. 
For an eavesdropper the signal transmitted over the communication channel is 
perceived as noise. To extract a hidden message from the chaotic carrier the 
unauthorized listener must know the transmitter configuration, i.e. he must 
know that the transmitter is governed by the model time-delay equation (1) and 
he must know also the type of nonlinear function f and accurate values of the 
system parameters. For reconstruction of model equations of time-delay systems 
and estimation of their parameters from time series a number of methods has 
been proposed [1, 3, 10, 12]. In the absence of noise these methods allow one to 
recover the unknown parameters of time-delay systems with a good accuracy. 
However, in the presence of noise the parameter estimation is less accurate. 
Moreover, the error of parameter estimation increases with the increase of noise 
level. 
The considered communication scheme employs nonlinear mixing of 
information signal and chaotic signal of a time-delay system. In this case the 
presence of information signal in the chaotic carrier inevitably decreases the 
accuracy of estimation of the system parameters just as in the case of noise 
presence. We have examined how accurately the transmitter parameters must be 
known for extracting a hidden information signal at the receiver output. 
Let us choose the same transmitter parameters as in Section 3 and the same 
musical information signal. The receiver parameters are chosen the same as for 

442



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

transmitter except for the discrete delay time k, which is varied in the vicinity of 
true value of k = 100. Already for a minimal mismatch of k by unity (k = 99 or 
k = 101) we hear only noise at the receiver output. Thus, the information signal 
is completely masked in the case of a 1% mismatch of the delay time in the 
transmitter and receiver. Parts of the time series of the original musical signal 
m(t) and the signal m’(t) extracted in the receiver at k = 99 are presented in 
Figure 4. The amplitude of the signal m’(t) is significantly greater than the 
amplitude of m(t). Besides, the signal m’(t) looks like a chaotic carrier. 
 

 
 
Fig. 4. Oscillograms of temporal realizations of the original information signal 
m(t) (on top) and the information signal m’(t) extracted in the receiver at the 

mismatch of parameter k (k = 99) (below). 
 
We study also the influence of the parameter e mismatch on the quality of the 
hidden message extraction. The receiver and transmitter parameters are chosen 
the same except for the parameter ε, which is varied in the vicinity of true value 
of ε = 100 mcs. It is found out that the information signal is not heard at the 
receiver output if a mismatch of ε is greater than 1.5%. In this case the time 
series and power spectra of m’(t) and m(t) are appreciably different. In the case 
of 0.1-1% mismatch by ε, the information signal is masked partially. We can 
distinguish several words and a musical background at the receiver output 
although the time series and power spectra of m’(t) and m(t) are appreciably 
different. If a mismatch of ε is 0.05%, the musical signal is extracted in the 
receiver with a small noise disturbance, which disappears under the further 
decrease of mismatch. 
Thus, in order to extract a hidden message an authorized listener has to 
reconstruct the transmitter parameters with a high accuracy that is a very 
complicated problem for the proposed scheme. 
 
5. Conclusion 
We have developed the experimental digital communication system with 
nonlinear mixing of information signal and chaotic signal of time-delay system 
in which the transmitter and receiver are implemented on programmable 
microcontrollers. This system allows one to transmit and receive speech and 
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musical signals in a real time without noticeable distortion. The high quality of 
hidden message extraction is achieved due to the use of digital elements in the 
scheme, which ensure identity of the parameters and high stability to noise 
typical for digital communication systems. 
We have studied a possibility of extraction of hidden information signal in the 
case of mismatch of the parameters of the receiver and transmitter in the 
proposed scheme. It is found out that for the hidden message extraction the 
parameter mismatch must be less than 1% that ensures the privacy of the 
proposed communication scheme. 
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Abstract: This paper presents a peak-valley segmentation procedure for the wavelet-

based extraction of acceleration data. A 60-second acceleration signal was measured on a 

McPherson frontal coil spring of a 2000 cc Proton sedan car, and the data was used for 

the simulation. The Morlet wavelet-based analysis was used to extract higher amplitude 

segments in order to produce a shortened signal that has an equivalent behaviour. Using 

this process, it has been found that the Morlet wavelet was able to summarise the original 

data up to 49.45% with less than 10% difference with respect to statistical parameters. 

This clearly indicates that the Morlet wavelet can be successfully applied to compress the 

original signal without changing the main history as well. Finally, it has been proven that 

the Morlet wavelet successfully identified the higher amplitudes in the acceleration data. 

Keywords: Acceleration data, Peak-valley extraction, Morlet wavelet, Modified data.  

 

1. Introduction 
Control and stability of a car entirely depend on the contact between the road 

surface and the tires [1]. The dynamic interaction between vehicle and road 

surface causes problems with respect to the vehicle structure and the ride 

quality. Collision between uneven road surfaces and tires gives a certain amount 

of vibration which contributes to mechanical failure of car components due to 

fatigue as the car structure was subjected to cyclic loading. This vibration also 

interfaces the function of the car suspension system and gives a great impact on 

the performance of the car [2-5]. 

According to Jinhee [6], car suspension systems experience vibration when is 

subjected to variable driving conditions leading to strain at this component. If 

this condition continues it will increase the probability of fatigue failure for the 

car suspension system. The problems arising have been solved by simulating the 

dynamic behaviour of a structural component on which the dynamic forces are 

acting. Measured road surface profiles are generally considered as external 

disturbances acting through the automotive suspension system onto the vehicle 

body. Road surface profiles are usually used to describe the bumpiness of the 

road. Because of weakness of measuring equipment used, there is noise in the 
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road surface profile data. Thus, the accuracy and reliability of the road surface 

profile is reduced. If the signal trends are not extracted from the input signal 

used, it will directly affect the test results, leading to inappropriate judgments 

and conclusions. Therefore, it is an important task that the signal trend is 

extracted and separated from the noise during road surface data processing [7]. 

Based on this background, methods for the signal trend extraction of road 

surface profile are introduced. At present, the popular methods for the signal 

trend extraction are: least-squares fitting, low-pass filtering, wavelet 

decomposition, empirical mode decomposition, etc., as reported in [7]. The 

objective of this work is to extract acceleration data in order to remove white 

noise in the data. In order to address the objective of the research, acceleration 

data is edited to produce shorter data while retaining its original characteristics. 

Therefore, a data editing technique is necessary for producing new modified 

signals as required. Continuous wavelet transform (CWT) has been applied to 

the digital signal processing algorithm. An algorithm for signal trend extraction 

of road surface profile has been developed by adopting a fatigue feature 

algorithm developed by Putra et al [8]. It is hypothesized that the pattern of an 

acceleration data is similar to the pattern of a fatigue signal. 

 

2. Literature Overview 
2.1. Global signal statistics 

Statistical parameters are used for random signal classification and pattern 

monitoring. Common statistical parameters that are directly related to the 

observation of the data behaviour are the mean value, standard deviation (SD), 

the root-mean square (r.m.s.), skewness, kurtosis and the crest factor (CF). From 

these parameters, the r.m.s. and kurtosis give significant effects to evaluate the 

randomness of the data [9]. The r.m.s. calculates the energy distribution, 

wherein higher r.m.s. indicates a higher energy content, which in turn indicates 

higher fatigue damage in the signal. On the other hand, kurtosis represents the 

continuity of peaks in a time series loading. The peaks also reveal higher fatigue 

damage, suggesting that a higher kurtosis indicates higher fatigue damage.  

The r.m.s. is the second statistical moment used for determining the total energy 

contained in a signal. The r.m.s. of signals with zero mean value is equal to the 

SD. The r.m.s. of discrete data can be calculated as follows: 
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In addition, kurtosis is the fourth statistical moment that is very sensitive to 

spikes and it represents the continuation of peaks in a time series loading. The 

kurtosis value of a Gaussian normal distribution is close to 3.0. Higher kurtosis 

shows that the value is higher compared to the appropriate value in the Gaussian 

normal distribution, indicating that only a small proportion of data is closer to 

the mean value [10]. The kurtosis for a set of discrete data is formulated as: 
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2.2. Continuous Morlet Wavelet Transform 

The continuous wavelet transform (CWT) is conducted on each reasonable 

scale, producing a lot of data and is used to determine the value of a continuous 

decomposition to reconstruct the signal accurately [11]. The Morlet wavelet is 

one of the mother wavelets that are involved in the CWT, and it can be 

described by the following equation: 

 

( ) ( ) ( )πttt  cos 2exp 22βψ −=  

 

By dilation with a (scale factor) and translation with b (position), a son wavelet 

can be acquired [12]: 
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Wavelet decomposition calculates the resemblance index, also called the 

coefficient, between the signal being analyzed and the wavelet. Generally, the 

wavelet coefficient is expressed with the following integral [11]: 

 

( ) ( )( )∫
+∞

∞−
= dtttfC baba ,, ψ  

 

The Morlet wavelet coefficient indicates the distribution of the internal energy 

of the signal in the time-frequency domain [13]. The signal internal energy e can 

be expressed as: 

 

( ) ( )
2

,, baba Ce =  

 

2.3. Peak-valley segmentation-based signal extraction 

Fatigue damage is very sensitive to peak and valley in a time series loading. 

Thus, in the extraction, time series data needs to be converted in the form of 

peak-valley. For the development of the extraction algorithm, the input required 

was the distribution of the magnitude in the time domain obtained by the time-

frequency method. The distribution was decomposed into the time domain 

spectrum by taking the magnitude cumulative value for an interval of time. 

A gate value was used for the extraction of the damage feature. The gate value 

was the energy spectrum variable that maintains the minimum magnitude level. 

Segments with magnitudes exceeding the minimum magnitude value were 

maintained, whereas the segments with magnitudes less than the minimum 
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magnitude value were removed from the signal. The concept refers to the 

concept of the cut-off level used in the extraction in the time domain [14]. 

To obtain the optimum of the gate value, the maintained segments then were 

merged with each other to form a shorter modified signal, compared to the 

original signal. In the case of global signal statistical parameters, a difference of 

10% is used considering that at least 10% of the original signal contains a lower 

amplitude cycle leading to the minimum structural damage to obtain a final 

signal corresponding to the original signal [15]. 

 

3. Methodology 
Acceleration data measured at a McPherson frontal coil spring of a 2.000 cc 

Proton Wira sedan car was used for the current study. At the same time, strain 

data on the component was measured as well. The behaviour of both the 

acceleration and strain data was to be observed. According to Gillespie [16], the 

coil spring of a car at the similar brand of this research was made from 

SAE5160 alloy steel. Its properties are tabulated in Table 1 [17].  

 

Table 1. The mechanical properties of the SAE5160 alloy steel. 

 

Properties Values 

Modulus of elasticity, E (GPa) 207 

Density, ρ (kg/m
3
) 7.85 

Poisson’s ratio, ρ 0.27 

 

An accelerometer was placed at the location of the coil spring showing the 

highest stress concentration which was obtained through finite element analysis. 

The car was driven on a highway road surface at a velocity of 70 km/h. The 

original signal produced by the accelerator was a variable amplitude load 

sampled at 500 Hz and recorded using a data acquisition setup, as shown in 

Figure 1. 

 

 
Fig. 1. The data acquisition setup: (a) accelerometer, (b) PXI system. 

 

4. Results and Discussion 
4.1. Acceleration data 

The collected data contained many small amplitudes and higher frequency 

patterns in the signal background. The data is a time domain signal measured at 

the coil spring sampled at 500 Hz for 30,000 data points. Therefore the total 

(b) (a) 
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record length was 60 seconds. Based on the acceleration obtained, the data 

obtained revealed parts with higher amplitudes because the vehicle was driven 

on a bumpy surface. The original acceleration data, the Morlet wavelet 

coefficient and the signal internal energy are shown in Figure 2. 

 

 
Fig. 2. (a) acceleration data, (b) wavelet coefficient, (c) internal energy. 

 
4.2. Acceleration data extraction 

Various gate values were used in this extraction. The values were chosen 

because most of the magnitudes were below the gate value, whereas if the lower 

magnitude section was removed, it did not affect the damage relevance and the 

original properties of the signal. The gate values used were 4x10
-7

 µε
2
/Hz,  

5x10
-7

 µε
2
/Hz and 6x10

-7
 µε

2
/Hz. After the data was extracted, the retained 

energy containing higher signal internal energy was obtained. Furthermore, 

based on the time positions of the retained energy and referring to the original 

signal before the extraction, maintained segments were obtained. The 

extractions produced segments that were not uniform in length because the 

Morlet wavelet algorithm extracted the time series based on the energy content 

of the signals. 

For this purpose, the retained segments were reattached into a single load to 

validate if the process satisfied the requirements in data editing, i.e., maintaining 

90% of the original statistical values. A verification process was done by 

comparing the statistical parameter values between the original and the modified 

signal. From the analysis of the modified signal, an optimal gate value was 

A
cc

el
er

at
io

n
 (

g
) 

Time (s) 

(a) 

0 10 20 30 40 50 60
-4

-2

0

2

4
x 10

-3

S
ca

le
 

Data point 

(b) 

(b) 

 

 

0.5 1 1.5 2 2.5 3

x 10
4

  2
 10
 18
 26
 34
 42
 50
 58
 66
 74
 82
 90
 98
106
114
122

50

100

150

200

E
n

er
g

y
 (

µ
ε2

/H
z)

 

Data point 

(c) 

0.5E+4 1E+4 1.5E+4 2E+4 2.5E+4 3E+4
0

0.5

1

1.5

2

2.5
x 10

-6

449



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

determined based on the gate value ability (refer to the modified signal) to 

produce the shortest signal with the minimum signal statistical parameter 

deviation. Figure 3 shows the differences in the length of modified signals from 

the extraction at various gate values. 

 

 

Fig. 3. Edited signals at: (a) 4x10
-7

 µε
2
/Hz, (b) 5x10

-7 
µε

2
/Hz, (c) 6x10

-7 
µε

2
/Hz. 

 

Based on Figure 3 above, at gate value of 4x10
-7

 µε
2
/Hz, data of 36.57 seconds 

shortened only by 39.05% and its r.m.s. and kurtosis became 2.68% and 5.45%, 

respectively. For a gate value of 5x10
-7

 µε
2
/Hz, the Morlet wavelet-based 

extraction resulted in a 30.33-second edited signal, which was 49.45% shorter 

than the original. The modified signal changed the r.m.s. and the kurtosis to 

3.41% and 8.21%, respectively. For a gate value of 6x10
-7

 µε
2
/Hz, the data was 

modified by 60.22% and changed the r.m.s. and kurtosis values became 5.14% 

and 10.98, respectively. 

Based on the results, 5x10
-7

 µε
2
/Hz was selected as the optimum gate value 

because at higher values, i.e. 6x10
-7

 µε
2
/Hz, the change in kurtosis reached 

10.98%. It was detrimental the original properties of the signal. The 30.33-

second edited signal resulted at the optimum gate value experience increasing of 

the r.m.s. and kurtosis values. Increased r.m.s. indicated that the internal energy 

content of the signal also increased. Different kurtosis values showed the 

extraction method was capable of effectively removing lower amplitude while 

maintaining higher amplitude in the modified signal. In addition, at gate value 

of 5x10
-7

 µε
2
/Hz, it gives similar distribution of frequency spectrum and power 
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spectral density, as shown in Figure 4. It shows the noise in the road surface 

profile had been removed. The data were successfully edited based on the 

relationship between the higher amplitude and the Morlet wavelet coefficients 

of the time-frequency domain obtained. This Morlet wavelet algorithm removed 

segments with magnitudes less than the gate value based on their positions on 

the time axis. 

 

Fig. 4. Original and edited signals: (a) length, (b) frequency spectrum,  

(c) power spectral density. 

   

5. Conclusion 
In this study, an experiment was conducted to collect data for the purpose of 

obtaining acceleration data to simulate the extraction algorithm. The 

acceleration data causes vibration that will increase the probability to the fatigue 

failure at car components. The extraction process yielded data on the damaging 

segments by identifying and extracting segments based on the coefficient 

distribution of the Morlet wavelet transform. The damaging segments were 

combined to form shorter signals while maintaining original behaviours. 

Overall, the Morlet wavelet algorithm was able to shorten the signal up to 

49.45% but maintained more than 90% of the statistical parameters and gave 

similar distribution of power spectral density as original data. The extraction 

method was able to identify the structural damage values of each segment. 

Finally, this study proved that the Morlet wavelet is an appropriate technique to 

extract acceleration data, especially for the automotive applications. 
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Abstract. This paper deals with achieving chaotic Pattern Recognition (PR) using
the Adachi Neural Network (AdNN), where the Neural Network (NN) has been mod-
ified in a random manner. The Adachi Neural Network is a fascinating NN which
has been shown to possess chaotic properties, and to also demonstrate Associative
Memory (AM) and Pattern Recognition (PR) characteristics. Variants of the AdNN
have also been used to obtain other PR phenomena, and even blurring. An unsur-
mountable problem associated with the AdNN and the variants referred to above, is
that all of them require a quadratic number of computations. Earlier, in [1], we man-
aged to reduce the computational cost significantly by merely using a linear number
of computations by enforcing a Maximum Spanning Tree topology, and a gradient
search method. However, in the sense of a NNs structure, very few networks possess
a linearly connected topology. Instead, most of the “physical” networks including
biological NNs and Internet networks have the properties of a complex network such
as a random network, small-world network or a scale-free network. In this paper, we
mainly consider the issue of how the network topology can be modified by involving
randomized connections so as to render the new network much closer to “real” NNs.
On the other hand, the newly obtained network still possesses strong PR character-
istics. To achieves this, we first construct a random network by means of the E-R
model and then address the problem of computing the weights for the new network.
This is done in such a manner that the modified random connection-based NN has
approximately the same input-output characteristics, and thus the new weights are
themselves calculated using a gradient-based algorithm. Through a detailed exper-
imental analysis, we show that the new random AdNN-like network possesses PR
properties for appropriate settings. As far as we know, such a random AdNN has not
been reported, and our present results are novel.
Keywords: Chaotic Neural Networks, Chaotic Pattern Recognition, Adachi-like
Neural Networks, Random Networks.

1 Introduction

The use of Artificial Neural Networks (ANNs) is one of the four best approaches
for Pattern Recognition (PR). ANNs attempt to use some organizational prin-
ciples such as learning, generalization, adaptivity, fault tolerance, distributed
representation, and computation in order to achieve the recognition. One of the
limitations of most ANN models is the dependency on an external stimulation.
Once an output pattern has been identified, the ANN remains in that state
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until the arrival of a new external input. This is in contrast to real biological
NNs which exhibit sequential memory characteristics. To be more specific, once
a pattern is recalled from a memory location, the brain is not “stuck” in it;
it is also capable of recalling other associated memory patterns without being
prompted by any additional external inputs. This ability to “jump” from one
memory state to another in the absence of a stimulus is one of the hallmarks of
the brain, which is one phenomenon that a chaotic PR system has to emulate.

The goal of the field of Chaotic PR systems can be summarized as follows:
We do not intend a chaotic PR system to report the identity of a testing pattern
with a “class proclamation”. Rather, what we want to achieve is to have the
chaotic PR system give a strong periodic ormore frequent signal when a pattern
is recognized. Furthermore, between two consecutively recognized patterns,
none of the trained patterns must be recalled. Finally, and most importantly,
if an untrained pattern is presented, the system must give a chaotic signal.

This paper deals with the Adachi Neural Network AdNN [2], which pos-
sesses a spectrum of very interesting chaotic, AM and PR properties, as de-
scribed in [1,3–11]. The fundamental problem associated with the AdNN and
its variants are their quadratic computational requirements. We shall show
that by using the E-R model and an effective gradient search strategy, this
burden can be significantly reduced, and yet be almost as effective with regard
to the chaotic and PR characteristics.

We are currently working on reducing the complexity of the AdNN and the
associated computations by invoking the so-called “small-world” model.

2 Limitations of the Current Schemes

Although the works of Adachi et al and Calitoiu et al were ground-breaking,
it turns out that, as stated in [3–5], the results claimed in the prior works
were not as precise as stated. Apart from this limitation, the computational
burden is excessive, rendering it impractical. Besides this, most of current
NNs have a regular topology, e.g., a completely connected graph or a neighbor-
coupled graph. This is in contrast with “real” NNs which usually have irregular
topologies, e.g., a random graph, a small-world graph or even a scale-free graph.
The contribution of this paper is to present a novel CNN which is connected
in a randomized AdNN way. For brevity, we refer to the modified AdNN with
random connections as the “Random-AdNN”.

3 Designing the Random-AdNN

3.1 The Topology of the Random-AdNN

To present the new characteristics of the Random-AdNN, we shall first arrive
at a topology with randomly-chosen edges. Such a modified random AdNN is
obtained in two steps. Firstly, we connect the neurons by using the E-R model.
The second step involves the computation of the weights associated with this
new structure, which we will address subsequently.
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Algorithm 1 Topology Random-AdNN

Input: N , the number of neurons in the network, and a set of P patterns which the
network has to “memorize”.
Output: The topology and initial weights of the Random-AdNN.
Method:

1: Create a fully-connected graph G with N vertexes which represents the AdNN.
2: For each edge, we delete it with a fixed probability, pd.
3: Continue this process for all the

(

N

2

)

edges.
4: Compute the initial weights of the edges of G, {wij} as follows:

wij = 1

P

∑P

s=1
(2xs

i−1)(2x
s
j−1), where x

s
i is the i

th component of the sth pattern.
5: If there is no edge between vertex i and j, wij = 0;

End Algorithm Topology Random-AdNN

3.2 The Weights of the Random-AdNN: Gradient Search

Since we have removed most of the “redundant” edges from the completely-
connected graph by using the E-R model, it is clear that the NN at hand will
not adequately compare with the original AdNN. Thus, our next task is to
determine a new set of weights so as to force the Random-AdNN to retain
some of its PR properties, namely those corresponding to the trained patterns.
We briefly explain below (the details are omitted in the interest of space, and
one can refer to [12] for more details) the process for achieving this.

The Random-AdNN is defined by the following equations:

xR
i (t+ 1) = f(ηRi (t+ 1) + ξRi (t+ 1)), (1)

ηRi (t+ 1) = kfη
R
i (t) +

∑

eij∈T

wR∗

ij xR
j (t), (2)

ξRi (t+ 1) = krξ
R
i (t)− αxR

i (t) + ai. (3)

where {wR∗

ij }, xR
i , ξRi and ηRi are the weights, outputs, and state variables of

the Random-AdNN respectively, and have similar meanings to {wij}, xi, ξi
and ηi of the AdNN.

In order to find the optimal values of {wR∗

ij }, we define the square error

between the original output of the AdNN and new output at the nth step as:

Ep =
1

2

N
∑

i=1

(xA,p
i − x

R,p
i (n))2, (4)

where xA,p
i and x

R,p
i imply the outputs of the ith neuron when the pth pattern is

presented to the AdNN network and the Random-AdNN network respectively.
The overall global error is defined by E =

∑P

p=1
Ep where P is the number of

trained patterns.

In order to adjust wR
ij to obtain the smallest global error E, we consider the

gradient, ∆wR
ij , and move wR

ij by an amount which equals ∆wR
ij in the direction
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where the error is minimized. This can be formalized as follows:

∆wR
ij = −β

∂E

∂wR
ij

= −β
∂
∑P

p=1
Ep

∂wR
ij

= −β

P
∑

p=1

∂Ep

∂x
R,p
i (n)

·
∂x

R,p
i (n)

∂wR
ij

= β

P
∑

p=1

(xA,p
i − x

R,p
i (n)) ·

1

ε
· xR,p

i (n) · (1− x
R,p
i (n)) · xR,p

j (n), (5)

where β is the learning rate of the gradient search. The formal algorithm which
achieves the update is given in Algorithm 2.

Algorithm 2 Weights Random-AdNN

Input: The number of neurons, N , a set of P patterns, and the initial weights {wR
ij}

of the Random-AdNN. These initial weights are {wA
ij} for the edges in the random

graph, and are set to zero otherwise. The parameters and settings which we have
used are the learning rate β = 0.05, ε = 0.015, α = 10, kf = 0.2 and kr = 1.02.
Output: The weights {wR∗

ij } of the Random-AdNN.
Method:

1: Compute the outputs of the Random-AdNN corresponding to the P trained in-
puts.

2: For all edges of the Random-AdNN, compute ∆wR
ij as per Equation (5). Other-

wise, set ∆wR
ij = 0 .

3: wR
ij ← wR

ij +∆wR
ij .

4: Go to Step 1 until E is less than a given value or ∆wR
ij ≈ 0.

End Algorithm Weights Random-AdNN

The results of a typical numerical experiment which proceeds along the
above gradient search are shown in Fig. 1 and 2. In these simulations, we
have chosen the learning rate β to be 0.05. To clarify issues, we catalogue
our experiments for three specific cases, namely when the probability pd for
deleting an edge is 0.9, 0.5 and 0.1 respectively.

If pd is 0.9, the total error E and average values of ∆wR
ij do not converge

to 0, as shown in Fig. 1. However, as pd decreases, e.g., 0.5, then E and ∆wR
ij

converge to 0, as shown in Fig. 2 (a) and (b). If pd is even less, E and ∆wR
ij

also converge to 0 but with a faster rate, as shown in Fig. 2 (c) and (d). This
phenomenon can be easily explained: The larger the value of pd, the smaller
is the number of edges and vice versa. Thus, if pd = 0, it means that the
Random-AdNN is exactly the same as the original AdNN. On the other hand,
if pd = 1, it means that all the vertexes are isolated and remain as disconnected
units. Of course, the “fitting” effect that we obtain by the approximate graph,
the Random-AdNN, is more precise as the number of edges increases.

The Lyapunov analysis of the Random-AdNN is also available, but omitted
here in the interest of space. It can be found in [12].
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Fig. 1. The figure on the left shows the variation of the average of ∆wL
ij (averaged

over all values of i and j) over the first 50 iterations of the gradient search scheme.
The average converges to a value arbitrarily close to zero after 12 time steps. The
figure on the right shows the variation of the global error over the same time frame.
Observe that this quantity does not converge to zero.
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Fig. 2. The figures show the variation of the average of ∆wL
ij and the global error

over the same time frame. The probability of edge deletion is pd = 0.5 (for (a) and
(b)) and pd = 0.1 (for (c) and (d)) respectively.
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4 Chaotic and PR Properties of the Random-AdNN

We now briefly report the PR properties of the Random-AdNN. These prop-
erties have been discovered as a result of examining the Hamming distance
between the input pattern and the patterns that appear in the output. The
experiments were conducted using the Adachi data set described below.
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Fig. 3. The 10×10 patterns used by Adachi et al . The first four patterns are used to
train the network. The fifth pattern is obtained from the fourth pattern by including
15% noise. The sixth pattern is the untrained pattern.

In the ideal setting we would have preferred the Random-AdNN to be
chaotic when exposed to untrained patterns, and the output to appear period-
ically or more frequently when exposed to trained patterns. Besides yielding
this phenomenon, the Random-AdNN also goes through a chaotic phase and a
PR phase as some of its parameters change.

We summarize the results for the Random-AdNN, obtained by using differ-
ent settings of pd. The others parameters are: kf = 0.2, kr = 1.02, α = 10,
ε = 0.015, β = 0.05.

From these tables we see clearly that, the Random-AdNN is able to “res-
onate” the input patterns with the corresponding output patterns. Consider
Table 1 (a) as an example. If the input is P1, then the network outputs P1
accordingly, and at the same time, no other trained patterns appear in the out-
put sequence. Even when a noisy pattern is presented to the system, e.g., P5,
which is a noisy pattern of P4 with 15% noise, the network still “resonates” P4
instead of P5 in the output sequence. Furthermore, if the input is an untrained
pattern, e.g., P6, then none of the trained patterns will be recalled. Observe
that even the input pattern P6, will itself be retrieved only a few times, which
is much less than the other diagonal entries in the table, i.e., when the inputs
are P1 – P4. The difference between (a) – (c) is that in Table (c), the network
“resonates” the input patterns more frequently than in (a) and (b). This is
because when pd = 0.1, the Random-AdNN is almost the same as the original
AdNN since the Random-AdNN has most of the edges of the AdNN. However,
in this case, the Random-AdNN also needs a quadratic number of computa-
tions, which is computationally much more intensive than for the case when
pd = 0.9. In this regard, we comment that pd = 0.9 is good enough for PR,
which has only a very small computational burden. By a simple computation
we can see that the expected degree for each vertex of the Random-AdNN is
only N(1 − pd) = 10 for the Adachi data set, which implies that the compu-
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Table 1. The frequency of the Hamming distance between the input and the output
patterns for the Random-AdNN. The probability pd is 0.9, 0.5, 0.1 for (a), (b), (c)
respectively.

Input Patterns

pd = 0.9 P1 P2 P3 P4 P5 P6

P1 151 0 0 0 0 0
P2 0 422 0 0 0 0

Retrieved P3 0 0 161 0 0 0
Patterns P4 0 0 0 106 177 0

P5 0 0 0 10 2 0
P6 0 0 0 0 0 46

Input Patterns

pd = 0.5 P1 P2 P3 P4 P5 P6

P1 202 0 0 0 0 0
P2 0 285 0 0 0 0

Retrieved P3 0 0 234 0 0 0
Patterns P4 0 0 0 211 206 0

P5 0 0 0 4 3 0
P6 0 0 0 0 0 33

(a) (b)

Input Patterns

pd = 0.1 P1 P2 P3 P4 P5 P6

P1 238 0 0 0 0 0
P2 0 331 0 0 0 0

Retrieved P3 0 0 258 0 0 0
Patterns P4 0 0 0 237 189 0

P5 0 0 0 9 20 0
P6 0 0 0 0 0 34

(c)

tational load has been greatly reduced when compared to the original AdNN,
which has a vertex degree of 99.

5 Conclusions

In this paper we have concentrated on the field of Chaotic Pattern Recognition
(PR), which is a relatively new sub-field of PR. Such systems, which have only
recently been investigated, demonstrate chaotic behavior under normal condi-
tions, and resonate when it is presented with a pattern that it is trained with.
The network that we have investigated is the Adachi Neural Network (AdNN)
[2], which has been shown to possess chaotic properties, and to also demon-
strate Associative Memory (AM) and Pattern Recognition (PR) characteristics.
In this paper we have considered how the topology can be modified so as to
render the network much closer to “real” neural networks. To achieve this, we
have changed the network structure to be a random graph, and then computed
the best weights for the new graph by using a gradient-based algorithm. By a
detailed experimental suite, we showed that the new Random-AdNN possesses
chaotic and PR properties for different settings.

Acknowledgements: The first author would like to thank the Ministry of
Science and Technology of Sichuan Province, China, for its financial support
(Grant Nos. 2012HH0003 and 9140A17060411DZ02) for this research.
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Abstract. In this paper, a non-intrusive stochastic model reduction scheme is de-
veloped for polynomial chaos representation using proper orthogonal decomposition.
The main idea is to extract the optimal orthogonal basis via inexpensive calculations
on a coarse mesh and then use them for the fine discretization analysis. The devel-
oped reduced-order model is implemented to the stochastic steady-state heat diffusion
equation. The random conductivity field is approximated via the Karhunen-Loeve
(KL) expansion. Input random variables are uniformly distributed so that the Gauss-
Legendre quadrature scheme is utilized for the numerical integration. The numerical
results showed that the non-intrusive model reduction scheme is able to accurately
reproduce mean and variance fields. It is found that the computation-time of the
reduced-order model is lower than that of the full-order model.
Keywords: Uncertainty Quantification, Polynomial Chaos, Reduced-order Model.

1 Introduction

In many engineering applications, uncertainty in physical properties, input data
and model parameters result in uncertainties in the system output. A repre-
sentative practical example is design of turbomachineries where uncertainties
in flow conditions and small variations in structural parameters of compo-
nents(e.g. blade profile) can have a significant impact on the performance. For
design refinement of such complex mechanical devices, it is necessary to include
all uncertainty information in the output results using uncertainty quantifica-
tion (UQ) schemes. However, many complex applications require a fine 3D
computational mesh, small time-step and high-dimensional space for stochas-
tic analysis. This dramatically increases the computational cost which is not
desirable for design proposes. Thus, it is necessary to employ efficient numerical
schemes for stochastic analysis of complex industrial flows. A variety of differ-
ent uncertainty quantification methods such as Monte Carlo approach, sensi-
tivity method, perturbation method, regression method and polynomial chaos

? Corresponding Author
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have been proposed for uncertainty quantification. All of these techniques have
positive and negative features, and no single technique is optimum for all situ-
ations. Following our previous work on UQ (Dinescu et al.[1] and Wang et al.
[7]), here we employed Polynomial Chaos (PC) approach to model uncertainty
propagation. Polynomial chaos methods have been successfully applied to solid
mechanics problems by several researches (See for example Ghanem and Spanos
[3] and Doostan et al. [2]). PC schemes have also been employed for a number
of fluid mechanics problems by a number of researchers such as: Walters and
Huyse [6], Mathelin et al. [4] and Dinescu et al. [1]. The polynomial chaos rep-
resentation can be used for different Probability Density Functions (PDFs) and
can be implemented through either intrusive or non-intrusive methods. The
intrusive approach requires the modification of the CFD codes and this may be
difficult, expensive, and time consuming for many CFD problems. Moreover,
the source codes of most commercial CFD softwares are not accessible and thus
it is impossible to implement the intrusive PC approach to such softwares. For
these reasons, here we focused on non-intrusive PC methodology with uniform
PDF for uncertainty quantification. The main shortcoming of all PC methods
is the curse of dimensionality. Developing efficient reduced-order models for
shortening the computational cost associated with the stochastic analysis is
of great interest for prediction of complex industrial flows with large number
of uncertain parameters. In recent years, several model reduction techniques
have been proposed for uncertainty quantification. Two informative examples
of such works are: Nouy [5] and Doostan et al. [2]. In Nouy [5] a Generalize
Spectral Decomposition (GSD) was proposed that gives the reduced basis in-
dependent of the stochastic discretization scheme. The GSD implementation
to a class of Stochastic Partial Differential Equations (SPDE) leads to drastic
computational saving though does not circumvent the curse of dimensionality.
Doostan et al. [2] proposed an intrusive model reduction technique for chaos
representation of a SPDE to tackle the curse of dimensionality. A 2D test case
from solid mechanics is chosen to illustrate the accuracy and convergence of
the model.
In this work, a non-intrusive reduced-order technique is developed and ap-
plied to the 2D steady-state stochastic heat diffusion equation. This paper
is organized as follows. In Section 2 we present the details of mathematical
formulation and problem under investigation. In Section 3, the model reduc-
tion methodology is described. Finally, in Section 4 the numerical results are
presented and discussed.

2 Mathematical Formulation

To demonstrate the non-intrusive stochastic model reduction algorithm, 2D
steady-state stochastic heat conduction in a square plate of side 2a is considered
(see Figure 1). The 2D heat diffusion with random thermal conductivity is
described by the following SPDE:

∂

∂x
(k(x, y; ζ)

∂T

∂x
) +

∂

∂y
(k(x, y; ζ)

∂T

∂y
) = 0 (1)
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As shown in Figure (1), the top boundary of the plate is at hot temperature

Fig. 1. Schematic of computational domain.

Th whilst the side and bottom boundaries of the plate are at cold temperature
Tc. The thermal conductivity of the plate, k(x, y; ζ), is assumed to be a two-
dimensional homogeneous random process with known mean k̄(x, y) and known
covariance function:

R(x1, y1;x2, y2) = σk
2e−|x1−x2|/bx−|y1−y2|/by (2)

where bx and by are the correlation lengths in x and y directions, respectively,
and σk is the standard deviation on the thermal conductivity.
A key ingredient here is the representation of stochastic thermal conductivity
field as a Karhunen-Loeve (KL) expansion, a type of Fourier expansion for
random functions, which amounts to a discretization in the space of random
events. According to the KL expansion, the eigenvalues and eigenfunctions are
obtained by solving the following 2D integral equation:∫

D

R(x1, y1;x2, y2)φn(x2, y2)dx2dy2 = λnφn(x1, y1) (3)

Separation of kernel (2) as R(x1, y1;x2, y2) = σk
2e−|x1−x2|/bx .e−|y1−y2|/by and

substitution in (3) leads to two identical 1D integral eigenvalue equations in
x and y directions. Solution of the integral equations give eigenvalues (i.e.

λ
(x)
i and λ

(y)
j ) and their corresponding eigenfunctions (i.e. φ

(x)
i and φ

(y)
j ). As

described in Ghanem and Spanos [3], the complete form of KL expansion for
random process k(x, y; ζ) is:

k(x, y; ζ) = k̄(x, y) +

∞∑
i=1

∞∑
j=1

{√
λ
(x)
i λ

(y)
j ζi,j

1√
2

[φ
(x)
i (x)φ

(y)
j (y) + φ

(x)
j (x)φ

(y)
i (y)]

}
(4)
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Having obtained an analytical expression for the thermal conductivity, the
SPDE (Equation (1)) is discretized using an explicit central differencing scheme
in a uniform grid (∆x = ∆y), see Figure 1. Thus, for any set of ζ ≡ {ζi}ni=1,
first thermal conductivity is calculated in the computational domain using KL
expression (Equation (4)). Then, the new temperature Tn+1 at grid node (i, j)
is obtained from old nodal temperature Tn of neighbouring nodes. The solution
is converged when the maximum error between the old and new temperature
values is sufficiently small(ε ' 10−9).

3 Model Reduction Methodology

In the classical polynomial chaos expansion, the random temperature field
T (x, y; ζ) can be decomposed into deterministic and stochastic components.
The PC representation of temperature field of order p for n random variable
ζ ≡ {ζi}ni=1 can be written as:

T (x, y; ζ)− < T (x, y) >=

P∑
i=1

T i(x, y)ψi(ζ) (5)

where the total number of terms are P + 1 = (p+ n)!/p!n! and the mean value
of T (x, y; ζ) is expressed as:

< T (x, y) >=

∫
ω

T (x, y; ζ)f(ζ)dζ (6)

In the above equation, f is Probability Density Function (PDF). Here we as-
sumed random variables are uniformly distributed over interval [-1,1] and thus
the PDF is f = 1/2n for n random variables {ζi}ni=1. The non-intrusive method
uses spectral projection to find the PC expansion coefficients T i(x, y) in Equa-
tion (5). Projecting Equation (5) onto the kth basis and use of orthogonality
gives:

T i(x, y) =
1

< ψ2
i (ζ) >

∫
ω

T (x, y; ζ)ψi(ζ)f(ζ)dζ (7)

The objective of the spectral projection method is to compute the polynomial
coefficients by evaluating numerator in Equation (7) numerically, while the
dominator can be computed analytically for multi-variant orthogonal polyno-
mials. Here we used the n-dimensional Gauss-Legendre quadrature to compute
the projection integrals in Equation (7) as:

T i(x, y) =
1

< ψ2
i (ζ) >

q∑
i1=1

..

q∑
in=1

(wi1
1 ⊗ ..⊗ win

n )T (x, y; ζi11 , .., ζ
in
n )f(ζi11 , .., ζ

in
n )

(8)

where (ζk,wk), k = 1, 2, .., q are the one-dimensional (1D) Gauss-Legendre
integration points and weights.
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The above classical expansion dose not represent an optimal PC representation
of T (x, y, ζ). To find the optimal PC expansion one can consider the fact that
spatial discretization errors and random discretization errors may be decoupled.
Therefore, one can minimize the random discretization errors on the coarse grid
and then solve the real physical problem on a fine mesh by using limited number
of optimal random basis {zi}mi=1 (obtained in the coarse grid analysis) where m
is the number of dominated eigenvalues. The first step in the model reduction
scheme is to find optimal PC basis using POD; a well-known procedure for
extracting a basis for a model decomposition from an ensemble of realizations.
To this end, suppose in a coarse grid, expression (9) represents an optimal PC
expansion of the stochastic temperature field T (x, y, ζ);

T (x, y; ζ)− < T (x, y) >=

m∑
i=1

T i(x, y)zi(ζ) (9)

Now in the coarse grid, the covariance function C(x1, y1;x2, y2) of temperature
field can be obtained from:

C(x1, y1;x2, y2) =

P∑
i=1

T i(x1, y1)T i(x2, y2) < ψ2
i > (10)

The corresponding eigenvalues νi and eigenfunctions φi(x, y) are the solution
of the following eigenvalue problem:∫

D

C(x1, y1;x2, y2)φi(x2, y2)dx2dy2 = νiφi(x1, y1) (11)

The upper limit m in the Equation (9) can be found by the size of dominant
eigenspace (10) such that

∑m
i=1νi/

∑
i νi ≥ 0.99.

Having obtained T i(x, y) from classical PC on the coarse grid and eigenfunc-
tions φi(x, y) from the solution of eigenvalue problem (11), the set of optimal
basis {zi}mi=1 can be now represented as a linear combination of the set of
classical polynomial chaos; {ψi}Pi=1 using the following scalar product1:

zi(ζ) = [T (x, y; ζ)− < T (x, y) >,φi(x, y)] =

P∑
j=1

αijψj(ζ) (12)

where coefficient αlj are obtained via the scalar product:

αij =

∫
R

T j(x, y)φi(x, y)d−→x d−→y (13)

One now dose the classical polynomial chaos on a fine mesh, where zi are used
instead of ψi. For 1 ≤ i ≤ m, the coefficients in expansion (9) are obtained
from:

T i(x, y) =
< T (x, y; ζ), zi >

< zi, zi >
=

1

νi

P∑
j=1

αij < T (x, y; ζ), ψj > (14)

1 The scalar product of functions v and w is defined as: [v, w] =
∫
x
v.wdx.
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4 Results and Discussion

We now examine the performance of the reduced-order model by analyzing the
2D steady-state heat conduction equation. It is assumed that the top wall is
at Th = 300◦C and side and bottom walls at Tc = 100◦C. First, a 2D KL
expansion is performed using the exponential kernel with a standard deviation
of σk = 1.0 W/m.K and correlation lengths of bx = by = 10.0 m. The mean
thermal conductivity is assumed to be k̄ = 5.0 W/m.K. The first six largest
terms in the KL expansions are chosen for further analysis.

Fig. 2. Computed eigenvalues using coarse discretization analysis.

Figures 2 and 3 respectively show the distributions of eigenvalues and | αij |
coefficients obtained from the coarse discretization analysis on a 5 × 5 mesh
when a second-order Legendre polynomial (p = 2) is employed. From these
figures it can be concluded that only two (m = 2) basis functions (i.e. z1 and
z2) are adequate for the fine discretization analysis. Thus, fine discretization
analysis is performed using the new z1 and z2 basis functions on a 40×40 mesh.
The computed mean and variance fields using full- and reduced-order models
are compared in Figure 4. It is visible the fine grid computations via reduced-
and full-order models resulted in identical results for the mean temperature.
Moreover, full- and reduced-order analysis on the fine mesh produced very
similar variance fields. The order of maximum difference in variance fields is
10−3. The ratio of computation-time for the reduced-order analysis to the time
needed for the full-order calculation using three fine meshes of 30× 30, 40× 40
and 50 × 50 is shown in Figure 5. While reduced-order computations on the
30 × 30 results to about 10% saving in the computation-time, more that 50%
saving in computation-time is obtained when a finer 50× 50 mesh is employed.
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Fig. 3. Computed | αij | using coarse discretization analysis.

Fig. 4. Comparison of mean and variance fields.
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Fig. 5. Ratio of reduced-order computation-time to the full-order computation-time.

Conclusion

In this paper, a non-intrusive model reduction technique for PC expansion is
presented and discussed. The reduced-order model is applied to the 2D steady-
state heat diffusion equation. Distributions of mean and variance obtained
from the reduced-order model are compared with those of full-order model.
The numerical results show that the developed reduced-order model is able to
produce acceptable results for such statistical quantities. Computation-time of
the reduced-order model is found to be lower than that of the full-order model.
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The profile of temperature in the dissipative
over-dense plasma layer
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Abstract. An investigation is undertaken to introduce an effective mechanism of
plasma heating which significantly enhances and facilitates the heating of a dense
plasma layer. This mechanism directly related to the phenomena of anomalous trans-
parency of a dense plasma layer through the resonant excitation of the coupled surface
waves. It is shown that the collisional effects reduce the rate of the energy transmis-
sion through the plasma layer under resonant conditions. This dissipative effects
cause heating of the plasma layer to a considerable amount of temperature. The
temperature distribution in the plasma layer during the transmission of the electro-
magnetic waves is studied.
Keywords: Microwave, Dissipation, Incident wave, Over-dense plasma, Surface
plasma, Transparency.

1 Introduction

The investigations of circumstances and important factors in the plasma heat-
ing is the subject of relevance for many fields of plasma physics ranging from
laboratory experiments to astrophysics [1]. The heat flow and temperature
gradient in plasma are fundamental process that take place during plasma phe-
nomenons and are of grate importance effects. These process in some situations,
have inevitable destructive effects. One of the challenges of embedding plasma
in electric field is the appearance of high temperature electrons which acts like
an internal transport barrier. The three well known heating mechanisms of
plasma are ohmic heating, neutral beam injection and high frequency electro-
magnetic waves. In the high frequency electromagnetic waves mechanism of
plasma heating, the energy of waves is converted into thermal electron motion
through electron-ion collisions [2,3]. Also the interaction of the electromagnetic
waves with plasma may lead to the resonant excitation of the electrostatic waves
which subsequently decays generating energetic electrons [4].

In our previous works we studied the total transparency conditions of an
overdense plasma layer due to the resonant excitation of the coupled surface
modes, [5]-[9]. In the present paper we demonstrate another mechanism of
plasma heating that significantly enhances and facilitates the heating of the
dense plasma. We will show that for a collisional plasma under resonant condi-
tions, the dissipative effects cause heating of the dense plasma to a considerable

? Corresponding author: Tel +98-25-32854972. E-mail address: rajaeel@yahoo.com

469



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

amount of temperature. Hence the process of resonant excitation of the cou-
pled plasmons can be considered as an effective mechanism of plasma heating.
In fact this process has a dual acting effect, it cause the transparency of the
plasma slab and at the same time it gives rise to plasma heating.

This paper is organized as follows: In section two the geometrical construc-
tion of the problem and the transmission of the electromagnetic waves through
the considered structure. In section three the solutions of the heat equations
at steady states condition is given and the temperature is predicted. Finally,
section four presents the results.

2 the model

Fig. 1. Schematic diagram showing the spatial distribution of the effective electric
permittivity.

Let us consider a geometrical structure fulfills the conditions under which
the high transparency of a normally reflected overdense plasma can be observed
, [7]. The system is modeled as an overdense plasma layer with length b placed
between two equal ordinary dielectrics or equivalently cold plasma layer (see
Fig. 1). In order to examine the resonant conditions of the excitation of the
surface modes let us consider a p-polarize wave specified by the magnetic field
component B = (0, 0, Bz) and the electric field in the plane of incidence (x, y),
namely E = (Ex, Ey, 0). Considering the geometrical structure of Fig. (1),
the spatial part of the electric and the magnetic fields must be proportional
to exp(iky) and the waves amplitudes become functions only of the variable x.
In this case the magnetic field and temperature at the steady state, obtain the
following forms:
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κ
∂2T

∂2x
+Q = 0. (1)

ε
∂

∂x

1

ε

∂Bz
∂x

+ (ε− k2y)Bz = 0 . (2)

where κ refers to the thermal conductivity. Also,

Q =
ε0
2
ε′′ωE2

0 |E| , (3)

where ε′′ is the imaginary part of the permittivity. Here ε = (1 − ω2
p

ω2s ),

s = (1 + iν/ω), also k0 = ω
c and ωp = 4πn0e

2

m . In these equations, all field
quantities have become dimensionless and redefined as follows:(

r̃ = k0r , t̃ = ωt
)
, Ẽ =

E

E0
, ν̃ =

ν

ω
, T̃ =

T

T0
, (4)

where the tilde quantities are dimensionless, but for simplicity, we ignore the
tilde sign of our field quantities in equations. Likewise, the temperature should
satisfy the surface heat balances. where ky = sinθ. Analytical solutions of
Eqs.(2)gives the magnetic field in the both dielectrics and the over dense plasma
mediums, and are obtained in the following forms:

Bz = (A1e
αx +A2e

−αx), (5)

where α =
√
k2y − ε. The electromagnetic fields in the vacuum regions, x < −a

and x > b, have the following forms:

Bz = E0e
ı cos θx +Re−ı cos θx x < −a , (6)

Bz = Tre
ı cos θx x > b , (7)

where E0, R and T respectively assign the field components for the incident,
reflected and transmitted waves.

These field solutions should satisfy the conditions of continuity of dBz/dx
and Bz, on all the boundaries and as a result, one achieve eight equations for
the unknown coefficients, specifically the coefficient R and Tr are obtained. For
resonant values of the incident angle θ, we should expect anomalous transmis-
sion of the electromagnetic waves.

Fig. (2) shows the transmission curve Tr andR as a function of the incidence
angle θ for two different values of the collisional frequencies, namely for ν = 0.1
and ν = 0.2. Two important results are obtained from these plots. As the first
result, there is an acute increase in the transmission properties of the system,
when the angle of incidence reaches to one of its resonant values. According
to the figure.(2), the maximum of the transmission coefficient T occurs about
θ = 0.18rad for two different value of collisional frequencies.

As the second result, comparing the two maximums indicates that, with the
increase of the collisional frequency ν, t he maximum rate of the electromagnetic
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Fig. 2. The transmission coefficients vs incident angel for two different value of col-
lisional frequency

waves decreases. In order to investigate the effect of this dissipated energy on
the increase of the plasma temperature, the electric field amplitude in the over-
dense plasma at the maximum points is needed. To provide this we note that
for the case ν = 0.1, the deficiency at the maximum point is about 1 − (|
R |2 + | Tr |2) = 0.3071, while For the case ν = 0.2 the deficiency is about
1− (R2 + T 2

r ) = 0.4373.

3 The heat equation

In order to investigate the temperature variations or the increase of the tem-
perature degree of the over-dense plasma due to passing of the electromagnetic
waves one should consider the solutions of the heat equation (1). The factor
Q that is given in Eq.(3) can be considered as a thermal source for the heat
equation. The imaginary part of the permittivity explicitly appears in the heat
source and hence is vitally important to produce heat. Also the heat source Q
depends on the amplitude of the passing electric field in the over-dense plasma
layer. The electric field amplitudes, obtained in previous section, in the over-
dense plasma layer under the resonant transmission of waves. Substituting
them in Eq. (3) for each value of the collisional frequency ν, the heating source
Q would be obtained. Subsequently one can study the temperature variations
and the key factors of these variations by solving the corresponding heat equa-
tion via Eq.(1).

Here we follow the above procedure and analyze the temperature variations
from Eq.1 in steady state both numerically and analytically.

we require only the boundary condition which includes convection relation
on both boundaries of the plasma.

T (x) = 1, x = 0,
∂T

∂x
= 0, x = b.

It should be noticed that the sample or the plasma will be kept in room tem-
perature, therefore, T0 is the room temperature also here T is dimensionless
and equals to T/T0 . Heat equation will be solved through analytic as well
as the numerical method and, subsequently, compare the data obtained. The
analytical answers of this equation are as follows:

T (x) = − 1

κ

∫ ∫
Q(x)dxdx+ C1x+ C2, (8)
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where C1 and C2 are calculated by boundary conditions.Also Eq. 8 can be
written in the following form

T (x) = −F1(x) + F2(0)x+ F1(0), (9)

where F1(x) =
∫ ∫

Q(x)dx, F2(x) =
∫
Q(x)dx,

The above relation demonstrates that the curve of temperature is an ascend-
ing function of space. To investigate this more closely, the analytical solutions
of the temperature functions obtained from Eq.1 are plotted in Fig. (3a).This
figure contains two different curves corresponding to two different values of the
collisional frequencies ν. As it is shown in the figure, the plasma tempera-
ture increases as one move away from the plasma fronting edge. It should be
noticed that this temperature rising takes place due to the collisional effects
which appears in the form of the thermal source term Q.

It is also plotted the temperature curve by using a numerical method and
the results are given in Fig. (3b). To solve the heat equation (1) numerically,
the finite difference method has been employed. These numerical results are in
a good agreement with the analytical results and show an ascending function
of space for the temperature function.

Fig. 3. The profile of temperature for analytic and numeric solutions.

4 Conclusions

It has been shown here that the coupled resonant excitation of the surface
modes could create a condition for suitably heating of a dense collisional plasma
layer. To provide the resonant conditions, the plasma layer was considered be-
tween two dielectric layers. The slab then was supposed to be subjected to
the electromagnetic waves. After solving the equation of the wave for a cold
plasma, the electric field in all mediums was obtained. Eventually, the energy
transmission on the rear side of the dielectric layer was examined. Here, the
important issue is the effect of the collision on the amount of energy trans-
mission which, as researchers have shown, diminishes as the collisional effects
increase. Equally the important issue is the way in which the dissipative en-
ergy in the plasma appears. The results indicate that the dissipated energy in
the plasma led to the heating of the particles and the increasing of the plasma
temperature.
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Delay-dependent output feedback guaranteed

cost control for Hopfield neural networks
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Abstract. This paper studies the problem of guaranteed cost control for a class of
Hopfield delayed neural networks. The time delay is a continuous function belong-
ing to a given interval, but not necessary to be differentiable. A cost function is
considered as a nonlinear performance measure for the closed-loop system. The sta-
bilizing controllers to be designed must satisfy some exponential stability constraints
on the closed-loop poles. By constructing a set of argumented Lyapunov-Krasovskii
functionals combined with Newton-Leibniz formula, a guaranteed cost controller is
designed via memoryless state feedback control and new sufficient conditions for the
existence of the guaranteed cost state-feedback for the system are given in terms of
linear matrix inequalities (LMIs).

Keywords: Neural networks, guaranteed cost control, stabilization, interval time-
varing delays, Lyapunov function, linear matrix inequalities

1 Introduction

Stability and control of Hopfield neural networks with time delay has been at-
tracted considarable attention in recent years [1-8]. In many practical systems,
it is desirable to design neural networks which are not only asymptotically or
exponentially stable but can also guarantee an adequate level of system perfor-
mance. In the area of control, signal processing, pattern recognition and image
processing, delayed neural networks have many useful applications. Some of
these applications require that the equilibrium points of the designed network
be stable. In both biological and artificial neural systems, time delays due to
integration and communication are ubiquitous and often become a source of
instability. The time delays in electronic neural networks are usually time-
varying, and sometimes vary violently with respect to time due to the finite
switching speed of amplifiers and faults in the electrical circuitry. Guaranteed
cost control problem [9-12] has the advantage of providing an upper bound on
a given system performance index and thus the system performance degrada-
tion incurred by the uncertainties or time delays is guaranteed to be less than
this bound. The Lyapunov-Krasovskii functional technique has been among
the popular and effective tool in the design of guaranteed cost controls for
neural networks with time delay. Nevertheless, despite such diversity of re-
sults available, most existing work either assumed that the time delays are
constant or differentiable [13-16]. Although, in some cases, delay-dependent
guaranteed cost control for systems with time-varying delays were considered
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2 G. Rajchakit
in [12, 13, 15], the approach used there can not be applied to systems with
interval, non-differentiable time-varying delays. To the best of our knowledge,
the guaranteed cost control and state feedback stabilization for Hopfield neural
networks with interval, non-differentiable time-varying delays have not been
fully studied yet, which are important in both theories and applications. This
motivates our research.

In this paper, we investigate the guaranteed cost control for Hopfield de-
layed neural networks problem. The novel features here are that the delayed
neural network under consideration is with various globally Lipschitz continu-
ous activation functions, and the time-varying delay function is interval, non-
differentiable. A nonlinear cost function is considered as a performance mea-
sure for the closed-loop system. The stabilizing controllers to be designed must
satisfy some exponential stability constraints on the closed-loop poles. Based
on constructing a set of augmented Lyapunov-Krasovskii functionals combined
with Newton-Leibniz formula, new delay-dependent criteria for guaraneed cost
control via memoryless feedback control is established in terms of LMIs.

The outline of the paper is as follows. Section 2 presents definitions and
some well-known technical propositions needed for the proof of the main result.
LMI delay-dependent criteria for guaraneed cost control is presented in Section
3. The paper ends with conclusions and cited references.

2 Preliminaries

The following notation will be used in this paper. R
+ denotes the set of

all real non-negative numbers; R
n denotes the n−dimensional space with the

scalar product 〈x, y〉 or xT y of two vectors x, y, and the vector norm ‖ . ‖;
Mn×r denotes the space of all matrices of (n× r)−dimensions. AT denotes the
transpose of matrix A; A is symmetric if A = AT ; I denotes the identity matrix;
λ(A) denotes the set of all eigenvalues of A; λmax(A) = max{Reλ;λ ∈ λ(A)}.
xt := {x(t + s) : s ∈ [−h, 0]}, ‖ xt ‖= sups∈[−h,0] ‖ x(t + s) ‖; C1([0, t], Rn)
denotes the set of all R

n−valued continuously differentiable functions on [0, t];
L2([0, t], R

m) denotes the set of all the R
m−valued square integrable functions

on [0, t];
Matrix A is called semi-positive definite (A ≥ 0) if 〈Ax, x〉 ≥ 0, for all

x ∈ R
n;A is positive definite (A > 0) if 〈Ax, x〉 > 0 for all x 6= 0;A > B means

A − B > 0. The notation diag{. . .} stands for a block-diagonal matrix. The
symmetric term in a matrix is denoted by ∗.

Consider the following Hopfield neural networks with interval time-varying
delay:

ẋ(t) = −Ax(t) + W0f(x(t)) + W1g(x(t − h(t))) + Bu(t), t ≥ 0,

x(t) = φ(t), t ∈ [−h1, 0],
(1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ R
n is the state of the neural, u(.) ∈

L2([0, t], R
m) is the control; n is the number of neurals, and

f(x(t)) = [f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]T ,
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Guaranteed cost control for Hopfield neural networks 3
g(x(t)) = [g1(x1(t)), g2(x2(t)), . . . , gn(xn(t))]T ,

are the activation functions; A = diag(a1, a2, . . . , an), ai > 0 represents the
self-feedback term; B ∈ Rn×m is control input matrix; W0,W1 denote the
connection weights, the discretely delayed connection weights and the distribu-
tively delayed connection weight, respectively; The time-varying delay function
h(t) satisfies the condition

0 ≤ h0 ≤ h(t) ≤ h1,

The initial functions φ(t) ∈ C1([−h1, 0], Rn), with the norm

‖φ‖ = supt∈[−h1,0]

√

‖φ(t)‖2 + ‖φ̇(t)‖2.

In this paper we consider various activation functions and assume that the
activation functions f(.), g(.) are Lipschitzian with the Lipschitz constants
fi, ei > 0 :

|fi(ξ1) − fi(ξ2)| ≤ fi|ξ1 − ξ2|, i = 1, 2, . . . , n,∀ξ1, ξ2 ∈ R,

|gi(ξ1) − gi(ξ2)| ≤ ei|ξ1 − ξ2|, i = 1, 2, . . . , n,∀ξ1, ξ2 ∈ R,
(2)

The performance index associate with the system (2.1) is the following function

J =

∫

∞

0

f0(t, x(t), x(t − h(t)), u(t))dt, (3)

where f0(t, x(t), x(t − h(t)), u(t)) : R+ × Rn × Rn × Rm → R+, is a nonlinear
cost function satisfies

∃Q1, Q2, R : f0(t, x, y, u) ≤ 〈Q1x, x〉 + 〈Q2y, y〉 + 〈Ru, u〉, (4)

for all (t, x, u) ∈ R+ × Rn × Rm and Q1, Q2 ∈ Rn×n, R ∈ Rm×m, are given
symmetric positive definite matrices. The objective of this paper is to design
a memoryless state feedback controller u(t) = Kx(t) for system (2.1) and the
cost function (2.3) such that the resulting closed-loop system

ẋ(t) = (A + BK)x(t) + W0f(x(t)) + W1g(x(t − h(t))), (5)

is exponentially stable and the closed-loop value of the cost function (2.3) is
minimized.

Definition 2.1 Given α > 0. The zero solution of closed-loop system (2.5) is
α−exponentially stabilizable if there exist a positive number N > 0 such that
every solution x(t, φ) satisfies the following condition:

‖ x(t, φ) ‖≤ Ne−αt ‖ φ ‖, ∀t ≥ 0.

Definition 2.2 Consider the control system (1). If there exist a memoryless
state feedback control law u∗(t) = Kx(t) and a positive number J∗ such that
the zero solution of the closed-loop system (2.5) is exponentially stable and the
cost function (2.3) satisfies J ≤ J∗, then the value J∗ is a guaranteed costant
and u∗(t) is a guaranteed cost control law of the system and its corresponding
cost function.

We introduce the following technical well-known propositions, which will be
used in the proof of our results.
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4 G. Rajchakit
Proposition 2.1. (Schur complement lemma [17]). Given constant matrices
X,Y,Z with appropriate dimensions satisfying X = XT , Y = Y T > 0. Then
X + ZT Y −1Z < 0 if and only if

(

X ZT

Z −Y

)

< 0.

Proposition 2.2. (Integral matrix inequality [18]). For any symmetric positive
definite matrix M > 0, scalar γ > 0 and vector function ω : [0, γ] → R

n such
that the integrations concerned are well defined, the following inequality holds

(
∫ γ

0

ω(s) ds

)T

M

(
∫ γ

0

ω(s) ds

)

≤ γ

(
∫ γ

0

ωT (s)Mω(s) ds

)

3 Design of guaranteed cost controller

In this section, we give a design of memoryless guaranteed feedback cost control
for neural networks (2.1). Let us set

W11 = −[P + αI]A − AT [P + αI] − 2BBT + 0.25BRBT +

1
∑

i=0

Gi,

W12 = P + AP + 0.5BBT ,

W13 = e−2αh0H0 + 0.5BBT + AP,

W14 = 2e−2αh1H1 + 0.5BBT + AP,

W15 = P0.5BBT + AP,

W22 =
1

∑

i=0

WiDiW
T
i +

1
∑

i=0

h2
i Hi + (h1 − h0)U − 2P − BBT ,

W23 = P, W24 = P, W25 = P,

W33 = −e−2αh0G0 − e−2αh0H0 − e−2αh1U +

1
∑

i=0

WiDiW
T
i ,

W34 = 0, W35 = −2αh1U,

W44 =

1
∑

i=0

WiDiW
T
i − e−2αh1U − e−2αh1G1 − e−2αh1H1, W45 = e−2αh1U,

W55 = −e−2αh1U + W0D0W
T
0 ,

E = diag{ei, i = 1, . . . , n}, F = diag{fi, i = 1, . . . , n},

λ1 = λmin(P−1),

λ2 = λmax(P
−1) + h0λmax[P

−1(

1
∑

i=0

Gi)P
−1]

+ h2
1λmax[P

−1(
1

∑

i=0

Hi)P
−1] + (h1 − h0)λmax(P

−1UP−1).
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Guaranteed cost control for Hopfield neural networks 5
Theorem 3.1. Consider control system (2.1) and the cost function (2.3). If
there exist symmetric positive definite matrices P,U,G0, G1,H0,H1, and diag-
onal positive definite matrices Di, i = 0, 1 satisfying the following LMIs













W11 W12 W13 W14 W15

∗ W22 W23 W24 W25

∗ ∗ W33 W34 W35

∗ ∗ ∗ W44 W45

∗ ∗ ∗ ∗ W55













< 0, (6)





−PA − AT P −
∑1

i=0 e−2αhiHi 2PF PQ1

∗ −D0 0
∗ ∗ −Q−1

1



 < 0, (7)





W1D1W
T
1 − e−2αh1U 2PE PQ2

∗ −D1 0
∗ ∗ −Q−1

2



 < 0, (8)

then

u(t) = −
1

2
BT P−1x(t), t ≥ 0. (9)

is a guaranteed cost control and the guaranteed cost value is given by

J∗ = λ2‖φ‖
2.

Moreover, the solution x(t, φ) of the system satisfies

‖ x(t, φ) ‖≤

√

λ1

λ2
e−αt ‖ φ ‖, ∀t ≥ 0.

Proof. Let Y = P−1, y(t) = Y x(t). Using the feddback control (2.5) we
consider the following Lyapunov-Krasovskii functional

V (t, xt) =

6
∑

i=1

Vi(t, xt),

V1 = xT (t)Y x(t),

V2 =

∫ t

t−h0

e2α(s−t)xT (s)Y G0Y x(s) ds,

V3 =

∫ t

t−h1

e2α(s−t)xT (s)Y G1Y x(s) ds,

V4 = h0

∫ 0

−h0

∫ t

t+s

e2α(τ−t)ẋT (τ)Y H0Y ẋ(τ) dτ ds,

V5 = h1

∫ 0

−h1

∫ t

t+s

e2α(τ−t)ẋT (τ)Y H1Y ẋ(τ) dτ ds,

V6 = (h1 − h0)

∫ t−h0

t−h1

∫ t

t+s

e2α(τ−t)ẋT (τ)Y UY ẋ(τ) dτ ds.
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6 G. Rajchakit
It easy to check that

λ1 ‖ x(t) ‖2≤ V (t, xt) ≤ λ2 ‖ xt ‖
2, ∀t ≥ 0, (10)

Taking the derivative of V1 we have

V̇1 =2xT (t)Y ẋ(t)

=yT (t)[−PAT − AP ]y(t) − yT (t)BBT y(t)

+ 2yT (t)W0f(.)y(t) + 2yT (t)W1g(.)y(t)

V̇2 =yT (t)G0y(t) − e−2αh0yT (t − h0)G0y(t − h0) − 2αV2;

V̇3 =yT (t)G1y(t) − e−2αh1yT (t − h1)G1y(t − h1) − 2αV3;

V̇4 =h2
0ẏ

T (t)H0ẏ(t) − h1e
−2αh0

∫ t

t−h0

ẋT (s)H0ẋ(s) ds − 2αV4;

V̇5 =h2
1ẏ

T (t)H1ẏ(t) − h1e
−2αh1

∫ t

t−h1

ẏT (s)H1ẏ(s) ds − 2αV4;

V̇6 =(h1 − h0)
2ẏT (t)Uẏ(t) − (h1 − h0)e

−2αh1

∫ t−h0

t−h1

ẏT (s)Uẏ(s) ds − 2αV6.

Applying Proposition 2.2 and the Leibniz - Newton formula

∫ t

s

ẏ(τ)dτ = y(t) − y(s),

we have for j = 1, 2, i = 0, 1 :

−hi

∫ t

t−hi

ẏT (s)Hj ẏ(s) ds ≤ −

[
∫ t

t−hi

ẏ(s) ds

]T

Hj

[
∫ t

t−hi

ẏ(s) ds

]

≤ −[y(t) − y(t − h(t))]T Hj [y(t) − y(t − h(t))]

= −yT (t)Hiy(t) + 2xT (t)Hjy(t − h(t))

− yT (t − hi)Hjy(t − hi);

(11)

Note that
∫ t−h0

t−h1

ẏT (s)Uẏ(s) ds =

∫ t−h(t)

t−h1

ẏT (s)Uẏ(s) ds +

∫ t−h0

t−h(t)

ẏT (s)Uẏ(s) ds.

Applying Proposition 2.2 gives

[h1 − h(t)]

∫ t−h(t)

t−h1

ẏT (s)Uẏ(s)ds ≥
[

∫ t−h(t)

t−h1

ẏ(s)ds
]T

U
[

∫ t−h(t)

t−h1

ẏ(s)ds
]

≥[y(t − h(t) − y(t − h1)]
T U [y(t − h(t) − y(t − h1)]

Since h1 − h(t) ≤ h1 − h0, we have

[h1−h0]

∫ t−h(t)

t−h1

ẏT (s)Uẏ(s)ds ≥ [y(t−h(t)−y(t−h1)]
T U [y(t−h(t)−y(t−h1)],
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Guaranteed cost control for Hopfield neural networks 7
then

−[h1−h0]

∫ t−h(t)

t−h1

ẏT (s)Uẏ(s)ds ≤ −[y(t−h(t)−y(t−h1)]
T U [y(t−h(t)−y(t−h1)].

Similarly, we have

−(h1−h0)

∫ t−h0

t−h(t)

ẏT (s)Uẏ(s) ds ≤ −[y(t−h0)−y(t−h(t))]T U [y(t−h0)−y(t−h(t)].

Then, we have

V̇ (.) + 2αV (.) ≤ yT (t)[−PAT − AP ]y(t) − yT (t)BBT y(t) + 2yT (t)W0f(.)

+ 2yT (t)W1g(.) + yT (t)(
1

∑

i=0

Gi)y(t) + 2α〈Py(t), y(t)〉

+ ẏT (t)(

1
∑

i=0

h2
i Hi)ẏ(t) + (h1 − h0)ẏ

T (t)Uẏ(t)

−

1
∑

i=0

e−2αhiyT (t − hi)Giy(t − hi)

− e−2αh0 [y(t) − y(t − h0)]
T H0[y(t) − y(t − h0)]

− e−2αh1 [y(t) − y(t − h1)]
T H1[y(t) − y(t − h1)]

− e−2αh1 [y(t − h(t)) − y(t − h1)]
T U [y(t − h(t)) − y(t − h1)]

− e−2αh1 [y(t − h0) − y(t − h(t))]T U [y(t − h0) − y(t − h(t))].

(12)

Using the equation (1)

P ẏ(t) + APy(t) − W0f(.) − W1g(.) + 0.5BBT y(t) = 0,

and multiplying both sides with [2y(t),−2ẏ(t), 2y(t − h0), 2y(t − h1), y(t −
h(t))]T , we have

2yT (t)P ẏ(t) + 2yT (t)APy(t) − 2yT (t)W0f(.) − 2yT (t)W1g(.)

+ yT (t)BBT y(t) = 0,

− 2ẏT (t)P ẏ(t) − 2ẏT (t)APy(t) + 2ẏT (t)W0f(.)

+ 2ẏT (t)W1g(.) − ẏT (t)BBT y(t) = 0,

2yT (t − h0)P ẏ(t) + 2yT (t − h0)APy(t) − 2yT (t − h0)W0f(.)

− 2yT (t − h0)W1g(.) + yT (t − h0)BBT y(t) = 0,

2yT (t − h1)P ẏ(t) + 2yT (t − h1)APy(t) − 2yT (t − h1)W0f(.)

− 2yT (t − h1)W1g(.) + yT (t − h1)BBT y(t) = 0,

2yT (t − h(t))P ẏ(t) + 2yT (t − h(t))APy(t) − 2yT (t − h(t))W0f(.)

− 2yT (t − h(t))W1g(.) + yT (t − h(t))BBT y(t) = 0.

(13)
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8 G. Rajchakit
Adding all the zero items of (13) and f0(t, x(t), x(t−h(t)), u(t))−f0(t, x(t), x(t−
h(t)), u(t)) = 0, respectively into (12) and using the condition (4) for the fol-
lowing estimations

f0(t, x(t), x(t − h(t)), u(t)) ≤〈Q1x(t), x(t)〉 + 〈Q2x(t − h(t)), x(t − h(t))〉

+ 〈Ru(t), u(t)〉

=〈PQ1Py(t), y(t)〉 + 〈PQ2Py(t − h(t)), y(t − h(t))〉

+ 0.25〈BRBT y(t), y(t)〉

2〈W0f(x), y〉 ≤〈W0D0W
T
0 y, y〉 + 〈D−1

0 f(x), f(x)〉,

2〈W1g(z), y〉 ≤〈W1D1W
T
1 y, y〉 + 〈D−1

1 g(z), g(z)〉,

2〈D−1
0 f(x), f(x)〉 ≤〈FD−1

0 Fx, x〉,

2〈D−1
1 g(z), g(z)〉 ≤〈ED−1

1 Ez, z〉,

we obtain

V̇ (.) + 2αV (.) ≤ζT (t)Eζ(t) + yT (t)S1y(t) + yT (t − h(t))S2y(t − h(t))

− f0(t, x(t), x(t − h(t)), u(t))
(14)

where ζ(t) = [y(t), ẏ(t), y(t − h0), y(t − h1), y(t − h(t)), f(.), g(.)], and

E =













W11 W12 W13 W14 W15

∗ W22 W23 W24 W25

∗ ∗ W33 W34 W35

∗ ∗ ∗ W44 W45

∗ ∗ ∗ ∗ W55













S1 = −PA − AT P −

1
∑

i=0

e−2αhiHi + 4PFD−1
0 FP + PQ1P,

S2 = W1D1W
T
1 − e−2αh2U + 4PED−1

1 EP + PQ2P.

Note that by the Schur complement lemma, Proposition 2.1, the conditions
S1 < 0 and S2 < 0 are equivalent to the conditions (7) and (8), respectively.
Therefore, by condition (6), (7), (8), we obtain from (14) that

V̇ (t, xt) ≤ −2αV (t, xt), ∀t ≥ 0. (15)

Integrating both sides of (15 ) from 0 to t, we obtain

V (t, xt) ≤ V (φ)e−2αt, ∀t ≥ 0.

Furthermore, taking condition (3.5) into account, we have

λ1 ‖ x(t, φ) ‖2≤ V (xt) ≤ V (φ)e−2αt ≤ λ2e
−2αt ‖ φ ‖2,

then

‖ x(t, φ) ‖≤

√

λ2

λ1
e−αt ‖ φ ‖, t ≥ 0,
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Guaranteed cost control for Hopfield neural networks 9
which concludes the exponential stability of the closed-loop system (5). To
prove the optimal level of the cost function (3), we derive from (14) and (6) -
(8) that

V̇ (t, zt) ≤ −f0(t, x(t), x(t − h(t)), u(t)), t ≥ 0. (16)

Integrating both sides of (16) from 0 to t leads to

∫ t

0

f0(t, x(t), x(t − h(t)), u(t))dt ≤ V (0, z0) − V (t, zt) ≤ V (0, z0),

dute to V (t, zt) ≥ 0. Hence, letting t → +∞, we have

J =

∫

∞

0

f0(t, x(t), x(t − h(t)), u(t))dt ≤ V (0, z0) ≤ λ2‖φ‖
2 = J∗.

This completes the proof of the theorem.

4 Conclusions

In this paper, the problem of guaranteed cost control for Hopfield neural net-
works with interval nondifferentiable time-varying delay has been studied. A
nonlinear quadratic cost function is considered as a performance measure for
the closed-loop system. The stabilizing controllers to be designed must satisfy
some exponential stability constraints on the closed-loop poles. By constructing
a set of time-varying Lyapunov-Krasovskii functional combined with Newton-
Leibniz formula, a memoryless state feedback guaranteed cost controller design
has been presented and sufficient conditions for the existence of the guaranteed
cost state-feedback for the system have been derived in terms of LMIs.

Acknowledgements. This work was supported by the National Foundation
for Science and Technology Development, Vietnam and the Thailand Research
Fund Grant.
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control of stochastic neural networks with

interval nondifferentiable time-varying delays
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Abstract. This paper studies the problem of guaranteed cost control for a class of
stochastic delayed neural networks. The time delay is a continuous function belonging
to a given interval, but not necessary to be differentiable. A cost function is considered
as a nonlinear performance measure for the closed-loop system. The stabilizing con-
trollers to be designed must satisfy some mean square exponential stability constraints
on the closed-loop poles. By constructing a set of argumented Lyapunov-Krasovskii
functionals combined with Newton-Leibniz formula, a guaranteed cost controller is
designed via memoryless state feedback control and new sufficient conditions for the
existence of the guaranteed cost state-feedback for the system are given in terms
of linear matrix inequalities (LMIs). A numerical example is given to illustrate the
effectiveness of the obtained result.

Keywords: stochastic neural networks, guaranteed cost control, mean square stabi-
lization, interval time-varing delays, Lyapunov function, linear matrix inequalities

1 Introduction

Stability and control of neural networks with time delay has been attracted
considarable attention in recent years [1-8]. In many practical systems, it is
desirable to design neural networks which are not only asymptotically or ex-
ponentially stable but can also guarantee an adequate level of system perfor-
mance. In the area of control, signal processing, pattern recognition and image
processing, delayed neural networks have many useful applications. Some of
these applications require that the equilibrium points of the designed network
be stable. In both biological and artificial neural systems, time delays due to
integration and communication are ubiquitous and often become a source of
instability. The time delays in electronic neural networks are usually time-
varying, and sometimes vary violently with respect to time due to the finite
switching speed of amplifiers and faults in the electrical circuitry. Guaranteed
cost control problem [9-12] has the advantage of providing an upper bound on
a given system performance index and thus the system performance degrada-
tion incurred by the uncertainties or time delays is guaranteed to be less than
this bound. The Lyapunov-Krasovskii functional technique has been among
the popular and effective tool in the design of guaranteed cost controls for neu-
ral networks with time delay. Nevertheless, despite such diversity of results
available, most existing work either assumed that the time delays are constant
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2 M. Rajchakit
or differentiable [13-16]. Although, in some cases, delay-dependent guaranteed
cost control for systems with time-varying delays were considered in [12, 13,
15], the approach used there can not be applied to systems with interval, non-
differentiable time-varying delays. To the best of our knowledge, the guaran-
teed cost control and state feedback stabilization for stochastic neural networks
with interval, non-differentiable time-varying delays have not been fully studied
yet (see, e.g., [4–16] and the references therein), which are important in both
theories and applications. This motivates our research.

In this paper, we investigate the guaranteed cost control for stochastic de-
layed neural networks problem. The novel features here are that the delayed
neural network under consideration is with various globally Lipschitz continu-
ous activation functions, and the time-varying delay function is interval, non-
differentiable. A nonlinear cost function is considered as a performance mea-
sure for the closed-loop system. The stabilizing controllers to be designed must
satisfy some mean square exponential stability constraints on the closed-loop
poles. Based on constructing a set of augmented Lyapunov-Krasovskii function-
als combined with Newton-Leibniz formula, new delay-dependent criteria for
guaraneed cost control via memoryless feedback control is established in terms
of LMIs, which allow simultaneous computation of two bounds that character-
ize the mean square exponential stability rate of the solution and can be easily
determined by utilizing MATLABs LMI Control Toolbox.

The outline of the paper is as follows. Section 2 presents definitions and
some well-known technical propositions needed for the proof of the main re-
sult. LMI delay-dependent criteria for guaraneed cost control and a numerical
example showing the effectiveness of the result are presented in Section 3. The
paper ends with conclusions and cited references.

2 Preliminaries

The following notation will be used in this paper. R
+ denotes the set of

all real non-negative numbers; R
n denotes the n−dimensional space with the

scalar product 〈x, y〉 or xT y of two vectors x, y, and the vector norm ‖ . ‖;
Mn×r denotes the space of all matrices of (n× r)−dimensions. AT denotes the
transpose of matrix A; A is symmetric if A = AT ; I denotes the identity matrix;
λ(A) denotes the set of all eigenvalues of A; λmax(A) = max{Reλ;λ ∈ λ(A)}.
xt := {x(t + s) : s ∈ [−h, 0]}, ‖ xt ‖= sups∈[−h,0] ‖ x(t + s) ‖; C1([0, t], Rn)
denotes the set of all R

n−valued continuously differentiable functions on [0, t];
L2([0, t], R

m) denotes the set of all the R
m−valued square integrable functions

on [0, t];

Matrix A is called semi-positive definite (A ≥ 0) if 〈Ax, x〉 ≥ 0, for all
x ∈ R

n;A is positive definite (A > 0) if 〈Ax, x〉 > 0 for all x 6= 0;A > B means
A − B > 0. The notation diag{. . .} stands for a block-diagonal matrix. The
symmetric term in a matrix is denoted by ∗.
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Guaranteed cost control of stochastic neural networks 3
Consider the following stochastic neural networks with interval time-varying

delay:

ẋ(t) = −Ax(t) + W0f(x(t)) + W1g(x(t − h(t))) + Bu(t) + σ(x(t), x(t − h(t)), t)ω(t), t ≥ 0,

x(t) = φ(t), t ∈ [−h1, 0],

(1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ R
n is the state of the neural, u(.) ∈

L2([0, t], R
m) is the control; n is the number of neurals, and

f(x(t)) = [f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]T ,

g(x(t)) = [g1(x1(t)), g2(x2(t)), . . . , gn(xn(t))]T ,

are the activation functions; A = diag(a1, a2, . . . , an), ai > 0 represents the
self-feedback term; B ∈ Rn×m is control input matrix; W0,W1 denote the
connection weights, the discretely delayed connection weights and the distribu-
tively delayed connection weight.

ω(t) is a scalar Wiener process (Brownian Motion) on (Ω,F ,P) with

E {ω(t)} = 0, E
{

ω2(t)
}

= 1, E {ω(i)ω(j)} = 0(i 6= j), (2)

and σ: Rn×Rn×R → Rn is the continuous function, and is assumed to satisfy
that

σT (x(t), x(t − h(t)), t)σ(x(t), x(t − h(t)), t) ≤ ρ1x
T (t)x(t) + ρ2x

T (t − h(t))x(t − h(t)),

x(t), x(t − h(t)) ∈ Rn,

(3)

where ρ1 > 0 and ρ2 > 0 are khown constant scalars. For simplicity, we denote
σ(x(t), x(t − h(t)), t) by σ, respectively.

The time-varying delay function h(t) satisfies the condition

0 ≤ h0 ≤ h(t) ≤ h1.

The initial functions φ(t) ∈ C1([−h1, 0], Rn), with the norm

‖φ‖ = supt∈[−h1,0]

√

‖φ(t)‖2 + ‖φ̇(t)‖2.

In this paper, we consider various activation functions and assume that the
activation functions f(.), g(.) are Lipschitzian with the Lipschitz constants
fi, ei > 0 :

|fi(ξ1) − fi(ξ2)| ≤ fi|ξ1 − ξ2|, i = 1, 2, . . . , n,∀ξ1, ξ2 ∈ R,

|gi(ξ1) − gi(ξ2)| ≤ ei|ξ1 − ξ2|, i = 1, 2, . . . , n,∀ξ1, ξ2 ∈ R.
(4)

The performance index associate with the system (1) is the following function

J =

∫ ∞

0

f0(t, x(t), x(t − h(t)), u(t))dt, (5)
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4 M. Rajchakit
where f0(t, x(t), x(t − h(t)), u(t)) : R+ × Rn × Rn × Rm → R+, is a nonlinear
cost function satisfies

∃Q1, Q2, R : f0(t, x, y, u) ≤ 〈Q1x, x〉 + 〈Q2y, y〉 + 〈Ru, u〉, (6)

for all (t, x, u) ∈ R+ × Rn × Rm and Q1, Q2 ∈ Rn×n, R ∈ Rm×m, are given
symmetric positive definite matrices. The objective of this paper is to design a
memoryless state feedback controller u(t) = Kx(t) for system (1) and the cost
function (5) such that the resulting closed-loop system

ẋ(t) = −(A−BK)x(t)+W0f(x(t))+W1g(x(t−h(t)))+σ(x(t), x(t−h(t)), t)ω(t),
(7)

is mean square exponentially stable and the closed-loop value of the cost func-
tion (5) is minimized.

Definition 2.1 Given α > 0. The zero solution of closed-loop system (7) is
α−exponentially stabilizable in the mean square if there exist a positive number
N > 0 such that every solution x(t, φ) satisfies the following condition:

E {‖ x(t, φ) ‖} ≤ E
{

Ne−αt ‖ φ ‖
}

, ∀t ≥ 0.

Definition 2.2 Consider the control system (1). If there exist a memoryless
state feedback control law u∗(t) = Kx(t) and a positive number J∗ such that
the zero solution of the closed-loop system (7) is mean square exponentially
stable and the cost function (5) satisfies J ≤ J∗, then the value J∗ is a guar-
anteed costant and u∗(t) is a guaranteed cost control law of the system and its
corresponding cost function.

We introduce the following technical well-known propositions, which will be
used in the proof of our results.

Proposition 2.1. (Integral matrix inequality [17]). For any symmetric positive
definite matrix M > 0, scalar γ > 0 and vector function ω : [0, γ] → R

n such
that the integrations concerned are well defined, the following inequality holds

(
∫ γ

0

ω(s) ds

)T

M

(
∫ γ

0

ω(s) ds

)

≤ γ

(
∫ γ

0

ωT (s)Mω(s) ds

)
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Guaranteed cost control of stochastic neural networks 5
3 Design of guaranteed cost controller

In this section, we give a design of memoryless guaranteed feedback cost control
for stochastic neural networks (1). Let us set

W11 = −AP − PAT − 2αP − BBT + 0.25BRBT +

1
∑

i=0

Gi −

1
∑

i=0

e−2αhiHi

+ 4PFD−1
0 FP + PQ1P + 2ρ1PP,

W12 = P + AP + 0.5BBT ,

W13 = e−2αh0H0 + 0.5BBT + AP,

W14 = 2e−2αh1H1 + 0.5BBT + AP,

W15 = P0.5BBT + AP,

W22 =

1
∑

i=0

WiDiW
T
i +

1
∑

i=0

h2
i Hi + (h1 − h0)U − 2P − BBT ,

W23 = P, W24 = P, W25 = P,

W33 = −e−2αh0G0 − e−2αh0H0 − e−2αh1U +

1
∑

i=0

WiDiW
T
i ,

W34 = 0, W35 = e−2αh1U,

W44 =
1

∑

i=0

WiDiW
T
i − e−2αh1U − e−2αh1G1 − e−2αh1H1, W45 = e−2αh1U,

W55 = −e−2αh1U +

1
∑

i=0

WiDiW
T
i − e−2αh2U + 4PED−1

1 EP + PQ2P + 2ρ2PP,

E = diag{ei, i = 1, . . . , n}, F = diag{fi, i = 1, . . . , n},

λ1 = λmin(P−1),

λ2 = λmax(P
−1) + h0λmax[P

−1(

1
∑

i=0

Gi)P
−1]

+ h2
1λmax[P

−1(

1
∑

i=0

Hi)P
−1] + (h1 − h0)λmax(P

−1UP−1).

Theorem 3.1. Consider control system (1) and the cost function (5). If there
exist symmetric positive definite matrices P,U,G0, G1,H0,H1, and diagonal
positive definite matrices Di, i = 0, 1 satisfying the following LMIs













W11 W12 W13 W14 W15

∗ W22 W23 W24 W25

∗ ∗ W33 W34 W35

∗ ∗ ∗ W44 W45

∗ ∗ ∗ ∗ W55













< 0, (8)
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then

u(t) = −
1

2
BT P−1x(t), t ≥ 0. (9)

is a guaranteed cost control and the guaranteed cost value is given by

J∗ = E
{

λ2‖φ‖
2
}

.

Moreover, the solution x(t, φ) of the system satisfies

E {‖ x(t, φ) ‖} ≤ E

{

√

λ2

λ1
e−αt ‖ φ ‖

}

, ∀t ≥ 0.

Proof. Let Y = P−1, y(t) = Y x(t). Using the feddback control (7) we consider
the following Lyapunov-Krasovskii functional and taking the mathematical ex-
pectation

E {V (t, xt)} = E

{

6
∑

i=1

Vi(t, xt)

}

,

E {V1} = E
{

xT (t)Y x(t)
}

,

E {V2} = E

{
∫ t

t−h0

e2α(s−t)xT (s)Y G0Y x(s) ds

}

,

E {V3} = E

{
∫ t

t−h1

e2α(s−t)xT (s)Y G1Y x(s) ds

}

,

E {V4} = E

{

h0

∫ 0

−h0

∫ t

t+s

e2α(τ−t)ẋT (τ)Y H0Y ẋ(τ) dτ ds

}

,

E {V5} = E

{

h1

∫ 0

−h1

∫ t

t+s

e2α(τ−t)ẋT (τ)Y H1Y ẋ(τ) dτ ds

}

,

E {V6} = E

{

(h1 − h0)

∫ t−h0

t−h1

∫ t

t+s

e2α(τ−t)ẋT (τ)Y UY ẋ(τ) dτ ds

}

.

It easy to check that

E
{

λ1 ‖ x(t) ‖2
}

≤ E {V (t, xt)} ≤ E
{

λ2 ‖ xt ‖
2
}

, ∀t ≥ 0, (10)
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Guaranteed cost control of stochastic neural networks 7
Taking the derivative of Vi, i = 1, 2, . . . , 6 and taking the mathematical expec-
tation, we have

E
{

V̇1

}

=E
{

2xT (t)Y ẋ(t)
}

=E
{

yT (t)[−PAT − AP ]y(t) − yT (t)BBT y(t)
}

+ E
{

2yT (t)W0f(.) + 2yT (t)W1g(.) + 2yT (t)σω(t)
}

;

E
{

V̇2

}

=E
{

E
{

yT (t)G0y(t) − e−2αh0yT (t − h0)G0y(t − h0) − 2αV2

}

;

E
{

V̇3

}

=E
{

yT (t)G1y(t) − e−2αh1yT (t − h1)G1y(t − h1) − 2αV3

}

;

E
{

V̇4

}

=E

{

h2
0ẏ

T (t)H0ẏ(t) − h1e
−2αh0

∫ t

t−h0

ẋT (s)H0ẋ(s) ds − 2αV4

}

;

E
{

V̇5

}

=E

{

h2
1ẏ

T (t)H1ẏ(t) − h1e
−2αh1

∫ t

t−h1

ẏT (s)H1ẏ(s) ds − 2αV4

}

;

E
{

V̇6

}

=E

{

(h1 − h0)
2ẏT (t)Uẏ(t) − (h1 − h0)e

−2αh1

∫ t−h0

t−h1

ẏT (s)Uẏ(s) ds − 2αV6

}

.

Applying Proposition 2.1 and the Leibniz - Newton formula
∫ t

s

ẏ(τ)dτ = y(t) − y(s),

we have for i, j = 0, 1, :

−E

{

hi

∫ t

t−hi

ẏT (s)Hj ẏ(s) ds

}

≤ −E

{

[
∫ t

t−hi

ẏ(s) ds

]T

Hj

[
∫ t

t−hi

ẏ(s) ds

]

}

≤ −E
{

[y(t) − y(t − h(t))]T Hj [y(t) − y(t − h(t))]
}

= −E
{

yT (t)Hjy(t) + 2xT (t)Hjy(t − h(t))
}

− E
{

yT (t − hi)Hjy(t − hi)
}

.

(11)

Note that

E

{

∫ t−h0

t−h1

ẏT (s)Uẏ(s) ds

}

= E

{

∫ t−h(t)

t−h1

ẏT (s)Uẏ(s) ds

}

+E

{

∫ t−h0

t−h(t)

ẏT (s)Uẏ(s) ds

}

.

Applying Proposition 2.1 gives

E

{

[h1 − h(t)]

∫ t−h(t)

t−h1

ẏT (s)Uẏ(s)ds

}

≥ E

{

[

∫ t−h(t)

t−h1

ẏ(s)ds
]T

U
[

∫ t−h(t)

t−h1

ẏ(s)ds
]

}

≥ E
{

[y(t − h(t) − y(t − h1)]
T U [y(t − h(t) − y(t − h1)]

}

.

Since h1 − h(t) ≤ h1 − h0, we have

E

{

[h1 − h0]

∫ t−h(t)

t−h1

ẏT (s)Uẏ(s)ds

}

≥ E
{

[y(t − h(t) − y(t − h1)]
T U [y(t − h(t) − y(t − h1)]

}

,
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8 M. Rajchakit
then

−E

{

[h1 − h0]

∫ t−h(t)

t−h1

ẏT (s)Uẏ(s)ds

}

≤ −E
{

[y(t − h(t) − y(t − h1)]
T U [y(t − h(t) − y(t − h1)]

}

.

Similarly, we have

−E

{

(h1 − h0)

∫ t−h0

t−h(t)

ẏT (s)Uẏ(s) ds

}

≤ −E
{

[y(t − h0) − y(t − h(t))]T U [y(t − h0) − y(t − h(t)]
}

.

Then, we have

E
{

V̇ (.) + 2αV (.)
}

≤ E
{

yT (t)[−PAT − AP ]y(t) − yT (t)BBT y(t) + 2yT (t)W0f(.)
}

+ E

{

2yT (t)W1g(.) + 2yT (t)σω(t) + yT (t)(

1
∑

i=0

Gi)y(t) + 2α〈Py(t), y(t)〉

}

+ E

{

ẏT (t)(
1

∑

i=0

h2
i Hi)ẏ(t) + (h1 − h0)ẏ

T (t)Uẏ(t)

}

− E

{

1
∑

i=0

e−2αhiyT (t − hi)Giy(t − hi)

}

− E
{

e−2αh0 [y(t) − y(t − h0)]
T H0[y(t) − y(t − h0)]

}

− E
{

e−2αh1 [y(t) − y(t − h1)]
T H1[y(t) − y(t − h1)]

}

− E
{

e−2αh1 [y(t − h(t)) − y(t − h1)]
T U [y(t − h(t)) − y(t − h1)]

}

− E
{

e−2αh1 [y(t − h0) − y(t − h(t))]T U [y(t − h0) − y(t − h(t))]
}

.

(12)

Using the equation (7)

P ẏ(t) + APy(t) − W0f(.) − W1g(.) + 0.5BBT y(t) − σω(t) = 0,

and multiplying both sides with [2y(t),−2ẏ(t), 2y(t − h0), 2y(t − h1), 2y(t −
h(t)), 2σω(t)]T , and taking the mathematical expectation, we have

E
{

2yT (t)P ẏ(t) + 2yT (t)APy(t) − 2yT (t)W0f(.) − 2yT (t)W1g(.)
}

+ E
{

yT (t)BBT y(t) − 2yT (t)σω(t)
}

= 0,

− E
{

2ẏT (t)P ẏ(t) − 2ẏT (t)APy(t) + 2ẏT (t)W0f(.)
}

+ E
{

2ẏT (t)W1g(.) − ẏT (t)BBT y(t) + 2ẏT (t)σω(t)
}

= 0,

E
{

2yT (t − h0)P ẏ(t) + 2yT (t − h0)APy(t) − 2yT (t − h0)W0f(.)
}

− E
{

2yT (t − h0)W1g(.) + yT (t − h0)BBT y(t) − 2yT (t − h0)σω(t)
}

= 0,

E
{

2yT (t − h1)P ẏ(t) + 2yT (t − h1)APy(t) − 2yT (t − h1)W0f(.)
}

− E
{

2yT (t − h1)W1g(.) + yT (t − h1)BBT y(t) − 2yT (t − h1)σω(t)
}

= 0,
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Guaranteed cost control of stochastic neural networks 9
E

{

2yT (t − h(t))P ẏ(t) + 2yT (t − h(t))APy(t) − 2yT (t − h(t))W0f(.)
}

− E
{

2yT (t − h(t))W1g(.) + yT (t − h(t))BBT y(t) − 2yT (t − h(t))σω(t)
}

= 0,

E
{

2ωT (t)σT P ẏ(t) + 2ωT (t)σT APy(t) − 2ωT (t)σT W0f(.)
}

− E
{

2ωT (t)σT W1g(.) + ωT (t)σT BBT y(t) − 2ωT (t)σT σω(t)
}

= 0.

(13)

Adding all the zero items of (13) and f0(t, x(t), x(t−h(t)), u(t))−f0(t, x(t), x(t−
h(t)), u(t)) = 0, respectively into (12), applying asumption (2), (3), using the
condition (6) for the following estimations and taking the mathematical expec-
tation

E
{

f0(t, x(t), x(t − h(t)), u(t))
}

≤E {〈Q1x(t), x(t)〉 + 〈Q2x(t − h(t)), x(t − h(t))〉}

+ E {〈Ru(t), u(t)〉}

=E {〈PQ1Py(t), y(t)〉 + 〈PQ2Py(t − h(t)), y(t − h(t))〉}

+ E
{

0.25〈BRBT y(t), y(t)〉
}

,

E {2〈W0f(x), y〉} ≤E
{

〈W0D0W
T
0 y, y〉 + 〈D−1

0 f(x), f(x)〉
}

,

E {2〈W1g(z), y〉} ≤E
{

〈W1D1W
T
1 y, y〉 + 〈D−1

1 g(z), g(z)〉
}

,

E
{

2〈D−1
0 f(x), f(x)〉

}

≤E
{

〈FD−1
0 Fx, x〉

}

,

E
{

2〈D−1
1 g(z), g(z)〉

}

≤E
{

〈ED−1
1 Ez, z〉

}

,

we obtain

E
{

V̇ (.) + 2αV (.)
}

≤E
{

ζT (t)Eζ(t) − f0(t, x(t), x(t − h(t)), u(t))
}

, (14)

where ζ(t) = [y(t), ẏ(t), y(t − h0), y(t − h1), y(t − h(t))], and

E =













W11 W12 W13 W14 W15

∗ W22 W23 W24 W25

∗ ∗ W33 W34 W35

∗ ∗ ∗ W44 W45

∗ ∗ ∗ ∗ W55













.

Therefore, by condition (8), we obtain from (14) that

E
{

V̇ (t, xt)
}

≤ −E {2αV (t, xt)} , ∀t ≥ 0. (15)

Integrating both sides of (15) from 0 to t, we obtain

E {V (t, xt)} ≤ E
{

V (φ)e−2αt
}

, ∀t ≥ 0.

Furthermore, taking condition (10) into account, we have

E
{

λ1 ‖ x(t, φ) ‖2
}

≤ E {V (xt)} ≤ E
{

V (φ)e−2αt
}

≤ E
{

λ2e
−2αt ‖ φ ‖2

}

,

then

E {‖ x(t, φ) ‖} ≤ E

{

√

λ2

λ1
e−αt ‖ φ ‖

}

, t ≥ 0,
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10 M. Rajchakit
which concludes the mean square exponential stability of the closed-loop system
(2.7). To prove the optimal level of the cost function (5), we derive from (14)
and (8) that

E
{

V̇ (t, zt)
}

≤ −E
{

f0(t, x(t), x(t − h(t)), u(t))
}

, t ≥ 0. (16)

Integrating both sides of (18) from 0 to t leads to

E

{
∫ t

0

f0(t, x(t), x(t − h(t)), u(t))dt

}

≤ E {V (0, z0) − V (t, zt)} ≤ E {V (0, z0)} ,

dute to E {V (t, zt)} ≥ 0. Hence, letting t → +∞, we have

J = E

{
∫ ∞

0

f0(t, x(t), x(t − h(t)), u(t))dt

}

≤ E {V (0, z0)} ≤ E
{

λ2‖φ‖
2
}

= J∗.

This completes the proof of the theorem.

Example 3.1. Consider the stochastic neural networks with interval time-
varying delays (2.1), where

A =

[

0.2 0
0 0.2

]

,W0 =

[

−0.3 0.1
0.1 −0.3

]

,W1 =

[

−0.4 0.3
0.3 −0.9

]

, B =

[

0.5
0.4

]

,

E =

[

0.7 0
0 0.9

]

, F =

[

0.7 0
0 0.8

]

, Q1 =

[

0.7 0.2
0.2 0.6

]

, Q2 =

[

0.2 0.3
0.3 0.3

]

, R =

[

0.9 0.5
0.5 0.8

]

,

{

h(t) = 0.1 + 2.0297 sin2 t if t ∈ I = ∪k≥0[2kπ, (2k + 1)π]

h(t) = 0 if t ∈ R+ \ I,

Note that h(t) is non-differentiable, therefore, the stability criteria proposed in
[5, 6, 7, 12, 15] are not applicable to this system. Given α = 1.1, ρ1 = 0.5, ρ1 =
0.8, h0 = 0.1, h1 = 2.1297, by using the Matlab LMI toolbox, we can solve for
P,U,G0, G1,H0,H1,D0, and D1 which satisfy the condition (3.1) in Theorem
3.1. A set of solutions are

P =

[

3.1297 0.4831
0.4831 1.1970

]

, U =

[

2.0912 0.1291
0.1291 3.0017

]

,

G0 =

[

0.1473 0.0113
0.0113 0.8931

]

, G1 =

[

0.6179 0.1197
0.1197 1.0273

]

,

H0 =

[

1.0387 0.3970
0.3970 2.2207

]

, H1 =

[

0.9712 0.0012
0.0012 0.7219

]

,

D0 =

[

0.2189 0
0 0.2189

]

, D1 =

[

0.1249 0
0 0.1249

]

.

Then
u(t) = −1.7196x1(t) − 1.2551x2(t), t ≥ 0
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Guaranteed cost control of stochastic neural networks 11

is a guaranteed cost control law and the cost given by

J∗ = E
{

11.3271 ‖φ‖
2
}

.

Moreover, the solution x(t, φ) of the system satisfies

E {‖x(t, φ)‖} ≤ E
{

0.7315e−1.1t ‖φ‖
}

,∀t ≥ 0.

4 Conclusions

In this paper, the problem of guaranteed cost control for stochastic neural
networks with interval nondifferentiable time-varying delay has been studied.
A nonlinear quadratic cost function is considered as a performance measure for
the closed-loop system. The stabilizing controllers to be designed must satisfy
some mean square exponential stability constraints on the closed-loop poles. By
constructing a set of time-varying Lyapunov-Krasovskii functional combined
with Newton-Leibniz formula, a memoryless state feedback guaranteed cost
controller design has been presented and sufficient conditions for the existence
of the guaranteed cost state-feedback for the system have been derived in terms
of LMIs.
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Abstract: In this paper we consider interval estimation for the Poisson means. The 

following confidence intervals are considered: Wald CI, Score CI, Score continuity 

correction CI, Agresti and Coull CI, Bayes Wald CI, Bayes Score CI, and Bayes Score 

continuity correction CI. Each interval is examined for its coverage probability and its 

expected lengths. Based on this simulation; we recommend Score CI and the Wald CI for 

the small n and the larger n respectively. 

Keywords: Bayes Estimators; Poisson distribution; Interval Estimation. 

 

1. Introduction 

 
Estimation is one of the main branches of statistics. They refer to the process 

by which one makes inference about a population, based on information 

obtained from a sample. Statisticians use sample statistics to estimate 

population parameter. For example; sample means are used to estimate 

population mean; sample proportions, and to estimate proportions. An estimate 

of population parameters may be expressed in two ways; point and interval 

estimate. A point estimate of a population parameter is a single value of a 

statistic, for example, the sample mean x is a point estimate of the population 

meanµ . Similarly, the sample proportion p is a point estimate of the population 

proportion P. An interval estimate is defined by two numbers, between which a 

population parameter is to lie, for example, a x b< < is an interval estimate of 

the population meanµ . It indicates that the population mean is greater than a 

bit less than b. Statisticians use a confidence interval to express the precision 

and uncertainty associated with a particular sampling method, for example, we 

might say that we are 95% confidence that the true population mean falls 

within a specified range. This statement is a confidence interval. It mean that if 

we used the same sampling method to select different samples and compute 

different interval estimates, the true population mean would fall within a range 

defined by the sample statistic ± margin of error 95% of the time. 

In this paper, we are compare seven method confidence interval (CIs) for the 

Poisson means, Poisson distribution is a discrete probability distribution. A 

Poisson random variable (X) representing the number of successes occurring in 

a given time interval or a specified region of space. 

The probability distribution is 

( )
xe

P X
x!

−λλ
= . 
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Where x=0, 1, 2,…, e=2.71828 (but use your calculator’s e button), and 

λ =mean number of successes in the given time interval or region of space. 

 

Confidence interval (CI) of Poisson means that popular is 

 

2

ˆ ˆz n ,αλ ± λ  

 and 2zα  is the ( )100 1 2−α  percentile of the standard normal distribution. 

This formula, we call Wald method, it is easy to present and compute but it has 

poor coverage properties for small n. Brown, Cai and das Gupta [2] showed 

that Wald CI is actually far too poor and unreliable and the problem are not just 

for small n. Cai [1] showed that Wald CI suffers from a series systematic bias 

in the coverage.  Therefore, the other researcher are present any method for 

solve this problem; see Manlika [3], Ross [4], Stamey [5] and Wardell [7]. We 

have known that common method used maximum likelihood estimator. So, we 

require to developed the CIs by Bayes estimator with Wald CI, Score CI and 

Score continuity correction CI which the prior distribution of λ  is assumed to 

be gamma distribution with α  and β  parameters. Wararit [6] showed that the 

optimal values of α  and β  are their value provide αβ  closed to the λ  

parameter. The α  value is always higher than the β  value, the α  lies between 

4.0 and 5.0. 

2. The confidence interval 

1. Create random variable that has Poisson  

      distribution. 

2. Compute interval estimation for a Poisson  

      distribution seven methods: 

 

 2.1 Wald CI 

 

ˆ
ˆ Z

n

λ
λ ± .                              (a) 

 

2.2 Score CI  

 

( )2 1 2
2

1 2

ˆn z 2 zˆzn
n 4n

−
λ +  

± λ + 
 

.                  (b) 
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               2.3 Score continuity correction CI 

 

 
( )2 2ˆ ˆ2n Z 1 Z Z 4n 2

2n

λ + − + λm m
.             (c) 

 

 2.4 Agresti and Coull CI 

  

2 2
1 2X z 2 X z 2

z n
n n

− + +
±   

 
.          (d) 

 

 2.5 Bayes Wald CI  

       

 Z
n

λ
λ ±

%
% .                              (e) 

 

 2.6 Bayes Score CI 

 

   
( ) 1 22

2
1 2

n z 2 z
zn

n 4n

−
λ +  

± λ + 
 

%%
%%

% %
.              

(f) 

 

 2.7 Bayes Score continuity correction CI  

 

 
( )2 2
2n Z 1 Z Z 4n 2

2n

λ + − + λ% %% %m m

%
.            (g) 

 

Note that for (a)-(c) ˆ xλ = ; λ̂  is well known to be the MLE of λ  and z  is the 

( )100 1 2−α  percentile of the standard normal distribution   

For (e)-(g) 
( )X

n 1

α + β
λ =

β+
%  and n n 1= β+% . 

λ% is Bayes’ estimator of Poisson mean, and 

X is number of successes occurring in a given time interval   

or a specified region of space. 

 

3. Simulation results  
The performance of the estimated coverage probabilities of the confidence 

interval (a)-(f) and their expected lengths were examined via Monte Carlo 

simulation. Data were generate from Poisson distribution with 1,2,3,4,5λ = and 

sample size n=10 to 100. All simulations were performed using programs 
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written in the R Statistical software, repeated 1,000 times in each case at level of 

significance 0.01,0.05,α = and 0.10. The simulation results are shown in Figure 

1-2 and Table 1. 

Figure 1 show that the coverage probability of the Wald CI, Score CI, Agresti 

and Coull CI, and Score continuity correction CI for fixed  3λ =  and variable n 

from 10 to 100. Naively, are may expect that the coverage probability gets 

systematically near the nominal level as the sample size n increases. 

 
              Wald CI     Score CI 

  
        Agresti and Coull CI   Score continuity correction CI 

 

Figure1 Coverage probability of four intervals for a Poisson mean with 

0.05α = and n 10= to 100. 

 

 

 

Figure2. Show that the coverage probability of the alternative intervals with 

Bayes estimator gives the coverage probability upper nominal level. 
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                Bayes Wald CI                       Bayes Score CI 

                                
 

                       Bayes Score continuity correction CI 

 

Figure2 Coverage probability of three intervals for a Poisson mean with 

0.05α = and n 10= to 100. 

In addition, the expected lengths of the score CI and the Wald CI are much 

shorter than the other CIs when n are small and larger respectively. The 

expected length increase as the value λ gets larger (e.g. For Score CI, n=10 

and 0.05α = ; 0.23284 for 1λ = ; 0.327333 for 3λ = ; and 0.482786 for 5λ = ). 

Moreover, when the sample size increase, the expected length is shorter (e.g. 

For Score CI, 1λ =  and; 0.23284 for n=10; 0.102252 for n=50; and 0.072279 

for n=100). 

 

4. Conclusions 
 

Our main objective is to compare the CIs under different situation; we compare 

the performance of all the CIs described above under various situations and 

three different confidence levels 0.05,0.01,0.10α = . We found that, Wald CI is 

below the nominal level, but it has smallest expected length for n are small 

(n<30), Score CI , Score corrected continuity CI , Agresti and Coull CI are 

above the nominal level and they have expected length slightly higher Wald CI. 

Three alternatives with Bayes estimator have a higher CI and they are similar 

with each other and do a good job, so, we recommend Score CI and the Wald CI 

for the small n and the larger n respectively. 
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Abstract: This article describes an approach to the generation of key sequence based on 

matrix recurrence relation defined over Z8. The generated sequence is subjected to FIPS 

140-1 test suite and Hamming Autocorrelation test .The generated sequence passes the 

FIPS 140-1 test suite and also exhibits good Hamming autocorrelation properties. The 

results of these tests are analyzed. 

 

Keywords: Random number, pseuodo random number, Recurrence relation over Z8, 

Auto correlation  

 

1. Introduction 

 

Good Cryptography requires good random numbers. Security of 

these protocols relies on the unpredictability of the key they use. 

Almost all cryptographic protocols require the generation and use 

of secret value that must be unknown to attacker. Random number 

generators used to generate key sequence must satisfy stringent 

requirements like unpredictability, uniform distribution, long 

period, and good statistical properties. Pierrie L’Ecuyer[1,2,3,4 

]discusses the most widely used random number generators based 

on linear recurrence models such as Multiple recurrence 

generators, Multiple recurrence generators with carry ,the Linear 

feedback shift registers etc.., The authors proposed the [ 5,6,7] 

random number generator based on the matrix recurrence relation 

defined over Z8 . In this paper the generation of sequence of 

random number defined over z8 based on matrix recurrence 

relation, the FIPS 140-1 tests performed on the proposed generator 

and the Hamming auto correlation properties of the sequence so 

generated are also discussed.  
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2. Organization of the paper 

 

The rest of this article is organized as follow. In Section II, we 

present a proposed a random number generator defined over Z8 

using matrix recurrence relation. In Section III, we discuss briefly 

the FIPS 140-1 tests and Normalized Hamming autocorrelation 

test, which are used to test the proposed random number generator.  

 

 

 

 

 

3. The Proposed   Random Number Generator defined over Z8 

Based on matrix recurrence relation [5, 6] 

 

The following matrix recurrence relation defines the proposed   

random number generator over Z8 [5, 6, and 7] 

 

X j =
1

1

0







 ij

k

i

i XC

,      j ≥ k+1  arithmetic modulo 8           (1)     

 

Where X is an n-tuple (nx1) over Z8 and coefficients  

Ci , i = 0 to k-1and can be  

a) n x n non-singular matrix over Z8  or 

b) Any n x n arbitrary matrix over Z8  

 

 

When m is prime X is a vector otherwise it is an element of 

module over Z8. 

Output is concatenated sequence { xi 
T
 }where  xi 

T
 is transpose of 

xi, i =0,1,2,…… 

 

4. Testing of Random Numbers 

 

The evaluations of the quality of the random number generators 

are very difficulty problem, which has no unique solution. On the 

other hand there is no single practical tests that can realize the 

randomness in a given sequence of random numbers. Since all the 
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pseudorandom sequence generators are based on deterministic 

rules, there exist always tests in which a given generator will fail. 

A large number of statistical tests have been proposed, such as 

DIEHARD specification FIPS 140-1 and Knuth’s test, 

Autocorrelation test, Crypt -XS. In this paper we compute the 

FIPS 140-1 test statistics for a binary sequence generated by the 

equation (1) and also the autocorrelation test is performed on the 

sequence generated by the equation (1). 

The Frequency test, serial test (two-bit test), Poker test, runs test, 

autocorrelation test are the five statistical tests that are commonly 

used for determining whether the binary sequence s possesses 

some specific characteristics that a truly random sequence would 

be likely to exhibit [5]. These tests are discussed in detail in papers 

[Knuth] [Menezes] [5, 6, 11, and 12] 

 

4.1. FIPS 140-1 Statistical Tests for Randomness 

 

The second and following pages should begin 1.0 inch (2.54 cm) 

from the top edge. On all pages, the bottom margin should be 1-

1/8 inches (2.86 cm) from the bottom edge of the page for 8.5 x 

11-inch paper; for A4 paper, approximately 1-5/8 inches (4.13 cm) 

from the bottom edge of the page. 

Federal Information Processing Standard FIPS- 140-1 specifies 

monobit test. Poker test runs test and long run test for computing 

the statistics for randomness also provide the explicit bounds that 

the computed value of a statistic must satisfy. A single bit string s 

of length 20000 bits, output from a generator, is subjected to each 

of the above tests. If any of the tests fail, then the generator fails 

the test.[ 5,6,7,8, 12]. 

4.1.1. Monobit test 

 

     The number n1 of 1’s in sequence s should satisfy 9654 < n1< 

10346. 

 

4.1.2. Poker test 

 

Let q be a positive integer such that └ n/q ┘ ≥5. (2
q
), and let k = └ 

n/q ┘. Divide the sequence s into k non-overlapping parts each of 
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length q, and let ni be the number of occurrences of the i
th

 type of 

sequence of length q, 1 ≤ i ≥ 2
q
. 

  

X2=2
q
/k

kn

q

i

i 

















2

1

2

                                                                                                                      

2 

 

The statistic X2 defined by equation (2) is computed for m = 4. 

The poker test is passed if 1.03 < X2 < 57.4. 

4.1.3. Runs test 

  The number Bi and Gi of blocks and gaps, respectively, of 

length i in sequence s are counted for each i, 1 ≤ i ≤ 6. (For the 

purpose of this test, runs of length greater than 6 are considered to 

be of length 6.) The runs test is passed if the 12 counts Bi and Gi, 1 

≤ i ≤ 6, are each within the corresponding interval specified by the 

table 1 

Table 1.Interval specified for Run test 

 

Length 

of run 

Required interval 

 

1 2267 − 2733 

2 1079 − 1421 

3 502 − 748 

4 223 − 402 

5 90 − 223 

6 90 − 223 

 

4.1.4. Long run test 

 

The long run test is passed if there are no runs of length 34 or 

more. FIPS 140-1 allows these tests to be substituted by alternative 

tests, which provide equivalent or superior randomness checking. 

 

4.2. Hamming Auto Correlation Test 

 

One of the desirable properties of sequence of random numbers is 

that, the elements of the sequence must not be clustered [5-7, 12]. 
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This property can be verified by computing normalized Hamming 

correlation of the sequence Rh(τ) which is given by equation (3). 

Rh(τ) = (a-d)/(a+d)         (3)    

 

Where a = agreements, d = disagreements between bits of 

sequence and its shifted version and τ is time shift. Rh (τ)) is 

computed by counting the number of agreements and 

disagreements for different time shifts. The value of Rh(τ) ranges 

between +1 and –1. For τ =0, Rh(τ) =1,since there is no 

disagreements. 

Table 2. Matrix used for computing recurrence equationrence  

equation (1) 

 

C0 C1 C2 C3 C4 

7 0 

0 1 

5 0 

1 1 

6 1 

1 1 

3 1 

1 2 

5 2 

1 1 

C5 C6 C7 C8 C9 

3 3 

3 4 

4 3 

3 5 

7 5 

1 2 

5 4 

1 3 

0 7 

1 5 

C10 C11 C12 C13 C14 

3 4 

5 7 

6 5 

1 3 

4 5 

1 3 

5 7 

1 4 

1 4 

1 7 

C15 C16 C17 C18 C19 

2 1 

1 1 

3 2 

1 1 

6 3 

1  1 

7 1 

4 1 

5 5 

3 2 

 

Table 3 .Initial vectors used for computing recurrence equation (1) 

X1 X2 X3 X4 X5 X6 X7 

1 

2 

3 

1 

4 

5 

6 

1 

3 

7 

5 

1 

7 

0 

X8 X9 X1

0 

X1

1 

X12 X13 X14 

5 

2 

5 

4 

3 

2 

2 

3 

7 

3 

1 

3 

4 

4 

X1

5 

X1

6 

X1

7 

X1

8 

X19 X20 

3 

3 

5 

0 

1 

5 

6 

2 

5 

6 

4 

6 
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5 Results and discussion 

5.1. FIPS-140-1 Tests Results 

 

The sequence of length 20000 consecutive binary mapped bits 

generated using equation (1) is subjected to   FIPS 140-1 statistical 

test to determine the randomness property. Table 2 gives an array 

of 20 arbitrary 2 x 2 matrix over Z8 and the sequence is generated 

by using these matrices as co efficient matrix in the equation (1) 

for different stages k = 3 to 20.Table 3 gives corresponding initial 

vectors used for the generation of the sequence. The results are 

tabulated in Table 4 for different stages k = 3 to 20. 

Results show that, the sequences passes FIPS 140-1 tests for stages 

k > 4 for the given matrices and initial vector. However for the 

stages k ≤ 4 the sequence doesn’t pass all the tests but few. The 

algorithm is tested for different sets of 2 x 2 matrices  

Table  4.  Results of FIPS 140-1 tests carried out on the recurrence 

equation (1) 

 

Rando

mness 

test 

Case 1 

3 stages 

Case 2 

4 stages 

Mono 

bit Test 

n1 n0 n1 n0 

1022

0 

9798 9992 1000

8 

Poker 

Test 

265.88 171.75 

Run 

Test 

Run 

1 

Run 

0 

Run 

1 

Run 

0 

1 2259 2420 2384 2400 

2 1395 1399 1311 1274 

3 564 537 701 693 

4 377 322 278 286 

5 216 162 134 190 

6 135 102 166 130 

Long 

run test 

Passes Long run test 
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Rando

mness 

test 

Case 3 

5 stages 

Case 4 

6 stages 

Mono-

bit Test 

n1 n0 n1 n1 

9988 1001

2 

9930 9988 

Poker 

Test 

7.6544 12.768 

Run 

Test 

Run  

1 

Run 

0 

Run 

Test 

Run  

1 

1 2500 2433 1 2500 

2 1214 1273 2 1214 

3 627 662 3 627 

4 311 299 4 311 

5 168 161 5 168 

6 159 151 6 159 

Long 

run test 

Passes Long run test 

 

and initial vectors and it is found that for k > 4 the sequence 

generated pass FIPS 140-1 tests. 

5.2 Hamming     Autocorrelation Test Results 

 

Sequence { xi 
T
 }is over Z8  and  is converted into a binary 

sequence where 0,1,2,3,4,5,6,7 are replaced by binary 3-tuples 

000,001,010,011,100,101,110, 111 respectively. 

Hamming correlation Rh(τ) is computed using equation (3) by 

considering   

i) Sequence of 10,000 consecutive output integer of the recurrence 

equation (1) which is right circularly shifted by τ shifts, τ = 

0,1,…., 9999,and 

ii) Sequence of 20,000 consecutive output bits of the recurrence 

equation (1) which is right circularly shifted by τ shifts, τ = 

0,1,…., 19999 
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Plots of Normalized Hamming autocorrelation test are shown in 

Figure 1 to 6 

 

Rando

mness 

test 

Case 5 

7 stages 

Case 6 

8 stages 

Mono 

bit Test 

n1 n0 n1 n0 

9887 1011

3 

991

8 

10082 

Poker 

Test 

21.9328 16.5952 

Run 

Test 

Run 

1 

Run 

0 

Run 

1 

Run 

0 

1 2569 2507 257

7 

2499 

2 1254 1304 115

8 

1217 

3 621 602 630 626 

4 321 312 328 332 

5 108 133 152 163 

6 163 180 150 159 

Long 

run test 

Passes Long run test 

  

Rando

mness 

test 

Case 7 

9 stages 

Case 8 

10stages 

Mono-

bit Test 

n1 n0 n1 n1 

9945 10055 999

0 

10010 

Poker 

Test 

13.9072 11.2384 

Run 

Test 

Run  

1 

Run 

0 

Run 

Test 

Run  

1 

1 2482 2433 254

2 

2538 

2 1212 1252 122

2 

1217 
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3 611 641 630 641 

4 322 262 315 320 

5 158 177 170 154 

6 161 181 144 152 

Long 

run test 

Passes Long run test 

 

Rando

mness 

test 

Case 9 

11 stages 

Case 10 

12 stages 

Mono 

bit Test 

n1 n0 n1 n0 

1011

8 

9882 101

18 

9882 

Poker 

Test 

11.5648 12.9728 

Run 

Test 

Run 

 1 

Run 

0 

Run 

 1 

Run 

0 

1 2391 2534 239

1 

2534 

2 1292 1219 129

2 

1219 

3 643 577 643 577 

4 301 297 301 297 

5 153 173 153 173 

6 182 162 182 162 

Long 

run test 

Passes Long run test 

  

Rando

mness 

test 

Case 11 

13 stages 

Case 12 

14 stages 

Mono-

bit Test 

n1 n0 n1 n0 

1007

6 

9924 100

76 

9924 

Poker 

Test 

19.9232 13.952 
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Run 

Test 

Run 

 1 

Run 

0 

Run 

 1 

Run 

0 

1 2503 2573 250

3 

2573 

2 1265 1220 126

5 

1220 

3 645 644 645 644 

4 296 277 296 277 

5 158 167 158 167 

6 162 147 162 147 

Long 

run test 

Passes Long run test 

  

Rando

mness 

test 

Case 13 

15 stages 

Case 14 

16 stages 

Mono 

bit Test 

n1 n0 n1 n0 

9988 1001

2 

998

8 

10012 

Poker 

Test 

7.6544  

Run 

Test 

Run  

1 

Run 

0 

Run  

1 

Run 

0 

1 2500 2433 250

0 

2433 

2 1214 1273 121

4 

1273 

3 627 662 627 662 

4 311 299 311 299 

5 168 161 168 161 

6 159 161 159 161 

Long 

run test 

Passes Long run test 

 

 

 

 Table  5.  Results of Hamming autocorrealtion 
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Figure1. Normalized Hamming auto 

correlation (NHAC) over integers, binary 

and its histogram 

Number of stages = 5 

Ci’s are non -singular matrix (C0 to C4) 

and Xi’s are ( X1 to X5) 

 

 

 
 

 

Figure 2. Normalized Hamming auto 

correlation (NHAC) over integers, binary 

and its histogram 

Number of stages = 6 

Ci’s are non -singular matrix (C0 to C5) 

and Xi’s are ( X1 to X6) 
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Figure3. Normalized Hamming auto 

correlation (NHAC) over integers, binary 

and its histogram 

Number of stages = 7 

Ci’s are non -singular matrix (C0 to C6) 

and Xi’s are ( X1 to X7) 

 

 

 
 

 

Figure 4. Normalized Hamming auto 

correlation (NHAC) over integers, binary 

and its histogram 

Number of stages = 8 

Ci’s are non -singular matrix (C0 to C7) 

and Xi’s are ( X1 to X8) 
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Figure 5. Normalized Hamming auto 

correlation (NHAC) over integers, binary 

and its histogram 

Number of stages = 9 

Ci’s are non -singular matrix (C0 to C8) 

and Xi’s are ( X1 to X9) 

 

 

 
 

 

Figure 6. Normalized Hamming auto 

correlation (NHAC) over integers, binary 

and its histogram 

Number of stages = 10 

Ci’s are non -singular matrix (C0 to C9) 

and Xi’s are ( X1 to X10) 
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5. Conclusions 

 

Use of matrix recurrence relation defined over Z8 for the 

generation of sequence of random numbers with desirable 

statistical properties suitable for cryptographic application has 

been discussed. The generated sequence passes the FIPS 140-1 test 

suite for stages k > 4. Normalized Hamming Auto Correlation test 

performed on the sequence generated using recurrence (1) relation 

exhibits good correlation properties for number of stages k > 5 for 

the given matrix and initial vector.  
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Abstract. Many data have been useful to describe the growth of marine mammals,
invertebrates and reptiles, seabirds, sea turtles and fishes, using the logistic, the Gom-
pertz and von Bertalanffy’s growth models. A generalized family of von Bertalanffy’s
maps, which is proportional to the right hand side of von Bertalanffy’s growth equa-
tion, is studied and its dynamical approach is proposed. The system complexity is
measured using Lyapunov exponents, which depend on two biological parameters:
von Bertalanffy’s growth rate constant and the asymptotic weight.

Applications of synchronization in real world is of current interest. The behaviour
of birds flocks, schools of fish and other animals is an important phenomenon char-
acterized by synchronized motion of individuals. In this work, we consider networks
having in each node a von Bertalanffy’s model and we study the synchronization in-
terval of these networks, as a function of those two biological parameters. Numerical
simulation are also presented to support our approaches.
Keywords: Von Bertalanffy’s models, synchronization, Lyapunov exponents.

1 Introduction and motivation

Several mathematical equations have been used to describe the growth of ma-
rine populations, namely fishes, seabirds, marine mammals, invertebrates, rep-
tiles and sea turtles. Among these equations, three of the most familiar are the
logistics, the Gompertz and the von Bertalanffy models, see [5] and references
therein. For a certain population, the growth of an individual, regarded as an
increase in its length or weight with increasing age, is commonly modeled by a
mathematical equation that represents the growth of an “average” individual
in the population. One of the most popular functions that have been used
to analyze the increase in average length or weight of fish is von Bertalanffy’s
model, see for example [1] and [3].

Synchronization is a fundamental nonlinear phenomenon, which can be ob-
served in many real systems, in physics, chemistry, mechanics, engineering,
secure communications or biology, see for example [13]. It can be observed in
living beings, on the level of single cells, physiological subsystems, organisms
and even on the level of large populations. Sometimes, this phenomenon is
essential for a normal functioning of a system, e.g. for the performance of a
pacemaker, where the synchronization of many cells produce a macroscopic
rhythm that governs respiration and heart contraction. Sometimes, the syn-
chrony leads to a severe pathology, e.g. in case of the Parkinson’s disease, when
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locking of many neurons leads to the tremor activity. Biological systems use
internal circadian clocks to efficiently organize physiological and behavioral ac-
tivity within the 24-hour time domain. For some species, social cues can serve
to synchronize biological rhythms. Social influences on circadian timing might
function to tightly organize the social group, thereby decreasing the chances of
predation and increasing the likelihood of mating, see [14]. Almost all seabirds
breed in colonies; colonial and synchronized breeding is hypothesized to reduce
predation risk and increases social interactions, thereby reducing the costs of
breeding . On the other hand, it is believed that synchronization may promote
extinctions of some species. Full synchronism may have a deleterious effect on
population survival because it may lead to the impossibility of a recoloniza-
tion in case of a large global disturbance, see [15]. Understand the aggregate
motions in the natural world, such as bird flocks, fish schools, animal herds,
or bee swarms, for instance, would greatly help in achieving desired collective
behaviors of artificial multi-agent systems, such as vehicles with distributed
cooperative control rules.

The layout of this paper is as follows. In Sec.2, we present a new dynamical
approach to von Bertalanffy’s growth equation, a family of unimodal maps,
designated by von Bertalanffy’s maps. In Sec.3, we present the network model
having in each node a von Bertalanffy’s model. The synchronization interval is
presented in terms of the network connection topology, expressed by its Lapla-
cian matrix and of the Lyapunov exponent of the network’s nodes. In Sec.4,
we give numerical simulations on some kinds of lattices, evaluating its synchro-
nization interval. We present some discussion on how this interval changes with
the increasing of the number of neighbors of each node, with the increasing of
the total number of nodes and with the intrinsic growth rate. We also observe
and discuss some desynchronization phenomenon.

2 Von Bertalanffy’s growth dynamics approach

An usual form of von Bertalanffy’s growth function, one of the most frequently
used to describe chick growth in marine birds and in general marine growths,
is given by

Wt = W∞

(

1− e−
K

3
(t−t0)

)3

, (1)

where Wt is the weight at age t, W∞ is the asymptotic weight, K is von Berta-

lanffy’s growth rate constant and t0 is the teoretical age the chick would have
at weight zero. The growth function, Eq.(1), is solution of the von Bertalanffy’s
growth equation,

g (Wt) =
dWt

dt
=

K

3
W

2
3

t

(

1−

(

Wt

W∞

)
1
3

)

, (2)

introduced by von Bertalanffy to model fish weight growth, see [11] and [12].

The per capita growth rate, associated to this growth model, is given by

h (Wt) =
g (Wt)

Wt

=
K

3
W

−
1
3

t

(

1−

(

Wt

W∞

)
1
3

)

. (3)
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Fig. 1. (a) Graphics of von Bertalanffy’s maps fr(x), Eq.(4), for several values of intrinsic growth
rate r (0.5 (magenta), 1.5, 3.5, 5.5 and 6.75 (orange)); (b) Bifurcation diagram of von Bertalanffy’s
maps fr (x) in the (K,W∞) parameter plane. The blue region is the stability region. The period
doubling and chaotic regions correspond to the cycles shown on top of figure. The gray region is
the inadmissible region.

In this paper, we consider a family of unimodal maps, the von Bertalanffy
maps, which is proportional to the right hand side of von Bertalanffy’s equation,
Eq.(2), fr : [0, 1] → [0, 1], defined by

fr (x) = r x
2
3

(

1− x
1
3

)

, (4)

with x = Wt

W∞

∈ [0, 1] the normalized weight and r = r(K,W∞) = K
3 ×W

2
3
∞ > 0

an intrinsic growth rate of the individual weight, see Fig.1(a).
Remark that, the family of maps that we will study depends on two biolog-

ical parameters: von Bertalanffy’s growth rate constant K and the asymptotic
weight W∞. The following conditions are satisfied:

(A1) fr is continuous on [0, 1];
(A2) fr has an unique critical point c ∈ ]0, 1[;
(A3) f ′

r(x) 6= 0, ∀x ∈ ]0, 1[ \{c}, f ′

r(c) = 0 and f ′′

r (c) < 0;
(A4) fr ∈ C3 (]0, 1[) and the Schwarzian derivative of fr, denoted by S (fr(x)),

verifies S (fr(x)) < 0, ∀x ∈ ]0, 1[ \{c} and S (fr(c)) = −∞.
Conditions (A1)−(A4) are essential to prove the stability of the only positive

fixed point, [10]. In particular, the negative Schwarzian derivative ensures a
“good” dynamic behavior of the models. In general, the growth models studied
have negative Schwarzian derivative and the use of unimodal maps is usual, see
for example [8] and [9].

The dynamical complexity of the proposed models is displayed at (K,W∞)
parameter plane, depending on the variation of the intrinsic growth rate r. The
analysis of their bifurcations structure is done based on the bifurcation diagram,
see Fig.1(b). For these models, the extinction region and the semistability
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curve have no expressive meaning. Because it is difficult to identify per capita

growth rates, Eq.(3), less than one for all densities, to the extinction case, and
per capita growth rates strictly less than one for all densities, except at one
population density, to the semistability case, except at most a set of measure
zero. We verify that, lim

x→0+
f

′

r (x) > 1 and the origin’s basin of attraction is

empty, except at most a set of measure zero. The fixed point 0 is unstable.

A behavior of stability is defined when a population persists for intermedi-
ate initial densities and otherwise goes extinct. The per capita growth rate of
the population, Eq.(3), is greater than one for an interval of population densi-
ties. The lower limit of these densities correspond to the positive fixed point
AK,W∞

≡ Ar, of each function fr, Eq.(4), see Fig.1(a). Furthermore, attending
to (A2) and (A3) we have that f2

r (c) > 0, then there is a linearly stable fixed
point Ar ∈ ]0, 1[, whose basin of attraction is ]0, 1[, for more details see [10].

The symbolic dynamics techniques prove to be a good method to determine
a numerical approximation to the stability region (in blue), see Fig.1(b). For
more details about symbolic dynamics techniques see for example [8]. In the
(K,W∞) parameter plane, this region is caracterized by the critical point iter-
ates that are always attracted to the fixed point sufficiently near of the super
stable or super attractive point Ãr, defined by fr (c) = c. Let Ār ∈ ]0, 1[ be
the fixed points sufficiently near of Ãr, then

lim
n→∞

fn
r (c) = Ār, for

(

3K−1A
1
3
r

(

1−A
1
3
r

))
3
2

< W∞(K) < Ŵ∞(K)

where Ŵ∞(K) represents the super stabel curve of the cycle of order 2, given in
implicit form by f2

r (c) = c. In this parameter plane, the set of the super stable
or super attractive points Ãr defines the super stabe curve of the fixed point.
In the region before reaching the super stable curve, the symbolic sequences
associated to the critical points orbits are of the type CL∞. After this super
stable curve, the symbolic sequences are of the type CR∞. In this parameter
region, the topological entropy is null, [6].

The period doubling region corresponds to the parameters values, to which
the population weight oscillates asymptotically between 2n states, with n ∈ N.
In period-dubling cascade, the symbolic sequences correspondent to the iterates
of the critical points are determined by the iterations f2n

r (c) = c. Analytically,
these equations define the super-stability curves of the cycle of order 2n. The
period doubling region is bounded below by the curve of the intrinsic growth
rate values where the period doubling starts, Ŵ∞(K), correspondent to the
2-period symbolic sequences (CR)∞. Usually, the upper limit of this region is
determined using values of intrinsic growth rate r, corresponding to the first
symbolic sequence with non null topological entropy. Commonly, the symbolic
sequence that identifies the beginning of chaos is

(

CRLR3
)

∞

, a 6-periodic
orbit, see for example [8] and [9]. The unimodal maps in this region, also have
null topological entropy, [6].

In the chaotic region of the (K,W∞) parameter plane, the evolution of
the population size is a priori unpredictable. The maps are continuous on
the interval with positive topological entropy whence they are chaotic and
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the Sharkovsky ordering is verified. The symbolic dynamics are characterized
by iterates of the functions fr that originate orbits of several types, which
already present chaotic patterns of behavior. The topological entropy is a non-
decreasing function in order to the parameter r, until reaches the maximum
value ln 2 (consequence of the negative Schwartzian derivative). In [8] and
[9] can be seen a topological order with several symbolic sequences and their
topological entropies, which confirm this result to others growth models. This
region is bounded below by the curve of the intrinsic growth rate values where
the chaos starts. The upper limit is the fullshift curve, defined by fr (c) = 1.
This curve characterizes the transition between the chaotic region and the
inadmissible region. In the inadmissible region, the graphic of any function fr
is no longer totally in the invariant set [0, 1]. The maps under these conditions
not already belong to the studied familie functions and are not good models
for populations dynamics.

3 Synchronization and Lyapunov exponents

Consider a general network ofN identical coupled dynamical systems, described
by a connected, undirected graph, with no loops and no multiple edges. In each
node the dynamics of the system is defined by the maps fr given by Eq.(4).
The state equations of this network, in the discretized form, are

xi(k + 1) = fr(xi(k)) + c

N
∑

j=1

lijfr(xj(k)), with i = 1, 2, ..., N (5)

where c is the coupling parameter and L = (lij) is the Laplacian matrix or
coupling configuration of the network. The Laplacian matrix is given by L =
D − A, where A is the adjacency matrix and D = (dij) is a diagonal matrix,
with dii = ki, being ki the degree of node i. The eigenvalues of L are all real
and non negatives and are contained in the interval [0,min {N, 2∆}], where∆ is
the maximum degree of the vertices. The spectrum of L may be ordered, λ1 =
0 ≤ λ2 ≤ · · · ≤ λN . The network (5) achieves asymptotical synchronization if

x1(t) = x2(t) = ... = xN (t) →
t→∞

e(t),

where e(t) is a solution of an isolated node (equilibrium point, periodic orbit
or chaotic attractor), satisfying ė(t) = f(e(t)).

One of the most important properties of a chaotic system is the sensitivity
to initial conditions. A way to measure the sensitivity with respect to initial
conditions is to compute the average rate at which nearby trajectories diverge
from each other. Consider the trajectories xk and yk, starting, respectively,
from x0 and y0. If both trajectories are, until time k, always in the same linear
region, we can write

|xk − xk| = eλk|x0 − y0|, where λ =
1

k

k−1
∑

j=0

ln |f ′

r(xj)|.
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Fig. 2. Lypunov exponents estimates for von Bertalanffy’s maps Eq.(4), as a function of the
intrinsic growth rate r.

The Lyapunov exponents of a trajectory xk is defined by

hmax = lim
k→+∞

1

k

k−1
∑

j=0

ln |f ′

r(xj)| (6)

whenever it exists. The computation of the Lyapunov exponent hmax gives the
average rate of divergence (if hmax > 0), or convergence (if hmax < 0) of the two
trajectories from each other, during the time interval [0, k], see for example [16].
We note that, the Lyapunov exponents depend on two biological parameters:
von Bertalanffy’s growth rate constant and the asymptotic weight. See in Fig.2
the Lyapunov exponents estimate for von Bertalanffy’s maps Eq.(4).

If the coupling parameter c belongs to the synchronization interval
]

1− e−hmax

λ2
,
1 + e−hmax

λN

[

(7)

then the synchronized states xi(t), (i = 1, ...N) are exponentially stable, [17].
The second eigenvalue λ2 is know as the algebraic connectivity or Fiedler value
and plays a special role in the graph theory. As bigger is λ2, more easily
the network synchronizes. As much larger λ2 is, more difficult is to separate
the graph in disconnected parts. The graph is connected if and only if λ2 6=
0. In fact, the multiplicity of the null eigenvalue λ1 is equal to the number
of connected components of the graph. Fixing the topology of the network,
the eigenvalues of the Laplacian λ2 and λN are fixed, so the synchronization
only depends on the Lyapunov exponent of each node, hmax. Remark that
the synchronization interval also depend on two biological parameters: von
Bertalanffy’s growth rate constant and the asymptotic weight.

4 Numerical simulation and conclusions

To support our approaches, we consider a regular ring lattice, a graph with N

nodes, each one connected to k neighbors, k
2 on each side, having in each node

the same model, the von Bertalanffy maps fr given by Eq.(4). See in Fig.3
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Fig. 3. Lattices. In a) with N = 4 nodes and k = 2, in b) with N = 6 nodes and k = 2 and in c)
with N = 6 nodes and k = 4. From (a) to (b) the total number of vertices of the network increases
maintaining the number of neighbors of each node, and from (b) to (c) increases the number of
neighbors of each node, but the total number of vertices of the network remains the same.

some example of lattices. If, for instance, N = 6 and K = 4, see Fig.3c), the
adjacency matrix A and the Laplacian matrix L are

A =

















0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0

















and L = D −A =

















4 −1 −1 0 −1 −1
−1 4 −1 −1 0 −1
−1 −1 4 −1 −1 0
0 −1 −1 4 −1 −1
−1 0 −1 −1 4 −1
−1 −1 0 −1 −1 4

















.

So, the network correspondent to the graph in Fig.3 c) is defined by the system,






























ẋ1 = fr(x1) + c(4x1 − x2 − x3 − x5 − x6)
ẋ2 = fr(x2) + c(−x1 + 4x2 − x3 − x4 − x6)
ẋ3 = fr(x3) + c(−x1 − x2 + 4x3 − x4 − x5)
ẋ4 = fr(x4) + c(−x2 − x3 + 4x4 − x5 − x6)
ẋ5 = fr(x5) + c(−x1 − x3 − x4 + 4x5 − x6)
ẋ6 = fr(x6) + c(−x1 − x2 − x4 − x5 + 4x6)

.

For this lattice the eigenvalues of the Laplacian matrix are λ1 = 0, λ2 =
λ3 = λ4 = 4 and λ5 = λ6 = 6. If we consider, for instance, r = 6.60, the
Lyapunov exponent of fr(x) is 0.377, Eq.(6). Then, attending to Eq.(7), this

lattice synchronizes if 1−e−0.377

2 < c < 1+e−0.377

6 ⇔ 0.079 < c < 0.281 and the
amplitude of the synchronization interval is 0.202. For more examples see Table
1. The lattice correspondent to the Fig.3 b) has eigenvalues of the Laplacian
matrix λ1 = 0, λ2 = λ3 = 1, λ4 = λ5 = 3 and λ6 = 4. Thus, for the same
r = 6.60, the lattice synchronizes if 0.313 < c < 0.421 and the amplitude of
this interval is 0.107. Moreover, to the lattice in Fig.3 a), the eigenvalues of the
Laplacian matrix are λ1 = 0, λ2 = λ3 = 2 and λ4 = 4. For the same r = 6.60,
the lattice synchronizes if 0.157 < c < 0.421 and the amplitude of this interval
is 0.264. In Table 1 are presented more examples, where we computed the
synchronization interval for several values of the intrinsic growth rate r, for all
these lattices a), b) and c) of Fig.3. The results of Table 1 allow us to claim:

(C1) From the lattice a) to lattice b) in Fig.3, the total number of vertices of
the network increases maintaining the number of neighbors of each node.
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Synchronization Interval Amplitude
r hmax

Lattice a) Lattice b) Lattice c) Lattice a) Lattice b) Lattice c)

6.50 0.297 ]0.128, 0.436[ ]0.257, 0.436[ ]0.064, 0.291[ 0.308 0.179 0.226

6.55 0.347 ]0.147, 0.427[ ]0.293, 0.427[ ]0.073, 0.285[ 0.280 0.134 0.211

6.60 0.377 ]0.157, 0.421[ ]0.313, 0.421[ ]0.079, 0.281[ 0.264 0.107 0.202

6.65 0.406 ]0.167, 0.417[ ]0.334, 0.417[ ]0.083, 0.278[ 0.250 0.083 0.194

6.70 0.463 ]0.185, 0.407[ ]0.371, 0.407[ ]0.093, 0.272[ 0.222 0.037 0.179

6.73 0.506 ]0.199, 0.401[ ]0.397, 0.401[ ]0.099, 0.267[ 0.202 0.003 0.168

6.74 0.533 ]0.207, 0.397[ (*) ]0.103, 0.265[ 0.190 (*) 0.161

6.75 0.598 ]0.225, 0.388[ (*) ]0.112, 0.258[ 0.163 (*) 0.146

Table 1. Lyapunov exponent, hmax, synchronization interval,
]

1−e
−hmax

λ2
, 1+e

−hmax

λN

[

, and

amplitude of this interval, 1+e
−hmax

λN
−

1−e
−hmax

λ2
, for several intrinsic growth rates r, for the

lattices a), b) and c) of Fig.3.(*) In this case, the desynchronization phenomenon occurs, see (C4).

We verify that the synchronization is worse, not only because it begins to
synchronize at a higher value of the coupling parameter c, but also, because
the synchronization interval is shorter.

(C2) Comparing the results for the lattices b) and c) in Fig.3, we may conclude
that maintaining the total number of vertices of the network, but increas-
ing the number of neighbors of each node, the synchronization is better,
not only because it begins to synchronize at a lower value of the coupling
parameter c, but also, because the synchronization interval is larger.

(C3) Observing the columns of Table 1, we verify that, as the intrinsic growth
rate r increases, the synchronization is worse, not just because it begins to
synchronize at a higher value of the coupling parameter c, but also, because
the synchronization interval is shorter.

(C4) Note that, for the intrinsic growth rate r = 6.74 and r = 6.75, for the lattice
b), the upper bound of the synchronization interval is lower than the lower
bound. This means that, there is no synchronization for any value of the
coupling parameter c. This desynchronization phenomenon was expected
because the network (5) synchronizes only if hmax < ln(2R + 1), where
R = λ1−λ2

λ2−λN

, see [17]. In the case of lattice b), we have ln(2R+1) = 0.511, so
there is synchronization only if hmax < 0.511, which do not happens for r =
6.74 and r = 6.75. In all the other studied cases, the Lyapunov exponent
verifies hmax < ln(2R+1), so we have a non empty synchronization interval.
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Abstract. In this paper we study the evolution of the information flow associated
with a topological order in networks. The amount of information produced by a
network may be measure by the mutual information rate. This measure and the syn-
chronization interval are expressed in terms of the transversal Lyapunov exponents.
The networks are constructed by successively joining one edge, maintaining the same
number of nodes, and the topological order is described by the monotonicity of the
network topological entropy. The network topological entropy measures the complex-
ity of the network topology and it is expressed by the Perron value of the adjacency
matrix. We conclude that, as larger the network topological entropy, the larger is
the rate with which information is exchanged between nodes of such networks. To
illustrate our ideas we present numerical simulations for several networks with a topo-
logical order established.
Keywords: Mutual information rate, topological entropy, networks.

1 Introduction and motivation

Information theory is an area of mathematics and engineering, concerning the
quantification of information and it benefits of matters like mathematics, statis-
tics, computer science, physics, neurobiology and electrical engineering. Infor-
mation theory and synchronization are directly related in a network. The
entropy is a fundamental measure of information content and the topological
entropy can describe the character of complexity of a network, see for example
[10]. In [6], using the mutual information rate to measure the information flow,
we have proved that the larger the synchronization is, the larger is the rate
with which information is exchanged between nodes in the network. Although
the important growth in the field of complex networks, it is still not clear
which conditions for synchronization implies information transmission and it
is still not known which topology is suitable for the flowing of information.
Nevertheless, we conclude with this study that, the more complex is a network,
expressed by its topological entropy, the larger is the flux of information.

In this work we study the relationship between the topological order in net-
works and the transmission of information. The topological order in networks is
described by the monotonicity of the network topological entropy. The concept
of the network topological entropy was previously introduced in [10]. However,
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there are several concepts of network entropy, see [7]. We will use the one
based on symbolic dynamics. In Sec.2, we present some preliminaries concepts
to be used in the following, such as: fundamental notions of graphs theory,
conditions for complete synchronization, comunication channel and mutual in-
formation rate. Sec.3 is devoted to the study of topological order in networks,
using the definition of the network topological entropy. In Sec.4, numerical sim-
ulations are presented for several networks with a topological order established.
Finally, in Sec.5, we discuss our study and provide some relevant conclusions.

2 Preliminaries concepts

In this section, we introduce some notions and basic results on graphs and
networks theory. Mathematically, networks are described by graphs (directed
or undirected) and the theory of dynamical networks is a combination of graph
theory and nonlinear dynamics. From the point of view of dynamical systems,
we have a global dynamical system emerging from the interactions between the
local dynamics of the individual elements. The tool of graph theory allows us
to analyze the coupling structure between them.

A graph G is an ordered pair G = (V,E), where V is a nonempty set of
N vertices or nodes vi and E is a set of edges or links, eij , that connect two
vertices vi and vj . We will only consider the case of undirected graphs, that
means that the edge eij is the same as the edge eji. If the graph G is not
weighted, the adjacency matrix A = A (G) = [aij ] is defined as follows:

aij =

{
1, if vi and vj are connected
0, if vi and vj are not connected

.

The degree of a node vi is the number of edges incident on it and is denoted
by ki. For more details in graph theory see [4].

Consider a network of N identical chaotic dynamical oscillators, described
by a connected and undirected graph, with no loops and no multiple edges.
In each node the dynamics of the oscillators is defined by ẋi = f(xi), with
f : Rn → Rn and xi ∈ Rn is the state variables of the node i. The state
equations of this network are

ẋi = f(xi) + σ
N∑
j=1

lij xj , with i = 1, 2, ..., N (1)

where σ > 0 is the coupling parameter, L = [lij ] = A − D is the Laplacian
matrix or coupling configuration of the network. One of the most important
subjects under investigation is the network synchronizability, fixing the con-
nection topology and varying the local dynamics or fixing the local dynamic
and varying the connection topology [5]. In [9] it was establish that complete
synchronization can be achieved provided that all the conditional Lyapunov
exponents are negative. In Sec.4, we use this result to determine the synchro-
nization interval. The negativity of the conditional Lyapunov exponents is a
necessary condition for the stability of the synchronized state, [3]. It is also a
mathematical expression of the decreasing to zero of the logarithm average of
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the distance of the solutions on the transverse manifold to the solutions on the
synchronization manifold.

A communication channel represents a pathway through which information
is exchanged. In this work, a communication channel is considered to be formed
by a transmitter Si and a receiver Sj , where the information about the trans-
mitter can be measured. In a network, each one of the links between them, i.e.,
each one of the edges of the corresponding graph, represents a communication
channel. In [1], it is defined the mutual information rate (MIR) between one
transmitter Si and one receiver Sj , denoted by IC(Si, Sj), by

IC(Si, Sj) =

λ∥ − λ⊥ , if λ⊥ > 0

λ∥ , if λ⊥ ≤ 0
, (2)

where λ∥ denotes the positive Lyapunov exponents associated to the synchro-
nization manifold and λ⊥ denotes the positive Lyapunov exponents associated
to the transversal manifold, between Si and Sj . λ∥ represents the information
(entropy production per time unit) produced by the synchronous trajectories
and corresponds to the amount of information transmitted. On the other hand,
λ⊥ represents the information produced by the nonsynchronous trajectories and
corresponds to the information lost in the transmission, the information that
is erroneously retrieved in the receiver. For more details and references see for
example [1] and [2]. In [6], we prove that as the coupling parameter increases,
the mutual information rate increases to a maximum at the synchronization
interval and then decreases.

3 Topological order in networks

In this section we study a topological order in networks, which are constructed
by successively joining one edge, maintaining the same number of nodes. This
topological order is described by the monotonicity of the network topological
entropy. The introduction of the network topological entropy concept was made
in [10], which requires a strict and long construction, using tools of symbolic
dynamics and algebraic graph theory. However, we present some basic aspects
of this definition. The topological entropy htop(X) of a shift dynamical system
(X,σ) over some finite alphabet A is defined by

htop(X) = lim
n→∞

log Tr (An(X))

n

and htop(X) = 0 if X = ∅, where A(X) is the transition matrix of X, [8].
We remark that the transition matrix A(X) describes the dynamics between
the nodes of the network, which is represented by a graph G. The Perron-
Frobenius Theorem states that, if the adjacency matrix A ̸= 0 is irreducible
and λA is the Perron value of A, then htop(X) = log λA. We calculate the
topological entropy of the associated dynamical system, which is equal to the
logarithm of the growth rate of the number of admissible words, [8]. If we have
a network associated to a graph G, which determine the shift space X, we will
call network topological entropy of G the quantity htop(X), i.e.,

htop(G) = htop(X) = log λA. (3)
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The following result establishes a topological order in networks.

Proposition 1. Let G1 and G2 be two undirected graphs, with the same num-
ber of vertices N , and G1 be a not complete graph. If the graph G2 is obtained
from the graph G1 by joining an edge, then htop(G2) > htop(G1).

Proof. Let A = [aij ] and B = [bij ] be the adjacency matrices of the graphs G1

and G2, respectively. If the graph G2 is obtained from the graph G1 by joining
an edge, then the adjacency matrix B is obtained from the adjacency matrix
A by replacing some entry aij = 0 by bij = 1. As the graphs G1 and G2 are
not directed, then the matrices A and B are symmetric, and bji = 1. Thus,
the matrix B is equal to the matrix A plus some matrix with non negative
entries. For any power n, we have Bn = An + C, for some matrix C whose
entries are all non negative. As Tr(C) ≥ 0 and Tr(Bn) = Tr(An) + Tr(C),

then Tr(Bn) > Tr(An). Consequently, we obtain log Tr(Bn)
n > log Tr(An)

n , for
all integers n. From the definition of network topological entropy, Eq.(3), we
have htop(G2) > htop(G1).

4 Numerical simulations

In this section we will consider, as an example, a network with N = 6 nodes,
having in each node the same skew-tent map, f : [0, 1] → [0, 1], defined by

f(x) =


x
a , if 0 ≤ x ≤ a

1−x
1−a , if a < x ≤ 1

, (4)

with 0.5 ≤ a < 1, see [6]. See Fig.1 where we present some examples of these
networks. We start with a network of 7 edges, without the edges 1− 2, 3− 5,
5− 6, 3− 4, 4− 6, 2− 5, 3− 6 and 2− 4, and each time we add one edge, the
last one of this list. We evaluate the eigenvalues of the Jacobian matrix, the
Lyapunov exponents, the region where all transversal Lyapunov exponents are
negatives, the synchronization interval and the mutual information rate for all
communication channels of these networks. In order to compare the results, as
we add one edge, we consider for all studied cases the same value a = 0.9 of the
skew-tent map parameter. For this network, the region where all transversal
Lyapunov exponents are negatives do not intersect the line a = 0.9. So, for
this value of a there is no synchronization interval, see 1) of Fig.2, and we do
not evaluate the mutual information rate in this case.

We present the details for the network with 8 edges shown in 1) of Fig.1.
The adjacency matrix A and the Laplacian matrix L of this network are:

A =


0 0 1 1 1 1
0 0 1 1 0 1
1 1 0 0 0 0
1 1 0 0 1 0
1 0 0 1 0 0
1 1 0 0 0 0

 and L = A−D =


−4 0 1 1 1 1
0 −3 1 1 0 1
1 1 −2 0 0 0
1 1 0 −3 1 0
1 0 0 1 −2 0
1 1 0 0 0 −2

 ,
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Fig. 1. Construction of networks by successively joining one edge, with 8, 10, 14 and 15 edges
and N = 6 nodes.

σ

a

1) 2) 3)

Fig. 2. Regions where the transversal Lyapunov exponents are negatives. The synchronization
region is the intersection of these regions. In the vertical axis is the coupling parameter σ and in the
horizontal axis is the tent map parameter a. In 1) is the network with 7 edges, in 2) with 8 edges,
and in 3) with 9 edges. The image in 1) shows that for a = 0.9 there is no synchronization interval
because the intersection of the regions where all transversal Lyapunov exponents are negatives
does not occur for a = 0.9.

where D is the diagonal matrix with entries dii = ki, beeing ki the degree of
each node i. This network is defined by the following system,

ẋ1 = f(x1) + σ(−4x1 + x3 + x4 + x5 + x6)
ẋ2 = f(x2) + σ(−3x2 + x3 + x4 + x6)
ẋ3 = f(x3) + σ(x1 + x2 − 2x3)
ẋ4 = f(x4) + σ(x1 + x2 − 3x4 + x5)
ẋ5 = f(x5) + σ(x1 + x4 − 2x5)
ẋ6 = f(x6) + σ(x1 + x2 − 2x6)

,

where σ is the coupling parameter. The Jacobian matrix is given by,

J =


c− 4σ 0 σ σ σ σ

0 c− 3σ σ σ 0 σ
σ σ c− 2σ 0 0 0
σ σ 0 c− 3σ σ 0
σ 0 0 σ c− 2σ 0
σ σ 0 0 0 c− 2σ

 ,

being c = c(x) the slope of f , Eq.(4), given by c(x) = 1
a , if x ≤ a and

c(x) = − 1
1−a if x > a. The eigenvalues of the Jacobian are µ1 = c, µ2 = c−4σ,

µ3 = c − 3σ, µ4 = c − 2σ, µ5 = c − 7
2σ −

√
17
2 and µ6 = c − 7

2σ −
√
17
2 . The
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Fig. 3. ICi
for the network with 8 edges in 1) of Fig.1 and with 10 edges in 2) of Fig.1.

first eigenvector is (1, 1, 1, 1, 1, 1) and it corresponds to the parallel Lyapunov
exponent λ∥. The others eigenvectors correspond to the transversal Lyapunov
exponents λ⊥i , with i = 2, 3, 4, 5, 6. So, the parallel Lyapunov exponent is

λ∥ =

∫
ln |µ1| =

∫ a

0

ln
1

a
+

∫ 1

a

ln

∣∣∣∣ −1

1− a

∣∣∣∣ = −a ln a− (1− a) ln(1− a) (5)

and the transversal Lyapunov exponents are

λ⊥i = a ln

∣∣∣∣1a − νiσ

∣∣∣∣+ (1− a) ln

∣∣∣∣− 1

1− a
− νiσ

∣∣∣∣ , with i = 2, 3, 4, 5, 6

where ν2 = 4, ν3 = 3, ν4 = 2, ν5 = 7
2σ +

√
17
2 and ν6 = 7

2σ −
√
17
2 . In order to

have synchronization, all transversal Lyapunov exponents must be negatives,
see 2) in Fig.2. In this figure, each color corresponds to a region where one of
the transversal Lyapunov exponents is negative. For example, if a = 0.9, then
the synchronization interval is ]0.236, 0.336[, where all the transversal Lyapunov
exponents λ⊥i are negative. See also 3) in Fig.2 for the network with 9 edges.
To evaluate the mutual information rate (MIR), according to Eq.(2), for each
λ⊥i we obtain the interval ]ai, bi[ where λ⊥i < 0, thus

ICi =


−a ln a− (1− a) ln(1− a)− a ln

∣∣ 1
a − νiσ

∣∣− (1− a) ln
∣∣∣− 1

1−a − νiσ
∣∣∣ ,

if σ < ai or σ > bi
−a ln a− (1− a) ln(1− a), if ai < σ < bi

with a = 0.9 and i = 2, 3, 4, 5, 6. See in 1) of Fig.3 the plots of these ICi .
The MIR attains its maximum 0.325..., in an interval of lenght 1.028 and the
network topological entropy, given by Eq.(3), is log λA = 1.02835....

The second case that we study in detail is the network with 10 edges and
without the edges, see 2) of Fig.1. The adjacency matrix A and the Laplacian
matrix L are given by,

A =


0 0 1 1 1 1
0 0 1 1 1 1
1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 0 0
1 1 1 0 0 0

 and L = A−D =


−4 0 1 1 1 1
0 −4 1 1 1 1
1 1 −3 0 0 1
1 1 0 −3 1 0
1 1 0 1 −3 0
1 1 1 0 0 −3

 .

532

jrocha
Sticky Note
a definição da rede está incompleta



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

This network is defined by the system,

ẋ1 = f(x1) + σ(−4x1 + x3 + x4 + x5 + x6)
ẋ2 = f(x2) + σ(−4x2 + x3 + x4 ++x5 + x6)
ẋ3 = f(x3) + σ(x1 + x2 − 3x3 + x4)
ẋ4 = f(x4) + σ(x1 + x2 − 3x4 + x5)
ẋ5 = f(x5) + σ(x1 + x2 + x4 − 3x5)
ẋ6 = f(x6) + σ(x1 + x2 + x3 − 3x6)

,

and the Jacobian matrix is given by

J =


c− 4σ 0 σ σ σ σ

0 c− 4σ σ σ σ σ
σ σ c− 3σ σ 0 0
σ σ σ c− 3σ σ 0
σ σ 0 σ c− 3σ 0
σ σ σ 0 0 c− 3σ

 .

The eigenvalues of the Jacobian matrix are µ1 = c, µ2 = c − 6σ, µ3 = µ4 =
µ5 = c−4σ and µ5 = c−2σ. Thus, the parallel Lyapunov exponent is identical
to the previous case, Eq.(5), and the transversal Lyapunov exponents are

λ⊥i = a ln

∣∣∣∣1a − νiσ

∣∣∣∣+ (1− a) ln

∣∣∣∣− 1

1− a
− νiσ

∣∣∣∣ , with i = 2, 3, 4

where ν2 = 6, ν3 = 4 and ν4 = 2. See 1) in Fig.4 the regions where these
transversal Lyapunov exponents are negatives. For a = 0.9, this network
synchronizes if σ ∈]0.170, 0.312[. We compute the ICi like in the previous
case and we plot its graphics in 2) of Fig.3. The MIR attains its maximum
0.325..., in an interval of lenght 1.216 and the network topological entropy is
log λA = 1.21559.... Figs.4, 5 and Table 1 contain information similar to the
other cases analyzed in this topological order.

2) 3)

σ

1) 2) 3)

a

Fig. 4. Regions where the transversal Lyapunov exponents are negatives. The synchronization
region is the intersection of these regions. In 1) is the network with 10 edges, in 2) with 11 edges,
and in 3) with 12 edges. For the same value of a, the amplitude of the synchronization interval
increases.
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σ

a

1) 3)

Fig. 5. Regions where the transversal Lyapunov exponents are negatives. The synchronization
region is the intersection of these regions. In 1) is the network with 13 edges, in 2) with 14
edges and in 3) with 15 edges (complete network). For the same value of a, the amplitude of the
synchronization interval increases.

Edges µi = c− νiσ (i = 2, 3, 4, 5, 6) Sync. interv. Ampl. log λA

8 ν2 = 4, ν3 = 3, ν4 = 2, ν5 = 7+
√

17
2

, ν6 = 7−
√

17
2

]0.236,0.336[ 0.100 1.028

9 ν2 = ν3 = 4, ν4 = 3, ν5 = 7+
√

17
2

, ν6 = 7−
√

17
2

]0.236,0.336[ 0.100 1.127

10 ν2 = 6, ν3 = ν4 = ν5 = 4, ν6 = 2 ]0.170,0.312[ 0.142 1.216

11 ν2 = 6, ν3 = ν4 = 4, ν5 = 4 +
√
2, ν6 = 4−

√
2 ]0.131,0.312[ 0.181 1.312

12 ν2 = ν3 = 6, ν4 = 5, ν5 = 4, ν6 = 3 ]0.113,0.312[ 0.199 1.403

13 ν2 = ν3 = ν4 = 6 ν5 = ν6 = 4 ]0.085,0.312[ 0.227 1.475

14 ν2 = ν3 = ν4 = ν5 = 6 ν6 = 4 ]0.085,0.312[ 0.227 1.548

15 ν2 = ν3 = ν4 = ν5 = ν6 = 6 ]0.057,0.312[ 0.255 1.609

Table 1. Jacobian eigenvalues, µi, for (i = 2, 3, 4, 5, 6), which correspond to the transversal
Lyapunov exponents, synchronization interval, its amplitude, network topological entropy and the
number of edges from 8 to 15 (complete network).

2 4 6 8 10 12 14
edge number

0.5

1.0

1.5

top.entropy

Fig. 6. The network topological entropy increases as the the number of edges of the network
increases.

5 Conclusions and discussion

We started our simulations, considering the network with 8 edges and without
the edges 1 − 2, 3 − 5, 5 − 6, 3 − 4, 4 − 6, 2 − 5 and 3 − 6, and in each
step we add the last edge of this list. In each step of this construction, we
obtain the Laplacian matrix and compute the eigenvalues µi (i = 1, 2, 3, 4, 5, 6)
of the Jacobian matrix, the parallel and transversal Lyapunov exponents, the
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synchronization interval, the network topological entropy and the ICi
for the

networks with 8, 9, 10, 11, 12, 13, 14 and 15 edges (complete network). For
all these cases µ1 = c and this eigenvalue correspond to the synchronization
manifold. The others µi correspond to the transversal Lyapunov exponents and
are presented in Table 1. In this table is also presented the synchronization
interval and the network topological entropy, for all these cases. See in Figs.2,
4 and 5 the synchronization regions, in terms of the skew-tent map parameter
a and of the coupling parameter σ. In Fig.6 we may see that the network
topological entropy increases as we add one edge sucessively to the network.

From the numerical simulations shown in figures and Table 1, we conclude
that, with the topological order established, the interval where the mutual
information rate attains its maximum, the synchronization interval, increases
its amplitude. Thus, we claim that, as larger the network topological entropy,
the larger is the rate with which information is exchanged between nodes in
the network.

Acknowledgment

This work is funded by FCT through the National Funds - Foundation for Sci-
ence and Technology within the project PEst-OE/MAT/UI0006/2011, CIMA-
UE, CEAUL and ISEL.

References

1.M. S. Baptista and J. Kurths, Chaotic channel, Phys. Rev. E, 72, 045202R, (2005).
2.M. S. Baptista and J. Kurths, Information transmission in active networks, Phys.

Rev. E, 77, 026205, (2008).
3.S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares and C.S. Zhou, The synchro-

nization of chaotic systems, Physics Reports, 366, 1-101, (2002).
4.B. Bollobás and O.M. Riordan, Handbook of Graphs and Networks: From the

Genome to the Internet, Wiley-VCH, 2003.
5.A. Caneco, S. Fernandes, C. Grácio and J.L. Rocha, Networks synchronizability,

local dynamics and some graph invariants, Dynamics, Games and Science I,
Springer Proceedings in Mathematics, 1, 221-238, (2011).

6.A. Caneco and J.L. Rocha, Synchronization and information transmission in net-
works, submited.

7.L. Ji, B.-H. Wang , W.-X. Wang and T. Zhou , Network entropy based on topology
configuration and its computation to random networks, Chin. Phys. Lett., 25,
11, 4177, (2008).

8.D. Lind and B. Marcus, Symbolic Dynamics and Coding, Cambridge University
Press, 1995.

9.L. M. Pecora and T. L. Carroll, Driving systems with chaotic signals, Phys. Rev.
A, 44, 2374-2383, (1991).

10.J.L. Rocha, C. Grácio, S. Fernandes, A. Caneco, Spectral and dynamical invariants
in a complete clustered network, submited.

535



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

536



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

Synchronization in von Bertalanffy’s models
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Abstract. Many data have been useful to describe the growth of marine mammals,
invertebrates and reptiles, seabirds, sea turtles and fishes, using the logistic, the Gom-
pertz and von Bertalanffy’s growth models. A generalized family of von Bertalanffy’s
maps, which is proportional to the right hand side of von Bertalanffy’s growth equa-
tion, is studied and its dynamical approach is proposed. The system complexity is
measured using Lyapunov exponents, which depend on two biological parameters:
von Bertalanffy’s growth rate constant and the asymptotic weight.

Applications of synchronization in real world is of current interest. The behaviour
of birds flocks, schools of fish and other animals is an important phenomenon char-
acterized by synchronized motion of individuals. In this work, we consider networks
having in each node a von Bertalanffy’s model and we study the synchronization in-
terval of these networks, as a function of those two biological parameters. Numerical
simulation are also presented to support our approaches.
Keywords: Von Bertalanffy’s models, synchronization, Lyapunov exponents.

1 Introduction and motivation

Several mathematical equations have been used to describe the growth of ma-
rine populations, namely fishes, seabirds, marine mammals, invertebrates, rep-
tiles and sea turtles. Among these equations, three of the most familiar are the
logistics, the Gompertz and the von Bertalanffy models, see [5] and references
therein. For a certain population, the growth of an individual, regarded as an
increase in its length or weight with increasing age, is commonly modeled by a
mathematical equation that represents the growth of an “average” individual
in the population. One of the most popular functions that have been used
to analyze the increase in average length or weight of fish is von Bertalanffy’s
model, see for example [1] and [3].

Synchronization is a fundamental nonlinear phenomenon, which can be ob-
served in many real systems, in physics, chemistry, mechanics, engineering,
secure communications or biology, see for example [13]. It can be observed in
living beings, on the level of single cells, physiological subsystems, organisms
and even on the level of large populations. Sometimes, this phenomenon is
essential for a normal functioning of a system, e.g. for the performance of a
pacemaker, where the synchronization of many cells produce a macroscopic
rhythm that governs respiration and heart contraction. Sometimes, the syn-
chrony leads to a severe pathology, e.g. in case of the Parkinson’s disease, when
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locking of many neurons leads to the tremor activity. Biological systems use
internal circadian clocks to efficiently organize physiological and behavioral ac-
tivity within the 24-hour time domain. For some species, social cues can serve
to synchronize biological rhythms. Social influences on circadian timing might
function to tightly organize the social group, thereby decreasing the chances of
predation and increasing the likelihood of mating, see [14]. Almost all seabirds
breed in colonies; colonial and synchronized breeding is hypothesized to reduce
predation risk and increases social interactions, thereby reducing the costs of
breeding . On the other hand, it is believed that synchronization may promote
extinctions of some species. Full synchronism may have a deleterious effect on
population survival because it may lead to the impossibility of a recoloniza-
tion in case of a large global disturbance, see [15]. Understand the aggregate
motions in the natural world, such as bird flocks, fish schools, animal herds,
or bee swarms, for instance, would greatly help in achieving desired collective
behaviors of artificial multi-agent systems, such as vehicles with distributed
cooperative control rules.

The layout of this paper is as follows. In Sec.2, we present a new dynamical
approach to von Bertalanffy’s growth equation, a family of unimodal maps,
designated by von Bertalanffy’s maps. In Sec.3, we present the network model
having in each node a von Bertalanffy’s model. The synchronization interval is
presented in terms of the network connection topology, expressed by its Lapla-
cian matrix and of the Lyapunov exponent of the network’s nodes. In Sec.4,
we give numerical simulations on some kinds of lattices, evaluating its synchro-
nization interval. We present some discussion on how this interval changes with
the increasing of the number of neighbors of each node, with the increasing of
the total number of nodes and with the intrinsic growth rate. Also, we observe
and discuss some desynchronization phenomenon.

2 Von Bertalanffy’s growth dynamics approach

An usual form of von Bertalanffy’s growth function, one of the most frequently
used to describe chick growth in marine birds and in general marine growths,
is given by

Wt = W∞

(
1− e−

K
3 (t−t0)

)3
, (1)

where Wt is the weight at age t, W∞ is the asymptotic weight, K is von Berta-

lanffy’s growth rate constant and t0 is the teoretical age the chick would have
at weight zero. The growth function, Eq.(1), is solution of the von Bertalanffy’s
growth equation,

g (Wt) =
dWt

dt
=

K

3
W

2
3
t

(
1−

(
Wt

W∞

) 1
3

)
, (2)

introduced by von Bertalanffyy to model fish weight growth, see [11] and [12].

The per capita growth rate, associated to this growth model, is given by

h (Wt) =
g (Wt)

Wt
=

K

3
W

− 1
3

t

(
1−

(
Wt

W∞

) 1
3

)
. (3)
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Fig. 1. (a) Graphics of von Bertalanffy’s maps fr(x), Eq.(4), for several values of intrinsic growth
rate r (0.5 (magenta), 1.5, 3.5, 5.5 and 6.75 (orange)); (b) Bifurcation diagram of von Bertalanffy’s
maps fr (x) in the (K,W∞) parameter plane. The blue region is the stability region. The period
doubling and chaotic regions correspond to the cycles shown on top of figure. The gray region is
the inadmissible region.

In this paper, we consider a family of unimodal maps, the von Bertalanffy
maps, which is proportional to the right hand side of von Bertalanffy’s equation,
Eq.(2), fr : [0, 1] → [0, 1], defined by

fr (x) = r x
2
3

(
1− x

1
3

)
, (4)

with x = Wt

W∞
∈ [0, 1] the normalized weight and r = r(K,W∞) = K

3 ×W
2
3∞ > 0

an intrinsic growth rate of the individual weight, see Fig.1(a).
Remark that, the family of maps that we will study depends on two biolog-

ical parameters: von Bertalanffy’s growth rate constant K and the asymptotic
weight W∞. The following conditions are satisfied:

(A1) fr is continuous on [0, 1];
(A2) fr has an unique critical point c ∈ ]0, 1[;
(A3) f ′

r(x) ̸= 0, ∀x ∈ ]0, 1[ \{c}, f ′
r(c) = 0 and f ′′

r (c) < 0;
(A4) fr ∈ C3 (]0, 1[) and the Schwarzian derivative of fr, denoted by S (fr(x)),

verifies S (fr(x)) < 0, ∀x ∈ ]0, 1[ \{c} and S (fr(c)) = −∞.
Conditions (A1)−(A4) are essential to prove the stability of the only positive

fixed point, [10]. In particular, the negative Schwarzian derivative ensures a
“good” dynamic behavior of the models. In general, the growth models studied
have negative Schwarzian derivative and the use of unimodal maps is usual, see
for example [8] and [9].

The dynamical complexity of the proposed models is displayed at (K,W∞)
parameter plane, depending on the variation of the intrinsic growth rate r. The
analysis of their bifurcations structure is done based on the bifurcation diagram,
see Fig.1(b). For these models, the extinction region and the semistability
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curve have no expressive meaning. Because it is difficult to identify per capita
growth rates, Eq.(3), less than one for all densities, to the extinction case, and
per capita growth rates strictly less than one for all densities, except at one
population density, to the semistability case, except at most a set of measure
zero. We verify that, lim

x→0+
f

′

r (x) > 1 and the origin’s basin of attraction is

empty, except at most a set of measure zero. The fixed point 0 is unstable.

A behavior of stability is defined when a population persists for intermedi-
ate initial densities and otherwise goes extinct. The per capita growth rate of
the population, Eq.(3), is greater than one for an interval of population densi-
ties. The lower limit of these densities correspond to the positive fixed point
AK,W∞ ≡ Ar, of each function fr, Eq.(4), see Fig.1(a). Furthermore, attending
to (A2) and (A3) we have that f2

r (c) > 0, then there is a linearly stable fixed
point Ar ∈ ]0, 1[, whose basin of attraction is ]0, 1[, for more details see [10].

The symbolic dynamics techniques prove to be a good method to determine
a numerical approximation to the stability region (in blue), see Fig.1(b). For
more details about symbolic dynamics techniques see for example [8]. In the
(K,W∞) parameter plane, this region is caracterized by the critical point iter-
ates that are always attracted to the fixed point sufficiently near of the super
stable or super attractive point Ãr, defined by fr (c) = c. Let Ār ∈ ]0, 1[ be
the fixed points sufficiently near of Ãr, then

lim
n→∞

fn
r (c) = Ār, for

(
3K−1A

1
3
r

(
1−A

1
3
r

)) 3
2

< W∞(K) < Ŵ∞(K)

where Ŵ∞(K) represents the super stabel curve of the cycle of order 2, given in
implicit form by f2

r (c) = c. In this parameter plane, the set of the super stable
or super attractive points Ãr defines the super stabe curve of the fixed point.
In the region before reaching the super stable curve, the symbolic sequences
associated to the critical points orbits are of the type CL∞. After this super
stable curve, the symbolic sequences are of the type CR∞. In this parameter
region, the topological entropy is null, [6].

The period doubling region corresponds to the parameters values, to which
the population weight oscillates asymptotically between 2n states, with n ∈ N.
In period-dubling cascade, the symbolic sequences correspondent to the iterates
of the critical points are determined by the iterations f2n

r (c) = c. Analytically,
these equations define the super-stability curves of the cycle of order 2n. The
period doubling region is bounded below by the curve of the intrinsic growth
rate values where the period doubling starts, Ŵ∞(K), correspondent to the
2-period symbolic sequences (CR)∞. Usually, the upper limit of this region is
determined using values of intrinsic growth rate r, corresponding to the first
symbolic sequence with non null topological entropy. Commonly, the symbolic
sequence that identifies the beginning of chaos is

(
CRLR3

)∞
, a 6-periodic

orbit, see for example [8] and [9]. The unimodal maps in this region, also have
null topological entropy, [6].

In the chaotic region of the (K,W∞) parameter plane, the evolution of
the population size is a priori unpredictable. The maps are continuous on
the interval with positive topological entropy whence they are chaotic and
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the Sharkovsky ordering is verified. The symbolic dynamics are characterized
by iterates of the functions fr that originate orbits of several types, which
already present chaotic patterns of behavior. The topological entropy is a non-
decreasing function in order to the parameter r, until reaches the maximum
value ln 2 (consequence of the negative Schwartzian derivative). In [8] and
[9] can be seen a topological order with several symbolic sequences and their
topological entropies, which confirm this result to others growth models. This
region is bounded below by the curve of the intrinsic growth rate values where
the chaos starts. The upper limit is the fullshift curve, defined by fr (c) = 1.
This curve characterizes the transition between the chaotic region and the
inadmissible region. In the inadmissible region, the graphic of any function fr
is no longer totally in the invariant set [0, 1]. The maps under these conditions
not already belong to the studied familie functions and are not good models
for populations dynamics.

3 Synchronization and Lyapunov exponents

Consider a general network ofN identical coupled dynamical systems, described
by a connected, undirected graph, with no loops and no multiple edges. In each
node the dynamics of the system is defined by the maps fr given by Eq.(4).
The state equations of this network, in the discretized form, are

xi(k + 1) = fr(xi(k)) + c

N∑
j=1

lijfr(xj(k)), with i = 1, 2, ..., N (5)

where c is the coupling parameter and L = (lij) is the Laplacian matrix or
coupling configuration of the network. The Laplacian matrix is given by L =
D − A, where A is the adjacency matrix and D = (dij) is a diagonal matrix,
with dii = ki, being ki the degree of node i. The eigenvalues of L are all real
and non negatives and are contained in the interval [0,min {N, 2∆}], where∆ is
the maximum degree of the vertices. The spectrum of L may be ordered, λ1 =
0 ≤ λ2 ≤ · · · ≤ λN . The network (5) achieves asymptotical synchronization if

x1(t) = x2(t) = ... = xN (t) →
t→∞

e(t),

where e(t) is a solution of an isolated node (equilibrium point, periodic orbit
or chaotic attractor), satisfying ė(t) = f(e(t)).

One of the most important properties of a chaotic system is the sensitivity
to initial conditions. A way to measure the sensitivity with respect to initial
conditions is to compute the average rate at which nearby trajectories diverge
from each other. Consider the trajectories xk and yk, starting, respectively,
from x0 and y0. If both trajectories are, until time k, always in the same linear
region, we can write

|xk − xk| = eλk|x0 − y0|, where λ =
1

k

k−1∑
j=0

ln |f ′
r(xj)|.
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Fig. 2. Lypunov exponents estimates for von Bertalanffy’s maps Eq.(4), as a function of the
intrinsic growth rate r.

The Lyapunov exponents of a trajectory xk is defined by

hmax = lim
k→+∞

1

k

k−1∑
j=0

ln |f ′
r(xj)| (6)

whenever it exists. The computation of the Lyapunov exponent hmax gives the
average rate of divergence (if hmax > 0), or convergence (if hmax < 0) of the two
trajectories from each other, during the time interval [0, k], see for example [16].
We note that, the Lyapunov exponents depend on two biological parameters:
von Bertalanffy’s growth rate constant and the asymptotic weight. See in Fig.2
the Lyapunov exponents estimate for von Bertalanffy’s maps Eq.(4).

If the coupling parameter c belongs to the synchronization interval]
1− e−hmax

λ2
,
1 + e−hmax

λN

[
(7)

then the synchronized states xi(t), (i = 1, ...N) are exponentially stable, [17].
The second eigenvalue λ2 is know as the algebraic connectivity or Fiedler value
and plays a special role in the graph theory. As bigger is λ2, more easily
the network synchronizes. As much larger λ2 is, more difficult is to separate
the graph in disconnected parts. The graph is connected if and only if λ2 ̸=
0. In fact, the multiplicity of the null eigenvalue λ1 is equal to the number
of connected components of the graph. Fixing the topology of the network,
the eigenvalues of the Laplacian λ2 and λN are fixed, so the synchronization
only depends on the Lyapunov exponent of each node, hmax. Remark that
the synchronization interval also depend on two biological parameters: von
Bertalanffy’s growth rate constant and the asymptotic weight.

4 Numerical simulation and conclusions

To support our approaches, we consider a regular ring lattice, a graph with N
nodes, each one connected to k neighbors, k

2 on each side, having in each node
the same model, the von Bertalanffy maps fr given by Eq.(4). See in Fig.3
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Fig. 3. Lattices. In a) with N = 4 nodes and k = 2, in b) with N = 6 nodes and k = 2 and in c)
with N = 6 nodes and k = 4. From (a) to (b) the total number of vertices of the network increases
maintaining the number of neighbors of each node, and from (b) to (c) increases the number of
neighbors of each node, but the total number of vertices of the network remains the same.

some example of lattices. If, for instance, N = 6 and K = 4, see Fig.3c), the
adjacency matrix A and the Laplacian matrix L are

A =


0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0

 and L = D −A =


4 −1 −1 0 −1 −1
−1 4 −1 −1 0 −1
−1 −1 4 −1 −1 0
0 −1 −1 4 −1 −1
−1 0 −1 −1 4 −1
−1 −1 0 −1 −1 4

 .

So, the network correspondent to the graph in Fig.3 c) is defined by the system,

ẋ1 = fr(x1) + c(4x1 − x2 − x3 − x5 − x6)
ẋ2 = fr(x2) + c(−x1 + 4x2 − x3 − x4 − x6)
ẋ3 = fr(x3) + c(−x1 − x2 + 4x3 − x4 − x5)
ẋ4 = fr(x4) + c(−x2 − x3 + 4x4 − x5 − x6)
ẋ5 = fr(x5) + c(−x1 − x3 − x4 + 4x5 − x6)
ẋ6 = fr(x6) + c(−x1 − x2 − x4 − x5 + 4x6)

.

For this lattice the eigenvalues of the Laplacian matrix are λ1 = 0, λ2 =
λ3 = λ4 = 4 and λ5 = λ6 = 6. If we consider, for instance, r = 6.60, the
Lyapunov exponent of fr(x) is 0.377, Eq.(6). Then, attending to Eq.(7), this

lattice synchronizes if 1−e−0.377

2 < c < 1+e−0.377

6 ⇔ 0.079 < c < 0.281 and the
amplitude of the synchronization interval is 0.202. For more examples see Table
1. The lattice correspondent to the Fig.3 b) has eigenvalues of the Laplacian
matrix λ1 = 0, λ2 = λ3 = 1, λ4 = λ5 = 3 and λ6 = 4. Thus, for the same
r = 6.60, the lattice synchronizes if 0.313 < c < 0.421 and the amplitude of
this interval is 0.107. Moreover, to the lattice in Fig.3 a), the eigenvalues of the
Laplacian matrix are λ1 = 0, λ2 = λ3 = 2 and λ4 = 4. For the same r = 6.60,
the lattice synchronizes if 0.157 < c < 0.421 and the amplitude of this interval
is 0.264. In Table 1 are presented more examples, where we computed the
synchronization interval for several values of the intrinsic growth rate r, for all
these lattices a), b) and c) of Fig.3. The results of Table 1 allow us to claim:

(C1) From the lattice a) to lattice b) in Fig.3, the total number of vertices of
the network increases maintaining the number of neighbors of each node.
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Synchronization Interval Amplitude
r hmax

Lattice a) Lattice b) Lattice c) Lattice a) Lattice b) Lattice c)

6.50 0.297 ]0.128, 0.436[ ]0.257, 0.436[ ]0.064, 0.291[ 0.308 0.179 0.226

6.55 0.347 ]0.147, 0.427[ ]0.293, 0.427[ ]0.073, 0.285[ 0.280 0.134 0.211

6.60 0.377 ]0.157, 0.421[ ]0.313, 0.421[ ]0.079, 0.281[ 0.264 0.107 0.202

6.65 0.406 ]0.167, 0.417[ ]0.334, 0.417[ ]0.083, 0.278[ 0.250 0.083 0.194

6.70 0.463 ]0.185, 0.407[ ]0.371, 0.407[ ]0.093, 0.272[ 0.222 0.037 0.179

6.73 0.506 ]0.199, 0.401[ ]0.397, 0.401[ ]0.099, 0.267[ 0.202 0.003 0.168

6.74 0.533 ]0.207, 0.397[ (*) ]0.103, 0.265[ 0.190 (*) 0.161

6.75 0.598 ]0.225, 0.388[ (*) ]0.112, 0.258[ 0.163 (*) 0.146

Table 1. Lyapunov exponent, hmax, synchronization interval,
]

1−e−hmax

λ2
, 1+e−hmax

λN

[
, and

amplitude of this interval, 1+e−hmax

λN
− 1−e−hmax

λ2
, for several intrinsic growth rates r, for the

lattices a), b) and c) of Fig.3.(*) In this case, the desynchronization phenomenon occurs, see (C4).

We verify that the synchronization is worse, not only because it begins to
synchronize at a higher value of the coupling parameter c, but also, because
the synchronization interval is shorter.

(C2) Comparing the results for the lattices b) and c) in Fig.3, we may conclude
that maintaining the total number of vertices of the network, but increas-
ing the number of neighbors of each node, the synchronization is better,
not only because it begins to synchronize at a lower value of the coupling
parameter c, but also, because the synchronization interval is larger.

(C3) Observing the columns of Table 1, we verify that, as the intrinsic growth
rate r increases, the synchronization is worse, not just because it begins to
synchronize at a higher value of the coupling parameter c, but also, because
the synchronization interval is shorter.

(C4) Note that, for the intrinsic growth rate r = 6.74 and r = 6.75, for the lattice
b), the upper bound of the synchronization interval is lower than the lower
bound. This means that, there is no synchronization for any value of the
coupling parameter c. This desynchronization phenomenon was expected
because the network (5) synchronizes only if hmax < ln(2R + 1), where
R = λ1−λ2

λ2−λN
, see [17]. In the case of lattice b), we have ln(2R+1) = 0.511, so

there is synchronization only if hmax < 0.511, which do not happens for r =
6.74 and r = 6.75. In all the other studied cases, the Lyapunov exponent
verifies hmax < ln(2R+1), so we have a non empty synchronization interval.
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Abstract. There is built an analogue of Turan-Erdös-Koksma inequality for the dis-
crepancy of the sequence of complex numbers from unit circle. The sequence of PRN’s
generated by the Gaussian integers with the norms comparable to 1 for given modulus
has been considered. The estimate for discrepancy of this points was obtained.
Keywords: Gaussian integers, the sequence of pseudo-random numbers, discrepancy.

1 Introduction

We consider the sequence of complex numbers {zn}, |zn| ≤ 1. Let 0 ≤ ξ1 <
ξ2 ≤ 1, 0 ≤ ϕ1 < ϕ2 ≤ 2π, and let P (ξ, ϕ) denotes the sectorial region of unit
circle |z| ≤ 1

P (ξ, ϕ) := {z ∈ C : ξ1 < N(z) ≤ ξ2, ϕ1 < arg z ≤ ϕ2}. (1)

Denote by F the collection of sectorial region P (ξ, ϕ) for all ξ and ϕ.
The sequence {zn} calls the pseudo-random in unit circle if it induces by a

determinative algorithm and its statistic properties are ”similar” on property
of sequence of the random numbers. The ”similarity” means that this sequence
closely adjacent to uniformly distributed in the disk |z| ≤ 1, and its elements are
uncorrelated. On these properties of the sequence os pseudo-random numbers
(abbreviation: PRN’s) can destine by value of discrepancy DN of the points
z1, z2, . . . , zN :

DN (z1, . . . , zN ) := sup
P⊂C

∣∣∣∣AN (P )

N
− |P |

∣∣∣∣ , (2)

where AN (P ) is the number of points among z1, . . . , zN falling into P , |P |
denotes the volume P, supremum is extended over all sectorial region P of unit
circle |z| ≤ 1.

The similar definition of discrepancy DN has for the s-dimensional sequence

of complex points Z
(s)
n = (z

(s)
1 , . . . , z

(s)
n ), zj ∈ C.

We say that the sequence {zn} passes s-dimensional test on uncorrelatedness

if it passes s-dimensional test on equidistribution (i.e. D
(s)
N (z

(s)
1 , . . . , z

(s)
N )→ 0
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at N →∞).
For the construction of the sequence of PRN’s on [0, 1) use frequently the

congruential recursion of the form

yn+1 ≡ f(yn) (mod m),

where f(u) is an integral-valued function.
We will investigate the sequence of complex numbers produced by recursion

zn+1 ≡ z0 · (u+ iv)m (mod pm) (3)

where z0 and u+ iv are the Gaussian integers, (z0, p) = 1.
For real sequences {xn} produced by congruential recursion, an estimate

for DN can be obtained by the Turan-Erdös-Koksma inequality (see,[3], Th.
3.10).

In our paper we get an analogue to the Turan-Erdös-Koksma inequality for
the sequence of pseudorandom complex numbers.

2 Preliminary results

Notations. Let G denotes the ring of the Gaussian integers, G := {a+ bi :
a, b ∈ Z}; N(z) = |z|2 calls the norm of z ∈ G. For γ ∈ G denote Gγ (re-
spectively, G∗γ) the complete system of residues (respectively, reduced residues
system) in G modulo γ; p is a prime number in Z; p is a Gaussian prime num-
ber. If q is a positive integer, q > 1, then we write eq(x) = e2πi

x
q for x ∈ R.

Symbols ”O” and ”�” are equivalent; νp(α) = k if pk|α, pk+1 6 |α.

Let M > 1 be a positive integer and let y1, y2, . . . , yN be a some sequence
of points form GM and let YM =

{
yn
M

}
, n = 0, . . . , N − 1. For P ∈ F denote

A(P, YM ) the number of points from YM contained in P .
We will adapt the proof from [2] for a construction of an analogue of the

Turan-Erdös-Koksma inequality.
We define the adequate approximation of sectorial region P ∈ F,

P :=

{
z

q
: N1 ≤ N(z) ≤ N2, 0 ≤ ϕ1 < arg z ≤ ϕ2 < 2π

}
, q ∈ N.

The set S(P ) calls the adequate approximation of P if

(i) A(P, YN (M)) = A(S(P ), YN (M)) +O
(
N

1
2

)
,

(ii) volumes |P | and |S(P )| are ”similar”,
(iii) A(S(P ), YN (M)) has a representation by an exponential sum.

Let N1, N2, ϕ1, ϕ2 are the parameters in the definition of P . For r, s ∈ ZM
we set r = r

M , s = s
M .

Determine

Sr,s :

{
β =

α

M
: α ∈ GM , r < N(β) ≤ r +

1

M
, 2πs < argα ≤ 2π

(
s+

1

M

)}
.

(4)
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Put

S(P ) := ∪
r,s

Sr,s⊂P

Sr,s.

It is obvious that S(P ) = P (N1, N2, ψ1, ψ2), where

N1 = min
{ a

M
, a ∈ ZM : N1 ≤

a

M

}
N2 = min

{
b

M
, b ∈ ZM : N2 ≤

b

M

}
ψ1 = min

{
2πa

M
, a ∈ ZM : ψ1 ≤

2πa

M

}
ψ2 = min

{
2πb

M
, b ∈ ZM : ψ2 ≤

2πb

M

}
We proved the following analogue of the Turan-Erdös-Koksma inequality (see,
[3])

Theorem 1. Let M > 1 be integer. Then for any sequence {yn}, yn ∈ GM ,
the discrepancy DN of points

{
yn
M

}
satisfies to inequality

DN ≤ 2

(
1−

(
1− 2π

M

)2
)

+

+
1

M

∑
γ∈GM
γ 6=0

min

(
1

| sinπ<γ|
,

1

| sinπ=γ|

)
1

N

(
|SN |+O

(
N

1
2

))
,

where SN =
N−1∑
n=0

eM (<(γyn)).

Proof. By an analogue with the work[2] we infer

RN (S(P )) :=
A(S(P ))

N
− |S(P )| = 1

N

N−1∑
n=0

χS(P )(xn)− |S(P )|, (5)

where xn = yn
M , χ∆ is the characteristic function of the set ∆.

By the equality

χSr,s(x) =
∑

α∈Sr,s

1

M2

∑
γ∈GM

eM (γ(α− x))

we get

|RN (S(P ))| ≤

≤
∑

0 6=γ∈GM

1
M2

∣∣∣∣∣ ∑
z(r,s)∈Sr,s

eM (−<(γz(r, s)))

∣∣∣∣∣ ·
∣∣∣∣ 1N N−1∑

n=0
eM (<(γyn))

∣∣∣∣ , (6)
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where z(r, s) is the complex number such that

N(z(r, s)) =
r

M
, arg z(r, s) =

2πs

M
.

In order to calculate the first inner sum over Sr,s one needs an estimate of
the sum ∑

M
=

∑
N1<N(ω)≤N2

ϕ1<argω≤ϕ2

eM (<(γω)), (0 6= γ ∈ GM ). (7)

The sum
∑
M can be considered as a sum of coefficients of Dirichlet series

for the Hecke Z-function over the Gaussian field Q(i):

Zm(s, δ0, δ1) =
∑

06=ω∈G

e2πi<(ωδ1)

N(ω + δ0)s
e4mi argω, (<s > 1).

Putting δ0 = 0, δ1 = γ
M , we obtain for any T > 1 by a standard way the

following estimates:

∑
N(ω)≤X

eM (γω) = (ϕ2 − ϕ1)
∑

)N(ω) ≤ xeM (γω) +O

 1

T

∑
N(ω)≤x

1

+

+O

(ϕ2 − ϕ1)

T∑
m=1

∣∣∣∣∣∣
∑

N(ω)≤x

eM (γω)e4mi argω

∣∣∣∣∣∣
 .

(8)

∑
N(ω)≤x

eM (γω)e4mi argω �ε
x

1
2+ε

M
1
4

+M
1
2 (|m|+ 3)1+ε (9)

(for the details, see Chapter 2 of [1], for example).
Next, we have a simple analogue of the estimate of linear exponential sum

over G ∣∣∣∣∣ ∑
N1<N(ω)≤N2

22πi<(αω)

∣∣∣∣∣ ≤
≤ (N2 −N1)

1
2 min

(
(N2 −N1)

1
2 , 1
| sinπ<α| ,

1
| sinπ=α|

)
.

(10)

Now by (4)-(9), putting T = x
2
3 and taking unto account that |P | =

ϕ2−ϕ1

2 (N2 −N1), we obtain our assertion. ut

3 Sequence of PRN’s produced by the cyclic group En.

Let p ≡ 3 (mod 4) be a prime integer. Consider the set of the classes of residue
(mod pn) over G, such that for every α ∈ En we have N(α) ≡ ±1 (mod pn).
Respectively a convolution of multiplication the set En forms a group. It is
well known that a regular generative element of En is a generative element for
any E`, ` = 1, 2, . . . , n. Moreover, |En| = 2(p + 1)pn−1 (|En| is the number of
elements in En).
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We fix the generative element of En and let some z0 ∈ Gn, (N(z0), p) = 1.
We call z0 an initial value for the sequence {zm}, where zm = z0(u + iv)m,
m = 0, 1, . . . , N − 1.

Lemma 1. ([4], pp.232-233)
Let p ≡ 3 (mod 4), n > 3, and let u + iv is a generative element of the

group En. Then for every 0 ≤ ` ≤ pn−2, 0 ≤ k < 2(p+ 1), we have

(u+ iv)2(p+1)p`+k ≡ A(`, k) + iB(`, k) (mod pn),

where

A(`, k) ≡ A0(k) +A1(k)`+ · · ·+An−1(k)`n−1 (mod pn),

B(`, k) ≡ B0(k) +B1(k)`+ · · ·+Bn−1(k)`n−1 (mod pn).

Moreover,

Aj(k) = Aju(k)−Bjv(k), Bj(k) = Ajv(k) +Bju(k), j = 0, 1, . . . , n− 1;

A0 ≡ 1 (mod p), B0 ≡ 0 (mod p);

A1 ≡ 0 (mod p3), A2 = p2A′2, (A′2, p) = 1;

B1 = pB′1, (B′1, p) = 1, B2 ≡ A3 ≡ B3 ≡ · · · ≡ An−1 ≡ Bn−1 ≡ 0 (mod p3);

u(0) = 1, v(0 = 0), (u(p+ 1), p) = 1, p||v(p+ 1);

(v(k), p) = 1 for k 6= 0, p+ 1.

Corollary 1.

p||A1(k), Aj(k) ≡ 0 (mod p2), j = 2, 3, . . . ; k 6= 0, p+ 1;

p2||A1(0), Aj(0) ≡ 0 (mod p3), j = 2, 3, . . . ;

p2||A1(p+ 1), p2||A2(k), Aj(p+ 1) ≡ 0 (mod p3), j = 3, 4, . . . ;

p2||B2(k) if k 6= 0, p+ 1; B2(k) ≡ 0 (mod p3) else;

Bj(k) ≡ 0 (mod p3), j = 3, 4, . . . ; νp(B1(k)) = 1, k = 0, 1, . . . , 2p+ 1.

Lemma 2. Let α ∈ Gpn , α = phα0, (α0, p) = 1, h < n, and let zm = z0(uiv)m

(mod pn), m = 0, 1, . . . , 2(p+ 1)pn−1 − 1.
Then ∣∣∣∣∣∣

N−1∑
j=0

epn−1(<(αzj))

∣∣∣∣∣∣ ≤ 2p
n−h−r−1

2 ,

where r is determined from (12) and depends on α.

Proof. Let us denote

νp(α) = h, 0 ≤ h < n− 1, α = phα0, (α0, p) = 1;

Mh = 2(p+ 1)pn−1−h.
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Then we have∣∣∣∣∣
M0−1∑
m=0

epn−h−1(<(α0z
m))

∣∣∣∣∣ = p2h

∣∣∣∣∣
Mh−1∑
m=0

epn−h−1(<(α0z
m))

∣∣∣∣∣ =

= p2h

∣∣∣∣∣∣
2p+1∑
k=0

pn−h−1−1∑
`=0

epn−h−1(aAk(`)− bBk(`))

∣∣∣∣∣∣ .
(11)

For every k = 0, 1, . . . , 2p+ 1, we consider the polynomial

aAk(`)− bBk(`) =

n−1∑
j=0

cj(k)`j ,

where

cj(k) = (aAj − bBj)u(k) + (bAj − aBj)v(k), j = 0, 1, . . . , n− 1.

In particular,

c1(k) = (aA1 − bB1)u(k) + (bA1 − aB1)v(k) =

= (au(k) + bv(k))A1 − (bu(k)− av(k))B1,

c2(k) = (aA2 − bB2)u(k) + (bA2 − aB2)v(k) =

= (au(k) + bv(k))A2 − (bu(k)− av(k))B2.

(12)

We see that for all values of k = 0, 1, . . . , 2p+ 1

νp(A1(k)) 6= νp(B1(k)), νp(A2(k)) 6= νp(B2(k)).

Now if for given α0 and k the inequality

νp(c1(k)) ≥ νp(c2(k)) = r (13)

holds, then the inner sum over ` in (10) can be estimated as p
n−h+r−1

2 (such
sum by consequent slope leads to the Gaussian sum).

In other cases (i.e., νp(c1(k)) < νp(c2(k))) this sum is vanishes.
Hence, from (10)-(12) we infer the assertion of lemma. ut

Lastly we prove the main result

Theorem 2. Let the sequence {zn} is generated by the recursion

zm+1 ≡ zm(u+ iv) (mod pn),

where z0 ∈ Gpm , u + iv is a generative element of the group En of classes of
residue modulo pn with the norms that ≡ 1 (mod pn). Then the discrepancy of

the points
{
zm
pm

}
, m = 0, 1, . . . , N − 1, N ≤ 2(p+ 1)pn−1 satisfies the following

inequality

DN ≤ 2

(
1−

(
1− 2π

pn

)2
)

+N−1p
n
2 log pn.
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Proof. Indeed, for every h, 0 ≤ h ≤ n− 1 there is at most O(pn−h−r) numbers
α0, α0 ∈ Gpn−h for which νp(c1(k)) ≥ νp(c2(k)) = r, where c1(k), c2(k) deter-
mined by (11).

Now, by Lemma 2 and Theorem 1 we immediately obtain the proof of
theorem. ut

Theorem 1 makes possible to prove that the sequence of complex numbers zn
produced by the recursion

zn+1 ≡ αz−1n + β + γzn (mod pn),

α, β, γ, z0 ∈ G, (α, p) = (z0, p) = 1, β ≡ γ ≡ 0 (mod p), passes s-dimensional
test on equidistribution and unpredictability.
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Abstract. Studied the sequence of pseudo-random numbers produced by the linear-
inversive congruential generator with the special conditions on the parameters of
generator. Obtained the individual and averaged by initial value the estimates of
exponential sums on the sequence of pseudo-random numbers.
Keywords: pseudo-random numbers, linear-inversive generator, discrepancy, expo-
nential sum.

1 Introduction

The Nonlinear methods for pseudo-random number generation provide rea-
sonable equidistribution and statistical independence properties. Unfortunately
a classical standard method of generating the pseudo-random numbers in the
interval [0, 1) by a linear recursion yn+1 ≡ ayn + n (mod m) does not inquire
with this problem.

A particularly promising nonlinear method is the inversive congruential
method where nonlinearity is achieved by employing the operation of multi-
plicative inversion with a respect to given modulus of a typical representer of
such generating is the following congruential recursion

yn+1 ≡ ay−1n + b (mod M), (1)

where u−1 is a multiplicative inverse modM if (u,M) = 1.
Usually, modulus M select is equal to an odd prime (see, [1][2],[4]) or an

odd prime power (see,[3],[6],[7],[8]). However, it has a priority of existence for
the linear-inversive congruential generator.

yn+1 ≡ ay−1n + b+ cyn (mod pm). (2)

Example, in [3] it is obtained the condition for which a generated sequence
{yn} has a period of maximal length for p = 2. In [8] it was studied the gener-
ator (2) with (y0, p) = (a, p) = 1, b ≡ c ≡ 0 (mod p) and inferred the condition
when {yn} has a maximal period τ . For normalizing sequence { ynpm } there is
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obtained a non-trivial estimate of discrepancy DN

(
y1
pm , . . . ,

yN
pm

)
, N ≤ τ .

The sequence {xn}, xn = yn
pm we call the sequence of pseudo-random num-

bers.
In present paper we investigate the linear-inversive generator (2) under con-

ditions a ≡ b ≡ 0 (mod p), (c, p) = 1. Notice that the conditions a ≡ b ≡ 0
(mod p), (c, p) = 1 or (a, p) = 1, b ≡ c ≡ 0 (mod p) guarantee an existence of
yn for any value of n if (y0, p) = 1.

W.-S. Chou[1] shows that for for generator (1) the conditions a ≡ 0 (mod p),
(b, p) = 1 produce corresponding sequence {yn} with a period τ = 1. It is not
alright for an applications. We will prove that the sequence {yn} produced by
(2) has reasonably large period. As well, we give the description of yn as the
polynomial on n and initial value y0. It makes possible to obtain an acceptable
estimate for the discrepancy function DN .

Throughout this paper will be used the following

Notation:

For an integer q > 1 we denote by Zq the residue ring of integers
modulo q.
As usual, we denote Z∗q the set of invertible elements of Zq.

The notation eq(x) stands for e2πi
x
q .

For u ∈ Z∗pm we use the notation u−1 if uu−1 ≡ 1 (mod pm).

We write νp(a) = k if pk||a.

2 Auxiliary lemmas and preliminary results

In this section we shall gather some auxiliary results which we will use
during the course of the proof of theorems.

Lemma 1. Let p be a prime and let f(x) ∈ Z[x] be a polynomial of degree n,
n ≥ 2,

f(x) = a1x+ a2x
2 + a3x

3 + · · ·+ anx
n,

where νp(aj) ≥ νp(a2) > 0, j ≥ 3.
Then the following estimates∣∣∣∣∣∣

∑
x∈Zpm

epm(f(x))

∣∣∣∣∣∣ ≤
{

0 if νp(a1) < νp(a2),

2p
m+νp(a2)

2 if νp(a1) ≥ νp(a2).

hold.

This assertion is a corollary of the estimate of Gauss sum.
Let {xn} is a sequence of numbers from [0, 1). Form the sequence of s-

dimensional points X
(s)
n = (xn, xn+1, . . . , xn+s−1), n = 1, s, . . . , N . We say

that {xn} passes the s-dimensional discrepancy test if for every j = 1, 2, . . . , s

the sequence {X(j)
n } has a discrepancy which tends to zero for N →∞.

Consider a point sets Ps from [0, 1)s for which all coordinates of all points are
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rational numbers of the form a
q , 0 ≤ a < q. Let us denote C(q) =

(
−a2 ,

a
2

]
∩Z,

C∗(q) = {a ∈ C(q)|(a, q) = 1}. Let Cs(q) (respectively, C∗s (q)) be the inner
product of s copies of C(q) (respectively, C∗(q)).

Lemma 2 (Niederreiter,[5]). For an integer M ≥ 2 and y0, . . . , yN−1 ∈ Zs,
let P be the point set consisting of the fractional parts {M−1y0}, . . . , {M−1yN−1}.
Then

DN (P ) ≤ 1−
(

1− 1

M

)s
+

∑
h∈C∗

s (M)

1

r(h,M)

∣∣∣∣∣ 1

N

N−1∑
n=0

e

(
1

M
h · yn

)∣∣∣∣∣ .
From this lemma it is seen that the non-trivial estimates of exponential sums

over the sequence of {X(s)
n } are important for the further investigation we

presented.

Proposition 1. Let {yn} be the sequence produced by the recursion (2) with
the parameters a ≡ b ≡ 0 (mod p), (c, p) = (y0, p) = 1. There are exist the
polynomial Fk(u, v) ∈ Z[u, v] such that for k ≥ m+ 1 we have

yk ≡ Fk(y0, y
−1
0 ) := A0k +A1ky0 +B1ky

−1
0 +

+B2ky
−2
0 +B3ky

−3
0 + · · ·+Bm1ky

−m1
0 (mod pm),

Bjk ≡ 0 (mod pm0), j ≥ 4, m0 = 2νp(a) + νp(b), m1 ≤
[

m

νp(a · b)

]
,

(3)

where the coefficients Aik, Bjk defined by the following relations (4) and(5).

Proof. By (2) we sequentially infer

y1 ≡ ay−10 + b+ cy0 (mod pm)

y2 ≡
a

ay−10 + b+ cy0
+ b+ c(ay−10 + b+ cy0) ≡

≡ ac−1y−10

(
1− c−1y−10 (b+ ay−10 ) + c−2y−20 (b+ ay−10 )2 + · · ·+

+b+ c(ay−10 + b+ cy0)
)
≡

≡ A0,2 +A1,2y0 +B1,2y
−1
0 +B2,2y

−2
0 +B3,2y

−3
0 + · · · ,

where modulo pm0 , m0 = 2νp(a) + νp(b), we have

A0,2 = b(1 + c), A1,2 = c2, B1,2 = a(c+ c−1), B2,2 = −abc−2,
B3,2 = ab2c−3, Bj,2 = 0, j = 4, 5, . . . .

Let

yk = A0,k +A1,ky0 +B1,ky
−1
0 +B2,ky

−2
0 +B3,ky

−3
0 +B4,ky

−4
0 + · · · .

Then modulo pm0

yk+1 = (b+ cA0,k) + cA1,ky0 + (cB1,k + aA−11,k)y−10 +

+ (cB2,k − aA0,kA
−2
1,k)y−20 + (cB3,k − aA−21,kB1,k + aA−20,kA

−3
1,k)y−30 .
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Hence, after simple calculations we deduce

A0,3 = b(1 + c+ c2), A1,3 = c3, B1,3a(c2 + 1 + c−2),

B2,3 = −ab(2c−1 + c−2), B3,3 = ab2c−2 − a2c−2(c+ c−1) + ab2c−6(1 + c)2,

and for k > 3
A0,k+1 = b c

k+1−1
c−1 , A1,k+1 = ck+1, B1,k+1 = a(c2 + 1) + a(k − 1)c−k,

B2,k+1 =

−abc
k−3(2c−1 + c−2) + abc−2(k−1) c

[ k+1
2 ]
−1

c−1 if c 6= 1,

3ab+ 2−1abk if c = 1.

(4)

Similarly,
B3,k+1 ≡ ac−2(b2g1(k) + ag2(k)) (5)

where g1(k), g2(k) ∈ Z[x], g1(2) = g2(2) = 0. ut

Corollary 1. Let {yn} be the sequence produced by the recursion (2), more-
over, νp(b) < νp(a). Then in the assumptions of Proposition 1 for k ≥ 3, k ≡ z
(mod δ), 0 ≤ z ≤ δ − 1, where δ is an index c mod p, we have

yk ≡ y0 + kpνp(u)+1H1(z, y0, y
−1) + k2pνp(au)+1H2(z, y0, y

−1)+

k3pνp(au)+2 + · · · (mod pm)

Proof. If c ≡ 1 (mod p) we have for p > 3

ck = (1 + pu)k ≡ 1 + pa1k + pa2k
2 + pa3k

3 + · · ·+ pλsasp
s (mod pm),

where νp(aj) = jνp(u), j = 1, 2, 3, . . .;
νp(aj) ≥ 4νp(u), j = 4, 5, . . ..

Hence, in this case we find from Proposition 1

yk ≡ y0 + kpνp(u)+1G1(y0, y
−1
0 ) + k2pνp(au)+1G2(y0, y

−1
0 )+

+ k3pνp(au)+2G3(k, y0, y
−1
0 ) (mod pm).

(6)

In the case c 6≡ 1 (mod p) we denote through δ an index of c, 1 < δ ≤ p−1,
modulo p.

Let k = δ`+ z, 0 ≤ z ≤ δ − 1, ` ≡ kδ−1 + zδ−1 (mod pm)

ck = (1 + pu)` · cz =

(
1 + p`u+

`(`− 1)

2
p2u2 + · · ·

)
cz,

c−k ≡ 1− p`u+

(
`+

`(`− 1)

2
p2u2 + · · ·

)
cz.

And we again obtain the relation a type of (6)

yk ≡ y0 + kpνp(u)+1G′1(z, y0, y
−1
0 ) + k2pνp(au)+1G′2(z, y0, y

−1
0 )+

k3pνp(au)+2G′3(z, k, y0, y
−1
0 ) (mod pm),

(7)

where Gi, G
′
i are the polynomials on k with the coefficients depending on y0,

y−10 , z.
The corollary is established. ut
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Corollary 2. The period of the sequence {yn} generated by (2) is equal to
τ = pm−νp(b) if νp(b) < νp(a).

Indeed, from (4), (5) Aj,k+3 ≡ Aj,3 (mod pm),
Bj,k+3 ≡ Bj,3 (mod pm),
j = 0, 1, 2, 3, . . .

if and only if k ≡ 0 (mod pm−νp(b)).

3 Main results

First in this section we prove the Theorems 1-3 on the estimate of exponen-
tial sums of the sequences of PRN’s {yn} generated by recursion (2).

Theorem 1. Let (h1, h2, p) = 1, νp(h1 + h2) = α, νp(h1k + h2`) = β and let
{yn} be produced by (2). The the following estimates

∣∣∣∣∣∣
∑

y0∈Z∗
pm

epm(h1y` + h2yk)

∣∣∣∣∣∣ ≤


0 if α < β + νp(b),
m− α− β > 0,

2p
m+β+νp(b)

2 if α ≥ γ + νp(b),
m− α− β > 0,

pm−1(p− 1) in otherwise

hold.

Proof. For 0 ≤ k, ` < τ = pm−νp(b) we have for c 6= 1:

h1yk + h2y` = B0 +B1y0 +B−1y
−1
0 +B−2y

−2
0 + pν0H(y0, y

−1
0 ),

where

B1 = b

(
h1c

k + h2c
`

c− 1

)
,

B−1 = a(h1 − h2)(c2 − 1) + a
[
(kh1c

k + `h2c
`)− (h1c

k + h2c
`)
]
,

B−2 = −ab(2c−1 + c−2)(h1c
k−1 + h2c

`−1)+

+ abc2
h1c

k1 + h2c
`1 − (h1c

k2 + h2c
`2)

c− 1
,

ν0 = min (νp(ab
2), νp(a

2)).

Substituting ck and c` by the polynomials on k or ` and applying Lemma 1 we
deduce the statement of the theorem. ut

The case c = 1 gives the same result.

Theorem 2. Let a linear-inversive generator (2) generates the sequence of
PRN’s {yn}. Then for N ≤ τ = pm−νp(b) we have the following bounds∣∣∣∣∣

N−1∑
n=0

epm(hyn)

∣∣∣∣∣�

m if m > νp(bh),

p
m+νp(h)

2

(
N
τ + log τ

)
if νp(bh) < m,

N otherwise.
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This assertion follows from Corollary 1 and Lemma 1.

Theorem 3. Let the sequence {yn} be generated by (2) with parameters a, b,
c, y0, (y0, p) = (c, p) = 1 and νp(a) > νp(b) = α ≥ 1. Then for every h ∈ Z,
νp(h) = s, we have

1

ϕ(pm)

∑
y0∈Z∗

pm

∣∣∣∣∣
N−1∑
n=0

epm(hyn)

∣∣∣∣∣� N
1
2 +Np−

m−1
2 .

In order to prove this theorem it is sufficiently to apply the schema of argument
from the proof of theorem 3 in [8].

Now, taking into account that equidistribution and statistical independency
(unpredictability) properties of the uniform PRN’s can be analyzed on the
discrepancy of certain point sets in [0, 1)s we state from the Theorems 2 and 3
and Lemma 3 the following statement:

Theorem 4. Let {yn} generated by (2) with (y0, p) = (c, p) = 1, νp(a) >
νp(b) ≤ 1. Then for the sequence {xn}, yn = xn

pm we have

DN (x0, x1, . . . , xN−1) ≤ 1

pm
+ 2N−1p

m−νp(b)
2

(
1

p

(
2

π
log pm +

7

5

)2

+ 1

)
.

Moreover, for almost all y0 ∈ Zpm

DN (y0, x0, x1, . . . , xN−1) ≤ 1

pm
+ 3N

1
2 p−

m−νp(b)
4 log pm.

So, the linear-inversive congruential generator (2) produces the sequences of
PRN’s {xn} that involve the properties of equidistribution and unpredictability.
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