
 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

Hysteresis modelling of cold-formed steel shear walls 
with neural networks  

 
Abdollahzadeh G. R., Ghobadi F. 

 
Department of Civil Engineering, Babol University of technology, Babol, Iran 
E-mail: Abdollahzadeh@nit.ac.ir  
Department of Civil Engineering, Shomal University, Amol, Iran 
E-mail: faridghobadi@yahoo.com  

 
Abstract: In this paper is tried to recognize the pattern of hysteresis behavior of cold-
formed steel shear walls with using neural networks. Recognizing and investigating of 
the hysteresis behavior of structural elements is one of the best methods for economical 
and safe design of structures. In this way, in addition to the observation of the behavior 
of elements especially in cyclic loading, useful information like: dissipated energy, 
maximum load and maximum displacement can be obtained. If the hysteresis behavior 
can be modeled, then the aforementioned information will be obtained from the 
simulated model and this model can be used for different loading pattern. In this study, 
with defining proper input variables, defining the number of hidden layers in neural 
network model and using the experimental results, is tried to make a model that contains 
the characteristics of the parameters that are important in hysteresis behavior.  
Keywords:   hysteresis modeling, neural networks, pattern recognition, shear walls. 
 
1. Introduction 
     Neural networks are appropriate alternative for primitive methods in the case 
of modeling materials and structures with complex behavior. This alternative 
method is based on the information that obtained from experimental results. 
Computational intelligence methods like neural networks make this modeling 
approach possible. The information that is needed for training network obtain 
from experimental data and store in neural networks, then the trained neural 
network can be used for simulating. 
     For training the neural network in this article, the information obtained from 
experimental data that was available for a cold-formed steel shear wall is used. 
The experiment has been conducted in north texas university in 2012. The most 
common seismic lateral force resisting system for light steel framing is wood 
sheathed, cold-formed steel framed, shear walls. A wide body of testing has 
been conducted on these walls as embodied in the AISI-S213-07 standard. The 
shear walls designed for a two-story ledger-framed building that will undergo 
full-scale shake table test. In order to explore the expected performance-basis of 
shear walls in the CFS-NEES building tests were conducted to understand the 
impact of practical details and to provide the necessary information for 
subsequent hysteretic characterization of the shear walls. The experimental 
information is used to train the neural network. The hysteretic behavior contains 
a lot of information like: initial stiffness, the amount of strength and stiffness 
degradation and the amount of energy dissipated in the system. So, modeling 
this behavior with new methods like neural networks can be valuable. In the 
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proposed neural network model, with defining proper input variables and 
training the network, the hysteresis curve with considering the effects of 
degradation in stiffness is predicted. 
      In mathematical models because of some simplified assumptions, the real 
hysteresis curve is different from the simulated one. In this paper with defining 
the hysteresis parameters is tried to train the neural network, then with using 
trial and error method and with changing the internal parameters of network the 
hysteresis curve can be drawn. At last the outputs of network will be compared 
with experimental data and the importance of each variable will be determined. 
 
2. outline of test 
cyclic tests were performed on a 4ft wide and 9ft high adaptable structural steel 
testing frame. Figure 1 depicts the test frame. Shear walls were bolted to a steel 
base beam. 

 
(a) 

 
(b) 

Fig. 1. Shear wall test set up (a) schematic of testing rig with specimen, (b) test 
frame[1] 
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     The CUREE protocol was chosen for the cyclic tests[2]. The CUREE basic 
loading history is shown in the Figure 2. It includes 43 cycles with displacement 
amplitudes that are based on a percentage of ultimate displacement from the 
monotonic test. The CUREE protocol is in accordance with the test method 
CASTM E2126(2007). 

 
Fig.2 CUREE loading history[1] 

 3. Result of test 
 
Table 1 shows the characteristics of the experimental specimen. 
 
Table 1.charactrristic of the shear wall 
Wall dimensions 4 ft × 9ft Temperature 77F 

Loading type Cyclic Humidity 43% 
Front sheathing OSB Maximum +load  5060lbf  
OSB Thickness 7/16’’ Maximum -load -3830lbf 
Back sheathing Gypsum board Lateral displacement -2.435 in 

Fastener spacing 12in Average displacement  2.653in 
 

 
Fig.3 hysteresis behavior of the shear wall[1] 
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Fig.3 shows the hysteresis behavior of the shear wall that is obtained from 
experimental results. In the next step this hysteresis behavior is simulated with 
neural networks. Different views of shear wall are shown in fig.4.  

 
 

         
             Back side[1]                                                      Front side[1]  

            
                  Gypsum board [1]                                       OSB failure[1] 

Fig.4 Different views of shear wall 
 

4 Neural network model 
     In this part the information obtained from load-displacement curve is used for 
estimating the hysteresis curve. At the present, Feed-Forward neural networks are 
widely used in the field of engineering. These neural networks are usually 
constructed with multiple layers of artificial neurons: an input layer, output layer, 
and hidden layers. In neural network architecture, the number of neurons in the 
input and output layers are determined by the formulation of the problem. The 
number of neurons in the input and output layers is related to the capacity of the 
neural network. The neural network requires sufficient capacity to represent the 
complexity of the underlying information in the training data. However, the degree 
of complexity of the problem cannot easily be quantified [3]. 
     Back-propagation is a learning algorithm in Feed Forward networks. The back-
propagation algorithm is a method of changing the connection weights so that the 
Feed-Forward network learns the input-output pairs in the training set. The learning 
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 rule is based on the gradient descent algorithm, which suggest changing each 
weight proportional to the gradient of cost function (error measure) at the present 
location. It necessarily decrease the error (or cost function) if the learning rate is 
small enough. In order to represent the behavior of the path dependency, multi-
point models which employ additional input variables such as immediate previous 
states of variables or variables increments should be used.  
It was mentioned earlier that the relationship between the neurons in the hidden 
layers, the capacity of the neural network, and the degree of complexity in a given 
problem cannot be easily quantified. The adaptive technique allows the new 
neurons to be automatically added to hidden layers during the training, which is 
shown schematically in fig.7.  

 
Fig.7. Adaptive feature[4]  

 
4-1  Nonlinear hysteretic model 
Even if great advances have been made in the inelastic modeling of materials and 
structural components, nonlinear analysis remains challenging [5,6] , especially in 
the case of cyclic or dynamic loading. Classical plasticity models combine 
properties of isotropic and kinematic plasticity to explain the cyclic or dynamic 
behavior[7-9]. However, those hardening rules have some difficulties in illustrating 
the bauchinger effect in materials and hysteretic degradation in structural 
components. In a typical cyclic response, one strain value is corresponding to 
multiple stress, and vice versa. This is referred to as one-to-many mapping[10]. The 
one-to-many mapping prevents the neural network from learning hysteretic 
behaviors. Introducing new additional variables in the input layer allow the neural 
network to create and learn a unique mapping between stresses and strains. Fig.8. 
shows a neural network hysteretic model developed by Yun et al.(2006) [11]. 
 

 
Fig.8. Neural network based cyclic model by Yun (2006) [11] 
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The proposed neural network model contain 5 input variables of  ε n-1 ,σn-1,ζ n , ε n 
and  Δη n in strain control form. Two hysteretic parameters of ζ n and  Δη n were 
introduced to transform the one-to-many mapping to single valued mapping[12]. 
These were defined as ζ n= σn-1 εn-1   and  Δη n= σn-1 Δεn , where the subscript  n 
indicates the   n-th incremental step. The variable ζ relates to strain energy in the 
previous step along the equilibrium path. The variable Δη  indicates the direction 
for the next step along the equilibrium path[11]. 
 
4-2 Neural network for hysteretic behavior of shear walls 
In this section, the neural network for modeling the cyclic behavior of shear wall is 
made. The neural network is defined in the load and displacement domain instead 
of the stress and strain domain, as can be seen in equation 1.  
 

Fn=FNN[{Dn, Dn-1, Fn-1, ζn, Δηn, En-1}]                          (1) 
 

Two hysteretic parameters are defined as  ζn = F n-1 D n-1 and ηΔ  n  = Fn-1 ΔDn , 
where the subscript n indicates the n-th incremental step. These hysteretic 
parameters are key variables for unique mapping by determining the quadrant and 
path direction. Each path corresponds to the unique combination of the signs of the 
three variables  Δηn  ,ζ n and Dn as can be seen in fig.9. In order to represent the 
degradation of stiffness and strength in consecutive cycles, a degradation parameter 
is introduced as an input variable and defined as En-1= En-2 +|ܨ௡ିଵ  

 ௡ିଵ |�. Theܦ�
degradation parameter indicates the accumulated strain energy until the previous 
step. The combination of current rotation and the degradation parameter provides 
the neural network with information about the level of fatigue and relaxation. For 
example, input variables including a large value degradation parameter predicts less 
load than when input variables contain a smaller value degradation parameter. 
Fig.10. illustrates the unique mapping with degradation. The trained neural network 
models should be verified with the target response in recurrent mode. In the 
recurrent mode, the output predicted by the trained neural network models is 
utilized in computing the input values in the next step, as can be seen in fig.11. 
Therefore, the inputs in the current step such as the hysteretic parameters and 
previous states of forces and displacement are determined with the output of the 
neural network in the previous step. This mode suits for nonlinear analysis 
techniques. 
 

 
Fig.9. unique mapping by hysteretic parameters and current rotation 
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Fig.10. mapping with degradation        Fig.11. network in recurrent mode[13] 
 
 
The experimental results in fig.3 exhibit a highly nonlinear response including 
pinching effects and light deterioration. These complicated phenomena are 
difficult to express with mathematical equations. From the experimental results, 
training data sets were collected and constructed with moment and rotation pairs 
digitized at random intervals. 
 
Fn=Fnn[{Dn, Dn-1, Fn-1 ,ζn ,Δηn,En-1}:{6-15-15-1}]                       (2) 

 

As seen in equation (2) for modeling the hysteresis behavior,6 input variable is 
used. this network contain 2 hidden layers and 15 neurons per hidden layer. 
After training the network with 12000 epochs, neural network model is tested in 
recurrent mode. As can be seen in fig.12. with using the outputs of the network 
the hysteresis curve can be drawn. The comparison between two curves shows 
that this neural network with defined variables can estimate the hysteresis 
behavior very well. So, the neural network with 6 input variable can be a good 
substitute for modeling this problem instead of complicating models. In 
summary, it can be said that this example shows, with using a neural network 
with proper design the hysteresis curve can be drawn with good accuracy. The 
importance and effect of each variable is shown in fig.13. As can be seen from 
fig.12. the effects of degradation parameter is clear. As can be seen from fig.13., 
it can be said that the importance of lateral load in the previous step is high and 
the importance of E is low in predicting the outputs of the network. 
5  conclusion 
In this study, the modeling of hysteresis behavior of shear wall is described. The 
proposed model is based on the information obtained from experiment and 
unlike the component method, that is not dependent on the mechanical 
characteristics and mathematical equations. As formerly mentioned with 
defining degradation parameters in input variables, the effects of degradation in 
stiffness and strength was seen in hysteresis curve. Considering aforementioned 
parameters in mathematical model is so complex. In this study with fitting a 
curve to outputs of the network the hysteresis curve is drawn . it can be seen that 
the curve is in a better situation than mathematical model. One of the defect of 
the neural network is that there is no perception toward the internal components  
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and only the general behavior of the connection can be seen.  the proposal for 
future studies of the author is that if this neural network model can be combined 
with component method and the effects of degradation in stiffness and strength 
can be considered in the model then the model will be shown the real behavior 
of the shear wall and the performance can be seen in the model. 
 

 
Fig.12. The hysteresis curve (the outputs of network) 

 
 

 
fig.13. The importance of each variable in predicting the outputs 
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Abstract: Reactive distillation is one of the complex processes encountered in process 
industries as a result of the integration of both reaction and separation in a single unit. 
Nowadays, the modelling of this process has become a big challenge to Process 
Engineers. The use of a reliable model that can handle complex functions is very 
necessary to represent this complex process. It has been discovered that Neural Network 
can be used to handle complex functions very well. Therefore, the modelling of the 
reactive distillation process considered in this work has been carried out with the aid of a 
dynamic neural network known as Layer-Recurrent Neural Network. The simulated 
results obtained from the developed Neural Network models were compared with the 
measured results to confirm the validities of the developed models. 
 
Keywords: Neural Network, Reactive distillation, Modelling, Simulation.  

 
1. Introduction 

In recent years, integrated reactive separation processes have attracted 
considerable attentions in both academic research and industrial applications 
(Völker et al., 2007; Giwa and Karacan, 2012a). One of these processes which is 
known as reactive distillation is potentially attractive whenever conversion is 
limited by reaction equilibrium (Balasubramhanya and Doyle III, 2000; Giwa 
and Karacan, 2012a).  

Reactive Distillation (RD) combines the benefits of equilibrium reaction 
with a traditional unit operation (in this case, distillation) to achieve a 
substantial progress in not only promoting the reaction conversion through 
constant recycling of unconverted materials and removal of products but also 
reducing the capital and operating costs in one way by reducing the number of 
equipment units (Giwa and Karacan, 2012a). Moreover, its other advantages 
include improved selectivity, lower energy consumption, scope for difficult 
separations and avoidance of azeotropes (Jana and Adari, 2009). However, due 
to the integration of reaction and separation, reactive distillation exhibits 
complex behaviours (Khaledi and Young, 2005) such as steady state 
multiplicity, process gain sign changes (bidirectionality) and strong interactions 
between process variables (Jana and Adari, 2009). These complexities have 
made the modelling of Reactive Distillation Process extremely difficult (Giwa 
and Karacan, 2012b; Giwa and Giwa, 2012). As such, a robust tool that can 
handle complex functions very well is needed to represent this complex process. 
One of these tools has been discovered to be Neural Network model because, 
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according to Beale et al. (2010), Neural Network can be trained to handle 
complex functions. 

Neural Network model can be viewed as a nonlinear empirical model that is 
especially useful in representing input-output data, in making predictions in 
time, and in classifying data (Himmelblau, 2000). Neural Network can be highly 
nonlinear, can learn easily, requires little or no a priori knowledge of model 
structure, is fault-tolerant and can handle complex problems that cannot be 
satisfactorily handled by the traditional methods (MacMurray and Himmelblau, 
2000). There are many kinds of Neural Network models available in the 
literature. For instance, a simple classification can be: Static Neural Network 
and Dynamic Neural Network. It is perceived that a dynamic network, 
especially Layer-Recurrent Network (LRN), will be better in representing this 
complex Reactive Distillation Process because of the presence of a delay 
ensuring proper dynamics in each of its layers except in the last one. 

According to the information gathered from the literature, Giwa and 
Karacan (2012a) used three different types of delayed neural network 
(Nonlinear AutoRegressive (NAR), Nonlinear AutoRegressive with eXogenous 
inputs (NARX) and Nonlinear Input-Output (IO)) models to represent a reactive 
distillation column in predicting the temperatures of the top and the bottom 
sections of the reactive distillation column used for the production of ethyl 
acetate and they were able to obtain very good results from both NAR and 
NARX models while the results given by IO models were found not to be 
satisfactory. Also, Giwa and Karacan (2012c) developed two nonlinear black-
box (treepartition and sigmoid network NARX) models for the Reactive 
Distillation Process used for the production of ethyl acetate from the 
esterification reaction between acetic acid and ethanol and found that sigmoid 
network NARX model was better than treepartition NARX model for the 
reactive distillation process studied in their work. 

In this work, Reactive Distillation Process is aimed to be modelled with the 
aid of Layer-Recurrent Neural Network using the metathesis reaction of trans-2-
pentene to trans-2-butene and trans-2-hexene as the case study. 
 
2. Procedures 

The methods used for the accomplishment of this work are as outlined 
below. 
 
2.1 Data Acquisition 

The diagram of the metathesis reactive distillation column, developed with 
the aid of Aspen HYSYS (Aspen, 2011), used for the production of trans-2-
butene (obtained in high purity at the top segment of the column) and trans-2-
hexene (obtained in high purity at the bottom segment of the column) from 
trans-2-pentene, and from which the measured data used for the neural network 
model development were generated is as shown in Figure 1 below. As can be 
seen from the figure, the column had one feed stream and two product streams. 
The olefin metathesis reaction that occurred in the column was a reversible type 
given as shown in Equation 1. 
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Fig. 1. Process flowsheet for metathesis reactive distillation process 

 

126841052 HCHCHC eqK + →←      (1) 
 

The data used for the development of the process in Aspen HYSYS 
environment are as given in Table 1. 
 

Table 1. HYSYS metathesis reactive distillation process development data 

Parameter Value 

Feed 

  Flow rate (mL/min) 35 

  Temperature (K) 298.15 

  Pressure (atm) 1.11 

  Feed Composition (Mole fraction) 

  trans-2-pentene 0.999998 

  trans-2-butene 1.00E-06 

  trans-2-hexene 1.00E-06 

      

Fluid Package UNIQUAC 
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Column 

  Type Packed 

  Packing type Raschig Rings (Ceramic) 0.25 inch 

  No. of segment 15 

  Feed segment 8 

      

Reaction 

  Type Equilibrium 

  Segment 6 - 10 and reboiler 

  Keq source Gibbs Free Energy 

  Basis Molar concentration 

  Phase Liquid 
 

In the process development, reflux ratio and reboiler duty were chosen as 
the manipulated (input) variables while top segment and bottom segment 
temperatures were selected as the process (output) variables. By using the 
random data set values of the manipulated variables built with the aid of 
Parametric Utility of Aspen HYSYS, the column was run and the top segment 
and the bottom segment temperatures were obtained as the measured values of 
the output variables. Two different data sets were generated from the Aspen 
HYSYS system of the process. One was used for the training while the other 
was used for the testing of the Layer-Recurrent Neural Network models. 
 
2.2 Modelling and Simulation 

In the modelling of the Reactive Distillation Process in MATLAB 
(Mathworks, 2012) environment, the data sets obtained from Aspen HYSYS 
system of the process were converted from concurrent types to sequential ones 
because those were the types required by the dynamic Layer-Recurrent Neural 
Network. The parameters used for the formulation of the Neural Network 
models of the process considered in this work are as given in Table 2. 

 

Table 2. Layer-Recurrent Neural Network model formulation parameters 

Parameter  Value 

Number of inputs  2 

Number of outputs  2 

Number of layers  2 

Number of neurons in hidden layer 7 

Hidden layer transfer function tansig 

Output layer transfer function purelin 

Training algorithm  Levenberg-Marquardt 
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Owing to the fact that there were two outputs, and even with two inputs, the 
structure of the neural network had two models in it – one for each process 
variable. The structure of the developed models is shown in Figure 2. 

 

( )tTtop
ˆ

( )tTbot
ˆ

 
Fig. 2. Layer-Recurrent Neural Network of metathesis RD process 

 
In determining the performances of the developed models, fit values 

(indicating the percentage of the data accounted for by the developed models), 
means of absolute errors and sums of squared errors were used as the criteria. 
 
3. Results and Discussions 

The acquired measured data sets of the input and the output variables used 
for the training and the testing the neural network models are given in Figures 3 
and 4 respectively for the top segment and the bottom segment temperatures. 
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Fig. 3. Top segment temperature training and testing data sets 

 
As can be seen from Figures 3 and 4, there were corresponding changes in 

the responses of the two segment temperatures as a result of the changes in the 
input variables. Also noticed from the results shown in Figures 3 and 4 was that 
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the lengths of the training and the testing data for both segment temperatures 
were not the same but the overall limits of the testing manipulated variables 
used were within the ones used for the generation of the training data.  
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Fig. 4. Bottom segment temperature training and testing data sets 

 
After training the Layer-Recurrent Network Models of the process, even 

though the models could not be obtained as physical ones, they were simulated 
using the manipulated variable values used for the training and the performance 
values of the models obtained from the training simulation are as shown in 
Table 3. It was observed from the table that the fit values of the models were 
appropriately very high and the means of absolute errors and the sums of 
squared errors were low enough to say that the models were well trained. 
 

Table 3. Performance values of network training simulation 

Performance criterion 
Performance value 

Ttop Tbot 

Fit value 99.08 99.27 

Mean of absolute errors 0.04 0.04 

Sum of squared errors 0.80 1.33 
 

Apart from simulating the developed models with the manipulated (input) 
variables used for the training, testing data set generated for the purpose of 
model testing and which was not used for the training of the models was also 
used to simulate the developed models and the performance values obtained 
from the testing simulation are given in Table 4. As can be seen from the table, 
in the testing simulation, the fit values were found to be very high. Also, the 
means of absolute errors and the sums of squared errors for both segment 
temperatures were obtained to be very low and appropriate for good models.  
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Table 4. Performance values of network testing simulation 

Performance criterion 
Performance value 

Ttop Tbot 

Fit value 98.74 98.63 

Mean of absolute errors 0.05 0.07 

Sum of squared errors 0.95 3.15 
 

In addition, the representations of the Reactive Distillation Process of this 
work by the developed models were as well investigated by plotting the testing 
simulation results of both the top and the bottom segment temperatures against 
the measured ones as shown in Figures 5 and 6, respectively. 
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Fig. 5. Top segment simulation results of neural network testing 
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Fig. 6. Bottom segment simulation results of neural network testing 

 
According to Figures 5 and 6, the 45 degree lines given by the plots of 

testing simulation temperatures against the measured ones are other indications 
of the good representations of the process by the developed models. 
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4. Conclusions 
The very high fit values, the low means of absolute errors and the low sums 

of squared errors obtained from the training and the testing simulations of the 
Layer-Recurrent Neural Network models developed for the olefin metathesis 
Reactive Distillation Process have confirmed the validities of the developed 
models. Therefore, Layer-Recurrent Neural Network model has been discovered 
to be a good tool in representing the complex Reactive Distillation Process. 
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Abstract:
We review novel results and investigate actions and transformations of

(quantum) groups and semigroups on (quantum) spaces, present dynamical
systems and zeta functions arising from these spaces, actions and transfor-
mations, discuss their stochastic properties.
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1 Introduction

A history of a semigroup and a group action on tori and projective spaces
can be found among other in the book by A.G. Postnikov [1], in the paper by
I.Ya. Gol’dsheid, G.A. Margulis [2] and in the supplement by B.M. Gurevich,
Ya. G. Sinai [3] to the Russian translation of the English edition of the book
by P. Billingsley [4].

Here we review novel results and investigate actions and transformations
of (quantum) groups and semigroups on (quantum) spaces, present dynami-
cal systems and zeta functions arising from these spaces, actions and trans-
formations, discuss their stochastic properties.

2 Dynamical systems from spaces

It is well known that one-dimensional projective space P1(Q) parametrize
the set of dynamical systems in such a way that for any rational point
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Q ∈ P1(Q), Q = (a
b
, 1), a, b ∈ Z, (a, b) = 1 we naturally assiciate dynami-

cal system (T, TQ). Here T = R/Z,TZ = (..., x−1, x0, x1, ...), xi ∈ T, X =
{x = (xk) : bxk+1 = axk for all k ∈ Z}, TQ : X → X. More generally,
for any primitive polynomial g(x) ∈ Z[x] of degree d ≥ 1 it is possible to
construct its Frobenius and companion matrices and define a homeomor-
phism TF of a compact d−dimensional subgroup of Td. These considera-
tions can be extended to elliptic curves [5] and to abelian varieties. For
elliptic curves authors of the paper [5] implement these by the following
way. Let q ∈ Qp and log+ x denotes max{log x, 0}. For a generic element
x of Zp authors define q-transformation Tq(x) (a p-adic analogue of the β-
transformation). Then the topological entropy of the p-adic β-transformation
is given by h(Tq) = log+ |q|p ([5], Theorem 4.1). If |q|p ≥ 1 then the map
Tq is ergodic with respect to Haar measure for |q|p > 1 and is not ergodic
for |q|p = 1 ([5], Theorem 4.2). Let Pern(Tq) denotes the subgroup of Zp
consisting of elements of period n under Tq. Let U be the set of unit roots
of Qp and q ∈ Qp \ U . Then

log |Pern(Tq)| = n log+ |q|p.

([5], Theorem 4.3). The authors use the topological entropy and measure
theoretical arguments based on volume growth rate and arithmetic of Zp.

Let Q be a rational point of an elliptic curve over Q and let ĥ(Q) be the
global canonical height on rational points of the elliptic curve. Then with
the definitions and assumptions of the paper [5] and q = a/b = x(Q),
(i) the entropy of TQ is given by h(TQ) = 2ĥ(Q), and (ii) the asymptotic
growth rate of the periodic points is given by the division polynomial νn(x):
log |Pern(TQ| ∼ log |bnνn(q)| as n → ∞. ([5], Theorem 5.2). In the case
authors use also the elliptic analogue of Baker’s theorem, which described in
paper [6] and in paper [7] .

3 Dynamical systems on probability spaces

Let (X,B, µ, T ) be a dynamical system on standard probability space with
T : X → X is measurable, almost surely one to one, preserves µ, for which
it is an ergodic transformation. Random dynamical systems relate a partial
case of bundle dynamical systems by I. Cornfeld, S. Fomin, and Ya. Sinai [8].
Measurable partition of the space X transforms the initial random dynamical
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system into a symbolic dynamical system. We will present novel symbolic
dynamical systems and their applications.

4 Rigid and weakly mixing ergodic transfor-

mations

In papers [9] and [10] authors present resent results on genericity of rigid
and multiply recurrent infinite measure preserving and nonsingular transfor-
mations and on measurable sensitivity. In the paper [11] authors investigate
properties of uniformly rigid transformations and analyze the compatibility
of uniform rigidity and measurable weak mixing along with some of their
asymptotic convergence properties. All spaces of the paper under review
are considered simultaneously as topological spaces and as measure spaces.
Presented results concern either the measurable dynamics on the spaces or
the interplay between the measurable and topological dynamics. The notion
of uniform rigidity was introduced as a topological version of rigidity by S.
Glasner and D. Maon [12]. Authors of the paper [11] considers functional
analytic properties of uniform rigidity that is similar to the properties of
rigidity. Theorem 1 ([11]). Every totally ergodic finite measure-preserving
transformation on a Lebesgue space has a representation that is not uniformly
rigid, except in the case where the space consists of a single atom.

The proof of the theorem connects with results of authors of the theorem
that uniform rigidity and weak mixing are mutually exclusive notions on a
Cantor set, and follows from the Jewett-Krieger Theorem by K. Peterson
[13].

5 Superrigidity for groups

The concept of superrigidity was introduced by G. D. Mostow [14] and by G.
A. Margulis [15] in the context of studying the structure of lattices in rank
one and higher rank Lie groups respectively. The notion of property (T) for
locally compact groups was defined by D. Kazhdan [16] and the notion of
relative property (T) for inclusion of countable groups Γ0 ⊂ Γ was defined by
G. Margulis [17]. Now considerthe orbit equivalence (OE) superrigidity. One
of the first result of this type of superrigidity was obtained by A. Furman [18],
who combined the cocycle superrigidity by R. Zimmer [19] with ideas from
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geometric group theory to show that the actions SLn(Z) on Tn(n ≥ 3) are
OE superrigid. The deformable actions of rigid groups are OE superrigid by
S. Popa [20]. The main result of the paper by A. Ioana [21] is the Theorem A
on orbit equivalence (OE) superrigidity. As a consequence of Theorem A the
author of the paper [21] can constructs uncountable many non-OE profinite
actions for the arithmetic groups SLn(Z)(n ≥ 3), as well as for their finite
subgroups, and for the groups SLm(Z) × Zm(m ≥ 2). The author deduces
Theorem A as a consequence of the Theorem B on cocycle superrigidity.

Let the action of Γ on X be a free ergodic measure-preserving profinite
action (i.e., an inverse limit of actions Γ on Xn with Xn finite) of a countable
property (T ) group Γ (more generally, of a group Γ which admits an infinite
normal subgroup Γ0 such that the inclusion Γ0 ⊂ Γ has relative property
(T ) and Γ/Γ0 is finitely generated) on a standard probability space X. The
author prove that if ω : Γ×X → Λ is a measurable cocycle with values in a
countable group Λ, then ω is a cohomologous to a cocycle ω

′
which factors

through the map Γ×X → Γ×Xn, for some n. As a corollary, he shows that
any free ergodic measure-preserving action Λ on Y comes from a (virtual)
conjugancy of actions.

6 Equidistribution for orbits of nonabelian

semigroups on the torus

Furstenberg [22] and Berent [23] have investigated the action of abelian semi-
groups on the torus Td for d = 1 and d > 1 respectively. Their results answer
problems raising by H. Furstenberg [24]. Authors of the paper [25] extend to
the noncommutative case some results of Furstenberg and Berent

7 Zeta functions from spaces and dynamical

systems

Recall that Dedekind has defined zeta function for polynomials over prime
finite field. The zeta function is trivial and equal to 1

1−pz . However, combin-
ing the zeta function with Chebyshev-Mobius inversion formula we obtain
the number of monic irreducible over Fp polynomials of natural degree m.
Riemann and Dedekind zeta functions are first examples of motivic zeta func-
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tions. The authors of the paper [26] investigate sufficient conditions for (i)
the existence of trace formulae for the Reidemeister number of a group en-
domorphism; (ii) the rationality of the Reidemeister zeta function and the
convergence of the Nielsen zeta function; (iii) the equality of Reidemeister
torsion of a group endomorphism to a special value of the Reidemeister zeta.
This interesting survey[26] includes recent results on trace formulae, ratio-
nality and convergence of zeta functions and relations between special values
of zeta functions and some simply homotopy invariants. The general setting
of the paper [27] is braided zeta functions in q-deformed geometry. In the
framework authors define a zeta function for any rigid object in a ribbon
braided category. In the ribbon case they define braided Hilbert series for
objects in an Abelian braided category. We will present some other types of
zeta-functions.

8 Dynamical Systems from Arithmetic Sur-

faces

8.1 Sato-Tate case

Let y2 = f(x), f(x) = x3 + cx+ d be a cubic polynomial in prime finite field
Fp. For the number #Cp of points of the curve C : y2 = f(x) in Fp the well
known formula

#Cp =
p−1∑
x=0

(
1 +

(
f(x)

p

))
,

take place, where
(
f(x0)
p

)
is the Legendre symbol with a numerator which is

equal to the value of the polynomial f(x0) in point x0 ∈ Fp. It is ease to see
that #Cp = p− ap, where

ap = −
p−1∑
x=0

(
f(x)

p

)

If C is the elliptic curve , then the number of points #C(Fp) of the projective
model of the curve in Fp is represented by the formula #Ep = 1+p−ap, where
ap = 2

√
p cosϕp, If C is not the elliptic curve, then the value ap is equal 1, −1

or 0 and ease to compute. In both cases compute: ϕp = arccos(ap/2
√
p) and

reduce it to the interval [0, π].
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Let E be an elliptic curve over rational numbers Q which does not admit
complex multiplication. Sato and Tate [28] have given computational and
theoretical evidences suggesting the distribution of angles ϕp.

Recently L. Clozel, M. Harris, N. Shepherd-Barron, R. Taylor and their
colleagues have proved the Sato-Tate conjecture for all elliptic curves E over
Q (and over some its extensions) satisfying the mild condition of having
multiplicative reduction at some prime.

Langlands conjectured that some symmetric power L−functions extend
to an entire function and coincide with certain automorphic L−functions.

Theorem (Clozel, Harris, Shepherd-Barron, Taylor). Suppose E is an el-
liptic curve overQ with non-integral j−invariant. Then for all n > 0, L(s, E, Symn)
extends to a meromorphic function which is holomorphic and non-vanishing
for Re(s) ≥ 1 + n/2.

These conditions suffice to prove the Sato-Tate conjecture.
Theoretical considerations give
Proposition EC. It is possible the arithmetic modeling of the Brownian

motion by quantity ap.

8.2 Kloosterman sums

Let

Tp(c, d) =
p−1∑
x=1

e2πi(
cx+ d

x
p

)

1 ≤ c, d ≤ p− 1; x, c, d ∈ F∗
p

be a Kloosterman sum.
By A. Weil estimate

Tp(c, d) = 2
√
p cos θp(c, d)

There are possible two distributions of angles θp(c, d) on semiinterval
[0, π) :

a) p is fixed and c and d varies over F∗
p; what is the distribution of an-

gles θp(c, d) as p→∞ ;
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b) c and d are fixed and p varies over all primes not dividing c and d.

For the case a) N. Katz [29] and A. Adolphson [30] proved that θ are dis-
tributed on [0, π) with density 2

π
sin2 t.

Let

cd 6≡ 0 mod p, Tp(c, d) =
p−1∑
x=1

e2πi(
cx+ d

x
p

)

the Kloosterman sum. By A. Weil, Tp(c, d) = 2
√
p cos θp(c, d). Compute

Tp, cos θp, θp and reduce θp to the interval [0, π]. Experiments demonstrate
random behavior of angles of Kloosterman sums.

Theoretical considerations give
Proposition KS. It is possible the arithmetic modeling of the Brownian

motion by Kloosterman sums.

Conclusions
We have presented a review of new results on actions and transformations

of (quantum) groups and semigroups on (quantum) spaces, have presented
dynamical systems and zeta functions arising from these spaces, actions and
transformations, discussed their stochastic properties.
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Abstract: Using the classical tools of nonlinear dynamics, we study the process of self-

organization and the appearance of the chaos in the metabolic process in a cell with the 

help of a mathematical model of the transformation of steroids by a cell Arthrobacter 

globiformis. We constructed the phase-parametric diagrams obtained under a variation of 

the dissipation of the kinetic membrane potential. The oscillatory modes obtained are 

classified as regular and strange attractors. We calculated the bifurcations, by which the 

self-organization and the chaos occur in the system, and the transitions “chaos-order”, 

“order-chaos”, “order-order,” and “chaos-chaos” arise. Feigenbaum’s scenarios and the 

intermittences are found. For some selected modes, the projections of the phase portraits 

of attractors, Poincaré sections, and Poincaré maps are constructed. The total spectra of 

Lyapunov indices for the modes under study are calculated. The structural stability of the 

attractors is demonstrated. A general scenario of the formation of regular and strange 

attractors in the given metabolic process in a cell is found. The physical nature of their 

appearance in the metabolic process is studied. 

Keywords: Mathematical model, Metabolic process, Self-organization, Phase portrait, 

Deterministic chaos, Regular attractor, Strange attractor, Bifurcation, Poincaré section, 

Poincaré map, Lyapunov indices. 

 

1. Introduction 
In the present work, we continue the study of the mathematical model of the 

metabolic process in a cell Arthrobacter globiformis. It is based on the process 

of transformation of steroids in a bioreactor, which is well investigated in 

experiments [1]. The constructed mathematical model allows us to determine 

the internal and external parameters, with which the model describes the 

stationary modes of a bioreactor. The studies within the model showed that 

autooscillations must appear in the biochemical reaction under certain 

conditions [2-17]. These autooscillations predicted as early as in 1985 [2] were 

found experimentally in [18, 19]. 

Analogous autooscillations are observed in the processes of photosynthesis, 

glycolysis, variations of the calcium concentration in a cell, oscillations in heart 

muscle, and other biochemical systems [20-24]. 

                                                 
*
 The work is supported by the project N 0112U000056 of the National Academy of 

Sciences of Ukraine. 
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The study of such autooscillations will allow one to investigate the internal 

dynamics of metabolic processes in cells, to find the structural-functional 

connections in a cell, by which its vital activity runs, and to clarify the evolution 

of the formation of these connections. The application of the mathematical 

apparatus of nonlinear dynamics to the study of metabolic processes will allow 

one to develop the general methods of synergetics considering the physical laws 

of self-organization in the Nature. 

 

2. The Mathematical Model 
The mathematical model of the metabolic process running in a cell Arthrobacter 

globiformis at the transformation of steroids is constructed according to the 

general scheme of this process presented in Fig. 1. The model is based on the 

results of experimental studies of the process under flowing-through conditions 

with a fermenter in porious granules with immobilized cells Arthrobacter 

globiformis [3, 4]. 

 
 

Fig. 1. General scheme of the metabolic process in a cell Arthrobacter 

globiformis. 

 

The variation of the concentration of hydrocortisone ( G ) is described by the 

equation 

 

.)()( 311
23

0 GGVEVl
GN

G

dt

dG
α

ψγ
−−

++
=                           (1) 

 

Under the action of the diffusion and the flow into pores of a macroporous 

granule to cells, hydrocortisone comes to the region of localization of the 

enzyme 3-ketosteroid- ∆ -dehydrogenase ( 1E ) (term 
ψγ 23

0

++GN

G
) and is 
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transformed by this enzyme into prednisolone (term )()( 11 GVEVl ). A part of 

hydrocortisone is taken out from the biosystem by the flow (term G3α ). 

Here and below, the function )( XV  characterizes the adsorption of the enzyme 

in the region of local binding into active complexes; ).1/()( XXXV +=  

The variation of the concentration of prednisolone ( P ): 

 

.)()()()()( 42211 PPVNVEVlGVEVl
dt

dP
α−−=                    (2) 

 

Prednisolone formed in the process (term )()( 11 GVEVl ) is transformed by the 

enzyme β20 -oxysteroid-dehydrogenase ( 2E ) to its β20 -oxyderivative (term 

)()()( 22 PVNVEVl ). Under the action of a flow (term P4α ), a part of 

prednisolone goes out into the external solution. 

The variation of the concentration of β20 -oxyderivative of prednisolone ( B ): 

 

.)()()()()( 5122 BBVVkPVNVEVl
dt

dB
αψ −−=                       (3) 

 

The increase of the concentration of B  occurs as a result of the transformation 

of prednisolone (term )()()( 22 PVNVEVl ). Its decrease is due to the use of 

β20 -oxyderivative by cells in one of the possible modifications of the Krebs 

cycle (term )()(1 BVVk ψ ), which increases the level of HNAD ⋅ . Under the 

action of a flow (term B5α ), B  is washed out into the external solution. 

The variation of the concentration of the oxidized form of 3-ketosteroid- ∆ -

dehydrogenase ( 1E ): 

 

−
++

+
−

+
= )1(

1
2

1

2

10
1

mNPN

mNP

G

G
E

dt

dE

β  
.)()()()( 111411 EQVeVlGVEVl α−+−                           (4) 

The biosynthesis of the enzyme is described by the term 

)1(
1

2
1

2

10 mNPN

mNP

G

G
E

++

+
−

+β
, which is defined by the activation by the 

substrate G  and the inhibition by the reaction products P  and N . The 

decrease of the concentration of this form of the enzyme in the process of 

transformation of hydrocortisone is given by the term )()( 11 GVEVl , and its 

increase in the process of reduction of the respiratory chain corresponds to the 

term )()( 14 QVeVl . The inactivation of the enzyme due to the proteolysis is 

described by the term 11Eα . 

213



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

The variation of the concentration of the reduced form of 3-ketosteroid- ∆ -

dehydrogenase ( 1e ): 

 

.)()()()( 111114
1 eGVEVlQVeVl

dt

de
α−+−=                       (5) 

 

Its level decreases in the process of reduction of the respiratory chain (term 

)()( 14 QVeVl− ) and due to the inactivation (term 11eα ) and increases at the 

transformation of hydrocortisone (term )()( 11 GVEVl ). 

The variation of the level of the oxidized form of the respiratory chain ( Q ) 

 

),()()()()()()2(6 7116
)1(

2 NVQVlQVeVlVOVQlV
dt

dQ
−−−= ψ        (6) 

 

where )1/(1)( 2)1( ψψ +=V . We accept that the concentration of menaquinone 

200 =+ qQ , where q  is the reduced form of the respiratory chain. 

The respiratory chain is oxidized by oxygen (term )()()2(6 )1(
2 ψVOVQlV − ) 

and is reduced with the help of 1e  (term )()( 16 QVeVl− ) and due to the high 

level of HNAD ⋅  (term )()(7 NVQVl− ). 

The variation of the concentration of oxygen ( 2O ): 

 

.)()()2( 27
)1(

2
25

202 OVOVQlV
ON

O

dt

dO
αψ −−−

+
=           (7) 

 

Under the action of a flow (terms 
25

20

ON

O

+
 and 27Oα ), the level of aeration of 

a cell is changed. The concentration of oxygen decreases at the oxidation of the 

respiratory chain (term )()()2(
)1(

2 ψVOVQlV −− ). 

The variation of the concentration of β20 -oxysteroid-dehydrogenase ( 2E ): 
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ββ  

22210 )()()( EPVNVEVl α−−                                       (8) 

 

The increase of the level of the given enzyme occurs due to the biosynthesis: 

)1(
2

2
2

2

20
BN

B

N

N

P

P
E

+
−

++ ββ
. Prednisolone and HNAD ⋅  are activators of 

this process, and β20 -oxyderivative is an inhibitor. The decrease of the level of 
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the given enzyme occurs as a result of the inactivation ( 22Eα− ) and the process 

of transformation of prednisolone ( )()()( 210 PVNVEVl− ). 

 

+−−= )()()()()( 722 NVQVlPVNVEVl
dt

dN

 

.)( 6
4

0

10
2 N

NN

N

K
BVk α

ψ

ψ
−

+
+

+
+                     (9) 

 

The level of the co-enzyme N  decreases in the process of transformation 

BP ⇒ , in the process of reduction of the respiratory chain ( )()(7 NVQVl− ), 

and due to a flow ( N6α− ). It increases at the use of B  by cells in the Krebs 

cycle as a substrate (
ψ

ψ

+10
2 )(

K
BVk ) and in the presence of endogenous 

substrates (
NN

N

+4

0 ) in the environment. 

The variation of the level of kinetic membrane potential (ψ ): 

 

αψ
ψ

−+= )()()()( 815 QVNVlGVEVl
dt

d
.                    (10) 

 

The kinetic membrane potential arises at the transformation of hydrocortisone 

( )()( 15 GVEVl ) and the reduction of the respiratory chain ( )()(8 QVNVl ) at a 

high level of HNAD ⋅  and decreases due to other metabolic processes ( αψ− ). 

The variation of the level of ψ  changes its regulatory role (1), (3), (6), (7), (9). 

If the potential is high, the respiratory chain is blocked and held in the reduced 

state. 

The main parameters of the system, with which we fit the relevant experimental 

data, are as follows: ;2.011 === kll  ;27.0102 == ll  6.05 =l ; ;5.0ll 64 ==  

;2.17 =l  ;4.28 =l  ;5.12 =k  ;310 =E  ;21 =β  ;03.01 =N  ;5.2=m  033.0=α ; 

;007.01 =a  0068.01 =α ; ;2.120 =E  ;01.0=β  ;12 =β  ;03.02 =N  ;02.02 =α  

;019.00 =G  ;23 =N  ;2.02 =γ  ;014.05 =α  ;001.07643 ==== αααα  

;015.020 =O  ;1.05 =N  003.00 =N ; ;14 =N  7.010 =K . 

The study of solutions of the given mathematical model was carried out with the 

help of the theory of nonlinear differential equations [25-27]. 

In the numerical solution of this autonomous system of nonlinear differential 

equations, we used the Runge--Kutta--Merson method. The accuracy of 

calculations was set to be 810− . To attain the reliability of a solution, when the 

system passes from the initial transient phase onto the asymptotic solution with 
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an attractor, the duration of calculations was taken to be 610 . For this time 

interval, the trajectory “sticks” onto the appropriate attractor. 

The various types of autooscillatory modes are studied with the help of the 

construction of exact phase-parametric diagrams. We found the scenarios of 

appearance of bifurcations at the transition of the dynamical process from one 

type of an attractor to another one. For the most characteristic modes, we 

calculated the total spectra of Lyapunov indices (Table 1). 

To construct a phase-parametric diagram, we used the method of section. In the 

phase space of trajectories of the system, we place a cutting plane with P = 0.2. 

Such choice is explained by the symmetry of oscillations relative to this point of 

this variable in multiple modes. If the trajectory P(t) crosses this plane in a 

certain direction, we mark the value of chosen variable (e.g., G) on the phase-

parametric diagram. In such way, we have the point corresponding to the section 

of a trajectory by the two-dimensional plane. If the multiple periodic limiting 

cycle appears, we obtain a number of points, which will be coincide in a period. 

If a deterministic chaos arises, the points of intersection of trajectories by the 

plane will be placed chaotically. 

In order to uniquely identify the form of an attractor for the chosen points, we 

calculated the total spectrum of Lyapunov indices and determined their sum 

∑=Λ
10

j

jλ  (see Table 1). The calculation was carried out by Benettin’s 

algorithm with orthogonalization of the vectors of perturbation by the Gram--

Schmidt method [26, 28, 29]. 

 

3. Results of Studies 
We now consider the dynamics of modes within the mathematical model (1)-

(10) under a variation of the dissipation of a kinetic membrane potential α  (10) 

[16, 17]. We found the autooscillatory and chaotic modes with various 

multiplicities. The projections of their phase portraits have a characteristic form 

shown in Fig. 2,a,b. 

 

 
Fig. 2. Projections of the phase portraits of regular attractors: a – autoperiodic 

cycle 0214 ⋅  for 0.033=α ; b – quasiperiodic cycle 0231⋅≈  for  

0.0321375=α . 
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Let us consider a part of the bifurcation diagram not studied earlier. In Fig. 3, 

we show the bifurcation diagram for 0.32166) (0.032159,∈α . 

 

 
Fig. 3. Bifurcation diagram of the system for 0.32166) (0.032159,∈α . 

 

For )0.03215960 ,(0.0321590∈α , the regular attractor of the 14-fold period 

0214 ⋅  is kept in the system. For 0.03215961=α  , we observe the appearance 

of the period doubling bifurcation with the generation of the regular attractor 
1214 ⋅  (Table 1). Then for 0.03215962=α , there arises the bifurcation of the 

generation of a two-dimensional torus (the Neimark bifurcation). The 

configuration of kinetic curves is instantly changed, and the quasiperiodic 

attractor with n-fold period is established on the toroidal surface 02⋅≈ n (t) 

(Figs. 4,a and 5,a). 
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a - regular attractor of the quasiperiodic cycle ≈ n*
02  on the toroidal surface 

for 0.03215962=α . 

 

b - regular attractor 0236 ⋅  for 0.032162=α . 

Fig. 4. Kinetic curve of the variable )t(e1 . 

 

 
Fig. 5. Projections of phase portraits: a – regular attractor of the quasiperiodic 

cycle 02⋅≈ n  on the toroidal surface for 0.03215962=α ; b – strange attractor 
x27 ⋅  for 0.032164=α . 
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As α  increases, the given attractor loses the stability, by passing periodically to 

the 14-fold limiting cycle ( 0.032160=α ), which corresponds to the gaps in 

Fig. 3,a. In addition, other various multiple modes arise. For example, for α = 

0.032161, 0.0321615, and 0.032162, the regular attractors 0229 ⋅ , 027 ⋅ , and 
0236⋅  appear, respectively (Fig. 4,b). As α  increases, we see the appearance of 

bifurcations of the limiting cycle. Moreover, the instant structural rearrangement 

of the type “order-order” occurs; i.e., as a result of the self-organization, the 

regular attractor of some form is replaced instantly by a regular attractor of 

some other form. In this case, the trajectories leave the region of attraction of 

the attractor and are drawn in the region of attraction of another regular 

attractor. 

The interesting scenario of the metabolic process is observed in the interval 

0.032164) ,(0.0321626∈α . In Fig. 6, we present a magnified part of the 

bifurcation diagram in Fig. 3. 

 

 
Fig. 6. Phase-parametric diagram of the system for 0.32164) ,(0.0321626∈α , 

where Feigenbaum’s scenario is observed. 

 

At the beginning of the interval at α = 0.0321626, the regular attractor 027 ⋅  is 

formed on the toroidal surface. For 0.03216276=jα , the bifurcation yields the 

doubling of the period, and the regular attractor 127 ⋅  arises on the toroidal 

surface. For 0.032163461 =+jα  and 0.032163612 =+jα , we see the attractors 

227 ⋅  and 427 ⋅ , respectively. This sequence of bifurcations satisfies the 

relation 
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This number is very close to Feigenbaum’s universal constant δ = 

4.669211660910… characterizing the infinite cascade of bifurcations at the 

transition to a deterministic chaos. Thus, as the coefficient of dissipation α  

increases in this region, the period of a complicated regular attractor on the torus 

is doubled by Feigenbaum’s scenario [37-40]. 

The further increase in α  causes a deviation from the given scenario and the 

formation of the strange attractor x27 ⋅  ( 0.032164=α , Fig. 5,b) as a result of 

the intermittency. But then, for 0.032174=α , the strange attractor x214 ⋅  

appears (Fig. 7,b). In the interval 0.032174) (0.032164,∈α  as a result of the 

intermittency of these chaotic cycles, we observe the transition between them: 
x2)147( ⋅↔ . In Fig. 7,a for 0.032165=α , we show a projection of the phase 

portrait of a mutual transition of the given strange attractors. Figure 8 presents 

the kinetic curve for the variable )(1 te  for tis mode. We observe the transition 

“chaos-chaos”: x2)147( ⋅↔ . Moreover, the strange attractor x27 ⋅  on the left 

and the strange attractor x214 ⋅  on the right move toward each other. Since 

there are no other attractors of the system in this region, the trajectory is 

chaotically kept in the region of attraction of the strange attractor x214 ⋅  or the 

strange attractor x27 ⋅  Under the effect of bifurcations, the trajectory is 

aperiodically drawn in one of the regions of the given strange attractors after the 

transient process. According to the values of higher Lyapunov indices (Table 1), 

the formed limiting set is unstable by Lyapunov. 

 

 
Fig. 7. Projections of the phase portraits: a – strange attractor of the mutual 

transition x2)147( ⋅↔  for 0.032165=α ; b – strange attractor x214 ⋅  for 

0.032174=α . 
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Fig. 8. Kinetic curve of the variable )(1 te  of the mutual transition of the strange 

attractors x2)147( ⋅↔  for 0.032165=α . 

 

For the given strange attractor, we constructed a projection of the section by the 

plane P = 0.2 and the Poincaré map in Fig. 9,a,b. The choice of a cutting surface 

was made to attain the maximum number of intersections of the given 

component and the phase trajectory P(t), as the former decreases, without 

contacts. 

 

 
Fig. 9. Projection of the section by the plane P = 0.2 (a) and Poincaré map (b) of 

the strange attractor formed during the mutual transition x2)147( ⋅↔  for 

0.032165=α . 

 

The obtained points of intersections and the Poincaré maps are grouped along 

several curves that form a geometric self-similarity. On the projection, we see 

clearly the fractality of this strange attractor. In addition, these curves do not 

create a quasistrip structure. Their number increases permanently with the 

duration of numerical integration of the system. This testifies to the 

impossibility of any reduction of the given complicated mathematical model to 

some one-dimensional discrete approximation without loss of the information 

about the dynamics of the metabolic process in a cell. We note that the general 
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scheme (Fig. 2) includes only the main parts of the metabolic process running in 

any cell with substrate-enzyme reactions and in the respiratory chain. Therefore, 

the model gives a rather general qualitative representation of the dynamics of 

the internal self-organization of the metabolic process in a cell. 

 

Table 1. Total spectra of Lyapunov indices for attractors of the system under 

study ( 4λ - 10λ  are not important for our investigation). 

α  Attractor 
1λ  2λ  3λ  Λ  

0.0321590 0214 ⋅  .000056 -.000214 -.003250 -.898509 

0.0321596 0214 ⋅  .000040 -.000142 -.003306 -.898550 

0.03215961 1214 ⋅  .000078 -.000150 -.003394 -.899865 

0.03215962 )(20 tn ⋅≈  .000063 .000026 -.000274 -.905553 

0.032160 0214 ⋅  .000040 -.000146 -.003365 -.899368 

0.032161 0229 ⋅  .000051 -.000142 -.000123 -.905352 

0.0321615 027 ⋅  .000062 -.000596 -.000576 -.902277 

0.032162 0236 ⋅  .000064 -.000171 -.000155 -.905320 

0.0321626 )(27 0 t⋅  .000063 -.000097 -.001180 -.902078 

0.03216276 )(27 1 t⋅  .000062 -.000005 -.001267 -.902189 

0.03216346 )(27 2 t⋅  .000047 .000025 -.001252 -.902056 

0.03216361 )(27 3 t⋅  .000048 -.000023 -.001265 -.902267 

0.032164 x27 ⋅  .000367 .000018 -.001641 -.902164 

0.032165 x2)147( ⋅↔  .000363 -.000004 -.001598 -.904005 

0.032174 x214 ⋅  .000693 .000020 -.003534 -.901422 

 

4. Conclusions 
We have constructed a mathematical model of the metabolic process in a cell 

Arthrobacter globiformis at the transformation of steroids. With the help of the 

given model, we have found the autooscillations in agreement with experiment, 

which show the complicated internal dynamics in a cell. The model is optimized 

by the number of variables of the system required for a qualitative description of 

the metabolic process under study. The given model involves the general 

regularities characteristic of any cell consuming a substrate, on the whole. The 

autooscillations arise on the level of the substrate-enzyme interaction with 

participation of the redox process in the respiratory chain and characterize the 

times of such interactions. At the synchronization of the given processes, the 

autooscillations characterizing the self-organization of the metabolic process on 

the whole are observed. At the desynchronization of the given processes, we see 

the adaptation of the metabolic process in a cell to varying external conditions in 

the environment with conservation of its functionality. The scenario of the 
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transitions “order-chaos”, “chaos-order”, “order-order”, and “chaos-chaos” is 

studied with the help of Poincaré sections and maps. The total spectra of 

Lyapunov indices are calculated, and the structural stability of the obtained 

attractors is studied. Feigenbaum’s scenario and the Neimark bifurcation are 

found. The results will allow one to carry on the search for metabolic 

oscillations in a cell and to clarify the physical laws of self-organization. 
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Abstract: In this paper, a supervisory control system based on fuzzy reasoning is 
designed for a real gas processing unit. The system controls the gas temperature flowing 
through an industrial heat exchanger which is the main component of the unit. The 
design procedure aims at improving the performance of the existing conventional 
temperature control system by providing instantaneous monitoring of the control loop 
through auto-tuning of PID parameters. To show the performance of the designed 
system, simulations under different situations are performed and some implementation 
issues on DCS system are given. 
Keywords: Supervision, Control loop, Fuzzy reasoning, Gas processing unit.  
 
1. Introduction 
In most industrial applications, physical plants usually operate under 
conventional regulatory strategies based on the common proportional-integral-
differential (PID) controllers in order to minimize costs of real implementation, 
maintenance, operator’s training, etc. Operator’s experience with this type of 
controllers plays a substantial role while choosing the control strategy to be 
implemented for a particular application. Indeed, this issue is one of the main 
reasons for which control loops in highly sensitive processes such as chemical, 
petrochemical and nuclear industries are rather equipped with conventional PID 
controllers instead of more sophisticated strategies [8]. However, PID 
controllers usually show decreasing performance under varying operating 
conditions and system nonlinearities [1,6,7]. Manual tuning of PID parameters 
is usually performed to cope with some critical situations. However, this 
heuristic procedure does not take into account the required level of operational 
performance.   
More advanced control mechanisms, like intelligent control, adaptive control or 
predictive control show considerable improvements, especially for processes 
operating under severe disturbances and over wide-range zones. Many works in 
the literature reported interesting theoretical and experimental results of 
intelligent control techniques showing for some application studies their 
robustness with respect to process and environmental variations, even in the 
absence of systematic design methodologies [9]. Intelligent paradigms can be 
integrated to the process control level and/or the supervisory level depending on 
the application of concern [1,4]. Supervisory control aims at making 
conventional PID controllers more flexible through auto-tuning so that optimal 
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or near optimal parameters can be found to meet some predefined stringent 
control requirements.  
 

 
Fig. 1. Schematic picture of the heat exchanger 20E02 in chain 20. 

 
This paper discusses some experimental issues related to the design of a fuzzy 
supervisory system to improve temperature control performance of an industrial 
gas processing unit. More precisely, the design procedure is achieved for an 
industrial co-current heat exchanger aiming at tuning the PID parameters of the 
gas temperature control loop based on fuzzy reasoning. The present study was 
subjected to a simulation-based evaluation on DCS (Distributed Control 
System) using the real parameters of the gas processing unit together with the 
on-site parameters of the temperature control loop. 
 
2. Industrial Process Description 
Natural gas feeding the industrial processing unit arrives from different 
production sites through twelve collectors at 84 kg/cm2 and 50°C. The main task 
consists in achieving total condensate recovery, and gas compression and 
recycling to other units. To this end, five processing chains labeled as 10 to 40 
and 70 are installed. Each chain is composed of two parts: the high-pressure 
(HP) part for the treatment of gaz-liquid phase, and the low-pressure (LP) part 
for unstable condensate processing. The crude gas passes first via the 
slugcatcher unit, and after flowing through different pipes, it is supplied to a co-
current type heat exchanger for cooling, and then evacuated with temperature 
22°C to a triphasic separator for separation purposes.  
 
In this paper, the heat exchanger under investigation is labeled as 20E02 as 
depicted in the schematic picture of Figure 1. This physical plant of 16.5 m 
height and 1418 tubes is one of the most important and critical component of the 
gas processing unit. The crude gas entering the exchanger is cooled through a 
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heat exchange process with cold gas coming from the gas/gas primary 
exchanger 20E01. The outlet temperature is controlled at 22°C with a 
conventional PID controller and must be maintained around this value in order 
to meet the stringent separation process requirements and keep safe the chain 
equipments. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Block diagram of the fuzzy supervisory gas temperature control system. 

 
3. Design of the Fuzzy Supervisor 
All of control loops in the gas treatment unit are based on conventional PID 
controllers. The temperature control loop of the heat exchanger 20E02 is 
designed to ensure regulatory task about 22°C of the outlet gas temperature. 
This value is to be maintained to ensure good separation between gas, water and 
condensate in the high-pressure triphasic separator 20V01. Efficient separation 
process should be achieved in order to avoid the formation of hydrates in the 
corresponding chain which could occur at 18°C and 77 kg/cm2. Alarm 
generating devices are installed to prevent reaching 19°C limit value. 
Obviously, it can be noticed that ensuring suitable operation of the whole unit 
depends strongly on the “perfect” functioning of the gas temperature control 
loops. This issue remains of substantial interest for the systems engineers.  
 
From a modeling viewpoint, heat exchanger dynamics are difficult to capture 
accurately by simple model structures since the underlying physical effects are 
quite complex and a number of real parameters are unknown. Key dynamical 
properties of the heat exchange process are generally described by distributed-
parameter models that are of little interest for control purposes [5]. 
Approximations through lumped-parameter models are usually used for 
dynamics analysis and control systems design. However, the simplified models 
upon which PID control strategies are built could not ensure a robust wide-range 
operation [2,3]. Indeed, it was easy to notice that in many practical situations, 
PID parameters need to be tuned manually to avoid performance degradation 
during gas processing unit operation. This heuristic tuning procedure which is 
applied with conventional operators’ experience methods cannot give optimal 
PID parameters for the gas temperature control system.   

Control 
valve 

Heat 
exchanger 

PID 
controller 

Fuzzy 
Supervisor 

Temperature 
transmitter 

Error 
processing 

Set-point 

Outlet gas 
temperature 
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The fuzzy supervisory system designed in this paper aims at improving the 
performance of the conventional gas temperature control loop through auto-
tuning of the PID parameters. The three PID parameters, i.e. ��, �� and �� can 
be altered based on a fuzzy reasoning mechanism according to the size, the 
direction and the changing tendency of the system error. The diagram of the 
fuzzy supervisory PID control system is depicted in Figure 2. For the heat 
exchanger operation, control error e and the change of error ∆e are the input 
linguistic variables of the fuzzy supervisor, and ∆��, ∆�� and ∆�� are their 
output linguistic variables. Each linguistic variable has seven values labeled as 
NB, NM, NS, ZO, PS, PM and PB. These triangular-shaped fuzzy sets are 
uniformly distributed on the common normalized universe of discourse [-1 1]. 
The fuzzy supervisor is a rule-based system composed of a set of n IF-THEN 
rules as follows: 
 

��		
��	
�	��� 	���	∆	
��
�	�∆�� 	����	 
∆��
��	
�	���

�
	���	∆��
��	
�	���

�
	���	∆��
��	
�	���

�
 

� = 1, ⋯ , �,	 
 
where ��� , �∆��, ���

�
, ���

�
	���	���

� represent the j-th linguistic values of the 
input/output fuzzy variables e, ∆e, ∆��, ∆�� and ∆�� , respectively. The PID 
tuning mechanism is performed instantaneously according to the following 
equations [1]: 
 

�� = ��� + ∆�� 
�� = ��� + ∆�� 

�� = ��� + ∆��, 
 
where  ���, ��� and ��� denote the actual (on-site) PID parameters. The PID 
parameters tuning procedure based on this fuzzy reasoning mechanism defines a 
nonlinear mapping between the fuzzy supervisor outputs, and the control error 
and its rate of change.  
 
4. Results and Discussion 
The original conventional temperature control configuration of the gas treatment 
unit is implemented on DCS which offer many facilities allowing systems 
analysis, simulation and control through its IEE (Infusion Engineering 
Environment) software. The results presented in this paper are based on the 
physical parameters of the industrial heat exchanger and the on-site parameters 
of the PID control loop which are set as  ��� = 2.5, ��� = 1.11 and ��� =

0.38. The fuzzy supervisor blocks are embedded in DCS according to the 
diagram shown in Figure 3. The control parameters ��, �� and �� of the real 
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PID controller are tuned off-line under different situations in order to check the 
effectiveness of the designed self-tuning mechanism. 
 

 
 

Fig. 3. Configuration of the fuzzy supervisory gas temperature control system 
on DCS. 

 
Figure 4 shows the outlet gas temperature response in normal regulatory 
operation. This situation corresponds to inlet gas cooling process before 
evacuation to the HP triphasic separator. Here the gas temperature is decreased 
from 50°C (slugcatcher outlet gas temperature) to 22°C. It can be clearly seen 
that the fuzzy supervisor performs considerably well, mainly after applying an 
input disturbance on the control valve at t = 10 hrs. The PID controller induces 
an oscillatory response which is efficiently damped by the fuzzy supervisor 
through auto-tuning of the PID parameters. 
 

 
 

Fig. 4. Outlet gas temperature response in normal operation. 
 
Degradation of the control loop performance is mostly caused by parameter 
variations of the controlled heat exchanger due to aging, thermal stress or 
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environmental changes, for instance. To illustrate this situation, we considered a 
test case corresponding to parametric variation of the heat transfer coefficient. 
This physical parameter is generally unknown and difficult to obtain through 
first-principle modeling; it can only be estimated using observation data. In this 
case study, Figure 5 shows clearly the poor performance of the PID control 
loop. The gas temperature response fluctuates around non-admissible values that 
would contribute to the formation of hydrates in the chain. In this case, an alarm 
would occur while the temperature reaches the limit of 19°C. However, the heat 
exchanger operation under the supervisory control system seems very 
acceptable and the regulatory requirement is achieved efficiently. This 
demonstrates the robustness of the fuzzy control system with respect to the 
system parameter variations which are frequent in practice and for which 
manual tuning is usually operated to prevent plant operation degradation. 
 

 
 

Fig. 5. Outlet gas temperature response under system parameter variations. 
 
5. Conclusions 
Throughout this contribution, a simulation-based evaluation on DCS of the 
performance of a fuzzy supervisory control system is achieved using the real 
parameters of an industrial gas processing unit together with the on-site 
parameters of the temperature control loop. Auto-tuning of the PID parameters 
through fuzzy reasoning improves considerably well the outlet gas temperature 
control loop performance. This problem is of major interest for systems 
engineers since the manual tuning of the PID parameters based on operators’ 
experience could not always give satisfactory operational performance. In 
practical situations, stringent requirements on control strategies are usually 
imposed to meet production conditions. Embedding intelligent paradigms in 
conventional control configurations would achieve better results as shown in the 
present study.  
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Abstract: The transient current through a sample of As2S3(Ag) and As2Se3(Al) glass 

substrate has been analyzed in order to study possible chaotic behavior using 

methodology similar to that in work on polymers [1,2]. Rescaled range analysis (R/S) 

shows the presence of two regimes of fractal behavior, one of which can be attributed to 

short time scale relaxation and the other can be attributed to long term chaotic behavior. 

The mutual information data indicates the necessity of noise reduction using a moving 

average. Extending the moving average window gives correspondingly large delay times 

as expected. The indicated delay time starts at 20s and grows up to 250s. The false 

nearest neighbor results also indicate a value around 10. A robust increase in the 

Lyapunov exponent stretching graphs confirm long term chaos; the result is not sensitive 

to the precise values of the delay time and embedding dimension. Possible relaxation 

mechanisms [3] in the short time range include parametrizations involving stretched 

exponential relaxation and logarithmic relaxation, the latter suggested by a proposal of 

Trachenko [4,5].  
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1. Introduction 

 
The specimens under investigation were prepared as sandwiched metal-glass-

metal structures with the glass as the isolating layer. 300 nm thick aluminum 

electrodes were thermally evaporated at 10
-6

 mbar on microscope glass slides 

cleaned in a detergent solution. Subsequently, aluminum top contacts were 

evaporated. The I-V measurement was performed via a programmable 

picoammeter/voltage source (Keithley, model 487) and a temperature controller 

(Lake Shore, model 300). The picoammeter and the temperature controller were 

interfaced to a computer through an interface card that automated data taking, 

schematically presented in Fig. 1. The picoammeter model 478 used is capable 

of reading currents in the range 10 fA to 2 mA. It also serves as a DC voltage 

supply in the range up to 500V.  

 

 
Fig. 1. Schematic of the experimental setup 

 

The data of transient current against time for As2S3(Ag) and As2Se3(Al) are 

presented in Fig. 2 and Fig. 3. One horizontal unit represents 30 ms. Examining 

the graphs, we find that there is an overall relaxation in As2Se3(Al) but not in 

As2S3(Ag). However for both materials the data looks more like the behavior of 

the transient current data for polymer thin films such as PMMA [6] or PEG-

Si[2].  
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Fig. 2. The data of As2S3(Ag) 

 
Fig. 3. The data of As2Se3(Al) 

 

 

2. Time Series Analysis 
 

Time series analysis is used for analysing the data of As2S3(Ag) and As2Se3(Al) 

using TISEAN [7,8] software package.  The formulas used are part of the 

standard literature and are omitted.  We observe one dimensional signal in 

uniform time intervals, x(0), x(T), …, x(nT). In fact the signal x(T) depends on 

an unknown number of  parameters. To determine the number of  parameters 

(dimensionality of the system), we find the meaningful time delay τ and the 

meaningful embedding dimension to construct time delay vectors. We find the 

embedding dimension by using the False Nearest Neighbors (FNN) method. We 
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find the delay time by using Mutual Information (MUT) or correlation function 

(CORR). We calculate the autocorrelation function, which is the Fourier 

transform of the power spectrum and we present the results in Fig.4. 

 

 

 
Fig. 4. Correlation coefficient 

 

Another method for obtaining the delay time is to find the first minimum of the 

mutual information as presented in Fig. 5. We wish to represent a random 

variable with actual probability distribution p(x) with a code whose average 

length is H(p). In practice, because of missing information or sampling, we may 

not know the actual distribution p(x), so that we have to take the distribution to 

be q(x). In such a situation, we may need a longer code to represent the random 

variable. This difference in length, D(p(x)||q(x)) is known as the relative 

entropy. The knowledge that one random variable includes about another 

random variable is known as mutual information. We can only examine the 

information that we send to one channel in terms of information output from 

there. Let x and y be random variables with mutual distribution p(x,y). If 

variables x and y have distributions p(x) and p(y), the mutual information is the 

entropy between the mutual distribution and product distribution. If it is chosen 

to be too small, x(t) and x(t+τ) will be very close to each other and it will be 

difficult to distinguish them. If it is chosen too large, x(t) and x(t+τ) coordinates 

will be too far apart, will behave independently and cause loss of information. 
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Fig. 5. Mutual information 

 

False nearest neighbors graph (FNN) presented in Fig. 6. is useful for 

determining the minimal embedding dimension. The purpose is to find points 

near each other in the embedded space. If the embedding dimension is too small, 

points that are close in embedded space will appear as false neighbors. If the 

embedding dimension is too large, we lose statistics and information. By 

expressing the distance in (d+1) dimensions in terms of the distance in d 

dimensions, we can calculate the number of neighbors in d and d+1 dimensions, 

Rd+1/Rd . If this ratio is above a critical value, we have false nearest neighbors.  

 
Fig. 6. False nearest neighbors 
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The largest lyapunov exponent presented in Fig.7  is usually used as an indicator 

of chaos. This is obtained by calculating the quantity  

 

 

(1) 

 

 

Sn0 is our reference point, U is a hypersphere of distance ε to this point. If  ε is 

too small, we can not find a sufficient number of points, if it is too large, a 

periodic component may be missed. For a few ε values, calculating the number 

of points in the hypersphere S(Δn), plotting it against Δn gives the largest 

Lyapunov Exponent. A positive slope implies a positive Lyapunov Exponent. 

 

 

  
 


















N

n SS

nnnn

n nn

SS
SUN

nS
10 )(

0

0 0

   
)(

1
ln

1
)(



238



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

 

 
Fig. 7. Largest Lyapunov exponents 
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3. Hurst (R/S) Analysis 

 
The Hurst exponent is calculated using the standard approach and as presented 

in Fig. 8 it is a numerical approach to the predictability of a time series. If the 

Hurst exponent ( H ) is close to 0.5, the process is a random walk. (Brownian 

motion) A Hurst exponent ( H ) in the range 0 < H < 0.5 implies non random 

behavior in the time series. A Hurst exponent ( H ) in the range 0.5 < H < 1 

implies a time series with long range, continuous evolution.  

 

 
Fig. 8. Hurst Analysis 

 

 

4. Conclusions 

 
The complex structure of chalcogenites suggests many degrees of freedom and a 

multi-fractal structure. The transient current through the samples of As2S3(Ag) 

and As2Se3(Al) glass substrates has been analyzed in order to study possible 

chaotic behavior similar to that in our work on polymers. The conductivity 

mechanism measured by the time dependent behavior of transient current was 

analyzed by nonlinear considerations such as time series analysis, maximal 

Lyapunov exponent, Hurst (R/S) analysis. Intermediate dimensional chaos with 

positive maximal Lyapunov exponents was observed. The behaviors of the 

system with possibly two different regions, one with short range and another 

with long range correlation were seen by comparing the correlation coefficient 

and mutual information. As suggested by studies of other amorphous materials 

with irregular behavior, the use of nonlinear methods for analyzing the 

conductivity mechanisms in such materials seems crucial in modelling and show 

that the behaviors are comparable. 
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Abstract: The Quadrature Chaotic Shift Keying (QCSK) is one of the widely used 

chaotic modulation schemes in the chaotic communication systems.  Extensive research 

has been done to study the performance of the QCSK systems. However, the QCSK 

systems were analyzed with the presence of only additive white Gaussian noise (AWGN) 

while the effect of the channel has not been considered. In this paper, we study the 

effects of the channel interference (i.e. AWGN and the channel response) on the 

modulated signal .  The effect of the channel, oblige us to make an equalization process 

before the detection criteria. The blind equalization process will be  implemented using  

the stochastic gradient algorithm, namely, the LMS algorithm. The performance of the 

proposed process will be measured based on the Bit Error Rate (BER).  

 

Keywords: Chaotic Communications, Equalization, Quadrature Chaotic Shift Keying, 

Gradient Stochastic Algorithms.  

 

1. Introduction 
Due to some advantages for chaotic communication systems over the classical 

communications, digital communication based on chaos widely recommended   

in the field of digital communications, the major advantages of such systems are 

the less power consumption and security[2]. Quadrature Chaotic Shift Keying 

(QCSK) is  one of the widely used chaotic modulation schemes in the chaotic 

communication systems, in this modulation scheme, each two bits are converted 

into  a symbol and then these symbols are  modulated ( mapped) by chaotic 

carriers [1] , this process is similar to the Quadrature Amplitude Modulation 

(QAM) which implemented in the classical communications, the only difference 

is the chaos carries which are used on the chaotic communications instead of the 

sinusoids which are used in (QAM) [5]. 

Extensive research has been done to study the performance of the QCSK 

systems. However, the QCSK systems were analyzed with the presence of only 

additive white Gaussian noise (AWGN) [1], which isn't reliable case, while the 

effect of the channel has not been considered , the performance of such model 

was simulated and performed.  
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But it is well known that the full representation of the transmitting channel 

should contains the (AWGN)  and the impulse response of the FIR channel as 

shown in figure (1) a, if the demodulation performed directly without undo the 

effect of the FIR channel, the (BER) will considerably be increased, which is the 

problem. In this paper, the performance of (QCSK) will be considered under 

effect of (AWGN) and the FIR channel. 

 

 

 

 

 

 

 

Fig.1.Full Representation of FIR Channel 
 

Where   is the impulse response of FIR channel. 

To undo the effect of the FIR channel, the equalization process is required 

where the equalization should be performed before the demodulation process, it 

is important to know that the receiver doesn’t know the parameters of the 

channel, so the equalization process has to be blind [3], as the equalizer undo 

the effect the channel,demodulation process can be performed exactly as 

(AWGN) case. Adaptive algorithm equalizer; namely Least Mean Square 

(LMS) will be used to update the equalizer coefficients[6] as it is shown in the 

following block diagram. 
 

 

 

 

 

 

               Fig.2 .General Quadrature Chaotic Shift Keying system with equalizer 

 

2. The Model and Simulations 
the performance of the QCSK with the presence of the AWGN was analysis  

and simulated  in  [1]. The suggested model which is shown in figure 3 seems to 

be ideal , because it ignores the effect of the transmitted channel. 

The modulated signal    can be expressed as  
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Where   is is reference chaotic sequence generated from certain map, is 

orthogonal chaotic to sequence with respect to , k is length of chaotic 

sequence and  is the bit energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. QCSK Modulation 

 

The modulated sequence   is transmitted through ideal channel ,where 

the sequence distorted by AWGN , then it will be demodulated using coherent 

detector[5] and BER of such a case was calculated and simulated. 

 

2.1   Mathematical Model 

   In the practical case, the channel can't be represented by only AWGN, the full 

representation shown in figure 1.  Is must , if the received distorted sequence 

demodulated directly , then we will get many bits with error (i.e. , high BER), so 

it is important to use a filter which undo the effect of the channel which is the 

Equalizer, in the proposed model of this paper , the stochastic gradient 

algorithm , namely the Least Mean Square (LMS) , will be used to update the 

coefficients adaptively[6]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. QCSK with equalization 
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Where    is the modulated sequence,   is distorted sequence by the channel which 

expressed in (1),  represents  AWGN,  and    is the equalized version of the 

distorted sequence , and our target to make the equalized sequence   closely 

matches the original transmitted sequence  . To get the ideal case , 

which is not reliable, the overall system response  such as 

, have to be delta. Mathematically , the equations below 

describes all what mentioned above, 

 

                                          (2) 

 

 ,  is channel length and    

represent additive colored noise. 

The blind equalization can be performed using the Adaptive algorithms, mainly 

the LMS algorithm [6] , the complete block diagram for such a system is shown 

in the figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

                        Fig.4. LMS Equalizer 
 

The cost function  which is will be used to minimize the error function  will 

determine the algorithm, in the equalization process proposed in this paper, the LMS 

algorithm is suggested, so the cost function chosen to update the equalizer coffecirnts can 

be expressed as  

 

                                                                                                                    
(3) 
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(4) 

The equalizer coefficients can be rewritten as 

                                                                              
(5) 

 Where is the step size of the equalizer. 

 

2.2 Simulation Criteria and Results. 

 

The simulation for the system  shown above was performed with   the 

consideration   of Reney map as reference chaotic sequence, and the bits to be 

transmitted was  bits for different FIR channels. Results show that the 

performance of  (QCSK) considerably improved when equalization  process 

implemented ,for example , the BER of channel with  impulse response of  

 found to be (1   at SNR equals to (14dB)   which is 

very large, while the proposed equalization process can be reduce this value 

until (7×   at the same SNR which can considered as Significant 

improvement , taking in account that the ideal system (AWGN only)  BER 

found to be  (5× ) . Simulations performed also under other FIR channels 

and algorithm parameters. Figure below shows an example of  simulations 

performed in the paper, where the step size for the algorithm was ( 0.01). 
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Fig.5. Chaotic Sequence 
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                     Fig.6. BER of QCSK without Channel Effect 
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Fig.7. BER of QCSK with different FIR Channels , without equalization 

 

 

 

 
It is noticed from Figure 7. That the BER is considerably high, so the same 

system will be simulated with the presence of the LMS equalizer, and the 

simulated results will be shown in following  
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Figure 9 :BER of QCSK with FIR channel(k=4,µ=0.01) 
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This paper discussed the performance of  chaotic communication 

systems when blind equalization performed , the QCSK was taken as example 

of chaotic modulation and the performance of such a system is simulated , it is 

found that the use of LMS algorithm  improves the performance of chaotic 

modulation scheme, there is another factor which determines the performance of 

the QCSK , which is the number of chaotic carrier  samples (k) that are used to 

modulate the incoming bits stream, as the number of samples increase as the 

BER decrease, however , the (k) is supposed to be large enough in the 

theoretical part in order to apply the Central Limit Theorem. 

The simulation was performed based on four level QCSK constellation, and it 

can be extended to the second constellation easily, that by changing the coding 

map and the decision regions criteria. 
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Abstract. Although the parallel-connected DC/DC converters have attracted attention in re-
cently, analysis of it is not easy because of its complicity. In this study, we analyze a simple
interrupted electric circuit, which has two interrupted switches. First, we show the circuit model
and explain its dynamics. Then, we define the sampled data model. Using the sampled data
model, we derive the 1- and 2-parameter bifurcation diagrams. Finally, we discuss characteris-
tics of the circuit by comparing the circuit with single interrupted switch.
Keywords: Bifurcation, Interrupted electric circuit, Poincaré map, Stability.

1 Introduction

An electric circuit, which has the switch depending on the state and a periodic interval,
has the interrupted characteristics. It is known that the interrupted electric circuit has
two or more subsystems. Moreover, the discrete map of the interrupted electric circuit
is categorized as the piecewise smooth map. The power conversion circuits, for exam-
ple converters or inverters, are the typical example of them. There are rich nonlinear
dynamics in the power conversion circuits upon varying the circuit parameter [1, 2].
It is important to analyze the nonlinear dynamics in the interrupted electric circuit
not only for understanding circuit characteristics but also for the practical application.
For this reason, many researchers have analyzed them for the past decades [3–6]. We
have also proposed an interrupted electric circuit, which simulates switching dynam-
ics of the frequency mode controlled DC/DC converter, for rigorously analyzing and
understanding nonlinear phenomena of the interrupted electric circuit [7].

Circuit’s characteristics and its nonlinear behavior of a simple class of the inter-
rupted electric circuit, such as the single buck, boost, or buck-boost converters, have
been completely studied in the previous works [8, 9]. But, detailed analysis of the
high-dimensional interrupted electric circuit, such as the parallel connected DC/DC
converters, resonate converters, and so on, is insufficient and their basic characteris-
tics remains unclear because of the complex circuit dynamics. So, we have proposed
the simplest interrupted electric circuit, which has two interrupted switches, for un-
derstanding characteristics of the parallel-connected DC/DC converters; both of the
proposed model and parallel-connected DC/DC converters have the two interrupted
switches, whose switching action is dependent on the state and a periodic interval.
Although the circuit has been analyzed in Ref. [10] a little, detailed analysis is insuf-
ficient.
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In this study, we discuss the characteristics of the circuit with two switches by
using the simplest class of the interrupted electric circuit. First, we show the circuit
model with two switches and then we explain behavior of the waveform. Next, the
waveform is discretized by every period of the clock interval, and the return map is
defined. By using the discrete map, we derive the 1-parameter bifurcation diagram
and the 2-parameter bifurcation diagram. Moreover, we analyze the bifurcation phe-
nomena in the interrupted electric circuit with two switches. Finally, we discuss how
connecting two switches in parallel affects the qualitative property of the system com-
pared with that of a circuit with the single switch based on the numerically analysis.

2 Circuit dynamics

2.1 Circuit model

Figure 1 shows the circuit model. The switch 1 and the switch 2 change from B to A
per the clock pulse interval 2T . Note that the clock pulse of the switch 2 delays a gap
T compered with the switch 1. Also, the circuit parameters are follows:

R = 10[kΩ],C = 0.33[µF], E = 3.0[V], T = 1.0[ms] (1)

Moreover, the state in the circuit model is classified into four cases as follows:

Case1: The switch 1 and the switch 2 are A.
Case2: The switch 1 is A and the switch 2 is B.
Case3: The switch 1 is B and the switch 2 is A.
Case4: The switch 1 and the switch 2 are B.

The circuit equations are defined easily and the solution of them are expressed as
follows:

C
R

E

R

vrCLK-1

t

B A

R
Q Q

R

E

R

vr CLK-2

t

v

A B

R S
Q Q

vrvr

T2 T2

Switch2Switch1
S

Fig. 1. Circuit model.
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v(t) =



































ϕ1(t, kT, vk, λ, λ1) , for state 1

ϕ2(t, kT, vk, λ, λ2) , for state 2

ϕ3(t, kT, vr, λ, λ3) , for state 3

, (2)

where vk denotes an initial value at t = kT .

2.2 Behavior of the waveform

Figure 2 shows an example of the behavior of the capacitance voltage in the circuit
model with two switches. In the following analysis, we call the behavior of the capac-
itance voltage v as the waveform. When the waveform reaches the reference value vr,
the switch 1 and the switch 2 change from A to B, i.e., the state of the circuit model
changes to state 3. After that, if the clock pulse is impressed, the state of the circuit
model changes to state 2. Moreover, if the clock pulse is impressed when the state
of the circuit model is state 2, the state of the circuit model changes to state 1 again.
Note that the clock pulse is ignored if it appears when the switch connects to A. Also,
if the state of the circuit model is state 2 when the waveform v reaches the reference
value vr, the state of the circuit model changes to state 1.

3 Discrete map

We sampled the waveform by every period of T for defining the discrete map in the
circuit. The waveform during the clock pulse interval T is classified into four types by
using the initial value vk at t = kT and the borders D and D′. The borders D and D′

are satisfied following condition:

ϕ1(T, kT,D, λ, λ1) = vr (3)

1

clock:

state: 3 2 1 3 2 1

kT (k+2)T (k+4)T (k+6)T

vr

t

Fig. 2. Waveforms.
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ϕ2(T, kT,D′, λ, λ2) = vr (4)

The switch keeps state 1 during the clock interval if vk ≤ D is satisfied. Thus, the
discrete map M1 is defined as follows:

M1 : R → R

vk 7→ vk+1 = ϕ1(T, kT, vk, λ, λ1), (5)

where λ1 denotes a dependency parameter. Also, vk and vk+1 are the solutions at t = kT
and t = (k + 1)T .

The waveform reaches to the reference value vr at t = kT + tA if vk > D is satisfied.
Thus, we define the following map M2A:

M2A :R→Π
vk 7→vr =ϕ1(tA, kT, vk, λ, λ1), (6)

where Π denotes the reference value. After that, the waveform reaches to vk+1 at
t = (k + 1)T . Therefore, we define the following map M2B:

M2B :Π→R

vr 7→vk+1=ϕ3(T − tA, kT + tA, vr, λ, λ3), (7)

where λ3 denotes a dependency parameter. Thus, the discrete map is defined as fol-
lows:

M2 : R → R

vk 7→ vk+1 = M2B ◦ M2A.
(8)

The switch keeps state 2 during the clock interval if vk ≤ D′ is satisfied. Thus, the
discrete map M′1 is defined as follows:

M′1 : R → R

vk 7→ vk+1 = ϕ2(T, kT, vk, λ, λ2), (9)

where λ2 denotes a dependency parameter. Also, vk and vk+1 are the solutions at t = kT
and t = (k + 1)T .

The waveform reaches to the reference value vr at t = kT +t′A if vk > D′ is satisfied.
Thus, we define the following map M′2A:

M′2A :R→Π
vk 7→vr =ϕ2(t′A, kT, vk, λ, λ2). (10)

After that, the waveform reaches to vk+1 at t = (k + 1)T . Therefore, we define the
following map M′2B:

M′2B :Π→R

vr 7→vk+1=ϕ3(T − t′A, kT + t′A, vr, λ, λ3), (11)

Thus, the discrete map is defined as follows:

M′2 : R → R

vk 7→ vk+1 = M′2B ◦ M′2A.
(12)

By using the discrete maps, we derive the bifurcation diagram and discuss the quali-
tative property of the circuit in the following analysis.
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4 Analytical result

First, we discuss the bifurcation phenomena of the circuit with two switches. Figure
3 shows an example of the 1-parameter bifurcation diagrams upon varying the bifur-
cation parameter vr from vr = 0.5[V] to vr = 2.0[V]. Note that we calculate the 1
parameter bifurcation diagram in the circuit with single switch in order to compare
with the circuit with two switches. Moreover, Fig. 4 shows the waveforms and the
discrete maps, respectively. Here, (a) and (b) in Fig. 4 correspond to the parameters
(a) and (b) in Fig. 3. Note that we have numerically calculated Figs. 3 and 4 using
Eqs. (5), (8), (9), (12). We observe the bifurcation phenomena in the bifurcation di-
agram. For example, the period-1 solution bifurcates to the period-2 solution around
vr = 0.8[V]. After that the period-2 solution bifurcates to the period-3 solution around
vr = 1.9[V]. Moreover, there are the various kinds of the periodic solution and the
chaotic attractors in the circuit.

Figure 5 shows examples of the 2-parameter bifurcation diagrams of vr–T plane.
Note that we derive the 2-parameter bifurcation diagram of the single switch case for

 0
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 0.5  1  1.5  2

v k
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]→

vr[V]→
(I) Single switch

 0

 1
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v k
[V
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vr[V]→

(a) (b)

(II) Two switches

Fig. 3. Example of the 1-parameter bifurcation diagram.
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(a) Period-1 solution (vr = 0.7[V]) (b) Period-2 solution (vr = 1.2[V])

Fig. 4. Examples of the waveform and the discrete map.

comparing with the circuit with two switches. In this figure, we express the existence
region of the period-m solution as mP (m = 1, 2, 3). There is the period-doubling
bifurcation in the circuit. Here, we only calculate the period-doubling bifurcation in
this study. Also, the condition of the period-doubling bifurcation is defined as follows:

(

dM1

dvk

)n−2 dM2

dvk

dM′1
dvk
+ 1 = 0 (n ≥ 2) . (13)

Note that the condition of the period-1 solution defined as follows:

dM′2
dvk
+ 1 = 0 . (14)

The solid lines in Fig. 5 are the bifurcation sets of the period doubling bifurcation.
Tables 1 and 2 show the stability of the period-1 solution in the circuit with single

switch and that of with two switches, respectively. Tables say that two interrupted
switches make the existence region of the period-1 solution small. This characteristics
may be same in the parallel-connected DC/DC converters, because both of the parallel-
connected DC/DC converters and our model have the two interrupted switches, whose
switching action is dependent on the state and a periodic interval.
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5 Conclusion

In this study, we have studied an electric circuit with two switches. First, we showed
the circuit model and its behavior. Next, we defined the discrete map and derived the
bifurcation diagrams. Finally, we discussed the characteristics the circuit using the
bifurcation diagrams. We found that the two interrupted switches makes the existence
region of the period-1 solution small. We consider that the same the parallel-connected
DC/DC converters has same characteristics. In future, we will clarify the characteris-
tics of the circuit in more detail.
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Table 1. Stability in the circuit with single switch.

Bifurcation parameter vr Characteristicmultiplier Remark
1.6056 -0.99962 Stable
1.6057 -0.99975 Stable
1.6058 -0.99989 Stable
1.6059 -1.00002 Period doubling bifurcation
1.6060 -1.00016 Unstable
1.6061 -1.00029 Unstable
1.6062 -1.00042 Unstable

Table 2. Stability in the circuit with two switches.

Bifurcation parameter vr Characteristicmultiplier Remark
0.855100 -0.999295 Stable
0.855200 -0.999567 Stable
0.855300 -0.999839 Stable
0.855400 -1.000111 Period doubling bifurcation
0.855500 -1.000383 Unstable
0.855600 -1.000655 Unstable
0.855700 -1.000928 Unstable
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Abstract: Fuzzy logic is powerful tool for modeling uncertainties associated with human 

cognition, thinking and perception, which has been successfully applied in various fields 

such as neural network and financial time series. The models are leads to a nonlinear 

system. 

In this paper, we propose a method for finding trapezoidal approximation of solution of 

fuzzy nonlinear equations using the metric (distance) between two fuzzy numbers. 

Numerical test is given to state efficiency of the proposed method. The proposed method 

is compared to Newton's method for a fuzzy nonlinear equation 

Keywords: Fuzzy distance- Fuzzy number- Fuzzy nonlinear equation. 

 

1. Introduction 
Systems of simultaneous nonlinear equations play a major role in various areas 

such as mathematics, statistics, engineering and social sciences. The numerical 

solution of a fuzzy nonlinear equation in general, as
CxF =)(

, by Newton's 

method was considered in [1- 3]. 

In this paper, we propose a method for finding trapezoidal approximation of 

fuzzy nonlinear equations solution using the distance between two fuzzy 

numbers
vu,

.  The function 
),( vuD

 is a metric in E  and 
),( DE

is a 

complete metric space. 

We use the concept of the trapezoidal fuzzy number, and propose new approach 

to solving fuzzy nonlinear equations. The basic idea of the new method is to 

obtain the nearest trapezoidal fuzzy number which is related to a fuzzy quantity. 

We generalize it for finding trapezoidal approximation solution of fuzzy 

nonlinear equations. 

Recently, there have been many research papers investigating on approximation 

of fuzzy numbers [4- 6]. In 2001, Chanas [4] have introduced the notion of an 

approximation interval of a fuzzy number. In 2002, Grzegorzewski [5], have 

suggested a new approach to interval approximation of fuzzy numbers.  

There have been many papers investigating triangular and trapezoidal 

approximation of fuzzy numbers [7-12].  In 2000, Ma et. al. [7] have used the 

concept of the symmetric triangular fuzzy number, and they have introduced a 

new method to defuzzy a general fuzzy quantity. The basic idea of their method 

was obtaining the nearest symmetric triangular fuzzy number for each fuzzy 
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quantity. In 2004, Abbasbandy and Asady [12] introduced a fuzzy trapezoidal 

approximation using the metric (distance) between two fuzzy numbers. 

In section 2, we recall some fundamental result of fuzzy number. In section 3, 

we state Newton's method for solving fuzzy nonlinear equations. In section 4, 

we propose new approach for solving fuzzy nonlinear equations.  

 

 

2. Preliminaries 
 Definition 2.1    

A fuzzy number is a function 
]1,0[: =→ IRu

 having the properties: 

(i) u  is normal; 

(ii) u is fuzzy convex set; 

(iii) u  is upper semicontinuous on R; 

(iv) The support 
{ }0)(: >∈ xuRx

 is a compact set. 

The set of all fuzzy numbers is denoted by FR . For 10 ≤< r , consider the 

level sets 
{ }rxuRxu r ≥∈= )(:][

 and 

{ }0)(:support][ 0 >∈= xuRxu
. 

A fuzzy subset A
~

 can be characterized as a set of ordered pairs of element x 

and grade 
)(~ x

A
µ

 and is often written
}))(,{(

~
~ XxxxA
A

∈= µ
. 

 

Definition 2.2 

A fuzzy number u in parametric form is a pair 
),( uu

of 

function
)(  and )( ruru

, 10 ≤≤ r , which satisfies the following 

requirements: 

(i) 
)(ru

is a bounded monotonic increasing left continuous function, 

(ii) 
)(ru

is a bounded monotonic decreasing left continuous function, 

(iii) 
1.r0              )()( ≤≤≤ ruru

 

A popular fuzzy number is the trapezoidal fuzzy number 
),,,( βδyxu =

with 

left fuzziness δ  and right fuzziness 
β

 where the membership function is 
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And its parametric form is  

rxru δδ +−= 0)(
 and 

ryru ββ −+= 0)(
. 

Definition 3.2 

For arbitrary
),( uuu =

 and 
),( vvv =

 and 0>k  the addition and 

multiplication by scalar k  are defined as 

vurvu +=+ )()(
 ,        

vurvu +=+ )()(
 , 

ukrku =)()(
 and  

ukrku =)()(
. 

Definition 4.2 

For arbitrary fuzzy number 
),( uuu =

 and 
),( vvv =

 the quantity   

2/1

1

0

1

0

22 ])()([),( ∫ ∫ −+−= drvudrvuvuD

 
is distance between u and v . 

 

3. The Newton's method 

For finding approximation of α  , root of fuzzy  nonlinear equation 

CxF =)(
,  with Newton's method, the parametric form  is as followed: 

]1,0[

).(),,(

),(),,(

∈∀








=

=

r

rcrxxF

rcrxxF

nn

nn

  
Approximated solution is  









+=

+=

−−

−−

)()()(

)()()(

11

11

rhrxrx

rhrxrx

nnn

nnn

 
Where 
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. 

For initial guess, one can use the fuzzy number  

))1()0(),0()1(),1(),1((0 xxxxxxx −−=
, 

Where 
),(),( αα=xx

 is parametric form of root of fuzzy nonlinear 

equation
CxF =)(

. 

Parametric form of initial guess is  

)1))(0()1(()1()(0 −−+= rxxxrx
  And     

)1))(1()0(()1()(0 rxxxrx −−+=
. 

 

 

4.Trapezoidal Approximation for solving fuzzy nonlinear equation 

To obtain a trapezoidal fuzzy number 
),,,( βδbax =

which is the nearest 

solutions of nonlinear systems 
CxF =)(

 with respect to metric D, we 

minimize  

2

11

0

1

0

22 ]))())(),((())())(),((([

))()),(),(((

∫ ∫ −+−

=

drrCrxrxFdrrCrxrxF

rCrxrxFD

 

where parametric form of 
),,,( βδbax =

is 
)1()( −+= rarx δ

 and 

)1()( rbrx −+= β
. 

Hence we have to minimize 
2))(),,((),,,( rCxxFDbad =βδ

 

in order to minimize
),,,( βδbad

, we consider  
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Since the solution of above equation is not unique there for, we replace solution 

Of
βδ ,,,ba

  in
),,,( βδbad

  and best trapezoidal approximation is selected. 

Numerical application 

Example 

Consider the fuzzy nonlinear equation  

)1,1,2,2()1,1,2,2()1,1,4,4( 2 =+ xx
 

Without any loss of generality, assume that x is positive, then the parametric 

form of this equation is as follows 





−=−+−

+=+++

).3()()3()()5(

),1()()1()()3(
2

2

rrxrrxr

rrxrrxr

 

With replace above equation system in (1) and replace solution of
βδ ,,,ba

in 

D trapezoidal approximation is selected, if it was be minimize value.  We have 

503.=a and 062.=δ , 502.=b '
03.=β

 so trapezoidal approximation is 

)03,.062,.503,.503(.=x
 

But in Newton's method to obtain initial guess we use above system for 0=r  

and 1=r , therefore 





=+

=+

.3)0(3)0(5

,1)0(1)0(3
2

2

xx

xx

       And        



=+

=+

.2)1(2)1(4

,2)1(2)1(4
2

2

xx

xx

 

Consequently 
4343.0)0( =x

 and 
5307.)0( =x

 and  
2/1)1()1( == xx

               

Therefore initial guess is  
)031,.065,.5,.5(.0 =x   

After 2 iterations, we obtain the solution 
)03,.063,.5,.5(.=x

 which the 

maximum error would be less than 
310−

. 
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Abstract: Catastrophe theory and deterministic chaos constitute basic elements of the 

science of complexity. Elementary catastrophes were the first form of nonlinear, 

topological complexity that were seriously studied in economics. Deterministic chaos 

and other types of complexity succeeded catastrophe theory. In general, chaos means the 

seemingly random behavior of a deterministic system, which stems from high sensitivity 

to its initial conditions. Nonlinear dynamic systems theory, which unites various 

manifestations of complexity into one integrated system, is contrary to the assumptions 

that markets and economies spontaneously strive for a state of equilibrium. To the 

contrary, their complexity seems to grow due to the influence of classic economic laws. 

In my paper, I indicate that with time, model economic systems strive for a state we call 

“the edge of chaos”. I consider two cases. The first case concerns an economy based on a 

two-stage accelerator, where the economic cycle adopts the form of chaotic hysteresis. 

The second case concerns a Cournot-Puu duopoly model in which striving for the edge of 

chaos stems from profit maximization by entrepreneurs. The evolution of systems at the 

edge of chaos can be sudden, which makes it necessary to consider it in terms of 

elementary catastrophes. 

Keywords: Cusp catastrophe, Chaotic hysteresis model, Cournot-Puu duopoly model, 

Edge of chaos, System classification, Economic transformation, Rule of progressive 

complexity. 

 

1. Introduction: Foundations of catastrophe theory 
1.1. Classification Theorem 

The theory of catastrophes, also known as the theory of morphogenesis, 

appeared in science in the mid-1970s [25]. It is a general method of system 

modeling focusing on the way in which discontinuous effects can emerge from 

continuous causes. Let the dynamic system be represented by a smooth 

function: 

RRR →× nkf : , (1) 

where 
kR  is a control space representing a set of causes, whereas 

nR  is a 

space of states (behavior) representing a set of effects. The function f is called a 

potential function. If the internal dynamics of the system consist in striving for a 

local maximum, then the potential function can represent the probability of it 

being found. 

The basis of catastrophe theory is the classification theorem [26]. This states 

that if the co-dimension k of elementary catastrophes is bigger than 5, they 

create a finite family of discontinuous transition types. Every sudden dynamic 
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change can be assigned to one of those types. The relation between the number 

of catastrophes and the co-dimension is shown in Table 1. 

 

Table 1. Elementary catastrophe classification in relation to the co-dimension k 

Co-dimension value (k) 1 2 3 4 5 6 7 … 

Number of elementary 

catastrophes 
1 2 5 7 11 ∞ ∞ 

 

From an application point of view, the case k = 4 is important, since
4R  can be 

interpreted as a physical space-time in which all events take place. There are 

seven types of singularities in this case: fold, cusp, swallowtail, butterfly, 

hyperbolic umbilic, elliptic umbilic, and parabolic umbilic [5]. 

The application of the catastrophe theory in economics is possible only when 

the law governing a given phenomenon or process has been well-defined. In 

such a case, the catastrophe theory will facilitate the choice of the easiest 

mathematical structure, which will generate a behavior closest to real. Another 

equally point is to use metaphors properly [8]. 

 

1.2. The cusp catastrophe 

The cusp catastrophe is one of the most common elementary catastrophes in 

economic applications. The potential function has the following form: 

 

RRR →× 12:f , (2) 

 

Thus, the control space is two-dimensional, whereas the state space is one-

dimensional. The function (2) has a simple multinomial representation: 

 

( ) xcxcxxccf 2
2

1
4

21
2

1

4

1
,, ++= , (3) 

where x stands for the state variable, whereas 1c  and 2c  are the control 

parameters [28]. The manifold of the catastrophe defining the surface area of the 

system equilibrium is dependent on the following formula: 

 

( ) 







++=== 21

3
213 ,0:,, cxcx

dx

df

dx

df
xccM . (4) 

 

The system proceeds along this surface in a continuous way, until it comes 

across a set of singularities. There is then a sudden jump to another equilibrium 

surface and the continuous evolution continues until the next jump. 
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2. Deterministic chaos 
2.1. Nonlinearity as a necessary condition for complexity 

In order to define nonlinearity it is necessary to clearly define linearity. In all 

linear systems, the binding rule is the rule of superposition. This states that the 

system’s reaction to two or more stimuli is the sum of reactions triggered 

individually by each of these stimuli. If factor A triggers reaction X, and factor B 

reacts to Y then the factor (A + B) results in (X + Y). In other words, linear 

systems are additive.  

The rule of superposition implies the linearity of the system if we supplement it 

with the condition of homogeneity. A lack of additiveness and homogeneity 

implies the nonlinearity of the system. The main causes of nonlinearity in 

economics are: 

• Limitations imposed on the economic variables [2]. 

• Technical-balance laws of production [15]. 

• Technical-organizational factors [10]. 

• Bounded rationality [24]. 

• Processes of expectation formation [4]. 

• Adaptive processes of economic-agent learning [3]. 

• The shape (protuberance) of the indifference curves. 

• Aggregation processes of some variables [27]. 

• Evolution of competition rules [3]. 

• Psychological laws [14]. 

Nonlinearity is a necessary condition, but it is not enough to trigger chaos. 

Statistical tests confirm that nonlinearity is a phenomenon that is common in 

economic time series, and part of them proves that deterministic chaos exists. 

There are strong grounds to claim that in the future, the role of nonlinearity in 

economic explorations will become more significant. 

 

2.2. The butterfly effect 

Deterministic chaos means a seemingly random behavior of the deterministic 

system, thus one which is strictly subject to specific rules. The reason for the 

stochastic behavior of some nonlinear deterministic systems is their unusually 

sensitive dependence on initial conditions, which was named ‘the butterfly 

effect’ by Lorenz [16]. A slight disturbance in the initial conditions after some 

time causes significant changes in the system behavior as trajectories begin to 

disperse exponentially. As picturesquely described Lorenz, a proverbial flap of 

butterfly wings in Brazil can cause a tornado in Texas. 

The Lyapunov exponents are amongst the most frequently-used quantitative 

measures of the trajectory divergence. This notion has been used by Oseledec 

[20] in a well-known multiplicative ergodic theorem. The Lyapunov exponent 

for one-dimensional map is as follows: 

( ) ( ) ( )
0

000

0ε
ln

1
lim

ε

ε
ln

1
limlim

xd

xfd

n

xfxf

n
W

n

n

nn

n

L

∞→→∞→
=

−+
= . (5) 
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Symbols 
nfff ,,, 21 Κ  stand for subsequent iterations, 0x  and ε+0x  are 

the initial conditions for the two trajectories. The number 0>ε  is very small. 

With every iteration, the distance between the trajectories increases 

exponentially. This definition can also be generalized with multi-dimensional 

systems. The number of exponents has to correspond to the number of 

dimensions. If the largest exponent of a dynamical system is positive, this 

indicates a chaotic trajectory, while an exponent equal to zero indicates the 

bifurcation point, and a negative value means convergence of the trajectory with 

the constant point of attraction or a periodic attractor. 

The basic notion of nonlinear dynamical systems theory is also the notion of an 

attractor, primarily a chaotic attractor. Let F stand for a map of m-dimensional 

space into itself. The compact set A, which is situated in the m-dimensional 

space, we call the attractor for F if it meets the conditions of invariance, density, 

stability and attraction. An attractor is a chaotic attractor if it contains a chaotic 

trajectory [19]. 

 

2.3. System classification in nonlinear dynamical systems theory 

In order to compare the subjects of conventional science, the theory of 

deterministic chaos, and the theory of complexity, we can classify systems 

based on the following criteria: the number of constituents of the system N and 

the average number of links between these elements K (see [11, 12, 13]). 

Depending on the relationship between these parameters, we can distinguish 

three types of the NK systems: 

• Type I – subcritical systems. The number of links is very small, given the 

number of elements. Every element is technically independent from others, 

thus the behavior of the whole system can be treated as a simple sum of its 

parts. Because the rule of superposition is met in such a case, systems of this 

type are approximately linear. Their dominating behavior is striving for 

states of equilibrium. 

• Type II – critical systems. The average number of links is substantially 

greater than in the subcritical systems. These systems are characterized by 

more complex dynamics and can reveal emergent properties [7]. Local 

changes can be dispersed in a system so they usually do not bring about 

global consequences. These types of systems often balance on the edge of 

chaos (this is a state when the system’s ability to survive is the greatest and 

its computing power reaches maximum value). 

• Type III – supercritical systems. The ratio of the number of links to the 

number of elements approaches one. It is a state in which almost every 

element is interlinked with all the rest. It includes deterministic systems, 

which are characterized by complex dynamics. 

The largest Lyapunov exponent for subcritical systems is negative, for critical 

systems it oscillates around zero, whereas for supercritical systems it is positive. 

Classical science deals with systems of type I, the theory of chaos explores 

systems of type III, whereas the subject of interest for the theory of complexity 

is type II and the transitions between various types of systems (see [7, 21]). 
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3. Applications in economics 
3.1. The theory of economic transformation 

The first step towards elaborating a theory of transformation was taken by 

American researchers who formulated a model of chaotic hysteresis (see [22, 

23]). Two basic nonlinear dynamic system theory methods were applied 

concurrently, i.e. elementary catastrophes and deterministic chaos. The starting 

point is a socialist economy. According to the Marxist convention, the economy 

was divided into two sectors: consumption-goods and capital-goods. The notion 

of a technological gap and the cusp catastrophe were used to describe social-

economic crises. The attractor in the form of a chaotic hysteresis that appears in 

a reformed economy is a result of a two-phase activity of a nonlinear 

accelerator.  

The dynamic system is described by a two-dimensional formula: 

ttt ZII += −1 , (6) 

( ) 1
3

11 −−− −−= tttt IvZZuZ , (7) 

where: tI  – total investment within the period t, tZ  – increase in the 

investment, whereas symbols u and v means respectively the values of 

accelerators in the capital-goods sector and in the consumption-goods sector. 

These formulas cannot be solved analytically, but they can be the subject of 

numerical explorations. 

An analysis of the system (6)–(7) was conducted assuming the constant value of 

the accelerator in the sector of capital goods u = 2, whereas the value of the 

parameter v was gradually decreased. For 0.01 ≤ v ≤ 0.1395 in the phase space 

of the system there is an investment cycle in the form of a chaotic attractor. 

Lowering the value of the accelerator of the consumption-goods sector means 

the metamorphosis of the attractor – eventually for the value of v = 0.00005 it 

takes on the form of chaotic hysteresis. The attractor in this form is featured in 

Figure 1. In the model, there is a trade-off between complexity (chaos) and 

instability, understood as the increase of period and amplitude of oscillation of 

investment [6]. 

The next element of the theory is the technological gap (G), which stems from 

the higher rate of capital-intensive nature of production in socialism compared 

to a capitalist economy. Paradoxically, this phenomenon is a result of pursuing 

the postulates of stability of production and full employment, which were to 

make socialism a system more bearable for people than capitalism with its 

chronic unemployment and crises. 

Another step is to introduce the cusp catastrophe, whose space area of 

equilibrium meets condition (4). In the theory under investigation, the variable 

of this state is the probability of an introduction of market reforms )(sPx = , 

the bifurcation parameter is the dimensions of the technological gap Gc =1 , 

whereas the asymmetric parameter is the rate of growth of investment 

IZc =2 . In the Figure 2 there is a geometrical interpretation of the 

morphogenetic model of transformation. 
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The space of the catastrophe equilibrium describes various scenarios of 

economic crises and the corresponding reforms that sought to answer them. For 

G = 0 we have an example market economy. The occurrence of the 

technological gap, which happens after passing through the beginning of 

catastrophe, causes a division of the equilibrium space into two layers – an 

upper and lower. They suggest the occurrence of nonlinear changes in the 

probability of transformation, whenever the rate of investment growth reaches a 

necessary value. Sudden leaps take place when the asymmetric factor crosses 

the bifurcation set of the catastrophe located in the parameter space marked by 

the following formula: 

[ ]0274:),( 2
2

3
1213 =+= ccccB . (8) 

Numerical explorations of model (6)–(7) have shed new light on a certain 

macroeconomic problem which has been neglected by mainstream economics 

regarding the macroeconomic costs of the reform complexity. An intuitive 

understanding of this category of costs is known from the theory of the 

corporation [18]. The global financial crisis prompted a wider look at the 

complexity of economic processes and the accompanying problems [1]. An 

economy under transformation is vulnerable to falling victim to trade-offs 

between complexity and instability, which accounts for the fact that benefits 
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Figure 1. The chaotic attractor in the form of chaotic hysteresis for 

u = 2, v = 0.00005 
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stemming from reforms can, over a long period of time, consolidate below the 

costs of complexity. It is a new, quality-based position in the balance of 

transformation. Future research should focus on methods of its measurement. In 

addition, it constitutes a challenge to economic policy, which should seek to 

simplify economic life. 

 

3.2. The rule of progressive complexity 

 

Mathematical studies of standard nonlinear economic models have revealed an 

interesting regularity, which I called “the rule of progressive complexity” [9]. It 

appears that there are two active forces in economic systems. The first force is 

short term in nature, and its source stems from rational, typical endeavors of 

business entities. One of the manifestations of this activity is profit 

maximization by producers and maximization of utility by consumers. As a 

result, these systems seek a state of short-term equilibrium. The second force is 

active over a long period of time and even though its source is identical to the 

first one, the effects are totally different. It destabilizes the short-term states of 

equilibrium and pushes market structures towards a state known as “the edge of 

chaos”. It is a transition field between a periodic behavior and chaotic behavior, 

where the computing power of systems, which means their ability to collect and 

process information, reaches its maximum. The complexity of a system, which 

can been measured by Lapunov exponents, increases in this field. 

sP

3B Gc =1

IZc =2

 
 

Figure 2. Geometrical interpretation of a morphogenetic transformation 

model 
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Let us consider a duopoly model using the following equations: 

 

t
t

t y
a

y
x −=+1 , (9) 

t
t

t x
b

x
y −=+1 , (10) 

 

where: x – the production output of the first entrepreneur, y – the production 

output of the second entrepreneur, whereas a and b stand for their marginal 

costs, respectively. In the static version, these equations set the reaction 

functions. Each of them describes the choice of the production output made by 

an entrepreneur assuming that the production output of their competitor is 

known. The collision of these two functions takes place at the point known as 

the Cournot-Nash equilibrium point.  

The standard analysis of the model’s stability allows us to set two critical values 

of the marginal costs ratio: 
 

223±=∨
a

b

b

a
. (11) 

 

This is where the analytical methods give up. We do not know what happens to 

this model when the stability threshold is crossed, or how it behaves over a long 

period. 

It is best to start numerical explorations of a duopoly (9)–(10) with making a 

period plot [19]. This is a two-dimensional space of parameters in which various 

behavior of the system has been specified (with emphasis on periodic behavior). 

In order to do this, one should define the interval of changeability of both 

parameters and the initial condition of the trajectory bundle. A plot of this type 

allows us to follow the dynamics of the system depending on a simultaneous 

change in two control parameters. 

Numerical explorations of parameter space reveal the following types of 

behavior: states of short-term equilibrium, periodic dynamics, chaos and 

divergent trajectories (see Figure 3). Pairs of parameters responsible for states of 

stable equilibrium account for 82.77% of the parameter space, whereas pairs of 

chaotic parameters account for mere 0.15% of this space. Consequently, it 

seems that stability predominates and the claims of conventional economics 

have been confirmed. However, it is a false conclusion. Entrepreneurs are 

interested not only in maximizing profit over a short time, but also in the long 

run. Maximizing profit in the long run requires introducing technical-

organizational progress and it results in lowering marginal costs. Consequently, 

every producer strives for one of the two edges of chaos (11), i.e. states with 

growing complexity [9]. 

The system displays a certain type of globally rational behavior which 

contributes to its survival. As of the moment the efficient producer achieves the 
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edge of chaos, his long-term profit decreases, and the long-term profit of the 

inefficient producer begins to grow [17]. This leads to role reversal, and in the 

diagram, the market bounces off the edge of chaos. 

4. Conclusions 
Catastrophe means a violent, sudden transition of the tested system into a new 

state. What is important here is the rapidity of the changes in the behavior of an 

object as compared with the mean change in the past. Catastrophe theory merges 

two apparently contradictory and unrelated kinds of phenomena descriptions to 

form one coherent notion system: evolutionism and revolutionism, continuity 

and discontinuity. In economics, the application of catastrophe theory is of great 

cognitive importance, particularly in issues of explanation and forecasting in 

economics. 

In transitional economies, there is a trade-off between complexity and 

instability. In the economic calculation of transformations, a new type of cost 

needs to be considered – the social costs connected with the change of the 

dynamic complexity of the systems. Numerical explorations of an archetypal 

duopoly model have proven that states of equilibrium are stable only for a short 

period. In the long run, such systems strive for the edge of chaos. 
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Abstract: The delay-coupled flexible joint system is presented in this paper. The 

geometric singular perturbation method is used to obtain the critical manifold defining as 

the equilibrium of the fast subsystem. The eigenvalue analysis of the fast subsystem 

reveals a relation between the stability of the critical manifold and the time delay. With 

different values of the time delay, numerical simulations are performed to display some 

interesting dynamic behaviors of the fast-slow system. The formation mechanisms of 

these complex dynamics are expounded. 

Key words: flexible joint, time delay, geometric singular perturbation, bursting, chaos 

 
1. Introduction 
Systems with multiple time scales are usually named as the singularly perturbed 
systems or the fast-slow systems. The fast-slow property of such systems may 
cause various complex nonlinear dynamics, representative ones are spiking, 
bursting and relaxation oscillation. Izhikevich [1] given out a comprehensive 
classification of spikes and bursters in his brilliant work. He well explained the 
bifurcation mechanisms involved in the generation of spiking and bursting and 
completed the existing classification. Because of the multiple time scales, the 
fast-slow systems usually have special structures and thus cause the failure of 
general perturbation methods [2]. Jones [3] proposed an improved perturbation 
method named geometric singular perturbation method from the view of 
geometry. This method was proved to be quite effective in the ecosystems [4] 
and in neuroscience [5]. 
The rigid-link flexible-joint arm is a representative fast-slow system in the 
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mechanical field. It was firstly derived by Spong [6] in 1980s. Chen [7] 
considered the neglected time delay and improved Spong’s model into a 
delay-coupled one. In this paper, the wave propagation time along the long, thin, 
elastic shaft is defined as the origin of the time dealy. The purpose of this paper 
is to explore the influence of such kind of time delay. The paper is organized as 
follows. In section 2, an improved model of time-delayed flexible-joint system 
is established. In section 3, the bursting behavior and the chaotic bursting are 
obtained in numerical simulation. Then, with the increasing of the time delay, 
the continuous chaotic oscillation appears. Section 4 contains some conclusions. 

 
2. The Flexible Joint System 
To investigate the effect of the multiple time scales on a delay-coupled system, 
we introduce the one rigid-link flexible-joint robot manipulator. As is shown in 
Fig.1, a rigid rotor is connected with a rigid link via an elastic long shaft which 
is modeled as a liner torsion spring with stiffness K . Assume that the inertia of 
the link is I  and the inertia of the rotor is J  about the rotation axis. Let 

( )1 tθ  be the angular displacement of the link and ( )2 tθ  be the angular 

displacement of the shaft, both having the vertical axis as their angular reference. 
Considering that there is a time delay τ  in the propagation of the angular 
displacement from the rotor to the link and vice versa from the link to the rotor 
in the reaction process, then, the governing equation is constructed to be 
 

( )1 tθ

( )2 tθ
( )u t

Mg

I

K
J

 
Fig.1. The flexible joint system 

 

( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )

1 1 2 1 2 1 1

2 1 2 1 2 1 2 2

sin 0,

,

I t c t t K t t MgL t

J t c t t K t t c t u t

θ θ θ τ θ θ τ θ

θ θ θ τ θ θ τ θ

− − − − − − + =

+ − − + − − + =

�� � �

�� � � �
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where M  is the total mass of the link, L  is the distance from the axis of 
rotation to the mass centre of the link, g  is the acceleration constant of gravity 

and ( )u t  is the torque applied to the shaft by the actuator. Besides, 1c  stands 

for the damping coefficient inside the system and 2c  stands for the damping 

coefficient outside the system. 
To distinguish the different scales, dimensionless parameters are introduced as 

2I
J

ε= , 1
1

c
KJ

α= , 2
2

c
KJ

α= , MgL
K

β= . 

Then, a typical fast-slow system is obtained as 

( ) ( )
( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( )
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )

1 1

1 1 2 1 2 1 1

2 2

2 1 2 1 2 1 2 2

,

sin ,

  ,

  ,

t p t

p t p t p t t t t

t p t

p t p t p t t t p t u t

εθ

ε α ε τ θ θ τ β θ

θ

α ε τ θ θ τ α

=

= − − + − − −

=

= − − − − − − − +

�

�
�

�

 

where 1 1, pθ  are defined as the fast variables, 2 2, pθ  are slow variables and 

0 1ε< � , 1 1α εα= , 1
1 10α −∼ , 010β ∼ , 1

2 10α −∼ . 

According to the singular perturbation theory, the limit of the original full 
system as 0ε →  is defined as the reduced slow subsystem and the limit of the 
rescaled full system with t tε=  as 0ε →  is the reduced fast subsystem. 
The slow manifold of the full system is defined as equilibrium of the fast 
subsystem, denoted as 

( ) ( ) ( ) ( ) ( )( ) ( ){ }4
0 1 1 2 2 1 1 1 2 1 1, , , :  0,  sin 0M p p p t p t t t tθ θ α θ θ β θ= ∈ = − + − − =\

and the equilibrium manifold is obtained as 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ){ }4
1 1 2 2 2 1 1 2 1 2 2, , , : 0, 0M p p p t p t t t p t u tε θ θ α τ θ θ τ α= ∈ = − − − − − + =\

To analyze the stability switches of the slow manifold 0M , a characteristic 

equation of the fast subsystem attracts our attention 

( ) 2
1 1cos 0D e eλτ λτλ λ α λ β θ− −= + + + = . 

When 11 cos 0β θ+ = , 0λ =  is always a root of ( )D λ , otherwise, when 
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11 cos 0β θ+ ≠ , assuming that the characteristic equation has a pair of pure 

imaginary roots ( ) 0iλ ω ω= ± > , separating the real and the imaginary parts 

and considering the equation ( ) ( )2 2sin cos 1ωτ ωτ+ = , the following equation 

is obtained 

( )
( )( ) ( )2 2 2 2

1 1 1
2

1

2 cos cos 1
0

1
F

α β θ β θ

α

Ω − + Ω+ −
Ω = =

+ Ω
, 

where 2ωΩ = . 
Without loss of generality, set the values of the system parameters as 

1 1.5,  =3α β= , and the relationship between the rest quantities, namely, Ω  
and 1θ , is illustrated in Fig.2. 

1θ

Ω

            1θ

τ

 

Fig.2. The solution curves of ( ) 0F Ω =    Fig.3. The stability boundaries 

With ( )1 0,  1.23096θ ∈ , ( ) 0F Ω =  has two positive roots, 

( ) ( )( )1,2 1 10.125 9 24cos 20.7846 0.335648 cosω θ θ= + +∓ . 

With ( )1 1.23096,  1.91063θ ∈ , there’ one positive root 1ω , with 

( )1 1.91063,  4.37256θ ∈ , no positive root and with ( )1 4.37256,  5.05223θ ∈ , 

one positive root 1ω . At last, with ( )1 5.05223,  2θ π∈ , there are two positive 

roots, namely, 1ω  and 2ω , again. 
Substituting 1 2,ω ω  back into the sinusoidal function, a series of branch lines 
on the 1-θ τ  plane are determined as 
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( )( )2
1 1 1

1,2 2
1,2 1

1.5 3cos1 2 arcsin ,  0,1,2...
1 2.25

m m
ω ω θ

τ π
ω ω

⎛ ⎞⎛ ⎞−
⎜ ⎟⎜ ⎟= ± =

⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
. 

As is shown in Fig.3, the 1-θ τ  plane is divided by these branch lines and those 
interval boundaries into several regions. With a certain time delay constτ , a 
horizontal line constτ τ=  will cross these separatrix from the left to the right 

and thus determines the stability switch points of the slow manifold. 
 
3. Delay-induced Chaotic Behaviors 
In this section, discussion pivots on the free oscillation of the flexible-joint 

system, i.e., when ( ) 0u t = . Simulation results indicate that some complex 

phenomena will emerge due to the effect of the multiple scales and different 
values of the time delays. 
Case 1, 0.68τ =  
In this case, the horizontal line 0.68τ =  intersects with the boundary curves at 
four points and thus separates the slow manifold into five segments, see Fig.4. 

1θ

τ

        1θ

2θ
1H

2H

1S

2S

1M

2M

3M

4M

5M

 
  Fig.4. The zoom of Fig.3       Fig.5. The structure of the slow manifold 

Fig.5 illustrates the corresponding structure of the slow manifold. According to 
the geometric singular perturbation theory, the stable segments of the slow 
manifold attract the flow and those unstable ones repel the flow. Considering the 
slow manifold structure in Fig.5, it is surmised that starting from an initial point 

( ) ( )1 2, 2,3θ θ = , the flow of the system would be repelled by the unstable 

segment 1M  and move around the limit cycle bifurcated from the Hopf point 

1H  until it is attracted by the stable segment 2M . It moves along 2M  and 
jumps at the saddle-node point 1S  from the left to the right unstable segment 

5M . Because of the symmetry, the flow would move around the limit cycle 
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bifurcated from the Hopf point 2H  and be attracted by the stable segment 4M  
until it jumps at the saddle-node point 2S  to the left and thus forms a big loop, 

namely, the phase portrait, as is illustrated in Fig.6. Fig.7 shows the phase 
portrait on the 1 1-p θ  plane and Fig.9 presents from a three-dimensional view. 

The corresponding time history plot is presented in Fig.8 and this kind of 
periodic cluster phenomenon is called the bursting. 

1θ

2θ

           1θ

1p

 

Fig.6. Phase portrait ( 0.68τ = )         Fig.7. Phase portrait ( 0.68τ = ) 
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Fig.8. Time series ( 0.68τ = )          Fig.9. Solution trajectory ( 0.68τ = ) 

Case 2, 0.685τ =  
With the increase of the time delay, the flow begins to move and jump between 
the left and the right attractors irregularly and thus leads to a series of complex 
dynamics behaviors. As 0.685τ = , keeping the other parameters fixed as the 
case when 0.68τ = , the phase portraits of the system are shown as follows in 
Fig.10, Fig.11 and Fig.13. Fig.12 illustrates an irregular bursting phenomenon 
and in some literatures it is called the chaotic bursting. 
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Fig.10. Phase portrait ( 0.685τ = )      Fig.11. Phase portrait ( 0.685τ = ) 
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Fig.12.Time series ( 0.685τ = )         Fig.13.Solution trajectory( 0.685τ = ) 
Case 3, 0.7τ =  
As the time delay continues increasing to 0.7τ = , the irregularity of the flow 
motion gets worse and a chaotic behavior is obtained. Fig.14, Fig.15 and Fig.19 
demonstrate the phase portraits and Fig.16, Fig.17 are the Poincare maps. 
Obtained from Fig.18, the behavior of the system is in an extreme disorder and 
it should be avoided in the design process. 
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Fig.14. Phase portrait ( 0.7τ = )            Fig.15. Phase portrait ( 0.7τ = ) 
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  Fig.16. Poincare map ( 0.7τ = )           Fig.17. Poincare map ( 0.7τ = ) 
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Fig.18. Time series ( 0.7τ = )          Fig.19. Solution trajectory ( 0.7τ = ) 
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4. Conclusions 
In the present paper, a delay coupled flexible-joint robot arm is investigated and 
the geometric singular perturbation method is proved to be effective in dealing 
with such fast-slow systems with singularity. Geometric analysis reveals that the 
structure of the slow manifold directly determines the trends of the flow. Even a 
tiny variation of the structure will cause extremely different dynamics behaviors 
of the system. In this paper, such variation is brought about by the time delay. 
Simulation results indicate that with the increase of the time delay, the system 
can experience varied complex motions. The formation mechanisms of these 
dynamics behaviors are pictured on the basis of the slow manifold. 
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Abstract. It is shown, that a dissipative soliton is strongly affected by a quantum
noise, which confines its energy scalability. There exists some bifurcation point inside
a soliton parametric space, where the energy scalability of dissipative soliton changes
drastically so that an asymptotically unlimited accumulation of energy becomes im-
possible and the so-called “dissipaive soliton resonance” disappears.
Keywords: Dissipative soliton, Quantum noise, Dissipative soliton resonance.

1 Introduction

In the last decade, the concept of a dissipative soliton (DS), that is a strongly
localized and stable structure emergent in a nonlinear dissipative system far
from the thermodynamic equilibrium was actively developing and became well-
established [1]. The unique feature of DS is its capability to accumulate the
energy without stability loss [2]. As a result, the DS is energy-scalable. This
phenomenon resembles a resonant enhancement of oscillations in environment-
coupled systems so that it was proposed to name it as a “dissipative soliton
resonance” (DSR) [3]. A capacity of DS to accumulate the energy is of interest
for a lot of applications. For instance, it provides the energy scaling of ultra-
short laser pulses and brings the high-field physics on table-tops of a mid-level
university lab [4].

Nevertheless, the noise properties of DS remain practically unexplored.
Such properties promise to be nontrivial because, as was found, the DS can
contain the internal perturbation modes, which reveal themselves as the spec-
trum distortions and the peak power jitter [5]. Moreover, the parametric space
of DS and, as a result, the DSR conditions can be modified substantivally under
action of gain saturation and another dynamic factors [6–8].

In this work, a numerical analysis of DS parametric space taking into ac-
count the quantum noise is presented. It is demonstrated, that the noise mod-
ifies the DS parametric space substantially and reduces the soliton energy scal-
ability.

2 Concept of the DS and the DS parametric space

DS is a strongly localized and stable structure, which develops in a non-
equilibrium system and, thus, has a well-organized energy exchange with an
environment. This energy exchange forms a non-trivial internal structure of
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DS, which provides the energy redistribution inside it (e.g., see [1]). In this
respect, DS is a primitive analogue of cell.

One may think, that a simplest and, simultaneously, sufficiently comprehen-
sive mathematical framework for a DS modeling is provided by the so-called
nonlinear Ginzburg-Landau equation (NGLE) [9]. Here, we shall explore the
NGLE with the cubic-quintic nonlinearity, which is appropriate, e.g., to mod-
eling of the nonlinear optical and laser systems [10,11]:

∂a (z, t)

∂z
=

[
−σ + (α+ iβ)

∂2

∂t2
+ (κ− iγ) |a (z, t)|2 − κζ |a (z, t)|4

]
a (z, t) .

(1)
Here, a(z, t) is a complex “field amplitude” describing the DS profile (e.g., it
is a “slowly-varying” field amplitude for an optical DS or an effective “wave
function” for a Bose-Einstein (BE) condensate [12]), t is a “local time” (that
is a coordinate along which a DS is localized, e.g., it is a co-moving time-frame
for an optical DS or a transverse spatial coordinate for a BE DS), z is a DS
“propagation coordinate” (e.g., it is a number of cavity round-trips for a laser
or a time for a BE condensate). The β−coefficient is a group-delay dispersion
(GDD) coefficient (or a “kinetic-energy” term for a BE condensate), α is a
squared inverse bandwidth of a spectral filter (e.g., it can be a squared inverse
laser gain bandwidth or a “runaway” coefficient for a BE condensate). The
γ− coefficient defines a self-phase modulation (SPM) in a nonlinear optical
system (a “strength” of three-bosons interaction), κ is a dissipative correction
to it (a self-amplitude modulation (SAM) coefficient or a “strength” of boson
creation in three-bosons interactions), and ζ is a higher-order correction to SAM
coefficient. The σ−coefficient is a saturated net-loss coefficient, which defines
the energy exchange with an environment (generally speaking, this exchange
depends on the DS energy).

Only a sole analytical DS solution for Eq. (1) is known [10] but there
are the powerful approximate techniques, which allow exploring the solitonic
properties of NGLE [2]. These techniques demonstrate that a DS “lives” in
the parametric space with reduced dimensionality. For instance, the DS of
Eq. (1) has a two-dimensional parametric space [11] and its representation was
called as the “DS master diagram” [2,11,13]. Such a diagram demonstrates
some asymptotic corresponding to an infinite DS energy growth E → ∞ (e.g.,
E can be associated with an ultrashort pulse laser energy or a mass of BE
condensate). This asymptotic was named later as the DSR [3].

The structure of the master diagram is crucial for a DS characterization.
The most interesting is the so-called “zero isogain curve”, where σ ≡ 0 that
corresponds to a “vacuum stability” of Eq. (1) and defines the DS stability
border. Such a DS stability border obtained from the adiabatic theory of DS
[2] is shown by the solid curve in Fig. 1. The DS is stable below this curve.

The dimensionless coordinates in Fig. 1 represent a true parametric space
of DS and demonstrate the DSR existence: limC→0.666E = ∞. Physically, the
DSR corresponds to a perfect scalability of DS energy that is the DS energy
can grow without a change of system parameters (i.e. parameters of Eq. (1)).
Of course, the energy inflow is required for such a scaling. This inflow is
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Fig. 1. Master diagram (parametric space) of DS. Solid curve corresponds to the
soliton stability border obtained from the adiabatic theory. Dashed curve corresponds
to the stability border with taking into account of the additive complex noise with
the correlator: ⟨ψ(t)ψ(t′)⟩ ≡ 10−5γ−1δ (t− t′).

provided by the energy-dependence of σ−parameter: σ ≡ ξ (E/E′ − 1) (here
E′ corresponds to the energy of a t−independent solution of Eq. (1); ξ is a
parameter, which is irrelevant for a further consideration) [11].

3 Master diagram under the noise action

The inclusion of a quantum noise in the form of the additive complex white
noise source ψ in Eq. (1) transforms the master diagram drastically. The
dashed curve in Fig. 1 demonstrates the DS stability border in this case.
One can see, that the DS stability conditions change after a bifurcation point
Eκ3/2ζ1/2/γα1/2 ≈ 20 so that the energy scaling needs a substantial decrease of
the C−parameter (e.g., this corresponds to a substantial GDD-growth required
for the DS stabilization). Thus, the DSR disappears under the noise action.

Moreover, the DS cannot develop from a noise after the next bifurcation
point: Eκ3/2ζ1/2/γα1/2 ≈ 400. Here, the noise amplification becomes so strong
that the DS cannot rival it and a further energy scaling becomes impossible.

Another important feature of a high-energy DS in the presence of noise
is that the soliton emergence is random, that is it depends on both a random
sample of initial noise conditions and their evolution. Thus, the stability border
for a high-energy DS becomes “fuzzy”.
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4 Conclusion

The numerical analysis of NGLE has demonstrated that the DS energy scala-
bility is affected strongly by a quantum noise. It has been found, that the noise
destroys the DSR so that the soliton energy scaling requires a substantial GDD
increase. Starting from some energy level, the noise prevents the DS formation
at all that confines a reachable DS energy.
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Abstract: Many studies have been achieved in applied sciences on the earthquake 

prediction by researchers. The chaotic non-linear structural behaviour of earthquakes is 

well known. In order to understand the formation of seismic activity it is extremely 

important to record the continuous measurements of the soil radon gas (222Rn). In this 

study, 2976 data of 222Rn are used and the chaotic time series analysis is applied to 222Rn 

data from the soil. Chaos theory provides a structured explanation for irregular behavior 

of 222Rn and gas anomalies in systems that are not stochastic. Lyapunov exponents and 

correlation dimension method are used to show the existence of chaos time series. 

Chaotic behavior of 222Rn has been showed. Application of methodologies is achieved 

for Gölcük Region, İzmit, Turkey, where it is seismically very active.   

 

 

Keywords: Chaotic time series analysis; Chaotic modeling; Radon measurement; Chaos 

analysis. 

 

1. Introduction 
222

Rn exists from the layers of Earth and is created by the uranium deposits 

source in nature. Certain soils and rocks especially contain high levels of 

uranium, which is natural deposit of radon. The uranium is rich in structures like 

granite, phosphate, shale and pitchblende. Relations between 
222

Rn-earthquake 

and movement of 
222

Rn in the Earth layers and in the atmosphere have been 

searched serious [1, 2, 3, 4 and 5]. 
222

Rn has a half-life of 3.82 days and it is an 

α-emitting noble gas, which is produced in the radioactive decay series of 
238

U. 
222

Rn tends to migrate from Earth layers to the surface of the Earth. The 

migration rate of 
222

Rn, which is non-linear, depends on many factors such as 

the dispersal of the uranium in the soil and bed rock, porosity of soil, humidity, 

micro cracks, granulation, and such [6].  

Okabe [1956] has indicated radon as an earthquake precursor and radon changes 

in atmospheric near surface and showed a favorable correlation with seismic 

activities. On the other hand, anomalously high radon concentrations of ground 

water have been associated with fault lines [7]. Radon is easily soluble in water 

and it diffuses into the groundwater and spring waters.   

High concentration of radon is often found in soils overlying highly fractured 

rocks such as fault lines. Radon emanation increases during an earthquake [8, 

9]. Radon levels, which are correlated with meteorological and hydrological 
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data, and they are used successfully in the earthquake forecasting researches 

[10, 11].  

In this study, 2976 data of the soil 
222

Rn gas are used and the chaotic time series 

analysis by considerations of Lyapunov exponents and correlation dimension 

methods. The chaotic behavior of the 
222

Rn concentration levels is determined. 

Finally, the results of the methodologies are achieved for Gölcük Region 

(Turkey). 
 

2. Methodology and Research Area 
The methodologies which are used in this study are based on the chaos theory. It 

is aperiodic long-term behavior in a deterministic system that exhibits sensitive 

dependence on initial condition and disorder behaves in an unexpected way 

[12]. Likewise, it depends on structure of the system as well as by certain 

parameters and is usually unstable, complex and non-linear systems are 

emerging [13]. 

Determination of the chaotic behavior in the natural events’ behaviors is very 

difficult; therefore, chaos theory is a suitable tool to show the characteristic of 

the dynamical system. 

The chaos methodologies are applied to data recorded at Gölcük Region located 

on the North Anatolian Fault Zone (NAFZ). 
222

Rn data are recorded between 

from 01/05/2006 to 31/05/2006 dates. It is continuously measured from the soil 

at 15 min intervals for a month. 

 

3. Results and Discussions 
3.1. Chaotic Time Series Analysis  
Chaotic time series are unpredictable systems. These systems contain large 

complexity. Prediction of non-linear time series is an available method to 

appraise characteristic of dynamical systems [14].  

Chaotic time series analysis methods are most enforceable in cases where the 

data include nonlinearity. The first of these analysis methods is obtained as the 

degree of non-linear positive Lyapunov exponents [15].  

If these methods display irregular or unpredictable behavior, then it is called 

chaotic. On the contrary, it is called non-chaotic. Fig. 1 shows the time series of 

chaotic behavior of 
222

Rn data taken from Gölcük Region on NAFZ. Non-linear 

time series analysis starts from measured experimental time series 

of )(,),(),( 21 txtxtx n , at n points. The same analysis provides various tools to 

determine the temporal structures embedded in the time series.  
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Fig. 1. Time series state variable for chaotic behavior 

 

3.2. Lyapunov Exponent 

Lyapunov exponents can be defined as the exponential increase or decrease of 

minor perturbations on an attractor. Largest Lyapunov exponent is one of the 

most practical methods to define chaotic behavior in a system [16]. The basis of 

Lyapunov exponent is very close to each other to monitor both the starting 

point, which is based on very different trajectories. Its sign gives information 

about the system dynamics. When exponential value is positive, system 

indicates chaotic behaviours.  This condition, on initial conditions of the system, 

shows sensitive dependence [17]. The largest Lyapunov exponent can be 

anticipated in accordance with the algorithm Wolf et al. [18]. These applications 

are valid between neighboring points in the reconstructed phase space 

algorithm. In the following, the results have been shown concerning the 

maximum Lyapunov exponents (Lmax), where ,t  )0(d and )(td , and 

hence, show the difference between two measurements. Largest Lyapunov 

exponent is calculated according to the following expression. The result is given 

for the 
222

Rn data in Fig. 2. 
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Fig. 2. Lyapunov exponent for 
222

Rn (m: embedding dimension; τ: delay time) 

  
3.3. Hurst Exponent 

Hurst exponent is used to predict from time series [19]. Hurst exponent 

coefficient is an additional statistical measure necessary for the classification of 

time series. Hurst exponent calculation is explained also through the Rescaled 

range, R/S analysis, where R is the range of the accumulated data and S is the 

standard deviation. This exponent, H, can change between 0 and 1. Its 

calculation is possible from the discrete time series data set  tx  of dimension N 

by computing the mean, )(Nx  and standard deviation, )(NS  leading to, 





N

t

tx
N

x
1

1
                   (2) 

and  
21

1

2))((
1
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


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


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

N

t

t Nxx
N

NS                                                 (3) 

respectively. Range of cumulative departures of the data is given 

by    ),(min),(max)( NnXNnXNR                                                              

Finally, the Hurst exponent can be calculated as follows, 

 HnSR                                                                                                        (4) 

If Hurst exponent is equal to 0.5, then it shows a random walk. A Hurst 

exponent between 0.5 and 1 proves the presence of chaos in the system. With 
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the data at hand, it is computed as 0.56 for 
222

Rn data from Eq. 4 and the results 

are given in Fig. 3. 

 

 
Fig.3. Plot of <R/S> for 

222
Rn time series  

 

3.4. Correlation Dimension 

Correlation dimension is used to determine the degree of chaotic behaviour in a 

signal or time series. That is, correlation dimension, 
2D , aids to determine 

whether a signal behaves like a random or chaotic distribution. The algorithm, 

measure of 
2D has presented by Grassberger- Procaccia [20]. These dimensions 

need to compute the correlation integral. Correlation integral function )(rC can 

be defined as follows, 

 statementwhichjipairsofnumbertherxx
N

rC ji
N

),(
1

lim)(
2
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The distance between two units with (such as, ix  and jx ) Euclidean definition 

can be computed as,  

  2

1

))(( kxkxxx j

m

k

iji  


                                                                           (7) 

H is the Heaviside step function, which can be expressed as follows. 
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If the system is chaotic, then 
2D  will be the largest value. Kaplan and Yorke 

study showed correlation of Lyapunov exponents of information dimension 

[21]. 
2D can also be calculated as follows. 

)log(

)(log
lim

0
2

r

rC
D

r
                                                                                              (9) 

In this study, one can draw )(log rC as a function of )log(r and compute 
2D  

from the slope of a linear fit. Embedding dimensions corresponding to the 

correlation dimensions for a period of chaotic deterministic process are shown 

in Figure 4. Also, for 
222

Rn correlation dimension,
2D , is given in Fig. 4. Time 

scale of dynamical system is similar to the 
2D  values’ mutual predictions. 

Values of the embedding dimension are given resource about the change 

of )(rC .  

 

 

 

Fig. 4. The estimate of correlation dimension for 
222

Rn time series  

 

4. Conclusions 
Natural and geophysical observations are not regular usually. Chaotic analyses 

are useful tools to describe the natural irregularity. In this study, they are used as 

chaotic methods. The non-linear behaviour of 
222

Rn in the Earth layers is 

showed. The chaos methodologies in order to show non-linear behaviour of 
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222
Rn are applied to 

222
Rn data taken from the Gölcük Region on the North 

Anatolian Fault Line. The soil 
222

Rn gas, which propagates from the fault lines, 

has a nonlinear characteristic.  
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Abstract: The investigation deals with the revealing of influence of a 

geomagnetic field on human electroencephalogram by means of recurrence 

quantification analysis (RQA). The EEG base of 10 subjects was processed. The database 

included electroencephalogram records carried out from 16 points under three 

background conditions. Each subject took part in 15–50 experiments. EEG was 

registered from frontal, temporal, central, parietal and occipital areas of the left and right 

hemispheres. For every subject for each of 16 points of EEG registration 9 recurrent 

measures of EEG were calculated (RR, DET, L, DIV, ENTR, RATIO, LAM, TT, 

CLEAN). Then the factor of correlation of these measures with a planetary index of 

geomagnetic activity of Ap and local daily K-index in a day of carrying out experiment 

was calculated. As a result of this research the following conclusions were received. 

1. Significant influence of intensity of a geomagnetic field on recurrent EEG dynamics 

indicators is shown. Thus the relationship between recurrent EEG measures and indexes 

of local intensity of a geomagnetic field appeared higher than with planetary indexes.  

2. Existence of significantly bigger number of relations between geomagnetic activity 

and recurrent measures  of the left hemisphere EEG is shown. 

3. The conclusion suggests that the geomagnetic field makes the main impact on a 

chaotic component of EEG. 

Keywords: Nonlinear methods, Recurrance quntification analysis, 

Electroencephalogram, Geomagnetic field, Magnitobiology.  

 

1. Introduction 
The investigation deals with the revealing of influence of a geomagnetic 

field on human electroencephalogram by means of recurrence quantification 

analysis (RQA). In contrast with chaos method, an important advantage of RQA 

is that it can deal with a noisy and short time series. 

 

2. Methods and experiments  
Recurrence Plots are introduced by Eckmann et. al. (1987)  as a tool for 

visualization of recurrence of states  Xi in phase space. This approach enables 

us to investigate the m-dimensional phase space through a two-dimensional 

representation of its recurrences. 

Zbilut and Webber (1992, 1994) developed RQA for definition of 

numerical indicators. They offered the measures using density of recurrent 

points and diagonal structures of the diagram: indicator of similarity (RR), 

determinism (DET), maximum length of diagonal lines (L), the maximal length 

of diagonal structures or its inversion — the divergence (DIV), entropy (ENTR), 
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the ratio between  DET and RR (RATIO). Slightly after Marwan et.al. (2004, 

2007) offered the measures based on horizontal (vertical) structures of recurrent 

diagrams: laminarity (LAM) and indicator of a delay (TT). V.B.Kiselev (20007) 

suggests the indicator CLEAN which shows influence of a stochastic 

component of process, thus prevalence of the stochastic component leads to 

increase of CLEAN value. 

Expressions for RQA measures are shown below. 

The simplest measure of the RQA is the recurrence rate (RR) or percent 

recurrences which is a measure of the density of recurrence points in the 

recurrent points. Note that it corresponds to the definition of the correlation 

sum.  

The ratio of recurrence points that form diagonal structures (of at least 

length lmin) to all recurrence points is introduced as a measure for determinism 

(DET) (or predictability) of the system. The threshold lmin excludes the 

diagonal lines which are formed by the tangential motion of the phase space 

trajectory.  

L is the average time that two segments of the trajectory are close to each 

other. This measure can be interpreted as the mean prediction time. 

Another RQA measure considers the length Lmax of the longest diagonal 

line found in the recurrent points, or its inverse, the divergence, DIV=1/Lmax. 

These measures are related to the exponential divergence of the phase space 

trajectory. The faster the trajectory segments diverge, the shorter are the 

diagonal lines and the higher is the measure DIV. 

ENTR refers to the Shannon entropy of the frequency distribution of the 

diagonal lines lengths. This measure reflects the complexity of the deterministic 

structure in the system. 

RATIO is the ratio between  DET and RR. This measure is useful to 

discover transitions when RR decrease and DET does not change at the same 

time. 

LAM is analogous to the definition of determinism. This measure is the 

ratio between the recurrence points forming the horizontal structures and the 

entire set of recurrence points. The computation of LAM is realized for 

horizontal line length that exceeds a minimal length Vmin. 

TT shows average length of laminar states in the system. 

In periodical systems fluctuations and noise influence leads in separate 

points and very short diagonals. The measure cleanness (CLEAN) is the ratio 

between recurrence points in diagonals with lengths less than lmin and 

recurrence points in diagonal lines with lengths equal or more than lmin. The 

measure quantifies influence of noise and fluctuations on system trajectory and 

should be used if studied system shows periodic behavior. 

In this work the EEG base of ten clinically normal subjects (six males 

and four females in the age range 20– 65 years) was processed. The database 

included records of electroenchephalogram, carried out from 16 sites  under 

three background conditions: two with open eyes and one with close eyes. 

During background condition with open eyes subject  has to look passively at a 

picture or thumb through the book.  During close eyes subject has to consider 

298



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

drops which were modelled by phonostimulator.  In our opinion such simple 

activity more will balance subjects with each other in comparison with a 

standard background condition at which it is impossible to check internal state 

of the subject. 

Each subject took part in 20-50 experiments which are carried out to the 

period of time from half a year till two years. Registration of EEG was carried 

out in the international system 10/20 in  frontal (Fp1, Fp2, F3, F4, F7, F8), 

temporal (T3, T4, T5, T6), central (C3,C4),  parietal (P3, P4) and occipital (O1, 

O2) sites of the left and right hemispheres. The length of record EEG was about 

1 minutes for each of three backgrounds, EEG was quantized with frequency of 

250 times a second. The constant of time was 0.3 seconds, and the top frequency 

of a cut equaled 30 Hz. 

 

3. Results 
Before data processing all records were filtrated to escape EEG from 

different artifacts. For every subject for each of 16 sites and the 3rd background 

conditions 9 recurrent measures of EEG were calculated (RR, DET, L, DIV, 

ENTR, RATIO, LAM, TT, CLEAN). Then the coefficient of correlation of 

these measures with an index of geomagnetic activity was calculated. The 

coefficient of correlation was calculated on two rows: one row corresponded to 

defined EEG indicator, and the second – represented values of an index of 

geomagnetic activity in day of carrying out experience. 

As a result of carrying out one experiment about 500 values of recurrent 

measures (9х16х3) turned out. Two geomagnetic indexes were thus used: 

planetary Ap and local daily K-index which undertook from a site of the Finnish 

observatory (Sudancula). At calculation of coefficients of correlation with an 

index of geomagnetic activity value of correlation were averaged on three 

background conditions. Tests were significant at P < 0.05. 

At the first analysis stage significant correlations of 9 recurrent measures 

of EEG were compared with indexes of planetary and local geomagnetic 

activity. It appeared that all measures significantly correlated with geomagnetic 

activity. Total number of significant interrelations for all 10 subjects made in 

relation to a planetary index was 271, and in relation to a local indicator - 347. 

Considering that fact that the local index of geomagnetic activity was more 

sensitive to recurrent EEG measures in comparison with a planetary index, in 

further calculations it was used only. Thus the maximum quantity of 

correlations made 44 (for an indicator of DIV), and the minimum number 

equaled 32 (for a TT indicator). Statistically significant distinctions between 

quantity of correlations for each of measures it was revealed not. On this basis 

in the subsequent analysis data on all measures were averaged. 

In table 1 are submitted data by number of statistically significant 

coefficients of correlation between recurrent measures of EEG and local K-

indexes of geomagnetic activity.  First, the fact of individual differences in 

number of correlations which are in range from 14 to 57 attracts attention. 
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Table 1. Quantity of significant correlations of recurrent measures of EEG with 

local K-index  

 
Subjects RR DET L DIV ENTR RATIO LAM TT CLEAN Summa 

1 5 4 5 7 5 7 4 5 4 46 

2 2 1 4 4 3 1 1 3 0 19 

3 11 4 2 8 7 7 9 1 8 57 

4 2 2 1 2 1 1 3 0 2 14 

5 1 4 3 3 3 4 2 4 4 28 

6 4 5 7 9 8 3 3 5 3 47 

7 1 5 2 5 3 4 8 3 5 36 

8 4 8 5 1 5 2 6 5 7 43 

9 1 5 5 4 6 7 4 5 5 42 

10 3 1 1 1 1 3 1 1 2 14 

Summa 34 39 35 44 42 39 41 32 40 346 

  

The second interesting result consisted that all recurrent measures were 

characterized by a large amount of correlations for EEG of the left hemisphere 

in comparison with right. However statistically significant differences took 

place only for DET measure (Р <0.02). As a whole, when averaging all 9 

recurrent EEG measures differences between the left and right hemisphere were 

statistically high-significant (Р <0.001). 

At the following analysis stage interhemisphere differences of 

coefficients of correlation for each pair of sites (tab. 2) were considered. 

Except for pair of sites of C3 and C4 where in the right hemisphere the 

quantity of correlations was higher, than in left, and in T5, T6 sites where it 

was equal, in all other pairs of EEG sites the number of correlations at the left 

was higher than in right. However statistically significant difference was 

observed only between temporal sites  T3 and T4. 

 

Table 2. Quantity of significant correlations of 9 recurrent measures of EEG in 

different sites with local K-index of geomagnetic activity (data were avaraged 

on 10 subjects) 

  

C3 C4 F3 F4 F7 F8 Fp1 Fp2 

24 34 16 14 22 12 37 19 

        

O1 O2 P3 P4 T3 T4 T5 T6 

32 21 10 6 35 12 26 26 

 

Research of changes of classical rhythms EEG (α, β, θ) in reply to 

changes of a geomagnetic field hasn't revealed significant interrelations with K 

index. On the other hand primary not filtered signal EEG has revealed such 

relationship. 
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4. Discussion 
The fact of existence of a large number of correlations between various 

recurrent EEG measures and index of geomagnetic activity appeared the most 

important. It testifies that the nonlinear component of EEG for which analysis 

the RQA method was used, is very sensitive to changes of a geomagnetic field. 

Carruba et.al. (2007) show that magnetosensory evoked potentials weren't 

detected when the EEGs were analyzed by time averaging, indicating that the 

evoked potentials were nonlinear in origin. Obviously, the geomagnetic field 

influences electric activity of a brain in a nonlinear way. This fact can cause 

failures in search of reflections in EEG of influences from a geomagnetic field. 

That fact that a local index was more closely connected with recurrent 

EEG measures in comparison with a planetary index is explained by that a local 

index more precisely, in comparison with planetary, reflects a condition of a 

geomagnetic field in St. Petersburg being on close longitude. 

The fact of very high individual differences found in work concerning 

quantity of correlations of various recurrent EEG measures with geomagnetic 

activity, was explained obviously, existence of individual differences 

concerning sensitivity of subjects to influence on the central nervous system of 

changes of a geomagnetic field. It should be noted that subjects differed 

concerning that what by sites EEG significantly correlated with indicators of 

geomagnetic activity. At the 4th of 10 subjects correlated mainly frontal and 

temporal sites, at 4 subjects significant correlations were observed practically 

for all sites, at 2 subjects correlated either frontal, or temporal sites. Similar 

individual differences were observed in the work of Carruba et.al. (2007). They 

show that magnetosensory evoked potentials so strongly differ at various 

subjects that when the results obtained within subjects were averaged across 

subjects, evoked potentials couldn't be detected. 

The most interesting fact concerns high-significant differences 

concerning number of correlations with recurrent EEG measures of the left and 

right hemispheres. This result based on a tendency to excess of number of 

correlations with every recurrent measures of the left hemisphere in comparison 

with right, and on the high-significant difference received at averaging of all 

recurrent measures of EEG. The question of why the bigger number of EEG 

sites of the left hemisphere correlates with changes of a geomagnetic field, 

remains open. We know that the right hemisphere is closely connected with 

adaptation processes. So, for example,  V.P. Leutin and E.I.Nikolayeva (1988) 

on the basis of numerous experimental studies drew a conclusion that right brain 

hemisphere activation is decisive factor, providing adaptation to extreme 

climate conditions. In our experiments devoted to studying of influence of a 

geomagnetic field on an indicator of spatial synchronization of EEG, it was 

shown that in reply to changes of a geomagnetic field activation of the right 

hemisphere authentically increases. We connected this result with the stress 

reaction caused by changes of a geomagnetic field.  

In the real experiments more sensitive in relation to variations of a 

geomagnetic field there was a nonlinear component of EEG of the left 

hemisphere. The understanding of this result will require further researches. 
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5. Conclusions  

As a result of this research the following conclusions were received. 

1. Significant influence of intensity of a geomagnetic field on recurrent EEG 

dynamics indicators is shown. Thus the relationship between recurrent EEG 

measures and indexes of local intensity of a geomagnetic field appeared higher 

than with planetary indexes.  

2. Existence of significantly bigger number of relations between geomagnetic 

activity and recurrence measures  of the left hemisphere EEG is shown. 

3. The conclusion suggests that the geomagnetic field makes the main impact on 

a chaotic component of EEG. 
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Abstract. In this note, we consider self-affine attractors that are generated by an
expanding n × n matrix (i.e. all of its eigenvalues have moduli > 1). Here we
concentrate on the problem of connectedness. Although, there has been intensive
study on the topic recently, this problem is not settled even in the one-dimensional
case. We focus on some basic attractors, which have not been studied fully, and
characterize connectedness.
Keywords: Self-affine attractors, Self-affine tiles, Connectedness.

1 Introduction

Let S1, ..., Sq, q > 1, be contractions on Rn, i.e., ||Sj(x)− Sj(y)|| ≤ cj ||x− y||
for all x, y ∈ Rn with 0 < cj < 1. Here || · || stands for the usual Euclidean
norm, but this norm may be replaced by any other norm on Rn. It is well
known [4] that there exists a unique non-empty compact set F ⊂ Rn such that

F =

q∪
j=1

Sj(F ).

Let Mn(R) denote the set of n × n matrices with real entries. We will
assume that

Sj(x) = T−1(x+ dj), x ∈ Rn,

where dj ∈ Rn, called digits, and T ∈ Mn(R). Then F is called a self-affine set
or a self-affine fractal, and can be viewed as the invariant set or the attractor
of the (affine) iterated function system (IFS) {Sj(x)} (in the terminology of
dynamical systems). Let Mn(Z) be the set of n× n integer matrices. Further,
if D := {d1, ..., dq} ⊂ Zn and T ∈ Mn(Z), it is called an integral self-affine
set and we will primarily consider such sets in this paper. If, additionally,
| det(T )| = q and the integral self-affine set F has positive Lebesgue measure,
then F is called an integral self-affine tile. We sometimes write F (T,D) for
F to stress the dependence on T and D. For such tiles, the positivity of the
Lebesgue measure is equivalent to having nonempty interior [2].

There is a demand to develop analysis on fractal spaces, in order to deal
with physical phenomena like heat and electricity flow in disordered media,
vibrations of fractal materials and turbulence in fluids. Without a better un-
derstanding of the topology of fractals, this seems to be a difficult task. There
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is a growing literature on the formalization and representation of topological
questions; see [3] for a survey of the field.

One of the interesting aspects of the self-affine sets is the connectedness,
which roughly means the attractor cannot be written as a disjoint union of
two pieces. This property is important in computer vision and remote sensing
[8,20]. We mention that connected self-affine fractals are curves; thus, they are
sometimes referred to as self-affine curves [10]. There is some motivation for
studying connected self-affine tiles because they are related to number systems,
wavelets, torus maps. Recently, there have been intensive investigations on the
topic by Kirat and Lau [12,10], Akiyama and Thuswaldner [1,16], Ngai and
Tang [18,19] and Luo et al. [16,15].

In this note, we consider planar integral self-affine fractals obtained from
2×2 integer matrices with reducible characteristic polynomials, and report our
findings on their connectedness. However, our considerations can be general-
ized to higher dimensions. As for the organization of the paper, in Section 2, we
deal with special cases and state some simple, but non-conventional techniques
to check the connectedness. In literature, most of the papers on the connect-
edness have some restrictions on the digit set. Here our aim is to remove such
restrictions in Section 3.

2 Some Non-Conventional Techniques

Usually, connectedness criteria were given by using a “graph” with vertices in
D [6,12]. In this section, we present graph-independent techniques to check the
connectedness or disconnectedness. Throughout the paper, T−1 is a contrac-
tion. Let #D denote the number of elements in D. We first recall a known
result.

Proposition 1. [12] Suppose T = [±q] with q ∈ N, and D ⊆ R with #D = q.
Then F (T,D) is a connected tile if and only if, up to a translation, D =
{0, a, 2a, ..., (q − 1)a} for some a > 0.

As one may notice q and D are not arbitrary in Proposition 1 since q ∈ N
and #D = q. By using the approach in [9,11], we can remove such restrictions.
For that purpose, we consider the convex hull of F and denote it by K. Also
let K1 =

∪q
j=1 Sj(K). Then we have the following.

Proposition 2. Let D = {0, d2v, · · · , dqv} ⊂ Rn with v ∈ Rn \ {0} and
T = pI, where p ∈ R and I is the identity matrix. Then F (T,D) is connected
if and only if K = K1.

Remark 1. A digit set D as in Proposition 2 is called a collinear digit set. It is
easy to check the condition K = K1 in the proposition because K is a closed
interval. If T = ±2I, then F (T,D) is connected for any digit set. A famous
example of this type is the Sierpiński tile (see Figure 1), for which T = 2I and
D = {d1 =

[
0
0

]
, d2 =

[
1
0

]
, d3 =

[
0
1

]
, d4 =

[
−1
−1

]
}.
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Fig. 1. The Sierpiński tile

The disconnectedness of F (T,D) was studied in [13]. Here we want to
mention another non-conventional sufficient condition for disconnectedness. In
the rest of the paper, we study attractors F (T,D) in the plane such that
T ∈ M2(Z) has a reducible characteristic polynomial. From [10], we know that
such matrices are conjugate to one of the following lower triangular matrices[

n 0
t m

]
, where |n| ≥ |m|, and t = 0 or t = 1. (1)

We also let

S = {
[

i
j

]
: 0 ≤ i ≤ |n| − 1, 0 ≤ j ≤ |m| − 1}.

The attractors of the next proposition can be considered as a generalization of
Sierpiński carpets [17]. Let dimS(F ) be the singular value dimension of F (see
[5]). We call a collinear digit set D with v is an eigenvector of T eigen-collinear.
In that case, F is a subset of a line segment. By using Corollary 5 in [5], we
obtain the following.

Proposition 3. Assume that T is as in (1), D ⊂ S, and D is not eigen-
collinear. Then F (T,D) is disconnected if log|m| r + log|n|(

q
r ) ̸= dimS(F ),

where q = #D and r is the number of j so that
[

i
j

]
for some i.

Remark 2. It is easy to check the sufficient condition for the attractors F (T,D)
in Proposition 3 because, in that case,

dimS(F ) =

{
1 + log|n|(

q
|m| ) if |m| < q ≤ |mn|,

log|m| q if q ≤ |m|

3 General Digit Sets

In this section, we will present a practical way of checking the connectedness
of F (T,D) with T as in (1) and D ⊂ Z2. Note that it is enough to consider
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the case n,m > 0, since F (T,D) = F (T 2, D + TD). By translating D, we will
assume that D has nonnegative entries. Let N = (F − F ) ∩ Z2. Set

∆D = D −D, a1 =
[

n − 1
1

]
, a2 =

[
0

m − 1

]
, a3 =

[
n − 1
m − 1

]
, b1 =

[
n − 1

0

]
,

e1 =
[

1
0

]
, e2 =

[
0
1

]
, e3 =

[
1
1

]
, e4 =

[
1

−1

]
.

First, we begin with the special class of fractals F in Proposition 3, where
D ⊂ S.

Fig. 2.

Proposition 4. Assume that F is as in Proposition 3, t = 1 and n,m > 0.
Then

(i) if a1, a2 /∈ ∆D, then F is disconnected,
(ii) otherwise,
(I) N = {±ei | i ∈ {1, 2} and ai ∈ ∆D} when only one of a1, a2 is in ∆D,
(II) N = {±e1,±e2} when a1, a2 ∈ ∆D and 0 /∈ D,
(III) N = {±e1,±e2,±e4} when a1, a2 ∈ ∆D and 0 ∈ D.

Proposition 5. Assume that F is as in Proposition 3, t = 0 and n,m > 0.
Let b2 = a2, b3 = a3. Then

(i) if b1, b2, b3 /∈ ∆D, then F is disconnected,
(ii) otherwise,
(I) N = {±ei | i ∈ {1, 2, 3} and bi ∈ ∆D} when only one of b1, b2, b3 is in

∆D,
(II) N = {±ei | i ∈ {1, 2, 3} and bi ∈ ∆D} when b1, b2 ∈ ∆D and 0 /∈ D,
(III) N = {±ei | i ∈ {1, 2, 3} and bi ∈ ∆D} ∪ {±e4} when b1, b2 ∈ ∆D

and 0 ∈ D.

For a digit set D, an s-chain (in D) is a finite sequence {d1, ..., ds} of s
distinct vectors in D such that di − di+1 ∈ N for i = 1, ..., s− 1. Then we can
put the connectedness criterion in [12] into the following form.
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Proposition 6. F is connected if and only if, by re-indexing D (if necessary),
D forms a q-chain.

Remark 3. In view of Proposition 4 and Proposition 5, Proposition 6 is quite
feasible. That is, the connectedness can be decided by a simple inspection of
D using N in Propositions 4-5. That is, we get a graph-independent way of
checking the connectedness. An example is given in Figure 2, for which T = 4I
and D = {d1 =

[
0
0

]
, d2 =

[
1
1

]
, d3 =

[
2
2

]
, d4 =

[
3
3

]
, d5 =

[
2
1

]
, d6 =

[
1
2

]
, d7 =[

0
3

]
, d8 =

[
3
0

]
}.

We now consider the general case D ⊂ Z2. Let

M1 = {±(ke1 − le2) | d ∈ Z2, k, l ∈ N and ka1 + d, la2 + d ∈ D},

M0 = {±(ke1 − le2) | d ∈ Z2, k, l ∈ N and kb1 + d, lb2 + d ∈ D}.

Note that it is possible that M1 = ∅ or M0 = ∅.

Proposition 7. Assume that T is as in (1) with t = 1, n,m > 0 and D ⊂ Z2.
Then

(i) if ka1, ka2 /∈ ∆D for all k ∈ N, then F is disconnected,
(ii) otherwise, then N = {±kei | k ∈ N, i ∈ {1, 2} and kai ∈ ∆D} ∪M1.

Proposition 8. Assume that T is as in (1) with t = 0, n,m > 0 and D ⊂ Z2.
Let b2 = a2, b3 = a3. Then

(i) if kb1, kb2, kb3 /∈ ∆D for all k ∈ N, then F is disconnected,
(ii) otherwise, then N = {±kei | k ∈ N, i ∈ {1, 2, 3} and kbi ∈ ∆D}∪M0.
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Abstract: In frame of the transition to quaternion physics, we explored the expressions 
of special relativity for energy and time. This leads to a prediction of an especial role of 
the cube root of dimensionless masses and times for simplest objects. Our own 
experimentation with chaotic scatter of the different rates and analysis of literature data 
show that the mysterious cube roots are well-known probability amplitudes. One can 
spread this result from the simplest objects on every ones. Squares of the real probability 
amplitudes are probabilities. They appear to be quite congenerous with the fine-structure 
constant. The last finding leads to a unified theory of four fundamental forces and to an 
observation of a dynamic chaos in basis of the universe.  
 
Keywords: Chaotic modeling, Chaos in chemical reaction rates, Chaos in radioactive 
decay rates, Quaternions, Special relativity, Quaternion quantum mechanics, Fine-
structure constant, Unified theory, Dynamic chaos.  

 
1. Introduction 
This investigation was carried out in the lab where many years ago A.M. 
Zhabotinsky performed his well-known theoretical and experimental 
investigations of the nature of a chemical reaction discovered by B.P Belousov 
[1]. That work was induced by S.E. Shnoll, who investigated a strange scatter of 
results in measurements of biochemical reactions [2, 3]. Now, 50 year later, S.E. 
Shnoll still prolongs his investigation of the scatter of radioactive decay rates [4, 
5, 6]. Like A.M. Zhabotinsky, the author (V.K.) is a former student of Prof. S.E. 
Shnoll but the subject is not any oscillatory reaction this time. Together with 
Shnoll, we investigate the same unusual scatter of measurement results. Shnoll 
uses his method of comparison of almost random shapes for two uncertain 
histograms taken from long set of repetitive measurements of radioactivity. In 
particular, he found a presence of 1436 min period, which means that the 
sidereal period of the Earth rotation is seen in the radioactive reactions rates. 
The author uses quite another method and gathers quite other results. Hope, 
these investigations will collide sometimes to show somewhat similar to a new 
picture of the universe.  
  
2. The Theoretical and Experimental Bases of Model and 
Simulations 
J.C. Maxwell’s equations were written in quaternions but O. Heaviside rewrote 
the equations into the vector form [7, 8]. At present, the shift to hypercomplex 
physics seems to starts again [9]. In particular, an equation of special relativity 
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that determines the square of energy (E) as a sum of the square of rest mass (m) 
and the square of momentum p  

2 2 2 2 2
x y zE m p p p     

may be scrutinized as a norm of the quaternion of energy qE  

2 *( )( )x y z x y z q qE m ip jp kp m ip jp kp E E          

Speed of light is omitted (i.e. c=1) in both cases for simplicity; sign * means the 
hypercomplex conjugation. 
Let us limit for a while the consideration only by objects described by a 
quaternion that is the simplest and additionally symmetrical with respect to all 

imaginary units. For this purpose, let us express the quaternion qE as a next step 

of complication of idea of number. The history of the number conception 
development shows that to do this, one has to use the numbers of the previous 

level. For qE , this is a symmetric product of three complex numbers with 

orthogonal imaginary units 

( )( )( )qE a ib c jd e kf     

This procedure needs six parameters instead four ones usual for a quaternion, 
and two of them must be expelled by the most symmetric way for the simplest 
object chosen. The most symmetric are case  

1 ( )( )( )qE a ib a jd a kf     

and case 

2 ( )( )( )qE a ib c jb e kb     

The rewriting of the resulting quaternion of energy 1qE  into the coordinate 

system of the object (i.e. 0p  ) shows that its mass has to be the cube of some 

value:  
3

1 ( 0)( 0)( 0)qE a i a j a k a      

This is a case of a usual massive particle like, for example, electron, proton, etc. 
We checked this prediction on light subatomic particles by comparison the cube 
roots of their masses preliminary divided by the mass of electron. The obtained 
cube roots appear to be not random; they surprisingly tend to integers or half-
integers. 

Because 1ijk    the quaternion 2qE  is simplest (and real too) in pure vector 

limit:  
3

2 (0 )(0 )(0 ) ( )qE ib jb kb b       

This is a case of a massless carriers of a field like, for example, photon. 
A similar consideration for a quaternion of the time interval leads, in particular, 
to a task to investigate the cube root of the time for the immovable object, i.e. of 
our well-known time. To do this, we performed multiple (many millions) 

310



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

measurements of rates - so of chemical and biochemical reactions so of 
radioactive decays. We defined a fixed interval of time and measured the 
variable chaotic effect accumulated for this time. This is equivalent to 
measuring a chaotic time for which an experimentally defined constant effect is 
gained; this is a kind of clock. As a result, these clocks lead to identification of a 
non-dimensional «quantum of fluctuation». The quantum coincides numerical 
with the cube of the square root of 1/137 [10]. Thus, its cube root looks like the 
fundamental constant – a probability amplitude in an electromagnetic process. 
We then synthesized the results of the study of both quaternions. Transition 
from the electromagnetic probability amplitude to respective probability and 
then the inversion gave the constant 137,036... Squares of the defined above 
dimensionless cube roots of masses (150,085... for nucleon, etc.) appear to be 
structural copies of the electromagnetic constant. (To improve the proximity to 
the integer numbers, we averaged masses in isotopic multiplets of elementary 
particles). This effect of quantization was confirmed on masses of atomic nuclei 
and even on the weights of the proteins [11, 12]. In the latter case, 
dimensionless masses were determined by means of dividing by the empirical 
constant 28,000 amu corresponding to the mass of a light protein. 
Thus, the physical meanings of the squares of the cube roots of the 
dimensionless masses are that their reverse values (1/150,085..., etc.) are some 
unknown probabilities, and these probabilities are related to the well-known 
fundamental probability 1/137,036... Although we have studied only a simplest 
symmetric case, this physical meaning unlikely will change after the transition 
to the general case.  
The observed resemblance of probabilities found in the investigation of 
quaternion of energy and quaternion of time looks very important. The 
importance was confirmed later by the success of the construction of the simple 
low-energy version of the unified theory on the set of these probabilities 
enriched by the set of their definitions [13, 14].  
This theory successfully predicts the new particles and fields, as well as a 
presence of a kind of fundamental chaos in the universe. The most important 
achievement is, of course, the appearance of a wide area for new research. For 
example, one may find that the experimentally observed fundamental masses 
and times, particles and fields represent some special characteristics of 
measurements in the "fundamental chaos".  
 
3. Conclusions 
We live on background of chaotic processes developed in the universe but they 
do not attract our attention because we like investigate first of all repetitive 
processes, for example, oscillatory ones. Noise is somewhat bad. Even modeling 
of chaos has to be repetitive. Thus, the real chaos tends to stay invisible. 
According my own results the chaos in our chemical and biochemical reactions 
and in radioactive decay was found only because it expresses itself in the 
“quantum of fluctuation” which is by enough simple way linked with the fine-
structure constant. According Shnoll’s results, only the Earth’s rotation with 
respect to the sphere of immovable stars helps to reveal the effect in the chaos in 
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measurements of radioactive substances. The Unified theory based on this 
progress promises to solve the whole puzzle.  
 
References 
1. A.N. Zaikin and A.M. Zhabotinsky. Concentration wave propagation in two-

dimensional liquid-phase self-oscillating system, Nature, vol. 225, 535-537, 1970. 

2. S.E. Shnoll. On  spontaneous synchronous transitions of soluted actomyosin molecules 
from one state to another, Voprosy meditsinskoy khimii, vol.4, No.6, 443-454, 1957. 

3. S.E. Shnoll and E.P. Chetverikova. Synchronous reversible alterations in enzymatic 
activity (“conformational fluctuations”) in actomyosin and creatine kinase 
preparations. Biochimica et Biophysica Acta, vol. 403, 89-97, 1975. 

4. S.E. Shnoll et al. Experiments with radioactive decay of Pu-239 evidence sharp 
anisotropy of space, Progress in physics, No.1, 81-84, 2005. 

5. S.E. Shnoll. Changes in the Fine Structure of Stochastic Distributions as a 
Consequence of Space-Time Fluctuations, Progress in physics, No.2, 39-45, 2006. 

6. S.E. Shnoll. The “Scattering of the results of measurements” of processes of diverse 
nature is determined by the Earth’s motion in the inhomogeneous space-time 
continuum. The effect of “half-year palindromes”, Progress in physics, No. 1, 3-7, 
2009. 

7. J.C. Maxwell. A Treatise on Electricity and Magnetism. Clarendon Press, Oxford. 1873. 

8.  O. Heaviside. On the Forces, Stresses, and Fluxes of Energy in the Electromagnetic Field, 
Philosophical Transaction of the Royal Society A, vol. 183, 423–480, 1892. 

9. A.P. Yefremov. Solutions of Dynamic Equations in Quaternion Model of Relativity, 
Advanced science letters, vol. 3, No. 2, 236-240, 2010.  

10. V.A. Kolombet. Regular measurement – a new method of biophysical experiment, 
Biophysics. vol. 51, No.3, 504- 509, 2006. 

11. V.A. Kolombet. On way to represent masses of elementary particles and atomic 
nuclei by unified system of integer numbers. Preprint. Pushchino: ONTI NCBI 
SSSR, 1981. 

12. V.A. Kolombet. About possible existence of system of special values of protein 
masses, Biophisics, vol. 31, No. 3, 426-429, 1986. 

13. V.A. Kolombet. About anomalous values of "masses" μx of elementary particles, 
Preprint, Pushchino, ONTI NCBI AN SSSR, 1981. 

14. V.A. Kolombet. A phenomenological construction of a recursive version of the 
unified theory. - VINITI, 13.07.1984, N5074-84. Dep. 

312



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

Chaos in high-energy physics  
 

Valeriy A. Kolombet 
 

Institute of Theoretical and Experimental Biophysics of Russian Academy of 
Sciences; Pushchino, Moscow region, Russia.  
E-mail: v.kolombet@rambler.ru 

 
Abstract: Imagine a funny mirrors room. The “mirrors” represent electromagnetic, 
strong, weak and gravitational maps corresponding to the low energy interactions. The 
maps work under an extended set of dimensionless constants like the low-energy 
electromagnetic coupling constant α = 1/137.036... The maps of the three last listed 
interactions are especially similar to each other; they differ only by an index 3, 2 and 1. 
The “mirrors” are smooth but the electromagnetic one has a tiny “chip” (the constant 
α/π). Multiple reflections of the “chip” in the “mirrors” correspond to the spectrum of 
fundamental masses of the universe. Close vicinities of the photon and muon masses, of 
the near 130 Gev/c2 “higgs” mass and of the Planck mass correspond to the “chip’s” first 
reflections in the four “mirrors” in directions of fixed points. Due to a cap-like shape of 
the electromagnetic map, a period-doubling bifurcations lead to the fixed points 
multiplication. Because the particles are observed to concentrate near the fixed points in 
the case of low energies (in particular, the low energy carriers are located here), the 
spectrum of particle masses is supposed to resemble the spectrum of fixed points 
appeared in course of the multiple bifurcations. Really, the similarity is found between 
the calculation result and experimental data. Thus, there is a dynamic chaos in the core of 
high-energy physics. 
Keywords: Maps, Fundamental forces, Masses of subatomic particles, Z-prime boson, 
Higgs, Bifurcation, Low-energy fields, LHC, Planck mass, Fine-structure constant, 
Unified theory, Dynamic chaos, Chaotic simulation.  

 
1. Introduction 
A dimensionless world constant  = 1/137.036… is known as the fine-structure 
constant; this characterizes intensity of electromagnetic interaction, and this is 
often considered as a combination made from elementary electrical charge eo, 
speed of light с and Planck constant h:  = e0

2/ћс, here ћ = h/2. Number  -1 is 
linked with an old question of fundamental physics: “Why it is 137?” (Because 
all other numbers look also not too bad ones) [1, 2]. 
An approach found is based on the inclusion of  -1 into a set of its analogues. It 
has been proposed that, in particular, these analogues are values x

-1 = (mx/me)
2/3, 

where mx is mass m of elementary particle x. For example, me is mass of 
electron. Value e

-1 is 1, for muon 
-1 is 34.967…, for proton p

-1 = 149.945…, 
etc. Nontrivial numerical properties of set {(mx /me)

2/3} have been revealed by 
independent investigators [3-6]. 
Formula x

-1 = (mx /me)
2/3 looks like a definition of new values x

-1 made on 
basis of measured physical values mx and me. In order to attach a meaningful 
physical sense to this formula one should show a self-dependency of the 
elements of the set {x

-1}. In other words, one should find an independent 
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method of the values x
-1 measurement or calculation. In case of a success, the 

equation x
-1 = (mx/me)

2/3 will be enthroned as a new physical law, because any 
physical law is determined as a stable link between different physical values. 
This task has been solved in frame of so called low-energetic unified theory in 
representation of interaction constants that is one of potentials on true way to 
the future full-blown version of the unified theory [7]. Main part of this 
theoretical model has a shape of the links’ system; these links correspond to 
fundamental interactions; (see Table 1). 
 

Table 1. Fundamental interactions and respective links on set {x
-1} 

 
 

  k 

 

  Interaction 

Map,  
corresponding to  
low-energy form  
of the interaction  

Mass (Gev),  
particle and spin  

respective to the fixed 
points 

 

 0? 

 

Electromagnetic 

 

x
-1

new =  x
-1

old{ln[(/)/x
-1

old]}2/3 
0,  

1.02, 

20.5 

, 
 , 

? 

1 

1 

? 

  1 Gravitational 1015 g 2 

  2 Weak 81 
W, 
Z 1 

  3 Strong 

 
 
 

x
-1

new
  = (Pl

-1)1/(kk)/(x
-1

old )
 1/(3k)  

0.137 
, 
 

0 

 

Existence of these links, i.e. ability to calculate the values x
-1 on a base of other 

x
-1 gives to set {x

-1} its own self-dependency and rises the formula x
-1 = 

(mx/me)
2/3  to the rank of a new fundamental physical law.  

For illustration of the ways of the links revealing, it is opportune to consider 
firstly value g

-1 that is a gravitational counterpart of the electromagnetic 
constant  -1. In this case, the square of elementary electrical charge e0

2 in the 
numerator of  definition (that coincides with the numerator of Coulomb law) is 
substituted traditionally for expression GNmx

2 that is a numerator of the Newton 
gravitational law in case of equal interacting masses. This substitution leads to a 
known definition g = GNmx

2/ћс or g = mx
2/mPl

2; where mPl = (ћс/GN)1/2 is a 
definition of the Planck mass.  
The definition of g is usually used to illustrate an immense difference between 
the strengths of gravitational and electromagnetic forces: the ratio /g for two 
electrons is slightly more than 1040. This remarkably huge number is known as 
Dirac number. Other particles lead to different huge numbers; for example, the 
ratio is more than million times less in case of two protons.  
This slightly camouflaged comparison of mx with e0 – i.e. variable value with 
constant one – looks almost senseless. Nevertheless, one could use definition of 
g for revelation of a fundamental link between elements of set {x

-1}. With that 
end in view one should firstly include g

-1 into the set {x
-1} that looks enough 
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natural. The next step is to substitute masses mx and mPl in definition g = 
mx

2/mPl
2 for equivalent representations mex

-3/2 and mePl
-3/2 taken from the basic 

formula x
-1 = (mx/me)

2/3 and from its particular shape Pl
-1 = (mPl/me)

2/3. Left 
and right parts of the appeared final equation (see Tables 1 and 2) contain g

-1 
and x

-1 and both values belong to the set {x
-1}.  Subsequent substitutions of   

e
-1, 

-1, 
-1, etc into the appeared equation lead to respective values g

-1, 
which also belong to {x

-1}.  This is a map determined on set {x
-1}.  

In particular, any x
-1 creates another x

-1, the appeared one creates the second, 
then the third, forth, etc. These elements are arranged along a sequence, which is 
invariant with respect to the map because the transformation leads only to 
renumbering, to shift element position at the sequence. This sequence is a sub-
set of the set {x

-1}. This sub-set is invariant with respect to the map: map does 
not change it. Important particular case of such sub-set contains only identical 
elements. This specific situation is marked as a fixed point. Map does not 
influence its own fixed points at all: even renumbering is not seen. It is not 
trivial fact that fixed point of the considered map is situated near 1015 Gev, 
which is in close vicinity of famous Grand Unification mass appeared it is in 
unified theories. 
 

Table 2. A way to the gravitation map 

1. Newtonian law for gravitational force F = GN mM/r2 

2. Definition of dimensionless form of GN  g
-1 = GN mx

2 /ћc 

3. Definition of Planck mass  (ћc/GN )1/2  mPl 

4.  g
-1 as a mass-depended function  g

-1 = (mPl /mx)
2 

5.  x
-1 definition mx = me ( x

-1)3/2 

6.  g
-1 as function depended from  x

-1  g
-1 = ( Pl

-1/ x
-1)3 

7. Map for gravitational interaction x
-1

old =( Pl
-1)3/1/(x

-1
new)31 

 
Thus, a link based on the g definition represents a “gravitational map” 
(“gravitational transformation” of set {x

-1} into set {x
-1}). A brief description 

of the gravitational map finding is given at Table 2. (The map direction chosen 
produces a stable fixed point). 
A map for the low-energy weak interaction has been derived by analogous way 
from an equation that expresses a primary form of the dimensionless constant of 
low-energy (four-fermions) weak interaction w (see Tables 1 and 3). 
Substitutions have been made here quite similar to the gravity case and 
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additionally an appeared combination of constants (that is enough famous 
because it surprisingly almost coincides numerically with the Planck mass) was 
substituted by the Planck mass. The last substitution deletes a combination with 
Fermi constant of weak interaction and inserts a combination with Newton 
constant instead. The final equation is also a map, and this map is quite similar 
to the gravitational one. A brief description of the way to the weak map is given 
at Table 3. 

 
Table 3. A way to the weak map 

1. Four-fermions definition of  w
-1  w

-1 = GF
2 (mx c

2 )4/(ћc)6 

2. Numerical link between GF and GN  [8] ћ6/c2GF
2  (ћc/GN)1/2me

3 

3. New (“gravitational”) expression for  w
-1  w

-1  (ћc/GN) 1/2 me
3 /mx

4 

4.  w
-1 as a mass-depended function  w

-1  mPl me
3 / mx

4 

5.  w
-1 as a function depended from  x

-1  w
-1   Pl

-3/2 / x
-6 

6. Map for weak interaction:  x
-1

old =( Pl
-1)3/2/(x

-1
new)32 

 
To underline the similarity of the maps, an integer parameter k has been 
determined (see Table 1). Cases k = 1 and k = 2 correspond to the gravitational 
and weak maps respectively. This is a way of gravitational and weak interaction 
unification in low-energy sector of the unified theory.  
There are still degrees of freedom in both maps because definitions of 
dimensionless gravitational and weak constants are estimations. The Planck 
mass is also an enough free combination of fundamental constants. Small shift 
of Pl

-1 to final value 1.51×1016 deletes some degrees of freedom and adjusts 
fixed points of both maps to some new meaningful values given in Table 1. A 
fixed point of the weak map hits this way into a close vicinity of the masses of 
the weak interaction carriers.  
A low-energy equation for the case k = 3 (see Table 1) has been obtained simply 
by extrapolation of the cases k = 1 and k = 2. The case k = 3 corresponds to the 
strong nuclear interaction because the fixed point coincides with the mean mass 
of pions in this case. The pions determine the radius of the strong nuclear force 
because of their smallest hadron masses; they are known as the lowest-energy 
carriers of this interaction in frame of the low-energy description.  
The fixed points in the cases k = 3 and k = 2 correspond to the carriers of 
respective interactions, and conformity with the case k = 1 leads to an 
expectation that the mass scale for the gravity carriers is the Grand Unification 
mass. This prediction (similar to erroneous one) can be excused because the 
Grand Unification scale is evidently out of the region of low energies, and the 
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low-energy approach has the limited strength here. More good prediction is 
given by the extrapolation of the carrier spin. The sequence k = 3, k = 2 and k = 
1 corresponds to the true carrier spin sequence: s = 0 for pions, s = 1 for W, Z-
bosons and expected s = 2 for the gravity carrier. Thus, the empiric parameter k 
has a good chance on substitution by the physically plain parameter 3 – s, i.e. 
the difference between the three forces could be significantly caused by the 
difference of spin of their carriers.  
Because any map does not influence its own fixed points, the carriers of 
respective low-energy fields are free from a self-influence and this way they can 
play their roles without restrictions.  
The rest force is electromagnetic one. Easy way of the respective map search 
(that is extrapolation to case k = 0; cases k > 3 are forbidden by absence of 
negative spins) leads to the division by zero and one should search for the 
electromagnetic map only on base of the fine-structure constant definition.  
Value  = 1/137.036… is low-energy limit of veritable electromagnetic 
“constant” that increases with growth of energy scale. Transformation of 
definition  = eo

2/(hс/2) into the shape of a map is facilitated by a 
circumstance that fundamental constants e0, h and с have more stable reputation 
than number 2 which corresponds here to angle of full turn. Examples of this 
correspondence violation are widely known, and, thus, a way to qualitative 
search for  variation might be tested by substitutions of value 2. In order to 
construct any map from the  definition, the unknown expression for the 
variable full turn angle must contain another element of set {x

-1}: finally x
-1

new 
and x

-1
old are needed for map. Because of great role of fine-structure constant 

the second element is anticipated to be famous too - like for example р 
=(me/mp)

2/3. Note, that in extremely cold world, only electrons and protons 
survive. Substitutions of  on the trial expression exp (/р)3/2 leads to a 
successful trial “cold” iteration between  -1 and р-1, and after verification it 
leads to the accepted link between members of respective pairs of x

-1, i.e. to the 
electromagnetic map presented in the first line of Table 1.  
Strict quantitative validity of the electromagnetic map obtained by inexact 
reasoning about  variation is shown at Figures 1a and 1b. Experimental values 
x

-1 of elementary particles tend to array along invariant sequences (that 
additionally confluent).  
The especial electromagnetic point π/α seems to initiate spectrum of masses 
existence in the universe. Multiple reflections of π/α by the maps correspond to 
the spectrum of fundamental masses. Close vicinities of photon and muon 
masses, of 130 Gev/c2 “higgs” mass and of Planck mass correspond to the π/α 
first reflections by the four maps in directions of fixed points. 
Existence of majority particles shown by Figures 1a and 1b is probably caused 
by the derived reflections of the fixed point of strong map (k = 3) (situated in 
close vicinity of 

-1; see Figure 1 and respective line in Table 1). 
Electromagnetic map reflects this self-determined point several times. In its 
turn, strong map reflects fixed point of electromagnetic map (x

-1  158.5) and 
also its broad vicinity presented by Figures 1a and 1b into vicinity (x

-1  30 – 
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40) of muon (x
-1  35) supporting its existence. Next two strong iterations 

reflect muon into neutral pion (x
-1  42) and then neutral pion into charged pion 

(x
-1  41); strong fixed point is situated near x

-1  41,5. Remarkable precision 
of electromagnetic map is illustrated also by long set of iterations of (3S)- and 
(2S)-mesons (see Figures 1a, 1b). On the contrary, (1S)-meson sequence is 
shifted; probable reason of the sequence existence and the (1S)-meson shift is 
peculiarity of point  /  430.5 (see Figure 1b and respective map in Table 1). 
Dashed lines correspond to images of that particles whose link with the particle 
net is not too evident (Figure 1a). Essential growth of iterations density in -
meson vicinity (Figure 1a) could be considered as a hint on existence of an 
additional fixed point that corresponds to case k = -3 appeared in extended 
version of the theory [7]. This version considers all cases |k|  3; each 
interaction gets here a weaker companion that could be slightly masked because 
pairs that corresponded to the same |k| could be enough compact with respect to 
distances between these pairs. In particular, the massless graviton appears in the 
case k = -1.  

 

 
Fig.1a. This is a graphic representation of the meson net of electromagnetic 
iterations in vicinity of attractive fixed points of electromagnetic (x

-1  158.5) 
and strong (x

-1  41.5) maps. (Any iteration corresponds to a step of respective 
“ladder”). Four small circles show the positions of fixed points; particles tend to 
survive in vicinities of fixed points. 
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Fig. 1b. The same as at Figure 1a but in the scale representing also heavy 
particles.  
 
It was mentioned above that the set of interactions numbered k = 3, 2 and 1 
corresponds to the set of carrier spins s = 0, 1 and 2; here gravitational case (k = 
1, s = 2) is posited out of range of low-energy scale and this violation excuses 
appearance of massless gravitational carrier. Fixed point of the case k = -2 
produces the Z-prime boson – the approximately 10 Tev carrier of an announced 
“fifth force” and one of the LHC nearest goal.  
Further extrapolation leads to electromagnetic case (probably k = 0, s = 3). Here 
a massless carrier exists (photon); the second roughness of the low-energy 
approach is appearance of three fixed points instead a single one. The three 
respective carriers of electromagnetism (only one of them is massless!) have 
probably spin 1 (see Table 1) instead a single carrier with spin 3 predicted by 
the extrapolation.  
The coincidence of - and W,Z-spins reports on additional similarity of 
electromagnetic and weak forces (because of the high role of carrier spin for the 
interaction identification presented above). Thus, from the point of the low-
energy particularly unified theory, it is this spin coincidence has ensured the 
success of Weinberg-Salam particularly unified theory that unifies 
electromagnetic and weak interactions. 
Perfect version of the unified theory has to reveal a “genetic” link between 
mathematical shape of electromagnetic and gravitational maps and by this way, 
it has to finish synthesis of electromagnetic force with unified gravitation.  
 
2. The Model and Simulation  
Expansion into region of higher energies can be considered as natural 
intermediate stage of transition to final version of the unified theory. 
Characteristic bell-like shape of electromagnetic map (Figure 1b) leads to an 
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assumption that a transition to more high-energetic description can be tested by 
means of a parameter : 

x
-1

new = x
-1

old  [ln( -1/x
-1

old)]
2/3 

which increases the bell steepness and by this way leads to standard scenario of 
deterministic chaos development through cascade of bifurcations.  
Did the nature lose this opportunity? To all appearances, not: the parameter  
characterizes scale of energy indeed, and former case  = 1 corresponds it is to 
the low-energy limit.  
Increase of  is accompanied with usual shift of fixed point position. The loss of 
stability happens at  = 2.08, and then a standard cascade of bifurcations and 
chaos appear [9]. Iterations start to diverge into infinity after  = 3.0728 because 
of escaping through a gap that appears at this very moment and then widens 
enough fast. Comparison of calculation results with experimental spectra of 
particle x

-1 is given at Figure 2. Intensive smooth of graphs (i.e. revealing the 
comparison in the lowest frequency range) is necessary for insurance of ability 
to compare too rare experimental data with gross result of the calculation.  
This way, mass spectrum of elementary particles is enough similar to spectrum 
constructed from fixed points of all maps (see Figure 2 and last columns in 
Table 1), and also from reactions of each map on fixed points of other maps 
(Figures 1a, 1b).  
In frame of this picture, a unique role of proton in the universe is caused by link 
of value р-1 with the first bifurcation of electromagnetic stable fixed point. 
View of this bifurcation is presented at Figure 3; image of key moment of 
stability loss (at intermediate energies,  = 2.08; horizontal axis) is illustrated 
here by means of low-energy ( = 1; vertical axis) form of electromagnetic map: 
the first bifurcation point is seen as proton when observer is positioned in our 
low-energetic world.  
In the case of proton, one should probably underline mainly not stability loss in 
course of energy growth but conversely – back bifurcations and the fixed point 
stabilization in some final moment of the universe quenching after Big Bang. 
Protons are “snowflakes” of the frozen universe in this view. 
 
 

 
Fig. 2. Comparison of smooth distribution of fixed points of adjusted 
electromagnetic map with smooth experimental distributions of values x

-1 of 
elementary particles. Top graph illustrates result of calculation and subsequent 
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smoothing of fixed point distribution; range of  variation is 1 – 3,0728. Bottom 
graphs represent smoothed experimental x

-1 values for barions (I) and mesons 
(II).  
 

 
Fig. 3. The first bifurcation of stable fixed point of electromagnetic map takes 
place near  = 2.08. This point is linked with  -1 and р-1, i.e. with electric 
charge and mass of proton. In scale of mx

-1  (not of x
-1 ), the usual parameter 3 

appears for the first bifurcation point instead of  = 2.08 = 32/3 in full analogy 
with logistic map class.  

 
Answer to the old question: “Why it is 137?” – could sound now as followed: 
“Because it is this x

-1 characterizes final border of matter stabilization in cold 
universe”. 
 

The new results could be considered as additional supports of the approach 
proposed in direction of unified theory construction. It is shown that a set of 
experimental particle types accumulated to present moment appears to be 
enough big for revelation of features of well-known process of deterministic 
chaos development.  

Analogous generators of noise are found in various natural and artificial 
systems. Complex regimes appear in the systems it is in cases of high energies. 
As a result, a new unity appears: data of high-energy physics more deep conjoin 
with data of many other branches of science. Simultaneously a well-developed 
mathematical apparatus is recruited into core of elementary particle physics. 
Moreover, the apparatus brings also respective scientific philosophies (see 
examples in [9, 10]). 

Discussing physical sense of the low-energy unified theory in 
representation of interaction constants one might mention a perspective of 
probable junction of this theoretical model with present unified theories 
exploiting representation on multi-dimensionality of physical space. Really, a 
comparison of mathematical structure of weak and strong maps with 
gravitational map working in 3+1-dimensional space-time leads to suggestion 
about probable conformity of cases k  = 2 and k  = 3 with 6+1 and 9+1 spatial-
temporal dimensions respectively. In this plane, absence of interactions with k = 
4, 5, …, corresponding to 12+1, 15+1, … dimensions correlates with known 
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limitation of dimension number near 10+1 dimensions found in high energy 
string theory. In frame of this picture the most appropriate case for 
electromagnetic map is k = 0. It intrigues by complete disappearance of spatial 
dimensions that could excuse sharp change of map shape (in case k = 0, map of 
gravitational types leads to division by zero). Gravitational (i.e. k = 1) distortion 
of 3+1-dimensional space-time in general relativity and homology of different 
maps in Table 1 lead to assumption that electromagnetism as case k = 0 is also 
kind of distortion. It could be distortion only of single temporal coordinate. In 
the pure temporal case the distortion could be caused only by an object, which 
has no spatial dimensions; in the low energy approach this an electromagnetic 
active dotty particle looks like electron.  

Mean electromagnetic force between atoms in solid and liquid substances is 
enough intensive for experimentation to search for the probable fundamental 
link between time and electromagnetism. Universal system of dimensionless 
macroscopic states described by meaningful in this context value 3/2 has been 
found in broad spectrum of such experiments [11]. Thus, the discussed approach 
promises to accelerate process of the unified theory creation not only in 
traditional theoretical plane but also in experimental one. 
In other publications, we are going to present broader theoretic and 
experimental synthetic picture where all described above is only a fragment; the 
roots of the whole picture appear to be embedded into both quaternion quantum 
mechanics and special relativity. 
 
3. Conclusions 
The low energy unified theory is constructed on base of fundamental constant 
numerical values known from experimentation. For this program realization, an 
advanced set of the dimensionless interaction constants has been found and then 
a system of maps corresponding to the system of fundamental physical forces 
was determined on this set. In particular, the map corresponding to 
electromagnetic force is described by a function whose important part has a bell-
like shape. Opportunity of the bell proportions variation is analyzed because this 
promises bifurcation cascade and deterministic chaos in core of high-energy 
physics. Really, the first bifurcation appears to be in close connection with both 
proton and fine-structure constant existence and distribution of fixed points 
corresponds to spectrum of masses of subatomic particles.  
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Abstract. This study addresses problems: what determines coherent structures in
mixing patterns and what are main elements of the coherent structures. We restrict
our consideration to finite times and are mainly interested in how to organize steady
or periodic flow and where to put the blob (or blobs) in order to achieve the best
result in that finite time. Knowing types and positions of periodic points coherent
structures in distributive mixing patterns could be classified. These structures are
connected with hyperbolic and elliptic periodic points and lines for three-dimensional
mixing flows.
Keywords: Distributive mixing, Periodic points and lines, Coherent structures.

1 Introduction

We consider the laminar mixing process in a two-dimensional annular wedge-
shaped cavity and in a three-dimensional creeping flow of a viscous incompress-
ible fluid contained in a finite circular cylinder, induced by a prescribed periodic
motion of the end walls. Here we apply a method to locate periodic structures
and manifolds. In contrast to two-dimensional flow of an incompressible fluid,
for which the equations of motion of an individual passive particle can always be
written in Hamiltonian form and for which well-developed methods of Hamil-
tonian mechanics can be applied, the study of three-dimensional mixing flows
encounters considerable difficulties. An important characteristic of both two-
dimensional and three-dimensional flows, that is closely related to the problem
of determination of the regions of regular behaviour being barriers for the mix-
ing process (Aref[1]), is the location of periodic points (or fixed points in the
hyperplane of the Poincaré map). The determination and classification of peri-
odic points in three-dimensional flows is a complicated problem. Furthermore,
in three-dimensional flows these points can form one-dimensional periodic lines.
A complete classification of the periodic points can be performed in accordance
with three eigenvalues of the linearized matrix of the Poincaré map, and spe-
cific behaviour of the map near such a point can be associated with its type [4].
Generally, the periodic points of three-dimensional flows could be character-
ized by a much richer variety, compared to the points of two-dimensional flows,
in which only three possible types exist. However, if in a three-dimensional
flow the point lies on a periodic line it is not significantly different from peri-
odic points in two-dimensional flows. In the three-dimensional case, the flow
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near a periodic line is topologically similar to the flow near a periodic point in
two-dimensional case.

2 Stirring of a viscous incompressible fluid

2.1 Mixing in a two-dimensional annular wedge-shaped cavity

As a first example of mixing, we consider a two-dimensional creeping flow of
an incompressible viscous fluid in an annular wedge cavity, a ≤ r ≤ b, |θ| ≤ θ0,
driven by periodically time-dependent tangential velocities Vbot(t) and Vtop(t)
at the curved bottom and top boundaries, when a radius r is r = a and r = b,
respectively. The side walls, a ≤ r ≤ b, |θ| = θ0 are fixed. We consider
a discontinuous mixing protocol with the bottom and top walls alternatingly
rotating over an angle Θ in clockwise and counterclockwise directions, respec-
tively. More specifically, we consider the case

Vbot(t) =
2aΘ

T
, Vtop(t) = 0, for kT < t ≤

(

k +
1

2

)

T,

Vbot(t) = 0, Vtop(t) = −
2bΘ

T
,

for

(

k +
1

2

)

T < t ≤ (k + 1)T, (1)

where k = 0, 1, 2, .... Θ is the angle of wall rotation and T is the period of the
walls motion. The radial and azimuthal velocity components ur and uθ can be
expressed by means of the stream function Ψ(r, θ, t) as

ur =
1

r

∂Ψ

∂θ
, uθ = −

∂Ψ

∂r
. (2)

For a quasi-stationary creeping flow in the Stokes approximation the stream
function Ψ satisfies the biharmonic equation

∇2∇2Ψ = 0, (3)

with the Laplace operator ∇2 and the boundary conditions

Ψ = 0,
∂Ψ

∂r
= −Vbot, at r = a, |θ| ≤ θ0, (4)

Ψ = 0,
∂Ψ

∂r
= −Vtop, at r = b, |θ| ≤ θ0, (5)

Ψ = 0,
∂Ψ

∂θ
= 0, at a ≤ r ≤ b, |θ| = θ0. (6)

Therefore, we have the classical biharmonic problem for the stream function
Ψ with prescribed values of this function and its outward normal derivative at
the boundary.
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The system of ordinary differential equations

dr

dt
=

1

r

∂Ψ

∂θ
, r

dθ

dt
= −

∂Ψ

∂r
(7)

with the initial conditions r = rin, θ = θin at t = 0 describes the motion of
an individual (Lagrangian) particle occupying the position (r, θ) at time t. In
fact, we have steady motion of the particle within time intervals (kT, kT +
T/2), (kT + T/2, kT + T ), with velocities that instantaneously change at tk =
kT/2, (k = 0, 1, 2, ...).

It is easy to check that, within these intervals, when the stream function
does not explicitly depend on time, system (11) has the first integral Ψ(r, θ) =
const. Therefore, this system is integrable and a particle initially at (rin, θin)
moves along a steady streamline during the first half period (0, T/2). At the
instant t = T/2 when the forcing is switched, the topology of streamlines is
changed, and the particle instantaneously moves along a new streamline during
the second half of period (T/2, T ), and so on. The spatial position of the
particle is continuous, but its velocity experiences a discontinuity at each half
period.

It is because of these abrupt periodical changes in the velocity field that the
question of stability and instability of the solution of system (11) and possibility
of chaotic advection (Aref[1]) naturally arises.

The problem of mixing of a certain amount of dyed passive material (the
blob), as considered here, consists of tracking in time the positions of particles
initially occupying the contour of the blob, say, the circle of radius R with
the center at (rc, θc). We assume that the flow provides only a continuous
transformation of the initially simply connected blob. Therefore, the deformed
contour of the blob gives the whole picture of the mixing.

This wedge-cavity flow problem has been solved analytically by Krasnopol-
skaya et al.[2]. Their analytical solution was used for the numerical evolution
of the interface line between the marker fluid and the ambient fluid, which was
carried out by the dynamical contour tracking algorithm.

2.2 Statement of mixing problem in a cylinder

Consider the three-dimensional Stokes flow in a finite cylinder that occupies
the domain 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ H in the cylindrical coordinates
(r, θ, z). In terms of the velocity vector u and the pressure p, the Stokes flow
of an incompressible viscous fluid (inertia terms being negligible) is governed
by

µ∇ 2 u = ∇ p, ∇ · u = 0, (8)

where ∇, ∇·, and ∇ 2 stand for standard differential operations of gradient,
divergence, and the Laplacian operator, respectively, and µ is the coefficient
of shear viscosity of the fluid. The flow is generated by periodic motion of the
cylinder end wall at z = H, while the cylinder wall r = a remains fixed. In
terms of Cartesian components, with the positive x-axis coinciding with the
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direction θ = 0, the velocity vector u = u ex + v ey + w ez takes the following
form at the domain boundaries:

u = utop(t) ex + vtop(t) ey, z = H, 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π , (9)

In what follows we consider one typical protocol of the wall motions with a con-
stant velocity V and with period T (only the non-zero velocities are presented
below). Protocol consists of two ‘zigzag’ steps of the top wall only:

utop = V, 0 ≤ t ≤
1

2
T, vtop = V,

1

2
T ≤ t ≤ T. (10)

Note that the protocol is discontinuous, although the motion of the fluid
inside the cylinder is steady at any time within the whole period. Since the
inertia forces are neglected in the governing equations (8), these steady motions
are established instantaneously. Because of the linearity of system (8) and the
absence of time dependent terms, the velocity field in the cylinder is periodic
with period T .

Important for further analysis is the dimensionless kinematic parameter
D = V T/a, which represents the ratio of two typical time scales of any given
protocol: the forcing period T and the advection time a/V (for a wall travelling
over a typical distance a with a velocity V ).

The mixing process taking place is due to advection of passive material
tracers by the velocity field u and is hence governed by the three-dimensional
system of ordinary differential equations

dx

dt
= u (x, y, z, t),

dy

dt
= v (x, y, z, t),

dz

dt
= w (x, y, z, t), (11)

with initial conditions x = x0, y = y0, z = z0 at t = 0.
A full analytical solution for the linear vector boundary problem for the

velocity field has been constructed by Meleshko et al.[5]. by the method of
superposition. The principal idea of the method consists in representing the
velocity field in the finite cylinder as the sum of two velocity fields: one for an
infinite layer with thickness equal to the finite cylinder height, and another for
an infinite cylinder with a radius equal to that of the original cylinder. Veloc-
ities in these simple domains are represented in the form of ordinary Fourier
series with sets of arbitrary coefficients on the complete systems of Bessel and
trigonometric functions, respectively. These series both identically satisfy the
governing equation inside the domain and have sufficient functional arbitrari-
ness for fulfilling any boundary conditions on the top and bottom walls and
on the lateral surface of the cylinder, respectively. Because of the interdepen-
dency, the expression for a coefficient of a term in one series will depend on all
the coefficients of the other series and vice versa. The final solution involves
solving an infinite system of linear algebraic equations, providing the relations
between applied velocities and the coefficients in two ordinary Fourier series
on the complete systems of Bessel and trigonometric functions in radial and
axial directions, respectively. The general theory of such infinite systems pro-
vides leading terms in the asymptotic behaviour of coefficients. An established
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technique was used to considerably improve the convergence of the series on
the whole boundary, including the rims. The numerical results presented in
Meleshko et al.[5] reveal that the boundary conditions for the case of a lid-
driven cavity are satisfied within the accuracy O(10−3) in comparison with the
prescribed velocity, even at the corner point.

The problem of accurate determination of the interface is obviously very
complicated, as it moves and deforms with the flow. There exist many tech-
niques to deal with flows containing sharp fronts, which can be divided into two
basic strategies – front-capturing and front-tracking. Detailed reviews of the
front-tracking methods are provided by Krasnopolskaya et al.[3] and Malyuga
et al.[4].

2.3 Periodic points and lines

A periodic point P of period n can be classified as an elliptic, hyperbolic, or
parabolic point depending upon the structure of the surrounding flow field.
This classification is based on the behaviour (in the course of time) of an
infinitesimally close neighbouring point P + dx0. After n periods, the latter
arrives at P+dxn = Φn

T (P+dx0), upon linearization about the periodic point
P = Φn

T (P), adding up to
dxn = F · dx0 (12)

with F = ∂Φn
T /∂x|P the real Jacobian matrix. According to (12), stable and

unstable structures may emerge, depending on the properties of the matrix F .
In order to analyse the nature of the map near P, the relation (12) is rewritten
in the canonical (or Jordan) form

ηn = S · η0 S = R−1 · F ·R η = R−1 · dx (13)

with R the transformation matrix relating the local Cartesian (dx, dy, dz) to
the canonical (η(1), η(2), η(3)) frame of reference.

In two-dimensional systems, elliptic points are surrounded by islands, seal-
ing off the elliptic region from the remainder of the flow domain and in conse-
quence acting as transport barriers. The hyperbolic points xh are accompanied
by stable manifolds W s(xh) and unstable manifolds W u(xh) that merge either
into closed orbits or display transversal intersection. The former phenomenon
is reminiscent of the aforementioned elliptic islands by obstructing communi-
cation between flow regions, whereas the latter brings about excessive stretch-
ing and folding of material elements, indicative of chaotic advection [1]. In
the three-dimensional domain of interest the islands and manifolds, associated
with periodic points on the elliptic and hyperbolic segments of the periodic line,
readily merge into tubular objects and intricate surfaces, although possessing
essentially two-dimensional characteristics. The periodic lines of period-2 of
the flow generated in a cylinder are shown in figure 1

Such lines were found to exist only for D > 2. It is worth noting that each
of the two lines returns into itself after two periods. Although any periodic
point of second order exists always in combination with another one, they can
belong to the same periodic line of the second order.
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Fig. 1. The periodic lines of period-2 in the flow in the cylinder for D = 5. Thick
and thin lines represent the elliptic and hyperbolic segments, respectively [4].

3 Coherent structures

The results presented correspond to one typical wedge cavity with θ0 = π/4
and b/a = 2. Using the dimensionless parameter H = Θ/θ0 and a fixed value
for the period T , the discontinuous mixing protocol (1) is completely defined.
We restrict our consideration to the case H = 4. The accurate Lagrangian
description of the contour line provides the possibility to construct an Eule-
rian representation of the mixture. Figure 2(a) shows the mixed state with
the positions of the initially circular blob (green area) after six periods (red)
and after twelve periods (blue). There are two main components of the coher-
ent structure in the mixed state: one component formed by the thin filaments
with their striation decreasing in time and the other one by the small ‘rub-
bery’ region, representing the unmixed part of the blob. What creates this
structure? First of all, the invariant unstable manifold corresponding to the
hyperbolic point of period-1 which is located in the centre of the original green
blob (indicated by a black square in the middle in figure 2b). This manifold,
presented in the figure 3(a), serves as a skeleton which forms the first main
coherent structures of the deforming blob. The origin of the ‘rubbery’ coherent
structure can be explained in terms of the existence of elliptic periodic points of
period-6, period-2 and period-6, respectively, which are shown as white boxes
in figure 2(b). In the upper part of the green circular blob (figure 2b), a small
black box indicates the position of the hyperbolic fixed point of period-6 and
therefore, the ‘rubbery’ region nearby this point will be destroyed completely
in course of time.

The resulting deformation after twelve periods of small circular domains
surrounding these higher order periodic points are shown in figure 3(b). The
small circular blob surrounding the hyperbolic point transforms after twelve
periods into a thin red line, while the three circular bolbs surrounding the
elliptic points only slightly deform (the so-called ‘rubbery’ regions).
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Fig. 2. Mixing patterns: (a) in the whole cavity; (b) in the region of the initial blob
position.

4 Conclusions

Coherent structures in distributive mixing patterns are classified. These struc-
tures are connected with hyperbolic and elliptic periodic points (and lines) of
order-1 or higher.
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Abstract: A new modified cardiorespiratory model based on the famous DeBoer beat-to-
beat model and Zaslavsky map (which describes dynamics of the respiratory system as a 
generator of central type) was studied in details. In this case the respiratory tract was 
firstly modeled by  the self-oscillating system under the impulsive influence of heartbeat. 
The steady-state regimes of the modified model are investigated by methods of the 
dynamical system theory. The regular (periodic and quasi-periodic) and chaotic regimes 
typical for functioning of the cardiosystem are found and studied.  
Keywords: A beat-to-beat model, Cardiorespiratory system, DeBoer model, Zaslavsky 
map, Nonlinear dynamics, Chaotic regimes.  
 
1. Introduction 
The human cardiovascular system closly interacts with different organs and systems of 
organism. Realized self-oscillations in a cardiovascular system are under an activity of 
practically entire organism (see [2-5, 9-11]). Physiological rhythms are not isolated 
processes. There are numerous interactions of rhythms between itself and with an 
internal and external environment. Cardiac and respiratory rhythms form up during 
embryo development, and even the brief break of these rhythms after a birth results in 
death. 
Existence of breathing and heart rhythm synchronization effect, found experimentally in 
the cardiovascular system both for healthy people and with pathologies, is well-proven in 
work Toledo [10] in 2002. It is well known, the dynamic process of mutual 
synchronization can be realized only in a case of presence of a subsystem mechanical 
interaction. Therefore, the indicated effect display testifies the presence of both direct 
and feedback interactions between the cardiovascular and respiratory systems. 
A heart system and organism of man in general have one of major descriptions of 
activity, such as a blood pressure dynamics. His time-history, along with 
electrocardiogram (ECG), is an important information generator for research and 
diagnostics of laws and pathologies of the cardiovascular system. The task of 
mathematical model construction, describing the dynamics of arterial blood pressure, is 
far from completion. Complications of such design are related to the necessity of taking 
into account of influence on the cardiac rhythms not only the cardiovascular system but 
also other organs and systems of organism, in particular a respiratory system. 
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Fig. 1. Characteristics of  the heartbeat in DeBoer model. 
 
2. The mathematical model of a direct and reverse interactions  
The DeBoer model of a cardiovascular system is under direct action of a respiratory 
systems (what corresponds to experimental data) [3]. This model was substantially 
developed in future. The sinus node responsiveness (and other detailed factors) is taking 
into account in the work of Seidel and Herzel [9] (the so-called SH-model). In this model 
chaotic dynamics was found in dynamics of a cardiosystem. 
The models of both DeBoer and SH only considered direct respiratory influence on 
heartbeats.  The SH-model got further development [5], where an effect of heartbeat and 
the resultant changes in the baroreceptor afferent activitiy to the SH-model are added and 
the cardiorespiratory sinchronization found due to this modification. Interaction of blood 
pressure and amplitudes of breathing oscillations revealed in accordance with principles 
of optimum control in the DeBoer model is investigated in the Grinchenko-Rudnitsky 
model [2]. This model allowed, in particular, to explain appearance of a peak on the 
Meyer frequency in the spectrums of pressure oscillations and synchronization of cardiac 
and respirator rhythms. 
However, this model does not consider the reverse mechanical influence effect of the 
heartbeat changes on a breathing phase (frequency). In the present study, we add to the 
DeBoer model a self-oscillating system (which describes dynamics of the respiratory 
system as a generator of central type [4]) which is under impulsive influence of 
heartbeat. 
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Fig. 2. Interaction of the cardiovascular and respiratory system 
 
The DeBoer model describes the followings main characteristics of  the heartbeat (see 
Figure 1) system: systolic pressure S , diastolic pressure D, R-R interval I and 
arterial time constant T (in a state of rest for a healthy man S=120 mmHg, D=80 
mmHg, I=800 ms, T=1500 ms).  This mathematical model is a system of five discrete 
nonlinear maps. This model contains only a direct mechanical influence of the respirator 
system on the cardiosystem and can be written in the form: 
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1
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2exp ,
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i i

i
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  is a 

real time, A=3 mmHg is a breathing amplitude, f=0.25 Hz is a breathing frequency, 

2 0 0 0 ,c S D I    3 0 0 ( ),vc I S G G    0.016   mmHg,  18G   
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ms/mmHg, 9G   ms/mmHg, 9G   ms/mmHg, 4,     0,v   is 

equal to 0 if frequency of heartbeat is less then 75  beat/min, and v  is equal to 1, if 
frequency is more then 75 beat/min. 
 

 
 

Fig. 3.Largest Lyapunov exponent of the modified system 
 
We suppose that a healthy man at rest breathes periodically with a permanent frequency 
and an amplitude of motions of thorax. In that case a breathing process can be described 
as the self-oscillating system [4], which has a steady limit cicle. Thus for the 
mathematical modeling of a such system equations of the Zaslavskiy map could be used. 
Famous Zaslavsky map is the system of equations [8, 12] which describes the dynamics 
of an amplitude nr  and a phase n  of the system (in which periodic self-oscillations 
with a frequency   are realized) which is under T-periodic impulsive action of constant 
intensity  . Te system has the following form: 
 

 1 sin exp{ },n n nr r T       

 1
1 exp{ }sin ,n n n n

TT r      


 
     

 
where ,   are constant parameters. 
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a) 0.22    

b) 0.23   

 
c) 0.24   

 
d) 0.25   

Fig. 4. Simulated systolic pressure data  (cases a, b, c and d) 
 
In our approach these equations are used to describe changes of an amplitude and phase 
of a respiratory system effect for every R-R interval with an intensity proportional to 
systolic pressure: 0( ) :nS S     
 

 1 0( ) sin exp{ },n n n n nr r S S I        

 1 0
1 exp{ }

2 ( ) sin ,n
n n n n n n

I
fI r S S


     


 

      

 
where I   is R-R interval, 0,  ,   are constant parameters of interaction. 
Thus, we study the dynamics of the modified model of cardiorespiratory system, which 
consists of  the DeBoer model with direct respiratory influence ( ) sin ,i iA r   and 
with reverse influence modeled by the Zaslavskiy map system  (see Figure 2). 
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a) 0.23   

 
b) 0.24   

 

 
c) 0.25   

Fig. 5. Power spectra computed from systolic pressure data  (cases a, b and c) 
 
3. Numerical simulations results  
In accordance with physiology of healthy man, the followings values of variables and 
constants are used in our numerical simulations: [0] 0.53,I    [ ] 1.08,S j    

0,..., 6,j   [0] 0,r    [0] 0,    0.001   1/ms, 0.001   1/msmmHg. In 
order to study steady-state regimes first of all the largest Lyapunov exponent [1, 6, 7] 
was found. The dependence of the largest Lyapunov exponent of the modified system  on 
values of the bifurcation parameter   is shown in Figure 3. The dynamics of the system 
changes with increasing of this parameter. There is the region where Lyapunov exponent 
positive ( 0.245  ) that means transition to chaos occurs. We emphasize that   
describes intensity of heart influence on a respiratory system. The next Figure 4 
illustrates a behaviour of systolic pressure data in the modified model. Power spectra 
computed from these data are shown in Figure 5. The spectrum in Figure 5.a and in 
Figure 5.b have discrete peaks which are situated equidistantly with a frequency 
difference. So that, graphs indicate that there are regular regimes in the modified system. 
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Finally, for the steady-state regimes, when the largest Lyapunov exponent is positive and 
the chaotic regime is realized, the power spectrum is continuous (Figure 5.c). 
Phase portrait projections on the plane of the simulated systolic pressure and R-R interval 
data are presented in Figure 6. The phase portrait in the Figure 6.a represents a singular 
solid curve and corresponds to quasiperiodic regime. There are only several points in the 
phase portrait in Figure 6.b which means that at 0.24   the modified system has 

regular periodic regime. And in Figure 6.c when 0.25   the phase portrait has 
numerous lines (the number of which increases in time) and corresponds to chaotic 
steady-state regime.  So we have found such steady-state basic regimes as: 
1. at 0.22  , periodic regime (Figure 4.a); 
2. at 0.23  , quasiperiodic regime (Figure 4.b, Figure 5.a, Figure 6.a); 
3. at 0.24  , periodic regime (Figure 4.c, Figure 5.b, Figure 6.b); 
4. at 0.25  , chaotic regime (Figure 4.d, Figure 5.c, Figure 6.c). 
 

 
a) 0.23   

 
b) 0.24   

 

 
c) 0.25   

Fig. 6. The parts of phase portraits simulated systolic pressure and R-R interval 
data  (cases a, b and c) 
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4. Conclusions 
On the basis of the DeBoer model an interaction of the heartbeat and the respiratory 
system as dissipative Zaslavskiy map is studied and the modified model of cardiosystem 
is built out. This model takes into account both direct and reverse influence of  
subsystems – cardiovascular and respiratory.  
The methods of modern theory of the dynamical systems are used to study laws of the 
steady-state regimes of the modified model. Firstly the chaotic regimes were found out.  
Analysis of bifurcational curves of the largest Lyapunov exponent, projections of phase 
portraits, temporal realizations and power spectrums allowed to investigate the basic laws 
of dynamics of the model. The dynamics of heartbeat and respiratory systems are in good 
correspondence with experimental information of healthy man. Found irregularities of 
phase trajectories of the modified model depend on intensity of heart rhythm influence 
on breathing, what is well known characteristic for the dynamics of the cardiovascular 
system of healthy man. 
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Abstract: The goal of this paper is to find chaos in the Gross domestic product (GDP) 

growth rate of selected European countries. We chose only those European countries 

where data is available since 1980, because we needed the longest time series possible. 

These are the following states: Belgium, Finland, France, Norway, Spain, Switzerland 

and United Kingdom. At first we will estimate the time delay and the embedding 

dimension, which is needed for the largest Lyapunov exponent estimation. The largest 

Lyapunov exponent is one of the important indicators of chaos and is generally well-

known. Subsequently we will calculate the 0-1 test for chaos. Finally we will compute 

the Hurst exponent by using the Rescaled Range analysis. The Hurst exponent is a 

numerical estimate of the predictability of a time series. The results indicated that chaotic 

behaviors obviously exist in GDP growth rate. 

Keywords: Chaos theory, GDP, GDP growth rate, Time series analysis, Phase Space 

Reconstruction, Hurst exponent, largest Lyapunov exponent.  

 

1. Introduction 
Humanity has always been concerned with the question of whether the 

processes in the real world are deterministic in nature. Determinism can be 

understood variously. In this paper we assume a mathematical sense of 

determinism, which is given by equations and initial conditions. Mathematical 

models that are not deterministic because they involve randomness are called 

stochastic. Are the processes in the real world deterministic or stochastic in 

nature? Real processes in nature, according to the expectation of Mandelbrot 

[15], lie somewhere between pure deterministic process and white noise. This is 

why we can describe reality either by a stochastic or deterministic model. The 

Hurst coefficient can give us an answer to this. 

An interesting case of determinism is deterministic chaos. The only purely 

stochastic process is a mathematical model described by mathematical statistics. 

The statistical model often works and is one of many possible descriptions if we 

do not know the system. This also applies to economic quantities, including 

forecasts for GDP. The basic question is therefore the existence of chaotic 

behavior. If the system behaves chaotically, we are forced to accept only limited 

predictions. In this paper we will try to show the chaotic behavior of GDP 

growth rate. 

 

2. Methods of analyzing 
In short, we will describe the basic definitions and the basic methods for 

examining the input data. 
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2.1 Phase space reconstruction 

According to Henry [9], the main goal in nonlinear time series analysis is to 

determine whether or not a given time series is of a deterministic nature. If it is, 

then further questions of interest are: What is the dimension of the phase space 

supporting the data set? Is the data set chaotic? 

The key to answering these questions is embodied in the method of phase space 

reconstruction, which has been rigorously proven by the embedding theorems of 

Takens [19]. Takens theorem was independently suggested for example Packard 

[17]. Takens’ theorem transforms the prediction problem from time 

extrapolation to phase space interpolation.  

Let there be given a time series x1, x2, … , xN which is embedded into the m-

dimensional phase space by the time delay vectors. A point in the phase space is 

given as: 

 )1(,...,2,1  ,...,, )1(   mNnxxxY mnnnn  (1) 

where  is the time delay and m is the embedding dimension. Different choices 

of  and m yield different reconstructed trajectories. How can we determine 

optimal  and m? 

 

2.2 Optimal time delay 

A one-to-one embedding can be obtained for any value of the time delay  > 0. 

However, very small time delays will result in near-linear reconstructions with 

high correlations between consecutive phase space points and very large delays 

might obscure the deterministic structure linking points along a single degree of 

freedom. If the time delay is commensurate with a characteristic time in the 

underlying dynamics, then this too may result in a distorted reconstruction. 

In order to estimate , two criteria are important according to Kodba [12]. First, 

 has to be large enough so that the information we get from measuring the 

value of x at time n +  is significantly different from the information we 

already have by knowing the value of x at time n. Only then will it be possible 

to gather enough information about all other system variables that influence the 

value of x to reconstruct the whole attractor. Second,  should not be larger than 

the typical time in which the system loses memory of its initial state. This is 

particularly important for chaotic systems, which are intrinsically unpredictable 

and hence lose memory of the initial state as time progresses. 

Following this reasoning, Fraser and Swinney [3] introduced the mutual 

information between xn and xn+ as a suitable quantity for determining . The 

mutual information between xn and xn+ quantifies the amount of information we 

have about the state xn+ presuming we know the state xn. Now we can define 

mutual information function: 


 


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
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where Ph and Pk denote the probabilities that the variable assumes a value inside 

the h
th

 and k
th

 bins, respectively, and Ph,k()is the joint probability that xn is in 

bin h and xn+ is in bin k. Hence, the first minimum of I() marks the optimal 

choice for the time delay. 
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2.3 Optimal embedding dimension 

The embedding dimension m is conventionally chosen using the “false nearest 

neighbors’” method. This method measures the percentage of close neighboring 

points in a given dimension that remain so in the next highest dimension. The 

minimum embedding dimension capable of containing the reconstructed 

attractor is that for which the percentage of false nearest neighbors drops to zero 

for a given tolerance level ε. 

In order to calculate the fraction of false nearest neighbors the following 

algorithm is used according to Kennel [11]. Given a point p(i) in the m-

dimensional embedding space, one first has to find a neighbour p(j), so that 

 )()( jpip  (3) 

We then calculate the normalized distance Ri between the (m + 1)th embedding 

coordinate of points p(i) and p(j) according to the equation: 

)()( jpip

xx
R

mjmi

i





   (4) 

If Ri is larger than a given threshold Rtr , then p(i) is marked as having a false 

nearest neighbor. Equation (4) has to be applied for the whole time series and 

for various m = 1, 2, … until the fraction of points for which Ri > Rtr is 

negligible [12]. 

 

 

2.4 The largest Lyapunov exponent 

Lyapunov exponent λ of a dynamical system is a quantity that characterizes the 

rate of separation of infinitesimally close trajectories. Quantitatively, two 

trajectories in phase space with initial separation δZ0 diverge. 

0)( ZetZ t    (5) 

The largest Lyapunov exponent (LLE) can be defined as follows: 
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The limit δZ0→0 ensures the validity of the linear approximation at any time. 

LLE determines a notion of predictability for a dynamical system. A positive 

LLE is usually taken as an indication that the system is chaotic (provided some 

other conditions are met, e.g., phase space compactness) [14]. 

We have used the Rosenstein algorithm, which counts the LLE as follows: 
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Where dj(i) is distance from the j point to its nearest neighbor after i time steps 

and M is the number of reconstructed points. For more information see [6, 18]. 
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2.5 The 0-1 test for chaos 

New test for the presence of deterministic chaos was developed by Gottwald & 

Melbourne [7]. Their ‘0 - 1 test for chaos takes as input a time series of 

measurements, and returns a single scalar value usually in the range 0 - 1. In 

contrast the 0 - 1 test does not depend on phase space reconstruction but rather 

works directly with the time series given. The input is the time-series data and 

the output is 0 or 1, depending on whether the dynamics is non-chaotic or 

chaotic. 

Briefly, the 0-1 test takes as input a scalar time series of observations φ1, ... , φN. 

We have used the algorithm according to Dawes & Freeland [1]. First, we must 

fix a real parameter c and construct the Fourier transformed series: 
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Then we have computed the smoothed mean square displacement: 
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Finally we have estimated correlation coefficient to evaluate the strength of the 

linear growth 
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2.6 Long memory in time series 

Hurst exponent (H) is widely used to characterize some processes. Hurst 

exponent is used to evaluate the presence or absence of long-range dependence 

and its degree in a time-series. For more information see [8, 10]. The Hurst 

exponent is a measure that has been widely used to evaluate the self-similarity 

and correlation properties of fractional Brownian noise, the time series produced 

by a fractional Gaussian process [16]. We can describe self-similarity process 

following equation: 

)()( tXaatX H  (11) 

where a is a positive constant, and H is the self-similarity parameter, for 

0 < H < 1. 

We have used a methodology known as Rescaled Range analysis or R/S 

analysis. To calculate the Hurst exponent, one must estimate the dependence of 

the rescaled range on the time span n of observation. The Hurst exponent is 

defined in terms of the asymptotic behavior of the rescaled range as a function 

of the time span of a time series as follows: 


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Where [R(n)/S(n)] is the rescaled range; E[y] is expected value; n is number of 

data points in a time series, C is a constant. For more information see [13]. 
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3. Analysis of GDP growth rate time series 
 

3.1 Input data 

The GDP in current prices in millions of national currency (including 'euro 

fixed' series for euro area countries) is used in this paper. We have used data 

(quarterly, seasonally adjusted and adjusted data by working days) from the 

Eurostat between the years 1980 - 2012. According to Eurostat [2], seasonal 

adjustment is a treatment of infra-annual time series to remove the spurious 

effect of seasonal patterns from the series' trend and cycle. These patterns can be 

caused by weather, public holidays such as Christmas, the timing of school 

vacations or of dividend payments and a number of other reasons. 

 
Fig. 1. GDP growth rate time series. 

 

Generally, the main problem in analyzing the GDP time series is the lack of 

data. That is why we chose only those European countries where data is 

available since 1980. These are the following states: Belgium, Finland, France, 

Norway, Spain, Switzerland and United Kingdom. So, we have 132 values from 

these countries. The analysis of such short time series in the context of nonlinear 

dynamics or in the presence of chaos can be questionable. We know, according 

to Horák [4] or Galka [5], that for this kind of method results are provable for at 

least 10
3
 data-points. Analysis of short time series (order of 10

1
) may lead to a 

spurious estimation of the invariants e.g. LLE. Despite the above, we have no 

choice but to analyze GDP time series in the context of nonlinear dynamics and 

try to find chaotic behavior of GDP growth rate time series. Therefore, all 

results are only estimates. The second problem can be the presence of trends in 

time series. Trended data are not suitable for future analysis to study chaos 

dynamics. There is no universal way to remove the trend from the data set. The 

results often depend strongly on how the data are detrended. This is solved 

using the GDP growth rate (cf. Figure 1). 
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3.2 Calculation of the largest Lyapunov exponents 

At first we will estimate the time delay and the embedding dimension, which is 

needed for the largest Lyapunov exponent estimation. We will use the mutual 

information approach to determine the time delay. The first minimum of the 

mutual information function I() (2) marks the optimal choice for the time 

delay. The embedding dimension m is chosen using the “false nearest 

neighbors’” method. The minimum embedding dimension capable of containing 

the reconstructed attractor is that for which the percentage of false nearest 

neighbors drops to zero for a given tolerance level ε. Then, we calculated the 

LLE using the Rosenstein algorithm. All computed values are positive (cf. 

Figure 2). A positive LLE is usually taken as an indication that the system is 

chaotic. 

 

Tau ED LLE H test 0- 1

Belgium 2 3 0,032 0,76 0,99

Finland 3 3 0,840 0,88 0,99

France 3 3 0,084 0,96 0,82

Norway 1 3 0,011 0,54 0,99

Spain 2 3 0,078 0,99 0,95

Switzerland 3 3 0,585 0,82 0,99

United Kingdom 4 3 0,071 0,96 0,98

Average 2,571 3,000 0,243 0,844 0,959

SD 0,904 0,000 0,306 0,146 0,058  
Fig. 2. The optimal time delay, The optimal embedding dimension, The Largest 

Lyapunov exponent, The Hurst exponent, Value of chaos test 0-1 for selected 

countries, average and standard deviation 

 

3.3 Results of the 0-1 Test for Chaos 

In this chapter we calculate the correlation coefficient as was shown above. The 

correlation coefficient is near to 0 for non-chaotic data and near 1 for chaotic 

data. All computed values are very close to 1 (cf. Figure 2). Hence, we can 

convincingly assume there to be chaotic behavior in the GDP growth rate time 

series. 

 

3.4 Calculation of the Hurst exponent 

The Rescaled Range analysis gave us values of the Hurst exponent between 0,54 

(Norway) and 0,99 (Spain) (cf. Figure 2). Most values indicate the presence of 

long memory in GDP growth rate time series except the value of the Hurst 

exponent for the Norway GDP growth rate, which indicates random walk. Those 

values are in accordance with our expectations. We know that the value of H is 

between 0 and 1, whilst real time series are usually higher than 0,5. If the 

exponent value is close to 0 or 1, it means that the time-series has long-range 

dependence. We can assume that the true value lies somewhere between those 
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values. We think that those values are sufficient for a credible prediction. Now 

we also know that the fractal dimension DF =2-H. We have estimated the values 

of the fractal dimension selected time series between 1,01 and 1,46. 

 

4. Conclusions 
Chaos theory has changed the thinking of scientists and the methodology of 

science. Making a theoretical prediction and then matching it to the experiment 

is not possible in chaotic processes. Long term forecasts are, in principle, also 

impossible according to chaos theory. The main problem is in the quantity and 

quality of data. Some improvement of measurement cannot help us adequately, 

because it is a fight against power of exponential rate. Nonlinear dynamics and 

chaos theory have also corrected the old reductionist tendency in science. Now 

it is known that real processes are nonlinear and a linear view can be wrong. 

The basic question is therefore - the existence of chaotic behavior. If the system 

behaves chaotically, we are forced to accept only limited predictions. But it is 

much better than random processes. 

Although we analyzed various GDP growth rate time series, the results came out 

very similar. We have shown in this paper that the GDP growth rate time series 

are chaotic and contain long memory. First, we computed the values of the time 

delays and the embedding dimensions. The average value of computed time 

delays is 2,6. In all 7 cases we chose the value 3 as the optimal embedding 

dimension. Subsequently, we calculated the LLE and all computed values were 

positive. A positive LLE is usually taken as an indication that the system is 

chaotic. If the fractal dimension is low, the LLE is positive and the Kolmogorov 

entropy has a finite positive value, chaos is probably present. Then we 

conducted the 0-1 test for chaos according to which chaos was present. All 

computed values were very close to 1. Hence, we can convincingly assume 

there to be chaotic behavior in the GDP growth rate time series. From these 

estimations it can be concluded that the GDP growth rate time series is chaotic. 

Finally we have computed the Hurst exponent by Rescaled Range analysis. 

Most values indicate the presence of long memory in GDP growth rate time 

series, except the value for the Norway GDP growth rate. 

We know that the main problem when analyzing GDP time series is the lack of 

data. As mentioned above, we chose only those European countries where data 

is available since 1980. Although these time series are not ideal in length, they 

are acceptable for analysis. The results came out mostly very similar. The 

presence of chaos in selected GDP growth time series is not only a coincidence. 

In the future we would like to focus on the proper statistical significance for 

nonlinearity and on predicting the GDP. In particular, the surrogate data 

approach (e.g. Theiler et al. [20]) is a powerful tool for detecting actual 

nonlinear behavior, and distinguishing it from other phenomena. 
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Abstract. In this work, the generalization of Lotka-Volterra model including the ad-
dition of symmetrically coupled quintic polynomial interaction is analyzed. Stability
and bifurcation properties of this model are studied. It is also shown that the model
has a family of limit cycles bifurcating from the Hopf points by using a numerical
method.
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1 Introduction

Predator-prey problem attempts to model the relationship between the popu-
lations of two or more species in interaction. The simplest model of predator-
prey interactions, called the classical Lotka-Volterra (LV) model, is given by
the following system of differential equations [1]:

ẋ = x(a− by), ẏ = −y(c− dx), (1)

where the parameters a, b, c and d characterize the predator-prey environment,
dots denote the time derivatives, x(t) and y(t) are the prey and predator pop-
ulations, respectively. Due to its unrealistic stability characteristics, the LV
model serves as a starting point of many generalized models which should pre-
dict a single closed orbit, or perhaps finitely many, but not a continuous family
of neutrally stable cycles. Among many ways to improve stability in the LV
model, a simple approach is to add polynomial interactions. One of the general-
izations considered by Nutku has been to suggest a cubic self-interaction term,
instead of a quadratic self-interaction [2]. The Nutku generalization introduces
additional stability in a simple way; beside a further generalization involving
coupling of the form xky, where k is a positive integer and k ≤ 2, provides
a rich spectrum of equilibrium points leading to Hopf, pitchfork, saddle node
and cusp bifurcations [3]. Moreover, the limit cycles of the Hopf bifurcation
point tend to a specific solution of an equation in [3]. Meanwhile, it is shown
that the Gause type predator-prey model with holling type III functional re-
sponse and allee effect on prey, which is another type generalization of the LV
model, topologically equivalent to the differential equations, are given by a fifth
order polynomial system in [4,5]. On the other hand, Giné and Romanovski
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have obtained necessary and sufficient integrability conditions at the origin
for a complex generalization of the LV model where a quintic nonlinearity is
introduced [6]. By the help of this motivation, we will examine stability and
bifurcation properties of this model with the symmetrically coupled interaction
by using approximate techniques near equilibrium points.

2 The Model, Stability and Bifurcation Scenarios

The quintic Lotka-Volterra model with symmetrically coupled interaction is
given as,

ẋ = x(1−Ax4 −Bx3y − Cx2y2 −Dxy3 − Ey4)

ẏ = −y(1−Ay4 −Bxy3 − Cx2y2 −Dx3y − Ex4), (2)

where parameters A, B, C, D and E are positive. System (2) with A(−B +
3D) = E(3B−D) has an integrating factor of the form V = (xy)(−4B+2D)/(B−D)

which allows us to find the algebraic integral

(xy)
r1
r2

(
r2
r1

+
r2
2
xy(x2 + y2) +

Cr2
r3

x2y2 − Ar2
r1

(x4 + y4)

)
= constant, (3)

where r1 = −3B +D, r2 = B −D and r3 = B +D.
System (2) has 13 trivial equilibrium points, which are (0,0), (A−1/4, 0),

(−A−1/4, 0), (iA−1/4, 0), (−iA−1/4, 0), (0, A−1/4), (0,−A−1/4), (0, iA−1/4),

(0,−iA−1/4), (T
−1/4
1 , T

−1/4
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−1/4
1 ,−T
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−1/4
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−1/4
1 ) and

(−iT
−1/4
1 ,−iT

−1/4
1 ) with T1 = A+B+C+D+E; and nontrivial ones depending

on the values of the coefficients, which are summarized below.

(i) If T2 = A − B + C −D + E > 0 then (T
−1/4
2 ,−T

−1/4
2 ), (−T

−1/4
2 , T

−1/4
2 ),

(iT
−1/4
2 ,−iT

−1/4
2 ) and (−iT

−1/4
2 , iT

−1/4
2 ) are also equilibrium points.

(ii) If T2 = A − B + C − D + E < 0 then there are four complex
equilibrium points: (

√
2 (1 + i) (−T2)

−1/4/2,−
√
2 (1 + i) (−T2)

−1/4/2),
(
√
2 (−1 + i) (−T2)

−1/4/2,
√
2 (1− i) (−T2)

−1/4/2) and their complex con-
jugates.

(iii) If A = E and B = D then there are infinitely many equilibrium points.

(iv) If A ̸= E, B = D and T3 = A − C + E > 0 then (T
−1/4
3 , iT

−1/4
3 ),

(−T
−1/4
3 ,−iT

−1/4
3 ), (iT

−1/4
3 ,−T

−1/4
3 ), (−iT

−1/4
3 , T

−1/4
3 ) and their complex

conjugates are also equilibrium points.
(v) If A ̸= E, B = D and T3 = A − C + E < 0 then there are eight complex

equilibrium points: (
√
2 (1 + i) (−T3)

−1/4/2,
√
2 (−1 + i) (−T3)

−1/4/2),
(
√
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√
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and their complex conjugates.

(vi) If A ̸= E, B ̸= D and |B −D| > 2 |A− E| then there are 4 real and 4
complex, or 2 real and 6 complex equilibrium points. One can find these
points by solving the system of the equations x = (−α±

√
α2 − 1)y, 2α =

(B −D)/(A− E), and Ax4 +Bx3y + Cx2y2 +Dxy3 + Ey4 = 1.
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(vii) If A ̸= E, B ̸= D and |B −D| < 2 |A− E| then one can find equilibrium
points by solving the system of the equations x = (−α ± i

√
1− α2)y and

Ax4 +Bx3y + Cx2y2 +Dxy3 + Ey4 = 1.

On the other hand, system (2) is Lyapunov unstable for the chosen values of
the parameters, which can be very easily demonstrated using the Lyapunov
function V = (E −A)(x2 + y2) + 2Bxy which is positive definite if and only if
E > A and E −A > B. Therefore, we obtain

V̇ = 2(x2 − y2) [βA(x4 + y4) + ((A+ E)2 +B(D −B) + βC)x2y2 − β], (4)

where β = A − E < 0. Although the second factor has negative definite
dominant term, the first factor changes sign as |x| = |y|. Hence there is a regime
where the system is Lyapunov unstable so that we can limit our discussion to
local stability. At this stage, we focus on trivial equilibrium points to examine
stability. Nontrivial ones will be taken into account for a spacial case.

Linearized eigenvalues about the first real trivial equilibrium point (0, 0) are
{±1}; thus the origin is a saddle point. Eigenvalues for the points (A−1/4, 0)
and (−A−1/4, 0) are {−4, −1+E/A}, so these points are saddle when A < E,
and stable nodes when A > E. Eigenvalues associated with points (0, A−1/4)
and (0,−A−1/4) are {4, 1 − E/A}. If A < E, these equilibrium points are
saddle, otherwise they are unstable nodes. On the other hand the eigenval-

ues for both of equilibrium points (T
−1/4
1 , T

−1/4
1 ) and (−T

−1/4
1 ,−T

−1/4
1 ) are

{±i
√
8[2(E −A) + (D −B)]/T1}, a pair of purely imaginary eigenvalues, if

2(E − A) + (D − B) > 0 and {±
√
8[2(A− E) + (B −D)]/T1} if 2(E − A) +

(D−B) < 0. Thus the first purely imaginary values satisfy the resonance con-
ditions and the system can be expanded into a resonant normal form, which
gives Hopf bifurcation under the condition 2(E − A) + (D − B) > 0. For the
other condition, these points are also saddle.

Let A = 1 and B = C = D = E = 2. In this special case, the real equilib-
rium points of the system are (0,0), (1,0), (-1,0), (0,1), (0,-1), A1(1/

√
3, 1/

√
3),

A2(−1/
√
3,−1/

√
3), A3(1,−1), A4(−1, 1); and there are 16 complex equilib-

rium points. Trivial equilibrium point at the origin is a saddle point with the
eigenvalues {±1}. (1,0) and (-1,0) are also saddle points with the eigenval-
ues {−4, 1}. Similarly (0,1) and (0,-1) are saddle points with the eigenval-
ues {4, −1}. On the other hand, the points A1 and A2 with the eigenvalues
{±i4/3}; and also the points A3 and A4 with the eigenvalues {±i4} are also
Hopf points. The third order normal form about the point A1 is

u̇ = 4iu(1− 14uv)/3, v̇ = −4iv(1− 14uv)/3, (5)

where u and v refer to the variables in the near identity transformation. This
normal form indicates Hopf bifurcation. From the linearized eigenvalues of sys-
tem (5), it is clear that the normal form will be u̇ = iαuf(uv), v̇ = −iαvf(uv)
which admits the solution uv =constant. Hence the inclusion of higher order
terms in the normal form will only change the purely imaginary eigenvalues,
since the only change will be the constant value of f(uv) to the normal form
approximation. This implies that the character of the local bifurcation will
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not change by including further terms. Normal form analysis for the other
equilibrium points is omitted for brevity.
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Fig. 1. Family of limit cycles of the system (2) when A is varied

The bifurcation analysis when A is varied is given in Figure 1. In this special
case, two supercritical Hopf bifurcation points, A1 and A2, and two subcritical
Hopf bifurcation points, A3 and A4, are observed. All of the limit cycles lie
between the coordinate axes and the curve in one of quadrants. They also form
a double throw-and-catch mechanism around a pitchfork bifurcation point in
the middle.

3 Conclusion

In this work, a special case of the quintic generalization of the LV model has
been studied. The model is globally Lyapunov unstable, however local stability
indicates several instances of Hopf bifurcation to a family of bounded orbits.

352



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

It is also numerically observed that there is a discontinuous family of stable
cycles in the same way as in the cubic nonlinear intersection.
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