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Abstract: A model nanosystem is investigated: a sample in the form of a rectangular 

parallelepiped of finite size with volumetric discrete lattice. It is shown that a separate 

nodal plane of a model nanosystem can be in different structural states: stochastic state of 

the deformation field on the whole rectangular lattice; the state with the linear fractal 

dislocation of different orientations; quasi-two-dimensional structures of the type of 

fractal elliptical, hyperbolic dislocations and fractal quantum dot. Using the numerical 

modelling method, the behaviour of the deformation field and a possibility of the 

alteration of these structures is investigated. The analysis of the behavior of the averaged 

functions allows to determine the critical values of the governing parameters. 
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1. Introduction 
Investigation of fundamental properties of nanosystems and nanomaterials of a 

new generation [1, 2] is actual for modern areas of science and nanotechnology. 

Among the real nanomaterials the active nanostructural elements are clusters, 

porous, quantum dots, wells, corrals, surface superlattices. The physical 

properties of these elements can demonstrate chaotic behavior [3]. The active 

nanostructural elements can find their application in the quantum 

nanoelectronics, quantum informations [4], quantum optics. Previously in paper 

[5] fractons – vibrational excitations on fractals – were introduced. Fractal 

dislocation [6, 7] is one of the non-classical active nanostructural objects. For 

the theoretical descriptions of fractal objects it has been proposed [6, 7] to use 

the theory of fractional calculations [8] and the concept of fractals [9]. The new 

structural states [10-13] of fractal dislocation were investigated on the basis of 

fractional calculation theory and Hamilton operators. The purpose of the paper 

is to research a possibility of governing the alteration of the deformation field of 

fractal quasi-two-dimensional structures in model nanosystems. 

2. Basic nonlinear equations 
A model nanosystem is investigated: a sample in the form of a rectangular 

parallelepiped of a finite size with volumetric discrete lattice 1 2 3N N N× × , 

whose nodes are given integers , ,n m j ( 11,n N= ; 21,m N= ; 31,j N= ). In 

papers [11] the dimensionless variable displacement u  of the lattice nodes is 

described by function 
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( )( )2
01 1 2 ( , )u sn u u k Qα= − − − ,   01 1 2 3Q p p n p m p j= − − − .   (1) 

Here α  is the fractal dimension of the deformation field u  along the Oz -axis 

( [0,1]α ∈ ); 0u  is the constant (critical) displacement; k  is the modulus of the 

elliptic sine; governing parameters 01 1 2 3, , ,p p p p  do not depend on the 

integers , ,n m j . This paper takes into account the parameters 

01 1 2 3, , ,p p p p depending on the integers , ,n m j . While modeling deformation 

fields of stochastic fractal quasi-two-dimensional structures, this allowed to 

obtain the basic non-linear equations that take into account the interaction of 

nodes in the plane of the discrete rectangular lattice 1 2N N× . The structure of 

these equations is similar to the expression (1), but with a different value of the 

function Q . For a linear fractal dislocation the function Q  has the form 

( ) ( )0 1 0 2 0( ) / ( ) /c cQ p b n n n b m m m= − − − − ;                  (2) 

1 cos( / 2 ( ))b jπ ϕ= + ;    2 cos ( )b jϕ= .                         (3) 

For other fractal quasi-two-dimensional structures the function Q  has the form 

( ) ( )
2 2

0 1 0 2 0( ) / ( ) /c cQ p b n n n b m m m= − − − − ,               (4) 

where for the elliptic dislocation and fractal quantum dot 

1 2 cos ( )b b jϕ= =                                               (5) 

and in the case of fractal hyperbolic dislocation 

1 cos ( )b jϕ= ;    2 cos( ( ))b jπ ϕ= + .                        (6) 

Now here the governing parameters are 0 0 0, , , , ,c cp n n m m ( )jϕ . Varying 

these parameters both a structural state of the self-fractal dislocation and the 

type of dislocation (for example, the transition from fractal elliptical dislocation 

to fractal quantum dot) can be governed. In general case the governing 

parameters can be changed from one node plane to another, which may be 

connected not only with external governance (for example, when a parameter 

0p  is changed), but also with internal governance (the process of self-

organization of structures when ( )jϕ  is changed). To investigate the behavior 

of the stochastic deformation field of fractal quasi-two-dimensional structure in 

terms of the statistical approach, averaged functions are introduced [11]. The 

necessity of averaging is connected with the fact that the elements of the lattice 

nodes displacement matrix are in general case random real functions. The 

average is taken only on nodes in the plane of the discrete rectangular lattice 

1 2N N× . For this the operators fields of displacement û  and density of states 

ρ̂  are introduced. These operators are coincided to the matrix with the elements 

of nmu ; 2 11 /mn N Nρ = . Rectangular matrices û  and ρ̂  have the dimensions 

of 1 2N N× ; 2 1N N× , respectively. For a homogeneous distribution the 

operator ρ̂  is given by 
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2 1 2 1
ˆ ˆˆ /T
N N N Nρ ξ ξ= ,                                            (7) 

where «T » denotes transposition; 1
ˆ
Nξ , 2

ˆ
Nξ  are row-vectors with elements 

equal to one. The averaged function M  has the form [11] 

ˆ ˆ( )M Sp u M i Mρ ′ ′′= = + ;   ReM M′ = ;   ImM M′′ = .        (8) 

Here Sp  is an operation of calculating the trace of a square matrix; Re, Im  

represent an allocation of real and imaginary parts of the complex function M ; 

i  is an imaginary unit. Averaged function M  depends on the governing 

parameters 0 ( )p j , ( )jϕ . In general case ( )M M j=  is a random function, as 

an average over the index j  is not made. This means that there are some critical 

values 0 ( )p j , ( )jϕ , during the transition through which the behavior of 

function M  can vary from regular to stochastic. Therefore there is a problem of 

finding the critical values of these governing parameters. 

3. Numerical simulation and the analysis of results 

Solution of the nonlinear equation (1) with the value of function Q  in the form 

(3) is constructed by the iteration method [11] for fixed values 0,5α = ; 

0,5k = ; 0 29,537u = . The iterative procedure on the index m  simulates a 

stochastic process on a rectangular discrete lattice with a size 

1 2 30 40N N× = × . The initial parameters were the following: 0 14,3267n = ; 

9,4793cn = ; 0 19,1471m = ; 14,7295cm = . In the simulation it was 

assumed that
 

( ) ( 1) /10j jϕ π= − . A separate nodal plane of a model 

nanosystem can be in different structural states: the state with the linear fractal 

dislocation of different orientations (Fig. 1); stochastic state of the deformation 

field on the whole rectangular lattice (Fig. 2. b, Fig. 3. b); quasi-two-

dimensional structures of the type of fractal elliptical (Fig. 2. a), hyperbolic 

dislocations (Fig. 3. a. c) and fractal quantum dot (Fig. 2. c). Governance of 

alteration (Fig. 1-Fig. 3) of the deformation field is achieved by changing the 

internal parameters 1 2,b b . At the same time the external parameter 

0 0.1453p =  has been fixed and is chosen from the field of stochastic behavior 

of the averaged function M  (Fig. 4-Fig. 6). Rotation of a linear dislocation 

(Fig. 1) is achieved by governing the internal parameters 1 2,b b  (3) by changing 

the angle ( )jϕ . At rotation there is a change of the structural state of the 

dislocation and substructures appear, which is related to the influence of the 

stochastic iteration process along the axis Om . If cos ( ) 0jϕ >  the quasi-two-

dimensional structure (4), (5) is a structure of the type of fractal elliptical 

dislocation, for which the location of the singular points is typical for real 

ellipse. If cos ( ) 0jϕ <  the quasi-two-dimensional structure is a structure of the 

type of the fractal quantum dot [12], for which the location of the singular points 

is typical for an imaginary ellipse. Fig. 2 show the transition from the elliptic 

dislocation to the quantum dot through the stochastic state of the whole lattice. 
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Fig. 1. The behavior of functions u  (a,b,c,g,h,i) and their cuts (d,e,f,j,k,l) at 

[ 0.5,0.5]u∈ −  (top view) depending on the lattice index n  and m  

for linear fractal dislocation 
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This transition is realized when governing the internal parameters of 1 2,b b  (5) 

by changing the angle ( )jϕ . At the same time a reorientation of the peaks, a 

change of the substructure, an expansion (at [1,5]j∈ ) and a restriction (at 

[17,21]j∈  ) of the area of the elliptical dislocation; a restriction (at 

[7,11]j∈  ) and an expansion (at [12,15]j∈ ) of the area of the quantum dot 

are observed. 

 

Fig. 2. The transition from the elliptic dislocation to the quantum dot. The 

behavior of the functions u  (a,b,c) and their cuts (d,e,f) at [ 0.5,0.5]u∈ −  

(top view) depending on the lattice index n  and m  
 

The reorientation of the branches of the fractal hyperbolic dislocation through 

the stochastic state of the whole lattice is achieved by governing the internal 

parameters 1 2,b b  from (6) by changing the angle ( )jϕ  (Fig. 3). Strongly 

pronounced stochastic behavior of the deformation field and the substructure 

can be observed for the region between the branches of the hyperbolic 

dislocation. The analysis of the behavior of the averaged functions allows to 

determine the critical values of the governing parameters. In our case, the 

parameter 0p  is a parameter of the external governance, averaged function M  

is a real random function. The behavior of function M  for the fractal elliptical 

dislocation ( 0 0p > ,
 1 2 1b b= = ) is shown in Fig. 4. In the interval of 

0 [0;5]p ∈  a base peak (Fig. 4. a) and a stochastic behavior with smaller 

amplitudes (Fig. 4. b) are observed. The presence of several features (such as 
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local resonance dispersion) allows us to determine the critical values of 0p , 

during the transition through which the stochastic behavior of M  is changed to 

a regular one(Fig. 4. c). These features allow us to study the mechanism of 

alteration of fractal quasi-two-dimensional structures of the type of elliptical 

dislocation. With a further increase in 0p  function M  is regular and 

asymptotically approach to zero from negative values. 
 

 

Fig. 3. The reorientation of the branches of the hyperbolic dislocation through 

the stochastic state. The behavior of the functions u  (a,b,c) and their cuts (d,e,f) 

at [ 0.5,0.5]u∈ −
 
(top view) depending on the lattice index n  and m  

 

The behavior of M  for the fractal quantum dot ( 0 0p < , 1 2 1b b= = ) is shown 

in Fig. 5. When changing 0p  the regular behavior of function M  (Fig. 5. a) 

goes into pronounced stochastic (Fig. 5. b). The presence of such features as 

inflection points, local maxima and minima allows to determine the critical 

values of the parameter 0p  (Fig. 5. c). The behavior of the function M  of the 

parameter 0p  at 1 1b = − , 2 1b =  ( 11j = ) for the fractal hyperbolic 

dislocation (4), (6) is shown in Fig. 6. By changing 0p  a base peak and two 

additional peaks (Fig. 6. a) are observed, as well as a pronounced stochastic 

behavior with smaller amplitudes (Fig. 6. b). The features of the function 

behavior are given by a type of local inflection points, maxima and minima (as 

in the quantum dot of Fig. 5. c). This allows to determine the critical value of 

the parameter 0p , across which the regular behavior of the function M  

changes to stochastic (Fig. 6. c). 
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Fig. 4. The behavior of M  of 0p  for the elliptic dislocation at 1j =

 

 
Fig. 5. The behavior of M  of 0p  for the fractal quantum dot at 1j =

 
 

 
Fig. 6. The behavior of M  of 0p  for the hyperbolic dislocation at 11j =  
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By changing the sign of 0p  (Fig. 6. d) there is a change in the orientation of the 

branches of the fractal hyperbolic dislocation. In this case the features of M  

have the form of a resonance dispersion type (Fig. 6. e) against the background 

of the step (Fig. 6. f). This allows to determine the critical value of the 

parameter 0p , across which the stochastic behavior of M  changes to regular. 

4. Conclusions 
In order to describe stochastic deformation fields of fractal quasi-two-

dimensional structures the basic non-linear equations taking into account the 

interaction of nodes in the plane of the discrete rectangular lattice were 

obtained. The alteration of the deformation field of fractal quasi-two-

dimensional structures is achieved by changing internal and external governing 

parameters. It is shown that in this case both the structural state of the self-

structure and the type of structure vary. The behavior of the averaged functions 

when changing the governing parameters correlates with the behavior of the 

deformation field and is related to the mechanisms of alteration of fractal quasi-

two-dimensional structures. 
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Abstract: A model sample of a finite nanosize with the volumetric lattice in the form of 

a rectangular parallelepiped is considered. On the basis of the previously proposed one-

point model, a two-point model is constructed, which uses the theory of fractional 

calculus and the concept of fractal. The features of the behavior of the deformation field 

of fractal dislocation and possible correlation connections are investigated. It is shown 

that complex correlation connections have negative, positive and sign changing 

correlation coefficients. The strongly pronounced stochastic behaviour of amplitudes and 

phases of average functions is established. The change of the statistics from Fermi-Dirac 

type to the statistics of Boze-Einstein type for separate internal nodal planes is shown by 

the method of numerical modeling. 
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1. Introduction 
For experimental studies of the physical properties of individual atoms 

(electrons, photons) and the quantum measurement it is necessary to create 

special traps: nanosystem - trapped particles (or group of particles) in a trap. 
These traps can be useful for realization of optical quantum computation with 

quantum information processing, measurement in quantum optics [1]. In his 

Nobel lecture in Physics in 1989 W. Paul [2] considered electromagnetic traps 

for charged and neutral particles. For the observation of Bose-Einstein 

condensation phenomenon [3] the magnetic traps were used. Serge Haroche and 

David Wineland, 2012 Nobel laureates in Physics, proposed experimental 

methods that made it real to measure individual quantum systems and govern 

them [4, 5]. The experimental studies of the features of the statistical properties 

of individual quantum systems in neutron spin measurements [6], with the 

observation of Bose-Einstein condensation [7] showed the presence of 

correlations in the measured values. Near singular points (Dirac points) Dirac 

fermions in molecular graphene show quantum and statistical features of 

behavior [8]. 

Fractal dislocation is one of the structural objects in nanostructured materials 

[9, 10]. The core of a linear dislocation is a set of singular points. The 

deformation field of fractal dislocation has unusual quantum and statistical 

properties [11 - 13] and shows the presence of quantum chaos [14]. Earlier a 
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one-point model was used to describe the structural states of the deformation 

field of fractal dislocation [10, 12] (fractal dimension was an effective 

coordinate). In this model, the elements of the displacement of the lattice nodes 

are real random functions and were determined without the effect of bifurcation 

of solutions of a nonlinear equation. However, consideration of the effect of 

bifurcation of solutions [11] leads to the four branches of the lattice nodes 

displacement function. Elements of the lattice nodes displacement matrix 

become complex random functions. In order to describe possible correlation 

effects and statistical properties of the deformation field of fractal dislocation of 

net structural states a two-point model was proposed [15] in which the theory of 

fractional calculus [16] and the concept of fractal [17] are used. It is necessary 

to investigate the mixed states, the description of which requires introducing the 

density of states and accounting for the distribution of this density of states on 

nodes of the volumetric lattice. 

The purpose of this paper is to generalize the two-point model to the case of 

mixed state and investigate correlation connections and the statistical properties 

of the deformation field of fractal dislocation in the model nanosystem. 

2. Description of mixed states in the two-point model 
A model nanosystem [15] is considered: a sample in the form of a rectangular 

parallelepiped of finite size with volumetric discrete lattice 1 2 3N N N× × . 

Deviations of the lattice nodes from the state of equilibrium in a separate plane 

1 2N N×  for two different points of 1( )z j  and 2 ( )z j  are described by non-

hermitian displacements operators
 1ˆ( )u z  and 2ˆ( )u z , corresponding to the 

rectangular matrix with dimensions 1 2N N× , 3[1, ]j N∈ . 

For the description of mixed states the effective composite operators of 

displacements for the states 1,2,...8p =  are introduced, respectively, 

1 12 1ˆˆ ˆ ( )u u zρ += ;  3 12 2ˆˆ ˆ ( )u u zρ += ;  5 1 12ˆˆ ˆ( ) Tu u z ρ= ;  7 2 12ˆˆ ˆ( ) Tu u z ρ= ;     (1) 

2 21 1ˆˆ ˆ( )u u zρ= ;  4 21 2ˆˆ ˆ( )u u zρ= ;  6 1 21ˆˆ ˆ ( ) Tu u z ρ+= ;  8 2 21ˆˆ ˆ ( ) Tu u z ρ+= .   (2) 

Here the symbols «+» and «T » mean the operation of hermitian conjugation 

and transposition. The square matrices with sizes 1 1N N×  for 1,3,5,7p =
 
and 

2 2N N×  for 2,4,6,8p =  correspond to the introduced operators ˆ pu ; so that 

5 1ˆ ˆu u+= , 7 3ˆ ˆu u+= , 6 2ˆ ˆu u+= , 8 4ˆ ˆu u+= . The density state operators 12 12ˆ ˆ, ,Tρ ρ
 

21 21ˆ ˆ, Tρ ρ
 
are represented by 

12 1 2 1 2
ˆ ˆˆ /T
N N N Nρ ξ ξ= ; 12 2 1 1 2

ˆ ˆˆ /T T
N N N Nρ ξ ξ= ; 21 12ˆ ˆTρ ρ= ; 21 12ˆ ˆTρ ρ= ,   (3) 

where 1
ˆ
Nξ , 2

ˆ
Nξ  are row-vectors of dimensions 11 N× , 21 N× , with elements 

equal to one. The rectangular matrices 12ρ̂ , 21ρ̂  have dimensions
 1 2N N× , 

2 1N N× . For the operators in (3) the normalization conditions are fulfilled 
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1 12 2
ˆ ˆˆ 1T
N Nξ ρ ξ = ;      2 21 1

ˆ ˆˆ 1T
N Nξ ρ ξ = .                            (4) 

Having performed an averaging over the index nodes ,n m  by calculating trace 

Sp  of square matrices (1), (2), the averaged functions pu , | |pu , ptgϕ
 
for 

states with 1,2,...8p =  are obtained 

ˆ | | exp( )p p p p p pu Spu u iu u iϕ′ ′′= = + = ;  
* ˆp pu Spu+= ;  /p p ptg u uϕ ′′ ′= ,  (5) 

where Rep pu u′ = , Imp pu u′′ = ; the symbol «∗» means the operation of 

complex conjugation; | |pu , pϕ  are a module, a phase of the complex averaged 

functions pu . Here the averaging across an index j  is not made. 

Then we find the correlation function of the first order. For , 1,3,5,7p q =  we 

obtain 

| | exp( )pq pq pq pq pq pq pqK S H K iK K iθ′ ′′= − = + = ; 

ˆ | | exp( )pq pq pq pq pq pqS SpS S iS S iψ′ ′′= = + = ;  ˆ ˆ ˆpq p qS u u+= ;  ˆ ˆ
pq pqS S+ ≠ ; 

*ˆ ˆ( )( ) | | exp( )pq p q p q pq pq pq pqH Spu Spu u u H iH H iδ+ ′ ′′= = = + = ; 

| | | | | |pq p qH u u= ⋅ ;   pq p qδ ϕ ϕ= − .                              (6) 

In the case , 2,4,6,8p q =  we obtain 

| | exp( )pq pq pq pq pq pq pqC A B C iC C iβ′ ′′= − = + = ; 

ˆ | | exp( )pq pq pq pq pq pqA SpA A iA A iχ′ ′′= = + = ; ˆ ˆ ˆpq p qA u u+= ; ˆ ˆ
pq pqA A+ ≠ ; 

ˆ ˆ( )( ) | | exp( )pq p q pq pq pq pqB Spu Spu B iB B iγ+ ′ ′′= = + = ; 

| | | | | |pq p qB u u= ⋅ ;   pq p qγ ϕ ϕ= − .                        (7) 

From (6) at p q=  we have 0ppδ = , 
2| | | |pp pp pH H u= = ; operators 

ˆ ˆ
pp ppS S +=  are hermitian, 0ppS ′′ = , pp ppS S ′=  and 

| | | | exp( )pp pp pp pp ppK S H K iθ′= − = .                            (8) 

From (8) it follows that pp kθ π= , where 0, 1, 2,..k = ± ±  and autocorrelation 

function can be either positive ( 0, 2, 4,..k = ± ± ) or negative ( 1, 3,..k = ± ± ). 

From (7) at p q=  we obtain 0ppγ = , 
2| | | |pp pp pB B u= = ; then operators 

ˆ ˆ
pp ppA A+=  are hermitian, 0ppA′′ = , pp ppA A′=  and 

| | | | exp( )pp pp pp pp ppC A B C iβ′= − = .                            (9) 

From (9) it follows that pp lβ π= , where 0, 1, 2,..l = ± ±  and autocorrelation 
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function can be either positive ( 0, 2, 4,..l = ± ± ) or negative ( 1, 3,..l = ± ± ). 

Having done the normalization of the above functions, we obtain the 

distribution function of mixed states of Bose-Einstein type and Fermi-Dirac type 

for 1,3,5,7p =  in form 

1pp ppf f′ − = ;   /pp pp ppf S H′ = ;   /pp pp ppf K H= ;                (10) 

1pp ppF F′ + = ;   /pp pp ppF H S= ;   /pp pp ppF K S′ = ,                (11) 

and for 2,4,6,8p =  in form 

1pp ppf f′ − = ;   /pp pp ppf A B′ = ;   /pp pp ppf C B= ;                (12) 

1pp ppF F′ + = ;   /pp pp ppF B A= ;   /pp pp ppF C A′ = .                (13) 

By numerical simulation it will be shown that for mixed states all 

autocorrelation functions ( ), ( )pp ppK j C j  are positive in the interval 

3[1; ]j N∈ . Earlier in [15] it was shown that for pure states similar 

autocorrelation functions are negative. 

At p q≠  from (6), (7) it follows that the functions ,pq pqK C  are complex. For 

some values ,p q  these functions have a sense of cross-correlated functions (for 

a pair of different points 1 2,z z ). In this case, to investigate the correlations it is 

necessary to introduce second-order correlation functions. For , 1,3,5,7p q =  

we have 

pq pq pqG V W= − ;   ˆ
pq pqV SpV= ;   ˆ ˆˆ

pq pq pqV S S += ;   ˆ ˆ
pq pqV V+ = ; 

* 2ˆ ˆ( )( ) | |pq pq pq pq pq pqW SpS SpS S S S+= = = .                  (14) 

Using (6), we find a representation for
 

2 2| | (| | | | | |) 2 | | | | | | (1 cos )pq pq p q p q pq pqS K u u u u K= − ⋅ + ⋅ ⋅ + Φ ,   (15) 

where pq pq pqδ θΦ = − . For , 2,4,6,8p q =  we obtain 

pq pq pqg v w= − ;   ˆpq pqv Spv= ;   ˆ ˆˆpq pq pqv A A+= ;   ˆ ˆpq pqv v+ = ; 

* 2ˆ ˆ( )( ) | |pq pq pq pq pq pqw SpA SpA A A A+= = = .                  (16) 

Using (7), we find a representation for 

2 2| | (| | | | | |) 2 | | | | | | (1 cos )pq pq p q p q pq pqA C u u u u C= − ⋅ + ⋅ ⋅ + Ψ ,   (17) 

where pq pq pqγ βΨ = − . At some points 3[1; ]j N∈  changes sign at second 

order correlation functions ( ), ( )pq pqG j g j  from the expressions (14) - (17) 

which confirms the presence of a mixed statistics. 

When describing pure states [15] of the deformation field of fractal dislocation 

in the two-point model, the following operators and functions were introduced 
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7 2 1
ˆ ˆ ˆ( ) ( )M u z u z+= ;   8 1 2

ˆ ˆ ˆ( ) ( )M u z u z+= ;   ˆ ˆ ˆ
r r rS M M += ; 

ˆ
r rS SpS= ;       ˆ ˆ( )( )r r rH SpM SpM += ;       r r rK S H= − ; 

1r rf f′ − = ;   /r r rf K S= − ;   /r r rf H S′ = ;     7,8r = .            (18) 

Correlation functions rK  are sign changing within the interval 3[1; ]j N∈  and 

describe the states with mixed statistics. 

3. Numerical simulation and the analysis of results 

The original rectangular matrix displacement 1ˆ( )u z  and 2ˆ( )u z  with elements 

1 1 1( ) ( )nmu z u zε= , 2 1 2( ) ( )nmu z u zε=  in bulk lattice 1 2 3N N N× × =  

30 40 67= × ×  were obtained by the method of iterations on an index m  for 

the first branch of the dimensionless complex function displacement
 

1( ) ( )u z u zε=  by the formulas in [15] under the same input parameters and 

initial conditions. In the calculations it should be: 

1 0.053 0.1( 1)z j= + − ; 2 6.653 0.1( 1)z j= − − , which corresponds to the 

forward and backward waves of displacements 1( )nmu z , 2( )nmu z ; 1,30n = ; 

1,40m = ; 1,67j = . The choice of the model parameters determines the state 

of a discrete rectangular sublattice 1 2N N×  with fractal dislocation, localized 

within this region parallel to the axis Om . 

The analysis of the results of the numerical simulation for the mixed states 

(Fig. 1) shows that all of the first-order correlation functions ppK  are positively 

defined on the whole interval [1,67]j∈ . This means that for states pp  there 

are correlation relations with positive correlation coefficients. The distribution 

function of the Fermi-Dirac type 55( )F j  with increasing j  (Fig. 1, a) varies 

randomly around the value of 0.1, goes to the stochastic peak at 26j =
 
with the 

value 55 (26) 0.3315F =  and then again randomly changed by another law near 

the value of 0.1. The distribution function of the 77 ( )F j  with increasing j  

(Fig. 1,c) also varies randomly near the value of 0.1, comes to a peak at the 

other stochastic value of 42j =  with the same value of 77 (42) 0.3315F =  and 

then again changes randomly by another law near the value of 0.1. In this case 

the values of the functions of 55 ( )F j , 77 ( )F j  in the peaks do not exceed the 

value of 0.5, which is typical for the ground state Fermi-system. The 
distribution functions of Bose-Einstein type 55 ( )f j , 77 ( )f j  (Fig. 1,b,d) 

randomly change with increasing j  near the population number equal to 10, in 

separate planes the peaks with large population numbers are observed. Such a 

behavior of functions 55 ( )f j , 77 ( )f j  indicates that the ground state of a Bose-

system is populated (the population number greater than 1). The global minima 
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with the values 55 77(26) (42) 2.0162f f= = are observed in the points at 

which the main peaks of the functions 55 ( )F j , 77 ( )F j
 
are observed. The 

above values of the functions in global minima and main peaks indicate that the 

correlations in both ground and excited states of both Bose- and Fermi-systems 

are taken into account. 
 

 
a b 

 
c d 

  

e f 

  

g h 
 

Fig. 1. Dependencies of the distribution functions of the Fermi-Dirac type 

(a, c, e, g) and Bose-Einstein type (b, d, f, h) on j  for mixed states pp 
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In this case, the autocorrelation function 55K  describes a forward wave, and 

the autocorrelation function 77K  describes a backward wave. The distribution 

functions of the Fermi-Dirac type 66 88( ), ( )F j F j  with increasing j  

(Fig. 1,e,g) vary randomly around 0.5. The values of the functions in individual 

peaks are higher than 0.5, which is typical for inverted states of Fermi-systems. 

The distribution functions of Bose-Einstein type 66 ( )f j , 88 ( )f j  (Fig. 1,f,h) 

randomly change with increasing j  near the occupation numbers from 0 to 10, 

in separate planes the peaks with large population numbers are observed. 

Accounting ordering pair operators in (1), (2) (the displacement and density of 

states of the lattice nodes) in the correlation function (6) - (9) leads to different 

distribution functions (10) - (13), as confirmed by numerical simulations  
(Fig. 1). 

The dependencies of the distribution functions with mixed statistics (18) on an 

integer index j  of a nodal plane for pure states at 7,8r =  are shown in Fig. 2. 
 

  
a b 

Fig. 2. Dependencies of the distribution functions with mixed statistics 

on j
 
for pure states 

 

At some points j  changes sign at functions 7 8,f f , which confirms the presence 

of a mixed statistics. In this case functions rf  and rf ′  
may be interpreted as 

Fermi-Dirac type distribution functions for those areas of changes for j , 

where 0rK > , and at 0rK <  as Bose-Einstein type distribution functions in 

the main and excited states, respectively. Note the pronounced stochastic 

behavior of the amplitudes | |rM  and phases rµ  have of averaged functions 

ˆ
r rM SpM= = | | exp( )r rM iµ= . 

The possibility of changing the sign of real parts of the first order complex 

correlation functions ( ), ( )pq pqK j C j  (6), (7) and second order correlation 

functions ( ), ( )pq pqG j g j  (14), (16) is also confirmed by the results of the 

numerical simulations. 

4. Conclusions 
The numerical simulation has confirmed the theoretical conclusion of the 

15



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

presence of a mixed statistics: the change of the statistics from Fermi-Dirac type 

to the statistics of Boze-Einstein type for separate internal nodal planes of the 

bulk lattice. The analysis of the distribution functions of the occupation numbers 

for mixed states shows that particular nodal planes may be in inverse structural 

states. 

Based on the analysis of the correlation functions of the first and second order a 

possibility of changing the sign of real parts of the correlation functions is 

shown. This indicates a possible change in the nature of the interaction 

(attraction or repulsion) between lattice nodes within a single nodal plane as 

well as between different planes. 

Accounting ordering pair operators (displacement and density of states the 

lattice nodes) in the correlation function has the effect of deviations of the initial 

distribution function. 
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Preserving the Chaos Type
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Abstract. We provide new conditions for the presence of generalized synchronization
in unidirectionally coupled systems. One of the main results in the paper is the
preservation of the chaos type of the drive system. The analysis is based on the
Devaney definition of chaos. Appropriate simulations which illustrate the generalized
synchronization are depicted.
Keywords: Generalized synchronization, Devaney chaos, Chaotic set of functions.

1 Introduction

The most general ideas about the synchronization of different chaotic systems
with an unrestricted form of coupling can be found in paper [1]. Rulkov et
al. [2] realized this proposal by introducing the concept of generalized synchro-
nization (GS) for unidirectionally coupled systems. The concept of GS [2]-[5]
characterizes the dynamics of a response system that is driven by the output
of a chaotic driving one.

In the present paper, the drive system will be considered in the following
form

x′ = F (x), (1)

where F : Rm → R
m is a continuous function, and the response is assumed to

have the form

y′ = Ay + g(x, y), (2)

where g : Rm ×R
n → R

n is a continuous function in all its arguments and the
constant n× n real valued matrix A has real parts of eigenvalues all negative.
We assume that system (1) admits a chaotic attractor.

GS is said to occur if there exist sets Ix, Iy of initial conditions and a trans-
formation ϕ : Rm → R

n, defined on the chaotic attractor of the drive system,
such that for all x(0) ∈ Ix, y(0) ∈ Iy the relation limt→∞ ‖y(t)− ϕ(x(t))‖ = 0
holds. In this case, a motion which starts on Ix × Iy collapses onto a manifold
M ⊂ Ix× Iy of synchronized motions. The transformation ϕ is not required to
exist for the transient trajectories [2,3].

According to the results of [3], GS occurs if and only if for all x0 ∈ Ix,
y10, y20 ∈ Iy, the following criterion holds:
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(A) lim
t→∞

‖y(t, x0, y10)− y(t, x0, y20)‖ = 0,

where y(t, x0, y10), y(t, x0, y20) denote the solutions of (2) corresponding to the
initial data y(0, x0, y10) = y10, y(0, x0, y20) = y20 with the same x(t), x(0) = x0.

A consequence of GS is the ability to predict the behavior of y(t), based
on the knowledge of x(t) and ϕ only. If ϕ is invertible x(t) is also predictable
from y(t). The usage of statistical estimations of predictability [2], analysis of
conditional Lyapunov exponents [3] and the auxiliary system approach [4] are
the main approaches to the observation of GS.

Let us introduce the ingredients of Devaney chaos [6] for continuous time
dynamics. Denote by

B = {ψ(t) | ψ : R → K is continuous}

a collection of functions, where K ⊂ R
q is a bounded region.

We say that B is sensitive if there exist positive numbers ǫ and ∆ such that
for every ψ(t) ∈ B and for arbitrary δ > 0 there exist ψ(t) ∈ B, t0 ∈ R and an
interval J ⊂ [t0,∞), with length not less than ∆, such that

∥∥ψ(t0)− ψ(t0)
∥∥ < δ

and
∥∥ψ(t)− ψ(t)

∥∥ > ǫ, for all t ∈ J.
On the other hand, the collection B is said to possess a dense function

ψ∗(t) ∈ B if for every ψ(t) ∈ B, arbitrary small ǫ > 0 and arbitrary large
E > 0, there exist a number ξ > 0 and an interval J ⊂ R, with length E,
such that ‖ψ(t)− ψ∗(t+ ξ)‖ < ǫ, for all t ∈ J. We say that B is transitive if it
possesses a dense function.

Furthermore, B admits a dense collection G ⊂ B of periodic functions
if for every function ψ(t) ∈ B, arbitrary small ǫ > 0 and arbitrary large

E > 0, there exist ψ̃(t) ∈ G and an interval J ⊂ R, with length E, such that∥∥∥ψ(t)− ψ̃(t)
∥∥∥ < ǫ, for all t ∈ J.

The collection B is called a Devaney chaotic set if: (i) B is sensitive; (ii)
B is transitive; (iii) B admits a dense collection of periodic functions.

We present two main results in the paper. The first one is the the occurrence
of GS in system (1)+(2), and the second one is the preservation of the chaos
type of the drive system. The GS is verified in the next section by means of the
criterion (A). The third section is devoted for the presence of Devaney chaos
in the response system.

2 Preliminaries

Throughout the paper, the uniform norm ‖Γ‖ = sup‖v‖=1 ‖Γv‖ for matrices
will be used.

Since the matrix A, which is aforementioned in system (2), is supposed to
admit eigenvalues all with negative real parts, there exist positive real numbers
N and ω such that

∥∥eAt
∥∥ ≤ Ne−ωt, t ≥ 0. These numbers will be used in the

last condition below.
The following assumptions on systems (1) and (2) are needed throughout

the paper:
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(A1) There exists a number H0 > 0 such that sup
x∈Rm

‖F (x)‖ ≤ H0;

(A2) There exists a number L0 > 0 such that ‖F (x1)− F (x2)‖ ≤ L0 ‖x1 − x2‖ ,
for all x1, x2 ∈ R

m;
(A3) There exists a number M0 > 0 such that sup

x∈Rm,y∈Rn

‖g(x, y)‖ ≤M0;

(A4) There exist numbers L1 > 0 and L2 > 0 such that

L1 ‖x1 − x2‖ ≤ ‖g(x1, y)− g(x2, y)‖ ≤ L2 ‖x1 − x2‖ ,
for all x1, x2 ∈ R

m, y ∈ R
n;

(A5) There exists a number L3 > 0 such that

‖g(x, y1)− g(x, y2)‖ ≤ L3 ‖y1 − y2‖ ,
for all x ∈ R

m, y1, y2 ∈ R
n;

(A6) NL3 − ω < 0.

Using the theory of quasilinear equations [7], for a given solution x(t) of
system (1), one can verify the existence of a unique bounded on R solution
φx(t)(t) of the system y′ = Ay+g(x(t), y), which satisfies the following integral
equation

φx(t)(t) =

∫ t

−∞

eA(t−s)g(x(s), φx(t)(s))ds. (3)

Our main assumption is the existence of a nonempty set Ax of all solutions
of system (1), uniformly bounded on R. That is, there exists a positive real
number H such that supt∈R

‖x(t)‖ ≤ H, for all x(t) ∈ Ax.
Let us introduce the following set of functions

Ay =
{
φx(t)(t) | x(t) ∈ Ax

}
.

We note that for all y(t) ∈ Ay one has supt∈R
‖y(t)‖ ≤M, whereM = NM0/ω.

Moreover, if x(t) ∈ Ax is periodic then φx(t)(t) ∈ Ay is periodic with the same
period, and vice versa.

Next, we will reveal that if the set Ax is an attractor with basin Ux, that
is, for each x(t) ∈ Ux there exists x(t) ∈ Ax such that ‖x(t)− x(t)‖ → 0 as
t→ ∞, then the set Ay is also an attractor in the same sense. In the following
lemma we specify the basin of attraction of Ay.

Suppose that the set Uy consists of solutions of the system y′ = Ay +
g(x(t), y), where x(t) belongs to Ux.

Lemma 1. Uy is a basin of Ay.

Proof. Fix an arbitrary ǫ > 0 and let y(t) ∈ Uy. There exists x(t) ∈ Ax such
that ‖x(t)− x(t)‖ → 0 as t → ∞. Set α = ω−NL3

ω−NL3+NL2

and y(t) = φx(t)(t).
One can find R0 = R0(ǫ) > 0 such that if t ≥ R0 then ‖x(t)− x(t)‖ < αǫ and
N ‖y(R0)− y(R0)‖ e(NL3−ω)t < αǫ. Using the equation

y(t)− y(t) = eA(t−R0)(y(R0)− y(R0))

+

∫ t

R0

eA(t−s) [g(x(s), y(s))− g(x(s), y(s))] ds

+

∫ t

R0

eA(t−s) [g(x(s), y(s))− g(x(s), y(s))] ds,

19



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

we obtain for t ≥ R0 that

eωt ‖y(t)− y(t)‖ ≤ NeωR0 ‖y(R0)− y(R0)‖+
NL2αǫ

ω

(
eωt − eωR0

)

+NL3

∫ t

R0

eωs ‖y(s)− y(s)‖ ds.

Applying Gronwall’s inequality we attain that

eωt ‖y(t)− y(t)‖ ≤ NL2αǫ

ω
eωt +N ‖y(R0)− y(R0)‖ eωR0eNL3(t−R0)

−NL2αǫ

ω
eωR0eNL3(t−R0) +

N2L2L3αǫ

ω(ω −NL3)
eωt

(
1− e(NL3−ω)(t−R0)

)
.

Thus, we have

‖y(t)− y(t)‖ < N ‖y(R0)− y(R0)‖ e(NL3−ω)(t−R0) +
NL2αǫ

ω −NL3
, t ≥ R0.

For t ≥ 2R0, one can show that ‖y(t)− y(t)‖ <
(
1 + NL2

ω−NL3

)
αǫ = ǫ. Conse-

quently, ‖y(t)− y(t)‖ → 0 as t→ ∞. �

One can verify using Lemma 1 that for a fixed x(t) ∈ Ux, any two solutions
y(t), y(t) of the system y′ = Ay+g(x(t), y) satisfy the criterion (A). Therefore,
we have the following corollary.

Corollary 1. GS occurs in the coupled system (1)+(2).

3 The chaotic dynamics

We will prove that if the drive system (1) is Devaney chaotic then the response
system (2) is also chaotic in the same sense. The three ingredients of Devaney
chaos will be considered individually. We start with sensitivity in the next
lemma.

Lemma 2. Sensitivity of the set Ax implies the same feature for the set Ay.

Proof. Fix an arbitrary δ > 0 and y(t) ∈ Ay. There exists x(t) ∈ Ax such
that y(t) = φx(t)(t). Choose a sufficiently small number ǫ = ǫ(δ) > 0 such

that
(
1 + NL2

ω−NL3

)
ǫ < δ, and take R = R(ǫ) < 0 sufficiently large in absolute

value such that 2M0N
ω

e(ω−NL3)R < ǫ. Set δ1 = δ1(ǫ, R) = ǫeL0R. Since Ax

is sensitive, there exist ǫ0 > 0, ∆ > 0 such that ‖x(t0)− x(t0)‖ < δ1 and
‖x(t)− x(t)‖ > ǫ0, t ∈ J, for some x(t) ∈ Ax, t0 ∈ R and for some interval
J ⊂ [t0,∞) whose length is not less than ∆.

By means of continuous dependence on initial conditions, one can verify that
‖x(t)− x(t)‖ < ǫ, t ∈ [t0+R, t0]. Denote y(t) = φx(t)(t). Using the relation (3)
for both y(t) and y(t), we obtain for t ∈ [t0 +R, t0] that

eωt ‖y(t)− y(t)‖ ≤ NL3

∫ t

t0+R

eωs ‖y(s)− y(s)‖ ds

+
NL2ǫ

ω
(eωt − eω(t0+R)) +

2M0N

ω
eω(t0+R).
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Applying Gronwall’s Lemma to the last inequality we attain that

‖y(t)− y(t)‖ ≤ NL2ǫ

ω −NL3
+

2M0N

ω
e(NL3−ω)(t−t0−R), t ∈ [t0 +R, t0].

Consequently, we have ‖y(t0)− y(t0)‖ ≤ NL2ǫ
ω−NL3

+ 2M0N
ω

e(ω−NL3)R < δ.

Next, we will show the existence of a positive numbers ǫ1, ∆ and an interval
J1 ⊂ J with length ∆ such that the inequality ‖y(t)− y(t)‖ > ǫ1 holds for all
t ∈ J1.

Suppose that g(x, y) = (g1(x, y), g2(x, y), . . . , gn(x, y)) , where each gj , 1 ≤
j ≤ n, is a real valued function.

Since Ax and Ay are both equicontinuous on R, and the function g : Rm ×
R

m × R
n → R

n defined as g(x1, x2, x3) = g(x1, x3) − g(x2, x3) is uniformly
continuous on the compact region

D = {(x1, x2, x3) ∈ R
m × R

m × R
n | ‖x1‖ ≤ H, ‖x2‖ ≤ H, ‖x3‖ ≤M} ,

the set F with elements of the form gj(x(t), φx(t)(t)) − gj(x(t), φx(t)(t)), 1 ≤
j ≤ n, where x(t), x(t) ∈ Ax, is an equicontinuous family on R. Therefore, there
exists a positive number τ < ∆, independent of x(t), x(t) ∈ Ax, y(t), y(t) ∈ Ay,
such that for any t1, t2 ∈ R with |t1 − t2| < τ the inequality

|(gj (x(t1), y(t1))− gj (x(t1), y(t1)))− (gj (x(t2), y(t2))− gj (x(t2), y(t2)))|
<
L1ǫ0
2n

(4)

holds, for all 1 ≤ j ≤ n.
Condition (A4) implies that for each t ∈ J, there exists an integer j0 = j0(t),

1 ≤ j0 ≤ n, such that |gj0(x(t), y(t))− gj0(x(t), y(t))| ≥
L1

n
‖x(t)− x(t)‖ .

Let s0 be the midpoint of the interval J and θ = s0 − τ/2. One can find an
integer j0 = j0(s0), 1 ≤ j0 ≤ n, such that

|gj0(x(s0), y(s0))− gj0(x(s0), y(s0))| ≥
L1

n
‖x(s0)− x(s0)‖ >

L1ǫ0
n

. (5)

According to (4), for all t ∈ [θ, θ + τ ] we obtain that

|gj0 (x(s0), y(s0))− gj0 (x(s0), y(s0))|−|gj0 (x(t), y(t))− gj0 (x(t), y(t))| <
L1ǫ0
2n

and therefore by means of (5), the following inequality:

|gj0 (x(t), y(t))− gj0 (x(t), y(t))| >
L1ǫ0
2n

, t ∈ [θ, θ + τ ] .

The last inequality implies that

∥∥∥∥∥

∫ θ+τ

θ

[g(x(s), y(s))− g(x(s), y(s))] ds

∥∥∥∥∥ >
τL1ǫ0
2n

.
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Therefore, we have

max
t∈[θ,θ+τ ]

‖y(t)− y(t)‖ ≥ ‖y(θ + τ)− y(θ + τ)‖

>
τL1ǫ0
2n

− [1 + τ(L3 + ‖A‖)] max
t∈[θ,θ+τ ]

‖y(t)− y(t)‖ ,

and hence, max
t∈[θ,θ+τ ]

‖y(t)− y(t)‖ > τL1ǫ0
2n[2 + τ(L3 + ‖A‖)] .

Now, suppose that at the point η ∈ [θ, θ + τ ], the function ‖y(t)− y(t)‖
takes its maximum. Define ∆ = min

{
τ

2
,

τL1ǫ0
8n(M ‖A‖+M0)[2 + τ(L3 + ‖A‖)]

}

and θ1 =

{
η, if η ≤ θ + τ/2
η −∆, if η > θ + τ/2

. For t ∈ J1 = [θ1, θ1 +∆], we have

‖y(t)− y(t)‖ ≥ ‖y(η)− y(η)‖ −
∣∣∣∣
∫ t

η

‖A‖ ‖y(s)− y(s)‖ ds
∣∣∣∣

−
∣∣∣∣
∫ t

η

‖g(x(s), y(s))− g(x(s), y(s))‖ ds
∣∣∣∣

>
τL1ǫ0

4n[2 + τ(L3 + ‖A‖)] .

Consequently, ‖y(t)− y(t)‖ > ǫ1, t ∈ J1, where ǫ1 = τL1ǫ0
4n[2+τ(L3+‖A‖)] and the

length of the interval J1 does not depend on the functions y(t), y(t) ∈ Ay. �

Lemma 3. Transitivity of Ax implies the same feature for Ay.

Proof. Fix arbitrary numbers ǫ > 0, E > 0, and y(t) ∈ Ay. There exists

a function x(t) ∈ Ax such that y(t) = φx(t)(t). Let γ = ω(ω−NL3)
2M0N(ω−NL3)+NL2ω

.

Since there exists a dense solution x∗(t) ∈ Ax, one can find ξ > 0 and an interval
J ⊂ R with length E such that ‖x(t)− x∗(t+ ξ)‖ < γǫ, for all t ∈ J. Without
loss of generality, assume that J is a closed interval, that is, J = [a, a+E] for
some real number a. Denote y∗(t) = φx∗(t)(t).

Making use of the integral equation (3) for both y(t) and y∗(t), one can
verify for t ∈ J that

eωt ‖y(t)− y∗(t+ ξ)‖ ≤ 2M0N

ω
eωa +

NL2γǫ

ω

(
eωt − eωa

)

+NL3

∫ t

a

eωs ‖y(s)− y∗(s+ ξ)‖ ds.

Application of Gronwall’s Lemma to the last inequality implies that

‖y(t)− y∗(t+ ξ)‖ ≤ 2M0N

ω
e(NL3−ω)(t−a) +

NL2γǫ

ω −NL3

(
1− e(NL3−ω)(t−a)

)
.

Suppose that E > 2
ω−NL3

ln
(

1
γǫ

)
. If t ∈ J1 =

[
a+ E

2 , a+ E
]
, then it is

true that e(NL3−ω)(t−a) < γǫ. Consequently, we have ‖y(t)− y∗(t+ ξ)‖ <[
2M0N

ω
+ NL2

ω−NL3

]
γǫ = ǫ, for t ∈ J1. Thus, the set Ay is transitive. �
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In a similar way to Lemma 3 one can prove the following assertion.

Lemma 4. If Ax admits a dense collection of periodic functions, then the same
is true for Ay.

The following theorem can be proved using Lemmas 2-4.

Theorem 1. If the set Ax is Devaney’s chaotic, then the same is true for the
set Ay.

In the next part, we will present an example which supports our theoretical
discussions. The usual Euclidean norm for vectors and the norm induced by
the Euclidean norm for square matrices will be used.

4 An example

We consider the Lorenz equations [8]

x′1 = 10 (−x1 + x2)
x′2 = −x2 + 28x1 − x1x3

x′3 = −8

3
x3 + x1x2,

(6)

as the drive system. It is known that system (6) admits sensitivity and possesses
infinitely many unstable periodic solutions [8]. The equations for the response
system are chosen as

y′1 = −2y1 − y3 + 0.003y22 + x2 −
1

2
cosx2

y′2 = −y1 − 2y2 + 5x1 + 0.01x31

y′3 = y1 − y2 − 3y3 + 2 tan

(
x3 + y2
120

)
.

(7)

System (7) is in the form of (2), where A =




−2 0 −1

1 −1 −3

0 0 0


 . The inequality

∥∥eAt
∥∥ ≤ Ne−ωt is valid, whereN = 4.829 and ω = 2. One verify that conditions

(A4) − (A6) are satisfied with constants L1 =
√
3/180, L2 = 17

√
3 and L3 =

16
√
3/75.
According to the results of the present paper, system (7) exhibits GS, saving

the sensitivity feature of the drive and the existence of infinitely many unstable
periodic solutions. Consider a trajectory of system (6)+(7) with x1(0) = 0.11,
x2(0) = 0.96, x3(0) = 18.98, y1(0) = −0.69, y2(0) = −11.09, y3(0) = 1.96.
Figure 1 shows the projections of this trajectory on the y1− y2− y3 space, and
supports the theoretical results such that the response system (7) possesses
chaotic motions. According to the GS, the attractor shown in Figure 1, (a) is
a nonlinear image of the chaotic attractor of system (6). Figure 1, (b), on the
other hand, depicts the projection on the x2 − y2 plane, and reveals that the
systems are not synchronized in the sense of identical synchronization [9].
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Fig. 1. The projections of the chaotic attractor generated by the coupled system
(6)+(7). (a) Projection on the y1−y2−y3 space; (b) Projection on the x2−y2 plane.
The pictures represent the synchronized behavior.
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Abstract. We provide extension of chaos by implementing chaotic perturbations
to exponentially stable difference equations with arbitrarily high dimensions. Our
analysis is based on the Li-Yorke definition of chaos. The results are supported with
the aid of simulations.
Keywords: Chaos extension, Li-Yorke chaos, Generalized synchronization, Chaotic
set of sequences.

1 Introduction

Discrete equations are popular systems to provide a wide range of chaos and
important to approve the existence rigorously [1]-[6]. We propose in the present
paper the extension of chaos from known chaotic systems to systems with
arbitrarily high dimensions.

Throughout the paper, R, Z and N will denote the sets of real numbers,
integers and natural numbers, respectively.

We consider the discrete equations

xn+1 = F (xn), (1)

and

yn+1 = Ayn + f(yn) + g(xn), (2)

where n ∈ Z, A is a nonsingular, constant q × q real valued matrix, and the
functions F : Rp → R

p, f : Rq → R
q and g : Rp → R

q are continuous in all
their arguments. We suppose that the map F admits the chaos and possesses
an invariant set Λ ⊂ R

p.
A concept which is related to our theory of chaos extension is the generalized

synchronization [7]-[10]. According to the results of [9], generalized synchro-
nization occurs in system (1)+(2) if and only if there exist sets Bx ⊂ R

p,
By ⊂ R

q such that the criterion

(A) lim
n→∞

‖yn − yn‖ = 0,

holds, for all (x0, y0), (x0, y0) ∈ Bx × By, where {yn} and {yn} are solutions
of equation (2) with the same solution {xn} of (1). Taking advantage of the

25



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

criterion (A), in the next section, we will show that generalized synchronization
occurs in the dynamics of equation (1)+(2).

The first mathematically rigorous definition of chaos for one dimensional
difference equations is introduced by Li and Yorke [1]. Generalizations of Li-
Yorke chaos to high dimensional difference equations are provided in [2,4]. In
the present paper, besides the presence of generalized synchronization, we show
that if equation (1) is chaotic in the sense of Li-Yorke then the same is true for
(2). In other words, equation (2) preserves the chaos type of equation (1). This
is the main difference between the papers [9,10] and the present one. Moreover,
we will show, by an example, the convenience of our method to equations which
possess Neimark-Sacker bifurcation resulting in a stable closed curve.

Let us describe the ingredients of Li-Yorke chaos [1]-[4]. Consider a set of
uniformly bounded sequences

B =

{
{ηn} : sup

n∈Z

‖ηn‖ ≤ MB

}
,

where MB is a positive real number.
We say that a pair of sequences

({
η1n
}
,
{
η2n
})

∈ B × B is proximal if for
an arbitrary small real number ǫ > 0 and an arbitrary large natural number
E, there exists an increasing sequence {mj} , j ∈ N, of integers satisfying
m2j − m2j−1 ≥ E such that for each j we have

∥∥η1n − η2n
∥∥ < ǫ, for m2j−1 ≤

n ≤ m2j .
It is mentioned in [3,5] that a pair of sequences

({
η1n
}
,
{
η2n
})

is proximal if

lim infn→∞

∥∥η1n − η2n
∥∥ = 0. It is worth saying that our definition for proximality,

which is adapted to the collection B and needed for our extension purposes, is,
in general, stronger than the one mentioned in the classical sense. Nevertheless,
one can achieve the equivalence of both definitions for equations of the form
(1), for example, by requesting a Lipschitz condition on the function F.

Another feature of Li-Yorke chaos is the following one. A pair of sequences({
η1n
}
,
{
η2n
})

∈ B × B is called not asymptotic if lim supn→∞

∥∥η1n − η2n
∥∥ > 0.

We call a pair of sequences
({

η1n
}
,
{
η2n
})

∈ B × B as a Li-Yorke pair, if
they are proximal and not asymptotic. On the other hand, a subset C ⊂ B is
called a scrambled set if it does not contain any periodic sequences and for any
distinct sequences

{
η1n
}
,
{
η2n
}
∈ C , the pair

({
η1n
}
,
{
η2n
})

is a Li-Yorke pair.
The set B is called a Li−Yorke chaotic set if: (i) B admits a periodic

sequence of period k, for any k ∈ N; (ii) B possesses an uncountable scrambled
set C ; (iii) For any sequence {ηn} ∈ C and any periodic sequence {ξn} ∈ B,
we have lim supn→∞ ‖ηn − ξn‖ > 0.

2 Preliminaries

In the following parts, we will use the uniform norm ‖Γ‖ = sup‖v‖=1 ‖Γv‖ for
matrices.

The following assumptions will be needed in the paper:

(A1) There exist positive numbers L1 and L2 such that

L1 ‖x− x‖ ≤ ‖g(x)− g(x)‖ ≤ L2 ‖x− x‖ ,
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for all x, x ∈ R
p;

(A2) There exists a positive number L3 such that

‖f(y)− f(y)‖ ≤ L3 ‖y − y‖ ,

for all y, y ∈ R
q;

(A3) There exist positive real numbers Mf and Mg such that supy∈Rq ‖f(y)‖ ≤
Mf and supx∈Rp ‖g(x)‖ ≤ Mg;

(A4) ‖A‖+ L3 < 1.

For a given solution x = {xn} of equation (1), using the standard technique
for maps [11], one can verify that there exists a unique bounded solution {φx

n}
of equation (2). In the notation {φx

n} , the symbol “x” is devoted to indicate
the dependence of the bounded solution on the chosen solution x = {xn}
of equation (1). Moreover, the unique bounded solution {φx

n} , satisfies the
following relation

φx
n =

n∑

j=−∞

An−j [f(φx
j−1) + g(xj−1)], n ∈ Z. (3)

Let us denote by Ax the set of all uniformly bounded solutions of equation
(1) with initial data from the set Λ. Set Ay = {{φx

n} : x = {xn} ∈ Ax} . Equa-
tion (3) implies that for any {yn} ∈ Ay the inequality supn∈Z

‖yn‖ ≤ H holds,

where H =
Mf+Mg

1−‖A‖ .

We say that Ay is an attractor if for each solution {yn} of equation (2),
there exists a solution {ỹn} ∈ Ay such that ‖yn − ỹn‖ → 0 as n → ∞. We will
verify in the next lemma that the set Ay is an attractor.

Lemma 1. Ay is an attractor.

Proof. Consider an arbitrary solution {yn} of equation (2) with a fixed solution
{xn} of equation (1). The relations

yn = Any0 +

n∑

j=1

An−j [f(yj−1) + g(xj−1)],

φx
n = Anφx

0 +
n∑

j=1

An−j [f(φx
j−1) + g(xj−1)],

imply for each n ≥ 1 the following inequality:

‖A‖−n ‖yn − φx
n‖ ≤ ‖y0 − φx

0‖+
L3

‖A‖

n−1∑

j=0

‖A‖−j
∥∥yj − φx

j

∥∥ .

Applying Gronwall inequality, one can obtain that

‖yn − φx
n‖ ≤ ‖y0 − φx

0‖ (‖A‖+ L3)
n.

According to condition (A4), we have ‖yn − φx
n‖ → 0 as n → ∞. �

27



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

One can verify using Lemma 1 that any two solutions {yn} , {yn} of equa-
tion (2) with the same {xn} satisfy the criterion (A). Therefore, generalized
synchronization occurs in equation (1)+(2).

Extension of chaos in the sense of Li-Yorke will be handled in the next
section.

3 Extension of Li-Yorke chaos

The following lemma can be proved using equation (3).

Lemma 2. If a pair of sequences ({xn} , {xn}) ∈ Ax × Ax is proximal, then

the pair
(
{φx

n} ,
{
φx
n

})
∈ Ay × Ay is also proximal.

By means of equation (2) one can show for a pair ({xn} , {xn}) ∈ Ax × Ax

that

∥∥φx
n+1 − φx

n+1

∥∥ ≥ ‖xn − xn‖ − (‖A‖+ L3)
∥∥φx

n − φx
n

∥∥ , n ∈ Z. (4)

Inequality (4) can be used to verify the following lemma.

Lemma 3. If a pair of sequences ({xn} , {xn}) ∈ Ax × Ax is not asymptotic,

then the same is true for the pair
(
{φx

n} ,
{
φx
n

})
∈ Ay × Ay.

The main theorem of the present paper is the following one.

Theorem 1. If Ax is a Li-Yorke chaotic set, then the same is true for Ay.

Proof. Assume that the set Ax is Li-Yorke chaotic. One can show that for
any k ∈ N, the sequence x = {xn} ∈ Px is k−periodic if and only if {φx

n}
is k−periodic. Therefore, the set Ay admits a k−periodic sequence for any
k ∈ N. Denote by Px the set of periodic solutions of (1), and let Py =
{{φx

n} : x = {xn} ∈ Px} .
Suppose that the set Cx is an uncountable scrambled set inside Ax. Define

the set Cy = {{φx
n} : x = {xn} ∈ Cx} . Condition (A1) implies that there is

a one-to-one correspondence between the elements of Cx and Cy. Therefore,
Cy is uncountable. Moreover, using the same condition one can show that no
periodic sequences exist inside Cy, since no such sequences take place inside
Cx.

Since the collection Ax is assumed to be chaotic in the sense of Li-Yorke,
each pair of sequences inside Cx × Cx is proximal. Lemma 2 implies that the
same feature is valid for each pair inside Cy×Cy. On the other hand, according
to Lemma 3, any couple ({yn} , {yn}) ∈ Cy × Cy satisfies the property that
lim supn→∞ ‖yn − yn‖ > 0. Hence, the set Cy is an uncountable scrambled set
inside Ay. Moreover, each pair inside Cy × Py is also not asymptotic, since
the same is true for each pair inside Cx × Px. Consequently, Ay is Li-Yorke
chaotic. �
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4 Examples

In the following two examples, as the source of chaotic perturbations, we will
consider the logistic map

xn+1 = µxn(1− xn), (5)

where µ is a parameter and x0 ∈ Λ = [0, 1]. If 0 < µ ≤ 4 then the set Λ is
invariant under the iterations of equation (5) [12]. For the parameter value
µ = 3.9, Li-Yorke chaos takes place in the dynamics of the logistic map [1].

Example 1. In this example, we consider the map

yn+1 = −1

4
yn +

1

6
zn +

1

3
y3n,

zn+1 =
1

5
yn +

1

10
zn.

(6)

Equation (6) possesses a stable equilibrium point, and does not admit chaos.
We perturb equation (6) by the solutions of (5) with the parameter value

µ = 3.9, and set up the following equation:

yn+1 = −1

4
yn +

1

6
zn +

1

3
y3n + tan

(xn

4

)
,

zn+1 =
1

5
yn +

1

10
zn +

1

2
exn .

(7)

Equation (7) is in the form of (2), where A =

(
−1/4 1/6

1/5 1/10

)
. The conditions

(A1), (A2) are satisfied with L1 = 3
√
2/8, L2 = (e + 1)/2 and L3 = 0.16. One

can verify that condition (A4) holds for equation (7).
In compliance with Theorem 1, the chaos of the logistic map (5) is extended

through equation (7). Moreover, the dynamics of equation (5)+(7) exhibits
generalized synchronization.

Let us consider a solution of equation (5)+(7) with x0 = 0.46, y0 = 0.35
and z0 = 1.23. Figure 1, (a) and (b), depict the y and z coordinates of the
solution. Both pictures show that the solution behaves chaotically.

Example 2. Consider the delayed logistic map [12,13], which is represented by
the following equation:

yn+1 = zn,
zn+1 = λzn(1− yn),

(8)

where λ is a positive real parameter.
Equation (8) describes a population dynamics model, where zn is the density

of a population at time n, and λ is the growth rate. In this model, the growth
is determined not only by the current population but also by its density in the
past [13].

According to the results mentioned in [12,13], for the parameter value λ =
λ0 ≡ 2, the fixed point (1/2, 1/2) of equation (8) undergoes a supercritical
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Fig. 1. The extension of chaos in equation (7). (a) The graph of y-coordinate; (b)
The graph of z-coordinate. The parameter value µ = 3.9 is used in the map (5)
such that Li-Yorke chaos takes place. The presented pictures support the theoretical
results such that the chaos of the logistic map is extended.

Neimark-Sacker bifurcation. In other words, for λ > 2 and λ − 2 sufficiently
small, the delayed logistic map has a unique attracting closed invariant curve
encircling the fixed point (1− 1/λ, 1− 1/λ).

We use the value λ = 2.01 from the book [12], and perturb equation (8) by
the solutions of the logistic map (5) with the parameter value µ = 3.9 to set
up the following equation:

yn+1 = zn + 0.0045xn,
zn+1 = 2.01zn(1− yn).

(9)

Consider the trajectory of equation (5)+(9) with x0 = 0.4209, y0 = 0.4316
and z0 = 0.4717. Figure 2 depicts the projection of this trajectory for 0 ≤
n ≤ 10000 on the y − z plane. One can see in the figure that the solution
behaves chaotically around the stable invariant curve of equation (8). This
picture reveals that our theoretical results can be used not only for systems
with stable equilibrium points but also with attracting closed curves.
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Abstract. Proper orthogonal decomposition (POD) is a method for deriving re-
duced order models of dynamical systems. In this paper, the POD is applied to
the nonlinear Schrödinger equation (NLS). The NLS equation is discretized in space
by finite differences and is solved in time either by structure preserving symplectic
or energy preserving average vector field (AVF) integrators. Numerical results for
one dimensional NLS equation with soliton solutions show that the low-dimensional
approximations obtained by POD reproduce very well the characteristic dynamics
of the system, such as preservation of energy and phase space structure of the NLS
equation.
Keywords: Nonlinear Schrödinger equation, model order reduction, periodic solu-
tions .

1 Introduction

The nonlinear Schrödinger (NLS) equation arises as the model equation with
second order dispersion and cubic nonlinearity describing the dynamics of
slowly varying wave packets in nonlinear optics and fluid dynamics and it ap-
pears in Bose-Einstein condensate theory. We consider in this paper the NLS
equation

ψt = iψxx + iγ | ψ |2 ψ (1)

with the periodic boundary conditions ψ(x+ L, t) = ψ(x, t). Here ψ = ψ(x, t)
is a complex valued function, γ is a parameter and i2 = −1. The NLS equation
is called focusing if γ > 0 and defocusing if γ < 0; for γ = 0, it reduces to
the linear Schrödinger equation. In last two decades various numerical meth-
ods were applied for solving NLS equation, among them are the well-known
symplectic and multisymplectic integrators, discontinuous Galerkin methods.

There is a strong need for model reduction techniques to reduce the com-
putational costs and storage requirements in large scale simulations. They
should yield low-dimensional approximations for the full high-dimensional dy-
namical system, which reproduce the characteristic dynamics of the system.
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Among the model order reduction techniques the proper orthogonal decom-
position (POD) is one of the most widely used method. Surprisingly good
approximation properties are reported for POD based model order reduction
techniques in the literature. It has been successfully used in different fields
including signal analysis and pattern recognition Fukunaga[3], fluid dynamics
and coherent structures Berkooz et al.[2] and more recently in control theory
Kunisch and Volkwein[4]. The POD is applied mostly to linear and nonlin-
ear parabolic equations Kunisch and Volkwein[5]. In this paper, we apply the
POD to the NLS equation. To the best of our knowledge, there is only one
paper where POD is applied to NLS equation Schlizerman et al.[7], where the
authors use only one and two modes approximations of the NLS equation. In
this paper, the NLS equation is discretized in space and time by preserving
the symplectic structure and the energy. Then, from the snapshots of the fully
discretized dynamical system, the POD basis are computed using the singular
value decomposition (SVD). It turns out that most of the energy of the system
can be accurately approximated by using few POD modes. Numerical results
for a NLS equation with soliton solutions confirm the energy and phase space
preserving properties of the POD.

The paper is organized as follows. Section 2 and Section 3 are devoted
to reviewing the POD method and its application to semi-linear dynamical
systems. Numerical solution of the semi-discrete NLS equation and the POD
reduced form are described in Section 4. In the last section, Section 5, the
numerical results for the reduced order models of one-dimensional NLS equation
are presented.

2 The Proper Orthogonal Decomposition

Let X be a real Hilbert space endowed with inner product 〈·, ·〉X and norm
‖·‖X . For y1, . . . , yn ∈ X we set

V = span {y1, · · ·, yn} ,
and refer to V as the ensemble consisting of the snapshots {yj}nj=1. Let {ψk}

d

k=1

denote an orthonormal basis of V with d = dimV . Then each member of the
ensemble can be expressed as

yj =
d∑

k=1

〈yj , ψk〉X ψk, j = 1, . . . , n (2)

The POD is constructed by choosing the orthonormal basis such that for
every l ∈ {1, . . . , d} the mean square error between the elements yj , 1 ≤ j ≤ n,
and the corresponding l − th partial sum of (2) is minimized on average:

min
{ψk}

l
k=1

1

n

n∑

j=1

∥∥∥∥∥yj −
l∑

k=1

〈yj , ψk〉X ψk
∥∥∥∥∥

2

X

(3)

〈ψi, ψj〉X = δij , 1 ≤ i ≤ l, 1 ≤ j ≤ i
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A solution {ψk}lk=1 to (3) is called a POD-basis of rank l. We introduce the
correlation matrix K = {Kij} ∈ R

n×n corresponding to the snapshots {yj}nj=1
by

Kij =
1

n
〈yj , yi〉X

The matrix K is positive semi-definite and has rank d. Let λ1 ≥ . . . ≥
λd > 0 denote the positive eigenvalues of K and v1, . . . , vd ∈ R

n the associated
eigenvectors. Then a POD basis of rank l ≤ d is given by

ψk =
1√
λk

n∑

j=1

(vk)jyj

where (vk)j is the j − th component of the eigenvector vk. Moreover, we have
the error formula

1

n

n∑

j=1

∥∥∥∥∥yj −
l∑

k=1

〈yj , ψk〉X ψk
∥∥∥∥∥

2

X

=

d∑

j=l+1

λj

The choice of l is based on heuristic considerations combined with observing
the ratio of the modeled to the total energy contained in the system Y which
is expressed by

ǫ(l) =

∑l

i=1 λi∑d

i=1 λi

2.1 POD and SVD

There is a strong connection between POD and singular value decomposition
(SVD) for rectangular matrices.

Let Y be a real-valued m× n matrix of rank d ≤ min {m,n} with columns
yj ∈ R

m, 1 ≤ j ≤ n. In the context of POD, it will be useful to think of
the columns {Y·,j}nj=1 of Y as the spatial coordinates vectors of a dynamical

system at time tj . Similarly, we consider the rows {Yi,·}mi=1 of Y as the time
trajectories of the dynamical system evaluated at the locations xi.

SVD guarantees the existence of real numbers σ1 ≥ σ2 ≥ . . . ≥ σd > 0
and orthogonal matrices U ∈ R

m×m with columns {ui}mi=1 and V ∈ R
n×n with

columns {vi}ni=1 such that

UTY V =

(
D 0
0 0

)
:= Σ ∈ R

m×n (4)

where D = diag(σ1, σ2, . . . , σd) ∈ R
d×d and the zeros in (4) denote the matrices

of appropriate dimensions. Moreover, the vectors {ui}di=1 and {vi}di=1 satisfy

Y vi = σiui, Y Tui = σivi, i = 1, · · · , d.
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One of the central issues of POD is the reduction of the data expressing
their essential information by means of a few basis vectors. Let us now inter-
pret SVD in terms of POD by the following theorem.

Theorem : (Kunisch and Volkwein[5]) Let Y = [y1, . . . , yn] ∈ R
m×n be a

given matrix with rank d ≤ min {m,n}. Further, let Y = UΣV T be the
SVD of Y , where U = [u1, . . . , um] ∈ R

m×m, V = [v1, . . . , vn] ∈ R
n×n are

orthogonal matrices and the matrix Σ ∈ R
m×n has the form (4). Then, for

any l ∈ {1, . . . , d} the solution to

max
ũ1,...,ũl∈Rm

l∑

i=1

n∑

j=1

∣∣〈yj , ũi〉Rm

∣∣2 , 〈ũi, ũj〉Rm = δij , 1 ≤ i, j ≤ l (5)

is given by the singular vectors {ui}li=1. A necessary optimality condition for
(5) is given by the eigenvalue problem Y Y Tui = λiui.

3 Application to Semi-linear Time Dependent Systems

We consider the semi-linear initial value problem

ẏ(t) = Ay(t) + f(t, y(t)), t ∈ [0, T ], y(0) = y0, (6)

where f : [0, T ] × R
m → R

m is continuous in both arguments and locally
Lipschitz-continuous with respect to the second argument. The NLS equation
(1) is a semi-linear equation, where the cubic nonlinear part is locally Lipschitz
continuous.

Suppose that we have determined a POD basis {uj}lj=1 of rank l ∈ {1, . . . ,m}
in R

m. Then we make the ansatz

yl(t) =
l∑

j=1

〈
yl(t), uj

〉
︸ ︷︷ ︸

=:yl
j
(t)

uj , t ∈ [0, T ], (7)

where the Fourier coefficients ylj , 1 ≤ j ≤ l, are functions mapping [0, T ] into
R
m, and the inner product 〈·, ·〉 represents the Euclidean inner product 〈·, ·〉

Rm

to make the notation simple. Since

y(t) =

m∑

j=1

〈y(t), uj〉uj , t ∈ [0, T ]

holds, yl(t) is an approximation for y(t) provided l < m. Inserting (7) into (6)
yields

l∑

j=1

ẏlj(t)uj =

l∑

j=1

ylj(t)Auj + f(t, yl(t)), t ∈ [0, T ],

l∑

j=1

ylj(0)uj = y0 (8)
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Note that (8) is an initial-value problem in R
m for l ≤ m coefficient functions

ylj(t), 1 ≤ j ≤ l and t ∈ [0, T ], so that the coefficients are overdetermined.
Therefore, we assume that (8) holds after projection on the l dimensional sub-

space V l = span {uj}lj=1. From (8) and 〈uj , ui〉 = δij we infer that

ẏli(t) =
l∑

j=1

ylj(t) 〈Auj , ui〉+
〈
f(t, yl(t)), ui

〉
(9)

for 1 ≤ i ≤ l and t ∈ (0, T ]. Let us introduce the matrix

B = {bij} ∈ R
l×l, bij = 〈Auj , ui〉

and the non-linearity F = (F1, · · · , Fl)T : [0, T ]× R
l → R

l by

Fi(t, y) =

〈
f(t,

l∑

j=1

yjuj), ui

〉
, t ∈ [0, T ], y = (y1, · · · , yl) ∈ R

l

Then, (9) can be expressed as

ẏl(t) = Byl(t) + F (t, yl(t)), t ∈ (0, T ] (10)

For initial condition, we derive yl(0) = y0 where

y0 = (〈y0, u1〉 , . . . , 〈y0, ul〉 )T ∈ R
l

This system is called the POD-Galerkin projection for (6). In case of
l << m the l−dimensional system is a low-dimensional approximation for (6).
Therefore, it is the reduced-order model for (6).

4 Numerical solution of NLS equation

One dimensional NLS equation (1) can be written by decomposing ψ = p+ iq
in real and imaginary components

pt = −qxx − γ(p2 + q2)q, qt = pxx + γ(p2 + q2)p (11)

as an infinite dimensional Hamiltonian pde in the phase space u = (p, q)T

u̇ = D δH
δu

, H =

∫
1

2

(
p2x + q2x −

γ

2
(p2 + q2)2

)
dx, D =

(
0 1
−1 0

)
.

After discretizing the Hamiltonian in space

H =
1

2∆x2

n∑

j=1

((pj+1 − pj)
2 + (qj+1 − qj)

2)− γ

4

n∑

j=1

(p2j + q2j )
2.

we obtain the semi-discretized Hamiltonian ode’s

pt = −Aq − γq(p2 + q2), qt = Ap+ γp(p2 + q2), (12)

where A is a circulant matrix.
To solve (12) we apply the second order Strang split-step method by adapt-

ing the linear, non-linear splitting

ut = Nu+ Lu, Lu = iuxx, Nu = iγ|u|2u.
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4.1 POD Basis for NLS equation

Suppose that we have determined POD bases {uj}lj=1 and {vj}lj=1 of rank

l = {1, . . . ,m} in R
m. Then we make the ansatz

pl =

l∑

j=1

αjuj(x), ql =

l∑

j=1

βjvj(x) (13)

where αj =< pl, uj >, βj =< ql, vj > and pl, ql are approximations for p
and q, respectively. Inserting (13) into (12), and using that 〈ui, uj〉 = δij and
〈vi, vj〉 = δij , i, j = 1, · · · , l, we obtain

α̇i = −
l∑

j=1

βj 〈Avj , ui〉 − γ

〈


l∑

j=1

βjvj







l∑

j=1

αjuj




2

, ui

〉
− γ

〈


l∑

j=1

βjvj




3

, ui

〉

β̇i =

l∑

j=1

αj 〈Auj , vi〉+ γ

〈


l∑

j=1

αjuj







l∑

j=1

βjvj




2

, vi

〉
+ γ

〈


l∑

j=1

αjuj




3

, vi

〉

As defining V = [v1, v2, · · · , vl] ∈ R
m×l, β ∈ R

l, U = [u1, u2, · · · , ul] ∈
R
m×l, α ∈ R

l, B = {bij}, bij = 〈Avj , ui〉 , BT = {cij}, cij = 〈Auj , vi〉,
we obtain

α̇ = −Bβ − γUT
(
(V β) · (Uα)2

)
− γUT

(
(V β)3

)

β̇ = BTα+ γV T
(
(Uα) · (V β)2

)
+ γV T

(
(Uα)3

)
(14)

with both the operation ’·’ and the powers are hold elementwise.
The reduced order system (14) is solved, as the unreduced one (1), with

the energy preserving AVF method and symplectic midpoint method applying
linear-nonlinear Strang spliting Weideman and Herbst[8]. The nonlinear parts
of the equations are solved by Newton-Raphson method. For solving the linear
system of equations, we have used the Matlab toolbox smt Redivo-Zaglia and
Rodriguez[6], which is designed for solving linear systems with a structured co-
efficient matrix like the circulant and Toepltiz matrices. It reduces the number
of floating point operations for matrix factorization to O (n log n).

5 Numerical Results

For the one dimensional NLS equation we have taken the example in Celle-
doni et al.[1] with γ = 1, and the periodic boundary conditions in the in-
terval [−20, 20]. The initial conditions are given as p(x, 0) = exp(−(x −
1)2/2), q(x, 0) = exp(−x2/2). As mesh sizes in space and time we have used
dx = 40/20 and dt = 0.1, respectively.
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We compare the energy error and the norm error with ROM-AVF and ROM-
MID using with and without difference quotients in Table 1. With increasing
number of POD basis l, the errors in the energy and discrete solutions of the
fully discretized NLS equation and the reduced order model decreases. The
singular values of the snapshot matrix are rapidly decaying (Figure 4) so that
the only few POD modes would be sufficient to approximate the fully discetized
NLS equation. For POD basis with l = 3 (Figure 3), hence, the energy is
well preserved as for the fully discretized form (Figure 2) and more accurate
solutions are obtained with increasing number of POD modes (Figure 4).

Table 1. L∞-errors of the energy and solutions

POD Energy Energy Solution Solution
(ROM-AVF) (ROM-MID) (ROM-AVF) (ROM-MID)

2 6.125e-002 6.107e-002 2.164e-001 2.159e-001
3 5.529e-002 5.528e-002 2.010e-001 2.011e-001
4 4.612e-002 4.609e-002 1.847e-001 1.835e-001
5 4.100e-002 4.095e-002 1.838e-001 1.817e-001
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Fig. 1. Singular values: left: mid-point, right: AVF
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Fig. 2. Energy (full discretization): left: mid-point, right: AVF
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Fig. 3. Energy (POD, l=3) : left: mid-point, right: AVF

Fig. 4. ROM solutions with 3 POD modes: left: mid-point, right: AVF
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Abstract: Mostly, control methods developed for nonlinear systems are used to control 

hybrid systems. These control methods are based on Mixed Integer Linear 

Programing (MILP) techniques which have computational complexity. In this study, a 

new Model Predictive Control (MPC) based switching control technique for Piecewise 

Linear systems (PWL) -a sub-class of hybrid systems- is developed to get rid of 

disadvantage of existing control methods.    

Keywords: Hybrid systems, Piecewise Linear Systems, MPC.  

 

1. Introduction 
Nonlinear Model predictive control techniques are used in order to control 

Piecewise Linear systems, [9-12]. Most of these control techniques are based on 

Mixed Integer Linear Programing (MILP) techniques. Because of usage of 

MILP techniques, these control techniques have computational complexity, so 

the control rules must be calculated offline and some tables are generated for 

using online control. 

In this study, a new Model Predictive Control (MPC) based switching control 

technique for PWL systems is developed to get rid of MILP based control 

techniques’ disadvantages.  

In the second section of this paper, Piecewise Linear systems and model 

predictive control technique for linear systems with polytopic uncertainties are 

briefly presented.  It will be shown that piecewise affine system can be modeled 

as linear system with polytopic uncertainties which play a key role in control 

technique proposed here. In the last section, the control technique will be given 

in detail and be compared with other widely used MPC based control technique 

in the literature over numerical experiments. 

  

2. Piecewise Linear Systems 
Linear (PWL) systems are defined as [4], 

                           

( 1) ( ) ( ) ( )
for

( ) ( ) ( ) ( )

i i
i

i i

x k A x k B u k x k

y k C x k D u k u k

    
 

                                    (1) 

where i  is defined as a convex polyhedral.  This convex polyhedral i  is 

given as equalities and/or inequalities of inputs and states. Linear systems with 

polytopic uncertainties are defined as, 
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   1 1 1

( 1) ( ) ( )

1

n n n

i i i i i

i i i

x k Ax k Bu k

A A B B  
  

  

    
                       (2) 

where 0i   are nonnegative. 

The main idea of MPC method is to calculate a series control rule which is 

calculated using predicted output signals for a finite horizon 
PN  making the 

considered objective function minimum for each sampling time. Then only the 

first control rule in this series is used to control process and data and 

calculations are updated at each step, [2]. In MPC method, the objective 

function is as follows, 

              

2 2

1 1

ˆ( | ) ( )  ( 1)

p p

out m

N N

j j

J J J

y k j k r k j u k j





 

 

       
                (3) 

where ˆ( )y k  is estimated future output vector and 
PN   is prediction horizon and 

r(k) is reference input. MPC can be easily adapted to limitations on the control 

signal where these limitations can be written as  

    ( ) ( ) ( ) ( ) ( ) E k u k F k y k h k                           (4) 

In order to get a more smooth response, the control input sequence out of 

control horizon is defined as, 

  1 .( ) ( 1) , , .. .c c cu k j u k N for j N N     
                         (5) 

Briefly, in model predictive control algorithm, the following steps are executed 

at every sampling time, 

i. Update the data 

ii. Calculate future input series which minimizes the performance index 

given in (3) 

iii. Apply the first control rule of this input series to the system 

 

3. Main Result 
The control method developed for PWL systems is based on the fact that a PWL 

system has always a linear system representation with polytopic uncertainty. 

PWL system can be rewritten as, 

 

                        

     

2 2

1 1

1

( )
1

( )

( )
0

( )

i

i i i i i

i i
i

x k Ax k Bu k

x k

u k
A A B B

x k

u k

  

 

  

  
  

  
   

 
 

 

 

                     (6) 
By comparing the PWL system model in (6) and linear system with polytopic 

uncertainties in (2) it can easily be seen that PWL systems can be represented as 

linear systems with polytopic uncertainties. 
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 3.1. Model Predictive Control of linear systems with polytopic 

uncertainties (RMPC) 

The problem of finding the control rule in the form of 

( | ) ( 1| )u k i k F x k k    such that minimizing the upper bound of V(x(k/k)) on 

( | )J k k
 can be formulated as  

             

       1
( , )

0

min max | | | |

( | )
. . ( | ) ( 1| ) ( 1| ) for

( | )

i i

T T

A B
i

i i i

x k i k Q x k i k u k i k Ru k i k

x k k
s t x k i k A x k i k B u k i k

u k k





    

 
        

 



           (7) 

and the following theorem is taken from [5] for the solution of this problem . 

Theorem 2.1.  Let x(k)=x(k/k) be the state of the uncertain polytopic system 

measured at sampling time k. Then, in the absence of input and output 

constraints, the state-feedback matrix F which minimizes the upper bound 

  |V x k k  on ( | )J k k  

                         

1

0

( ) ( ) ( ) ( )T T

i

J x k k Q x k k u k k Ru k k





 
                       (8) 

at sampling time k is given by, 

                                               
1F YQ

                                              (9) 

where Q>0 and Y are the solutions (if they exist) to the following eigenvalue 

problem : 
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R Y I








 
  
 
  

 
  
 

  
 
 
 
           (10) 

 
3.3. Control method for PWL systems 

The following procedure is given for the control method proposed in this study, 

i. Calculate the intersection points between the trajectory of the system and 

the border of sub-regions. The first boundary point is denoted by hx . 

ii. For each region, find the control rule which drives the system from the 

initial point to these points using linear MPC technique as 
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 

  
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

 
   
  

iii. Repeat the procedure as long as the trajectory of the system until it 

reaches origin. 

 

3.4. Numerical Experiments  

In this study, the developed control method will be compared with the following 

switching control rule proposed in [6-8], 

   

1

1 1 1
( 1 )

( 1 )

min . . if 

min . . if 
n

u F x k k

n n n
u F x k k

J s t x A x B u x X

u

J s t x A x B u x X

 

 

  



 
   
                  (11) 

where the control rule ( 1| )iu F x k k   is MPC rule designed for i
th

 sub-region 

to drive the related linear system to origin. 

For the first numerical experiment, consider the following bimodal system, 

                                

1

1 0.5 0
if 5

1 0 1

1 0.3 0

1 0 1

x u x

x

x u otherwise

    
    

   
 

   
   

                            (12) 

and the objective function given in the form, 

21 0
min ( ) ( ) 1.5 ( )

0 1

Tx t x t u t dt
 

 
 


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Fig. 1. The phase portrait of the closed loop system controlled by switching 

controller proposed in [6,7,8] 

 

Using MPC based switching control method proposed in [6]; the phase portrait 

of the system is shown in the Figure 1. As stated in [6], the switching control 

44



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

rule ( | ) ( 1| )iu k i k F x k k     can cause stability problems at the sub-region 

borders.  
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Fig. 2. The phase portrait of the closed loop system controlled by control 

method proposed in the study 

 

Using MPC based switching control method proposed in this study; the phase 

portrait of the system is shown in the Figure 2. Since the intersection points 

between the trajectory of the system and the border of sub-regions ultimately 

converge to the origin, the control method given in Section 3.3 guarantees the 

stability of the closed loop system. Initial condition is set as 6 6
T

x      and 

closed loop system trajectories are shown in the Figure 3. The convenient 

comparison of control methods can be given in terms of objective function value 

in Table 1. 
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(a)                                                           (b) 

Fig. 3. Closed loop system trajectory controlled by control method proposed 

here (a) and by switching control rule developed in[6-8] (b) for the given initial 

point 

 

Table 1. Objective function’s values 

Control method proposed in [6] Developed control method 

J=2.1048  J=2.8059  

 

In the second experiment, control rules are calculated for the following PWL 

system, 
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and the objective function is given in the form of, 
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Fig. 4. Phase portrait of the closed loop system controlled by switching 

controller developed in [6] 
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Fig. 5. The phase portrait of the closed loop system controlled by control 

method proposed in the study 
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For a more convenient comparison of control methods in terms of objective 

function value, initial condition is set as 20 20
T

x     . Obtained closed loop 

system trajectories are shown in Figure 6. 
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(a)                               (b) 

Fig. 6. Closed loop system trajectory controlled by control method proposed 

here (a) and by switching control rule developed in[6-8] (b) for the given initial 

point 

 

Table 2. Objective Function’s value 

Control method proposed in [6] Developed control method 

J=0.6659  J=0.2977  

 

4. Results 

In this study, using the representation of bimodal system as linear system with 

polytopic uncertainties, a switching control method is developed which 

guarantees the stability of the closed loop system. Proposed control method is 

compared with the switching control method given in [6] in the sense of stability 

and objective function values. 

Even the switching control method proposed in [6-8] has good performance 

index value; it cannot guarantee the stability of the closed loop system. The 

proposed control method guarantees the stability of the closed loop system, 

since the intersection points between the trajectory of the system and the border 

of sub-regions ultimately converge to the origin. It could be argued that 

developed control method is a better control method for PWL systems than the 

existing control methods in the literature considering guaranteed stability and 

good objective function values. 
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Abstract. In this study, we analyze a simple interrupted electric circuit with two switches.
First, we show the circuit model and then we explain its dynamics. Next, we define the sampled
data model. Using the sampled data model, we derive the 1- and 2-parameter bifurcation dia-
grams. Finally, we discuss the characteristic of the circuit. The proposed circuit is the simplest
interrupted electric circuit with two switches; the switching action is dependent on the state and
a periodic interval. Therefore, the qualitative characteristic may be same for the real circuit,
which has two interrupted switches, i.e., such as the parallel-connected DC/DC converters.
Keywords: Bifurcation, Interrupted electric circuit, Poincaré map.

1 Introduction

.,An electric circuit, which has the switch depending on the state and a periodic
interval, has the interrupted characteristics. We call this class of the circuit as the
interrupted electric circuit, eg., DC/DC converters are the typical example of the inter-
rupted electric circuit. It is known that the interrupted electric circuit has two or more
subsystems. Also, the discrete map of the interrupted electric circuit is categorized as
the piecewise smooth map. There are rich nonlinear dynamics in the interrupted elec-
tric circuit upon varying the circuit parameter such as the input voltage and control
gain [1,2]. It is important to analyze the nonlinear dynamics in the interrupted electric
circuit not only for understanding circuit characteristics but also for providing a useful
information to the practical application. So, many researchers have analyzed nonlin-
ear dynamics of the interrupted electric circuit since decades ago [3–6]. We have
also proposed an interrupted electric circuit, which simulates switching dynamics of
the current mode controlled DC/DC converter, for rigorously understanding nonlinear
phenomena of the this class of the circuit [7].

The nonlinear phenomena in a simple class of the interrupted electric circuit, such
as the DC/DC buck, boost, and buck-boost converters, have been completely analyzed
in the previous works [8, 9]. But, detailed analysis of the parallel connected DC/DC
converters or resonate type converters are insufficient because of their complicated
behavior. Especially, for understanding fundamental characteristic of the parallel con-
nected DC/DC converters in detail, we have proposed a simple interrupted electric
circuit with two switches [10]. The switching action of the circuit simulates that of
the parallel connected DC/DC converters. Thus, we consider is is important to analyze
nonlinear phenomena of the circuit for rigorously understanding characteristics of the
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parallel connected DC/DC converters. But, the analysis of the circuit is insufficient
yet.

In this study, we analyze the nonlinear phenomena of the circuit proposed in Ref.
[10]. First, we show the circuit model and then we explain behavior of the waveform.
Next, we define the Poincaré map. Using the Poincaré map, we derive the 1- and
2-parameter bifurcation diagrams. Finally, we discuss the characteristic of the circuit.

2 Circuit dynamics

Figure 1 shows the circuit model. If the clock pulse is impressed at every period of 2T ,
the switch-1 and switch-2 change from B’s side to A’s side. Note that the clock pulse
for switch-2 delays time T compered with that for switch-1. The circuit parameters
are follows:

R = 10[kΩ],C = 0.33[µF], E = 3.0[V], T = 1.0[ms] (1)

The circuit has four subsystems depending on the switching state. We call each sub-
systems as Case-1, Case-2, Case-3 and Case-4 as follows:

Case-1: The switch-1 and the switch-2 are in state-A.
Case-2: The switch-1 is in state-A and the switch-2 is in state-B.
Case-3: The switch-1 is in state-B and the switch-2 is in state-A.
Case-4: The switch-1 and the switch-2 are in state-B.

We can easily derive the circuit equations for each subsystems. By solving the circuit
equation, we get

v(t) =



































ϕ1(t, kT, vk, λ, λ1) , for state 1

ϕ2(t, kT, vk, λ, λ2) , for state 2

ϕ3(t, kT, vr, λ, λ3) , for state 3

, (2)

C
R

E

R

vrCLK-1
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R
Q Q

R
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R

vr CLK-2

t

v
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R S
Q Q

vrvr

T2 T2

Switch2Switch1
S

Fig. 1. Circuit model.
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where vk denotes an initial value at t = kT .
Figure 2 shows behavior of the capacitance voltage (waveform) in the circuit. If

the waveform reaches the reference value vr, the switch-1 and switch-2 change from
A’s side to B’s side at the same timing. After that the clock pulse is impressed and the
switch changes from B’s side to A’s side again. Note that the clock pulse is ignored if
the switch is in A’s side.

3 The Poincaré map

We sampled the waveform by every period of T for deriving the Poincaré map. There
are four types of the waveform behavior during the interval T . We define the borders
D and D′ for dividing the waveform behavior during the interval T . The borders D
and D′ satisfies following condition:

ϕ1(T, kT,D, λ, λ1) = vr (3)

ϕ2(T, kT,D′, λ, λ2) = vr. (4)

The switch keeps state-1 during the interval T if vk ≤ D is satisfied. Thus, the
discrete map M1 is defined as follows:

M1 : R → R

vk 7→ vk+1 = ϕ1(T, kT, vk, λ, λ1), (5)

where vk and vk+1 are the waveform at t = kT and t = (k + 1)T , respectively.
On the other hand, if vk > D is satisfied, the waveform reaches to the reference

value vr at t = kT + tA . Thus, we define the following map M2A:

M2A :R→Π
vk 7→vr =ϕ1(tA, kT, vk, λ, λ1), (6)

1

clock:

state: 3 2 1 3 2 1

kT (k+2)T (k+4)T (k+6)T

vr

t

Fig. 2. Behavior of the Waveform.
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where Π denotes the reference value. After that the waveform reaches to vk+1 at t =
(k + 1)T . So, we define the following map M2B:

M2B :Π→R

vr 7→vk+1=ϕ3(T − tA, kT + tA, vr, λ, λ3). (7)

Thus, the discrete map is defined as follows:

M2 : R → R

vk 7→ vk+1 = M2B ◦ M2A.
(8)

Likewise, the subsystem keeps state-2 during the clock interval if vk ≤ D′ is satis-
fied. Thus, the discrete map M′1 is defined as follows:

M′1 : R → R

vk 7→ vk+1 = ϕ2(T, kT, vk, λ, λ2). (9)

The waveform reaches to the reference value vr at t = kT +t′A if vk > D′ is satisfied.
Thus, we define the following map M′2A:

M′2A :R→Π
vk 7→vr =ϕ2(t′A, kT, vk, λ, λ2). (10)

Then, the waveform is sampled at t = (k + 1)T :

M′2B :Π→R

vr 7→vk+1=ϕ3(T − t′A, kT + t′A, vr, λ, λ3). (11)

Thus, the discrete map is defined as follows:

M′2 : R → R

vk 7→ vk+1 = M′2B ◦ M′2A.
(12)

Using the discrete maps, we derive the bifurcation diagrams and discuss the funda-
mental characteristic of the circuit in the following analysis.

4 Fundamental characteristics of the circuit

First, we discuss the bifurcation phenomena of the circuit. Figure 3 shows an exam-
ple of the 1-parameter bifurcation diagrams upon varying the bifurcation parameter vr

from vr = 0.5[V] to vr = 2.0[V]. Note that we have calculated the 1 parameter bifurca-
tion diagram in the circuit with single switch for comparing the bifurcation point and
bifurcation structure. Moreover, Fig. 4 shows the waveforms and the Poincaré maps.
Here, (a) and (b) in Fig. 4 correspond to the parameters (a) and (b) in Fig. 3. Note that
we have numerically calculated Figs. 3 and 4 using Eqs. (5), (8), (9), (12). We observe
the bifurcation phenomena in the 1-parameter bifurcation diagram. For example, the
period-1 solution bifurcates to the period-2 solution around vr = 0.8[V]. After that the
period-2 solution bifurcates to the period-3 solution around vr = 1.9[V]. Moreover, it
is clear that there are various kinds of the periodic solution and the chaotic attractors
in the circuit.
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Figure 5 shows examples of the 2-parameter bifurcation diagrams of vr-T plane.
In the figure, we express the existence region of the period-m solution as mP, where
m = 1, 2, 3. There is the period-doubling bifurcation in the circuit. The condition of
the period-doubling bifurcation is defined as follows:

(

dM1

dvk

)n−2 dM2

dvk

dM′1
dvk
+ 1 = 0 (n ≥ 2) . (13)

Using Eq. (13), for example, we can define the bifurcation sets of the period-1 solution
as follows:

dM′2
dvk
+ 1 = 0 . (14)

The solid lines in Fig. 5 are the bifurcation sets of the period doubling bifurcation.
Tables 1 and 2 show the characteristic multiplier of the period-1 solution. In the

following analysis, we compare the characteristic multipliers, between the circuit with
two switches and the circuit with single switch, and discuss the fundamental charac-
teristic of the circuit with two switches. The tables say that two interrupted switches

 0
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v k
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vr[V]→
(I) Single switch

 0
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 0.5  1  1.5  2

v k
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vr[V]→

(a) (b)

(II) Two switches

Fig. 3. Example of the 1-parameter bifurcation diagram.
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(a) Period-1 solution (vr = 0.7[V]) (b) Period-2 solution (vr = 1.2[V])

Fig. 4. Examples of the waveform and the discrete map.

make the existence region of the period-1 solution small. This result will be same in
the practical system, i.e., parallel-connected DC/DC converters, because both of our
simple model and the parallel-connected DC/DC converters have the two interrupted
switches.

5 Conclusion

In this study, we have studied characteristic of an interrupted electric circuit with two
switches. First, we showed the circuit model and its behavior. Next, we defined
the Poincaré map. Using the Poincaré map, we calculated the 1- and 2-parameter
bifurcation diagrams. Finally, we discussed the characteristics the circuit using the
bifurcation diagrams. We found that the two interrupted switches affect the exist-
ing region of the periodic solution. Especially, we remarked that the two interrupted
switches makes the existence region of the period-1 solution small. We consider that
above result will be apply for the parallel-connected DC/DC converters because our
circuit simulates switching action of the parallel-connected DC/DC converters. In fu-
ture, we will clarify the characteristics of the circuit in detail and also will analyze the
nonlinear phenomena in the parallel-connected DC/DC converter for understanding
fundamental characteristic of it.

54



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.5  1  1.5  2

T→

vr→

1P

2P

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.5  1  1.5  2

T→
vr→

2P1P
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Fig. 5. Example of the 2-parameter bifurcation diagrams.

Table 1. Stability of the circuit with single switch.
Bifurcation parameter vr Characteristicmultiplier Remark

1.6056 -0.99962 Stable
1.6057 -0.99975 Stable
1.6058 -0.99989 Stable
1.6059 -1.00002 Period doubling bifurcation
1.6060 -1.00016 Unstable
1.6061 -1.00029 Unstable
1.6062 -1.00042 Unstable

Table 2. Stability of the circuit with two switches.
Bifurcation parameter vr Characteristicmultiplier Remark

0.855100 -0.999295 Stable
0.855200 -0.999567 Stable
0.855300 -0.999839 Stable
0.855400 -1.000111 Period doubling bifurcation
0.855500 -1.000383 Unstable
0.855600 -1.000655 Unstable
0.855700 -1.000928 Unstable
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Abstracts: We study the interaction of multi-layer packets consisting of beams, plates 

and shells, where there are gaps between the mentioned structural members. The 

proposed mathematical model takes into account various types of non-linearity: (i) 

geometrical (in the Kármán form); (ii) physical (layer material properties depend on the 

space co-ordinates, deformation intensity and time); (iii) design (it either switches on or 

off a contact between layers). Physical properties of the material can be different. The 

governing partial differential equations, boundary and initial conditions are obtained 

using Hamilton’s variation principle. The so far obtained boundary value problem is then 

reduced to the Cauchy problem by the following methods: FDM (Finite Difference 

Method) and the hybrid method matching FEM (Finite Element Method) and the 

Bubnov-Galerkin method with high order approximations. The obtained initial value 

problem is solved using the 4th, 6th and 8th Runge-Kutta techniques. It will be shown 

that those approaches are necessary to get the reliable results of our problem exhibiting 

strong non-linearity effects and chaotic vibrations. It should be emphasized that the 

obtained results are studied for all engineering required intervals of changes of the input 

load parameters, i.e. its amplitude and frequency (charts of vibration-type are 

constructed). Each output signal is analyzed via phase and modal portraits, Poincarè 

maps, auto-correlation functions, Fourier spectra as well as wavelets. In the latter case 

the efficiency of different wavelets is illustrated and discussed. Furthermore, we propose 

a novel approach to quantify regular and chaotic vibrations via signs estimation of the 

Lyapunov exponents. Different scenarios of transition from regular to chaotic dynamics 

exhibited by the studied objects for the mentioned types of non-linearity are illustrated 

and discussed. We show how the non-linearity type leads to a dramatic change of the 

transition from regular to chaotic vibrations. In addition, the influence on the non-linear 

vibrations of the studied multi-layer continuous systems of the non-linearity type, layer 
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number, boundary conditions, layer thickness as well as magnitude of the gap between 

layers is investigated and reported. 

 

Keywords: chaos, beam, plate, shell, Lyapunov exponents.  

1. Introduction 

It is well known that in the classical mechanics its two branches have been 

separated over decades, i.e. the fluid mechanics and the solid mechanics. 

However, we show that in some cases the same/similar phenomena can be found 

in those two distinguished parts of our matter. Since fluid mechanics 

phenomena are governed by partial differential equations (PDEs) it is tempting 

to consider the dynamics of infinite systems represented by fluid/gas composed 

of the moving infinite sets of particles with the mechanical continuous systems 

governed by PDEs such as beams, plates shells and panels treated either as 

separated or linked objects. 

In particular, one of the challenging key problems in the fluid mechanics is 

associated with the explanation of turbulence and a route from laminar to 

turbulent dynamics via an increase of the Reynolds number Re.  

It is rather expected that the so called fully developed turbulence in fluids 

associated with a high Re cannot be found in the mentioned solid structural 

members. However, there is a way to simplify the turbulent behavior preserving 

its main features but simplifying the problem by the relaxation of some 

assumption within the framework of the so called weak turbulence [1]. This idea 

not only allows us to explain the origin of turbulence through an analytical 

treatment of the simplified closed kinetic equations, but also opens the door for 

finding a similar type turbulent dynamics exhibited by other physical systems 

including plasmas [2], optics [3] and magneto-hydrodynamics [4]. The weak 

turbulence theory relies on the movement of the energy flux through small and 

large length scales being measured, and identified by the broad band 

Kolmogorov turbulence spectrum. 

Our results indicate that the turbulence exhibited by the mentioned structural 

members with large amplitude dynamics and with the geometric/design non-

linearity being externally driven periodically may not only reveal the turbulent 

behavior quantified through a broad band Fourier component of the power 

spectrum, but also (in some cases) may give rise to the intermittency, thus 

violating the strong simplification introduced via weak turbulence theory. In 

other words, the obtained results indicate a possible correspondence between 

turbulent dynamics in solids and the classical turbulent dynamics in fluids 

governed by the Navier-Stokes equations. 

The transition from periodic/laminar to chaotic/turbulent behavior of 

continuous solid mechanical systems (beams, plates, cylindrical shells, panels, 

sector-type spherical shells) was illustrated and discussed in the series of papers 

[5-12], where various classical and non-classical scenarios were detected using 

different numerical approaches (FDM - Finite Difference Method, FEM - Finite 

Element Method, the Bubnov-Galerkin approach, the modified Ritz method). 
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Circular cylindrical shells and doubly-curved panels have been analyzed by 

Amabili [13-14]. 

On the other hand, there is a series of works devoted to 

laboratory/experimental investigation of turbulent dynamics in plates. The 

Föppl-von Kármán model of a thin elastic plate was studied in references [15-

18], where various Fourier power spectra of the plate deformations were 

analyzed. Despite qualitative good agreement with the kinetic weak turbulent 

phenomena, the experimental form of energy spectrum was not confirmed by 

theoretically obtained results. 

One of the challenging problems of non-linear dynamics is that devoted to 

mathematical modeling and analysis of the temporal-space (turbulent) chaotic 

vibrations of the multi-layer structural systems taking into account their contact 

interactions [19]. Once the contact problem appears, it is necessary to study the 

phase synchronization of a construction [20]. It is clear that the knowledge of 

loading of the structure members plays a key role in the estimation of dynamical 

behavior of the whole studied construction. The system dynamical regime 

depends strongly on the parameters of exciting load as well as dispersion 

properties of the surrounding environment. This work aims at a mathematical 

modeling of the structural systems consisting of beams and plates with small 

gaps between them. It means that the system dynamics is changed when the 

contact between the structural members is activated. In addition, we study the 

phase chaotic synchronization of the multi-layer mechanical systems composed 

of beams and plates being coupled only through the boundary conditions. Since 

we consider small gaps, the contact problem should be solved on each of the 

iteration step in time.  

 

2. Method of Phase Chaotic Synchronization 

The method of phase synchronization belongs to important branches of the 

today non-linear dynamics. Phase synchronization is observed experimentally in 

various radio generators, electrochemical oscillators, lasers, cardiac arrhythmia, 

and many others. In this work we study the phase chaotic synchronization 

exhibited by the mechanical structural members: multilayer beams and plates 

coupled through the boundary conditions.  

The wavelet based analysis allows us to study the oscillation type behavior on 

an arbitrary chosen scale. It characterizes frequency and time localization. 

Although there are different wavelet transformations [21,22], the most useful for 

engineering purposes are the Morlet wavelets.  

Phase synchronization means that the phase locking phenomenon occurs 

though both signals remain chaotic. Phase locking yields overlapping of the 

frequencies. The frequency of a chaotic signal is defined as the average velocity 

of the phase variation. The wavelet surface 0 0 0( , ) || ( , ) || exp[ ( )]sW s t W s t j t  

characterizes the system dynamics on each time interval at an arbitrary time 

instant t0. The integral energy distribution of a wavelet spectrum with respect to 

the time scales 
2

0 0( ) || ( , ) ||E s W s t dt   is introduced. The phase is defined as 
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0( ) arg ( , )s t W s t   for each time interval s, which yields a possibility of 

monitoring each interval s with the help of the associated phase ( )s t . Particular 

attention was paid to the synchronization of vibrations of the studied structural 

systems with the help of the Morlet wavelets. 

 

3. Algorithm for Computation of the Lyapunov Exponents 

In order to investigate chaotic vibrations of the design-nonlinear structures we 

apply the qualitative theory of differential equations and nonlinear dynamics: 

analysis of the signals, Fourier power spectra, phase and modal portraits, and 

Lyapunov exponents versus time for each of the studied structures. Various 

wavelet transforms are applied.  

Below, we describe briefly the algorithms devoted to the computation of the 

Lyapunov exponents. The estimation of Lyapunov exponents spectrum with the 

use of one co-ordinate and within the frame of neural networks includes the 

following steps. Assume that we have the reconstructed series  

 

 
2( ( ), ( ),..., ( ( 1) )) ( ( ), ( ),..., ( )),i i mx x i x i x i m x i x i x i       (3.1) 

 

where (( 1) 1),i m N   , m – dimension of the embedding space,   – time 

delay, N – length of the time series. The following tasks are solved: 

1. Appropriate delays τ are chosen. 

2. Dimension of an embedding space is estimated. 

3. Pseudo-phase reconstruction of a trajectory is carried out using the time 

delays method. Next the m-dimensional vectors are chosen, having 

dimension of a lesser order than the initial choice. 

4. First, an approximating neural net is constructed, which essentially 

improves the convergence of the iteration process. 

5. Neural network is taught to compute a successive vector of the 

reconstructed series through the previously estimated vector. 

6. Next we applied the already trained network in the generalized Benettin 

algorithm to estimate the Lyapunov exponents. 

The generalized Benettin algorithm is as follows: let 
0r  be an arbitrary point 

of the system attractor. We first fix a small, comparing to the linear attractor 

dimension, positive value of ε, and we choose the perturbed points 
0 0,x y  and 

0z  in the way to keep the perturbation vectors length 
0 0 0x x r   , 

0 0 0y y r    and 
0 0 0z z r    equal to ε, and to preserve their orthogonal 

property. The points r0, 00 , yx  and 0z  are transited into points 
1 1,x y  and 

1z , 

respectively, after a certain small time interval T. Let us consider the new 

perturbation vectors: 1 1 1x x r   , 1 1 1y y r    and 1 1 1z z r   . The Gramm-

Schmidt orthogonalization method is further applied: 
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

  (3.2) 

 

The orthogonalization procedure yields unit perturbation vectors. Next we 

transform these vectors to the corresponding ones with the length ε: 

1 1 ,x x      
1 1y y      and 

1 1z z     . Then we take into account the 

new choice of the perturbation points 
1 1 1x x x   , 

1 1 1y y y    and 

1 1 1z z z   . The so far described process is repeated with respect to the points 

1 1 1, , ,r x y   and 
1z . Repeating this algorithm M times, the following sums are 

computed:  

 

 1

1

|| ||
M

k

k

S x


  ,  2

1

|| ||
M

k

k

S y


  ,  3

1

|| ||.
M

k

k

S z


   (3.3) 

 

The Lyapunov spectrum  1 2 3, ,     is estimated via the following 

formula: 

 

 , 1,2,3.i

i

S
i

MT
     (3.4) 

 

4. Two-Layer Packets of Plates-Plates, Plates-Beams, Beams-Beams 

We consider the mathematical models of non-linear two-layer plates (Fig. 4.1), 

two-layer beams (Fig. 4.3) and plate-beam construction (Fig. 4.2), all of them 

being coupled through the boundary conditions and transversally loaded in a 

time periodic manner. We solve the so far stated dynamical non-linear problems 

in chaotic regimes via the Bubnov-Galerkin method in higher approximations 

within the approach proposed by Vlasov with respect to spatial co-ordinates, 

and using the fourth Runge-Kutta method with respect to the time co-ordinate. 
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Fig. 4.1. Plate-plate model                            Fig. 4.2. Plate-beam model 

 

 

                          
                                     Fig. 4.3. Beam-beam model 

 

The following Germain-Lagrange type PDEs govern dynamics of the two-

layer elastic plates packet shown in Fig. 4.1: 

 

 

 

 

2

4 1 1

1 1 22 2

2

4 2 2

2 1 22 2
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1 1

1
( ) ( ) 0,
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( )sin( )sin( ), 1,2
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N N
m

m ij

i j

w w
w q t K w w h

tt

w w
w K w w h

tt

w A t i x j y m











 
 

  
        

 


         
  

 

 (4.1) 

 

We take the following boundary conditions:  

 

0; | 0;m m xw w   for 0;1x  ; 0; | 0;m m yw w  for 0;1y  ; m=1,2, 

 

whereas the initial conditions follow  

 

0 0( , ) | 0, | 0m t m tw x y w   ,  m=1, 2. 

 

Here  1 2

1
1

2
ksign w h w       , if 

21 kw w h   we take 1,   and the 

contact between plates occurs, otherwise 0  ; 1 2,w w  deflection functions of 

62



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

 

the upper and lower plate, respectively, K - stiffness coefficient of the 

transversal contact zone, 
kh - clearance between the plates.  

Let us consider the following example. We take the uniform time-independent 

load and the following system parameters: 
0 0.2q q const   , 5000K  , 

0.01kh  , 0  , 
0 5.9887   - frequency of the associated linear vibrations. 

Table 4.1 reports 2D (a, d) and 3D (b,e) Morlet wavelets spectra, Lyapunov 

exponent values, their sum and the corresponding errors (c, f) for each of the 

plates, domain of frequencies synchronization (g), as well as the interacting 

vibrations in the centers of each plate (h) (upper (lower) plate vibration 

corresponds to red (blue) color).  

This example exhibits the phase synchronization in the neighborhood of the 

natural vibration frequencies 
0 . In the phase difference graph (g) the 

frequency interval  4,8 , where the phase synchronization takes place, is 

marked by the dark color. The vibrations take place at the frequency 
0 , i.e. 

that of the natural frequency of two-layer plates structure, which is approved by 

the Morlet wavelet spectrum (a,d) consisting of the energy component of each 

of the frequencies studied in a given time instant. Analysis of the Lyapunov 

exponent signs allows us to conclude that the vibrations are out of chaos and the 

vibration process yields the full phase locking of the amplitudes of the upper 

and lower plates. 

 

Table 4.1. Characteristics of the plate/plate vibration 

 
 

Next, we present PDEs of the two-layer packet consisting of a plate and beam 

(Fig. 4.2). The upper plate is governed by the Germain-Lagrange equation, 

whereas the beam is described via the Euler-Bernoulli equation: 
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 (4.2) 

 

We take the following boundary conditions: 

 

1 10; | 0;xw w   for 0;1x  ; 
1 10; | 0;yw w  for 0;1y  ; 

2 20; | 0;xw w   for 0;1x  ; 
2 0;w  for 0;1y  , 

 

and the initial conditions:  

 

1 0 2 0( , ) | 0, ( ) | 0, | 0t t m tw x y w x w    ,  m=1, 2. 

 

We consider the vibration process of the plate and the beam by taking 

0q const  and 
0 0t  , and fixing the following parameters: 5000K  , 

0 1q q const   , 0.01kh  , 0.5  , (1)

0 5.9887  , (2)

0 2.84   - 

frequencies of the linear vibrations. We observe the damped vibrations on the 

packet frequency. A decrease in the system clearance causes the overlapping of 

amplitudes, i.e. a full synchronization with regard to both amplitude and 

frequency is observed, and the system locking occurs for small values of the 

load amplitude 
0q . Therefore, a decrease of the clearance implies the 

synchronization increase. 

 

Table 4.2. Characteristics of the plate/beam vibrations 
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We have studied the influence of the damping coefficient   on the packet 

vibration character. A decrease of the damping up to 0.25   causes an 

increase of the system chaotization, but both amplitude and frequency 

synchronization is increased, which finally implies the full synchronization of 

the structural members. Then, we take the conservative system into 

consideration, i.e. for 0  . We observe intermittency character of switching 

on and switching off the synchronization zones. The Lyapunov exponents 

indicate that we have regular vibrations, though noisy components appear. The 

full synchronization of both structural members occurs. Tables 4.2 2D (a, d) and 

3D (b,e) give wavelet spectra, Lyapunov exponents, their sum and the estimated 

errors (c, f) for the plate and beam, respectively, frequencies synchronization 

graph (g), as well as the graph of simultaneous vibrations in the center point of a 

plate and beam (h) with the following fixed parameters: 
0 0.3q q const   , 

0.01kh  , 0  , (1)

0 5.9887  , (2)

0 2.84  . An increase of the load 

amplitude yields a synchronization increase (g). Vibrations take place at the 

packet natural frequency and the Hopf bifurcation. The phase and amplitude 

locking in some time instants is observed. A further increase of the loading 

implies the full synchronization regarding both frequencies and amplitudes (h). 

The governing equations of the cross-located two layer beams are as follows 

(Fig. 4.3): 
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 (4.3) 

 

We applied the following boundary conditions: 

 

0; | 0;m m xw w   for 0;1x  ; 0; | 0;m m yw w  for 0;1y  ; m=1,2 , 

 

and the following initial conditions: 

 

0 0( , ) | 0, | 0m t m tw x y w   , m=1, 2. 

 

In the case of parallel located beams the governing equations have the 

following form: 
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 (4.4) 

 

We have studied the contact interaction of two perpendicular beams with 

different types of the external transversal harmonic excitation of the form 

0 sin( )pq q t . 

 

Table 4.3. Contact interaction of perpendicular beams with continuous load  

0 0.165q   

470 475 480 485 490 495 500
0

2

4

B
1 

B
0   

 

 

In the case of load distributed on the whole upper beam (Table 4.1) the Ruelle-

Takens-Newhouse scenario has been detected. Table 4.3 gives time histories of 

the simultaneous vibrations of two beams monitored in their centers, their 

contact pressure as well as their phase difference for the fixed clearance 

0.01kh  . 

 

5. Conclusions 

It has been shown that depending on the construction design the phase 

synchronization can be different, it may appear or not. In the case of design of 

non-linear two-layer plate-plate packet, the phase synchronization takes place 

with the frequencies interval  4,8 . There are separated time intervals with 

the lack of the phase synchronization (bright parts on the phase difference 

diagrams), but the phase locking sources appear. In the case of the non-linear 

design of two-layer plate=beam packet the phase synchronization takes place 

within a narrow frequencies interval  3,5 , but the phase synchronization 

occurs also on the separated time intervals with activation of other frequencies 

(dark parts on the phase difference diagrams), and also the amplitude locking 
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phenomenon appears. In the case of design of non=linear two-layer beam-beam 

packet the phase synchronization takes place on the separated time intervals 

only on the frequency  4 . 
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Abstract: Long-term kinetics of natural physical ageing lasting from several days to 

more than twenty years at the ambient temperature is analysed at the example of As10Se90 

glass. Non-monotonic character of this kinetics is registered, which reveals subsequent 

saturation plateaus and steep regions (growing step-wise kinetics) owing to multiple 

alignment-shrinkage stages reaped in the in network structure of glass.  

 

Keywords: Glassy Semiconductors, Physical Ageing, Enthalpy, Relaxation, Kinetics.  

 

1. Introduction 
Chalcogenide glassy semiconductors (ChGS) possessing unique glass-forming 

networks with fully saturated covalent bonds are widely used in modern energy 

conversion technologies, information storage, IR transmitting devices, optical 

and thermal imaging, IR telecommunication, low-cost reliable optics, etc. [1-3]. 

However, these solids are characterized by a metastability associated with their 

disordered structure and, therefore, are subject to physical ageing (PhA) [3,4]. 

The latter leads to changes in ChGS physical-chemical properties during their 

prolonged use/storage [4,5]. So, ChGS kept below the glass transition 

temperature (Tg) losses with time their excess of configurational entropy, 

enthalpy or free volume gained during synthesis to reach a more favorable 

thermodynamic state. The most unlike for practical application is the natural 

PhA occurring at normal ambient conditions, because this effect leads to 

unwanted, spontaneous and highly unpredictable drift in main exploitation 

characteristics of ChGS [5].  

The purpose of this work is to analyze the kinetics of enthalpy losses induced by 

prolonged dark storage under natural conditions of As10Se90 glass as typical 

representatives of Se-rich ChGS. 

 

2. The Model and Simulations 
The As10Se90 glassy samples were prepared by conventional melt quenching 

route in evacuated quartz ampoules from a mixture of high purity precursors. 
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Amorphous state and chemical composition of as-prepared glasses were 

controlled visually by a characteristic conch-like fracture, data of X-ray 

diffraction and X-ray photoelectron spectroscopy.  

In order to establish the kinetics of enthalpy losses ∆H, the differential scanning 

calorimetry (DSC) measurements were performed on NETZSCH 404/3/F 

microcalorimeter precalibrated with a set of standard elements. The DSC traces 

were recorded in the ambient atmosphere with 5 K/min heating rate. The same 

calibration procedure was repeated each time during routine measurements. 

Three independent DSC measurements with samples of close masses were 

performed to confirm the reproducibility of the results.  

With a purpose of adequate mathematical description of the kinetics of enthalpy 

losses, the numerical values of fitting parameters of corresponding relaxation 

function (RF), were calculated in such a way to minimize the mean-square 

deviation of experimentally measured points from the RF.  

Typical kinetics of enthalpy losses ∆H caused by long-term dark storage of 

As10Se90 ChGS is shown in Figure 1.  
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Fig. 1. Kinetics of enthalpy losses ∆H caused by long-term dark storage 

of As10Se90 ChGS.  
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In order to describe this relaxation kinetics, two typical models are often used. 

The first is the parameterization via known stretched-exponential or Kohlrausch 

relaxation function (non-exponential function) [6], established for different 

relaxation processes in complex electronic and molecular systems: 

 

( )
β

τ







=∆
t

tH exp ,                                           (1) 

 

where τ is effective time constant and β is a so-called fractional exponent (the 

stretching parameter also known as non-exponentially or dispersivity index). 

The mechanisms of degradation processes, leading to stretched-exponential 

relaxation kinetics, are quite different. In general, they can be divided into two 

main groups. The first group explores the mechanisms of dispersive transport in 

disordered structures [7]. Within such consideration, the characteristic defects 

responsible for deviation from any equilibrium participate in multiple trapping-

recombination acts before being finally stabilized due course of time. The model 

of hierarchically limited relaxation dynamics [8] forms the basis for second 

group of mechanisms. Within this model, each subsequent relaxation event in 

disordered solid is possible only after successful realization of the previous 

relaxation act, which forms preconditions for it to happen. Other approach for 

the characterization of relaxation phenomena in ChGS can be developed on the 

basis of the mechanism proposed in [9] for PhA of silicate glasses. It was 

supposed, that structural relaxation originates from a superposition of slow and 

fast relaxation processes, which can be well described by a sum of simple 

exponential-like Debye components with individual relaxation times τi. 

Structural data obtained for a number of Se-rich As-Se glasses suggest that the 

mechanism of PhA in ChG is based on the elementary relaxation acts (twisting) 

of inner Se atoms within double-well potentials (DWP) associated with high 

flexibility of bridge-type chalcogen Se-Se bonds [10].  

Let’s consider the process of twisting of Se atoms within DWP in more details. 

Three possible DWP can be assumed for Se atoms owing to their immediate 

surrounding -Se-Se-Se-, =As-Se-Se- and =As-Se-As= (Figure 2).  

Obviously, these states differ by energetic parameters, which are determined by 

type of surrounding atoms (As or Se). Owing to a magnitude of PhA in the 

investigated AsxSe100-x ChGS [11], the lowest barrier for Se twisting should be 

expected for homoatomic Se-Se-Se DWP, while the highest one corresponds to 

heteropolar As-Se-As surrounding.  
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Fig. 2. Schematic illustration showing main features of PhA mechanism  

in Se-rich ChGS according in respect to double-well potential concept. 

 

Let’s denote an average relative probability of Se atom twisting within 

corresponding DWP (the alignment rate) as mk and probability of further atomic 

shrinkage (the shrinkage rate) as fk . If these rates are independent on time t, 

then the overall process of PhA can be presented by following scheme: 
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where NS denotes concentration of atomic sites described by DWP as precursors 

for Se twisting (NS0 
is their initial concentration); Nm 

is the concentration of 

precursors for shrinkage, which originate from preliminary stage of DWP 

twisting (Nm0 
is the initial concentration of twisted Se atoms); Nf is the 
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concentration of atomic sites, affected by general shrinkage of the network; km is 

the relative probably of Se atom twisting within DWP and kf is the probability of 

further atomic shrinkage.  

It is obvious that at each time the overall amount of inter-balanced sites is held: 

 

00 mSfmS NNNNN +=++    (4) 

 

Then, for considered glassy network the classic first order differential rate 

equations, which govern changes in the concentration of twisted (the mediate 

alignment stage) and densified (the final shrinkage stage) atomic sites, can be 

composed as: 

 






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=
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mf
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m
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   (5) 

 

Solutions of rate equations (5) can be considered in terms of microstructural 

mechanism for PhA illustrated in Figure 2.  

In case the measured property (the enthalpy losses ∆H) is sensitive to both 

stages of PhA in Figure 2 (mediate and final), the next equation should be used 

to describe PhA kinetics: 
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−−+=+=   (6) 

 

We believe, this is the case for ∆H(t) kinetics obtained from DSC data, which is 

supposed to reflect the overall mechanism of PhA.  

If the measured quantity is sensitive to one of the stages in Figure 2, then each 

component of the equation (6) should be considered separately: 
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Two different possibilities in view of the above solutions are to be analyzed: 

1) the mechanism in Figure 2 happens once during overall PhA with km and kf 

rates dependent on time t (reflecting statistical distribution of atomic sites 

involved into alignment-shrinkage process);  
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2) the processes in Figure 2 are routinely repeated in such a way that final stage 

in Figure 4 becomes the initial one for subsequent alignment-shrinkage process 

of newly formed glassy network (the serial relaxation processes), or, 

alternatively, the independent relaxation processes in Figure 2 with different km 

and kf rates occur simultaneously (the parallel relaxation processes).  

The protocol used for present enthalpy losses ∆H measurements in As10Se90 

glass allows us to identify at least four quite distinguishable steps in the 

corresponding relaxation kinetics (see Figure 1): the first (the quickest) step 

lasting ~0-1.5 days, the second step from ~1.5 to 23 days, the third step from 

~23 to 365 days and the fourth (the slowest) step starting at ~365 days onwards. 

The kinetics of each step i was modelled by single exponential function in full 

respect to (6): 

 

( ) 














 ∆−
−−+=∆

τ
tt

batH i exp1 ,        (9) 

 

where a and b are materials-related parameters connected with amplitude of the 

relaxation process, τ  is effective time constant (the relaxation time) and ∆t is a 

so-called retardation time (the parameter giving time delaying of the next step of 

PhA in respect to the previous one). 

The straightforward fitting of the experimentally measured enthalpy losses 

∆H(t) curve as shown in Figure 1 with equation (9) are summarized in Table 1, 

where all parameters are fitted with a quite high goodness r
2
 (the mean square 

deviations of experimentally measured points from theoretical exponent).  

 

Table 1. Fitting parameters describing PhA knetics  

in As10Se90 ChGS with respect to equation (9). 

 

Step No (duration) Fitting goodness r
2
 a b τ ∆t 

1 (0÷1.5 days) 0.008 0 0.46 0.2 0 

2 (1.5÷23 days) 0.022 0.46 1.52 5.3 1.7 

3 (23÷365 days) 0.038 1.98 1.82 35.0 16.5 

4 (365÷9500 days) 0.034 3.80 3.27 1173 337 

 

It can be seen that the further we are from completeness of PhA, the smaller is 

effective time constant τ, this parameter being increased by over ~5 orders of 

magnitude with PhA duration changing from several days to approximately 

twenty years. The amplitude of each relaxation step b, as well as overall 

relaxation process a reveal similar behaviour, showing steady increase from 

0.46 to 3.27 and from 0 to 3.80 for b and a parameters, respectively, throughout 

PhA duration.  

In general, by accepting the growing tendency in the experimental enthalpy 

losses ∆H in ChGS, we can express the observed step-wise PhA kinetics in a 

more compact (generalized) form: 
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,  (10) 

 

where )( itt ∆−θ is Heaviside step function, whose value is accepted to be 0 

for negative arguments (t<∆ti) and 1 for positive arguments (t≥∆ti), and n is the 

number of steps distinguished in the relaxation kinetics (in our case n=4).    

 

3. Conclusions 
Long-term kinetics of enthalpy losses occurring during natural PhA at the 

ambient temperature is analysed at the example of As10Se90 glass. This kinetics 

is shown to have non-monotonic character, revealing some kind of subsequent 

plateaus and steep regions (step-wise kinetics) owing to multiple alignment-

shrinkage stages. This complexity in the PhA kinetics is treated through 

corresponding changes in structural relaxation parameters occurred during 

glass-to-supercooled liquid transition in a heating mode.  

Complex phenomenology of natural PhA in the investigated As10Se90 ChGS 

allows consideration of chalcogen-rich glasses as nonlinear disordered systems 

exhibiting significant chaotic behaviour. 
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Abstract. Since cardiac system is capable of exhibiting chaotic behaviors, many
works have been carried out to study its dynamics. In this paper, based on Grudziński
and Żebrowski’s model, the impacts of external periodic stimuli on cardiac impulses
were studied using the scale index and Lyapunov exponent. Obtained results revealed
that the scale index can detect special behaviors in the action potential whereas the
Lyapunov exponent is not capable of uncovering them. Furthermore, it was found
that the non-periodicity of pacemaker rhythms in the presence of external factors
is not high, but the restoration of the heart to normal conditions requires medical
attentions.
Keywords: Chaos, Scale index, Lyapunov exponent, Cardiac system, Action poten-
tial.

1 Introduction

One of the pioneering mathematical models describing heartbeat dynamics has
been established by Van der Pol and Van der Mark [1]. Important similarities
between their oscillator behavior and cardiac impulses such as oscillation at
rates, without effecting the amplitude of oscillation motivated other researches
to extend this topic [2,3]. Recently, Grudziński and Żebrowski [4] have pro-
posed a modification of the original Van der Pol oscillator as a more complete
model of pacemaker rhythms by considering effective biological factors in gen-
eration of an action potential.
There are several researches focusing on the evidences of nonlinear character-
istics and chaotic characteristics in cardiac system dynamics [5,6]. Two basic
indicators of chaotic motion is: sensitive dependence on initial conditions and
non-periodic long-term behavior [7]. So, if a given dynamical deterministic non-
linear system exhibit two above mentioned characteristics, then it is said to be
chaotic. The Lyapunov exponent can be an indicator of sensitive dependence
on initial conditions, albeit it cannot specify non-periodicity [8]. Hence, for
proper investigation of the chaos, there is a need to a new scale to determine
non-periodicity. The scale index proposed in [8], can meet our requirement.
It can complement the Lyapunov exponent to an exact discussion about the
chaotic behavior. Our innovation is the use of the scale index to comprehensive

77



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

study about cardiac impulses.
After the introduction, the mathematical model of the heart pacemaker [4] is
reviewed in Section 2. Then a brief discussion about the Lyapunov exponent
and the scale index are presented in Section 3. Section 4 includes the obtained
results. Finally, conclusions are discussed in Section 5.

2 Mathematical Model

In this paper the model proposed by Grudziński and Żebrowski [4] was em-
ployed. Periodic and chaotic behaviors of their model correspond to the normal
and pathological functioning of the cardiac conducting system, respectively [9].
Their model is as follow:

d2x

dt2
+ α(x− v1)(x− v2)

dx

dt
+
x(x+ e)(x+ d)

ed
= F (t)

A,α, e, d > 0, v1v2 < 0.

where α changes the refractory time, the (v1, v2) pair modify the frequency
of the action potential or the value of the resting potential, e together with
d control the diastolic period [4] and F (t) = Asin(ωt) is an external driving
which is available for external adjustments [9].
For the sake of simplicity the above equation was transformed to a set of two
coupled first-order ordinary differential equations (ODE) [9]:

ẋ = y

ẏ = F (t)− α(x− v1)(x− v2)y −
x(x+ e)(x+ d)

ed

Table I illustrates parameter values which was used in this paper to reproduce
the normal action potential carrying the main properties of the natural action
potential in the absence of external driving. Under this condition, the system
can represent periodic behaviors as well as chaotic ones under different values
of A with the same initial condition: [x0, y0] = [−0.1, 0.025].

A ∈ [0, 12]

α 15

v1 0.5

v2 -0.3

e 1.4

d 1.5

omega 1.9

Table 1. Parameter Values

The aim of [4] was to reproduce the normal rhythms of the cardiac system.
Moreover, in [9] the authors have demonstrated that different initial conditions
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may exhibit the various behaviors of the action potential which may be related
to the abnormal functioning of the cardiac pacemaker. However, neither [4] nor
[9] have investigated the effects of external periodic forcing on the pacemaker
impulses.

3 Methods

3.1 Lyapunov Exponent

The Lyapunov exponent measures the rate of the convergence/divergence of
the trajectories of a given dynamical system in the phase space [10]. Indeed, it
is a quantitative measure to indicate sensitive dependence on initial conditions.
A typical m-dimensional dynamical system has m Lyapunov exponent which
can be negative, positive or zero. The existence of a positive Lyapunov ex-
ponent indicates chaos [10–12]. So, Lyapunov exponents are usually used to
determine whether the system is chaotic or not.
Generally, the Lyapunov exponents can be estimated from either the differ-
ential equations that govern underlying dynamics or the observed time series
[13,14]. In this paper, the Wolf’s algorithm in which the Lyapunov exponent
in the ith direction is computed as follow:

λi = lim
t→∞

1

t
ln

∥δxi(t)∥
∥δxi(0)∥

.

was used. Where pi(0) represents initial distance between two nearly orbits
and pi(t) distance between them after time t in the ith direction.
First, the Lyapunov exponent was computed for a given control parameter, A,
then the amplitude of periodic force was increased by 0.01, and the new Lya-
punov exponent was computed versus the new A. This process was continued
until the whole range of the interval [0, 12] was covered.

3.2 Scale Index

Non-periodic behavior means that there are trajectories that do not settle down
to periodic or quasi periodic orbits as t → ∞ [7]. Although the Fourier trans-
forms can be used for studying the periodicity of a given signal in frequency
domain, it has a limitation, namely, that the signal must be stationary. There-
fore, to study the periodicity of a non-stationary signal, the wavelet transforms
must be replaced. Recently, the scale index was proposed in the basis of the
wavelet transforms as a measure to investigate the degree of non-periodicity
[8].The summarized definition of the scale index is introduced as follows.
The CWT of the signal f at time u and scale s is defined as:

Wψf(u, s) =

∫ +∞

−∞
f(t)ψ∗

u,s(t)dt.

where

ψu,s(t) =
1√
s
ψ(
t− u

s
).
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The inner scalogram S
inner

of f is defined as:

S
inner

(s) = (

∫ d(s)
c(s)

|Wψf(u, s)|2du
d(s)− c(s)

)
1
2 .

Indeed, the inner scalogram is the normalized energy of the CWT of f on inter-
val [c(s), d(s)] at scale s. In practice, the inner scalogram is studied on a finite
interval [s0, s1]. The scale smax is a scale for which the inner scalogram reaches

its maximum and smin is the smallest ones, i.e., S
inner

(smin) ≤ S
inner

(s) for
all s such that smax ≤ s ≤ s1. So, the scale index, iscale, of f on the scale
interval [s0, s1] is computed as follow:

iscale =
S
inner

(smin)

S
inner

(smax)
.

The scale index, iscale, is defined such that 0 ≤ iscale ≤ 1: Highly non-periodic
orbits correspond to the values close to 1 and periodic orbits to the values
close to 0. In contrast with the Lyapunov exponent, the bounded feature of
the scale index makes it as a much sensible tool in the sense of chaoticity and
non-periodicity measures.
In this paper the Daubechies eight-wavelet (db8) function and the scale param-
eter from s0 = 1 to s1 = 512, with ∆s = 1 were considered in the computation
of the iscale for a given control parameter. Increasing control parameter by
0.01, the new iscale was computed for new parameter and this procedure was
continued until the whole range of the control parameter was covered.

4 Results

In this section the effects of changing the amplitude of external stimuli on ac-
tion potential are discussed.
In order to investigate different states of the model, the bifurcation analysis
method was applied. For do, the amplitude of external forcing was taken as a
control parameter. To show the global structure of the model, the amplitude
of external forcing A, was restricted to vary on a finite interval [0,12]. Figure 1
shows the bifurcation diagram. Both the local maximum and minimum values
of the x-variable were plotted in the bifurcation diagram. It is clear that both
kinds of orbits (periodic and non-periodic) can be achieved with changing A.
Accordingly, for the each value of control parameter, the action potential was
generated. Figure 1 shows the action potential and related phase spaces in
the absence (A = 0) and presence of the external forcing. In the absence of
any external stimuli, it can be recognized that the heart behaves as a periodic
oscillator [15]. Pan et al. [16] have showed that the external stimuli may accel-
erate the action potential generation in cardiac pacemaker cells. Accordingly,
generated action potentials in the presence of external force (e.g. A = 1.42 and
A = 4.49) depicted increase in the heartbeat rhythms generation. This accel-
eration of the rhythms generation can lead to tachycardia [17]. In addition,
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Fig. 1. Bifurcation diagram and phase spaces for different values of A and related
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Fig. 2. Lyapunov exponent vs. A.

these figures showed abnormalities in the action potential. Abnormalities may
be caused by strong interrelation between inward and outward ion currents.
Especially, it is evident from Figure 1 that changing the amplitude of external
periodic driving has been resulted in appearing delayed after depolarization in
the action potential. Briefly, these diagrams demonstrated that:

1. The parameter sensitivity of the action potential compared to the ampli-
tude of external forcing was very high [18]. This parameter sensitivity of the
action potential confirmed the previous works [19,20] proving the existence
of the chaos in the cardiac system.

2. External stimuli may accelerate action potential generation in cardiac pace-
maker cells [16].

3. There were three distinct regions defined as A ∈ [0.31, 0.44],[1.34, 1.81] and
[3.57, 4.82] for which the behavior of the system was non-periodic. The
region defined as A ∈ [1.34, 1.81] was more non-periodic in comparison
with two others, since the space between two branches of the bifurcation
diagram had been filled thoroughly. In this region the functioning of the
cardiac pacemaker was more abnormal and no regular patterns in the action
potential were observed.

After these recognitions, the Lyapunov exponent need to be computed by con-
sidering the different values of control parameter for identifying chaotic regions.
Figure 2 shows the Lyapunov exponent versus control parameter A. Regions
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Fig. 3. Scale index vs. A.

associated with the negative values of the Lyapunov exponent indicated that
the system was in stable states and cardiac pacemaker functioning was nor-
mal. It is clear from Figure 2 that the value of the Lyapunov exponent for
A ∈ [0.31, 0.44], [1.34, 1.81] and [3.57, 4.82] was positive and cardiac pacemaker
functioning was abnormal. These results were in accordance with previous
works [19,20] showing the pathological states have positive Lyapunov expo-
nents and hence chaotic nature. Especially, it was found that The variation
range of the Lyapunov exponent in the region defined as A ∈ [1.34, 1.81] was low
than the A ∈ [3.57, 4.82]. In terms of the Lyapunov exponent this means that
the latter region was more chaotic, whereas the bifurcation diagram showed
that the non-periodicity in the latter’s was low. This perceived shortcoming of
the Lyapunov exponent in addressing whether the system’s behavior was more
non-periodic or low demands a new measure for properly identifying chaos in
the cardiac system. Accordingly, it was illustrated how the scale index iscale
can detect the non-periodic orbits of cardiac pacemaker.
In order to show the effectiveness of the scale index, iscale, its diagram was
compared with the Lyapunov exponent and bifurcation. Figure 3 depicts the
variation of iscale versus to A. Due to better resolution, A was restricted to
vary on a finite interval [1,5.5]. It was shown that:

1. There was a good agreement among the chaotic regions of the bifurcation
diagram, regions where the Lyapunov exponent were positive and regions
where iscale was much greater than 0. The values of A for which the
Lyapunov exponent was negative were also the values for which iscale ≈ 0.
It is noteworthy that the high value of the scale index associates with
the chaotic regions [8]. Since pacemaker cells generate periodic impulses in
normal conditions and these impulses are responsible for controlling the rate
and rhythm of the heartbeats, the high value of the scale index displayed
disturbance in the periodicity of the action potential which has been caused
by changes in the rate and rhythm of heartbeats.

2. It is significant to know that the relative maximum in the iscale and the
sudden expansion of the size of the attractor at A = 1.42 were simultane-
ous. This point is in agreement with overlapping the main branches of the
bifurcation diagram which was not detected by the Lyapunov exponent.
Also, the same overlapping was occurred for the sudden contraction of the
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size of the attractor at A = 4.49. As mentioned before, the appearance of
two relative maximums indicates the acceleration in the rhythms genera-
tion and alternation in the amplitude of the action potential related to the
abnormal functioning of the cardiac pacemaker, like arrhythmia.

3. The values range of the scale index on the region defined as A ∈ [1.34, 1.81]
was greater than the region defined as A ∈ [3.57, 4.82], the result that had
previously been expected from the bifurcation diagram.

4. It is also noticeable that the numerical computations resulted that (iscale)max ≈
0.28, expressing the measure of chaoticity and non-periodicity in the cardiac
action potential was not high, but the restoration of the heart to normal
conditions requires medical attentions.

5 Conclusions

Focusing on the model of Grudziński and Żebrowski, the effects of changing
the amplitude of external forcing on pacemaker rhythm were examined and the
deficiency of the Lyapunov exponent in detecting non-periodic behaviors in the
action potential was shown. Then the ability of the scale index in overcoming
the shortcoming of the Lyapunov exponent was explored. Furthermore, it
was shown that the measure of the chaos in the action potential was not high.
Finally, it was found that the scale index can provide a non-invasive assessment
of the heart in real-life conditions.
Next thing to be mentioned is that the results of this study can be improved by
analyzing the models that can more accurately represent the natural conditions
of the heart dynamics under external factors. Furthermore, the findings of
this study provide new perspectives into the new methods should be applied
to control of abnormal heartbeats in order to avoid chaotic behaviors in the
action potential.
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CHAOTIC SOLUTIONS IN NON LINEAR
ECONOMIC- FINANCIAL MODELS

Giovanni Bella�,Paolo Mattanay,Betrice Venturiz.

July 31, 2013

Abstract
Techniques from dynamical systems, speci�cally from bifurcation the-

ory, are used to investigate the occurrence of cycle and chaotic solutions
in non linear economic-�nancial models. In particularly, we consider a
general class of endogenous growth models as formalized by Mulligan
and Sala-i-Martin (1993), reducible in the form of a non linear three-
dimensional system.

The Lucas model can be considered as particular example of this gen-
eral class. We found that Smale horseshoe chaotic behavior will be exhib-
ited in the neighborhood of parameter space of our economic model where
a homoclinic Shilnikov orbits occur.
Keywords : homoclinic Shilnikov bifurcation, Smale horseshoe chaos.
JEL classi�cation : C61, C62, E32

1 Introduction

The study of homoclinic orbits and chaotic phenomena in nonlinear dynami-
cal systems has attracted much attention in economics (see i.e. Lorenz H.W.,
(1989), Benhabib J., (1992), Jarsulic M., (1993), Benhabib J. and Perli R.,
(1994), Mattana P.and Venturi B. (1999), Boldrin Michele, Nishimura Kazuo,
Shigoka Tadashi,Yano Makoto (2000), Mattana P. (2004), Neri U.and Venturi
B. (2007), Mattana P., Nishimura K., Shigoka T. (2008),. Bella G. Mattana
P. and Venturi B. (2013). It has been showed that the concept of cycles and
chaos are perfectly compatible with a lot of standard equilibrium models that
incorporate the assumption of stationary motion, preference and technology.
In this paper we prove analytically the existence of a homoclinic Shilnikov

orbit and horseshoe chaos in a model of a classe of nonlinear economic-�nancial
models.
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Under Shilnikov Theorem assumptions, we found that the Smale horseshoe
chaos occurs both theoretically and numerically in a particurly system of a
generalized class of one equilibrium point, two sector models of endogenous
growth, as formulated by Mulligan B.- Sala-I-Martin X.,1993.
As described by Guckenheimer J. - Holmes P.,1983, and Wiggins S.,1990,

usually a chaotic attractor has two or more equilibrium points: one determines
the location and structure of the attractor, and another is used to build a
suspended �ow which forms the spine of the attractor.However, as reported in
recently papers one equilibrium point is still possible to form a chaotic attractor.
The work develops as follows. The second Section introduces the consider-

ated classe of generalized two sector models of endogenous growth, as a dynam-
ical system.
The third Section studies the long-run properties of the equilibrium of a

particular example of this general class: the Lucas Model.
We refer to the original paper of Mulligan B.- Sala-I-Martin X.,1993 and Lu-

cas 1988 for an appropriate economic description of the system.The last Section
is devoted to give a rigorous proof of the conditions leading to the emergence of
a homoclinic Shilnikov orbit.
Finally, chaos is obtained for the existence of Smale horseshoes in the discrete

dynamics of the Shilnikov map de�ned near the homoclinic orbit.
In the last section we show optimality for paths starting in the homoclinic

Shilnikov orbit and chaotic solutions very closed to the homoclinic orbit (their
satisfy the transversality conditions).
Some economic implications of this analysis are discussed.

2 The Generalized Class of Two Sector Models
of Endogenous Growth

We review the generalized class of two sector models of endogenous growth, with
externalities, as formulated by Mulligan B.- Sala-I-Martin X.,1993.The model
deal with the maximization of a standard utility function:Z 1

0

c1�� � 1
1� � e��tdt (1.1)

where c is per-capita consumption, � is a positive discount factor and � is the
inverse of the intertemporal elasticity of substitution. The constraints to the
growth process are represented by the following equations

:

k = A((h(t)�hu(t)�u)(�(t)��k(t)�k)
^
h(t)

�^
hk(t)

�^
k � �kk(t)�

:

c(t) (1.2)

_h = B((h(t)�h(1� u(t)�u))((1� �(t)��k(t)�k)
^
h(t)

�^
hk(t)

�^
k � �hh(t)

where k is physical capital, h is human capital, �kand �hbeing the private
share of physical and the human capital in the output sector, �k and �h being
the corresponding shares share in the education sector, u and v are the fraction of
aggregate human and physical capital used in the �nal output sector at instant t

2
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( and conversely, (1�u) and (1�v) are the fractions used in the education sector),
A and B are the level of the technology in each sector, � is a discount factor, �^

k
is a positive externality parameter in the production of physical capital, �^

h
is a

positive externality parameter in the production of human capital.
The equalitys �k + �h = 1and �k + �h = 1ensure that there are constant

returns to scale at the private level. At the social level, however, there may
be increasing, constant or decreasing returns depending on the signs of the
externality parameters.
All other parameters !=(�k, �^

k
; �h, �^

h
; �k,�^

k
; �h ,�^

h
, �; 
; �; �) live inside

the following set 
 � (0, 1)�(0, 1)�(0, 1)�(0, 1)�(0, 1)�(0, 1)�(0, 1) �R4+
The representative agent�s problem (1.1)-(1.2) is solved by de�ning the cur-

rent value Hamiltonian.

H = c1���1
1�� + �1(A((h(t)

�hu(t)�u)(�(t)��k(t)�k)
^
h(t)

�^
hk(t)

�^
k � �kk(t) �

c(t)) + �2(B((h(t)
�h(1� u(t)�u))((1� �(t)��k(t)�k)

^
h(t)

�^
hk(t)

�^
k � �hh(t))(1.3)

where �1 and �2 are co-state variables which can be interpreted as shadow
prices of the accumulation. The solution candidate cames from the �rst-order
necessary conditions (for an interior solution) obtained from the Maximum Prin-
ciple, with the usual transversality condition:

lim
t!1

[e��t (�1k + �2h)] = 0 (1.4)

We call the solution of this optimal control problem from (1.1) to (1.3) a
Balance Growth Path (B.G.P). The maximized Hamiltonian is jointly concave in
(k, h); this fact is a su¢ cient condition for a solution of the �rst-order conditions
(see Mulligan B.-Sala-I-Martin X.,1993, Benhabib J. - Pearli R., 1994, (BP),
Mattana P. Venturi B.1999,(MV)).
We consider only the competitive equilibrium solution.
After eliminating v(t) the rest of the �rst order conditions and accumula-

tion constraints entail four �rst order non linear di¤erential equations in four
variables: two controls (c and u) and two states (k and h).
By using new variables, since h, k and c grow at a constant rate and u is

a constant, Mulligan B.-Sala-I-Martin X.,1993, have transformed a system of
ordinary di¤erential equations for c, u, k and h, , into a system of three �rst
order ordinary di¤erential equations.
Setting ,

x1 = h

�^
h

(�^
h

�1)

k ; x2 = u; x3 =
c
k (1.5)

and
A = B = 1
we get:
_x1 = �1(x1; x2; x3; �k; �^

k
; �h; �^

h
; �k; �^

k
; �h; �^

h
; �; 
; �; �)

_x2 = �2(x1; x2; x3; �k; �^
k
; �h; �^

h
; �k; �^

k
; �h; �^

h
; �; 
; �; �)

_x3 = �3(x1; x2; x3; �k; �^
k
; �h; �^

h
; �k; �^

k
; �h; �^

h
; �; 
; �; �)

(1.6)
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where the �i with i = 1; 2; 3 are complicated nonlinear functions ; which de-
pend of the parameters(x1; x2; x3; �k; �^

k
; �h; �^

h
; �k; �^

k
; �h; �^

h
; �; 
; �; �) of the

model.
Mulligan B. - Sala-I-Martin X.,1993, have also shown that for the new model

(1.6), under phisical economic assumptions, exist only one stationary point
P �(x�1, x

�
2; x

�
3).

3 The Lucas Model

The general model just presented collapses to Lucas�s model (1988) that is ana-
lyzed by Benhabib and Perli (1994), Mattana and Venturi (1999) and Mattana
(2004).when depreciation is neglected and the following restrictions are imposed

�� = �^
k

= 0;�^
k

= �^
h

= �� = �k = 0;�� = �
h
= 1� �

k
;�

u
= �

h
(2.1)

The equations of the Lucas�s model can be formalized in R3 in the following
form

_x1 = x�1x
��1
2 � x1x3 +  (��1)� (1� x2)

_x2 = �x22 +  
(��1)
� x2 + x1x3

_x3 = �x1��2 x��11 x3 � �
�x3 + x

2
3

(2.2)

as a system of three �rst order di¤erential equations where
� = ���

� � = �(��1)
�  = �(1��+
)

��1 � = �
� (2.3)

A stationary (equilibrium) point P �of the system is any solution of

x�1��1 x� ��12 � x�1x�3 +  (1� x2)x�1 = 0
�x22 +  

(��1)
� x2 � x�2 x�3 = 0

�x�1��2 x���11 x�3 � �x�3 + x
�2
3 = 0

(2.4)

.Then, we solved the system in (2.4) and we get the following steady state
values

x�1 = x�2

h
�����(1�u�)+�(��
)

�(���)

i1=(��1)
(2.5a)

x�2 =
(1��) (���)

��[
��(1��+
)] (2.5b)

x�3 = �x�2 + �
(1��+
)

� (2.5c)

where � = ���
� simpli�es the notation.

The system (2.2) possesses an interior steady-state characterized by the sta-
tionary values in (2.5.a), (2.5.b) and (2.5.c) for x�1, x

�
2 and x

�
3.It is well-known

that many theoretical result relating to the system depend upon the eigeinvalues
of the Jacobian matrix evaluated at the stationary point in some values of the
parameters.
Let J be the Jacobian matrix and P �(x�1, x

�
2; x

�
3) the stationary point

(J(P �) = J� , see appendix A).
The �feasible�restrictions in the parameters are satis�ed if and only if the

parameters lie in one of the following subsets of 
 :

4
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i) if ! 2 
1; J� has one negative eigenvalue and two eigenvalues with positive
real parts. (This means that the competitive equilibrium path is locally unique).
ii) ! 2 
2; J� has one positive eigenvalue and two eigenvalues with negative

real parts.
iii) ! 2 
3 there exist two subsets 
A3 and 
B3 , and such that:

a) if ! 2 
A3 J�has one eigenvalue with a positive real part and two eigenvalues
with negative real parts.


A3 =
n
� 2 (�;� ); � 2 (0:1; �= ); 
 2 ( (1��)(���)� ;

 

 )
o

where
 

 is the Hopf bifurcation value found in MV (Mattana P. and

Venturi B.1999)

b) if ! 2 
B3 J�has three eigenvalues with positive real parts:


B3 =
n
� 2 (�;� ); � 2 (0:1; �= ); 
 2 ( 
 ; �)

o
:

So, there is either a continuum of equilibria converging towards the steady-
state or no stable transitional paths at all.
In order to prove the existence of homoclinic Shilnikov orbit analitically, in

the next section, we focus our attention in the set 
A3 :

4 The Emergence of a Homoclinic Orbit.

We remember that a homoclinic orbit is a transversal intersection between the
stable manifold with the unstable manifold of a hyperbolic point (connects a
saddle to itself). In general is not easy to prove the existence of a homoclinic
orbit for a dynamical system.
We rigorously prove that our system satis�es all conditions stated in the

Shilnikov Theorem.
In the �rst, we translate the equilibrium point P � in the origin W �and

we make use of the normal form( see Appendix B and MV 1999), in the new
variables the system becames:

dwi
dt = fi(w1; w2; w3) with i = 1; 2; 3 (3.1).

Lemma 1 If ! 2 
A3 the equilibrium point W �(0; 0; 0)is a saddle focus

The jacobian J�in 
A3 has one positive real and two complex conjugate
eigenvalues whose real parts is negative: then the equilibrium point P �in 
A3 is
a saddle focus and the real eigenvalue is bigger than the absolu value of the real
part of the complex conjugate eigenvalues.

Lemma 2 In 
A3 the system (2.2) has an homoclinic Shilnikov orbit.

Proof. See Appendix B.
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Figure 1

In Figure 1. we have the graph of the Homoclinic Shilnikov Orbit with:
w1 = w; w2 = u;w3 = v

Remark 1 In the set 
B3 the jacobian J
� has one positive real and two complex

conjugate eigenvalues whose real parts is positive.In this situation the model is
expanding and thus it cannot have homoclinic orbits .

Theorem 2 1.If the third-order autonomous system (2.2) has a saddle-focus
(of index 2) in the unique equilibrium points, P � with eigenvalues associated to
J� given by r 2 R and � + i� 2 C; such that r� > 0.with a further constraint
jrj > j�j, and there exists a homoclinic orbit, connecting W � then
(a) The Shilnikov map, de�ned in a neighborhood of the homoclinic orbit of

the system, possesses a countable number of Smale horseshoes in its discrete
dynamics.
(b) For any su¢ ciently small C1-perturbation g of f the perturbed system
dwi
dt = gi(w1; w2; w3) with i = 1; 2; 3(3.2)
exhibits a Smale horseshoe type of chaos has at least a �nite number of

Smale horseshoes in the discrete dynamics of the Shilnikov map de�ned near
the homoclinic orbit.
(c) Both the original system (2,2) and the perturbed system (3.1) exhibit

horseshoe chaos.
Proof. Theorem 1 is a direct application of the Shilnikov Theorem (see Guckenheim-
Holmes1983,pp.151-152).We only have to verify that the assumptions of Shilnikov
theorem are satis�ed.
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By lemma1 the equilibrium point W �is a saddle focus when ! 2 
A3 and the
real eigenvalue is bigger than the real part of the complex conjugate eigenvalues.
By lemma 2 the system has a homoclinic Shilnikov orbit.
This covers completely the assumptions of Shilnikov theorem.

(Q.E.D.)

5 Transversality Conditions

Proposition 1 The transversality conditions are satis�ed on the homoclinic
orbit.

As shown in BP the transversality conditions are satis�ed on the balanced
growth paths. Let W � (�; �, �, �; 
� )be the only steady state in 
A3 . Let U
in R3be a small open neighborhood of W �:So for each (�; �, �, �;

_

 ) 2 
A3 , if

we choose U su¢ ciently small, each path inside, starting from a point in the
homoclinic orbit, satis�es the transversality conditions.
It follows direcly from continuity arguments (the theorem of the permanence

of the sign for continous functions).

Proposition 2 The transversality conditions hold near the homoclinic orbit
where the Shilnikov Theorem is true.

Proof. Let gi be a C1perturbation of fi where the Shilnikov Theorem is
true.near the homoclinic orbit.
Then for each (�; �; �, �;

_

 ) 2 
A3 there exists a constant L such that��f(_w(t))� g(w(t))�� < L ��_w(t)�w(t)�� (3.3)

( we consider (3.3) in vectorial form)the distance between a path starting in
the homoclinic Shilnikov orbit and a Smale horseshoe chaotic path of g can be
arbitary small.
From proposition 1 the transversality conditions are satis�ed on the homo-

clinic orbit of (3.1) then their are satis�ed also in the chaotic solutions. We
can choose an arbitary small open set U of f a path starting in the homoclinic
orbits in which there is a path that exhibits a Smale horseshoe chaos.
But the Shilnikov Theorem stated that for any su¢ ciently small C1-perturbation

g of f , the perturbed system exhibits a Smale horseshoe chaos.
Then the transversality condtion are satis�es.

6 Conclusions

This paper aims to give a contribution of research to conditions which determine
a chaotic behavior in the long-run properties of an economic model . Investi-
gations of this kind are important in economic theory since help mapping the
regions of the parameters space in correspondence of which the capacity of the
models to produce indications on future economic outcomes starting from given
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fundamentals is drastically impaired.The aim of the present paper is to point
out some basic ideas that may be useful to prove the transition to bounded and
complex behavior, and to explain how the presence of an Homoclinic Shilnikov
orbit and chaos in a model of a general class of economic-�nancial models can
be interesting from an economic and dynamic point of view.
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7 Appendix A

As shown in the text, Luca0s model gives rise to the following system of �rst-

order di¤erential equations

�
x1 = x�1x

1��
2 � x1x3 +  (1� x2)x1;

�
x2 = �x22 +  

(��1)
� x2 � x2x3; (A.1)

�
x3 = �x1��2 x��11 x3 � �x3 + x

2
3;

where:
� = ���

� � = �(��
)
�  = �(1��+
)

��1 � = �
� ;

The system has the single equilibrium point: P �(x�1; x
�
2; x

�
3)

x�1 = x�2

h
����(1��+
)+�(��
)x�2

��

i1=(��1)
x�2 =

(1��)(���)
��[
��(1��+
)]

x�3 = �x�2 + �
(1��+
)

�

(A.2)

The jacobian matrix J associated with the system (A.1) evalueted at the
unique equilibrium point P� is given by J (P�):

J(P �) =

264 J�11
x�1
x�2
(J11 +  x

�
2) �x�1

0 ��x�2 x�2
J11�x

�
3

x�1

J11�x
�
3

x�2
x�3

375(A.3)
where
J�11 =

(��1)[
����(1��+
)]
�[
��(1��+
)] ;(A.4)

and
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Tr(J �) = 3�1 � J�11 � J�22 � J�33 =
�(2� � 
)

�
x�2; (A.5)

Det(J �) = J�11x
�
2x
�
3

�(
 � �(1� � + 
))
�(� � 1) ; (A.6)

B(J �) = J�11x
�
3 +

�2(� � 
))
�

x�22 (A.7)

8 Appendix B.

The Shilnikov type homoclinic orbit in an analitic style.
To apply the Shilnikov theorem to the system (A:1), we have to prove that

the system has a homoclinic Shilnikov orbit at the equilibrium point P*. If the
parameters lie in the following subsets:


A3 =
n
� 2 (�;� ); � 2 (0:1; �= ); 
 2 ( (1��)(���)� ;

 

 )
o

where
 

 is the Hopf bifurcation value found in Mattana and Venturi1999

(MV) then the singular equilibrium point P� 2 
A3 is a hyperbolic saddle focus.
In other words, the eigenvalues of (A.3) the Jacobian matrix of the system

(A.1) evalueted in P�are of the form �1 = r and �2=3 = �p� iq :a saddle focus,
with r > 0; p > 0; q 6=0 and r > p > 0.
We remember that a homoclinic orbit joining the equilibrium point P�of

system (A:1) is doubly asymptotic with respect to time t along the solution
manifold.
We translate the system in the origin and we put the system (A.1) in normal

form and we get:
�
w1= r w1+F 1aw1w2 +F 1bw1w3 +F 1cw2w3 +F 1dw

2
1+F 1ew

2
2+F 1fw

2
3;

�
w2= pw2 �qw3 +F 2aw1w2 +F 2bw1w3 +F 2cw2w3 +F 2dw21+F 2ew22+F 2f w23
�
w3=qw2 +pw3 +F 3aw1w2 +F 3bw1w3 +F 3cw2w3 +F 3dw

2
1+F 3ew

2
2+F 3f w

2
3

(B.1)

where
q = 2

p
BJ:

We compute the stable and unstable manifolds of the saddle focus equi-
librium point to construct the Shilnikov type homoclinic orbit in an analitic
style.So let�s begin with the analitic expression of the one-dimensional un-
stable manifold associeted with the real eigenvalue r where am .bm .cm .are
undetermined coe¢ cients such that

w1(t) = a0 +
1X

k=1

ake
k�t; (B.2)

w2(t) = b0 +
1X

k=1

bke
k�t;

w3(t) = c0 +
1X

k=1

cke
k�t
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w1(t) = a0 + a1e
�t + a2e

2�t + a3e
3�t + a4e

4�t:::

w2(t) = b0 + b1e
�t + b2e

2�t + b3e
3�t + b4e

44�t ::

w3(t) = c0 + c1e
�t + c2e

2�t + c3e
3�t + c4e

44�t24 a0
b0
c0

35 =
24 w�1
w�2
w�3

35 =
24 0
0
0

35 ; I =

24 1 0 0
0 1 0
0 0 1

35(B.3)
The Jacobian of the system (B.1) evalueted in unique steady stateW �(w�1 ; w

�
2 ; w

�
3) =

(0; 0; 0); the origin, is given by

A(w�) =

0@ r 0 0
0 p �q
0 q p

1A,(B:4)
DetA(w�) = r(p2 + q2):
For k=1 substuting (B:2) in the system:(A:1) and matching the coe¢ cients

of ek�t on both side of the risultanting equations, we get (�I�A(W �))

24 a1
b1
c1

35 =0@ �� r 0 0
0 �� p �q
0 q �� p

1A0@ a1
b1
c1

1A = =

0@ �a1 (r � �)
�qc1 � b1 (p� �)
qb1 � c1 (p� �)

1A =

Let be � = r the real eigenvalues, we known that:
det(�I �A(W �)) = 0

so:0@ �a1 (r � r)
�qc1 � b1 (p� r)
qb1 � c1 (p� r)

1A = 0

�a1 (r � r) = 0
�qc1 � b1 (p� r) = 0
qb1 � c1 (p� r) = 0

=) a1 6= 0; b1 = 0; c1 = 0

24 a1
b1
c1

35 =
24 �
0
0

35
and a1 = � can be expressed with an arbitrary parameter as �:
For k=2 substuting (B:2) in the system:(A:1) and matching the coe¢ cients

of ek�t on both side of the risultanting equations, we get0@ 2�� r 0 0
0 2�� (�p) �q
0 q 2�� (�p)

1A24 a2
b2
c2

35 =
0@ F1

F2
F3

1A
24 a2
b2
c2

35 =
0@ 1

r 0 0

0 p+2r
p2+4pr+q2+4r2

q
p2+4pr+q2+4r2

0 � q
p2+4pr+q2+4r2

p+2r
p2+4pr+q2+4r2

1A0@ F1da
2
1

F2da
2
1

F3da
2
1

1A =

=

0@ 1
ra
2
1Fd

a21F2d
p+2r

p2+4pr+q2+4r2 + qa
2
1

F3d
p2+4pr+q2+4r2

a21F3d
p+2r

p2+4pr+q2+4r2 � qa
2
1

F2d
p2+4pr+q2+4r2

1A =

0B@
1
ra
2
1Fd

a21
F3d

4pr+p2+q2+4r2 q + a
2
1

F2d(p+2r)
4pr+p2+q2+4r2

�qa21 F2d
4pr+p2+q2+4r2 + a

2
1 (p+ 2r)

F3d
4pr+p2+q2+4r2

1CA
11
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=

24 a2
b2
c2

35=
0BB@

F1da
2
1

r
(F2d(2r+p)+F3dq)a

2
1

[(2r+p)2+q2]

� (F2dq
2+(2r+p)2F3d)a

2
1

[(2r+p)2+q2]

1CCA
For k=3 substuting (B:2) in the system:(A:1) and matching the coe¢ cients

of ekrt on both side of the risultanting equations, we get:24 a3
b3
c3

35 =
0B@

1
3r�r 0 0

0 3r+p
[(3r+p)2+q2]

q
[(3r+p)2+q2]

0 � q
[(3r+p)2+q2] � p+3r

[(3r+p)2+q2]

1CA
0@ F1da

2
2

F2da
2
2

F3da
2
2

1A
24 a3
b3
c3

35 =
0BB@

F1da
2
2

2r
(F2dq+(3r+p)F3d)a

2
2

[(3r+p)2+q2]

� (F2dq+(3r+p)F3d)a
2
2

[(3r+p)2+q2]

1CCA =

24 a3
b3
c3

35 =
0BB@

F1d
2r (

F1da
2
1

r )2

(F2dq+(3r+p)F3d)
[(3r+p)2+q2] (

(F2dq+(2r+p)F3d)a
2
1

[(2r+p)2+q2] )2

� (F2dq+(3r+p)F3d)
[(3r+p)2+q2] (� (F2dq+(2r+p)F3d)a

2
1

[(2r+�)2+q2] )2

1CCA
24 a3
b3
c3

35 =
0B@

F 3
1d

2r3 a
4
1

(F2dq+(3r+p)F3d)
[(3r+p)2+q2] ( (F2dq+(2r+p)F3d)[(2r+p)2+q2] )2a41

� (F2dq+(3r+p)F3d)
[(3r+p)2+q2] (� (F2dq+(2r+p)F3d)

[(2r+p)2+q2] )2a41

1CA
For k=4 substuting (B:2) in the system:(A:1) and matching the coe¢ cients

of ekrt on both side of the risultanting equations, we get:24 a4
b4
c4

35 =
0B@ � 1

r�4r 0 0

0 4r+p
[(4r+p)2+q2]

q
[(4r+p)2+q2]

0 � q
[(4r+p)2+q2] � 4r�p

[(4r+p)2+q2]

1CA
0@ F1da

2
3

F2da
2
3

F3da
2
3

1A
24 a4
b4
c4

35 =
0BB@

F1da
2
3

3r
(F2dq+(4r+p)F3d)a

2
3

[(4r+p)2+q2]

� (F2dq+(3r+p)F3d)a
2
3

[(4r+p)2+q2]

1CCA
24 a4
b4
c4

35 =
0BBB@

F1d
3r (

F 3
1d

2r3 )
2(a1)

8

(F2dq+(3r+�)F3d)
[(4r+p)2+q2]

n
[ (F2dq+(3r+�)F3d)[(3r+p)2+q2] ]( (F2dq+(2r+�)F3d)[(2r+�)2+q2] )2

o2
(a1)

8

� (F2dq+(4r+�)F3d)
[(4r+p)2+q2]

n
[ (F2dq+(3r+�)F3d)[(3r+p)2+q2] ]2

o2
(a1)

8

1CCCA
We evalute the analitic expression of the two-dimensional stable mani-

fold associeted with the complex eigenvalues �p � iq where am .bm .cm .are un-
determined coe¢ cients such that
Let k=1be and � = �p+ iq the complex eigenvalues, we known that:

det(�I �A(W �)) = 0
so:
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0@ �p+ iq � r 0 0
0 �p+ iq + p �q
0 q �p+ iq + p

1A24 a1
b1
c1

35 = 0,
We get the following homogenous system:

�a1 (�p+ iq � r) = 0
�b1 (�p+ iq + p)� qc1 = 0
qb1 � c1 (�p+ iq + p) = 0

=) a1 = 0; b1 = �& + i�; c1 = �� + i&

24 a1
b1
c1

35 =
24 a1
b1
c1

35 =
24 0
�& + i�
�� + i&

35
24 a2
b2
c2

35 =
=

0B@
1

2(�p+iq)�r 0 0

0 (2(�p+iq)+p)
[(2(�p+iq)+p)2+q2]

q
[(2(�p+iq)+p)2+q2]

0 � q
[(2(�p+iq)+p)2+q2]

(2(�p+iq)+p)
[(2(�p+iq)+p)2+q2]

1CA
0@ F1cb1c1 + F1eb

2
1 + F1f

c21
F2cb1c1 + F2eb

2
1 + F2f c

2
1

F3cb1c1 + F3eb
2
1 + F3f c

2
1

1A
24 a2
b2
c2

35 =
0BB@

F1cb1c1 +F1eb
2
1+F1f c

2
1

2(�p+iq)�r
(2(�p+iq)+p)(F2cb1c1 +F2eb21+F2f c21)+(F3cb1c1 +F3eb

2
1+F3f c21)q

[(2(�p+iq)+p)2+q2]

� q(F3cb1c1 +F3eb
2
1+F3f c21)+(2(�p+iq)+p)(F2cb1c1 +F2eb

2
1+F2f c21)

[(2(�p+iq)+p)2+q2]

1CCA :
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Influence of densimetric Froude number on sharp-
edged orifice jets 
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Abstract: We have performed an experimental study on the influence of the densimetric 
Froude number on the statistics of the velocity fields of jets issuing from a round, sharp-
edged orifice, by means of a novel technique, namely Feature Tracking Velocimetry 
(FTV). The velocity and turbulent kinetic energy profiles orthogonal to the jet axis, the 
mean streamwise centreline velocity decay, and the integral turbulent kinetic energy 
along the jet axis have been measured and analyzed. 
Keywords: simple jet, negatively buoyant jet, velocity measurement, turbulence.  

 
1. Introduction 
The mixing properties of simple jets have been extensively investigated in the 
last decades: on most of the experimental set-ups, a free jet issuing from a long 
pipe or a convergent nozzle was employed. As a matter of fact, Deo et al. (2007) 
[2] states that there are very few studies using a plane jet issuing from a sharp-
edged orifice-plate, perhaps due to its initial and near-field flow structure being 
far more complex (e.g. the existence of a vena contracta). Quinn & Militzer 
(1988) [12] experimentally and numerically studied a turbulent air jet from a 
sharp-edged square slot, measuring the mean velocity along the centerline, the 
turbulent normal and shear stresses (by means of hot-wire anemometry) and the 
mean static pressure (by means of a pitot-static tube) and found a pronounced 
mean streamwise velocity off-center peaks in the very near field. Afterwards, 
Quinn (1989) [13] experimentally compared jets of air issuing from a sharp-
edged elliptical and round slot and from a contoured nozzle, finding that sharp-
edged slot jets have higher mean streamwise velocity decay rates than contoured 
nozzle jets, implying higher entrainment and better mixing. Mi et al. (2001) [9] 
compared mixing performances of three types of nozzle, namely a smooth 
contraction nozzle, a long pipe and a sharp-edged orifice, with jets of air with 
Reynolds number Re = 16,000, finding that the last one provides the greatest 
rate of mixing. In spite of this performance, they underlined that investigations 
on circular jets issuing from orifice plates are very limited, possibly because the 
initial velocity profile and the near-field flow structure are more complex, and 
that, consequently, further investigations were needed to quantify the link 
between the higher mixing rate of the orifice jet and the enhanced three-
dimensionality of the initial underlying structure in round jets from sharp-edged 
orifice. A better mixing in a sharp-edged orifice (round and elliptical) jet rather 
than in a jet from contoured nozzle was found also by Quinn (2006 [14] and 
2007 [15]), in his experimental investigation via hot-wire anemometry on jets of 
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air at Re ≅ 180,000. Mi et al. (2007) [10] measured planar velocity using 
Particle Image Velocimetry (PIV) on a turbulent air jet (Re = 72,000) issuing 
from a round sharp-edged orifice plate, focusing their efforts on the coherent 
structures that develop in the near field. Hence, many authors indicate that the 
sharp-edged orifice is the most effective exit configuration for improving 
mixing however, those studies were performed at very high Re in order to have 
unambiguous asymptotic conditions. Indeed, only few studies can be found in 
literature regarding low Re and/or focusing on the regime of transition to 
turbulence. Russ and Strykowski (1993) [16] investigated the turbulent structure 
in the near field of heated jets from a round nozzle as the exit conditions 
changed from laminar to turbulent. Malmström et al. (1997) [7] measured the 
streamwise velocity profiles of low-velocity jets from round nozzles of different 
diameters to examine the dependence of the diffusion of the jet on the outlet 
conditions. 
All the quoted investigations were performed on simple jets, i.e. the 
phenomenon that develops when a fluid is released into an ambient fluid with 
the same density. When a fluid heavier than the ambient fluid is released 
upward (or, vice versa, when a lighter one is released downward), a so-called 
Negatively Buoyant Jet (NBJ) develops. There are many practical applications 
involving NBJs: among the others, the discharges into the sea of brine from 
desalination plants (e.g. Lai &Lee 2012 [5]), the improvement of water quality 
by forced mixing in reservoirs, small lakes and harbors (e.g. McClimans & 
Eidnes 2000 [8]), the forced heating or cooling of large structures such as 
aircraft hangars, buildings or rooms (e.g. Baines et al. 1989 [1]), etc; see Ferrari 
& Querzoli (2010) [3] for a detailed list. 
As, to the best of authors knowledge, the only study on NBJs from a sharp-
edged orifice is Ferrari & Querzoli (2010) [3], we present here an experimental 
investigation on the influence of the densimetric Froude number (the most 
relevant non-dimensional parameter for NBJs, see chapter 2) on the statistics of 
velocity fields of sharp-edged orifice jets, by means of a novel non-intrusive 
image analysis technique, namely Feature Tracking Velocimetry (FTV). 
 
2. Characteristic non-dimensional parameters 
In a negatively buoyant jet the flow is driven from two sources, one of 
momentum and one of buoyancy: the first region of the jet is driven mostly by 
the momentum (so it behaves similarly to a simple jet released with the same 
angle); far from the outlet, there is a second region where the buoyancy acts to 
bend the axis down (so the jet behaves similarly to a plume) (List, 1979 [6]). 
The most relevant non-dimensional parameter for the classification of buoyant 
jets is the densimetric Froude number, Fr: 
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where U0 is the mean initial jet velocity, g the gravitational acceleration, ρDISC 
the discharged fluid density, ρREC the receiving fluid density and D the outlet 
diameter. Fr has low values for heavy jets and it grows as buoyancy decreases, 
up to an infinite value for simple jets.  
The other relevant non-dimensional parameters controlling the behavior of 
inclined negatively buoyant jets are the Reynolds number, Re = U0D / υ (υ is 
the kinematic viscosity of the discharged fluid), and the angle to the horizontal, 
θ: as this last parameter controls the misalignment between the flux of buoyancy 
and the initial flux of momentum, a negatively buoyant jet is axisymmetric only 
as far as θ is 90°. 
 
3. Methods and materials 
The experimental setup simulates a standard configuration of sea discharge , i.e. 
a portion of a pipe laid down the sea bottom, with orifices on its lateral wall 
employed as diffusers. The experiments were carried out in a 30 cm wide, 21 m 
long flume with glass walls, filled with water, where a solution of water, 
sodium-sulphate (to increase the density of the solution) and pine pollen 
particles (for the visualization of the jet) was released; the jet middle vertical 
section was lighted by a light sheet generated by a laser with a cylindrical lens. 
The pine pollen particles were employed to perform experiments with a non-
intrusive image analysis technique, FTV (Feature Tracking Velocimetry) 
technique (see below). The release was in still water, to simulate a stagnant 
receiving body. The discharged solution came, through a pipe, from a constant 
head tank, supplied by a closed hydraulic circuit, to a cylindrical vessel with an 
orifice on its lateral wall. The experiments were performed with a constant flow 
rate (and high enough to have Re = 1500, larger than its critical value for the 
apparatus), Fr = 14 ÷ 37.2, θ = 65°. A simple jet (Re = 1500) was 
experimentally simulated as well for comparison. 
Velocity fields were obtained, from each couple of images, using a novel 
algorithm, namely Feature Tracking Velocimetry (FTV), which is less sensitive 
to the appearance and disappearance of particles, and to high velocity gradients 
than classical Particle Image Velocimetry (PIV). PIV algorithms obtain fields 
comparing windows of successive frame on a regular grid in all the image and 
maximizing the correlation of the light intensity function to obtain their 
displacement. The idea of FTV is to compare windows only where the motion 
detection may be successful, that is where there are high luminosity gradients. 
The FTV algorithm is suitable in presence of different seeding density, for 
example between the jet and the external fluid, where other techniques produce 
significant errors, due to the non-homogeneous seeding at the boundary. The 
procedure of analysis consist of: 

- identification of the features using the Harris corner detection (a corner 
is a region with high luminosity gradients along the x and y direction) 
(Harris & Stephens, 1988 [4]); 

- ordering of the features according to their corneress (the value of the 
Harris formula), and choice of the best features; 
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- comparison of the windows centered in the image “ith” with windows 
around he position of the initial feature in the image “i+1th”; 

- measure of the velocity as the displacement minimizing the 
dissimilarity, computed using the Lorentzian estimator; 

- validation of the samples with an algorithm based on a Gaussian 
filtering of first neighbors (define by the Delaunay triangulation). 

The statistics of velocity fields are subsequently obtained, by time averaging, 
under the hypothesis of ergodicity. 
 
4. Results 
In order to better show the different behavior of upper and lower NBJ boundaries, 
in Figure 1 profiles of velocity, orthogonal to the jet axis and non-
dimensionalised by the axial velocity, UC, for a jet with Fr = 15 and θ = 65° and 
for a simple jet with the same Re = 1500. The plot shows how velocity NBJ 
profiles become more and more asymmetric for larger s/D. For small distances 
from the origin (s/D = 3), the velocity distribution is symmetric; vice versa, 
going further along the axis (s/D= 30, 40), the velocity profiles lose the 
symmetry and the lower region tends to widen more than the upper region. 
Actually, for a NBJ, at the upper boundary the buoyancy acts in the opposite 
direction to the momentum, allowing the full development of the Kelvin Helmholtz 
waves, whilst at the lower boundary the buoyancy and momentum act in the same 
direction, limiting the widening of the profiles. 
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Figure 1. Profiles of velocity, orthogonal to the jet axis and non-dimensionalised 
by the axial velocity UC: for a jet with Fr = 15 and θ = 65°; Re = 1500; r/D is the 

orthogonal distance from the axis, s/D is the distance, along the axis, from the 
origin of the jet.  

 
In Figure 2 we show the widening of a NBJ with Fr = 15, θ = 65° and Re = 1500 
(coloured asterisks) and of the SJs of Quinn 2006 [14] (black rhombi for SJs 
issuing from a contoured nozzle, black stars for SJs issuing from a sharp-edged 

  Upper part 

  Lower part 
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orifice). It can be noted that both the NBJ upper and lower boundary grow faster 
than SJ boundaries. Moreover, it is confirmed that the lower part of NBJs 
widens more rapidly than the upper one. 
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Figure 2. Widening of a NBJ with Fr = 15, θ = 65° and Re = 1500 (coloured 
asterisks) and of the SJs of Quinn 2006 [14] (black symbols).  
 
In Figure 3a the Turbulent Kinetic Energy (TKE) field for a NBJ is shown. To 
highlight the mentioned asymmetry, in Figure 3b the profiles of TKE, 
orthogonal to the jet axis and non-dimensionalised with TKEC (i.e. the axial 
value on the profile), are presented: there are two peaks at the jet boundaries, with 
different values, the highest at the upper boundary, the lowest at the lower 
boundary (with less intense velocity fluctuations due to buoyancy and momentum 
acting in the same direction). As s/D increases, the two peaks tend to became less 
pronounced (but always asymmetric) to finally merge into a single peak.  
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Figure 3. For a jet with Fr = 25, Re = 1500, θ = 65°: (a) map of the non-

dimensional mean turbulent kinetic energy (TKE), non-dimensionalised with 
U2

max, the pink line represents the jet axis (defined as the locus of maximum 
velocity), Umax is the maximum velocity value; (b) TKE/TKEC profiles, 
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orthogonal to the jet axis; TKEC is the axial value on the profile, r/D is the 
orthogonal distance from the axis, s/D is the distance, along the axis, from the 

origin of the jet. 
 

In Figure 4, the mean streamwise centerline velocity decay is shown, for four 
NBJs (with different Fr) and for the simple jet data by Quinn 2006 [14], issuing 
from a sharp-edged and a contoured orifice. The NBJ values have a similar 
trend to the sharp-edged orifice ones, starting with values larger than one due to 
the vena contracta effect. A dependence on Fr is not apparent on this parameter. 
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Figure 4. Mean streamwise centreline velocity decay UC/U0: for a jet with 

θ = 65°, Re = 1500 and different Fr (coloured symbols) and simple jets (Quinn 
2006 [14], sharp-edged orifice, black stars, and contoured orifice, black 

rhombi); U0 is the mean initial jet velocity.  
 
In Figure 5, the mean velocity profiles U/UC/2 are plotted versus r/r1/2 for four 
NBJs (with different Fr) and for the simple jet experimental data by Mi 2007 
[10] and for the simple jet theoretical law by Pope 2000 [11]; r1/2 is the jet’s half 
width, defined as the r where the velocity assumes the value of UC/2 = UC / 2. 
This normalization tends to highlight the Gaussianity of a particular data 
distribution, that is, in this case, the Gaussianity of the velocity profiles. The 
equation of Pope is valid far from the jet origin, where the velocity profiles 
become self-similar: 
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where s0 is the virtual origin of the jet, and α is a constant (α ≅ 47).  
The NBJ values near the nozzle (s/D = 4) follow closely the data of Mi at the 
same distance, showing that at a short distance from the origin the NBJs still 
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behave like a SJ. This is particularly true close to the jet axis whilst the tails tend 
to behave in a different way, possibly due to the different initial conditions: as a 
matter of fact, the NBJs presented here are released from a sharp-edged orifice 
(causing a vena-contracta effect with a sudden contraction followed by a sudden 
expansion) whist the SJs of Mi issue at the end of a pipe.  
Contrary to the profiles close to the origin, as the distance increases (s/D = 16 
and 28), the NBJ data do not follow anymore the SJ data, meaning that the NBJ 
velocity profiles are no more Gaussian. In particular, it is apparent how this non-
Gaussianity tends to increase according to the distance from the origin. 
Moreover, as already shown by Figure 1 and 2, as s/D increases, the NBJ tends 
to be less symmetric. 
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Figure 5. Mean velocity profiles U/UC/2, for a jet with θ = 65°, Re = 1500 and 
different Fr (coloured symbols), and for simple jets (Mi 2007 [10] black lines 

and Pope 2000 [11] green line); r1/2 is the jet’s half width, UC/2 = UC / 2. 
 
In Figure 6, the integral Turbulent Kinetic Energy TKEint/U

2
max along the axis is 

plotted for different Fr and for a simple jet (Fr = ∞); Umax is the maximum 
velocity value and the integral is computed on profile orthogonal to the jet axis. 
The influence of Fr on this parameter is evident: NBJ values start always lower 
than simple jet ones, with an increasing distance with decreasing Fr (i.e., for an 
increasing buoyancy), to eventually collapse on the simple jet values as the 
distance from the origin increases. Moreover, the distance where the NBJ data 
collapse with the simple jet ones tends to increase as Fr decreases; this is 
justified because as Fr decreases, the buoyancy increases determining a 
reduction of the turbulent fluctuations.  
From the analysis of the data here presented, a clear dependence of sharp-edged 
orifice jets on Fr arises only on the second order statistics of the velocity. 
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Figure 6. Integral Turbulent Kinetic Energy TKEint/U

2
max along the jet axis, for a 

jet with θ = 65°, Re = 1500 and different Fr (coloured symbols), and for a 
simple jet (black rhombi); Umax is the maximum velocity value. 

 
5. Conclusions 
The behaviour of Negatively Buoyant Jets, released from a sharp-edged orifice, 
was investigated using an original non-intrusive image analysis technique to 
measure the velocity fields, namely Feature Tracking Velocimetry, in order to 
study their dependence on the densimetric Froude number. First and second 
order statistics of the velocity fields (velocity and turbulent kinetic energy 
profiles orthogonal to the jet axis, mean streamwise centreline velocity decay, 
and integral turbulent kinetic energy along the jet axis) were used to 
characterize the Negatively Buoyant Jet behaviour and their difference from 
simple jets. From the analysis of these data, a dependence of sharp-edged orifice 
jets on densimetric Froude number is evident only on the second order statistics 
of the velocity. 
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Abstract. Although Fibonacci’s numbers play an important role in modeling phe-
nomena in a wide variety of subjects, their use as descriptors of population growth has
clearly been rather restricted after the introduction of the Verhulst logistic model and
its numerous modifications and extensions. In fact, in the very unrealistic Fibonacci
model neither population extinction nor bounded growth are possible, only quasi-
exponential unbounded population growth can result. We present a modified model
assuming that the number of direct offsprings of each ancestor is a Bernoulli random
variable, hence with positive probability of 0 count, and thus accommodating both
extinction and possible sustainable growth. We compare algebraic and numerical
treatment of equations using the fixed point method in the framework of instabilities
of numerical algorithms for finding roots of equations.
Keywords: Fibonacci model, Verhulst model, Bernoulli offsprings, branching pro-
cesses, fixed point algorithm instabilities.

1 Introduction

Let N(t) denote the size of some population at time t. Two main issues in
population dynamics deal with the probability of extinction and with the total
size of the progeny of an ancestor.

Fibonacci modeled unrealistic unbounded growth, and in its scope popu-
lation extinction is impossible. However, Fibonacci’s numbers are still a very
active research area, since they (mainly the initial numbers of the sequence)
can approximate quite well counts in many natural systems, and have been
applied successfully in very diverse situations and areas, namely aesthetic (the
golden ratio is pervasive in all form of plastic arts, and is even used by aes-
thetic surgeons in beauty improvement), including for instance Lindenmayer
grammars, cf. Prusinkiewicz and Hanan [11], used by Pestana [10] for an initial
investigation of music composition with repetitive structures.
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1.1 Fibonacci population growth model

Fibonacci (c. 1170 – c. 1250) in his Liber Abaci posed and solved a problem
involving the growth of a population of rabbits based on idealized and very un-
realistic assumptions. The solution, generation by generation, was a sequence
of numbers {Fn}n≥0 later known as Fibonacci numbers, starting with {0, 1},
such that Fn+2 = Fn + Fn+1. Using Binet’s formula

Fn =
(1 +

√
5)n − (1−

√
5)n

2n
√

5

the computation of any member of the Fibonacci sequence is straightforward.
Although the wide success of Fibonacci’s sequence as an approximate model

for the first few generations is still praised in many branches of Biology, the
very unrealistic assumption that any couple of rabbits gives birth to exactly
one couple of rabbits as offsprings, and this in each of exactly two successive
mating periods, cannot accommodate important real features in population
dynamics, such as sustainable growth or even population extinction, as studied
successfully for instance by Lotka [8] using the more realistic sustainable growth
logistic model introduced by Verhulst. In fact, rewriting Fn+2 = Fn + Fn+1

= 2Fn+1 − Fn−1 =⇒ Fn+2 − Fn+1 = Fn+1 − Fn−1, the closely associated

differential equation d
dt N(t) = ∂2

∂t2 N(t) shows that Fibonacci’s growth is ap-
proximately exponential. Indeed, we get an approximate geometric growth

with ratio 1+
√
5

2 . Even for moderate values such as n = 11, say, F12 = 144 ≈
F11

1+
√
5

2 = 144.005 (recall that 1+
√
5

2 is the “golden ratio” limit of Fn+1

Fn
).

1.2 Verhulst sustainable growth logistic model and extensions

Imposing some natural regularity conditions on N(t), namely that d
dtN(t) =

∞∑
k=0

Ak[N(t)]k, Verhulst ([16], [17], [18]) used the second order approximation

d
dtN(t) = A1N(t)+A2[N(t)]2, with A1 > 0 and A2 < 0, which can be rewritten
as

d

dt
N(t) = r N(t)

[
1− N(t)

K

]
, (1)

(where r > 0 is frequently interpreted as a Malthusian instantaneous growth
rate parameter, whenever modeling natural breeding populations, and K > 0
as the equilibrium limit size of the population) to develop a broadly successful
“logistic” population growth model, much more realistic to model sustainable
growth. In fact, an initial period of exponential growth if followed by moderate
approximately linear growth, with exponential steep exponential moderation
when limitation of natural resources (or success of predators or competing
species) ultimately curb down growth to sustainable values.

Moreover, and since in many species there exist periodic mating periods,
using Euler’s ideas on the interplay of differential equations and difference
equations in numerical methods, the associated difference equation

xn+1 = αxn (1− xn), (2)
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(where it is convenient to deal with the assumption xn ∈ [0, 1], n = 1, 2, . . . )
made his way in modeling population dynamics.

The equilibrium xn+1 = xn leads to a simple second order algebraic equa-
tion with positive root 1 − 1/α, and to a certain extent it is surprising that
anyone would care to investigate its numerical solution using the fixed point
method, which indeed brings in many pathologies when a steep curve — i.e., for
some values of the iterates |α (1−2xn)| > 1 — is approximated by an horizontal
straight line. This numerical investigation, apparently devoid of interest, has
however been at the root of many theoretical advances when α /∈ [1, 3] (namely
Feigenbaum bifurcations and ultimate chaotic behavior), and a posteriori led to
many interesting breakthroughs in the understanding of population dynamics.
Due to its close association with the differential equation (1), whose solution
is a logistic function

N(t) =
KN0

N0 + (K −N0) e−rt
,

the parabola x (1 − x) appearing in the discretization (2) is very often called
the “logistic parabola”.

Up to a multiplicative constant, the logistic parabola is the Beta(2, 2) prob-
ability density function. In Aleixo et al. [1], and in Rocha et al. [12] several ex-
tensions of population growth models tied to more general Beta(p, q)densities
have been investigated, and in Pestana et al. [9] the factor 1 − x has been
considered the linear truncation of − lnx, so obtaining differential functions
whose solution exhibits Paretian tail behaviour and ultimately extreme value
models (Gumbel, Fréchet or Weibull) solutions for the associated differential
equation d

dtN(t) = r N(t) (− ln(N(t))1+γ . Tsoularis [15] and Waliszewski and
Konarski [19] must be credited for the Gompertz (or Gumbel) solution when in
the associated differential equation γ = 0. Tsoularis [15] is a very informative
state-of-the-art on population growth models. Brilhante et al. ([2], [3]) provide
the connection between the solution of the above extensions of the original
Verhulst equation to extreme value and Rachev and Resnick [13] geo-extreme
value (i.e., when the original sequence is subject to Rényi’s [14] rarefaction,
equivalent in its final results to Kovalenko’s [6] and Kozubowski’s [7] geometric
thinning).

1.3 Modified Fibonacci models

We shall discuss, using branching processes, several modifications of the Fi-
bonacci model, so that more realistic possibilities, such as limited growth or
even extinction, may occur:

1. A framework very similar to the original description posed by Fibonacci:
each ancestor can produce direct offsprings only in the first two consecu-
tive reproducing periods. However, instead of deterministically producing
exactly one offspring in each reproducing epoch, the number of offsprings
is a random X _ Bernoulli(p).
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2. A simple modification, which has the advantage of affordable algebraic
treatment, is to consider that the progeny (it is indifferent whether we count
individuals in the case of non-sexual reproduction, or couples in the case of
sexual reproduction) is a random Y _ Geometric(p). The hypothesis that
in sexual reproduction we consider that the progeny is solely of couples, and
that each of those behaves as a faithful couple, is indeed as unrealistic as
what has been taken for granted as an assumption in the original Fibonacci
model. But the wider variability of the number of offsprings of each ancestor
at each reproducing period, with sensible choices so that the mean value
E(Y ) = (1− p)/p is rather small, can produce more realistic results.
Observe, further, that while the Bernoulli random variable is underdis-
persed, i.e. V ar(X)/E(X) < 1, the Geometric random variable is overdis-
persed, So, it can accommodate more realistic wider variability.

3. An almost similar framework as the one described in item 1 is investigated
explicitly assuming removing each progenitor from the system after two
reproduction periods, using randomly stopped sums.

Aside from presenting models allowing for extinction and limited growth,
and hence more realistic than the unlimited quasi-exponential growth of the
original Fibonacci model, our aim is to compare whenever possible algebraic
solutions to numerical solutions using the fixed point method. These indeed
exhibit instabilities whenever the function is too steep in a neighborhood of the
root we wish to calculate.

Although those instabilities are qualitatively quite different from the cele-
brated Feigenbaum bifurcations and ultimate chaos that the discretization of
the Verhulst model brought to the limelights of the structural investigation
of dynamical systems, it seems worthwhile to discuss them, since the philo-
sophical controversy whether pathologies observed in the numerical solution of
equations x = f(x) using the fixed point algorithm are an essential feature or
solely an inherent consequence of instabilities to be expected when |f ′(x)| > 1
in the vicinity of the equation root is far from being settled.

In this first paper, we shall discuss in depth the Bernoulli randomized model
described in item 1, postponing for a second part other randomizations.

2 Modified Randomized Fibonacci Models: Bernoulli(p)
Offsprings in Each Reproduction Epoch

Let us assume that the process starts with one ancestor (single or couple,
according to the reproduction characteristics of the species). In each of the two
initial reproduction epochs each unit produces X _ Bernoulli(p) offsprings,
and is removed from the process after the the second reproduction epoch. On
the other hand, each offspring becomes an ancestor in the next step, behaving
exactly in the some fashion.

Let Z1 denote the number of units in the system in the first step of the
process, i.e. exactly when the initial ancestor is removed from the system:

Z1 =

{
0 1 2 3

(1− p)2 p(1− p)(2− p) 2p2(1− p) p3
(3)
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The probability generating function is

GZ1
(t) = (1− p)2 + p(1− p)(2− p)t+ 2p2(1− p)t2 + p3t3, (4)

and hence the mean value, expressed as a function of p, is

E(Z1) = p(1− p)(2− p) + 4p2(1− p) + 3p3, (5)

which is greater than 1 for p ∈ (
√

2− 1, 1] ≈ (0.414214, 1].
If E(Z1) < 1, extinction is almost sure.
If E(Z1) > 1, defining iteratively xn = GZ1

(xn−1), with initial value x1 =
P[Z1 = 0] = (1 − p)2, xn is the probability that the process terminates at or
before the n-th generation, cf. Feller [4], Theorem p. 297.

The sequence {xn} is increasing, its limit x ≤ 1 being the solution of the
equation

x = GZ1
(x)

In the model at hand, the probability of extinction is therefore

x ≡ xp = min

{
1,

(p− 2) p2 +
√
p3 (4− 4p+ p3)

2 p3

}
, (6)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Fig. 1. Extinction probability xp, in (6), as a function of p in the Bernoulli(p) off-
springs randomized Fibonacci model.

On the other hand, the total number os descendants from the initial ancestor
up to the n-th generation is Yn = 1 +Z1 +Z2 + · · ·+Zn, where Zk denotes de
number of units in the k-th generation. Following Good [5] (an argument that
inspired Feller [4], XII.5), R1(t) = tG(t) and iteratively Rn(t) = tRn−1(t), we
obtain the probability generating functions for the successive generations.

This is a decreasing sequence, whose limit ρ(s) satisfies ρ(s) = sG(ρ(s)) and
which may be found solving t = sG(t). Each coefficient rk in the MacLaurin’s
expansion of ρ(s) is the probability that the total progeny consists of k elements,
and therefore if

∑
rk = ρ(1) < 1, this is the probability of extinction.

The total progeny is finite whenever the expected value µ = E(Z1) < 1.
Therefore, as E(Zn) = µn, it follows that the expected value of the total progeny
is
∑∞
n=0 µ

n = 1
1−µ .
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In this randomized Bernoulli Fibonacci modified model, from solving t =
sG(t) we get

ρ(s) =
2(−p2s+ p3s)

3 p3s
−

(1− i
√

3)A(s)

322/3 p3s
(

(B(s) +
√

4A3(s) +B2(s)
)1/3−

(1 + i
√

3)

621/3 p3s

(
(B(s) +

√
4A3(s) +B2(s)

)1/3 (7)

where A(s) = −3p3s + (2p4 − p5 − p6)s2, and B(s) = 18(1 − p)p5s2 + (7p6 −
12p7 + 3p8 + 2p9)s3.

Plotting the the real part of the above function ρ(s), in (7), for s = 1,
which indeed coincides with (6), we obtain a visual grasp of the probability of
extinction as a function of p, exactly the one given in Fig. 1, using now a more
complex definition of the function to be plotted.

Observe that the equilibrium point p = ρ(p) is 0.513376. The observation
that this is approximately the proportion of male offsprings in the observed
equilibrium of human reproduction is surely circumstantial, or at least we do
not devise any bond tying that empirical observation.

On the other hand, µ < 1 for p <
√

2− 1 ≈ 0.414214. Below, in Table 1 we
register for a few values of p the expected size of the total progeny:

p µ Expected size 1
1−µ

0.1 0.21 1.26582

0.2 0.44 1.78571

0.3 0.69 3.22581

0.4 0.96 25

.41421 0.99999... 99246.7

Table 1. Expected total progeny when µ < 1 in the modified Bernoulli randomized
Fibonacci model.

3 Discussion and Conclusions

We now compare this analytic solution with the numerical results defining
iteratively xn = GZ1

(xn−1), the probability that extinction does occur at or
before the n-th generation, with initial value x1 = P[Z1 = 0] = (1− p)2.

The successive repeated compositions of a function with itself can be com-
puted using for instance the command “Nest” in Mathematica, and the corre-
sponding evaluation at the appropriate point can then generate a list of coor-
dinates with the command “Flatten”.

In Table 2 we illustrate the result for the choices 0.1(0.1)0.9, and also for the
extreme choices 0.01 and 0.99, and finally for the equilibrium value 0.513376
(using 200 points and 300 iterated compositions of the function with itself.
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Table 2. Graphical representation of 300 compositions of the generating function
with itself; from left to right and top to bottom, initial 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 0.01, 0.99, 0.513376.

From those graphics it is obvious that the use of the fixed point method
leads to instabilities, that seem quite different in nature from the Feigenbaum
bifurcations encountered in the discretization of the Verhulst model and its
various extensions we have mentioned. Further research is needed to interpret
those pathologies in the context of dynamical models.
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Mémoires de l’Académie Royale des Sciences, des Lettres et des Beaux-Arts de
Belgique 20:1–32, 1847. (http://gdz.sub.uni-goettingen.de/dms/load/img/)

19. Waliszewski, J., and Konarski, J., A Mystery of the Gompertz Function, in
G.A. Losa, D. Merlini, T. F .Nonnenmacher and E.R. Weibel, editors, Fractals
in Biology and Medicine, Basel, 277–286, 2005, Birkhäuser.
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Abstract. Several extensions of the Verhulst sustainable population growth model
exhibit different interesting characteristics more appropriate to deal with less con-
trolled population dynamics. As the logistic parabola x(1−x) arising in the Verhulst
differential equation is closely related to the Beta(2,2) probability density, and the
retroaction factor 1 − x is the linear truncation of MacLaurin series of − lnx (the
growth factor x is the linear truncation of − ln(1 − x)), in previous papers the au-
thors introduced a more general four parameter family of probability density func-
tions, of which the classical Beta densities are special cases. Using differential equa-
tions extending the original Verhulst, they have been able to identify combinations
of parameters that lead to extreme value models, either for maxima or for minima,
and also remarked that the traditional logistic model is a (geometric) extreme value
model arising from geometric thinning of the original sequence. The observation that
in the support (0, 1) the logistic parabola x(1 − x) is, up to a multiplicative factor,
the product of the densities of minimum and maximum of two standard independent
uniform random variables (and also the median of three independent standard uni-
forms), and that on the other hand (− ln x)n−1 is, up to the multiplicative factor
1/Γ (n), the density of the product of n independent uniforms, we reexamine the ties
of products and of order statistics of independent uniforms to dynamical properties
of populations arising in these extensions of the Verhulst model.
Keywords: Extended Verhulst models, instabilities in population dynamics, prod-
ucts and order statistics of uniform random variables.

1 Extensions of the Verhulst Model

Extensions of the classical Verhulst differential equation for modeling popula-
tion dynamics

dN(t)

dt
= rN(t)(1−N(t)) , (1)
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where N(t) denotes the size of the population at time t and r > 0 is the malthu-
sian reproduction rate, have recently been considered.

From the fact that the logistic parabola x(1−x) arising from equation (1) is,
in the support (0, 1), closely tied to the Beta(2,2) probability density function
(pdf)1, natural extensions of equation (1) using more general beta densities
have been investigated by Aleixo et al. [1] and Pestana et al. [5], namely by
considering the differential equation

dN(t)

dt
= r(N(t))p−1(1−N(t))q−1 . (2)

The normalized solution of equation (1) belongs to the family of logistic
functions, which is connected to extreme value models, more precisely to max-
geo-stable laws, and occurring in randomly stopped extremes schemes with
geometric subordinator. On the other hand, Aleixo et al. [1] showed that the
normalized solution of equation (2) also belongs to the class of max-geo-stable
laws if p = 2− α and q = 2 + α (the classical Verhulst model being the special
case α = 0).

By noticing that the retroaction factor 1− x in the logistic parabola is the
linear truncation of MacLaurin series of − lnx, and that the growth factor x
is the linear truncation of MacLaurin series of − ln(1− x), Brilhante et al. [2]
introduced a general four parameter family of densities, named the BeTaBoOp
family, which was used to further extend equation (2) in Brilhante et al. [2]
and [4].

Definition. A random variable X is said to have a BeTaBoOp(p, q, P,Q)
distribution, p, q, P,Q > 0, if its pdf is

f(x) = kxp−1(1− x)q−1(− ln(1− x))P−1(− lnx)Q−1I(0,1)(x) , (3)

where k−1 =
∫ 1

0
tp−1(1−t)q−1(− ln(1−t))P−1(− ln t)Q−1dt (Hölder’s inequality

guarantees that k−1 <∞).

Note that the Beta(p, q) density is the BeTaBoOp(p, q, 1, 1) density and
if q = P = 1, the Betinha(p,Q) density introduced by Brilhante et al. [3] is

obtained, where k = pQ

Γ (Q) and Γ (α) =
∫ 1

0
tα−1e−tdt is the gamma function.

Hence, for a general discussion of growth models, it seems interesting to
investigate the general differential equation

dN(t)

dt
= r(N(t))p−1(1−N(t))q−1[− ln(1−N(t))]P−1(− lnN(t))Q−1 , (4)

specially for the case when some of the parameters take the value 1.
Exact solutions for equation (4) exist for some special combinations of the

parameters, and when solving the corresponding difference equation

xt+1 = c (xt)
p−1(1− xt)q−1(− ln(1− xt))P−1(− lnxt)

Q−1

1 A random variable X is said to have a Beta(p, q) distribution, p, q > 0, if its pdf is

f(x) = xp−1(1−x)q−1

B(p,q)
I(0,1)(x), where B(p, q) =

∫ 1

0
tp−1(1 − t)q−1dt is the Beta func-

tion.
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by the fixed point method, bifurcation and chaos are observed (see Brilhante
et al. [2] and [4]).

2 Understanding population dynamics through order
statistics and products of powers of uniform random
variables

In section 1 we saw that the Verhulst differential equation and extensions are
linked to BeTaBoOp densities. Using the fact that these densities can be ex-
pressed as functions of densities of order statistics and/or products of inde-
pendent standard uniform random variables, we reexamine in this section the
dynamical properties of populations described by the Verhulst model and ex-
tensions.

Let U1, . . . , Un be independent and identically distributed (iid) standard

uniform random variables, and let U
(∗)

n denote their product, whose pdf is

f
U

(∗)
n

(u) =
(− lnu)n−1

Γ (n)
I(0,1)(u) . (5)

The pdf (5) is easily derived by simply noting that U
(∗)
n = exp(−V ),

with V = −
∑n
i=1 lnUi = − ln (

∏n
i=1 Ui) _ Gamma(n, 1). More generally,

Uδ
(∗)

n = (
∏n
i=1 Ui)

δ
=

∏n
i=1 U

δ
i , δ > 0, has pdf

f
Uδ

(∗)
n

(u) =
u1/δ−1(− lnu)n−1

δnΓ (n)
I(0,1)(u)

and distribution function

F
Uδ

(∗)
n

(u) =
Γ (n,− lnu/δ)

Γ (n)
= u1/δ

n−1∑
k=0

(− lnu)k

δkk!
, u ∈ (0, 1).

On the other hand, let Uk:n denote the k-th ascending order statistic, k =
1, . . . , n, whose pdf is

fUk:n(u) =
uk−1(1− u)n−k

B(k, n+ 1− k)
I(0,1)(u) ,

i.e. Uk:n _ Beta(k, n+ 1− k). In particular, the minimum U1:n

has pdf fU1:n
(u) = n(1− u)n−1 I(0,1)(u), and the maximum Un:n pdf

fUn:n
(u) = nun−1 I(0,1)(u).

For the special case n = 2, it is obvious that U1U2 = U1:2U2:2 � U1:2 � U2:2,
and a similar result holds true for all n ∈ IN, n > 2.

Thus, when p, q, P,Q ∈ IN, the pdf of the BeTaBoOp(p, q, P,Q) random
variable is, up to a multiplicative factor, the product of the densities of the
maximum Up:p of p independent standard uniforms, of the minimum U1:q of

q independent standard uniform random variables, of the product U
(∗)

P of P
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independent standard uniform random variables, and of 1−U (∗)

Q . Observe also

that in the long-standing established jargon of population dynamics, the xp−1

and (− ln(1− x))P−1 are growing factors, and (1− x)q−1 and (− lnx)Q−1 are
retroaction factors, curbing down population growth. In view of the above
remarks on the connection to ascending order statistics and products of inde-
pendent standard uniform random variables, we shall say that (− lnx)ν−1 is a
lighter retroaction factor than (1−x)ν−1, and that (− ln(1−x))µ−1 is a heavier
growth factor than xµ−1.

In view of the facts above, it is expectable that the normalized solution of the
differential equation linked to the Betinha(2,2) ≡ BeTaBoOp(2,1,1,2) density,
which can be obtained by replacing in (1) the retroaction factor 1 − N(t) by
the lighter one − lnN(t), will correspond to less sustainable growth.

In fact, the solution of that differential equation is the Gompertz function,
that up to a multiplicative factor is the extreme value Gumbel distribution.
Note that while the logistic distribution is a stable limit law for suitably linearly
modified maxima of geometrically thinned sequences of iid random variables
in its domain of attraction is known to be appropriate to model sustainable
growth, the Gumbel distribution arises as stable limit law of suitably nor-
malized maxima of all the random variables in its domain of attraction2, and
therefore stochastically dominates the logistic solution, and is a suitable model
for uncontrolled growth, such as the one observed for cells of cancer tumors.

More generally, Brilhante et al. [2] have shown that the normalized solution
of the differential equation tied to the more general BeTaBoOp(2, 1, 1, 2 + α)
density, i.e.

dN(t)

dt
= rN(t)(− lnN(t))1+α , (6)

belongs to the class of extreme value laws for maxima, more precisely Gumbel
if α = 0, Fréchet if α > 0 and Weibull for maxima if α < 0. Therefore, equa-
tion (6) reveals to be more appropriate then (1) to deal with less controlled
population dynamics.

On the other hand, if the growth factor N(t) in (1) is replaced by [− ln(1−
N(t))]1+α, we get a differential equation linked to the BeTaBoOp(1, 2, 2 +α, 1)
density, whose normalized solution now belongs to the class of extreme value
laws for minima. Using the fact that if X _ BeTaBoOp(p, q, P,Q), 1 −X _
BeTaBoOp(q, p,Q, P ), simplifies the investigations concerning the structural
properties of the BeTaBoOp family, namely those related to products of uniform
random variables.

Therefore, equations (1), (2) and (6) can be viewed as special cases of the
more general differential equation (4) for modeling population dynamics, which
embodies simultaneously two different growth patterns depicted in the grow-
ing terms (N(t))p−1 and [− ln(1−N(t))]P−1, and two different environmental
resources control of the growth behavior, depicted in the retroaction terms
(1−N(t))q−1 and (− lnN(t))Q−1.

2 Note that Rachev and Resnick [6] established a connection between extreme stable
laws and geometrically thinned extreme value laws, which implies, in particular, that
when they have the same index — 0 in case of the Gumbel and of the logistic stable
limits — they share the same domain of attraction.
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We obtained explicit solutions for (4), using Mathematica, for a few special
combinations of parameters, but so far only the ones connected with some form
of stability and of extreme value models — either in the iid setting or in the
geometrically thinned setting — seem to be suitable to characterize growth.
In the sequel we shall comment on growth characteristics, in general, in terms
of the order relation among parameters, and specially when all the parameters
are integers.

3 Further comments for the special case of integer
parameters

The Verhulst model is usually associated with the idea of sustainable growth.
This is the case since the retroaction term 1 − N(t) slows down the growth
impetus rN(t), an equilibrium often interpreted as sustainability. Another
way of looking at this is to notice that the logistic parabola x(1−x) tied to the
Verhulst model is, up to a multiplicative factor, the product of the densities
of the order statistics U2:2 and U1:2 — respectively, maximum and minimum
of two independent standard uniform random variables. Therefore, the growth
term ruled by U2:2 has an “equal” opposite effect exerted by the retroaction
term ruled by U1:2, which is curbing down the population growth to sustainable
levels. On the other hand, we also have that the logistic parabola is proportional
to the density of U2:3, i.e. the median of three independent standard uniform
random variables, thus reinforcing the idea of equilibrium.

We now amplify the above remarks to other interesting cases of the gener-
alized Verhulst growth theory:

1. The logistic parabola generalization xp−1(1 − x)q−1, linked to the
BeTaBoOp(p, q, 1, 1) ≡ Beta(p, q) density, is:

– Proportional to the product of the densities of Up:p and U1:q:

Since U1:q � Up:p, for all p, q ∈ IN, and Up:p is associated with the
growth term xp−1, population growth is observed. However, if p = q,
the retroaction term ruled by U1:p will curb down the population growth
to sustainable levels, since U1:p and Up:p are equally distant order statis-
tics from the extremes, in the sense that they are of the type Uk:n and
Un−k+1:n. Therefore, when p = q, we may think that U1:p and Up:p are
exerting equal opposite effects, and thus ensuring a sustainable growth.
On the other hand, if p 6= q, uncontrolled population dynamics is the
case.

– Or proportional to the density of Up:p+q−1:

If p = q, then Up:2p−1 is the median of 2p − 1 independent standard
uniform random variables, hence reinforcing the idea of sustainable
growth, i.e. population equilibrium, as seen above. But if p 6= q, we
are dealing with uncontrolled population dynamics, since Up:p+q−1 �
Ub(p+q−1)/2c+1:p+q−1 for p < q, and Up:p+q−1 � Ub(p+q−1)/2c+1:p+q−1
for p > q, where Ub(p+q−1)/2c+1:p+q−1 is the median of p + q − 1 inde-
pendent standard uniform random variables.
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2. The expression xp−1(− lnx)Q−1, linked to the BeTaBoOp(p, 1, 1, Q) ≡
Betinha(p,Q) density, is:

– Proportional to the product of the densities of Up:p and U
(∗)

Q :

From the fact that U
(∗)

Q � Up:p, for all p,Q ∈ IN, the growth term is
again the dominant one, and consequently population growth is also
observed in this setting. Now the question is whether it is possible to
have here sustainable growth. The answer is no, because if we com-
pare the two retroaction terms (1− x)Q−1 and (− lnx)Q−1, which are

proportional to the densities of U1:Q and U
(∗)

Q , respectively, we have

U
(∗)
Q � U1:Q. Therefore, U

(∗)
Q exerts a weaker control effect on popula-

tion growth than U1:Q, which leads necessarily to unsustained popula-
tion growth, even if Q = p.

– Or proportional to the density of U
1/p(∗)
Q , which applies to the more

general case p > 0:

Here, U
1/p(∗)
Q � U (∗)

Q if p > 1, and U
(∗)
Q � U1/p(∗)

Q if p < 1. By compar-

ing U
1/p(∗)
Q and U

(∗)
Q with U1:Q, which is associated with the retroaction

factor (1− x)Q−1, we conclude that:

(i) for p > 1, U
(∗)
Q � U1:Q, thus revealing that U

1/p(∗)
Q has a weaker

control effect on population growth, as already unveiled above;

(ii) for p < 1, U1:Q � U
1/p(∗)
Q , therefore showing that U

1/p(∗)
Q has a

stronger control effect on population growth.

Both cases are suitable to model unsustainable population growth.

3. The expression (1−x)q−1(− ln(1−x))P−1, tied to the BeTaBoOp(1, q, P, 1)

density, is proportional to the product of the densities of U1:q and 1−U (∗)
P ,

associated with the retroaction and growth terms (1−x)q−1 and (− ln(1−
x))P−1, respectively.

Since U1:q � 1 − U (∗)
P for all q, P ∈ IN, the growth factor is the dominant

one, and therefore population growth will also happen. On the other hand,

from the fact that UP :P � 1 − U
(∗)
P , where UP :P is associated with the

(absent) growth term xP−1, shows that in this case we have a stronger
growth impetus, counteracted by growth control mechanisms influenced by

U1:q. As U1:q exerts a stronger control effect than U
(∗)
q would on population

growth, this case is also suitable for modeling populations with unsustain-
able growth, as the previous one, but where a more uncontrolled population
growth is observed.

Recall that Brilhante et al. [2] showed that the normalized solution for the
differential equation linked to the BeTaBoOp(1, 2, 2 +α, 1) density belongs
to the class of extreme value laws for minima, which seems to be the con-
sequence of the higher control forces needed to refrain a more uncontrolled
population growth through the influence of U1:q.
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4. The expression xp−1(− ln(1−x))P−1, tied to the BeTaBoOp(p, 1, P, 1) den-

sity, is proportional to the product of the densities of Up:p and 1 − U (∗)
P ,

with Up:p � 1 − U (∗)
P only if p ≤ P . Thus, the growth pattern which is

linked with the factor xp−1 is the dominant one, whenever p ≤ P .

Because the growth control mechanisms are absent in this setting, the as-
sociated differential equation is ideal for modeling populations that almost
surely grows to infinity, extinction being almost impossible.

5. The expression (1 − x)q−1(− lnx)Q−1, linked to the BeTaBoOp(1, q, 1, Q)

density, is proportional to the product of densities of U1:q and U
(∗)
Q , where

U
(∗)
Q � U1:q if q ≤ Q. Therefore, the retroaction term tied to (1− x)q−1 is

the dominant one, whenever q ≤ Q.

Given that we only have growth control factors here, the corresponding
differential equation is useful for modeling populations that are almost
surely doomed to extinction.

6. The expression (− ln(1− x))P−1(− lnx)Q−1, linked to the
BeTaBoOp(1, 1, P,Q) density, is proportional to the product of den-

sities of 1 − U (∗)
P and U

(∗)
Q , with U

(∗)
Q � 1 − U (∗)

P for all P,Q ∈ IN. In this
setting population growth is observed, with sustainable growth occurring
whenever the growth parameter P and the retroaction parameter Q are
equal.

7. The expression xp−1(1−x)q−1(− lnx)Q−1, tied to the BeTaBoOp(p, q, 1, Q)

density, is proportional to the product of the densities of Up:p, U1:q and U
(∗)
Q ,

with U
(∗)
Q � U1:q � Up:p if q ≤ Q. Again population growth is noticed since

the dominant term is the growth term.

However, when p = q = Q, U1:p manages to “compensate” the growth
effect of Up:p by curbing down the population growth to sustainable levels.
This action is reinforced by the other retroaction term (− lnx)p−1 ruled by

U
(∗)
p . A more interesting case occurs when the growing parameter p and

the retroaction parameters q and Q meet an equilibrium, in the sense that
p = q +Q.

8. The expression xp−1(1 − x)q−1(− ln(1 − x))P−1, linked to the
BeTaBoOp(p, q, P, 1) density, is proportional to the product of the den-

sities of Up:p, U1:q and 1− U (∗)
P , with U1:q � Up:p � 1− U (∗)

P for p ≤ P .

Uncontrolled population growth is again the case here even if p = q = P .
This is so because although U1:p “compensates” the effect of Up:p, it does

not do the same for the growth term ruled by 1− U (∗)
p , whose influence is

stronger than Up:p. However, an equilibrium is observed when the growing
parameters p and P and the retroaction parameter q verify the relation
p+ P = q.

9. The expression xp−1(− ln(1 − x))P−1(− lnx)Q−1, linked to the
BeTaBoOp(p, 1, P,Q) density, is proportional to the product of the

densities of Up:p, 1 − U (∗)
P and U

(∗)
Q , with U

(∗)
Q � Up:p � 1 − U (∗)

P . In this
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setting we shall have uncontrolled population growth, unless equilibrium
is meet, i.e. when p+ P = Q.

10. The expression (1 − x)q−1(− ln(1 − x))P−1(− lnx)Q−1, tied to the
BeTaBoOp(1, q, P,Q) density, is proportional to the product of the den-

sities of U1:q, 1 − U (∗)
P and U

(∗)
Q , where U

(∗)
Q � U1:q � 1 − U (∗)

P , if q ≤ Q.
Here we have two control mechanisms acting on population growth, with
sustainability being achieved if P = q +Q.

11. The expression xp−1(1 − x)q−1(− ln(1 − x))P−1(− lnx)Q−1, linked to the
BeTaBoOp(p, q, P,Q) density, is proportional to the product of the densities

of Up:p, U1:q, 1 − U (∗)
P and U

(∗)
Q , where U

(∗)
Q � U1:q � Up:p � 1 − U (∗)

P if
p ≤ P and q ≤ Q.

In this setting equilibrium is observed when p+ P = q +Q.

From the exposed above, we see that the generalized Verhulst theory is quite
versatile in describing a wide range of population dynamics.
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Portugal
(E-mail: fbrilhante@uac.pt)

2 Universidade de Lisboa, Faculdade de Ciências, DEIO, Portugal, and
Instituto de Investigação Cient́ıfica Bento da Rocha Cabral, Lisboa, Portugal
(E-mail: ivette.gomes@fc.ul.pt)

3 Universidade de Lisboa, Faculdade de Ciências, DEIO, Portugal, and
Instituto de Investigação Cient́ıfica Bento da Rocha Cabral, Lisboa, Portugal
(E-mail: dinis.pestana@fc.ul.pt)

4 CEAUL — Centro de Estat́ıstica e Aplicações da Universidade de Lisboa,
Portugal
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Abstract. Branching processes are natural models for random population growth in
many situations. Here we use basic count models whose probability mass function
satisfies Panjer iteration, and investigate randomly stopped sums and collective risk
when the subordinator random variable and the summands are independent and
identically distributed basic count random variables.
Keywords: Branching processes, Panjer iteration, basic count models, collective
reisk, fixed point algorithm instabilities.

1 Randomizing the Fibonaccy Population Growth
Model Via Branching Processes

Fibonacci (c. 1170 – c. 1250) in his Liber Abaci posed and solved a problem
involving the growth of a population of rabbits based on idealized and very un-
realistic assumptions. As a consequence, a population with Fibonacci’s growth
pattern never dies out, while we know that the total progeny of some ancestor
is in many real circumstances finite, cf. for instance Lotka [10] example (p.
123–136) on the extinction of surnames, using branching processes.

Let {fn}n∈SX denote the probability mass function (pmf) of a discrete
random variable (rv) X with support SX ⊂ N. The corresponding probability

generating function (pgf) is mX(t) = E(tX) =

∞∑
n=0

fnt
n.
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If N is a discrete rv, X0 = 0 and X1, X2, ... independent replicas of X, with

N and Xk independent, and we define the “compound” rv Y =

N∑
k=0

Xk, then

mY (t) =
∑
j∈SY

mj
X(t)P[N = j] = mN (mX(t)).

From this, we may easily compute mean value and variance of the rv Y . An
alternative designation for the concept of compounding rv’s is the concept of
randomly stopped sums, which can have the advantage of explicitly indicating
the type of the subordinator rv.

If in particular Xk, k = 1, 2, ... are independent replicas of a count rv X
modeling the number of direct descendants of each individual (or each female)
in the population, and we define

Y0 = 1, Y1 = X1, Y2 =

Y1∑
k=0

Xk, ... Yn+1 =

Yn∑
k=0

Xk, ...

we may interpret Yk as the number of direct offsprings in the k-th generation,

and Zn =

n∑
j=0

Yj as the total progeny of some ancestor until the n-th generation.

Let us denote m(t) = m1(t) the pgf of Y1
d
=X, mn(t) the pgf of Yn; then

mn(t) = m(mn−1(t) = m⊗(n)(t), where m⊗(n) denotes the n-fold composition
of m with itself.

Following Good [5] (an argument that inspired Feller [3], XII.5), mZ1(t) =
tmX(t) and iteratively mZn(t) = tmZn−1

(t), we obtain the probability gener-
ating functions for the number of descendants up to each successive generation.

This is a decreasing sequence, whose limit ρ(s) satisfies ρ(s) = smX(ρ(s))
and which may be found solving t = smX(t). Each coefficient rk in the
MacLaurin’s expansion of ρ(s) is the probability that the total progeny con-
sists of k elements, and therefore if

∑
rk = ρ(1) < 1, this is the probability of

extinction.
{Y0, Y1, ...} is usually called a Galton–Watson branching process, or a cas-

cade process. Simple examples of branching processes, and basic results on
important problems such as extinction probability and size of a population can
be found in Feller [3]. Namely, in what concerns extinction:

Theorem 1. If E(Y ) = µ ≤ 1, the process almost surely dies out, and its

expected size is
1

1− µ
when µ < 1, and infinite when µ = 1. If µ > 1, the

probability fn that the process terminates at or before the n-th generation tends
to the unique root x < 1 of the equation x = mY (x).

And, in what concerns the total progeny:
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Theorem 2. Denoting ρk the probability that the total progeny has k individ-
uals,

1. the extinction probability is

∞∑
k=1

ρk.

2. The pgf ρ(s) =

∞∑
k=1

ρks
k is given by the unique positive root of t = smY (t),

and ρ(s) ≤ x.

More extensive monographies on branching processes, with deeper results,
are Harris [6], Athreya and Ney [1] or Jaegers [8]. Gnedenko and Korolev [4]
present interesting examples of random infinite divisibility and random sta-
bility using branching processes, and they establish necessary and sufficient
conditions for the convergence of randomly stopped sums, and limit theorems
for super-critical (i. e., µ = E(X) > 1) Galton–Watson processes.

In [2], Brilhante et al. investigated randomization of the Fibonacci’s growth
pattern modeling the individual progeny at a mating epoch using Bernoulli(p),
and thus the progeny of the initial ancestor as

Z1 =

{
0 1 2 3

(1− p)2 p(1− p)(2− p) 2p2(1− p) p3

(since only two mating epochs are permitted to each individual).
The Y _ Geometric(p) model for the number of direct descendants, with

pmf {fn = p (1− p)n}n∈N, provides an algebraic simple treatment. In fact,

writing q = 1− p, mY (t) =
p

1− qt
, and

mYn(t) =


p
qn − pn − (qn−1 − pn−1) q t

q−1n− pn−1 − (qn − pn) q t
p 6= q

n− (n− 1)t

n+ 1− nt
p = q = 1

2

is easily computed.
Both the Bernoulli(p) and the Geometric(p) pmf’s satisfy the recursive

expression

fn+1 =

(
a+

b

n+ 1

)
fn, ∀n ≥ k, fn = 0 for 0 ≤ n ≤ k − 1

(in the case of X _ Bernoulli(p), a =
p

p− 1
and b =

2p

1− p
, and in the case

of X _ Geometric(p), a = q and b = 0). As we shall state in the following
section, the above recursive expression is valid for the pmf of a broad class
of rv’s, known as Panjer rv’s, that play an important role on the theory of
collective risk. We investigate some consequences of using simple Panjer direct
progeny models in branching processes.
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2 Basic Count Models

We shall say that X is a Panjer rv if its pmf {fn}n∈SX satisfies the recursive
expression

fn+1 =

(
a+

b

n+ 1

)
fn, ∀n ≥ k, fn = 0 for 0 ≤ n ≤ k − 1. (1)

We denote Panjer(a, b, k) the class of all pmf’s satisfying (1).
This expression has been used by several authors, with k = 0, before Panjer

[11], but it was in this seminal paper that the consequences for the iterative
computation of the density of the collective risk process have been established.

In fact, Panjer [11] considered only the case k = 0 — for which the non
degenerate types are the underdispersed binomial, the overdispersed negative
binomial, and the Poisson in between —, but immediatly Sundt and Jewell
[14] published the extension for k = 1, with the logarithmic and the extended
negative binomial solutions.

Finally Hess et al. [7] defined the general class, with the recursion starting
with k ≥ 0, the f0, ..., fk−1 being free parameters (for k = 0, f0 can be consid-
ered the starting jump of a hurdle process); it is also known as the class of basic
count distributions, or class of basic claim distributions. For more details, cf.
Rolsky et al. [13], Klugman et al. [9], and Pestana and Velosa [12].

Theorem 3. Let {fn}n∈SX be the pmf of a non degenerate count rv X.
For a, b ∈ R the statements that follow are equivalent:

(a) {fn}n∈SX is a Panjer(a, b; k) pmf.

(b) for ` ∈ N+, the pgf mX(t) =
∑∞
n=0 fnt

n satisfies the differential equations

(1− at)h(`)(t) = (`a+ b)h(`−1)(t) + fk

(
k

`

)
`! tk−1,

t ∈ [0, 1) and h(j)(0) = 0 for j ≤ k − 1.
(c) mX satisfies the differential equation

(1− at)h(k+1)(t) = ((k + 1)a+ b)h(k)(t),

t ∈ [0, 1) and h(j)(0) = 0 for j ≤ k − 1.

Further, Q = Panjer(a, b; k) =⇒ (k + 1) a + b > 0, and on the other hand
a+ b ≥ 0⇒ a < 1 and a+ b < 0⇒ a ≤ 1.

From this it is easy to conclude that the Panjer class has the following non
degenerate elements:
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1. The Binomial(ν, p), ν ∈ N+, p ∈ (0, 1), which is Panjer( p
p−1 ,

(ν+1) p
1−p , 0).

Its variation index I(X) =
var(X)

E(X)
= 1− p < 1, i.e., X is underdispersed.

2. The Poisson(µ), µ > 0 is Panjer(0, µ, 0). Its dispersion index is 1.

3. The overdispersed NegativeBinomial(α, p), α > 0, p ∈ (0, 1), with pmf{(
α+n−1

n

)
pn(1− p)α

}
n∈N, is Panjer(p, (α− 1) p, 0).

4. The ExtendedNegativeBinomial(α, p, k), α ∈ (−k,−k+1), p ∈ (0, 1), k ∈
N+, with pmf

fn =

(
α+ n− 1

n

)
pn

(1− p)−α −
k−1∑
j=0

(
α+ j − 1

j

)
pj

, n = k, k + 1, ...,

in the support SX = {k, k + 1, . . . }, is Panjer(p, (α − 1) p, k). In the ex-

pression above the extended binomial coefficients

(
α+ n− 1

n

)
are defined

as

(
α+ n− 1

n

)
=

(
−α
n

)
=
Γ (α+ n)

Γ (α)n!
.

5. The ExtendedLogarithmic(p, k), p ∈ (0, 1), k ∈ N+, with pmf

fn =

pn(
n

m

)
∞∑
j=m

pj(
j

m

) , n = k, k + 1, ...,

is Panjer(p,−kp, k).

6. If X _ Panjer(a, b, k), truncating {k, k + 1, ..., `− 1} ⊂ SX we obtain a
truncated rv X∗ _ Panjer(a, b, `).

The special “unit” cases Bernoulli(p) ≡ Binomial(1, p), Geometric(p) ≡
NegativeBinomial(1, p)), ExtendedNegativeBinomial(α, p, 1) whose pmf

has the simple form
1− (1− q t)−α

1− p−α
, t ≤ 1

q ), and Panjer(p,−p, 1) or

Logarithmic(p) (or ExtendedLogarithmic(1, p), with pgf
ln(1− pt)
ln(1− p)

), do have

specially nice properties in each of the corresponding subclasses.
In particular, NegativeBinomial(α, p) — and hence, as a special case

Geometric(p) — that result from a Gamma randomization of the Poisson(Λ),
i.e., an hierarchic model with Λ _ Gamma(α, 1) — are successfully used to
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model the descendance of populations when the distribution of direct offsprings
exhibits large variation, and both the the ExtendedNegativeBinomial(α, p, 1)
and Logarithmic(p) and the Logarithmic(p) distributions have been used to
provide close fit to some natural populations.

In Table 1 below we summarize results, indicating also the pgf:

Table 1. Panjer distributions.

X a b k mQ(t)

Binomial(m, p) p
p−1

(m+1)p
1−p 0 (1 − p+ pt)m

Poisson(µ) 0 µ 0 eµ(t−1)

NegativeBinomial(α, p) p (α− 1)p 0 ( 1−pt
1−p )−α

ExtendedNegativeBinomial(α, p, k) p (α− 1)p k
(1−pt)−α−

∑k−1
j=0 (α+j−1

j )(pt)j

(1−p)−α−
∑k−1
j=0 (α+j−1

j )pj

ExtendedLogarithmic(p, k) p −kp k
∑∞
n=k (nk)

−1
(pt)n∑∞

n=k (nk)
−1
pn

3 Randomly Stopped Sums with Panjer Subordinator

The importance of the Panjer class is a consequence of the implications that
the recursive expression (1) has on the recursive computation of the density
of randomly stopped sums subordinated by Panjer rv’s. This results from the
following theorem:

Theorem 4. Let {qn}n∈N be the pmf of a count distribution Y , and {fn}n∈N
denote the pmf of a claim number distribution X whose support is a subset
of the positive integers, i. e. f0 = 0. Consider the randomly stopped sum

T =
∑
n∈SY

Xn, with Y and the replicas Xn of X independent.

Then the following statements are equivalent:

1. Y _ Panjer(a, b, k);
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2. For any claim number rv X and any ` ≥ 1, mT satisfies the differential
equation

(1− amX(t))h(`)(t) =
∑̀
i=1

(
`

i

)
(a+ b

i

`
)h(`−i)(t)m

(i)
X (t) + qkm

(`)
T (t),

t ∈ [0, 1), with the initial conditions h(j)(0) = 0 for j ≤ k − 1.

From this, we can compute the pmf of a compound rv T with Panjer sub-
ordinator Y and count summands independent replicas of X, as defined above,
by observing that for ` ≥ 1

(1− amX(t)) m
(`)
T (t) =

∑̀
i=1

(
`

i

) (
a+ b

i

`

)
m

(`−i)
T (t)m

(i)
X (t) + qk [mk

X(t)](`).

In fact, the main consequence of Panjer’s theory is the following result:

Theorem 5. Let {qn}n∈N be the pmf of a count distribution Y , and {fn}n∈N
denote the pmf of a claim number distribution X whose support is a subset of

the positive integers. Consider the randomly stopped sum T =
∑
n∈SY

Xn, with

Y and the replicas Xn of X independent. Then

P[T = n] = gn =


mY (mX(0)) = mT (f0) n = 0

1

1− a f0

[
n∑
i=1

(
a+ b

i

n

)
gn−ifi

]
+ qkf

∗k
n n ≥ 1

where f∗kn stands for the k-th iterated convolution of the sequence {fn} with
itself.

(There exists a simple extension for the density when the summands are abso-
lutely continuous, but it is not relevant in the context of branching processes.)

4 Discussion and Conclusions

With the exception of Poisson or of Geometric subordinator — i.e., of a
Panjer(0, µ, 0) or a Panjer(p, 0, 0), respectively, cf. Pestana and Velosa [12]
on the simplicity of these cases when compared to the complexity of others
— we couldn’t obtain any close expressions for the n-fold composition of the
pgf for any other Panjer subordinators. Aside from those two cases, the only
one for which we got more promising results has been — as predictable — the
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Logarithmic(p). Moreover, when the aim is to extend the Fibonacci sequence
using branching randomization, in case we want to remove individuals from the
population after two mating epochs, we have the extra burden of subtracting,
the two rv’s used being dependent.

Happily, compound pgf’s are amenable to compute mean values and vari-
ances, and in what concerns the mean value we have the extra facility that the
mean value of the difference is the difference of the means values, regardless
whether the random variables are dependent or independent. So, it is easy
to follow the process on average, and the relation of the sequence of expected
values to the sequence of Fibonacci numbers simple.

The quantities of interest — extinction probability and expected total size
in the supercritical case, size of the n-th generation, total size of the population
up to the n-th generation, can be dealt with computationally. When the fixed
point method is used to compute roots of some equation F (x) − x, numerical
instabilities are a rule whenever F is too steep, and the sufficient convergence
conditions are not met.
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Abstract. As the theory of nonlinear dynamics clearly shows, a state space is the
natural framework in which the properties of nonlinear dynamical systems can be
described and quantified. These properties may be undetectable in the time domain
of the system output, e.g., in the EEG tracing. Nonlinear Interdependence, (S),
proposed by Quiroga, is said to occur when the trajectories reconstructed in the
phase-space of one time series, experimentally predict the evolution of the phase
space trajectories of the second time series. A phase space representation may re-
veal the salient features of the nonlinear structure which are hidden or occluded to
standard linear approaches. This measure of predictability has the advantage over
linear measures, of being sensitive to interdependence between dissimilar types of
activity. In this paper we present a comparison between a nonlinear measure (the
Nonlinear Interdependence, S) and a linear measure (the Cross Correlation coeffi-
cient, CC). In many cases where one analyzes nonlinear signals, CC is a measures
that well describes the synchronization or the desynchronization between two sig-
nals. In other cases, S is introduced in addition to CC in order to describe the
nonlinear signals. This paper investigates a biologically-realistic neural network
(NN) model of the piriform cortex. Our previous work studied the EEGs obtained
from two components of this network. In this current work, we increase the granu-
larity of our approach and replicate the exploration using the membrane potentials
of our neurons. We thus investigate here the synchronization of these types of
signals using the membrane potentials using both linear measures (i.e., CC) and
nonlinear measures (i.e., S). Our results clearly prove that utilizing both these mea-
sures is effective in analyzing and understanding real-life chaotic systems.
Keywords: Chaotic Behavior, Large-scale Neuro-Models, Nonlinear Interdepen-
dence (S) Measure.

1 Introduction

Neuro-modeling is usually motivated by a desire to better understand specific
neural circuits, particularly those whose failures could possibly trigger human
illnesses. Depression, Anxiety, Schizophrenia, Alzheimer’s disease, memory
impairment, paralysis, Epilepsy, Multiple Sclerosis, Parkinson’s disease, etc.
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are areas in which intense research efforts have been (and are being) made
so as to better understand and treat these conditions. In this respect, from
a modeling perspective, one hypothesis is that the analysis of the connec-

tions between the neurons is fundamental to understanding the cause and
treatment of the illness. Apart from providing a better understanding of the
conditions and symptoms of a disease, such an analysis also leads to a better
understanding of the development and function of the normal brain.

From the theory of nonlinear dynamics [7], we understand that nonlinear
dynamical systems can be aptly and best described and quantified by a state
space. This is also the natural framework to characterize its underlying
phenomena. However, while their properties may be undetectable in the
system’s time domain output (e.g., in the EEG tracing), they can be studied
in the phase space. A phase space representation may reveal the salient
features of the nonlinear structure which are hidden or occluded to standard
linear approaches [11]. In this context, Nonlinear Interdependence is said to
occur when the trajectories reconstructed in the phase-space of one time series
experimentally predict the evolution of the phase space trajectories of the
second time series [10]. This measure of predictability has the advantage over
linear measures, of being sensitive to the interdependence between dissimilar

types of activity [3].
Often, in the analysis of nonlinear signals, a linear measure (the Cross

Correlation coefficient, CC) is a measure that aptly describes the synchro-
nization or the desynchronization between two signals. In other cases, the
Nonlinear Interdependence, S, is introduced in addition to CC in order to de-
scribe the nonlinear signals. In this paper we present a comparison between
S and CC. We shall demonstrate that whenever we are dealing with signals
with a “dominant” nonlinear behavior and with a very small linear compo-
nent, neither S nor CC, by themselves, can provide the same information as
the pair 〈S, CC 〉.

To demonstrate this hypothesis, we shall investigate a biologically realistic
Neural Network (NN) model of the piriform cortex. In our previous work [4],
we studied the EEGs obtained from two components of this network. In this
current work, we increase the granularity of our approach and replicate the
exploration using some previously unexplored criteria, i.e., the membrane

potentials of our neurons. We thus investigate here the synchronization of
these types of signals using the membrane potentials, wherein we utilize both
a typical linear measure (i.e., CC) and a typical nonlinear measure (i.e., S).
We also compare the synchronization identified between the potentials in this
manner, with the one identified between the EEGs.

1.1 The Computational Model and the Platform: GENESIS

The computational model which we present can be viewed as a nonlinear
system. Simulation of the piriform cortex requires the numerical solutions
of systems of differential equations that describe the states of the neurons
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as a function of time and space. These numerical techniques describe how
the system advances the state variables of the simulation (e.g., the potential
of the membrane ) from time i to time i + 1, through numerical integration
of the differential equations that appropriately describe the system. The
computational model of the piriform cortex is treated as a loosely-coupled
system of ordinary differential equations. The evaluation of a state of any
neuron in the system requires only the information of the previous states
from other neurons, and it can be solved for each neuron at every time step.
It is well known that such equations can be solved using straightforward
numerical integration techniques.

The initial architecture consists of three 15 × 9 arrays of 135 nodes. Each
array has only a single type of neuron, being either of the pyramidal cells, of
the feedforward inhibitory cells (K+ mediated inhibition), or of the feedback
inhibitory cells (Cl− mediated inhibition). The array is proposed to represent
the whole piriform cortex, which falls within an area of approximately 10
mm × 6 mm. The pyramidal cells consist of five compartments, with each
compartment receiving a distinct kind of synaptic input. The inhibitory
cells are modelled using the differences between the exponential functions.
The model also contains 10 cells representing the excitatory input from the
olfactory bulb to the cortex.

Numerous models of brain circuitry have focused on simulating the macro-
scopic functionality of systems containing simplified neuronal units. The in-
crease in computational power in the last decade has permitted simulations
to include models with considerable complexity, namely those comprising of
realistic large scale NNs. The goal of a modeling phase is to generate patterns
that are similar to EEGs, and to explore their possible physiological basis.

The platform for our research is the so-called GENESIS (GEneral NEural
SImulation System)1 framework [2] proposed by Bower et al. This simula-
tion software was initially developed in a CALTECH (California Institute of
Technology) laboratory by Wilson [13] as an extension of efforts to model the
olfactory cortex. It was designed to allow for the multi-scale modelling of a
single simulation system and, until now, is the only simulator possessing this
capacity. Indeed, in this context, the Wilson model of the piriform cortex
is generally accepted as a realistic model, since it is based on the anatomi-
cal structure, apart from which it also contains physiological characteristics
of actual biological networks. The model has been cited in more than 100
refereed papers, and a review of large scale brain simulations is found in [5].

2 Problem of Connectivity

The problem of connectivity studied in this paper involves investigating the
modification of local connectivity within the piriform cortex. More specifi-
cally, we analyze the dependence of the level of chaos as a function of the

1 The GENESIS simulation software is free and can be downloaded from
http://www.genesis-sim.org/GENESIS/.
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density of the synapses (i.e, the number of synapses generated between the
neurons). In addition, we investigate the variation of the maximum Non-
linear Interdependence, S, of two sub-systems embedded in a larger system.
Thus, we consider how the coupling of two interconnected sub-systems of the
same underlying system would change as a function of the connectivity of the
synapses. We believe that the levels of local connections between the neurons
can be used as a hypothesis for the mechanism to explain underlying illnesses
such as Schizophrenia.

The Problem of Connectivity is motivated from the following clinical
considerations. In spite of intensive research conducted over the last decades
and the discovery of effective medication, the cause and the mechanisms lead-
ing to Schizophrenia are still unclear. It is widely agreed that Schizophrenia
is most likely based on fundamental neuronal changes of the brain. Unfor-
tunately, physiological methodologies have not been able to contrive reliable
tests beside the current assessments. Perhaps the high complexity of the
human brain is what renders it vulnerable to diseases such as Schizophrenia,
because animals do not develop the same types of diseases [6].

Prior Work on the Problem of Connectivity: In our prior research
[4], we have performed modifications to the number of connections between
the pyramidal neurons. By changing the connectivity, we proposed to simu-
late the level of pruning to be excessive or insufficient. We chose to describe
the effect of pruning on the level of chaos and the degree of synchronization
between the two sub-systems embedded in the piriform cortex model, using
three measures: the LLE, S, and CC. These three measures were chosen
based on two hypotheses. First of all, schizophrenic symptoms, like thought
disorder, hallucinations and delusions, are assumed to be dependent on the
level of chaos in the brain. Secondly, the symptoms are triggered by the
existence of false attractors near “good” attractors, which suggests that ar-
eas from the brain could be highly correlated in an unhealthy manner. To
our knowledge, the investigation of the two theories, namely excessive and
insufficient pruning, based on these three measures, is new.

The uniqueness of our research is strengthened by the fact that the pairs
of signals being compared belong to the same system. Other authors [8–
10], have considered two initially independent systems and partially coupled
them; subsequently, they have analyzed the synchronization of the signals
obtained from the two systems. In contrast to previous models that evaluate
relationships between two different systems (or rather, two partially coupled
systems), we have proposed a new approach where the investigation is con-
ducted using two sub-systems which are embedded within the context of a
larger system, namely, two coupled sub-systems of the same system.

2.1 Current Work: Problem of Connectivity

To present our current work in the right perspective, it is appropriate for
us to mention how the readings and measurements are taken and recorded.
Recordings from the array are averaged to produce the EEGs as below:

136



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

EEG(t + 1) =
1

m

m∑

i=1

[Φi(t)], (1)

wherem is the number of electrodes, and Φi(t) is the field potential depending
of the output of the pyramidal neurons, Xp(t) for p = 1 · · ·N . We assume
that the influence of the inhibitory neurons is marginal in the process of the
EEG computation, and that it can thus be omitted.

The relation between the field potential, Φi(t), recorded from the elec-
trode i and the output of the pyramidal neurons Xp(t) is:

Φi(t) =
1

4Π

N∑

p=1

Xp(t)

dpi
, (2)

where N is number of pyramidal neurons, and dpi is the distance of the pth

pyramidal neuron from the recording site (the electrode i).
By examining the above equations, the reader can see that the synchro-

nization of the EEGs implies the evaluation of the aggregated signals, which
is achieved by computing the averages of a certain number of fields (in our
setting the number is 8). These fields are, in turn, obtained by weighting
the membrane potentials with the inverses of the distances between the elec-
trodes and each neuron, which is considered as a contributor in the EEG.
However, prior to the averaging phase, one observes that the computational
model of the piriform cortex yielded access to the raw data in and of itself,
namely the original membrane potential of each neuron. From the perspec-
tive of understanding the efficiency of the CC and S measures, in our current
work we disaggregate the signals and explore the behavior of the raw data
(i.e., the membrane potentials) itself. To accomplish this for a prima facie

study, we perform a careful selection of only four neurons as follows:
i. Two of them (V1-V2) were involved in the previous EEG1 computation;
ii. One of them (V135) was involved in the computation of the EEG2;
iii. The last (V15) was not involved in the previous computations.
Using these selection criteria, we now investigate all the possible synchroniza-
tion scenarios (i.e., the intra-EEG and the inter-EEG electrode readings).

2.2 The Settings

In our research, we considered two zones of the piriform cortex as depicted
in Figure 1. For each zone, which was treated as a sub-system, we analyzed
the artificially generated EEGs, each of them being computed with a fixed
number of electrodes, and at a suitable frequency.

We considered the density of the synapses corresponding to the pyramidal
neurons as a control parameter, and explored the effect of modifying the
initial values suggested by the Wilson model [13]. This, in turn, involved:

1. The computation of the EEGs as function of the number of electrodes
for each sub-system.
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Zone 1

Zone 2

PYRAMIDAL EXCITATORY LAYER (30x50 neurons)

ELECTRODES ARRAY (5x10 electrodes)

Fig. 1. The distribution of the electrodes in Zone1 and Zone2.

2. The determination of the optimum value for the embedding dimension
for the phase space reconstruction using the FNN method for the density

of the synapses.
3. The computation of the CC and S measures between the EEGs and for

the membrane potentials.

2.3 Results for this Problem

We conducted numerous simulations over an ensemble of settings. However,
we merely report here some representative results.

First of all, we mention that the time series used to describe the systems
are the EEGs and membrane potentials. To obtain these, we used an array of
n evenly spaced electrodes on the surface of the simulated cortex. Recordings
from the array were then averaged to produce the EEGs. In our experiments,
we set n = 50.

We investigated the level of chaos and the synchronization between these
two zones of the piriform cortex, when the efficiency of the pruning was higher
or smaller than 50%, implying that we decreased, and also increased the con-
nectivity between the pyramidal cells. The level of connectivity was described
by the maximum number of possible connections between the pyramidal neu-
rons, where the possible values were p = 0.1, 0.2, 0.5, 1, 2, and 10. The case
of the healthy brain, when the efficiency of pruning is 50%, corresponds to
the setting when p = 1.

For each sub-system we analyzed the artificially generated EEGs, each
of them computed with 8 electrodes. We also analyzed the membrane po-
tentials for four neurons: V1 and V2 involved in the computation of EEG1
for Zone1, V135 involved in the computation for the EEG2 for Zone2, and
V15 not involved in the computation of EEG1 or EEG2. The EEGs and the
membrane potentials were recorded at 5,000 samples/sec for a duration of
half of a second.

The first experimental step was to compute the optimum embedding di-
mension for each zone, using The False Nearest Neighbor (FNN) Statistics.
In the interest of brevity, we will not present these results here.

To evaluate the interdependence between the artificially generated EEGs
and between the membrane potentials, as mentioned earlier, we used two
metrics, namely S and CC. For computing CC we used a lag which ranged
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between -100 and +100. The absolute value is reported. The evolution of
S and CC function of connectivity between pyramidal cells are presented in
Table 1, in which we report the averages for 20 experiments, each of them
conducted with a different model.

V1 V15 V2 V15 V1 V135 V2 V135 EEG1 vs EEG2

Weights CCmax S(X, Y ) CCmax S(X, Y ) CCmax S(X,Y ) CCmax S(X, Y ) CCmax S(X, Y )

0.1 0.9678 0.2341 0.9668 0.2366 0.9680 0.2439 0.9692 0.246 0.5005 0.2396

0.5 0.6600 0.1094 0.6539 0.1117 0.7300 0.212 0.8032 0.2170 0.6204 0.2870

1 0.1386 0.0797 0.2111 0.0671 0.1380 0.0823 0.1872 0.0680 0.2227 0.1112

1.5 0.1439 0.0234 0.1419 0.0215 0.2526 0.0390 0.2158 0.0330 0.2524 0.2607

Table 1. Nonlinear Interdependence (S) and maximum Cross Correlation Coef-
ficient (CCmax) for membrane potentials (V1 V15, V2 V15, V1 V135, and V2 V135)
and for EEG1 and EEG2 function of the value of the connectivity between the
pyramidal cells.

Fig. 2. The evolution of S(X|Y ) and CC as a function of the level of connectivity
between the neurons (see Table 1.)

2.4 Discussion of Results

Table 1 and Figure 2 are used for analyzing the two behaviors, namely that
of increasing and decreasing the connectivity levels. Table 1 contains the
averages of the CC and S measures computed with membrane potentials (the
first 8 columns) and the averages computed with the EEG signals (reported
earlier in [4]). The reader can see that the computation used to obtain the
EEG affects the ranges of the CC and S measures, namely it decreases the
ranges, compared to the ranges of the CC and S measures computed with
the membrane potentials. To be more specific, the CC ranges are 0.8306
for the membrane potentials and 0.3977 for the EEGs , while the S measure
ranges are 0.2245 for the membrane potentials and 0.1758 for the EEGs.
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With regard to the degree of synchronization represented by the Nonlinear
Interdependence S, only a decrease in the connectivity leads to a consistent
modification, again as displayed in Figure 2.

3 Conclusions

The analysis of the two behaviors, namely that of increasing and decreasing
the connectivity levels, reveals that both of them determine a decrease in the
level of chaos in the system, as seen in Figure 2.

From these observations, we can conclude that whenever we are dealing
with signals with a “dominant” nonlinear behavior and with a very small
linear component, neither S nor CC, by themselves, can provide the same
information as the pair 〈S, CC 〉.
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Abstract: Bio-based human computer interface (HCI) has the potential to enable 

severely disabled people to drive computers directly by bioelectricity rather than by 

physical means. A study on the group of persons with severe disabilities shows that many 

of them have the ability to control their eye movements, which could be used to develop 

new human computer interface systems to help them communicate with other persons or 

control some special instruments. 

There is some work done on Human Computer Interface using the mathematical 

morphology to process the signal. This requires costly Laptop or DSP chip which makes 

the entire system costly. So, the objective is to reduce the cost and the complexity of the 

existing system by using a low cost Graphical LCD and a Microcontroller. Thus, the 

system would become affordable by all. This Human Machine Interface, which can be 

controlled using EOG Signals and final output is to be used to move cursor on the 

graphic display which has several buttons and each button is clicked by blinking the eyes 

which activates corresponding appliance or action. RF interface is provided between 

acquisition/processing part and application so that it’s easy to handle and easy to install 

in homes and hospitals 

Keywords: Human computer interface, EOG,eye movement. 

 

1. Electro-Oculography (EOG) Principle 
Electro-oculography (EOG) is a new technology of placing electrodes on user’s 

forehead around the eyes to record eye movements. EOG is a very small 

electrical potential that can be detected using electrodes. Compared with the 

EEG, EOG signals have the characteristics as follows: the amplitude is 

relatively high (15-200uV), the relationship between EOG and eye movements 

is linear, and the waveform is easy to detect.  

A. Anatomy of Eye 

 

The main features visible at the front of the eye are shown in Figure 1 .The lens, 

directly behind the pupil, focuses light coming in through the opening in the 

center of the eye, the pupil, onto the light sensitive tissue at the back of the eye, 

the retina. The iris is the colored part of the eye and it controls the amount of 

light that can enter the eye by changing the size of the pupil, contracting the 

pupil in bright light and expanding the pupil in darker conditions. The pupil has 

very different reflectance properties than the surrounding iris and usually 

appears black in normal lighting conditions. Light rays entering through the 

pupil first pass through the cornea, the clear tissue covering the front of the eye. 

The cornea and vitreous fluid in the eye bend and refract this light. The 

conjunctiva is a membrane that lines the eyelids and covers the sclera, the white 
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part of the eye. The boundary between the iris and the sclera is known as the 

limbus, and is often used in eye tracking.  

 
Figure 1 

 

The light rays falling on the retina cause chemical changes in the photosensitive 

cells of the retina. These cells convert the light rays to electrical impulses which 

are transmitted to the brain via the optic nerve. There are two types of 

photosensitive cells in the retina, cones and rods. The rods are extremely 

sensitive to light allowing the eye to respond to light in dimly lit environments. 

They do not distinguish between colors, however, and have low visual acuity, or 

attention to detail. The cones are much less responsive to light but have a much 

higher visual acuity. Different cones respond to different wavelengths of light, 

enabling color vision. The fovea is an area of the retina of particular importance. 

It is a dip in the retina directly opposite the lens and is densely packed with cone 

cells, allowing humans to see fine detail, such as small print. The human eye is 

capable of moving in a number of different manners to observe, read or examine 

the world in front of them. 

 

2. The Electro-Oculogram 

The electro oculogram (EOG) is the electrical signal produced by the potential 

difference between the retina and the cornea of the eye. This difference is due to 

the large presence of electrically active nerves in the retina compared to the 

front of the eye. Many experiments show that the corneal part is a positive pole 

and the retina part is a negative pole in the eyeball. Eye movement will 

respectively generates voltage up to 16uV and 14uV per 1° in horizontal and 

vertical way. The typical EOG waveforms generated by eye movements are 

shown in Figure 2.  
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Figure 2 

 

In Figure 2, positive or negative pulses will be generated when the eyes rolling 

upward or downward. The amplitude of pulse will be increased with the 

increment of rolling angle, and the width of the positive (negative) pulse is 

proportional to the duration of the eyeball rolling process. 

 

3.  Methodology 
In our HCI system, four to five electrodes are employed to attain the EOG 

signals. Figure 3 shows the electrode placement. 

 

   

 
Figure 3 

 

Electrodes 1 & 4 for detecting vertical movement, 2 & 3 for detecting horizontal 

movement and 5 is for reference(can be omitted or place at forehead). Blink 

detection is by separate algorithm based on EOG signals 
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Figure 4 

 

4. Acquisition Part 

A. Electrodes: 

 The Ag-AgCl electrodes will pick up signals which corresponds to eye 

movements signals mixed with some others signals which are noise and the 

noise is filtered at later stages 

B. Instrumentation Amplifier: 

Signals from electrodes are received and sent to Instrumentation Amplifier 

which is a type of differential amplifier that has been outfitted with input 

buffers, which eliminate the need for input impedance matching and thus make 

the amplifier particularly suitable for use in measurement and test equipment. 

Instrumentation amplifier with very low DC offset, low drift, low noise, very 

high open-loop gain, very high common-mode rejection ratio, and very 

high input impedances is used for great accuracy and stability of 

the circuit. AD620 a precision Instrumentation amplifier is used here 

C. Active Filters and Gain Blocks: 

Opamp based Active low pass filters are used so that only eye signals are going 

further in the circuit, cutoff frequency for this filter is 20Hz-40Hz. And high 

pass filter is used to block DC and frequencies up to 0.1-0.3Hz. These filters and 

gain blocks are implemented using LM324 Opamp. 

D. Analog to Digital Convertor: 

Final amplified and filtered analog output is converted into Digital signal using 

I2C Based 4 channel A2D convertor-PCF8591 to save space as ADC0808 is 

little bigger in size. 

E. Acquisition and processing microcontroller: 

144



 

 
 

 Proceedings, 6th Chaotic Modeling and Simulation International Conference 

 11 - 14 June 2013 Istanbul, Turkey 

 

 

 

 

 

This is 8051 class of microcontroller and it has to acquire signals from A/D 

convertor for both chains up-down electrode chain and left-right electrode chain. 

As our microcontroller is fast and powerful we will process the signal here itself 

and transmit final eye move outputs to application part wirelessly. 

Commands sent: 

CL: Right eye movement 

CR: Left eye movement  

CU: Up eye movement 

CD:  Down eye movement 

BL: Blinking of eye 

F. RF Transmitter: 

Here we can use 315/433 MHz Transmitter modules along with HT640 Encoder 

to send eye movement commands to the application part. 

 
 

Figure 5 

5.  Application Part 

A. RF Receiver:  

Wireless signals transmitted by the acquisition part are received in this section, 

here 315/433MHz Rx modules along with HT648 decoder is used. Output of RF 

receiver goes to application part directly. 

B. Display and appliance controller:  

This is a again a microcontroller which receives eye movements signals (R L U 

D B) as described above via UART interface.  
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We use P89V51RD2 from NXP (Philips), this microcontroller is connected to 

Graphic LCD which displays Cursor and 4 buttons 

1. TV   2. FAN 3. Lights  4. Alarm 

Using eye movements a cursor is controlled and using blink click operation is 

done, each Button is toggle button i.e. if appliance is on it will become off and 

vice versa. But alarm button is different when clicked an On-off alarm is 

generated to call assistance. And assistant has to come and reset the alarm. Now 

this controller is also connected to relay board so button action is converted into 

relays getting switch off and on. And hence appliances are getting turned on and 

off. 

 
Figure 6 

 

6. Advantages of the EOG over other methods 
     The EOG typically has a larger range than visual methods which are 

constrained for large vertical rotations where the cornea and iris tend 

to disappear behind the eyelid. Angular deviations of up to 80◦ can 

be recorded along both the horizontal and vertical planes of rotation 

using electrooculography.  

     The reflective properties of ocular structures used to calculate eye 

position in visual methods are linear only for a restricted range, 

compared to the EOG where the voltage difference is essentially 

linearly related to the angle of gaze for ±30◦ and to the sine of the 

angle for ±30◦ to ±60◦. 

    The EOG has the advantage that the signal recorded is the actual 

eyeball position with respect to the head. Thus for systems designed 

to measure relative eyeball position to control switches (e.g. looking 
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up, down, left and right could translate to four separate switch 

presses) head movements will not hinder accurate recording.  

     Unlike techniques such as the magnetic search coil technique, EOG 

recordings do not require anything to be fixed to the eye which 

might cause discomfort or interfere with normal vision. EOG 

recording only requires three electrodes (for one channel recording), 

or five electrodes (for two channel recording), which are affixed 

externally to the skin. 

     In visual methods, measurements may be interfered with by 

scratches on the cornea or by contact lenses. Bifocal glasses and 

hard contact lenses seem to cause particular problems for these 

systems. EOG measurements are not affected by these obstacles. 

     EOG based recordings are typically cheaper than visual methods, as 

they can be made with some relatively inexpensive electrodes, some 

form of data acquisition card and appropriate software. 

     The EOG can be used to record eye movement patterns when the eye 

is closed, for example during sleep. Visual methods require the eye 

to remain open to know where the eye is positioned relative to the 

head, whereas an attenuated version of the EOG signal is still 

present when the eye is closed. 

 

7. Result 
The microcontroller P89V5RD2 in both acquisition end and at the receiver end 

is programmed using C. The observed result is that the list of appliances that can 

be controlled and a cursor is displayed on the LCD graphical display. The cursor 

can be moved up, right, left and down by the eye movements and the appliances 

could be controlled by blinking the eyes without using the hands. The minimum 

time interval between two operations is 5seconds. 
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Abstract: The utilization of RFID cards in the field of asset tracking, manufacturing, 

supply chain management, retailing, security and access control other far reaching 

applications and with the implementation of advanced ARM series processors in almost 

every consumer  application specific systems, advanced features associated with these 

systems markup a milestone in the development. The vulnerability and the adaptability of 

an advanced system as such which involves the embedment of ARM processors and the 

RFID cards in the system without any hindrance and any mis-utilization of the resources 

are in more demand. The paper deals with the accesses of the entry for the 

user/commuter into the bus in a pre-defined path using a RFID card, which the user has 

to scan during the in and out of the bus, due for which the user will be accessing their 

pre-paid account and there happens to be a reduction in the usage of paper. It has got a 

wide variety of applications and can be designed for any security or access control 

system. In this paper, the design and development of the electronic system, in which the 

user can just use the card to get into the bus and also inform about his balance left in his 

card is being appreciated. The system is user-friendly with easy accessibility for each and 

every user/commuter, system also allows the user/commuter to gain entry into the bus, 

system also monitors the proper utilization of the resources without any mis-utilizations. 

  

The paper focuses on the development of system and the necessary hardware components 

required, along with its proper implementation details.  

 

Keywords: ARM(Advanced RISC Machines) processor; Keil μVision Compiler; 

LCD(Liquid Crystal Display); RFID.  

 

 

1. Introduction 
With the increased misutilization of the public transport resources such as the 

illegal usage of tickets and daily tickets and  passes, and also with the wastage 

of the available natural resources such as paper in the form of tickets, we 

thought of overcoming these hurdles by constructing a system that is eco-

friendly; thus reducing the usage of the usage of the natural resources such as 

the paper as the user/commuter here handling or accessing or interacting with 

this system uses a RFID card which as long durability and user –friendly 

system; can be easily accessed by the user/commuter at any real time.  

 

        This system has a basic feature thus enabling securized/ authentified entry 

into the bus and also the checking of the proper utilization of the resources 

without any hampering/misutilization/tampering of the resources. This is a 
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versatile autonomous system which follows a predefined path and allows the 

user to access the system in an economic and efficient way.  

 

2. PRESENT WORK 

Every user/commuter will be having a pre-paid account to which the access in 

enabled with the help of the RFID cards. These cards will be read with the help 

of the RFID Readers when the user of the system scans his/her card.  

  The user will then be logged in into his/her account whose database 

will be certainly maintained in a database management system, from which the 

details of the user is retrieved. The door of the bus opens and the passenger 

enters into the bus. During the exit of the passenger he/she has to again scan the 

card and the door of the bus opens up for the exit of the passenger.  

The respective amount wil be deducted from their account upon the scanning of 

their card during their exit from the bus. The heart of the system is the ARM 

processor which is responsible for the entire processing and the vigilance of the 

proper working of the entire system. The series of ARM processor used here is 

ARM7TDMI, bearing the required suitable features.  

A display remains to be the guide to process the functioning of the system, that 

displays the user details with the remaining balance in his/her card and the 

validity of the card, after which the door of the bus is made to open with the 

help of a stepper motor and as the passenger/user/commuter enters the bus the 

door of the bus closes, and the process is to be repeated for the next and the 

other users/commuters in the queue to gain entry into the bus.  If the amount in 

the account of the user/commuter is low or if the user/commuter is trying to 

access the system with a fake RFID card or a wrong card then the door of the 

bus is not opened but there is the howling of the alarm alerting both the 

user/commuter as well as the driver of the bus. 

 

3. RELATED WORKS 

With the development and the design of the system, the major drawbacks of the 

previous existing protocols and the systems that consisted of the processors 

other than ARM series of processors, motivated in developing such a system. 

             “The performance of the system components can be improved by 

optimizing the performance of every component in the system”, as quoted by L. 

Ruiz-Garcia , P. Barreiro , J.I. Robla [3] in their paper “Performance of ZigBee-

Based wireless sensor nodes for real-time monitoring systems”, “Radio 

Frequency can have data rates of up to 450kbps, which provides very fast rates 

for data transfer while Bluetooth offers only 250kbps, and the security of the 

data and its integration as compared with that of  Radio frequency, is much 

more open to interception and attacks” as quoted in the seminar report of 

“BLUETOOTH” [1] and the disadvantages of the previous protocols existing 

prior to that of the RFID makes us to adopt to the utilization and the 

implementation of RFID and its clear applications in our work.  

“The amount of interrupt latency, the support of the modules by the kernels, 

Operating systems, addressing modes and register sets, are the few drawbacks 

that hinders the performance rates of the predecessor processors of ARM”, as 
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interpreted by Thomas Wiedemann in his paper “How fast can Computers 

React?” [2], stands as a support and substantiates the use of the more advanced 

and adorable series of processor, ARM processors that accommodate nearly 

about 75% of today‟s all consumer goods to every 32-bit RISC CPUs, in our 

work.  

And as per the advantages that have been stated with respect to our work and 

with these the ideas for an efficient system to govern the entire process of 

accessing and security in local transport facilities with the increased rate of 

misutilization of the resources as such by a lot lead us through this work.  To 

mention few, below are the disadvantages of the previous protocols i.e. of 

Zigbee and Bluetooth that existed before the evolution of RFID; 

 Market for Zigbee and Bluetooth is WPAN and whereas for 

the RFID its WSN (Wireless Sensor Network) 

 

 Data Rate is of standard 20-250kbps for Zigbee and 1Mbps for 

Bluetooth whereas for RFID its 2.48kbps (slow speed data at 

13.56MHz) and 423kbps (high speed data at 13.56MHz) 

 

 Range is 1-75+ for Zigbee and 1-10+ for Bluetooth whereas 

for RFID its 1.5m-100m 

 

 Has the key attributes of both Zigbee and Bluetooth i.e. cost 

effective, low power and convenience. 

 

 Transmission technology of Zigbee is DSSS and that for 

Bluetooth is FHSS whereas that for the RFID is ASK(bi-phase 

modulation), FSK and PSK. 

 

 Power: 0dbm for Zigbee; 0/20dbm for Bluetooth and 0.1w-2w 

(800MHz) for RFID 

 

 Topology: 64000 devices (nodes) for Zigbee and max of 8 

devices point-to-multipoint, whereas for RFID its „N‟ point-

to-multipoint devices.  

 

4. TECHNOLOGY  

a.  ARM PROCESSOR 

The ARM7TDMI[4] is a member of the Advanced RISC Machines (ARM) 

family of general purpose 32-bit microprocessors, which offer high performance 

for very low power consumption and price. The ARM architecture is based on 

Reduced Instruction Set Computer (RISC) principles, and the instruction set and 

related decode mechanism are much simpler than those of micro-programmed 

Complex Instruction Set Computers. This simplicity results in a high instruction 

throughput and impressive real-time interrupt response from a small and cost-

effective chip. Pipelining is employed so that all parts of the processing and 

memory systems can operate continuously. 
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             The ARM7TDMI processor employs a unique architectural strategy 

known as THUMB, which makes it ideally suited to high-volume applications 

with memory restrictions, or applications where code density is an issue. 

 

The major advantage of a 32-bit (ARM) architecture over a 16-bit architecture is 

its ability to manipulate 32-bit integers with single instructions, and to address a 

large address space efficiently. When processing 32-bit data, a 16-bit 

architecture will take at least two instructions to perform the same task as a 

single ARM instruction. THUMB also has a major advantage over other 32-bit 

architectures with 16-bit instructions. This is the ability to switch back to full 

ARM code and execute at full speed. Thus critical loops for applications such as  

• Fast interrupts 

• DSP algorithms 

can be coded using the full ARM instruction set, and linked with THUMB code. 

The overhead of switching from THUMB code to ARM code is folded into sub-

routine entry time. Various portions of a system can be optimised for speed or 

for code density by switching between THUMB and ARM execution.  

 

The code density with respect to this processor family is in the range of about 

75% while that for ARM9 is about 35%. The ARM7TDMI processor is 

associated with the Von-Neumann Architecture whereas the latter is of Harvard 

Architecture. The particularity for this paper is satisfied with the features of 

ARM7TDMI.  

 

b. KEIL μVISION COMPILER 

 

The Keil Development Tools are designed for the professional software 

developer; however programmers of all levels can use them to get the most out 

of the embedded microcontroller architectures that are supported. Tools 

developed by Keil are distributed in several packages and configurations, 

dependent on the architecture. 

 

MDK-ARM: Microcontroller Development Kit, for several ARM7, ARM9, and 

Cortex-Mx based devices 

 

In addition to the software packages, Keil offers a variety of evaluation boards, 

USB-JTAG adapters, emulators, and third-party tools, which completes the 

range of products. 

 

c.   LCD (Liquid Crystal Display) 

The LCD is accessed as matrix 5 x 8 dots that include cursor. It also has a built - 

in controller (KS 0066 or Equivalent). The LCD is powered up with the help of 

a + 5V power supply (Also available for + 3V). This is also characterized with 

1/16 duty cycle. Note that the +4.2V for LED or the Negative Voltage (N.V.) is 
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optional for +3V power supply. The LEDs can be driven by pin 1, pin 2, pin 15, 

pin 16 or A and K. FFC and FFC connector is for LCD-020M004B only. 

 

d. RFID (Radio Frequency Identification) 

RFID systems consist of three components in two combinations: a transceiver 

(transmitter/receiver) and antenna are usually combined as an RFID reader. A 

Transponder (transmitter/responder) and antenna are combined to make an 

RFID tag. An RFID tag is read when the reader emits a radio signal that 

activates the transponder, which sends data back to the transceiver. 

 

There are two types of transponders, which correlate to the two major types of 

RFID tags. 

 

 Passive transponders and RFID tags have no energy source of their 

own, relying on the energy given off by the reader for the power to 

respond. Cheaper, passive RFID tags are the most likely to be used for 

consumer goods. 

 

 

 An active transponder or tag has an internal power source, which it 

uses to generate a signal in response to a reader. Active transponders 

are more expensive than passive ones. They can communicate over 

miles like ordinary radio communications. They are commonly used in 

navigation systems for commercial and private aircraft. 

 

CHIPS AND DATA 

The RFID tag stores data on a tiny computer chip. The cheapest and most 

common chip will be the read-only chip, which is likely to carry only a serial 

number. More expensive 

“read-write” chips allow new information to be added to the tag or written over 

existing information when the tag is within range of a reader.  

 

Writeable chips will be useful in some specialized applications such as 

maintaining maintenance records for vehicles or appliances, but they are more 

expensive than read-only chips and impractical for tracking less expensive 

items. 

 

5.  IMPLEMENTATION DETAILS 

 

The source code for the application of the system is developed in Embedded C 

language implemented in Keil ìVision4[5] IDE. The basic design of the basic 

combinational circuit is implemented in Cadence OrCAD Lite 16.5[7]. System 

architecture is realized in a development environment with its development 

done virtually using Proteus ISIS 7[5]. The layout of the entire system will be 

minimized, in comparison with the previous system.   
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6. SYSTEM ARCHITECTURE  

The RFID reads the tag through the antenna provided and the data is 

communicated through the MAX232 IC, where the RS232 signal is converted 

into TTL logic signals via UART. 

The MAX563 IC on the ARM development board receives these input signals 

and transmit it to the LPC2148 controller of the ARM and the display is enabled 

through the ports P1.16 to P1.23 i.e the data lines through which the data is sent 

to the display to be displayed.  

 P0.15 is set for the buzzer/alarm. 

 The driver ULN2003 communicates with the ARM through the ports 

P0.4 to P0.7. This controls the rotation of the stepper motor thus 

indicating the opening and the closing of the door of the bus.  

 IC UM91215B represents the DTMF encoder which encodes the 

sinusoidal tone generated when an individual key on the DTMF keypad 

is pressed. 

 This encoded data is decoded by using the DTMF decoder IC MT8870 

which sends the signal respective of that key in the DTMF keypad to 

the LPC2148 controller of the ARM for the processing. 

 A supply of +12V for the stepper motor to run and +5V for the DTMF 

keypad and the DTMF decoder is required.  

 

7   CONCLUSION 

 

The BUS TICKETING USING PRE-PAID CARDS was realized using the 

ARM processor(LPC2148 controller)with a Stepper Motor for the opening and 

the closing of the door of the bus and an HD44780U LCD display to guide 

through the process of accessing the entry with the help of an RFID card. When 

the power of the entire circuit was turned on and the unique RFID card was 

scanned, then the ARM processor process the data stored within the card of the 

user and allows the user to access the entry into the bus through the correct 

procedures and the correct inputs given by the user. When the entire process is 

done with this the ARM processor then commands the Stepper Motor to rotate 

thus indicating the opening of the door of the bus, as it rotates to an angle of 

45◦.  
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Figure 2. Block Diagram of the system (for demo purpose keypad is used) 

 

 
 

Figure 3. Circuit Diagram of the system (keypad is used only for the demo 

purpose) 
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7. RESULTS 

 

Once done with the programming, and burn the compiled program into the 

controller as explained above, we could test the following results on from the 

system designed and could achieve nearly 80% of the output through this 

system which includes the following results: 

 The autonomous system followed the pre-defined path smoothly.  

 It scanned the user/passenger RFID card and the processing was done 

successfully by the ARM7TDMI processor with the controller 

LPC2148 and displayed the proper messages after its scanning to the 

system. 

 After the user/passenger entered or selected the from and destination 

locations from the list displayed, using the DTMF Keypad(This 

keyboard facility was for the demo purpose), the door of the bus opens 

and this is done with the help of the stepper motor, with its successful 

running. 

 The alarm/buzzer also worked perfectly when the user didn‟t had the 

appropriate balance.  

 All the components in the system worked completely in 

synchronization which made it truly autonomous.  
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Abstract: Recently, a simple, very fast and easy to compute qualitative indicator of the 

chaotic or ordered nature of orbits in dynamical systems was proposed by Waz et al 

(2009), the so-called “Asymmetry coefficients”. The indicator has been obtained from an 

analysis of the statistical behavior of an ensemble derived from the time dependence of 

selected quantities characterizing the system’s motion. It was found that for an ordered 

orbit the indicator converges to zero while for a chaotic orbit no sign of convergence can 

be observed. Using the Henon-Heiles Hamiltonian system and the Smaller Alignment 

Index method, in our paper we proposed a numerical criterion in order to quantify the 

results obtained by the “Asymmetry coefficients” method. This criterion helped us to 

define threshold values between regularity and chaoticity and to construct detailed phase-

space portraits, where the ordered and chaotic regions are clearly distinguished. 

Additionally, exploiting the rapidity of the method, we showed how it can be used to 

identify “sticky” orbits or tiny regions of order and chaos. 

Keywords: asymmetry coefficients, ordered and chaotic orbits, hamiltonian systems.  

 

1. Introduction 
A long-standing fundamental issue in nonlinear dynamics is to determine 

whether an orbit is regular or chaotic. This distinction is of great interest 

because in the case of regular orbits we have predictability in time whereas for 

chaotic orbits we are unable to predict the time evolution of the dynamical 

system after a short time period. There are many methods and indicators for 

chaotic motions. The well-known are the phase space method, the time series 

method, bifurcation diagram, the Poincare section of surface, Frequency-map 

analysis, Lyapunov characteristic exponents, and most recently the Fast 

Lyapunov indicator, the 0-1 test, the Dynamic Lyapunov indicator, and the 

Smaller alignment Index [1-6]. However, none of the methods has the merits to 

be beyond any doubt. Most of them, especially the so-called “traditional” tools, 

work hard in systems with many degrees of freedom, where phase space 

visualization is no longer easily accessible. The recent tools seem to be more 

efficient and faster than the older ones, but each of them has its weak points. 

This is the reason that motivates the researchers in the field to search better 

methods. 

In 2009, Waz et al. proposed an alternative, very simple and related to the 

observational data, statistical indicator of chaos [7]. In their approach the values 

of a time dependent function describing the studied motion are recorded in a 

sequence of time intervals and each of these recordings are considered statistical 

distributions. Then, the “asymmetry coefficients” of these distributions are 
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defined and their behavior for ordered and chaotic orbits is analyzed. Their 

qualitative indicator was applied only in the simple case of the damped driven 

pendulum. In present paper we have attempted to improve their work by 

proposing a numerical criterion associated to asymmetry coefficients, which 

helped us to reveal the detailed structure of the dynamics in the phase space of 

the Henon-Heiles Hamiltonian system. 

The organization of rest of the paper is as follows. Section 2 contains that 

information strictly required for understanding the “Asymmetry coefficients” 

and SALI methods. All calculations and numerical results are given in Section 

3. The final remarks and conclusions are presented in Section 4. 

 

2. Description of methods 
For the sake of completeness let us briefly recall the definition of the 

“Asymmetry coefficients” and of the “Smaller Alignment Index (SALI)” and 

their behavior for regular and chaotic orbits. The interested reader can consult 

[7, 8] to have a more detailed description of the methods. 

 

2.1. Method of the Asymmetry Coefficients 

Let )(tX  be a function characterizing the motion we are going to analyze. 

Usually, in practical applications, )(tX is known as a part of the solution of a 

differential system of equations or from experimental measurements, so its 

values are given in a discrete set of points }{ iX . Let us define a time series 

( ){ }KkTTttXtX
kfk ,...,2,1/,),()( 0 =∈=  with a fixed 0T  and <<

21 ff TT  

KfT<... . The terms of the series are treated as statistical distributions. The 

starting time 0T  and the final one 
KfT  denote the beginning and the end of the 

k- th distribution )(tX k . 

The asymmetry coefficients of the discrete k- th distribution kX  are defined as 
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,...3,2,1,12 =+= jjq  and c is a constant. kN  is the number of points in the k- 

th distribution, i.e. KkNit ki
k
i ,..,2,1,,...,2,1, === τ , with ,01

Tt k =  
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kf
k

kN
Tt = , KNNN <<< ...21 . Since 0T  is the same for all k, the length of 

the k- th distribution is proportional to kN . 

Waz et al shown that the qualitative results are the same for all c chosen so 

0)( ≥+ ctX k . Using the damped driven pendulum, they demonstrated that for 

a periodic motion the asymmetry coefficients approach zero while fT  

approaches infinity. For a chaotic orbit no regular asymptotic behaviour was 

observed. It results a qualitative indicator regarding the nature of an orbit. We 

proceeded one step further by introducing a quantitative criterion. Calculating 

for about one thousand orbits the maximum value of 7,5,3, =qA q  when 

[ ]sst 1000,500∈ , we proposed for every asymmetry coefficient a threshold 

value between regularity and chaoticity, as Section 3 will demonstrate. 
 

2.2. Method of the Smaller Alignment Index 
Consider a n- dimensional phase-space of a dynamical system and an orbit in 

that space. In order to determine if this orbit is ordered or chaotic we follow the 

evolution in time of two different initial deviation vectors )0(),0( 21 ξξ . In 

every time step, we compute the parallel/ anti-parallel alignment index (ALI) , 
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+=+ , where ⋅  denotes 

the Euclidean norm of a vector. The Smaller Alignment Index (SALI) is defined 

as the minimum value of the above alignment indices at any point in time 
 

                                        ( ))(),(min)( tdtdtSALI +−=                                      (2) 
 

Skokos shows that the two deviation vectors tend to coincide or become 

opposite for chaotic orbits, i.e. the SALI tends to zero. For ordered orbits, which 

lie on a torus, the two deviation vectors eventually become tangent to the torus, 

but in general converge to different directions, so the SALI does not tend to 

zero. Its values fluctuate around a positive value. 

 

3. Numerical results 
We consider the two degrees of freedom Henon-Heiles Hamiltonian 
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where yx, , and yx pp , are the coordinate and conjugate moments respectively. 

The equations of motion derived from the Hamiltonian are 
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and yields solutions (orbits) of the system evolving in a four dimensional phase 

space. In our study we keep the value of the Hamiltonian fixed at 125.02=H . 

We consider first two representative orbits: an ordered (quasi-periodic) orbit 

with initial conditions ( ) ( )0.0,2417.0,55.0,0.0,,, =yx ppyx  and a chaotic 

orbit with initial conditions ( ) ( )0.0,49974.0,016.0,0.0,,, −=yx ppyx .  

Figure 1a shows the Poincare surface of section (PSS) of the two orbits defined 

by 0,0 ≥= xpx . The points of the ordered orbit (blue points) form a set of 

smooth curves while the points of the chaotic orbit (red points) appear randomly 

scattered. The )(log10 SALI of the ordered orbit (blue line in Figure 1b) 

fluctuates around 0.05, indicating the regular character of the orbit, while the  

)(log10 SALI  of the chaotic orbit (red line in Figure 1b) falls abruptly reaching 

the limit of the accuracy of the computer precision )10( 16−
 after about 1700 

time units.   
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Fig.1. a) The PSS of an ordered orbit (blue points) and a chaotic orbit (red 

points); b) The time evolution of the SALI for the same orbits 

 

The calculations of the asymmetry coefficients have been performed in 

equidistant points of the time interval [ ]sst 4000,0∈ . The origin of each 

distribution corresponds to the initial time 00 =T  whereas the final points of 

the distributions have been selected as .20000,..,2,1,2.0 == kkT
kf  The time 

step on each interval was equal to 0.02 s and c was taken as )(min tX k− . In 

addition, )()( txtX = .  

Figure 2 depicts the asymmetry coefficients 7,5,3, =qAq  as function of time. 

For the periodic orbit (blue lines) the coefficients qA  converge to 0, after a  
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short transition period (about 300s). A irregular behaviour of  qA could be seen 

for the chaotic orbit (red lines). As it was proved in [8], the qualitative results 

are the same for all c that satisfy the condition 0)( ≥+ ctX k , for all t, and for 

any other component of the dynamical system (here, xpy,  or yp ). 
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Fig. 2. The asymmetry coefficients 7,5,3, =qAq for the ordered orbit (blue 

lines) and for the chaotic orbit (red lines) discussed in Figure 1 
  
In order to present the effectiveness of the quantitative indicator proposed in 

Section 2 (the maximum value of 7,5,3, =qA q  when [ ]sst 1000,500∈ , 

hereafter noted by qAmax ) in detecting regions of chaos and order we 

computed it for a large grid of equally distributed initial conditions on the axis 

of PSS ( )ypy,  of the Henon-Heiles system. To do this, we chose 440 initial 

conditions on the line 0=yp  of the PSS, between 43.0−=y  and 67.0=y  

with step 0025.0=∆y , and 400 initial conditions on the semi-line 

0,0 >= ypy  (because of symmetry)  of the PSS, between 0=yp  and 

5.0=yp  with step 00125.0=∆ yp . Figure 3 shows the SALI values for these 

orbits. The running time for every orbit was T = 1,000 time units. We assigned a 

coloured circle to every individual initial condition according to the value of the 

SALI: if it was smaller than 
810−  the circle was coloured red (the orbit is 

chaotic beyond any doubt). If SALI [ )48 10,10 −−∈  the circle was coloured 

yellow (the orbit is probably “sticky” chaotic) and finally, if SALI [ )2,10 4−∈  it 

was coloured bleu (the orbit is ordered). To clear up the nature of the orbits 
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having SALI [ )48 10,10 −−∈  and to verify if the running time T = 1,000 time 

units is sufficient for asymmetry coefficients to reveal the type of the orbits we 

computed the 7,5,3,max =qA q for T = 1,000 and T = 4,000, respectively. 

The results for  7max A  only are presented in Figure 4 (for semi-line 

0,0 >= ypy ) and Figure 5 (for line 0=yp ).  

There are some observations that are worth mentioning. Firstly, the CPU time 

needed to obtain the results plotted in Figure 3 was twenty times greater than for 

the results depicted in Figures 4a and 5a. Secondly, comparing Figure 3 with 

Figures 4b and 5b a similitude between them is easy to observe. In fact, every 

orbit with 1.0max 7 ≥A  has 410−≤SALI  (therefore is chaotic) and all orbits 

having 1.0max 7 <A  are characterized by 410−>SALI  (they are ordered). 

Finally, we point out that a too short running time (here, T = 1,000) might give 

erroneous results concerning the “sticky” orbits. 
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Fig. 3. The SALI values for initial conditions chosen on the semi-line 

0,0 >= ypy  (left panel) and on the line 0=yp  (right panel) 
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Fig. 4. The 7max A  values for initial conditions chosen on the semi-line 

0,0 >= ypy  (T=1,000 - left panel; T=4,000 - right panel) 
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Fig. 5. The 7max A  values for initial conditions chosen on the line 0=yp  

(T=1,000 - left panel; T=4,000 - right panel) 
 

The same remarks are valid for the others asymmetry coefficients, 3A  and 5A . 

We propose as threshold values between regularity and chaoticity the value 

0.005 for 3max A  and 0.025 for 5max A . 

Let us now return to the “sticky” orbits that make the difference between the 

two panels of Figures 4 and 5. In order to illustrate the capability of the 

asymmetry coefficients to identify these kinds of orbits we considered a set of 

three orbits with very closely initial conditions on the axis 0=yp  and 

computed the coefficient 7A  for T=12,000 time units. Figures 6 and 7 present 

our findings. When T=4,000 time units, one can see that the PSSs of these orbits 

are practically indistinguishable and indicate ordered orbits. The first visible 

deviations from these smooth curves appeared for 000,5≅T  time units, as 

Figure 7 shown. When T=12,000 time units two of these orbits clearly entered 

in the chaotic sea, while the third remained ordered.  
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Fig. 6. The PSS of an ordered orbit (green points) and two “sticky” orbits (black 

and red points); T=4,000 – left panel, T=12,000 – right panel 
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Fig. 7. The asymmetry coefficient 7A for the ordered orbit (green line) and for 

the “sticky” orbits (black and red lines) discussed in Figure 6 

 

3. Conclusions 
In this paper we have illustrated the capability of the “Asymmetry coefficients” 

method in distinguishing between order and chaos in Henon-Heiles Hamiltonian 

system. Besides the fact that our calculations have validated the qualitative 

results obtained by Waz et al, we proposed a numerical criterion in order to 

quantify these results. Exploiting the rapidity of the method, we constructed 

detailed phase-space portraits and defined threshold values between regularity 

and chaoticity. Additionally, we showed how it can be used to identify “sticky” 

orbits or tiny regions of order and chaos. 
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Abstract: The task is to evaluate the differences in the human brain lability involving 
its opportunity to forget or reproduce the external rhythm for patients with neural 
disorders connected with disruptions of the thalamo-cortical or stem-cortical links. For 
solving the task the EEG segments before, during and after periodic light stimulation are 
examined by the wavelet transform method. The degree of the human brain lability is 
estimated by changing in the maximums of the global wavelet spectra and by the 
coefficients of reproduction and holding the rhythm. Maximal reproduction of the 
external frequency is observed in the ranges specific for the both groups of the patients. 
For the patients with stem-cortical disruptions the all parameters essentially differ from 
the parameters obtained for the patients with thalamo-cortical disorders. Thus, the study 
demonstrates the possibility of the wavelet analysis to estimate quantitatively the human 
brain lability of perception of light stimuli. 
Keywords: EEG, Wavelet transform, Reproduction of external rhythm.  
 
1. Introduction 
Bioelectrical activity of the human brain recorded from the head surface as 
electroencephalography time series (EEG) during solving the complex 
imaginary and real visual-motor tasks  or during awake and various sleep stages 
in healthy state exhibits nonstationary, chaotic and multifractal dynamics [1, 2, 
3]. The comparative analysis of the dynamics in EEG patterns of normal and 
pathological brain activities is one of the tools of elucidation of the degree the 
brain seizures [4, 5] and estimation of the efficiency of the drug or 
psychological treatment [6].  Photostimultaion, that is the light stimulation of 
the given frequency, is one of the functional probes applied for determining of 
the human brain lability to reproduce or to reject the suggested rhythm [7]. The 
degree of such lability characterizes the level of nerve excitability and can 
classify persons for whom drugs hyperactivating the nervous system are 
unsuitable due to their own  hyperexcitability. 
The aim of the work is to evaluate the differences in the potentialities of the 
human brain to forget or reproduce the external light rhythm for patients with 
chronic pain complaints rather resistant to medicinal treatment. These patients 
can be divided into two groups accordingly to the classification connected with 
the disruptions on the thalamic level or on the brain-stem level that leads as a 
rule to changing the thalamo–cortical links in the first case and the stem–cortical 
links in the second case [8]. It results to the significant suppression of the alpha 
component prevailing for the healthy persons and the emergence of the theta 
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activity or occurrence of polymorphous small amplitude activity, that is, to 
essential deviation from the healthy EEG patterns. 
 
2. Experimental procedure 
The scalp EEG data were recorded with Ag/AgCl electrodes from 10 healthy 
subjects and 16 patients with neural impairments connected with chronic pain 
complaints. Signals of reproducing the light rhythm propagate symmetrically 
and have maximal amplitude in the occipital lobes of the human brain, that is 
why the data were collected with electrodes placed at the occipital O1, O2, Oz 
sites. The recordings were obtained for three states: before the light rhythmic 
stimulation (the interval [0, tA ]), during it (the interval [tA , tB ]) and during 
relaxation (the interval [tB , tK ]) with eyes closed. The duration of each interval 
was 20 seconds. The data were sampled at a rate 256 samples/sec with a 
resolution of 12 bits/sample. Then the data were digitally filtered using 1–30 Hz 
band pass filter. After repeated recordings 60 non- artifact segments of equal 
duration were randomly chosen from the sets: “before stimulus”, “during 
stimulus” and “during relaxation”. 
 
3. Estimation of the global energy of the EEG segment 
To estimate the global energy of EEG segment we applied the continuous 
wavelet transform of a time series x(t): 
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where a and t0  are the scale and space parameters, ψ((t- t0)/a) is the wavelet 
function obtained from the basic wavelet ψ(t) by scaling and shifting along the 
time, symbol * means the complex conjugate. As the basic wavelet we use the 
complex Morlet wavelet: 
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The value ω0=2π gives the simple relation between the scale a and frequency f:  
f=1/a.  
The square of the modulus ׀W(f, t0)2׀  characterizes the instantaneous 
distribution of energy over frequencies  at the time t0 , that is, the local spectrum 
of the signal energy. 
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The value                              ∫=
2

1
0

2
0 ),()(

t

t
dttfWfE  

describes the global wavelet spectrum, i.e., the integral of energy distribution 
over frequency range on the interval [t1 , t2 ]. 
The value 

∫=
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2
00 ),()(

f

f
dftfWtE  

represents the integral of energy distribution over time shifts in the frequency 
range  [f1 , f2 ]. 
 
4. The light time series 
The light time series limited on the interval [tA , tB ] was described as a sequence 
of k Gauss impulses following each other with frequency fC  equal to 4, 6, 8, 10, 
or 16, 20 Hz. The each impulse had the width  rO =10 ms. The centres of the 
impulses were in points 
 

,10,...,i        ,/0 −=+= kfitt cAi  
 

where tA   is the time of switching of the light series, that is the time of the 
beginning of the first impulse in the sequence. 
Thus, the light stimulus can be described as 
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The continuous wavelet transform of the light time series p(t) can be calculated 
in the form: 
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where            )(         ,)(21 0

2
0 ttfzfrs −=+=  is non-dimensional  time 

measured from time  tO. 
 
 
5. Estimation of the coefficients of reproduction and holding 
the rhythm 
Let  EX1 (Df)  and EX2 (Df)  be the global wavelet spectra  of the EEG time series 
in the frequency range Df   over the intervals [0, tA ] and [tA , tB ], i.e. before and 
during  photostimulation. 
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The reproduction coefficient of the suggested rhythm can be estimated as the 
ratio of the maximum of the global spectrum during the light time series to the 
maximum of the global spectrum before photostimulation: 
 

kR (Df) = max EX2 (Df)/ max EX1 (Df). 
 

If the frequency value corresponding to the max EX2 (Df) does not coincide with 
the light time series  frequency  fC   then there is no  reproduction of the rhythm 
in the range Df= fC  ≤ D,  where D=0.5 Hz. The larger kR (Df) value, the better 
the reproduction of the suggested rhythm. 
Let us  EX (t) and  EP (t) denote the normalized integral distributions of energies 
of  the EEG  and light time series  in the frequency range  [f1 , f2 ]: 
 

EX (t) =EX  (t) /max EX  (t)  and  EP (t) = EP (t) /max EP (t). 
 
Examples of the normalized integral distributions EX (t) and  EP (t) for fC  =4 Hz 
are given in Fig. 1. 
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Fig. 1. The normalized energy distributions of the EEG time series (solid line) 
and the light time series (dashed line). The lower figure is represented in the 
enhanced scale to see the point (tP , EP) of intersection  of the integrals EX (t) and  
EP (t). 
 
The integrals EX (t) and  EP (t) cross each other in two points (tP , EP) and (th , Eh) 
after switching on and  switching off the light time series. 
The value Eh  is taken as the coefficient of holding the suggested rhythm; 
 

kH (Df) = Eh (Df). 
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The smaller the value, the more badly the rhythm of photostimulation is kept by 
the human brain. 
 
6. Estimation of the time of remembering the external rhythm 
and the delay time of the brain response on the rhythm 
If  the EEG response on the light time series reaches the maximal  value at the 
moment   tm , then  the  difference 
 

TR (Df) = tm (Df) - tP (Df) 
 
can characterize the time of remembering the rhythm. The smaller the value, the 
faster the brain begins to generate the external frequency. 
The delay time of the EEG response from the moment of switching on the light 
time series can be estimated as 
 

TD (Df) = tS (Df) - tC (Df), 
 
where  tC is the moment when the condition 
 

EC (Df) = 0.5 (1 - EP (Df) ) 
 

is satisfied. 
 
7. Results and discussion 
The examples of global wavelet spectra of EEG for the healthy subject and 
patients with changes in  the stem-cortical or thalamo-cortical links in two 
functional states, namely, before and during the  light stimulation are given in 
Fig. 2. 
The spectra calculated in the broad frequency range [2, 20] Hz differ by the 
width as well as by the position and value of maximum. In the rest state with 
closed eyes the EEG time series of a healthy person is characterized by narrow 
frequency interval [8, 16] Hz and the large value of the global energy, maximum 
of which is equal to 5* 104 mV2.  
The disruptions of neuronal links on the brain-stem level are exhibited in the 
form of polymorphous activity of  the smaller amplitude and broaden frequency 
range [0, 12] Hz. 
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Fig.2. Examples of global wavelet spectra of EEG for the healthy subject and 
two groups of patients before and during the light time series of  fC =4 Hz. 
 
 
The maximal global energy is 10 times less than the value obtained for the 
healthy person.  
The thalamo-cortical disruptions are manifested by the extended spectrum in the 
frequency  interval [6, 14] Hz and the significant increase (almost in 10 times) 
as compared with the maximum of the global spectrum for the healthy brain and 
in 100 times in comparison with the global energy for the stem-cortical 
disruptions. 
 
The light stimulus of frequency 4 Hz  leads to the emergence of the detectable 
maximums in all the considered cases. The value of the global energy increases 
in 4 times for the healthy subject and in 1.5 times for the patient with thalamo-
cortical disorders. This value grows in almost 100 times for the patient with 
stem-cortical defects.  
The occurrence of the visible maximum of the global energy at the frequency of 
the external stimulus means the good reproduction of   the suggested rhythm. 
Reproduction of the external rhythm is observed for all the subjects and  the 
frequencies 4, 6, 8, 10 and 12 Hz and only for the healthy and persons with 
thalamo-cortical disruptions at 16  and 20 Hz. 
The coefficients of reproduction (kR (Df)) and holding (kH (Df)) the rhythm 
estimated by the wavelet spectra are given in the Table 1. 
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The time of remembering the rhythm (TR (Df)) and the delay time of the EEG 
response from the moment of switching on the light time series (TD (Df)) are 
represented also in the Table 1. 
 
 

fC =4 Hz 
 kR kH TR (s) TD (s) 

healthy 4.2≤0.6 0.52≤0.06 11.1≤1.2 1.9≤0.4 
group 1 95≤5 0.85≤0.07 6.2≤0.8 0.9≤0.2 
group 2 2.1≤0.4 0.49≤0.05 12.5≤1.7 1.5≤0.3 

fC =10 Hz 
healthy 6.1≤0.7 0.95≤0.09 0.9≤0.2 0.3≤0.11 
group 1 2.1≤1.3 0.41≤0.05 13.2≤1.3 2.1≤0.5 
group 2 5.3≤0.6 0.69≤0.07 1.5≤0.4 0.5≤0.1 

fC =16 Hz 
healthy 4.5≤0.4 0.81≤0.07 5.3≤0.4 1.1≤0.3 
group 1 there is no reproduction of the rhythm 
group 2 3.7≤0.3 0.77≤0.06 7.1≤0.8 2.1≤0.5 

 
Table 1. The comparison of the mean values averaged over 10 healthy subjects 
and 8 persons in each group of patients. The site is Qz. The patients with the 
thalamo – cortical disruptions are denoted as “group 1” and patients with the 
stem – cortical defects are depicted as” group 2”. 
 
 
For each frequency of the light time series (fC) the both coefficients of 
reproduction and holding the rhythm are largest for the subjects who have the 
eigen oscillations at this frequency in the rest state. 
The time of remembering the rhythm  and  delay of the EEG response from the 
moment of switching on the light time series  are smallest in the presence of 
eigen oscillations. These times grow in the non-specific frequency range. 
The spectra of the patients of two groups differ by four considered parameters. 
The stem – cortical defects are characterized by the absence of the external 
rhythm reproduction at frequencies larger than 16 Hz and the fast maintenance 
of the rhythm in the range [2, 6] Hz. 
The EEG time series of the patients with the thalamo–cortical disruptions have 
the large eigen oscillations in the interval [6, 14] Hz and  larger values of both 
coefficients  kR  and kH  and smaller times TR  and TD  comparing with the EEG 
of the first group. 
 
Conclusion 
The work supports that the human brain is a rather stable dynamic system and 
rearranges slowly on external rhythm of non-specified frequency range. The 
parameters found from the wavelet spectra give an opportunity to evaluate 
quantitatively the brain lability of perception of the light time series. 
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These parameters can help to estimate the nerve excitability level of a subject 
for the purpose of the appropriate drug treatment, that is, to exclude the drug 
administration hyperactivating the nervous system for patients with the 
enhanced personal excitability in the rest state. 
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Abstract: We report on theoretical modeling of the competition of three scenarios of 

transition to chaos in plasma: by intermittencies, by cascade of sub-harmonic bifurcation 

and by quasi-periodicity (Ruelle-Takens scenario). This phenomenon was experimentally 

observed in plasma in connection with the dynamics of a fireball, by analyzing the time 

series of the oscillations of the current collected by the exciting electrode. By considering 

that the plasma’s particles move on continuous but non-differentiable curves, i.e. on 

fractal curves, and applying the full and fractional revivals formalism, we developed a 

theoretical model, based on the scale relativity theory, able to explain the experimental 

results. 

Keywords: Chaotic modeling, Intermittency, Quasi-periodicity, Sub-harmonic 

bifurcation.  

 

1. Introduction 
Plasma is a strong nonlinear dynamic system with many degrees of freedom, 

very favorable for development of instabilities and transition from ordered to 

chaotic states. Thus, a large variety of scenarios of transition to chaos were 

experimentally observed in plasma systems: intermittencies [1,2], period 

doubling (Feigenbaum scenario) [3,4], quasi-periodicity (Ruelle-Takens 

scenario) [5,6], or cascade of sub-harmonic bifurcations [7,8]. In many 

experimental situations, the transition to chaos of the plasma system state was 

associated to the nonlinear dynamics of a complex space charge structure 

developed in plasma in form of a fireball [2,8]. Fireball are intense luminous 

almost spherical structures in plasma, consisting of a positive inner core (ion-

enriched plasma) confined by an electrical double layer [9,10]. Fireballs can be 

created in front of a positively biased electrode immersed into plasma, up to a 

threshold value of the applied potential. At higher values of the voltage on the 

electrode, the fireball passes into a dynamic state, consisting of periodic 

disruptions and re-aggregations of it, giving rise to oscillations of the current 

collected by the electrode [10]. 

In a series of articles [11-13], Pae and Hahn reported on a new phenomenon 

called attractor competing, consisting of coexistence of several dynamical states 

with the same initial conditions in a narrow region of the parameter space. The 

results were obtained by numerical simulation of the plasma dynamics in a 

modified Pierce-type diode. The observed attractors include chaotic attractors, 

so that three scenarios of transition to chaos were identified in the simulated 

time series: intermittency, period doubling cascade and quasi-periodicity. This 
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phenomenon was later explained as a noise-driven dynamical switch between 

attractors, occurring due to the noise fluctuations inside a system near the fractal 

basin boundaries [14]. 

Here we report on experimental results showing the competition of three 

scenarios of transition to chaos (intermittency, quasi-periodicity and cascade of 

sub-harmonic bifurcations) in a plasma system in which a fireball exists in 

dynamic state. The phenomenon was identified by analysis the time series of the 

oscillations of the current collected by the exciting electrode, the voltage applied 

on it being used as control parameter. 

To explain the experimental results, a theoretical model based on the scale 

relativity theory [15,16] was build. Due to the collisions, the plasma particles 

(electrons, ions and neutrals) move on continuous but non-differentiable curves, 

i.e. fractal curves. Thus, in the scale relativity theory the space becomes fractal. 

As effect on the motion (in standard space), the Newton’s fundamental equation 

of dynamics transforms into a Schrödinger like equation. Thus, equivalence 

between the formalism of the fractal hydrodynamics and the one of the 

Schrödinger like equation is obtained. The potential applied on the electrode is 

modeled as a one-dimensional square well. The different criteria of evolution to 

chaos are obtained by applying the full and fractional revivals formalism [17]. 

The full and fractional revivals of a speed scalar potential in the infinite square 

well occurs when a speed scalar potential evolves in time to a state that can be 

described as a collection of spatially distributed sub-speed scalar potentials that 

each closely reproduces the initial speed scalar potential shape. The results 

obtained from this theoretical model are found in good agreement with the 

experimental ones. 

 

2. Experimental results 
The experiments were performed in a hot-cathode plasma diode, under the 

following experimental conditions: argon pressure p = 7×10
-3

 mbar, plasma 

density npl ≅ 10
8
-10

9
 cm

-3
. Plasma was driven away from equilibrium by 

gradually increasing the voltage applied to a tantalum disk electrode with 1 cm 

diameter, immersed into plasma. By increasing the voltage applied on this 

electrode, at a critical value (VE = 85 V), a luminous fireball suddenly appears in 

front of the electrode. The fireball is in dynamic state, fact emphasized by the 

oscillations of the current collected by the electrode (see Fig. 1(i)), with a 

frequency of about 6.7 kHz. Fig. 1(ii) shows the fast Fourier transform (FFT) 

spectrum of these current oscillations. Further increase of the voltage applied on 

the electrode lead to the appearance of intermittencies up to the critical value VE 

= 101 V (see Figs. 1(iii)-1(iv)). The intermittencies appear more and more 

frequently with the increase of the voltage on the electrode, the oscillation 

frequency being embedded in a broadband noise (see Figs. 1(v)-1(viii)). For a 

new critical value of the applied voltage, VE = 107 V, small-amplitude 

oscillations with a frequency of about 14 kHz replace the intermittent ones (see 

Figs. 1(ix)-1(x)). For a small interval of applied voltage values, the large-

amplitude oscillations are stabilized (the intermittencies disappear) with a 

frequency of about 7 kHz, i.e. half of the frequency of the small-amplitude 
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oscillations (see Figs. 1(xi)-1(xii)). Starting with VE = 109 V, only the small-

amplitude oscillations of the current are present (see Figs. 1(xiii)-1(xiv)). For VE 

= 112 V sub-harmonic bifurcations appear in the dynamics of the plasma 

system, being identified in the FFT spectrum of the current oscillations, where 

the sub-harmonics f0/3 and 2f0/3 of the fundamental frequency are present (see 

Figs. 1(xv)-1(xvi)). For VE = 113 V a transition to chaos through quasi-periodicity 
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Fig. 1. Time series of the oscillations of the current collected by the electrode E (left 

column) and their FFT’s (right column), for different values of the applied voltage. 
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being again identified in the FFT spectrum of the current oscillations, where 

several peaks corresponding to incommensurate frequencies are present (see 

Figs. 1(xvii)-1(xviii)). Immediately after this, for VE = 114 V the sub-harmonic 

bifurcations re-appear, the peaks corresponding to kf0/7, with k = 1-6, being this 

time observed in the FFT spectrum of the current oscillations (see Figs. 1(xix)-

1(xx)). For the critical value VE = 149 V all the sub-harmonics are eliminated, 

almost harmonic oscillations being recorded, with a frequency of about 16.4 

kHz (see Figs. 1(xxi)-1(xxii)). From now, by increasing the voltage applied on 

the electrode, only a decrease of the oscillation frequency was observed (about 8 

kHz for VE = 198V), together with an increase of the oscillation nonlinearity 

(the amplitudes of the superior harmonic increase) (see Figs. 1(xxiii)-1(xxiv)). 
 

3. Theoretical model 
Once accepted that the plasma particles move on continuous but non-

differentiable curves (due to the collisions), some consequences of non-

differentiability by scale relativity theory are evident [15,16,18]: 

i) physical quantities that describe the discharge plasma dynamics are fractal 

functions, i.e. functions dependent on both spatial coordinates and time, as 

well as on the scale resolution; 

ii) the dynamics of the plasma discharge are described by the fractal operator 

d̂ dt  [18] 

 

( )2 12ˆ
ˆ

FD
d dt

i
dt t

λ
τ τ

−∂  = + ⋅∇ − ∆ ∂  
V  

 

where ˆ
D Fi+V = V V  is the complex velocity, DV  is the differentiable and 

resolution scale independent velocity, FV  is the non-differentiable and 

resolution scale independent velocity, ˆ ⋅∇V  is the convective term, 

( )2 12 FD
dtλ

τ τ

−
  ∆ 
 

 is the dissipative term, DF is the fractal dimension of the 

movement curve, λ is the Debye length, τ is the inverse of the plasma pulsation 

and 

2

D
λ
τ

=  is the Nottale coefficient specific to the fractal – non-fractal 

transition [15,16]. 

Applying the fractal operator to the complex speed and accepting a generalized 

Newton’s principle (a generalization of Nottale’s principle of scale covariance 

[15,16] in the form 

 

ˆ ˆd
U

dt
= −∇

V
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we obtain the geodesics equation 

 

( )
( )2 12ˆ ˆ ˆ

ˆ ˆ ˆ 0
FD

d dt
i U

dt t

λ
τ τ

−∂  = + ⋅∇ − ∆ +∇ = ∂  

V V
V V V  

 

where U is an external scalar potential. This equation is a Navier-Stokes type 

equation. If the dissipative term is neglected, then we obtain [19]: 

 

( )
( )3 13

3
ˆ ˆ ˆ 2 ˆˆ ˆ ˆ 0

3 2

FD
d x dt

dt t τ

−∂  = + ⋅∇ − ∇ = ∂  

V V
V V V  

 

In the one-dimensional case, by supposing that the density of states is constant, 

the solution of this equation in normalized coordinates takes the form: 

 

( )
( )

( )22 1 2 ;
E s

a acn M s
K s

α ξ τ
 

 = + − + −    
 

V V V  

 

where V is the normalized speed field, E(s) and K(s) are the elliptic integrals of 

the first and second order of s modulus, cn is the Jacobi’s elliptic function of s 

modulus, V  is the mean normalized speed, a is an amplitude, ξ is the 

normalized spatial coordinate, τ is the normalized temporal coordinate, M is the 

Mach number and α is a coefficient depending on a. Thus, the dynamics in 

plasma run through cnoidal modes of the speed field. By choosing s ∈ [0,1] we 

distinguish different degenerescences of cnoidal modes: harmonic package for 

0s → , package of solitons for 1s → , soliton for s = 1, or mixed modes. By 

choosing the right running plane for the plasma dynamics, according to the 

method described in [19] we can obtain intermittencies. 

For irrotational motions of the plasma particles ( ˆ 0∇× =V , 0D∇× =V , 

0F∇× =V ) we can choose V̂  of the form 

 

( )2 12
ˆ ln

FD
dt

i
λ

ψ
τ τ

−
 − ∇ 
 

V =  

 

where lnφ ψ=  is the speed scalar potential. By using the method described in 

[18], it results 

 

( ) ( )2 1 2 12 2ˆ ln
0

F FD D
d dt dt

i i U
dt t

λ ψ λ ψ
τ τ τ τ ψ

− − ∂ ∇    − ∇ − + =   ∂     

V
=  
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This equation can be integrated and yields 

 

( ) ( )4 2 2 14 2

2
0

2

F FD D
dt dt U

i
t

λ λ ψ
ψ ψ

τ τ ττ

− − ∂   ∆ + − =    ∂   
 

 

up to an arbitrary phase factor which may be set to zero by a suitable choice of 

the phase of ψ. This last relation is a Schrödinger type equation. 

Let us consider that the potential applied on the electrode immersed into plasma 

simulates a one-dimensional square well. After solving the time-dependent 

Schrödinger type equation according to the method described in [17], we obtain 

the discrete eigenvalues 

 

( )2 2 12

02 ,
FD

n

n dt
E m

a

π λ
τ τ

−
   = =   
   

D D  

 

and the eigenfunctions 

 

1 2

1 2

2
sin , even

2

2
cos , odd

2

n

n x a
n x

a a

n x a
n x

a a

π

φ
π

    ≤   
   

= 
    ≤       

 

 

where a is the well’s width and m0 is the rest mass of the fluid particle. 

Some time scales of a speed potential evolution are contained in the coefficients 

of the Taylor series of the quantized energy levels En around the main energy nE  

 

( )2
04 ...n n

n nn n
E E m

T Tα β
π

 −−
 = + + +
  

D  

 

when often the zero of energy is shifted to remove the nE  term. Taking into 

account the discrete eigenvalues in the form 
 

( ) ( )22 2
1 1 1 12nE E n E n E n n n E n n= = + − + −  

 

we relate 
 

0 0

1 1

2 4
,

m m
T T

nE E
α β

π π
= =

D D
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We note that the time scale Tβ does not depend on the mean energy level n . 

This will provide us with a “universal” time scale for describing the speed 

potential evolution, which does not depend on the particle average energy. 

We write the particle’s speed scalar potential in the infinite square well for t = 0 

as ( ) ( ), 0 ix t xψ ψ= = . We expand this speed scalar potential using the 

energy eigenstate basis 

 

( ) ( )
1

i n n
n

x C xψ φ
∞

=
= ∑  with ( ) ( )n n iC x x dxφ ψ

+∞

−∞

= ∫  

 

Using the time scale Tβ, the time evolution in the energy eigenbasis found from 

Schrödinger type equation is 

 

( ) ( )2, exp 2 n n
n

t
x t i n C x

Tβ
ψ π φ

  
= −      
∑  

 

Now, the full and fractional revivals formalism may be applied. Full and 

fractional revivals of a speed scalar potential in the infinite square well occur 

when the speed scalar potential evolves in time to a state that can be described 

as a collection of spatially distributed sub-speed scalar potentials that each 

closely reproduces the initial speed scalar potential shape [17]. Therefore, the 

full and fractional revivals of the speed scalar potential in the infinite square 

well implies either 

 

( ) ( )0 0, 2 ,kx t t T x t tβψ ψ= + = =  or ( )0 0, ,
p

x t t T x t t
q

βψ ψ
 

= + = = 
 

 

 

for any time t0 and k, p, q integers. In any of the situations above, either for 

( ) 2
k

t T F Tβ= =  or for ( ) p
t T SH T

q
β= = , we can introduce Reynolds type 

criterions [20]. Then, through ( ) 2
k

T F Tβ =  it is formally simulated the 

criterion of evolution to chaos via Feigenbaum mechanism, while through 

( )T SH T p qβ =  with p < q the criterion of evolution to chaos via a cascade 

of sub-harmonic bifurcations. 

 

4. Conclusions 
A theoretical model based on the scale relativity theory was developed in order 

to explain the competition of different scenarios of transition to chaos, 

experimentally observed in plasma in connection to the nonlinear dynamics of a 
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fireball. The results obtained from this model are in good agreement with the 

experimental ones. 
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