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Abstract. The benchmark of a chaotic Pattern Recognition (PR) system is the
following: First of all, one must be able to train the system with a set of “training”
patterns. Subsequently, as long as there is no testing pattern, the system must be
chaotic. However, if the system is, thereafter, presented with an unknown testing
pattern, the behavior must ideally be as follows. If the testing pattern is not one
of the trained patterns, the system must continue to be chaotic. As opposed to
this, if the testing pattern is truly one of the trained patterns (or a noisy version
of a trained pattern), the system must switch to being periodic, with the specific
trained pattern appearing periodically at the output. This is truly an ambitious
goal, with the requirement of switching from chaos to periodicity being the most
demanding. The Adachi Neural Network (AdNN) [1–5] has properties which are
pseudo-chaotic, but it also possesses limited PR characteristics. As opposed to this,
the Modified Adachi Neural Network (M-AdNN) proposed by Calitoiu et al [7], is a
fascinating NN which has been shown to possess the required periodicity property
desirable for PR applications. In this paper, we shall tune the parameters of the
M-AdNN for its weights, steepness and external inputs, to yield a new NN, which
we shall refer to as the Ideal-M-AdNN. Using a rigorous Lyapunov analysis, we shall
analyze the chaotic properties of the Ideal-M-AdNN, and demonstrate its chaotic
characteristics. Thereafter, we shall verify that the system is also truly chaotic for
untrained patterns. But most importantly, we demonstrate that it is able to switch

to being periodic whenever it encounters patterns with which it was trained. Apart
from being quite fascinating, as far as we know, the theoretical and experimental
results presented here are both unreported and novel. Indeed, we are not aware of
any NN that possesses these properties!

Keywords: Chaotic Neural Networks, Chaotic Pattern Recognition.

1 Introduction

Pattern Recognition (PR) has numerous well-established sub-areas such as
statistical, syntactic, structural and neural. The field of Chaotic PR is, how-
ever, relatively new and is founded on the principles of chaos theory. It is also
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 based on a distinct phenomenon, namely that of switching from chaos to pe-

riodicity. Indeed, Freeman’s clinical work has clearly demonstrated that the
brain, at the individual neural level and at the global level, possesses chaotic
properties. He showed that the quiescent state of the brain is chaos. How-
ever, during perception, when attention is focused on any sensory stimulus,
the brain activity becomes more periodic [10].

If the brain is capable of displaying both chaotic and periodic behavior,
the premise of this paper is that it is expedient to devise artificial Neural
Network (NN) systems that can display these properties too. Thus, the
primary goal of chaotic PR is to develop a system which mimics the brain to
achieve chaos and PR, and to consequently develop a new PR paradigm.

Historically, the initial and pioneering results concerning these CNNs were
presented in [1–5]. Subsequently, the author of [11] proposed two methods
of controlling chaos by introducing a small perturbation in continuous time,
i.e., by invoking a combined feedback with the use of a specially-designed
external oscillator or by a delayed self-controlling feedback without the use
of any external force. The reason for the introduction of this perturbation
was to stabilize the unstable periodic orbit of the chaotic system. Thereafter,
motivated by the work of Adachi, Aihara and Pyragas, various types of CNNs
have been proposed to solve a number of optimization problems (such as the
Traveling Salesman Problem, (TSP)), or to obtain Associative Memory (AM)
and/or PR properties. An interesting step in this regard was the work in [15],
where the authors utilized the delayed feedback and the Ikeda map to design
a CNN to mimic the biological phenomena observed by Freeman [10].

More recently, based on the AdNN, Calitoiu and his co-authors made
some interesting modifications to the basic network connections so as to ob-
tain PR properties and “blurring”. In [8], they showed that by binding the
state variables to those associated with certain states, one could obtain PR
phenomena. However, by modifying the manner in which the state variables
were bound, they designed a newly-created machine, the so-called Mb-AdNN,
which was also capable of justifying “blurring” from a NN perspective. While
all of the above are both novel and interesting, since most of these CNNs are
completely-connected graphs, the computational burden is rather intensive.
Aiming to reduce the computational cost, in our previous paper [12], we pro-
posed a mechanism (the Linearized AdNN (L-AdNN)) to reduce the compu-
tational load of the AdNN. To complete this historical overview, we mention
that in [12], we showed that the AdNN goes through a spectrum of charac-
teristics (i.e., AM, quasi-chaotic, and PR) as one of its crucial parameters,
α, changes. It can even recognize masked or occluded patterns!

Although it was initially claimed that the AdNN and M-AdNN possessed
“pure” (i.e., periodic) PR properties, in actuality, this claim is not as precise
as the authors claimed – the output can be periodic for both trained and
untrained input patterns – which is where our present paper is relevant.
The primary aim of this paper is to show that the M-AdNN, when tuned
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 appropriately, is capable of demonstrating ideal PR capabilities. Thus, the
primary contributions of this paper are:

1. We formalize the requirements of a PR system which is founded on the
theory of chaotic NNs.

2. We enhance the M-AdNN to yield the Ideal-M-AdNN, so that it does,
indeed, possess Chaotic PR properties.

3. We show that the Ideal-M-AdNN does switch from chaos to periodicity
when it encounters a trained pattern, but that it is truly chaotic for all
other input patterns.

4. We present results concerning the stability of the network and its tran-
sient and dynamic retrieval characteristics. This analysis is achieved
using eigenvalue considerations, and the Lyapunov exponents.

5. We provide explicit experimental results to justify our claims.

In the interest of brevity and space, the details of the theoretical results
reported here are not included. They are found in the unabridged version of
the paper [13].

2 The Ideal-M-AdNN

The goal of the field of Chaotic PR systems can be expressed as follows: We
do not intend a chaotic PR system to report the identity of a testing pattern
with a class “proclamation” as in a traditional PR system. Rather, what we
want to achieve for a the chaotic PR system are the following phenomena:

• The system must yield a strong periodic signal when a trained pattern,
which is to be recognized, is presented.

• Further, between two consecutive recognized patterns, none of the trained
patterns must be recalled.

• On the other hand, and most importantly, if an untrained pattern is
presented, the system must give a chaotic signal.

Calitoiu et al were the first researchers who recorded the potential of
chaotic NNs to achieve PR. But unfortunately, their model, as presented
in [7], named the M-AdNN, was not capable of demonstrating all the PR
properties mentioned above.

The topology of the Ideal-M-AdNN is exactly the same as that of the
M-AdNN. Structurally, it is also composed of N neurons, topologically ar-
ranged as a completely connected graph. Each neuron has two internal states
ηi(t) and ξi(t), and an output xi(t). Just like the M-AdNN, the Present-
State/Next-State equations of the Ideal-M-AdNN are defined in terms of
only a single global neuron (and its corresponding two global states), which,
in turn, is used for the state updating criterion for all the neurons. Thus,

ηi(t+ 1) = kfηm(t) +
∑N

j=1
wijxj(t),
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 ξi(t+ 1) = krξm(t)− αxi(t) + ai,

xi(t+ 1) = f(ηi(t+ 1) + ξi(t+ 1)),

where m is the index of this so-called “global” neuron.
We shall now concentrate on the differences between the two models,

which are the parameters: {wij}, ε and ai, which were previously set arbi-
trarily. Rather, we shall address the issue of how these parameters must be
assigned their respective values so as to yield pure Chaotic PR properties.

2.1 The Weights of The Ideal-M-AdNN

The M-AdNN uses a form of the Hebbian Rule to determine the weights of
the connections in the network. This rule is defined by the following equation:

wij =
1

p

p∑

s=1

P s
i P

s
j , (1)

where {P} are the training patterns, P s
i denotes the ith neuron of the sth

pattern P s, and where p is the number of known training patterns. This rule
is founded on two fundamental premises, namely:

1. Each element of the learning vectors should be either 1 or -1;
2. Any pair of learning vectors, P and Q, must be orthogonal.
In this regard, we note that:

1. In [7], the elements of the corresponding learning vectors are restricted
to be either 0 and 1, which implies that the connection between any two
neurons, say, A and B, will be increased only if they are both positive.
Further, the connection weights are not changed otherwise.

2. The formal rationale for orthogonality is explained in [13]. Although it
is not so stringent, when the number of neurons is much larger than the
number of patterns, and the learning vectors are randomly chosen from
a large sample set, the probability of having the learning vectors to be
orthogonal is very high. Consequently, generally speaking, the Hebbian
rule is true, albeit in a probabilistic sense.

Based on the above observations, we conclude that for the M-AdNN, we
should not use the Hebbian rule as dictated by the form given in Equation (1),
since the data sets used by both Adachi et al and Calitoiu et al are defined
on {0, 1}N , and the output is further restricted to be in [0, 1] by virtue of
the logistic function. In fact, this is why Adachi and Aihara computed the
weights by scaling all the patterns to be in −1 and 1 using the formula given
by Equation (2) instead of Equation (1):

wij =
1

p

p∑

s=1

(2P s
i − 1)(2P s

j − 1). (2)
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 By virtue of this argument, in this paper, we advocate the use of this formula,
i.e., Equation (2), to determine the connection weights of the network.

It is pertinent to mention that since the patterns {P} are scaled to be
in the range between -1 and 1, it does change the corresponding property of
orthogonality. This is clearly demonstrated in [13], but omitted here in the
interest of space.

2.2 The Steepness, Refractory and Stimulus Parameters

Significance of ε for the AdNN: The next issue that we need to consider
concerns the value of the steepness parameter, ε, of the output function. As
explained earlier, we see that the output function is defined by the Logistic
function f(x) = 1

1+e−x/ε , which is a typical sigmoid function.

One can see that ε controls the steepness of the output. If ε = 0.01, then
f(x) is a normal sigmoid function. If ε is two small, for example, 0.0001, the
Logistic function almost degrades to become a unit step function, as shown
in [13]. The question is one of knowing how to set the “optimal” value for ε.

To provide a rationale for determining the best value of ε, we concentrate
on the Adachi’s neural model [2] defined by:

y(t+ 1) = ky(t)− αf(y(t)) + a, (3)

where f(·) is a continuous differentiable function, which as per Adachi et al
[2], is the Logistic function.

The properties of Equation (3) greatly depend on the parameters k, α, a
and f(·). In order to obtain the full spectrum of the properties represented by
Equation (3), it is beneficial for us to first consider f(·) in terms of a unit step
function, and to work with a fixed point analysis. In [13] this analysis has
been in great detail for the case of: (a) a single fixed point, (b) period-2 fixed
points, and (c) period-n orbits. By a lengthy argument, we have explained
how the parameter ε should be set.

In our experiment, indeed, if the parameters are set to be α = 1 and
k = 0.5, the “tipping point” for ε is 1/6 ≈ 0.1667. As shown in [13] if
ε = 0.18 > 0.1667, all of the fixed points are stable. Otherwise, if ε = 0.15 <
0.1667, there exist period-doubling bifurcations As ε is further decreased, one
can observe chaotic windows.

We conclude this section by emphasizing that ε cannot be too small,
for if it were, the Adachi neural model would degrade to the Nagumo-Sato
model, which does not demonstrate any chaotic behavior. This is also clearly
demonstrated in the figures shown in [13].

Our arguments show that the value of ε as set in [8] to be ε = 0.00015, is
not appropriate. Rather, to develop the Ideal-M-AdNN, , we have opted to
use a value of ε which is two orders of magnitude larger, i.e., ε = 0.015.
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 3 Lyapunov Exponents Analysis of the Ideal-M-AdNN

We shall do a Lyapunov Exponents (LE) analysis of the Ideal-M-AdNN, both
from the perspective of a single neuron and of the network in its entirety.

As is well known, the LEs describe the behavior of a dynamical system.
There are many ways, both numerically and analytically, to compute the LEs
of a dynamical system. Generally, for systems with a small dimension, the
best way is to analytically compute it using its formal definition. As opposed
to this, for systems with a high dimension, it is usually not easy to obtain the
entire LE spectrum in an analytic manner. In this case, we have several other
alternatives to judge whether a system is chaotic. One of these is to merely
determine the largest LE (instead of computing the entire spectrum) since the
existence of a single positive LE indicates chaotic behavior. Algorithmically,
the basic idea is to follow two orbits that are close to each other, and to
calculate their average logarithmic rate of separation [9,16].

In practice, this algorithm is both simple and convenient if we have the
right to access the equations that govern the system. Furthermore, if it is
easy to obtain the partial derivatives of the system, we can also calculate the
LE spectrum by QR decomposition [9,14,16].

The unabridged version of the paper [13] also contains a detailed analysis
for obtaining the LE spectrum using the QR decomposition. It is omitted
here due to the space limitations.

We have also, in [13], undertaken a Lyapunov Analysis of the Ideal-M-
AdNN. Indeed, it can be easily proven that a single neuron is chaotic when
the parameters are properly set.

Also, for the Ideal-M-AdNN (i.e., the entire network), we can show [13]
that the Lyapunov Exponents are: λ1 = · · ·λN−1 = −∞, λN = logN +
log kf > 0, λN+1 = · · ·λ2N−1 = −∞, λ2N = logN + log kr > 0. In con-
clusion, the Ideal-M-AdNN has two positive LEs, which indicates that the
network is truly a chaotic network!

It’s very interesting to compare this result with the one presented for the
AdNN. Indeed, as we can see from [6], the AdNN has two different LEs: log kf
and log kr. The difference is that by binding the states of all the neurons to
a single “global” neuron, we force the Ideal-M-AdNN to have two positive
LEs. The LE spectrum of the two networks are compared in [13].

4 Chaotic and PR Properties of the Ideal-M-AdNN

We shall now report the properties of the Ideal-M-AdNN. These properties
have been gleaned as a result of examining the Hamming distance between
the input pattern and the patterns that appear at the output. In this regard,
we mention that the experiments were conducted using two data sets, namely
the figures used by Adachi et al given in Figure 1 (a), and the numeral data
sets used by Calitoiu et al [7,8] give in Figure 1 (b). In both the cases, the
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 patterns were described by 10× 10 pixel images, and the networks thus had
100 neurons.

Before we proceed, we remark that although the experiments were con-
ducted for a variety of scenarios, in the interest of brevity, we present here
only a few typical sets of results – essentially, to catalogue the overall con-
clusions of the investigation.
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Fig. 1. The 10 × 10 patterns used by Adachi et al (on the left) and Calitoiu et

al (on the right). In both figures (a) and (b), the first four patterns are used to
train the network. The fifth patterns are obtained from the corresponding fourth
patterns by including 15% noise in (a) and (b) respectively. In each case, the sixth
patterns are the untrained patterns.

We discuss the properties of the Ideal-M-AdNN in three different settings.
In all of the three cases, the parameters were set to be kf = 0.2, kr = 0.9,
and ε = 0.015, and all the internal states, ηi(0) and ξi(0), start from 0.

AM Properties: We now examine whether the Ideal-M-AdNN possesses
any AM-related properties for certain scenarios, i.e., if we fix the external
input ai = 2 for all neurons. The observation that we report is that during
the first 1,000 iterations (due to the limitations of the file size, we present
here only the first 36 images ), the network only repeats black and white
images. This can be seen in Figure 2. The reason for this phenomenon is
explained in detail in [13].

Fig. 2. The visualization of the output of the Ideal-M-AdNN under the external
input ai = 2. We see that the output switches between images which are entirely
only black or only white.

PR Properties: The PR properties of the Ideal-M-AdNN are the main
concern of this paper. As illustrated in Section 2, the goal of a chaotic PR
system is the following: The system should respond periodically to trained
input patterns, while it should respond chaotically (with chaotic outputs)
to untrained input patterns. We now confirm that the Ideal-M-AdNN does,
indeed, possess such phenomena. We present an in-depth report of the PR
properties of the Ideal-M-AdNN’s by using a Hamming distance-based anal-
ysis. The parameters that we used were: kf = 0.2, kr = 0.9, ε = 0.015 and
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 ai = 2 + 6xi. The PR-related results of the Ideal-M-AdNN are reported for
the three scenarios, i.e., for trained inputs, for noisy inputs, and for untrained
(unknown) inputs respectively.

1. The external input of the network corresponds to a known pattern, P4.
To report the results for this scenario, we request the reader to observe
Figure 3 (a), where we can find that P4 is retrieved periodically as a
response to the input pattern. This occurs 391 times in the first 500
iterations. On the other hand, the other three patterns never appear
in the output sequence. The phase diagrams of the internal states that
correspond to Figure 3 (a) are shown in [13], whence we verify that the
periodicity is 14, because all the phase plots have exactly 14 points.
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Fig. 3. PR properties: The Hamming distance between the output and the trained
patterns. The input was the pattern P4, P5 and P6 in (a), (b) and (c) respectively.
Note that P4 appears periodically in Case (a). Also, note that P4 (not P5) appears
periodically in Case (b). Finally, note that none of the trained patterns appear at
the output in Case (c).

2. The external input of the network corresponds to a noisy pattern, in this
case P5, which is a noisy version of P4.
Even when the external stimulus is a garbled version of a known pattern
(in this case P5 which contains 15% noise), it is interesting to see that
only the original pattern P4 is recalled periodically. In contrast, the
others three known patterns are never recalled. This phenomenon can
be seen from the Figure 3 (b). By comparing Figures 3 (a) and (b), we
can draw the conclusion that the Ideal-M-AdNN can achieve chaotic PR
even in the presence of noise and distortion. As in the previous case, the
phase diagrams of the internal states that correspond to Figure 3 (a) are
shown in [13], whence we again verify that the periodicity is 14, because
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 all the phase plots have exactly 14 points. Indeed, even if the external
stimulus contains some noise, the Ideal-M-AdNN is still able to recognize
it correctly, by resonating periodically!

3. The external input corresponds to an unknown pattern, P6.
In this case we investigate whether the Ideal-M-AdNN is capable of dis-
tinguishing between known and unknown patterns. Thus, we attempt to
stimulate the network with a completely unknown pattern. In our exper-
iments, we used the pattern P6 of Figure 1 (a) initially used by Adachi
et al. From Figure 3 (c) we see that neither those known patterns nor
the presented unknown pattern appear at the output. As in the previous
two cases, the phase diagrams of the internal states that correspond to
Figure 3 (c) are shown in [13], whence, the lack of periodicity can be
observed since the plots themselves are dense.
In other words, the Ideal-M-AdNN responds intelligently to the various
inputs with correspondingly different outputs, each resonating with the
input that excites it – which is the crucial golden hallmark characteristic
of a Chaotic PR system. Indeed, the switch between “order” (resonance)
and “disorder” (chaos) seems to be consistent with Freeman’s biological
results – which, we believe, is quite fascinating!

5 Conclusions

In this paper we have concentrated on the field of Chaotic Pattern Recog-
nition (PR), which is a relatively new sub-field of PR. Such systems, which
have only recently been investigated, demonstrate chaotic behavior under
normal conditions, and “resonate” (i.e., by presenting at the output a spe-
cific pattern frequently) when it is presented with a pattern that it is trained
with. This ambitious goal, with the requirement of switching from chaos to
periodicity is, indeed, most demanding, and has been achieved by the design
of the so-called Ideal-M-AdNN.

Using a rigorous Lyapunov analysis, we have shown the chaotic properties
of the Ideal-M-AdNN, and demonstrated its chaotic characteristics. We have
also verified that the system is truly chaotic for untrained patterns. But
most importantly, we have shown that it is able to switch to being periodic

whenever it encounters patterns with which it was trained (or noisy versions
of the latter).

Apart from being quite fascinating, as far as we know, the theoretical and
experimental results presented here are both unreported and novel.
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Abstract. Recently, in the field of telecommunication, chaotic encryption has drawn 
much attention because of its ease in design and implementation over conventional 
encryption methods. In this paper, chaos shift keying (CSK) models are designed based 
on Qi hyper-chaos. The efficiency and effectiveness of the developed models are 
evaluated using the bit error rate. By using power spectrum analysis and low pass 
filtering techniques, the robustness of CSK based on Qi hyper-chaos over CSK based on 
the Lorenz chaotic system is verified. The results show that the robustness and bit error 
rate performance of encryption based on Qi hyper-chaos is much better than that based 
on Lorenz chaos. 
Keywords: Chaos, Encryption, Hyper-chaos, BER, CSK. 

 
1. Introduction 
Telecommunication as a field has tremendously grown in the last decade. 
Associated with this growth, is the requirement for efficient and effective secure  
communication methods [1]. One method of making data secure is through 
encryption and decryption. Over the past few years, methods of chaotic 
encryption have developed enormously, and several chaotic systems, such as the 
Lorenz, Chen and Rössler systems, have been proposed [2-5]. These systems 
have been employed for encryption and decryption of message signal, image 
and video during communication. In this context there are a number of different 
chaotic encryption methods that have been employed for encryption and 
decryption, for example, chaos synchronization, chaos shift keying and chaotic 
masking. 
Traditional encryption schemes based on integer number theory have been 
studies for a long time and are considered to be reliable. In contrast, the security 
of chaotic communication schemes often relies on a mixture of analytic methods 
and intuition. Encryption and cryptanalysis using chaotic dynamics is a 
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relatively new field that has only been intensively researched on for less than a 
decade. 
 
This paper aims to demonstrate the robustness and bit error rate performance of 
digital message signal encryption based on Qi hyper-chaos systems compared to 
message signal encryption based on Lorenz chaotic system. 
 
2. Comparison between the Qi hyper-chaotic system and the 

Lorenz chaotic system 
Many   proposed chaos-based secure encryption have been totally or partially 
broken by different attacks   [6, 7]. This section provides a detailed comparison 
between Qi hyper-chaos and the Lorenz chaotic system in terms of their 
randomness and disorder. 
The nonlinear dynamic model representing Qi hyper-chaos is given by [8, 9]: 
 

                           

1 2 1 2 3

2 1 2 1 3

3 2 4 1 2

4 4 3 1 2

( )

( )

x a x x x x

x b x x x x

x cx ex x x

x dx fx x x

= − +

= + −

= − − +

= − + +

&

&

&

&

                                             (1) 

        
Here 

ix ( )1, 2 , 3, 4i =  are the state variables and a, b, c, d, e, f are positive 

constant parameters. The well-known Lorenz system is given in Ref. [10]. 
The basic comparisons of the dynamic property between Qi hyper-chaos and 
Lorenz chaotic system are summarized in the next paragraph [8].  
 
The attractor of Qi hyper-chaotic system exhibits a very irregular and disordered 
form unlike the butterfly shape produced by the Lorenz chaotic system. The 
Stochastic distribution of Qi hyper chaos is very similar to that of Gaussian 
white noise but that of Lorenz has three peaks at its trajectory is unlike Gaussian 
white noise.  Qi hyper-chaotic signal is much more sensitive to initial condition 
than the Lorenz chaos and other hyper-chaos. With these rich advantages of Qi 
hyper chaos over Lorenz chaotic system, as demonstrated in [8], there is a need 
to explore the effects implementing the system for encryption of messages.  
 
3. Qi-Hyper-Chaos-Shift Keying Encryption 
 
3.1 Method 1: Non-Coherent Decryption Based on Bit-Energy Estimation 
 
In this encryption scheme two hyper-chaotic signals are used to encrypt the 
message signal at the sending end and decryption is done at the receiving end 
based on energy bit estimation [11, 12].   
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Two chaos generators produce signals 
1( )c t  and 

2 ( )c t , respectively. During the 

bit duration, i.e. [( ( 1) bl T− ), 
blT ], if a binary “+1” is about to be sent, 

1( )c t  is 

transmitted, and if “−1” is about to be sent, 
2 ( )c t is transmitted.  

The encrypted signal r(t) is then sent through a channel of communication. Thus 
 

                                   ( ) ( ) ( )r t s t tξ= +                                              (2) 

where  ( )tξ  is the noise signal added to the sent signal during communication. 

The decryption method used is called non-coherent demodulation based on an 
energy bit estimator. Decryption is done based on some distinguished 
characteristics of the signal transmitted. The property used in this paper is the 
bit energy, which is deliberately made different for different symbols in the 
encryption process.  
A Qi hyper-chaos generator is used to produce two chaotic signals; the first 
chaotic system is assigned different value, i.e. 

1( )c t M+ , where M is the value 

assigned to separate with 
2( )c t . At the receiving end the bit energy can be 

estimated by a square and integration process. 
Let energy per bit be ( )by lT . When the energy bit ( )b hy lT T>  then binary “+1” 

was send, otherwise binary “−1” was send, where 0hT >  is threshold value. 

The simulation results of non-coherent demodulation based on bit-energy 
estimation are shown in Fig. 1, which demonstrates successful performance of 
encryption and decryption. 
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Fig. 1. Qi-Hyper-Chaos-Shift Keying Encryption and decryption 
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3.2 Method 2: Coherent Demodulation Based on Correlation 

The process of correlation is where the “likeness” between two chaotic signals 
is evaluated. In this method two correlators are employed to evaluate the 
correlations between the received signal and the two recovered chaotic signals. 
The outputs of the correlators for the lth bit are given by 

                         ( ) ( )
( )

( )'
1 11

b

b

lT

b
l T

y lT r t c t dt
−

= ∫                                          (3) 

                           ( ) ( )
( )

( )'
2 21

b

b

lT

b
l T

y lT r t c t dt
−

= ∫                                       (4) 

where '
1( )c t  and '

2( )c t  are synchronizations of 
1 ( )c t  and 

2 ( )c t , respectively. 

The following equation is used to determine the output to the threshold detector. 
                              ( ) ( ) ( )0 1 2b b by lT y lT y lT= −                                     (5) 

If the output ( )o b
y lT is greater than 

h
T  then +1 was sent, otherwise 1−  was 

sent. 
The process of encryption is the same as that of Method 1, but the decryption 
process takes place with the aid of synchronizations. The decryption proceed by 
evaluating the correlation of the transmitted signal and the regenerated chaotic 
carrier as in Eq. (3) and eq. (4), and followed by energy bit calculation then 
compared in Eq. (5). If the output is greater than the value specified at the 
threshold then “+1” is decoded otherwise " 1"−  is decoded. 
The simulation results of correlation-type coherent decryption for CSK with two 
Qi hyper chaos generators are shown in Fig. 2. 
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Fig. 2. Comparison between sent and received signal 
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4. BER Performance of CSK Based on Qi Hyper Chaos 

Compared to Lorenz Based CSK 
 
Bit Error Rate (BER) is a performance measurement that specifies the number 
of bit corrupted or destroyed as they are transmitted from its source to its 
destination [13, 14]. 
BER measurements compare digital input and output signals to access what 
fractions of the bit are received incorrectly. It is defined as: 
 

                                            BER e

t

N

N
=                                            (6) 

Where eN is the number of error bits received over time  t, and tN  is the total 
number of bits transmitted. Signal to Noise Ratio (SNR) is defined as the ratio 
 of a signal power to noise power and it is normally expressed in decibel (dB). 
The mathematical expression of SNR is: 
 

                       10

SignalPower
SNR 10log ( )dB

NoisePower
=                                    (7) 

Relationship between the system’s SNR and BER is that the higher the  SNR, 
The lower would be the corresponding BER 

                                       ( )BER 1 SNR
k

=                                         (8)
 

where k is a specific subcarrier index. 
In this paper simulation of BER is done using Bertool tool in Matlab\Simulink. 
 
Fig. 3 shows the comparison of the BER performance between chaos based 
CSK using energy bit estimation method for decryption (Simulation 0) and Qi 
hyper chaos CSK based using correlation method for decryption (Simulation 1). 
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Fig 3: Comparing the BER performance between Qi hyper-chaos based CSK 
using energy bit estimation method for decryption and using correlation method 
for decryption.  

 
 

The BER performance of the latter is seen to be much lower than the former; 
hence, the correlation method for decryption is more efficient compared the 
energy bit estimation method for decryption. 
 
Qi hyper-chaos CSK based on correlation method has better performance 
because with the aid of synchronization the low frequency noise and high 
frequency noise can be easily eliminated.  
 

5. Power Spectrum and Low Pass Filter Methods of Attacking 

Chaos Based Secure Communication 
Security during communication is fundamental since it is one of the components 
that add up to effective and efficient communication. There are varieties of 
methods that have been proposed to attack chaos-based secure communication 
schemes. In different cases in literature [14] they have indicated successfully 
breaking of chaos encryption without knowing the secrete key or the parameters 
used during encryption. This kind of attack is only possible if the received 
message m (t) is a periodic signal or if m (t) consists of periodic frames within a 
given duration. The attack can be accomplished using two methods power 
spectrum analysis and low pass filter technique and return map analysis. 
Power spectrum and low pass filter technique are very powerful schemes that 
can be used to break chaotic communication without knowing the parameters or 
the initial components used during encryption.These two methods are 
implemented in this paper to determine how robust CSK based on Qi hyper 
is.The message signal encrypted by Lorenz chaotic system hereby successfully 
extracted by the filter and decision circuit as shown Fig. 4 
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Fig. 4. Attacking Lorenz Chaos through power spectrum and low pass filter 
 
 

The attempt to attack message signal encrypted based on Qi hyper-chaotic 
system was unsuccessfully as shown Fig. 5 
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Fig. 5. Attacking Qi hyper-chaos through power spectrum and low pass filter, 
The simulation results in Fig. 5 indicates that it is not easy to attack digital 
message signal encryption based on Qi hyper-chaos. The difficulty in attacking 
message signal based on Qi hyper-chaos can be attributed to the rich properties 
of Qi hyper-chaos. 
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6. Conclusion 
In this paper message signal based on Qi hyper-chaos has been implemented. 
The BER performance comparison between Qi hyper-chaos and Lorenz chaos 
shows that Qi hyper-chaos based CSK has better performance compared to 
Lorenz based CSK. The rich properties of Qi hyper chaos such us high 
frequency spectrum, high level of disorder, etc. have made it very cumbersome 
for low pass-filter and power spectrum analysis method to be successful in 
attacking  and decrypting the encrypted message signal sent. 
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Abstract: Monte Carlo “combine-scattering-rate” technique is used for the 

investigation of the noise and nonlinear transport phenomena in n-type GaAs crystal at T 

= 78 and 300 K. This technique avoids the short-time-step procedure inherent to 

conventional ensemble Monte Carlo method.  Quantitative agreement with the available 

experimental data on the noise spectral density is achieved. Electron collisions with 

phonons, impurities and among themselves are taken into account. The time-dependent 

drift-to-drift velocity electron correlation function is demonstrated. The nonzero equal-

time cross-correlation function is calculated in moderate electric fields. 

Keywords:  Monte Carlo, Electron-electron collisions, Drift velocity fluctuations, 

Spectral density. 
 

1. Introduction 
Fluctuation phenomena in semiconductors have been intensively investigated 

during the last three decades [1-3]. Fluctuation effects have been conventionally 

examined without an account on the Coulomb pair electron-electron (ee) 

scattering. However, at sufficiently high electron densities it is necessary to take 

into account ee scattering contribution to the distribution function and related 

correlators. In the presented report the ‘combined scattering’ (CSR) Monte 

Carlo (MC) method [4] is used to interpret the results of microwave noise in n-

type GaAs crystal. 

The important role of e-e collisions is demonstrated, and drift-velocity to drift 
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velocity correlation function under non-e1uilibrium conditions is discribed. The 

response of electron ensemble to the switched on electric field is also simulated.  

 

2. Results and discussion 
It has been shown [4] that the “time of free flight” for independent scattering 

events of the N electron system with ki wave-vectors is defined by the combined 

scattering rate: 
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where )( ii kλ and ),( ji

ee

ij kkλ  are conventional integral rates of scattering of the 

i
th

 electron by the thermal bath and by the j
th

 electron respectively [5]. Equation 

(1) reduces to that written down in [6] for N=2. All N electrons move without 

scattering for the “time of free flight of the ensemble” between two successive 

events of an electron scattering by the thermal bath, or mutual collision between 

two electrons occurs. The “time of free flight” is defined from the sum of the 

each electon scattering rate on the thermal bath and on the all remaining 

electrons. CSR technique avoids the short-time step procedure and a large 

electron number inherent to conventional ensemble EMC simulation. This 
technique allows to simulate the dynamic of electron ensemble. Evidently, Eq. 

(1) can be modified to consider collisions of different quasiparticles: electron 

and holes, light anh heavy holes, Γ and X electronc, etc. 

The time-displaced drift-velocity correlation function is 

 

             )()()()()( 11 tttvttvNt crossautoddtotal Φ+Φ=+=Φ δδ ,          (2) 

 

where the auto- and cross-correlation functions are defined as: 
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The main features of the velocity time-displaced correlation in the presence of 

e-e collisions can be illustrated for the case when the relaxation time of the ee 

interaction τee is shorter than that of the electron momentum relaxation time τp. 

In this case the autocorrelation function, starting from the its equal-time value 

 

                                     mkTviauto /)0( 2
==Φ                                 (4) 
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decreases with t due to the ee collisions mainly, and the shortest time constant 

τee dominates on the decay of the )(tautoΦ  in a short time scale. 

In equilibrium state there is no equal-time cross correlation 0)0( =Φ cross
. The 

theory of kinetic correlations [1] predicts the equal-time cross correlation to 

appear in the non-equilibrium system in which ee collisions are essential. 

In order to demonstrate the effect of ee collisions on fluctuations the calculated 

velocity correlation functions in heating electric field is shown in figure 1 for a 

model corresponding to n-type GaAs with the impurity scattering neglected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Time-displaced electron velocity correlation function. Drift-velocity 

correlation function - total line, autocorrelation – dashed line, cross correlation– 

dotted line. Phonon and ee scattering mechanism are taken into account, 

impurity scattering is neglected. 

 

 

Well defined nonzero )0(crossΦ  reveals. Inter-electron collisions, conserving 

energy and momentum, cause the correlations between electrons involved. 

Therefore, for small t, )(tcrossΦ  grows proportionally to t [1]. The opposite 

tendencies in the evolution of  )(tautoΦ  and )(tcrossΦ  counterbalance each 

other [4,,7,8]. )(ttotalΦ decay is caused mainly by the interaction of electrons 

with the thermal bath. 

The electron system tends to conserve the electronic noise and redistribute it 

between the electrons in such a manner that the decay of the autocorrelation  

function accompanied by the emergence of the cross correlation. 

The dependence of the equal-time )0(crossΦ on electric field is demostrated in 

Figure 2. 
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      Fig. 2. Egual-time cross-correlation function versus electric field. 

 

)0(crossΦ increases from zero at zero field, then approached maximum value 

and decrease with E The fluctuation effects are symmetric with respect of 

electric field direction. It is clearly seen in the figure 2 insert, where the 

calculated MC points well coincide with the 2
nd

 order polynomial fit Next the 

nonlinear effects manifest, and crossΦ  increases. The Coulomb scattering 

mechanisms gradually switches off with an increase of electron energy, 

therefore, )0(crossΦ  reaches the maximum value and then monotonically 

decreases with E. 

Knowledge of the correlation functions makes the simulation straightforward of 

the spectral of electron velocity fluctuations for a realistic model of electron gas. 

The results of calculation are presented in figure 3 and are compared with the 

experimential values. 

The results on the spectral density of drift velocity fluctuations at 80 K were  

also published in [4]. The degree of compensation has been estimated fitting 

low-field mobility to the experimental data. 

The spectral density of velocity fluctuations at 80 K remains nearly constant up 

to fields 200 V/cm. (Fig. 2, open and closed squares). This behavior can be 

explained by enhanced energy loss by electrons on optical phonons in the 

presence of ee scattering [9]. 

The spectral density of velocity fluctuations at 300 K weakly depends on ee 

scattering. At T=300 K the mean electron energy fourfold times exceeds the one 

at T=80 K, and ee scattering is of less important. Nevertheless slightly better 

coincidence is achieved with experimental data when ee scattering is included. 
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Fig. 3. The dependence of the spectral density of 

electron drift-velocity fluctuations for n-type GaAs at 80 (a) and 300 K (b) 

versus electric field. Monte Carlo simulation with phonon, impurity, and ee 

scattering taken into account (closed squares), without ee scattering (dots). 

Experimental data–open squares. 
 

 

 

 

 

 

 

 

The time-response of electron kinetic characteristics on the switched on electric 

field was also calculated. The results are presented in Figure 4. It is seen that ee 

scattering reduced electron drift velocity and especially there energy. 
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Fig. 4. The response of electron drift velocity (a) and mean energy (b) in 

     n-type GaAs at 80 K versus time. Sharply switched on electric field 

     E=200 V/cm. 

 

 

Conclusions 
The results of the Monte Carlo calculations of drift velocity to drift velocity 

fluctuations and the time-response of the electron drift-velocity and mean 

energy to the instantaneously switched electric field is presented. Electron 

system behaves as whole unit seeking to conserve so inherent characteristics as 

their drift velocity and the mean energy. This can be clearly observed in the 

fluctuations treatment. When autocorrelation decreases, the crosscorrelation 

appears in the presence of electron-electron pair collisions. The thermostat and 

internal forces contrary tends to destroy the order of the system. Electron-

electron scattering also indirectly influences kinetic characteristics. It reduce the 

spectral noise of the system, and effectively influence kinetic values, 
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diminishing as electron velocity as the mean energy. 
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Abstract. In this paper we analyze the stable periodic orbits existing in the 1-D
linear piecewise-smooth discontinuous map with respect to variations in the param-
eters of the map. We analytically show how to calculate the range of parameter
µ such that the orbits of specific periodicity can exist. Moreover, for a given pe-
riod, the relation between the probability of occurrence of orbits of that period and
the corresponding length of range of µ is established. Further, we show that this
probability can be maximized by varying the parameter of the map. We prove that
there exist a unique value of this parameter such that this probability is maximum.
We provide diagrams generated by numerical simulations to illustrate these results
and to depict the effects of variations in the parameters of the map on the ranges
of existence of orbits.
Keywords: Border collision bifurcation, piecewise-smooth, discontinuous map,
periodic orbit.

1 Introduction

Piecewise-smooth dynamical systems are being extensively studied over the
last decade because of their applications in various fields like electrical engi-
neering, physics, economics etc. Examples are DC-DC converters in discon-
tinuous mode [1,2], impact oscillators [3], economic models [4] etc. One of
the major reasons for interest in piecewise-smooth systems is the existence
of a phenomenon, unique to such systems, called border collision bifurcation.
Though this term was coined by Nusse [5] in 1992, the phenomenon was
earlier reported by Feigin [6] in 70’s.

The 1-D linear piecewise-smooth discontinuous map is defined as [7]:

xn�1 � fpxn, a, b, µ, lq � "
axn � µ for xn ¤ 0
bxn � µ� l for xn ¡ 0

(1)

Over the last decade, several authors have published the analytical as well
as numerical work which analyzes the 1-D piecewise-smooth discontinuous
map in detail [8–11]. Recently in [12] it was shown that exactly φpnq stable
periodic orbits exist in the map given by Equation (1) when a, b P p0, 1q,
l � �1 and µ P p0, 1q; where n is the period and φ is Euler’s number. In
this paper we extend this analysis to investigate the effect of variation in
parameters a, b and n on the range of existence of periodic orbits.
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1.1 Notation

Let L :� p�8, 0s (the closed left half plane) and R :� p0, 8q (the open right
half plane). Given a particular sequence of points txnun¥0 through which the
system evolves, one can convert this sequence into a sequence of Ls and Rs

by indicating which of the two sets (L or R) the corresponding point belongs
to. Since a periodic orbit has a string of Ls and Rs that keeps repeating,
we call this repeating string, a pattern and denote it by σ. The length of the
string σ is denoted by |σ| and gives the number of symbols in the pattern i.e.,
the period of the orbit. The range of existence of this pattern σ is denoted by
Pσ� pp1, p02s where p2 and p1 are the upper and the lower limits respectively.
The sum of geometric series 1� k � k2 � � � � � kn is denoted by Sk

n.

1.2 Preliminaries

Definition 1. A pattern σ is termed admissible if Pσ� H.

Definition 2. If a pattern consists of a single chain of consecutive Ls fol-
lowed by a singleton R then it called an L-prime pattern. Similarly, if a
pattern consists of a single chain of consecutive Rs followed by a singleton L

then it called an R-prime pattern. Together, we call them prime patterns.

Example 1. LnR is a L-prime pattern and LRn is a R-prime pattern. LR is
both L-prime as well as R-prime.

Definition 3. A pattern made up of two or more prime patterns is called a
composite pattern.

Example 2. LLLRLLR is a composite pattern as it is made of two prime
patterns namely LLLR and LLR.

Remark 1. Some authors use the termmaximal or principal to describe prime
pattern [13].

Recall that the range of existence of an orbit is denoted by Pσ. We
illustrate with an example how to calculate Pσ.

Example 3. Consider a pattern LLR which means: x0, x1 ¤ 0, x1 ¡ 0 and
x3 � x0. Using Equation (1) these inequalities can be rewritten as:

x0 ¤ 0,

x1 � ax0 � µ ¤ 0,

x2 � a2x0 � pa� 1qµ ¡ 0,

x3 � x0 � a2bx0 � pab� b� 1qµ� 1ñ x0 � pab� b� 1qµ� 1

1� a2b
.
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Substituting the value of x0 in x1 and x2 we get:

x1 � a
�pab� b� 1qµ� 1

1� a2b

	� µ ¤ 0,

x2 � a2
� pab� b� 1qµ� 1

1� a2b

	� pa� 1qµ ¡ 0.

After simplification we get:

µ ¡ a2

a2 � a� 1
,

µ ¤ a

ab� a� 1
.

Hence, PLLR � �
a2

a2�a�1 ,
a

ab�a�1

�
.

In a similar way we can find the range of existence (Pσ) for the prime
patterns LnR and LRn for any n ¥ 2. The method is explained in detail in
[12]. We directly use the formulas from [12] here:

PLnR � �
an

Sa
n

,
an�1

an�1b � Sa

n�1

�
(2)

and

PLRn � �
abn�1 � Sb

n�2

abn�1 � Sb

n�1

,
Sb

n�1

Sb
n

�
. (3)

1.3 Characterization of Patterns

We have seen earlier that the prime patterns are admissible and the range of
existence of prime patterns is given by Equations (2) and (3). The immediate
question is other than prime patterns, which type of patterns are admissible?
It is shown in [12] that only specific type of patterns are admissible. For ex-
ample, it is shown that admissible patterns can not contain consecutive chain
of Ls and Rs simultaneously. Moreover, admissible composite patterns are
always made up of exactly two prime patterns of successive lengths. Further,
it is shown that these results lead to the final conclusion that exactly φpnq
number of distinct patterns are admissible for a given n.

For a given n, the algorithm to generate the φpnq patterns and to calculate
the range of existence of these patterns is discussed in detail in [12]. We now
extend this analysis to find out the effects of variations in parameters on the
range of existence of patterns.
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2 Effects of Variations in Parameters on The Range of

Existence of Patterns

In this section we analyze the effects of variations in parameters a, b and n

on the range of existence of patterns. Recall that the range of existence of
pattern σ is expressed as Pσ � pp1, p2s. Let the length occupied on the
parameter line µ corresponding to the ith pattern of length n is denoted by
Γn
i . That is, Γn

i � p2 � p1. Let the total length occupied corresponding to

all the patterns of length n is denoted by Γn. That is, Γn � °φpnq
i�1 Γn

i . We
now find out the expression for Γn. In this paper we consider the case of
a � b.

Consider the pattern of length N � n � 1. We substitute a � b in
Equations (2) and (3) to get:

PLnR � �
an

Sa

n

, an�1

Sa

n

�
and PLRn � �

an�Sa

n�2

Sa

n

,
Sa

n�1

Sa

n

�
.

Note that ΓN
PLnR

� ΓN
PLRn

� an�1p1�aq
Sa

n

. We denote it by γN . Since, for a � b

the map becomes symmetric, all the patterns of length N have ΓN
i � γN .

This gives ΓN � °φpNq
i�1 ΓN

i � φpNqγN . Substituting for γN and N we get

Γn�1 � φpn� 1qan�1p1�aq
Sa

n

� φpn� 1qan�1p1�aq2
1�an�1 . For consistency, we use the

formula for n which is:

Γn � φpnqγn � φpnqan�2p1� aq2
1� an

. (4)

From the above equation it is clear that Γn depends on the parameters a and
n. Recall that Γn is the length of range of existence of patterns as defined
earlier. Hence, any change in Γn due to the variations in a and n can be
interpreted as the effect on the range of existence of patterns.

2.1 Probability of Occurrence of a Pattern

We have seen that the total length occupied on the parameter line µ cor-
responding to all the patterns of length n is expressed by Γn. We know
µ P p0, 1q. This leads us to the question: for a randomly selected µ from the
set p0, 1q, what is the probability that it corresponds to a pattern of length
n? Since µ P p0, 1q, the total length of the parameter line is unity and Γn is
the total length occupied on parameter line µ corresponding to all the pat-
terns of length n. Hence, the probability of occurrence of a pattern of length
n is Γn. The Equation (4) gives the formula for this probability in terms of
a and n.
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2.2 Maximizing the Probability of Occurrence of a Pattern

For n � 2, Γ 2 � 1�a
1�a

and a P p0, 1q. Clearly, it is a monotonically decreasing
function. Hence, the suprimum is achieved at a � 0. For all n ¡ 2, Γn is not
monotonic. With bit more analysis we can show that Γn attains maxima for
a particular value of a P p0, 1q. This can be calculated by differentiating Γn

with respect to a.

d

da
pΓnq � d

da
pφpnqγnq � φpnq�an � n

2
a� n

2
� 1



. (5)

We check that the expression an� n
2 a� n

2 �1 has only one real root in p0, 1q.
At that root, d2

da2 pΓnq � an�1 � 1
2 is negative. Hence, for a given n, there is

an unique value of a such that Γn is maximum.

Example 4. We plot Γn versus n for different values of a. In these plots, n is
varied from 2 to 14. These graphs (see Figure 1a to Figure 1e) show that as
n increases, the position of maxima for Γn increases too. This means, higher
the value of a, greater is the probability of occurrence of high period orbits.
For the same values of a, figures 1b to 1f shows the bifurcation diagrams. We
note that above results are validated by the bifurcation diagrams.

The graphs of Γn versus a, for different values of n, are plotted in figures
from 1g to 1i. In these plots, a is varied from 0.01 to 0.99. From these plots
we can see that Γ 2 is indeed a monotonically decreasing function. For vary
small values of a, Γ2 almost completely occupies the parameter line. For
example, when a � 0.1, Γ 2 � 0.818. For all n ¡ 2 is clear from the graphs
that Γn is not monotonic and the maxima attained varies as n changes.
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Fig. 1a. Graph showing Γn for different
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2.3 Patterns Completely Span The Parameter Line µ

We know that Γn gives the total length occupied on the parameter line µ

corresponding to all the patterns of length n. We have shown that for a � b,
Γn can be maximized by appropriately choosing the value of a. Now let
the total length occupied on the parameter line µ corresponding to all the
possible patterns be denoted by Γ . That is, Γ � °8

n�2 Γ
n. The following

lemma proves that Γ � 1 and it completely spans the parameter line µ.

Lemma 1. For every µ P p0, 1q, there exists a pattern.

Proof. We know that PLnR � pσ1, σ2s � �
an

Sa

n

, an�1

an�1b�Sa

n�1

�
and

PLn�1R � pσ11, σ12s � �
an�1

Sa

n�1

, an�2

an�2b�Sa

n�2

�
. Hence, for any arbitrarily given

µ P p0, 1q we can find an ‘n’ such that
Step 1: either µ P PLnRor µ P PLn�1Ror σ2   µ   σ11.
For the first two cases the pattern exists as µ belongs to the range of existence
of a pattern. For the last case we proceed further by calculating PLnRLn�1R �pσ21 , σ22s. Now again we have three cases:
Step 2: either µ P PLnRLn�1R or σ2   µ   σ21 or σ22   µ   σ11.
For the first case the pattern exists as µ belongs to the range of existence of a
pattern. For the second case we again go to Step 1 but this time with PLnR

and PLnRLn�1R. Similarly for the third case we go to Step 1 with PLnRLn�1R

and PLn�1R. Without the loss of generality we assume the second case to
be true i.e. µ always lay in the left side partition or nearer to PLnR. Then,
before every time we take Step 2, we construct the new pattern of formpLnRqkLn�1R with k � 2, 3, 4 . . . With the help of generalized map method
explained in [12] this pattern can be written as L1kR1 where, L1 � LnR and
R1 � Ln�1R.

This process is nothing but constructing a series of intervals PL1kR1 . This
series of intervals must converge at σ2. This is because, if it converges at
some other point (say σ̃1) then we get a finite length subinterval pσ2, σ̃1s.
We arbitrarily select any point from this interval (say µ̃). Now as we argued
for the case of PLnR, similar arguments can be made here i.e. we can select
a large enough k (since limits of PL1kR1 involve a and b with k in power)
such that PL1kR1 lies to the left of µ̃. This is contradiction to the earlier
assumption that series converges to σ̃. Hence, the series must converge to σ2.

3 Conclusions

In this paper we have analyzed the stable periodic orbits of the 1-D linear
piecewise-smooth discontinuous map with respect to change in the param-
eters. We have analytically calculated the range of parameters for which
period-n orbits exist. The length of this range is considered as the probability
of occurrence of period-n orbit. Further, we have shown that this probability
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can be maximized by varying the parameter of the map and we prove that
there exist an unique value of this parameter such that this probability is
maximum.
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Abstract: In the framework of the Fitzhugh Nagumo kinetics and the oscillatory 

recovery in excitable media, we present a new type of meandering of the spiral waves, 

which leads to spiral break up and spatiotemporal chaos. The tip of the spiral follows an 

outward spiral-like trajectory and the spiral core expands in time. This type of 

destabilization of simple rotation is attributed to the effects of curvature and the wave-

fronts interactions in the case of oscillatory damped recovery to the rest state. This model 

offers a new route to and caricature for cardiac fibrillation. 

 

Keywords: Spiral break up, spatiotemporal chaos. 

 

1. Introduction  
 

Rotating spiral waves are ubiquitous in excitable media. They have been 

observed in chemical reactive solutions [1, 2], in slime-mold aggregates [3] and 

most importantly in cardiac muscle [4].Such wave patterns have been studied 

using reaction-diffusion equations models. For some values of the system 

control parameters, they undergo simple rigid rotation around a circular core. 

However, as the control parameter is varied, the spiral tip deviates from circular 

trajectories [5-11]. This non-steady rotation is known as meandering and it has 

been observed essentially in chemical systems such as in the Belouzov-

Zhabotinsky (BZ) reaction [12]. Experiments with this reaction have also 

demonstrated spiral breakup [13, 14]. This later is of interest in cardiology since 

it is the prelude to cardiac fibrillation, the commonest cause of sudden cardiac 

death [15, 16], and has been observed in models that show wave trains 

spatiotemporal instabilities [17-18]. It is characterized by spatiotemporally 

chaotic or irregular wave patterns in excitable media and remains a challenging 

problem in nonlinear science. 

 

We present in this paper a new type of meandering leading to spiral breakup and 

offering a new route to spatiotemporal irregularity or chaos in excitable media. 

Spiral core expansion occurs here as the spiral free end or tip follows an 

outward motion along a path that looks itself like a spiral. This core expansion 

was previously expected by the theory of non-local effects [6, 9, 10], and was 

attributed to effect of curvature on the velocity of propagation coupled to the 

effects of the interaction of successive wave-fronts due to refractoriness. The 

dependence of the normal velocity of propagation on curvature is given 
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by kDvv −= 0 , where k  is the local curvature, D  is the diffusion coefficient 

and 0v  is the plane wave velocity of propagation [11]. Due to this velocity 

gradient, small wavelength perturbations on the segments away from the tip 

would decay, which would stabilize wave propagation away from the tip and 

maintains the rotational motion of the spiral. On the contrary, perturbations 

straightening a small segment containing the tip would reduce curvature, and 

consequently the normal velocity of wave propagation is enhanced as the 

gradient of the normal velocity becomes weaker. This means that the tip would 

have a less tendency to curl but it tends to advance further. Therefore, further 

straightening of this segment containing the tip is expected. Thus, the spiral tip 

undergoes an outward forward motion instead of simple rigid rotation. If the 

recovery is non-oscillatory but monotonic, this destabilizing effect of curvature 

would be counteracted by the repulsive wave-front interaction due to the 

refractory period imposed on the medium after the passage of the preceding 

wave. In that case, circular rigid rotation would be sustained.  

 

This outward motion of the tip along a spiraling trajectory was predicted by 

Ehud Meron in his theory of non-local effects [6, 10]. He proposed an 

approximate spiral wave solution of the reaction diffusion system in the form of 

a superposition of solitary wave-fronts parallel to each other, and then derived 

an evolution equation using a singular perturbation approach. The numerical 

solution of this equation, for the case of an oscillatory recovering excitable 

medium, was a spiral wave whose core expands in time and whose tip moves 

itself along a spiraling path. However, no observation of this type of spiral wave 

meandering and core expansion was obtained by Meron in reaction diffusion 

systems. 

 

2. The Model  

 
Here, we present a new model showing for the first time this predicted core 

expansion. We use a modified Barkley’s model [19, 20] given by: 

uavbuuutu
2)]/)(()[1(

1
∇++−−=∂∂

ε
, 

vutv −=∂∂
3

,                                                     (1)  

where u  and v  are the excitation and recovery variables respectively. The 

parameter b  determines the excitation threshold. The inverse ofε , 

characterizing the abruptness of excitation, determines the recovery time. In the 

standard Barkley’s model where the local kinetics in the second equation is 

given by )( vu − , propagation cannot be maintained upon increasingε . Here 

propagation is maintained due to the delay in the production ofv . 

Numerical simulations were performed on square grids using the explicit Euler 

integration method with a 9-point neighborhood of the Laplacian and no-flux 
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boundary conditions. The space and time steps are respectively dx = 0.51 and dt 

= 0.052.  
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Abstract: Sn-Ag-Cu (SAC) alloys are considered as the best replacements of Sn-Pb 

alloys which are banned due to the toxic nature of Pb. But, SAC alloys have a coarse 

microstructure that consists of β-Sn rich and eutectic phases. Nanoindentation is a useful 

technique to evaluate the mechanical properties at very small length scale. In this work, 

CSM nanoindentation setup is used to determine the individual phase mechanical 

properties like Young’s modulus and hardness at high temperatures. It is demonstrated 

that these properties are a function of temperature for both β-Sn rich and eutectic phases. 

Loadings starting from 500 µN upto 5000 µN are used with 500 µN steps and average 

values are presented for Young’s modulus and hardness. The loading rates applied are 

twice that of the loadings. High temperatures results in a higher creep deformation and 

therefore, to avoid it, different dwell times are used at peak loads. The special pileup 

effect, which is more significant at elevated temperatures, is determined and incorporated 

into the results. A better agreement is found with the previous studies. 

 

Keywords: SAC alloys, Nanoindentation, Young’s modulus, Hardness, Pileup effects 

 

1. Introduction 
Good set of entire mechanical, electrical, chemical and thermal properties are 

the key elements before classifying any solder to be good for current solder 

joints. All of these properties were well set for Sn-Pb solder until no restrictions 

were taken by RoHS and Environmental Protection Agency (EPA), which 

identified Pb as toxic to both environment and health. This is because Pb and 

Pb-containing compounds, as cited by EPA, is one of the top 17 chemicals 

posing the greatest threat to human beings and the environment [1]. Moreover, 

current consumer demands and strict governmental legislations [2-4] are 

pushing the electronics industry towards lead-free solders. 

Many lead-free solder alloys are studied by different researchers with wide 

range of applications. In Abtew’s report [2], almost 70 lead-free solders are 

proposed to replace their lead based counterparts. Most of the newly defined 
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lead-free solders are binary and tertiary alloys [5], out of which, SAC tertiary 

alloys are considered as the best substitutes [6]. As like many other alloy 

systems, SAC has also certain limitation due to their coarse microstructure. Iron 

(Fe), cobalt (Co) and nickel (Ni) are used as potential additives to overcome 

these limitations [7]. In some studies, indium (In), bismuth (Bi), copper (Cu) 

and silver (Ag) are used as alloying elements [5]. Before classifying SAC as 

good substitute, extensive knowledge and understanding of the mechanical 

behaviour of this emerging generation of lead-free solders is required to satisfy 

the demands of structural reliability. 

Electronic devices once subjected to severe conditions during service exposes 

solder joints to elevated temperatures. This causes significant evolution of the 

microstructure of SAC alloys. SAC alloys consists of β-Sn, eutectic Sn phases 

and Ag-Sn and Cu-Sn InterMetallic Compounds (IMCs). These IMCs are 

generally hard and brittle in nature which dictates the entire mechanical 

properties of the solder joints. Exposures to high temperatures causes thermal 

coarsening due to which the size of these IMCs grow and further deteriorate the 

solder joints and hence alters the structural reliability of the whole assembly. 

Rare-earth elements, known as the vitamins of metals, are used in different 

studies to control this thermal coarsening with significant results [8-11]. All 

these elements refine the grain size leading to a fine microstructure which 

ultimately improves the mechanical properties of SAC lead-free solders 

including yield stress and tensile strength [10-11]. 

The fast introduction of lead-free solders without deep knowledge of their 

behaviour has caused many problems in the current electronics industry. 

Therefore, good understanding of SAC alloys is required to explore the 

mechanical properties and enhance the solder joint reliability. The main focus of 

this work is to measure the individual phase properties like Young’s modulus 

and hardness of SAC alloys for eutectic Sn and β-Sn phases. Many researchers 

have already attempted to determine the mechanical properties of Sn-Ag and 

SAC alloys [12-13]. The indenter causes piling up inside the soft Sn-matrix 

which has been neglected in many studies which makes the results unreliable. In 

this study, the piling up effect is considered for both phases and evaluated using 

semi-ellipse method and incorporated into results. Both results, before 

modification and after modification are provided for comparison. 

 

2. Experimental  
Solder alloy used in this study is Sn3.0Ag0.5Cu with 96.5 wt % of Sn, 3 wt % 

of Ag and 0.5 wt % of Cu. Since sample preparation for any kind of 

experimental study is crucial. Therefore a casting die is used to make the 

samples using “cast by melt” process with many advantages. This die gives 

almost final shape to the samples with minimum of final machining required. 

Almost voids-free surface is achieved which is very important for the 

nanoindentation testing. During casting the microstructure of the testing samples 

is controlled using specified cooling rate which is about 3°C/s. A temperature of 

260°C was kept in the oven and the die was heated for about 45 minutes before 
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putting the molten metal into it. The 200g ingots were put in a crucible and then 

placed in the oven at 260°C for about 25 minutes. Water at a temperature of 

15°C was used for quenching; the cooling rate of the specimens was measured 

with a K-type thermocouple. Only a small part of the die was dipped in the 

water to get a slow cooling rate of about 3°C/s, which is close to the actual 

soldering process. The dog-bone shape specimen is shown in Figure 1 with a 

thickness of 2mm. 

 

 
Fig. 1. Dog-bone specimen (all dimensions in mm) 

 

Specimens were mechanical polished with silicon discs and 1 micron diamond 

paste. Chemical etching was performed for a few seconds using a 5% 

hydrochloric acid and 95% ethanol solution in order to distinguish between 

different phases. Figure 2 shows an SEM micrograph and Optical microscope 

(OM) micrograph taken before the nanoindentation. An Oxford EDS system 

placed in the SEM enabled to realize elemental mappings for every specimen. 

Nanoindentation tests were carried out by using a nanoindenter XP equipped 

with a Berkovich-84 diamond indenter. The resolutions of the loading and 

displacement systems are 50 nN and 0.01 nm, respectively. Both of the standard 

deviation errors of the measured hardness and reduced modulus values for the 

standard are well less than 1%.  The hardness value and reduced modulus values 

were also extracted from the unloading part of load–depth curves by using 

Oliver and Pharr method [14].  

An acquisition frequency was 10 Hz and poison ratio, assumed, was 0.33. The 

load applied were 100 µN to 5000 µN with steps of 500 µN. The loading and 

unloading rates (mN/min) were two times that of load applied (mN). An 

approach speed of 3000 µN/min was used. As the lead free solders exhibit 

severe creep deformation, even at room temperature [15], the dwell time at the 

peak load is defined as 60 seconds in order to completely relieve the creep 

deformation and also avoid the famous “bulge” or “nose” effect during 

unloading [16]. 
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Fig. 2. (a) SEM and (b) Optical Microscope micrographs before nanoindentation 

 

The selection of position to indent was controlled under a high-resolution 

Optical Microscope (OM), by which various phases can be distinguished. OM 

was also applied after the indentation to confirm the indenter location and avoid 

the grain boundary effects. For each specimen, 9 points (3X3 arrays) were 

tested. Both phases, eutectic and β-Sn, were selectively indented by the visual 

matrix method. Same tested zones were studied after the indentation testing with 

Atomic Force Microscope (AFM). 

 

Afterwards, Scanning Electron Microscope (SEM) and Energy Dispersive 

Spectroscopy (EDS) were used to confirm the chemical composition of each 

phase. Further, because the Young’s modules and hardness for each phase is 

different, curves for eutectic phase and β-Sn phase can be distinguished from the 

test array. 

 

3. Results and discussion 
This is well known in the nanoindentation testing that the typical load-depth 

curve has significant importance for extracting the overall results. Most 
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importantly, the slope of the unloading portion of the curve is used in almost all 

calculations. As discussed earlier, SAC alloys are famous for their low creep 

resistance and hence quite vulnerable to creep, due to which the pile-up effects 

happens which causes the “bulge effect” in both β-Sn and eutectic-Sn phases. It 

is important to avoid this “bulge effect” as it may alter the credibility of final 

results. Different loads were tested to avoid this effect but it still exists as shown 

in Figure 3. 

Moreover, in order to investigate the creep effects on the mechanical properties, 

different holding times were used. In comparison to Sn matrix, the IMCs are 

expected to be resistant to the creep effect. In some cases, there is some bulge 

effect, but it can be concluded that this is because of the Sn matrix in which 

these particles are finally embedded. 

 

 
Fig. 3. Load-displacement curves with no holding time 

 

Both β-Sn and eutectic Sn phases were subjected to indentation testing. The 

load-time history for the entire testing is shown in Figure 4.At a peak load of 

5000µN, a 60 seconds dwell time was used to avoid the bulge effect. Solder 

joints are exposed to high temperatures during service. This causes thermal 

coarsening of IMCs, due to which, their size grows as the diffusion rate of Ag 

and Cu into Sn increases at elevated temperatures. It is of utmost importance to 

understand and explore the individual phase mechanical properties up to a 

homologues temperature of at least 0.4Tm, where Tm is the melting point of SAC 

alloy.  

The Load-Depth curves for individual phases at 20°C, 45°C and 85°C are given 

in Figures 5-7 respectively. In this case, the bulge effect is negligible. Quite 

useful information can be extracted from these curves. It is important to 

visualize that the elastic deformation in both phases is quite small which makes 

the unloading curve almost straight (vertical). Moreover, as also described by 

the other researchers, indentation depth in eutectic phase is significantly smaller 

than the β-Sn phase [15]. This effect was also confirmed when the hardness of 

both phases were compared, eutectic phase being harder than β-Sn phase. This 

could be the effect of diffusion of Ag and Cu in Sn in the eutectic zone. For 

confirmation of the testing zone, the tested specimens were taken under the 

AFM. High resolution images were collected as provided in Figure 8 for the 
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testing performed over eutectic zone in SAC alloy. Different size of indentation 

represents different loadings applied during testing. 

 

 
Fig. 4. Load-time history during indentation testing with 60 seconds dwell time 

 

 
Fig. 5. Load-displacement curves for Eutectic and β-Sn phases at 20°C 
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Fig. 6. Load-displacement curves for Eutectic and β-Sn phases at 45°C 

 
Fig. 7. Load-displacement curves for Eutectic and β-Sn phases at 85°C 
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Fig. 8. AFM image after nanoindentation over eutectic zone 

 

3. Oliver and Pharr Model  
Oliver and Pharr Model (OPM) is extensively used for the solder alloys [14]. 

Both Young’s modulus and hardness are easily extracted using OPM after 

calculating the reduced modulus Er as described in equation (1), 

1
. ...........(1)

2r o p

S

E A

π

β
=  

where S is the contact stiffness calculated from the slope of the unloading 

portion of the curve, β is a constant related to the geometry of the indenter, and 

Aop is the oliver-pharr area projected during indentation. At the same time, the 

reduced Young's modulus could be formulated as, 
22 11 1

.........(2)i

r i

vv

E E E

−−
= +  

where E and υ are the Young’s modulus and Poisson’s ratio of the tested 

material and Ei, υi are the Young’s modulus and Poisson’s ratio for the diamond 

tip. The values of Ei and υi used in this study were 1141 GPa and 0.07, 

respectively as used in most of the studies [8] and the Poisson’s ratio of each 

phase, i.e., β-Sn and eutectic Sn phase was approximated to be 0.33 which was 

consistent with the previous studies [8]. Hardness (H) of the material, on the 

other hand, can be determined by (3) where Fmax is the peak indentation load and 

Aop is the projected contact area 
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Table I. Constant “C” values for berkovich-BK indenter tip 

C0 C1 C2 C3 C4 C5 

24.5 10.31 -16.03 24.45 -7.32 5.12 

 

where C is the constant depending on the indenter type and shape and are given 

in Table I for Berkovich-BK indenter tip. hc is the contact depth which is 

smaller than the theoretical depth due to the sinking effect of the specimen 

under indenter.  

Both Young’s modulus and hardness are determined and provided for eutectic 

and β-Sn phases in Table II. These are the results before pile-up effects. Almost 

no change was investigated with varying loading and loading rates. This is 

consistent with other studies [15].  

 

Table II. Individual phases Young’s modulus and hardness before pileup effects 

Phase Young’s modulus (Gpa) Hardness (Gpa) 

Eutectic-Sn 60±3 0.35±0.04 

β-Sn 54±4 0.30±0.045 

 

4. Pileup area calculations 
Assuming that the projected contact area, Ac, determined at contact depth, hc, 

traces an equilateral triangle of side b, then for a perfect Berkovich tip, 

 
There are semi-elliptical portions at each side of the triangle as shown in Figure 

9. The area of each semi-elliptical pile-up projected contact area is and the 

total pile-up contact area is, therefore, 

.......(6)
4

pu i

b
A a

π
= ∑  

where the summation is over three semi-elliptical projected pile-up lobes and ai 

being the measurement of piling up width on three surface (sides) of the 

equilateral triangles [2]. The AFM images are analyzed in image-plus to trace 

the surface profiles and are given in Figure 10. Knowing then the contact area 

from the Oliver–Pharr method, the total or true contact area for an indent can be 

obtained as: 
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Incorporating this new pileup area into the original OPM as presented in 

equations (1) and (3) becomes, 

1
. .........(8)

2r op pu

S
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π

β
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max ......(9)
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H
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=

+
 

The hardness and indentation modulus measured for eutectic and β-Sn phases 

are shown in Table III after incorporating the pileup effects. These results are in 

a better agreement with the previous studies [12]. This collection of data allows 

for comparison of mechanical properties of different phases, where all of the 

samples were prepared and tested in the same manner. 

 

 
Fig. 9. (a) Pileup schematic and (b) equilateral triangles after testing 
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Fig. 10. Pileup profiles for equilateral triangles 

 

Table III. Young’s modulus and hardness after pileup effects 

Phase Young’s modulus (Gpa) Hardness (Gpa) 

Eutectic phase 49±2 0.25±0.05 

β-Sn phase 45±3 0.20±0.06 

 

Both Young’s modulus and hardness were also determined along the indentation 

depth with experiencing only small variations which is also consistent with [12]. 

The average values for the Young’s modulus for eutectic phase, along the 

indentation depth, are determined to be 51 GPa whereas for β-Sn it is 48 GPa. 

Similarly, the average values for hardness, along the depth, for eutectic phase 

are determined to be 0.26 GPa whereas for β-Sn it is 0.22 GPa. The average 

values are taken from 100 nm to 500 nm depth. These values are taken after 

considering the pileup effects. 

Similarly, summarized results for β-Sn and eutectic phases for Young’s modulus 

and hardness at elevated temperatures are given in Tables IV-V respectively. 

 

Table IV. Mechanical properties for β-Sn phase at different temperatures 

Temperature (° C) Young’s modulus (GPa) Hardness (GPa) 

45 37.42 ±2.1 0.10 ±0.03 

65 36.21 ±3.2 0.095 ± 0.025 

85 34.85 ±3.5 0.087 ± 0.027 
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Table V. Mechanical properties for Eutectic phase at different temperatures 

Temperature (°C) Young’s modulus (GPa) Hardness (GPa) 

45 42.83 ±2.7 0.19 ±0.040 

65 43.72 ±2.2 0.17 ± 0.025 

85 51.85 ±4.5 0.11 ± 0.027 

 

Like the other phases of SAC alloys, the nanoindentation setup is also used for 

IMCs. These IMCs are hard and brittle as compare to the other phases in the 

same specimens. The EDS elemental mapping is used to verify the compositions 

of these IMCs before implementing the nanoindentation. 

The AFM micrograph is given in Figure 11 in which the indentation is carried 

out on IMCs. These images are collected just after the indentation process. The 

results for Young’s modulus and hardness for both Ag3Sn and Cu6Sn5 IMCs are 

provided in Table VI, with good comparison to the previous studies [17]. This is 

important to mention that the pileup effect is very small for these particles 

which is consistent with previous studies and therefore is neglected for IMCs. 

 

 
Fig. 11. AFM image for nanoindentation over IMCs 
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Table VI. Mechanical properties for IMCs 

 

IMCs Young’s Modulus (GPa) Hardness (GPa) 

Ag3Sn 74± 3  3.32± 0.2 

Cu6Sn5 91± 5 5.8± 0.6 

 

5. Conclusions 
A detailed study was carried out to explore the individual phase mechanical 

properties using nanoindentation for the SAC alloy which is considered as 

potential substitute for SnPb solder. Varying loads and loading rates were used 

to avoid the typical “bulge effects” and hence make the results more reliable. 

Piling effect, already ignored by many researchers, is calculated and 

incorporated into the Oliver-Pharr model. Image-Plus software is used to treat 

the indentation images taken with AFM after testing and hence plot the 

individual surface profiles to better explain the material behaviour. It is 

concluded that this pileup area play a major role in calculating the real results 

particularly for the soft Sn phase which has more pileup than the eutectic phase. 

Young’s modulus and hardness were also determined along the indentation 

depth and almost no change was observed which is consistent with previous 

studies. Different temperatures are used and the load-depth curves are plotted 

for individual phases. It is noticed that both Young’s modulus and hardness 

reduces with increasing temperatures for both phases. 
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Abstract : We present an investigation of coupled nonlinear electromagnetic modes in an electron-positron plasma by 

using the well established technique of Poincaré surface of section plots. A variety of nonlinear solutions corresponding 

to interesting coupled electrostatic-electromagnetic modes sustainable in electron-positron plasmas  is shown on the 

Poincaré section. A special class of localized solitary wave solution is identified along a separatrix curve and its 

importance in the context of electromagnetic wave propagation in an electron-positron plasma is discussed. 

Keywords : Poicaré section, solitary, electron-positron plasma 

 

 

1.Introduction  
The method of Poincaré surface of section (SOS) plots has been very useful in analysing higher dimensional non-linear 

dynamical systems [1]. For a given n-dimensional continuous dynamical system, the corresponding Poincaré SOS plot 

represents an equivalent discrete dynamical system with (n-1) dimensions and thus facilitates the analysis of possible 

periodic, quasi-periodic and chaotic modes, the original system can sustain. As non-linearity in plasmas is inherent they 

provide a perfect paradigm to study various non-linear processes ranging from coherent solitary waves to chaos and 

turbulence. In this respect, the subject of intense laser plasma interactions has ever received a great deal of attention. 

There has recently been a resurgence in this research area after the efficient production of very intense laser pulses 

(
218 /10 cmWI ≥ ) has become a reality [2]. Laser pulses with such high intensities are called relativistically intense 

as the associated transverse electric fields are strong enough to drive the electrons to relativistic speeds. From 

theoretical point of view, these high intensity laser plasma interactions provide a favourable environment for a whole 

range of non-linear processes. Among them  the formation of electromagnetic solitary wave is a topic of much 

fundamental interest particularly in theoretical plasma physics. There have been several theoretical investigations 

addressing the existence and stability of coupled electromagnetic solitary waves in plasmas [3].  

 

 On the other hand, the electron-positron plasmas are thought to be a constituent of various astrophysical 

environments e.g. in pulsar magneto-spheres, in bi-polar flows in active galactic nuclei (AGN) and at the centre of our 

galaxy and are believed to be the first state of matter in the early stage of universe [4,5]. The coupling of 

electromagnetic waves to electron-positron plasmas is therefore an active area of theoretical research and has been 

addressed in few earlier works [5]. We present here a detailed Poincaré section based analysis of a class of possible 

coupled non-linear electromagnetic modes in an un-magnetized electron positron plasma with a particular emphasis on 

the coupled solitary waves solutions. This work is an extension of earlier works by Saxena et al. [7] and O. B. Shiryaev 

[6]. We adopt the same formalism as used by Kaw et al. [8] for an electron plasma with ions forming a neutralizing 

background.  

 

2.Mathematical Model 
The coupling of a relativistically intense electromagnetic wave with an electron-positron plasma is described by the 

following set of coupled fluid-Maxwell equations. 
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Here indices e and p stand for electron and positron species respectively, A, Φ, ne/p, and pe/p respectively represent the 

electromagnetic vector potential, electrostatic potential, the electron/positron density and electron/positron longitudinal 

momentum. pe,γ Is the relativistic factor given by,  

 

             | | 22
1 pe,pe, p+A+=γ         (5) 

 

By performing a co-ordinate transformation defined as βtx=ξ − where cv=β ph / is the normalized phase 

velocity, one obtains following set of coupled non-linear ordinary differential equations. 
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Now making a change of variable defined by  
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we get following set of simplified equations, 
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Above coupled equations (8) and (9) admit following constant of motion: 

 

  ( ) 



 −+− 22222222 211

2

1

2

1
+Z+X+β+Z+Xββ+Z+X=H &&   (10) 

 

This problem is similar to that of coupled oscillators in Hamiltonian mechanics with two degrees of freedom and we 

solve above set of equations (8-10) using Runge-Kutta 4
th

 order integration method to obtain coupled non-linear 

solutions.  
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3. Non-linear Solutions on Poincare Surface of Section 

We consider the case of 1>β and show the possible solutions on a Poincaré SOS plot defined by 00, >X=X & . We 

have investigated two interesting regimes 11 <<−β and 11≤−β . The results are shown in Fig.1 and Fig.2 

respectively. It is worth noting that in the regime of phase velocities close to the speed of light, there exist a more varied 

class of solutions. The Poincaré plot in Fig.1 is obtained for 101.001 =H;=β . The densely filled curves 

correspond to quasi periodic solutions with the ratio of the frequencies of two oscillators being a prime number. The 

centres of the left and right halves of the Poincaré plot represent the fixed points of zero measure and correspond to 

periodic orbits. The interesting island curves correspond to amplitude modulated quasi periodic modes whereas centres 

of these islands represent the fixed points of higher orders and correspond to periodic waves with an integer ratio of the 

two oscillator's frequencies.  We note that the separatrix curve is not quite periodic and therefore indicates a possibility 

of slightly chaotic solutions.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 : Poincaré section plot for parameters β=1.001, H=10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Fig.2 : Poincaré section plot for parameters β=1.1, H=10. 

 

Now in the regime of 1  1≤−β , we choose the parameters to be 101.1 =H;=β . The Poincaré surface of section 

plot for this case is shown in Fig.2. In this case we observe that the small island curves cease to exist. Moreover, there 

exists a sharp separatrix curve. This separatrix curve corresponds to localized solitary wave solutions. We show this 

particular solution in Fig.3. 
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Fig.3 : Solitary solution corresponding to the separatrix curve in Fig.2. 

 

 

4. Conclusions 
To conclude, we have presented a class of coupled non-linear electromagnetic solutions for electromagnetic wave 

propagation in an electron-positron plasma by using Poincaré surface of section technique. A special class of solitary 

wave solutions has been identified along the separatrix curve in a parameter regime with phase velocities exceeding the 

speed of light by ~ 10% or more. These solitary modes play an important role in the energy localization in laser plasma 

interactions and therefore their stability needs to be understood which is an open area of research.  
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Abstract: The report explores Process Automation Tool developed using Altair Hyper 

Works Process Manager to automate UPD analysis, post processing of it and plotting the 

results. Such a tool assists CAE analysis engineer to capture best practices for CAE 

model building. It also helps to reduce simulation development cycle time, increases the 

quality, eliminates repetitive tasks and also maintain the consistency in results. 

The process template is developed to automate Front under-run protection device 

(FUPD), Rear under-run protection device (RUPD) and Side under-run protection device 

(SUPD) for RADIOSS solver. The FUPD, RUPD and SUPD are required to comply with 

ECE R93, ECE R58 and ECE R73 regulations, which provides strict requirements of 

devices design and its behavior under loading, that’s the need to be fulfilled by device for 

approval of load carrying vehicles. The practical testing of under-run protection device 

(UPD) is very difficult, time consuming and costly. Also for any organization,  to sustain 

in competition, product lead time to launch the new vehicle in market will be as 

minimum as possible. This causes increase in importance of computational simulation. 

But to get correct computational results, proper simulation method is essential. 

 

Keywords: ECE R93, ECE R58, ECE R73, UPD, Process template 

 

1 Introduction:  
The original reason for development of CAE is to eliminate physical prototypes 

and tests, but many engineers and companies don’t trust on result they get using 

CAE, so physical prototypes are still milestones in almost every design 

organization. For organizations simulation technology is not a problem, most 

companies demonstrated that when best practices are followed, results are 

consistent and correlated with the physical world. Inconstancy in the application 

of CAE technology leads to variability in results.  

Process automation is the key to improving consistency. Like manufacturing, in 

CAE also automation was the key to improving product quality. 

Altair Process Manager is programmable task management software that guides 

to define standard work process. It allows automating any step in simulation 

process. Process template provides a starting point and guide for steps to be 

followed during analysis. It adopts the best practice.   

An automated tool is developed using Altair HWPM, commercially available 

software in compliance with ECE regulations as mentioned above. This Process 

Automation tool allows CAE analyst to import meshed component with 

assigned material and element properties with correct card images, selecting 

UPD type, vehicle data, defining boundary condition/loading position/contacts, 

control cards, export deck and post processing.  

The following tests are carried out to avoid underrun due collision of passenger 

car and goods carrying vehicle. Also it helps to study the behavior of UPDs for 

different loading conditions for safety of occupants. Series of iterative 

simulations are carried out to understand the procedure and to adopt best 

practice to analyze UPD as per regulation.  
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Fig. shows FUPD position   Fig. shows RUPD position 

 

Fig. shows SUPD position 

 

2. Process Methodology 
The developed process template using Altair HWPM performs pre and post 

processing of UPD simulation as per above stated ECE regulations. As most of 

the tasks are automated through scripting, so complexity of analysis can be 

reduced. But still user interaction is necessary.  

The process manager task tree for UPD simulation looks like as shown in figure. 
    

 

Importing FE Model 

This task enable user to import UPD model. The task provided with file 

browsing dialog boxes for above purpose. The file browser allows importing 

HyperMesh and RADIOSS model. 
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UPD type Selection 

This task enables analyst to specify UPD (front, rear or side) type for analysis. 

According to selection, an appropriate regulation is used for validation and 

analysis. 

 
 

Vehicle data 

This task has four sub-tasks those are, entry for vehicle width and axle 

width/component selection/vehicle type/entry for weight carrying capacity of 

vehicle. Following figure shows UI of vehicle data in case of selected UPD type 

is FUPD and RUPD 

 
If selected UPD type is SUPD then following UI will be appear instead in above 

shown 

 
 

Boundary Condition 

With this task analyst can enable to define boundary condition, loading position 

and contacts. The time entry also provided to input load curve. 
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Control Cards 

All necessary control cards are created automatically. Entry boxes are provided 

to get time input for history file and animation file. 

 

 
 

Export 

This task allows user to export engine file and starter file as RADIOSS deck. 

The file name and path, where deck has to be saved can be specified using file 

browser. 

 
Post Processing 

The solved results are automatically exported to HyperView for Post Processing 

and results will be generated in Word format. 

 

3. Computational Analysis 
The deformed shape of FUPD with different loading condition as mentioned in 

regulation is as shown below  

 

P1 Position 

 

 
Fig. Displacement of FUPD at P1 Position 
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            Fig. Energy Vs Time     Fig. Displacement Vs Time 

 

 

 

 

P2 Position 

 
 

Fig. Displacement of FUPD at P2 Position 

 

 

     

        
Fig. Energy Vs Time   Fig. Displacement Vs Time 
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P3 Position 
 

 

 
Fig. Displacement of FUPD at P3 Position 

 

 

       

       
             Fig. Energy Vs Time   Fig. Displacement Vs Time 

 

4. Result 
This process template helps designer to setup CAE model automatically as per 

ECE regulation. It enables best practices through standardizing UPD simulation 

process. It also helps to minimize model setup time during research and model 

certification process. 

 

5. Conclusion 
With the above results, it is concluded that the process template developed using 

Altair HyperWorks products for analysis of UPD is correct. This template saves 

a lot of time to setup deck for analysis of UPD as per ECE regulations to meet 

stringent regulation and time constrain 

 

6. Benefits Summary 
- Standardize process flow 

- Maintain consistent output result 

- Saves deck setup time for simulation, ultimately reduces cost 

- Maximized resource usages 
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Delay Factors and Chaotization of
Non-ideal Pendulum Systems
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Abstract. The oscillations of a plane pendulum, the suspension point of which ex-
cites by electric motor of the limited power with taking into account various factors
delay are considered. Regular and chaotic attractors, phase-parametric characteris-
tics and maps of dynamic regimes of this system are built and explored. Influence of
delay factors on the appearance of deterministic chaos is analysed in detail.
Keywords: delay, chaotic attractor, map of dynamic regimes.

1 Introduction

Pendulum mathematical models are widely used to describe the dynamics of
various oscillatory systems. Such models are used to study the oscillation of
free liquid surface, membranes, various technical constructions, in the study of
cardiovascular system of live organisms, financial markets, etc.

The problems of global energy saving require the highest minimization of
excitation source power of oscillatory systems. This leads to the fact that the
energy of excitation source is comparable to the energy consumed by the oscil-
lating system. Such systems as ”source of excitation - oscillating subsystem”
are called nonideal by Zommerfeld-Kononenko [1]. In mathematical modeling
of such systems, the limitation of excitation source power must be always taken
into account.

Another important factor, that significantly have an influence on steady-
state regimes of dynamical systems are different, by their physical nature, fac-
tors of delay. The delay factors are always present in rather extended sys-
tems due to the limitations of signal transmission speed: waves of compression,
stretching, bending, current strength, etc. The study of the influence of delay
factors on the dynamical stability of equilibrium positions of pendulum systems
was initiated by Yu. A. Mitropolsky and his scientific school in the 80s of the
last century [2], [3]. But only ideal pendulum models were initially considered.
Mathematical models of pendulum system with limited excitation, taking into
account the influence of different factors of delay, were first obtained in [4],
[5]. The influence of delay factors on existence and dynamic stabilization of
pendulum equilibrium positions at limited excitation was studied. Later it was
discovered the existence of chaotic attractors in nonideal systems ”pendulum -
electric motor” and proved that the main cause of chaos is limited excitation
[4], [5], [7].

In this paper the oscillations of a flat pendulum, the suspension point of
which excites by electric motor of the limited power with taking into account
various factors delay are considered.
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2 Mathematical model of the system

In [6] the equations of motion of the system ”pendulum - electric motor” in the
absence of any delay factors were obtained. They are

dy1
dτ

= Cy1 − y2y3 −
1

8
(y21y2 + y32);

dy2
dτ

= Cy2 + y1y3 +
1

8
(y31 + y1y

2
2) + 1;

dy3
dτ

= Dy2 + Ey3 + F ;

(1)

where phase variables y1y2 describe the pendulum deviation from the vertical
and phase variable y3 is proportional to the rotation speed of the motor shaft.
The system parameters are defined by

C = −δε−2/3ω−1
0 , D = −2ml2

I
, F = 2ε−2/3(

N0

ω0
+ E) (2)

where m - the pendulum mass, l - the reduced pendulum length, ω0 - natural
frequency of the pendulum, a - the length of the electric motor crank, ε = a

l ,
δ - damping coefficient of the medium resistance force, I - the electric motor
moment of inertia, E, N0 - constants of the electric motor static characteristics.

Let us consider the following system of equations:

dy1(τ)

dτ
= Cy1(τ − δ)− y2(τ)y3(τ − γ)− 1

8
(y21(τ)y2(τ) + y32(τ));

dy2(τ)

dτ
= Cy2(τ − δ) + y1(τ)y3(τ − γ) +

1

8
(y31(τ) + y1(τ)y22(τ)) + 1;

dy3(τ)

dτ
= Dy2(τ − γ) + Ey3(τ) + F ;

(3)

This system is a system of equations with constant delay. Positive con-
stant parameter γ was introduced to account the delay effects of electric motor
impulse on the pendulum. We assume that the delay of the electric motor
response to the impact of the pendulum inertia force is also equal to γ. Taking
into account the delay γ conditioned by the fact that the wave velocity pertur-
bations on the elements of the construction has a finite value that depends on
the properties of external fields, for instance, the temperature field. In turn,
the constant positive parameter δ characterizes the delay of the medium reac-
tion on the dynamical state of the pendulum. This delay is due to the limited
sound velocity in that medium.

Assuming a small delay, we can write

y1(τ − δ) = y1(τ)− y1(τ)

dτ
δ + ..., y2(τ − δ) = y2(τ)− y2(τ)

dτ
δ + ...

y2(τ − γ) = y2(τ)− y2(τ)

dτ
γ + ..., y3(τ − γ) = y3(τ)− y3(τ)

dτ
γ + ...
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Then, if Cδ 6= −1, we get the following system of equations:

ẏ1 =
1

1 + Cδ

(
Cy1 − y2 [y3 − γ (Dy2 + Ey3 + F )]− 1

8
(y21y2 + y32)

)
;

ẏ2 =
1

1 + Cδ

(
Cy2 + y1y3 − y1γ(Dy2 + Ey3 + F ) +

1

8
(y31 + y1y

2
2) + 1

)
;

ẏ3 = (1− Cγ)Dy2 −
Dγ

8
(y31 + y1y

2
2 + 8y1y3 + 8) + Ey3 + F.

(4)
The obtained system of equations is already a system of ordinary differential

equations. Delays are included in this system as additional parameters.
The study of the influence of delay factors on existence and stability of

equilibrium positions of the system (4) was carried out. Also the effect of delay
on origin the deterministic chaos was studied. Since the system of equations
(4) is strongly nonlinear, the study of steady-state regimes has been carrying
out using numerical methods. A large set of computer experiments have been
held to determine the possibility of chaotic attractors’ occurrence in the system
(4). The methodology of these computer experiments is described in detail in
[6].

3 Dynamic regimes maps

A very clear picture of the dynamical system behavior can give us a map of
dynamic regimes. It is a diagram on the plane, where two parameters are
plotted on axes and the boundaries of different dynamical regimes areas are
shown. The construction of dynamical regimes maps is based on the analysis
and processing of spectrum of Lyapunov characteristic exponents, phase por-
traits, Poincare sections and maps, Fourier spectrums and distributions of the
invariant measure of attractors of the system. The atlas of maps of dynamic
regimes of nonideal system ”pendulum–electric” motor in the absence of delay
factors were obtained in [8].

Fig. 1a shows a map of dynamical regimes, when the parameters E and
D are changing, and the parameters C, D are equal to C = −0.1, F = 0.19
in the case of delay absence in the system. The dark-grey areas of the maps
correspond to equilibrium positions of the system. The light-grey areas of the
maps correspond to limit cycles of the system. And finally, the black areas of
the maps correspond to chaotic attractors.

Fig. 1b–d illustrate the influence of delays γ and δ on changing the type
of steady-state regime of the system. Thus Fig.1b was built at the values of
the parameters D = −0.8, E = −0.6 that correspond to the dark-grey area of
the map 1a. As can be seen from Fig.1b the type of steady-state regime does
not change at very small values of the delay. It is still an equilibrium position.
However, with an increase of delay values γ and δ the limit cycles appear in
the system (light-grey areas of the map) and then the chaotic attractors (black
areas of the map). And there is a quite complex and fanciful structure of
alternating regions of existence of periodic and chaotic regimes.
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a b

c d

Fig. 1. Maps of dynamic regimes

Fig.1c was built at the values of the parameters D = −0.58, E = −0.6 that
correspond to the light-grey area of the map 1a (periodic regimes). As can be
seen from this figure the attractor of the system is limit cycle at very small
values of the delays. With an increase of the delay values the chaos arises in
the system (black areas in the figure). Finally, fig.1d was built at the values of
the parameters D = −0.53, E = −0.6 that correspond to the black area of the
map 1a (chaotic regimes). In this case, with an increase of the delay values the
region of chaos is replaced by the region of periodic regimes. Then again chaos
arises in the system.

Apparently from figures 1b–d when the delay of interaction between a pen-
dulum and the electromotor γ greater than certain value, change of types of
steady-state regimes can be observed at very small value of delay of a medium
δ.

In fig.2a the map of dynamical regimes at C = −0.1, D = −0.6 in the case
of delay absence is constructed. In fig.2b the change of steady-state regimes
types, which takes place in the system with an increase of the delay values
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a

b c

Fig. 2. Maps of dynamic regimes

is shown. Thus the point (0, 0) of the map corresponds to the values of the
parameters E = −0.7, F = −0.4 at which the steady-state regime is a limit
cycle. With an increase of the delay values in the map there are narrow areas
in which the limit cycle is replaced by an equilibrium position, as well as by
a chaotic attractor. Further there is a rather wide area of periodic regimes,
which with further increase of the delay is replaced by chaos area. But, in this
rather wide area of chaos narrow strips of periodic regimes ”are built in”. A
Fig.2c was built for parameters E = −0.67, F = 0.3 that corresponds to the
black area of the map 2a (chaotic regimes). Here, with an increase of values of
delay the changes of the steady-state regime such as ”chaos–cycle–chaos–cycle”
are observed. And, apparently from this figure, we see that change of type of
a steady-state regime can be observed and at very small values of the delays.
increase of the delay happens under the scenario of Pomeau-Manneville, in a
single bifurcation, through intermittency.

Similar changes of the dynamical regimes types of the system (4), which
are observed with the delay change, are shown in Fig.3. The initial map of
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dynamical regimes was built at C = −0.1, E = −0.59 (fig.3a). The maps in
fig. 3b, c are constructed at D = −0.53, F = −0.4 and D = −0.5, F = −0.31
respectively. As can be seen from fig. 3b, c with an increase of the delay values
the change of the steady-state regime may take place such as ”equilibrium
position–cycle–chaos” or ”cycle–chaos” in different variations of the order of
these changes.

a

b c

Fig. 3. Maps of dynamic regimes

4 The study of steady-state regimes of interaction

Let us consider in detail the types of regular and chaotic attractors that exist in
the system (4). Let us consider the behavior of the system (4) when parameters
are C = −0.1, D = −0.8, E = −0.6, F = 0.19 and the delays γ = 0.29 and
0 ≤ δ ≤ 0.29. In fig. 4a,b the dependence of maximum non-zero Lyapunov’s
characteristic exponent and phase-parametric characteristic of the system are
shown respectively. These figures illustrate the influence of the delay of the
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medium δ, in which the oscillations of the pendulum are, on chaotization of
the system (4).

So in Fig.4a we can clearly see the presence of intervals δ in which maximum
Lyapunov exponent of the system is positive. In these intervals in the system
there are chaotic attractors. The area of existence of chaos is clearly seen
in phase-parametric characteristic of the system. The areas of chaos in the
bifurcation tree are densely filled with points. A careful examination of the
obtained images allows not only to identify the origin of chaos in the system,
but also to describe the scenario of transition to chaos. So with a decrease of
δ there are the transitions to chaos by Feigenbaum scenario (infinite cascade
of period-doubling bifurcations of a limit cycle). Bifurcation points for delay δ
are clearly visible in Fig.4a as well as in Fig.4b. These points are the points of
approaches of the Lyapunov’s exponent graph to the zero line (Fig.4a) and the
points of splitting the branches of the bifurcation tree (Fig.4b). In turn, the
transition to chaos with an increase of the delay happens under the scenario of
Pomeau-Manneville, in a single bifurcation, through intermittency.

a b

c d

Fig. 4. The dependence of maximal non-zero Lyapunov’s characteristic exponent (a),
phase-parametric characteristic of the system (b), phase portrait of the limit cycle
(c) and the chaotic attractor (d)
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a b

c d

Fig. 5. Phase-parametric characteristics of the system (a)–(b), phase portraits of the
chaotic attractors (c)–(d)

In Fig.4c,d phase portrait of one of the limit cycles, at δ = 0.11, of the cas-
cade of period-doubling bifurcations and phase portrait of the chaotic attractor
at δ = 0.07 that arises at the end of this stage are shown respectively.

Let us study the influence of the delay γ when parameters are C = −0.1,
D = −0.58, E = −0.6, F = 0.19 and in the absence of the delay of the medium
δ. In Fig.5a the phase-parametric characteristic of the system and in Fig.5b
an enlarged fragment of the central part of this characteristic are constructed.
Let us consider in more detail Fig.5b. Here there is situation, atypical for
dynamical systems, of transition to chaos. As it is known, the most typical
situation is when the transition to chaos happens with a decrease (increase) the
bifurcation parameter through a cascade of period-doubling bifurcations and
with an increase (decrease) the bifurcation parameter - through intermittency.
Here there is some symmetry of scenarios of transition to chaos. As can be seen
from Fig.5b, there is an interval of change the values γ in which the transition
to chaos under the Feigenbaum scenario can be observed both with a decrease
and with an increase of values γ. An analogous situation occurs in this interval
of changes γ for intermittency. In other words the transition to chaos through
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a b

c d

Fig. 6. The distribution of the invariant measure of the limit cycle (a) and the chaotic
attractor (b), the Poincare section (c) and map (d) of the chaotic attractor

intermittency can be observed both with a decrease and with an increase the
values γ. On the right part of the bifurcation tree the typical situation for
non-linear dynamics is observed.

In Fig.5c,d the typical in this case phase portraits of chaotic attractors of the
system are shown. The chaos shown in Fig.5c is characterized by a relatively
small volume of localization in phase space of the system (4). Conversely, in
Fig.5d the ”developed” chaos with a much larger volume of localization in phase
space is shown.

Let the system (4) parameters be C = −0.1, D = −0.58, E = −0.6,
F = 0.19 and the delay δ = 0. The distributions of the invariant measure of
the limit cycle at γ = 0.165 (fig.6a) and the chaotic attractor at γ = 0.1652
(fig.6b) illustrate the transition to chaos through intermittency when changing
the delay γ. These distributions of the invariant measure on the phase portrait
of attractors allow us to identify the laminar and turbulent phase of chaotic
attractor that arises under the scenario of Pomeau-Manneville.

In fig. 6c,d, rather typical for this system, the Poincare section and the
Poincare map of the chaotic attractor at γ = 0.28 are constructed. Both of them
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have ”quasiribbon” structure. This allows building an analytical approximation
of Poincare map that can be used for an approximate study the dynamics of
the three-dimensional system using one-dimensional discrete map [9].

5 Conclusions

Thus, various factors of delay make the considerable influence on dynamics
of system ”pendulum - electromotor”. Delay presence in such systems can
cause both origin, and vanishing of chaotic attractors. Besides, delay leads
to occurrence of atypical situations at transitions from the regular regimes to
deterministic chaos.
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Abstract. In this paper, we investigate the behaviors of the Belief Propagation
algorithm considered as a dynamic system. In the context of LDPC (Low Den-
sity Parity-Check) codes, we use the noise power of the transmission channel as
a potentiometer to evaluate the different motions that the BP can follow. The
computations of dynamic quantifiers as the bifurcation diagram, the Lyapunov ex-
ponent and the reconstructed trajectory enable to bring out four main behaviors.
In addition, we propose a novel measure that is the hyperspheres method, which
provides the knowledge of the time evolution of the attractor size. The information
collected from these different quantifiers helps to better understand the BP evolu-
tion and to focus on the noise power values for which the BP suffers from chaos.
Keywords: LDPC, iterative map, chaos, Lyapunov exponent, bifurcation diagram.

1 Introduction

The channel coding is a research field whose purpose is to protect an infor-
mation to transmit from environmental disturbances. The first step is the
encoding of the information, a procedure in which the information, modeled
as a sequence of k bits u1, . . . , uk, is mapped to a larger sequence of N bits
x1, . . . , xN . The map consists in artificial correlations called constraints or
parity-check equations. In [1] are introduced the Low-Density Parity-Check
(LDPC) codes which are a widespread technique to encode the information.
Such a code can be represented by a Tanner graph [2], a graphical represen-
tation which turns out to be very useful in the second step, the decoding. In
this part, the bits transmitted though a random noisy channel are iteratively
handled by a decoding algorithm to create an associated output sequence
of N bits that verify the whole set of parity-check equations and that must
be as close as possible to the input sequence. One of the most famous de-
coding algorithm is the Belief Propagation (BP) [3], also used in statistical
physics [4], extensively studied in [5,6], which is deemed to be the optimal
message-passing algorithm in the case the Tanner graph of the LDPC code
is loopfree. However, in most cases the Tanner graph is not loopfree [7] that
involves that the BP becomes suboptimal. Moreover, the BP presents some
complex behaviors in terms of the noise power of the transmitted channel,
as periodic and chaotic motions [8]. Along the whole paper, we present some
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measures to bring out these different behaviors. The paper is organized as
follows: in the second section are presented preliminaries about the LDPC
codes and the BP, in the third section we present the dynamic environment
of the BP, the measures to identify the behaviors and the associated results.

2 LDPC codes and Belief Propagation

We consider a set of N binary random variables X = {X1, . . . , XN} whose
global state is denoted by x = [x1, . . . , xN ]. An LDPC code is built by a
set of M constraints, or parity-check equations, C = {C1, . . . , CM} such that
for each check Cj its state is cj =

∑
Xi∈Nj xi where Nj is a subset of X

called the neighborhood of Cj depending on the LDPC code, and the sum is
computed over the Galois field GF(2). We consider that Cj and Xi such that
Xi ∈ Nj , form an edge eij between two nodes inside an undirected bipartite
graph called the Tanner graph G = (X ∪C, {eij}). An example of a Tanner
graph is displayed on the figure 1.

X0 X1 X2 X3 X4 X5 X6

C0 C1 C2

Fig. 1. Tanner graph of the Hamming code

The purpose of the BP is to estimate the joint probability distribution p(X = x),
written simply p(x), by a distribution called the belief b(x) and to extract
the most likely state x̂ = arg maxx b(x) considered as the estimate of the in-
put sequence. Each variable Xi has its own marginal probability distribution
pi(xi) and its own belief {bi(xi)}1≤i≤N . The BP is an iterative algorithm
that consists in passing messages between the variables and the constraints
on the edges of a given Tanner graph at each iteration k. For each edge eij :

• the messages n
(k)
ji (xi) from Cj to Xi are: n

(k)
ji (xi) = fji({m(k−1)

xy }(x,y))
• the messagesm

(k)
ij (xi) from Ci to Cj are: m

(k)
ij (xi) = gij({n(k)yx }(x,y), li(xi))

where the functions fij and gji are detailed in [2], and {li(xi)}i are the
likelihoods L(x) = {l1(x1) = p(y1|x1), . . . , lN (xN ) = p(yN |xN )} computed
from the channel obervations {y1, . . . , yN}. The noisy transmission channel
that we use in all of our simulations is an additive white Gaussian noise
channel whose power is σ2. We summarize the message-passing by a unic

implicit equation ∀eij , n
(k)
ji = Gij({n(k−1)nm }(m,n), {li}i). The convergence
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of the BP is: ∀eij , n(k)
ji = n

(k−1)
ji . These messages provide the computation

of the beliefs, whose equations are defined in [2]. All the simulations that
follow are done on a commonly used example which is the Tanner code [9].

3 Dynamics

3.1 State space definition and properties

We consider {Gij}(i,j) as a set of iterated maps on the state variables {n(k)ji }(i,j)
and T (k) = {n(k)ji }(i,j) as the points of the trajectories of the BP at iteration
k in the associated state space E .

3.2 Parameters and scaling

In [8] the value of σ2, or the corresponding Signal to Noise Ratio (SNR), is
used as a parameter such that different values imply different motions of the
BP. However, most of their simulations are done for particular noise real-
izations and scaled on the SNR, that prevents from evaluating a statistical
behavior. A reason is that the noise realizations that lead the BP not to con-
verge or to converge to a wrong estimate are rare events, essentially because
the LDPC codes and the iterative algorithms are created to this end. A way
to have some statistical evaluations of the behavior of the BP is:

1. finding some of these noise realizations,
2. storing the corresponding initializations on the state variables,
3. averaging the quantities to measure for a sufficient set of initializations

that are close in the state space in the sense of the Euclidean distance.

By this way, we target the critical values, i.e. the SNR that correspond to a
blatant change in the behavior of the algorithm, which are the bifurcations.

3.3 Bifurcation diagram

A relevant method to extract the critical values of the SNR is the use of the
bifurcation diagram. It consists in evaluating the value of a function E that is
computed from the state variables at their steady state for J different values
of the SNR. We get a sequence [Eσ1 , . . . , EσJ ] that represents the behavior of
the dynamic system in terms of the SNR. We consider the following function
exposed in [8] called the mean square beliefs:

∀σ, Eσ =

√√√√ 1

N

N−1∑
i=0

b2i (0) (1)

where the input sequence in the channel is the null sequence and the beliefs
are computed at the last iteration K of the BP algorithm. Obviously, there is
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no reason that the associated dynamic system has reached any steady state
at this iteration but we need to suppose it for computation time’s sake. This
function presents three important values:

• Eσ = 1: all the beliefs indicate that the ouput sequence is the null
sequence which is a good decoding,

• Eσ = 1
4 : all the beliefs are uniform thus there is no information about

the state of the transmitted bits, which is a missed decoding,

• Eσ = 0: all the beliefs indicate that the output sequence is the comple-
mentary of the sent sequence, which is a completely wrong decoding.

2 2.5 3
0.8

0.9

1

SNR

E
σ

Fig. 2. Bifurcation diagrams of the BP

The display of [Eσ1
, . . . , EσJ ] en-

ables to know two properties of the
used algorithm: the amplitudes pro-
vides information about the decod-
ing performance, and the variation
between successive values gives us
the critical values of the SNR. We
display on the figure 2 the mean bi-
furcation diagrams of the BP. We
observe that for SNRs lower than
2.19 dB, the BP follows a regular
increasing steady motion. When
the SNR is greater than this criti-

cal value, the algorithm follows a periodic motion. However, for values in
[2.5 dB, 2.98 dB] it does not appear any known evolution which can be an
indication of chaos. For values greater than 2.99 dB, the BP converges to the
good decoding state.

3.4 Reduced trajectory

Another use of the mean square beliefs function is the representation of the
trajectory in a 3-dimensional state space. To this end, we use the phase
space reconstruction [10]. The method is first to compute this function at
each iteration to get the following sequence Eσ = [Eσ(k)]0≤k≤K . Afterthat

we share this one dimensional sequence in a three dimensional sequence Ẽσ.
On the figures 3 and 5 are displayed some reduced trajectories of the BP for
typical values of the SNR deduced from the previous bifurcation diagram.

It appears four typical behaviors that match with the four intervals exposed
in the previous paragraph. We obtain a very small sized attractor for SNR
= 2.10 dB that can be considered as a fixed point, whereas the reduced
trajectory transforms to a limit cycle when the SNR is between 2.19 dB and
2.49 dB. A crucial point is that the thickness of the trajectory along this
limit cycle increases as the SNR is getting greater up to 2.50 dB.
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Fig. 3. Reduced trajectory for the BP on the Tanner code with SNR = 2.15 dB
and 2.30 dB
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Fig. 4. Reduced trajectory for the BP on
the Tanner code with SNR = 2.40 dB

At the same time this limit cycle
interleaves with other limit cycles,
that can be understood as a se-
quence of period doubling bifurca-
tions in terms of dynamic system, as
is displayed on the figure 4 with two
interleft cycles. Such a phenomenon
is a typical route to chaos, that is
observable from 2.51 dB. A chaotic
motion means that there is not any
periodic motion or fixed point con-

vergence anymore, as it is displayed for 2.70 dB. When the SNR reaches 2.99
dB the trajectory collapses to a single point that is a true fixed point.

0.82

0.88

0.94

0.82

0.88

0.94
0.82

0.88

0.94

0.82
0.88

0.94
1

0.82

0.88

0.94

1
0.82

0.88

0.94

1

Fig. 5. Reduced trajectory for the BP on the Tanner code with SNR = 2.70 dB
and 3.00 dB

We have to be cautious because Ẽσ is not a true trajectory, it does not
respect the Cauchy-Lipschitz condition [10] due to the non bijection between
the messages and the beliefs. Thus, this sequence only has the role of giving
clues about the true behavior as the possible shape of the actual trajectory
in E that are: convergence to a fixed point, convergence to a limit cycle,
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convergence to a chaotic attractor. To distinguish these shapes, we need a
criterion that reflects the behavior by its own value.

3.5 Lyapunov exponents

1.6 2 2.4 2.8 3.2
−0.004

0

0.004

0.008

0.012

SNR

λ

Fig. 6. Lyapunov exponents of the BP on
the Tanner code scaled on the SNR

A common measure is the Lyapunov
exponent λ, that consists in evalu-
ating at each iteration k ≤ K the
log-ratio of the Euclidean distance
between two initially close trajecto-
ries. As detailed in [11,10] the sign
of λ reveals the behavior of the sys-
tem around the corresponding ini-
tialization of the trajectories: λ ≥ 0
means the trajectories have moved
away one from the other, which is an
evidence of a chaotic behavior,λ ≤
0 means the trajectories have got
closer, which is an evidence of a con-

vergent behavior to a small sized volume of the state space. This volume is
reduced to a fixed point if and only if λ→∞. When λ crosses the x-axis the
system suffers from a bifurcation meaning that the algorithm has changed
of motion. The corresponding SNR are the critical values. We display on
the figure 6 the Lyapunov exponents of the BP on the Tanner code. As we
have observed on the bifurcation diagrams, the evolution is really different
as soon as the SNR is greater than 2.09 dB. The BP curves is perfectly con-
sistent with the associated bifurcation diagram in the sense that the critical
values we extract are the same and the behaviors we could imagine by the
bifurcation diagram are also revealed by the Lyapunov exponent. A relevant
analyze we need to effect is the comparison with the reduced trajectory we
exposed previously so as to associate accurately with each reduced motion a
particular evolution of λ. For SNR ∈ [0dB; 2.19db]: the reduced trajectory
converges to a very small sized volume of EBP that we can consider as a fixed
point whereas λ is close to the null value, for SNR ∈ [2.20db; 2.49db]: the
reduced trajectory is trapped into a limit cycle whereas λ has gone over a
stair, for SNR ∈ [2.50db; 2.98db]: the reduced trajectory does not converge
to any fixed point, limit cycle or quasi-limit cycle but to a chaotic attrac-
tor whereas λ soars to high values, for SNR ∈ [2.99db; +∞db]: the reduced
trajectory converges to a fixed point corresponding to a good decoding.

3.6 Hyperspheres method

We propose here a novel method to evaluate the unstability of the BP, based
on its own trajectory in E . This method is complementary to the Lyapunov
exponent measure because it reveals the size of the attractor that the trajec-
tory falls into and some other properties about the limit cycles. This method
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consists in computing the rays Rk of the hyperspheres circumscribed to the
trajectory inside a given temporal window centered around each point T (k).

0 500 1,000

0.08

0.1

0.12

k

R
k

Fig. 7. Evolution of two hyperspheres
rays corresponding to two initially close
trajectories of the BP on the Tanner code
at SNR = 2.10 dB, SNR = 2.30 dB

On the figure 7 are displayed the
evolutions of two rays that corre-
spond to two initially close trajec-
tories in the Euclidean sense. The
motion we observe for SNR = 2.30
dB is consistent with the limit cycle
we observed on the reduced trajec-
tory. The curve of the ray enables
to estimate the period of the trajec-
tory around 23 iterations. Moreover
we can assert that this limit cycle is
stable because the two rays cannot
be distinguished. For 2.70 dB the
rays moved away one from the other
as it was predicted by the Lyapunov

exponent observations. More accurately we can see that the rays has different
oscillations step. This is due to the period doubling bifurcations explained
previously. During 92 iterations in average for k ≤ 500, the trajectory is
trapped in a given limit cycle and for the next 92 iterations the trajectory
falls into another limit cycle of different ray. For both it is possible to mea-
sure the period or pseudo-period that is the same as the period of the first
limit cycle, that is 23 iterations. For k ≥ 500 we cannot distinguish these
different phases of evolution, the period doubling has led to chaos.

0 500 1,000

0.18

0.2

k

R
k

0 500 1,000

0

0.2

0.4

k

R
k

Fig. 8. Evolution of two hyperspheres rays corresponding to two initially close
trajectories of the BP on the Tanner code at SNR = 2.70 dB, SNR = 3.00 dB

Such an observation makes our method relevant to bring out crucial infor-
mation by a one dimensional function. Another important aspect of the
hyperspheres method is the raising of the behaviors difference between two
initially close trajectories: we easily observe that the evolution of the rays
cannot be distinguished while k ≤ 200 but as k is getting greater, the evo-
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lution of the rays move away one from the other but they follow the same
kind of motion. For both of them the hypervolumes of the state space in
which they are locking in are quite of the same size. When the SNR reaches
the last critical value we observe that one of the rays decreases to the null
value because the BP has converged to a fixed point. The other ray has not
collapsed yet because the SNR is just at the critical value, if it was increased
a little we would see the two rays going to zero.

4 Conclusion

In this paper, we raised the dynamics issue of the BP by the use of known
and new measures. The most important result is that the BP follows a
systematic scheme when the decoding is not trivial: convergence to a small-
sized attractor, locking in a limit cycle, chaos and convergence to a fixed-
point. Such a property is really useful because it helps to bring out the
critical values of the noise power of the channel for which the BP could present
complex behaviors. Another advantage of our study is that all the measures
we used can be applied on any other decoding algorithms. Therefore, we have
started to create a toolbox for the dynamics study of the LDPC decoders.
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Abstract: Previous work on a reaction-diffusion model of a 4-gene regulatory network 

governing insect segmentation characterized the dynamical basis of robustness to 

perturbations in this system [1,2]. Here, we computationally study system behavior near 

bifurcation points corresponding to weak-allele mutant embryos (i.e. with altered gene 

regulation). Our computations suggest that the variable expressivity and incomplete 

penetrance observed in some gene mutations may stem from response of the dynamical 

system to variable input (regulatory genes) near such bifurcation points.   

 

Keywords: spatially extended systems, reaction diffusion, pattern formation, gene 

network modeling, dynamical systems, bifurcation, phase diagrams.  

 

1. Introduction 
Fruit flies (Drosophila) are model organisms for studying spatial pattern 

formation in animals. In the first few hours of development, a network of 

interacting genes forms expression patterns which determine the body plan. 

Data shows that wild-type (WT) development is remarkably robust, with various 

initial trajectories canalizing to an attracting state [3]. Dynamical systems 

analysis of a core nonlinear model of the anterior-posterior (AP) segmentation 

gene network has shown how this WT stability can arise as a trajectory through 

phase space [1,2]. The WT is stable only to a certain point, however. As CH 

Waddington and his colleagues showed, once an embryo’s buffering capacity is 

overwhelmed by a sufficiently severe perturbation, altered phenotypes can arise 

in diverse organisms [4-6]. 

Strong gene mutations (deletions, insertions) can cause major (lethal) 

disruptions in the body plan. Our work focuses on using weaker perturbations of 

genes (weak alleles) to more continuously move the gene network from the WT 

trajectory. These gene variations can produce variable expressivity, in which the 

outcomes of a sample of embryos is not deterministic, but scatters between a 

selection of pathological outcomes (from nearly WT to strongly altered). Mutant 

patterns can be understood as bifurcations to pathological, non-WT, basins of 

attraction in a multi-stable phase space. Weak alleles bring the system to a 
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bifurcation point, intrinsic variability in the developmental system can then 

produce the variable outcomes. In this way, weak alleles can provide a tool for 

mapping the fine structure of the underlying phase space.  

A chief focus in recent years has been to use Drosophila to test the positional 

information hypothesis [7,8], that the local concentration of a spatially-

distributed gradient can specify the differentiation of cell types in the correct 

positions. The Bicoid (Bcd) gradient is a classic case of such a ‘morphogen’, but 

it has been discovered that Bcd gradients, compared between embryos, show 

much greater variability than do the patterns of one of its primary downstream 

targets, the zygotically expressed hunchback (hb) gap gene [9-13]. This points 

to error correction at the level of the initial zygotic interpretation of the maternal 

signal. Using ‘coarse-grained’ reaction-diffusion modeling, in which gene-gene 

interactions are simplified to single signed connections, we can study the 

robustness in the zygotic segmentation network via dynamical systems analysis 

and computations. Understanding the model components and parameters which 

produce the experimental pattern perturbations allows us to map the ‘near-WT’ 

phase space, and by so doing, to create a detailed understanding of the 

biological regulatory dynamics used in body formation. 

2. Methods and Approaches 
Modeling the segmentation gene network: Four gap genes, Krüppel (Kr), giant 

(gt), knirps (kni) and hb, are the core elements of our segmentation model. In 

Drosophila, these are transcriptionally activated by the maternal Bcd protein 

gradient in a concentration dependent manner. Three other gradients, Hb-

maternal (Hbmat), Caudal (Cad), and Tailless (Tll), help determine the positions 

of the gap genes. The combination of this upstream specification and gap-gap 

cross-regulation results in sharp and precise gap patterns.  

Protein expression for the 4 gap genes is modeled using the gene circuit 

framework [1,2], producing AP concentration patterns (such as Fig. 1A). The 

model is computed for a one-dimensional row of nuclei, between 30 and 94% 

AP position (percent Egg Length, or %EL, where 0% is the anterior pole) during 

nuclear cleavage cycles 13 and 14A. Modeling each gene product a (Kr, Hb, 

kni, Gt) in each nucleus i defines a system of number of proteins times number 

of nuclei ODEs (Ordinary Differential Equations) given by  

( )
1 1( ) ( ) .

a
ai

a

a a a a a a

i i i i a i

d v
R g u

d t

D v v v v vλ− +

= +

 − + − −    (1) 

Ra represents protein synthesis, Da represents diffusion, and λa represents decay. 

g(u
a
) is a sigmoidal regulation-expression function; for u

a
 below -1.5 and above 

1.5 g(u
a
) rapidly approaches zero. u

a
 is given by  b Bcda ab a a

i i

b

u T m hν ν= + +∑ . 

Parameters T
ab

 constitute a gene interconnectivity matrix, representing 

activation of gene a by the product of gene b (with concentration b
iν ) if 

positive, repression if negative, and no interaction if close to zero. Bcd
iν  
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represents the concentration of Bcd in nucleus i, which is constant in time. m
a
 

describes the regulatory input of Bcd to each gene; Bcd is a general activator for 

all four gap genes considered. h
a
 represents regulatory input from ubiquitous 

factors. Our model includes Hbmat, Cad, and Tll in a similar manner to Bcd, as 

time-independent parameters.  

Stability Analysis of the Gap Gene System: The dynamics of an N variable gene 

circuit can be represented by behavior in an N-dimensional concentration or 

phase space. Time-varying solutions follow trajectories in the phase space; 

stable solutions are given by fixed points. In [1,2], the phase space was mapped 

numerically (Newton-Raphson method) and fixed points classified according to 

their stability ([2] Protocol S3). The positions of the fixed points and their 

stability properties determine the stability of a general time varying solution of 

the gene circuit, including bifurcation points between neighboring basins of 

attraction. In the present work, we computed a number of trajectories with 

different initial conditions to test stability and the reduction of variability. Eq. 

(1) was integrated for very long times in order to characterize the asymptotic 

behavior. 

 

3. Results and Discussion 
Non-robust patterning under perturbed parameters: Coarse-grained modeling 

allows us to investigate disturbances in gene-gene interaction strengths. 

Specifically, in [1,2] we found a set of gap network solutions (T interaction 

matrices, Eq. 1) which are robust to natural Bcd variability (shown in Fig. 1C). 

In the present work, we have used this solution set and systematically altered (in 

small steps) each of the 24 T
ij
 values in the solution matrices. We find cases 

where small parameter changes cause abrupt changes in patterning, producing 

severe defects from the WT-like initial solutions (Fig. 1A vs. Fig. 1B). At the 

borders between WT and pathological cases, we found parametric points where 

the Bcd variability (Fig. 1C) produces a whole range of outcomes, from nearly 

normal to severely defective patterns (Fig. 1B). For example, changing T
Kr←cad

 

(the Cad protein effect on the Kr gene) from 0.021 to 0.035 shifts the system to 

the mathematical bifurcation between nearly-WT and pathological solutions 

(see Fig. 2). Combined with natural Bcd variability, this produces both WT and 

pathological patterns, as in biological variable expressivity. Our computations 

allow us to quantify variable expressivity as the combination of maternal (Bcd) 

variability and particular alterations in regulator interactions.  

Visual inspection and simple statistics show the splitting between WT-like and 

severely defective patterns. As an illustration, Fig. 1D shows the bi-modal 

distribution of the Hb gap protein concentration at AP coordinate 72.5 %EL 

(from the data in Fig. 1B) compared to the uni-modal Bcd distribution (Fig. 1E; 

drawn from the data in Fig. 1C). That is, in such cases with altered T
ij
, the 

natural variability in Bcd causes a subset of simulated embryos to be nearly WT, 

while another subset can be strongly disturbed. This behavior suggests a 

dynamical bifurcation. 
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Fig. 1. Bcd-robust WT solutions vs non-robust patterning with perturbed 

parameters. A) From [1,2] we have a set of gap network solutions (T interaction 

matrices) which are robust to natural Bcd variability. B) Changing T
Kr←cad 

(Cad 

protein effect on Kr gene) from 0.021 to 0.035 shifts the system to the 

mathematical bifurcation between WT and pathological solutions. C) The 

natural variability of the Bcd profiles used to test solution robustness. D,E) 

Comparison of the bi-modal distribution of the Hb gap protein with the uni-

modal Bcd distribution, at AP coordinate 72.5 %EL. 

 

Bifurcation analysis of the incomplete penetrance solution in comparison with 

the published results [1,2] shows that this new behavior does corresponds to a 

bifurcation. For the example of changing (mutating) T
Kr←cad

, the system is 

shifted to the border between the old robust WT-like region of phase space and 

the new pathological one. Fig. 2 compares the two phase portraits at 72.5%EL 

in Gt, Hb, Kr coordinates, for the robust WT solution of [1,2] and for the mutant 

solution described here. The robust WT dynamics are characterized by a saddle-

node combination (Fig. 2A; c.f. Fig. 4BE, [2]). For the mutant case, at the same 

AP position (72.5%EL), a second saddle-node combination appears by 

bifurcation (Fig. 2B). The particular attractor (node) the model reaches depends 

on the particular shape of the Bcd gradient. The two attractors correspond to the 

bi-modal distributions for Hb & Kr (both, very low vs. very high; c.f. Fig. 1D 

and Fig. 2B), while Gt does not show such drastic differences (see Fig. 1B). 
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Fig. 2. Phase portraits at 72.5% EL (in Gt, Hb, Kr coordinates). A) Robust WT 

dynamics. The dynamics here are controlled by a saddle-node combination. B) 

Mutant behavior. A second saddle-node combination has appeared by 

bifurcation. The particular attractor (node) the model reaches depends on the 

particular shape of the Bcd gradient. Other nodes non-essential for this behavior 

have been omitted. The red bent arrows show the movements of all solutions 

tested, from initial points to final steady states (at the purple nodes). 
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4. Conclusions 
Building on our previous work, we have shown here how mutation of gene-gene 

interactions can lead the Drosophila segmentation gene network to a bifurcation 

point, at which natural maternal variability can push embryos into neighboring 

basins of attraction. Such variable expressivity or incomplete penetrance is 

observed in nature, but the causes have been elusive. Our work suggests a 

dynamical basis, in which a weak mutation takes the system to a bifurcation 

point, and the variable outcomes are a manifestation of natural variability in 

upstream control; i.e. the mutation removes the robustness of the gene network 

to maternal variability.  
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Abstract: Expansion of orbs of application (appendix) of automatic control has caused 

development of intellectualization of control systems. One of the important directions are 

intelligent self-organizing system of automatic-control (ISSAC). They are capable to 

supply required capabilities of the purpose of control with change of environments and/or 

their parameters). It is attained by automatic synthesis of the law of control, the most 

adequate a current situation. For this purpose the intelligent system of synthesis is used. 

The planning subsystem creates (in the elementary case selects from already known) the 

most adequate procedure of synthesis. However existing approaches to planning actions 

have no property of mass parallelism. It do not allow to apply them in control systems 

owing to the big costs of time for a solution of task. It is offered to use planning artificial 

neural networks (PANN) within the planning subsystem of tasks solver. Features of 

planning of tasks solvings with use PANN are considered. Outcomes of simulation of 

control by a population of plants with use ISSAC are represented. 

Keywords: planning artificial neural networks, simulation of intellectual control 

systems. 

 

1. Introduction 
Increasing thickening of objects of control in a combination with toughening 

requests to accuracy and quality of control has reduced to an inconsistency with 

traditional approaches to construction of control systems. Modern control 

systems, as a rule, are working (function) in interacting with other systems 

which can influence on their behavior. The problem is complicated that, those 

conditions of functioning of control systems are changing during their work. It 

concerns not only the change of controlled plants and environments of their 

functioning, but also and the purposes of control. Necessity of organization of 

interacting of a set of the control systems a population of probably 

interconnected controlled plants essentially complicates a task of control. 

 

2. Intelligent self-organizing control systems 
It is expedient to apply the approach based on usage of intellectual systems of 

synthesis of the law of control to a solution of the indicated problem [1]. Such 

systems for a solution of a specific task of synthesis of the law of control in the 

beginning create a program of a solution of the task as ordered population of 

elementary operations and executing them make the required law of control. 

The amount of the elementary operations used for task solving of synthesis of 

the law of control, is not big, as they represent procedural definition of concepts 

589



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

of the theory of automatic control (TAC) [2]. Creating of the program a solution 

of the task is carried out based on knowledge of methods of task solving of the 

theory of automatic control. For this purpose are traditionally used a tools of 

automatic theorem proving. It is known, that tasks of scheduling of operations 

or automatic theorem proving are difficultly for deciding and them referred to 

category of NP-challenge. For such tasks of an expenditure of resources by 

searching of a solution will increase under the exponential law with growth of 

complexity of the task. Thus the most perspective are multilevel systems in 

which at the expense of introduction of hierarchically interconnected spaces are 

narrowed down of area for searching a solution of the task. Intelligent self-

organizing control systems are understood as systems of automatic control, 

capable to self-organizing by means of a modification of the law of the control, 

using methods of an artificial intelligence [3]. 

Structure of an intelligent self-organizing system of automatic control (see fig. 

1): the measuring subsystem, the executive mechanisms, the calculator of 

control action, the subsystem of identification of models of plant of control and 

environment based on the data of a measuring subsystem, the block of shaping 

of the purpose of control on the basis of the own purposes of behavior and an 

emotional state of an intelligent self-organizing control system, the intellectual 

subsystem of synthesis of the law of control, the block of a self-estimation 

realizing an evaluation of a quantitative equivalent of quality estimate 

("emotion") of behavior of this intellectual self-organizing system of automatic 

control, formed on the basis of a self-estimation and the estimations obtained 

from higher hierarchy levels of control systems. 
 

f 
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Fig. 1. Structure of an intelligent self-organizing system of automatic control 

 

Setting of the task of synthesis of the new law of control includes exposition of 

known components of a control system, an environment and the purpose of 

control, not specifying of a method (procedure) of a solution of the task, i.e. 

none procedurally. The set of methods of synthesis and the analysis of control 

systems are more not very important yet. More important becomes are 
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availability of capabilities of tools by automatically definition are methods, 

relevant to the current task. 

The problem of an automatic solution non procedural tasks in view demands 

engaging intelligent tools, understanding under a word "intelligent" ability to 

decide new tasks [4]. Therefore, the subsystem of automatic synthesis of the law 

of control of a self-organizing control system should represent the intelligent 

system of automatic synthesis using methods of an artificial intelligence for 

preliminary construction of the schedule of a solution of a specific target of 

synthesis. The new law of control is formed as a result of execution of the 

constructed plan of action. Thus, most a gorge is the mechanism of scheduling 

of operations. It is stipulated by that methods used now have no property of 

mass parallelism, and, therefore, «the damnation of dimension» is inherent in 

them, not permitting to solve tasks of practical complexity. 

The complex solution of the indicated problems is known on the basis of the 

methodology of automatic problem solving the theory of automatic control 

including [2], [3]: 1) formalizing knowledge of methods of problem solving of 

synthesis and analysis control systems as multilevel model of a set of formalized 

tasks (MMSFT) TAC [2]; 2) construction of a planning subsystem as the system 

of automatic theorem proving representing the application system of calculus of 

sequent [4], [5] and called as the multilevel axiomatic theory of automatic 

solutions of formalized tasks (MATASFT) TAC [2], [3]; 3) usage of planning 

artificial neural networks (PANN) [2], [3], [6] as a search engine of output in 

formal axiomatic systems; 4) Result of the planning (schedule) of a solution of the 

task is the program on the problem oriented language "Instrument - OP", which 

supporting a paradigm «rules IF-THEN» [2]; 5) construction of the executive 

subsystem as the application package controlled by the interpreter of the language 

"Instrument - OP". 

Multilevel model of a set of formalized tasks of TAC is >=< ОДПМО ,, ,  

were >=<= iiiiii QΨHPП ,,,п|п{ , },,, ПQΨHP iiii ⊆ℑ⊆ℵ⊆℘⊆  – 

set of the formalized generalizations of control system components called as 

subjects and possessing: properties { }{ }falsetruePp ij || ==℘⊆∈ ρρ ; 

characteristics ℵ⊆∈ ij Hh = },|{ NC ∈∈ k

n

kk nkχχ , С, N – sets complex 

and natural numbers accordingly; forms of mathematical models 

},...,{ 1 τµµ=ℑ⊆Ψ∈ ijm ; components ПQq ij ⊆∈ ; 

{ }OД ii ∪ℑ∪ℵ∪℘→ℑ∪ℵ∪℘= :д|д  – set of operations for 

processing attributes of subjects; { }{ }falsetrueooO ii |:| →ℑ∪ℵ∪℘=  

– set of the predicates defined on attributes of subjects. Actions 

Дgrdc iiiii ∈= ,,,д  and relations Odco iii ∈= ,  are uniquely 

identified by the attributes Oci ∪℘∈  – conditions of applicability, 
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ℑ∪ℵ∪℘∈id  – source data, Ori ∪ℑ∪ℵ∪℘∈  – results of an action, 

Ogi ∈  – requirements to results of an action. With a view of a raise of 

effectiveness multilevel representation of knowledge as a three-rank system of 

submodels is used, each of which has three-level representation of knowledge: 
321 ,, MMMM = , 

11

1

1 ,..., mMMM = , 
22

1

2 ,..., nMMM = , 

3

1

3 MM = , 
r

i

r

i

r

i

r

i MMMM ,2,1,0 ,,= , 
r

ik

r

ik

r

ik

r

ik ОДПM ,,,, ,,= , were 

rM  - model of r-th rank; 
r

iM  - i-th submodel of r-th rang; 
r

ikМ ,  - i-th 

submodel of k-th level of r-th rank; 
r

ikП ,  – set of subjects, 
r

ikД ,  – set of 

actions, 
r

ikО ,  – set of relations of submodel 
r

ikМ , . The multilevel model of M is 

created by the scientists on the basis of model МО by means of multistep 

generalizations of knowledge [2], [4]. The planning subsystem is the formal 

logical system representing the application system of calculus of sequents [4], 

[5], called as the multilevel axiomatic theory of automatic solutions of 

formalized tasks (MATASFT) TAC [2]: 
3

1

22

1

11

1 ,,...,,,..., TTTTTT nm= , 

r

i

r

i

r

i

r

i

r

i

r

i TTTTTT ,2,21,1,10,0 ,,,,= , were 
r

iT  – i-th three-level theory of solutions 

r-th rank; 
r

i

r

i

r

i TTT ,2,1,0 ,,  – i-th single-level theories of solutions 0-th, 1-th, 2-th 

levels r-th rank; 
r

i

r

i TT ,21,10 ,  – the translational theories linking 1-th and 0-th, 2-th 

and 1-th levels of r-th rank. Theory Т is automatically generated [4] on the basis 

of multilevel model of M under the following scheme: subjects of models 
r

ik,М  

will be converted to variable theories of solutions 
r

ik,T , actions – in axioms, 

a sheaf between subjects – in axioms of translational theories 
r

i1,-kkT . 

Specificity of data domain TAU has stipulated presence in theories of solutions 
r

ik,T  of the own axioms with source data, a required results, conditions for 

applicability, but also the requirements to results. Therefore production rules of 

theories of solutions
r

ik,T , in addition to rules systems G4 [2], include the special 

production rules, which making (playing) a main role during scheduling of 

solving of task [3]. 

Scheduling of problem solving of synthesis of control system is complicated 

that at a stage of scheduling the values of many parameters of models of 

components of control system are unknown, they will defined only during 

executing of the scheduled program of a solution of the task. Therefore the 

developed schedule should include all alternate paths of a solution, choice of the 

most approaching from which is carried out immediately already at executing of 
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the scheduled program of a solution of the task. Therefore, for example, it is 

obvious, that before realization of any operation having conditions of 

applicability, values of appropriate logical expressions should be checked. On 

the other hand, after realization of operations with requirements to outcome it is 

necessary to check realization of the indicated requirements. Therefore, in the 

schedule of a solution of the task, in addition to the operations forming required 

outcome, should switch on as well the operations computing values of 

appropriate relations. Thus if requirements to required outcome appear 

outstanding then actions for elimination of a discordance should be undertaken. 

A common guideline on this score does not exist, as specificity of problem area 

here should be taken into account. In our case it reduces in include (appearance) 

in theories of solutions of axioms for which in conditions of applicability are 

indicated negation of requirements to outcome. Thus, the operation that was 

defined by such axiom should be applied to support of realization of 

requirements to outcome if it became known, that these requirements are not 

fulfilled. Bypass of "the damnation of dimension" can realize the planning 

artificial neural networks (PANN) [2], [3], [6] which possessing property of 

mass parallelism. Structurally PANN consist of resolving artificial neural 

networks (RANN) and archive artificial neural networks (AANN). The device 

of synchronization (see fig. 2) coordinates their operation. RANN is 

representing a three-layer network. She fulfills an inverse method of search of a 

solution of the task in a formalism of used fragment MATASFT TAC. The 

constructed schedule of a solution of the task is saved in AANN. RANN is a 

dynamic artificial neural network. Values on the output are varying with the 

constant signals on inputs. The initial state of all neurons RANN is not active.  
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Figure 2. Structure of a planning artificial neural web, where: RANN -resolvelly 

artificial neural network (ANN), AANN - an archival artificial neural network 
 

For the tasks having a solution, the separate neurons of an outputs layer of 

RANN short-term are going to an active (excited) state, which then is 

remembered in AANN for the subsequent inclusion in the schedule of a solution 

of the task. Values of outputs of neurons of one of interior layers of neurons of 

RANN is interpreted as values of the searching’s purposes of a solution of the 

current task. Passage of these neurons in a non-active state reduces to 

appearance (generation) of signal, «the purpose is empty». It means that the 

solution of a task was obtained. Otherwise, on expiration of the solution time 

assigned on searching (an amount of pitches), the refusal to search a solution 

will be made. PANN allows solving simultaneously all subtasks of the source 

task, forming a united plan of a solution. On paths of usage of neural networks 
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always, it is necessary to solve two problems: preliminary tutoring of a web and 

interpretation of the obtained outcomes. In PANN both problems are solved by 

virtue of design features. Basic difference of the given approach is automatic 

generation MATASFT TAC, and after her and PANN on the basis of assigned 

MMSFT TAC. Instead of traditional tutoring of the neural network, the 

procedure of automatic creation (result) of the PANN is used based on the 

appropriate fragment MATASFT TAC, which is called as the single-level 

theory of solutions. The main idea of the procedure of creation of the PANN 

consists in shaping a neural network which stratums are compared with units of 

the single-level theory of solutions. Implementation on basis PANN of a 

planning subsystem of an intellectual system of automatic task solving of TAC 

was called as Naturally - Intellectual Solver (NI-solver) of tasks of TAC [2]. 

 

3. Research of intellectual self-organizing systems of automatic 

control 
The offered concept of automatic task solving of TAC based on planning 

artificial neural networks has served as methodological base for creation of a 

system of simulation of intellectual self-organizing systems of automatic 

control. The task of simulation of intelligent self-organizing systems of 

automatic control refer to category rather complicated, because includes not 

only immediate control of the set plant, but also simulation of the intelligent 

behavior used for the purposes of self-organizing. Therefore, usage of universal 

software for simulation of such systems in full appeared unacceptable. 

Such specialized resource is MISACS - a system of Modeling of Intelligent 

Self-organizing Automatic Control Systems [3]. MISACS it is intended for 

research of processes of control by a population probably interconnected and 

cooperating plants, controlled by the intelligent self-organizing systems of 

automatic control (ISSAC) organized in hierarchically connected structure. 

MISACS gives the user the following possibilities in a graphics interactive 

regime: 1) To set an amount of levels of hierarchy of population ISSAC, an 

amount of plants of control and ISSAC in each level; 2) To install connections 

between plants of control and assigned for them ISSAC; 3) To set criteria of a 

self-estimation of behavior ISSAC (engineering, analytical); 4) To define 

MATASFT TAC for everyone ISSAC separately. 

We research possibilities ISSAC for control of non-stationary plant (see fig. 3). 

Let the plant of control is described by the following equations: 

MfuxAAx ++∆+= *)(& , 
nRx∈ , 

nRu∈ , 
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were 40 =t  – the moment of the beginning of a modification of model of plant 

of control; ω  – frequency of a modification of model of plant of control; 

0,10 =f  – magnitude of stepping component exterior perturbation; 25,0=mf  

– amplitude of sine waves of the exterior perturbation; fω  – frequency of sine 

wave of the exterior perturbation; 5=st  – the moment of inclusion of sine wave 

of the exterior perturbation; n]0[  – zero matrix nn× . 

 
Fig. 3. Attributes of the project of simulation 

 

The purpose of control is set as requirements on the statically errors of 

controlled variables: 

[ ]001,, =∈= NRNx χθθ , 
χθθθθ R

ii
∈≤ уст

*

уст

*

устуст ,, , 

5,0*

уст1
=θ  at presence of stepping exterior perturbations 5,00 =f . 

The initial law of control was synthesized counting upon stepping exterior 

perturbation 5,00 =f . Therefore with perturbation 0,10 =f  of the 

requirement to exactitude of regulating at the disconnected self-organizing are 

not fulfilled even for stationary plant (a curve 1 on fig. 4). Inclusion of self-

organizing in an instant 0,10=ct  with periodicity in 1 second and with a 

velocity of self-organizing 0,17 eliminates a problem, ensuring a required 

exactitude of regulating (a curve 2 on fig. 4). The transient for non-stationary 

plant of control at the disconnected self-organizing is mirrored with a curve 3 on 

fig. 4. Inclusion of self-organizing with the same parameters ensures a required 

exactitude of regulating and for non-stationary plant (a curve 4 on fig. 4). 
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Fig. 4. Control of non-stationary plant 

 

3. Conclusions 
Tools of self-organizing ISSAC successfully compensate modifications of plant 

of control and an environment by means of use of new more exact law of 

control with the help of an intellectual system of automatic synthesis of the law 

of the control, based on (having) used neural computing organization based on 

planning artificial neural networks. 
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Abstract. The non-linear behaviour of rub-impact systems have been studied re-
cently by approximating rotor-stator systems as rubbing cylinders. In reality, the
rotor shape is more complex, resulting in richer dynamics over smaller parameter
ranges. In this paper, a bladed turbine is modelled using a Jeffcott rotor with three
rigid beams attached to the mass center. The contact forces are described by a
radial restoring force induced by the massless outer ring, and a tangential Coulomb
frictional force. The results are presented in bifurcation diagrams and compared
with a previous model described by three flexible beams entering in contact with a
fixed ring assuming large displacement beam theory. This paper shows that the two
models described give similarities in the overall bifurcation diagram, only showing
greater differences in localized frequency ranges.

Keywords: Nonlinear, Rotor-dynamics, Jeffcott, Blade, Impact.

1 Introduction

In rotor dynamics, several types of configuration can lead to non-linear dy-
namics. One of them is the rub-impact systems having a high degree of
non-linearity, which may lead to unwanted vibration. Many studies have
been performed on the Jeffcott rotor with rubbing cylinders. For instance,
Karpenko et al.[1] presented the effect of mass imbalance of a nonlinear rotor
system with bearing clearances, as well as the case of a preloaded snubber
ring [2]. Popprath and Ecker[3] studied the effect of stator damping for a sim-
ilar rotor-stator system. In these types of models, complex dynamics always
occur above the natural frequency of the system [4].

On the contrary, fewer studies have been performed in the case of bladed
turbines which can be of interest in different industrial applications. Com-
plex FEM blade models have been studied by Legrand et al., but not over
complete parameter ranges due to the model sophistication. Nonetheless,
a rubbing Jeffcott rotor with three blades has been developed by Aidanpää
and Lindkvist[5], showing that complex dynamics can occur below the natu-
ral frequency, especially at integer fractions of ωn/3. An accurate description
of this model will be made and compared with the simplified model assumed
in this paper. As the model described in [5] is rather complex due to solving
equations for non-linear beam deformations, it is of interest to evaluate if a
simpler model could be used and find its limitation.

597



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

2 Rotor Model

The model of the bladed Jeffcott rotor is given in Figure 1. The mass of
the rotor is m with external damping c and stiffness k for the massless shaft.
The three blades are assumed to be massless and rigid, equally spaced and
of length L. The blades are rotating in a rigid ring of radius R attached
to two springs of value k1. The rotor is rotating with an angular velocity
ω. When the blades enter in contact with the outer ring, the contact forces
are described by a force P normal to the circle delimited by the ring, and
a tangential force µP at the contact point where µ is a friction coefficient
(Coulomb friction). The mass of the ring is neglected, as well as damping
so that the outer ring returns to its initial position instantaneously. The
nonlinear behaviour of the system is caused by the sudden change in stiffness
when a blade gets in contact with the outer ring.

Fig. 1. (a) Side view of the bladed Jeffcott rotor (b) Overview of the Jeffcott rotor.

For the first blade, the position of the tip is expressed by the following
vector

r = (x+ L cos(ωt))i + (y + y0 + L sin(ωt))j (1)

where (i, j) is a fixed base of the system in the x and y direction. For
any blade, the position vector can be written in a same way by replacing the
phase ωt by ωt + 2π(k − 1)/3 for k = {1, 2, 3}. The displacement y0 is the
initial eccentricity in the y direction. The condition for one of the k-th blade
to be in contact is given by ‖rk‖ = R. It is assumed that only one blade
enter in contact with the ring at the same time. The force generated by the
contact can be decomposed in a normal force acting towards the origin of
the coordinates system O and a force tangent to the ring with a direction
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depending on the tangential contact velocity vkc of the corresponding blade.
For the first blade, the normal contact force Fn is given by

Fn = −k1∆r
r

‖r‖
(2)

, while Ft is obtained by a rotation of π/2 of Fn and having a norm
µ‖Fn‖, with the direction depending on the sign of the velocity. As a result,
the equations of motion are

{
mẍ+ cẋ+ kx = (Fk

n + Fk
t ).i

mÿ + cẏ + ky = (Fk
n + Fk

t ).j
(3)

when the k-th blade is in contact with the rotor (‖rk‖ = R). For the no
contact case (∀k ‖rk‖ < R), the right side term of equation (3) is null. By
writing them in a matrix form, using the Heaviside function H(.) and sign
function sgn(.) gives

[
m 0
0 m

] [
ẍ
ÿ

]
+

[
c 0
0 c

] [
ẋ
ẏ

]
+

[
k 0
0 k

] [
ẋ
ẏ

]
= −H(‖rk‖ −R)× k1×

(1− R

‖rk‖
)

[
1 −µ sgn(vkc )

µ sgn(vkc ) 1

] [
x+ L cos(ωt+ 2π(k − 1)/3)

y + y0 + L sin(ωt+ 2π(k − 1)/3)

]
(4)

The equations of motion are now ready to be solved numerically after
normalization.

3 Simulation Method

In this paper, the equations of motion have been solved using a 4-th or-
der Runge-Kutta integration with constant time step. An in-house code
was implemented in C++. For bifurcation diagrams, 100 Poincare sections
were collected after simulating 100 periods for a given normalized frequency
Ω = ω/ωn. In this model, the state space dimension is 5 (R4 × S) with dis-
placements x and y, velocities ẋ and ẏ, and the phase ϕ = ωt. The Poincare
sections are retrieved at a constant phase θp = 2π in the state space. To plot
the bifurcation diagrams, 5000 steps are used for the normalized frequency
range. The final state vector of a simulation at a given frequency is used
as the initial condition for the following one to find stable solutions over the
whole studied range.

Concerning the maximum Lyapunov exponents, 100 periods were simu-
lated at first to be on the attractor. The initial perturbation between the
two trajectories was taken smaller than ε = 1.10−9 because of the strong
non-linearities of the system and to avoid following other attractors for the
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perturbed trajectory, which could lead to erroneous exponents values. A
rescaling has been done for both positive and negative exponents. Threshold
values were chosen to optimize the accuracy of the results and the computer
speed. A number of 10000 periods were simulated to get a good convergence
of the Lyapunov exponent for any frequency.

Fig. 2. (a) Bifurcation diagram - zoom 1 (b) Bifurcation diagram - zoom 2 (c)
Overall bifurcation diagram (d) Maximum Lyapunov exponent

4 Numerical Results

The parameters of the system are R = 0.11, L = 0.1, δ = R − L = 0.01
m = 1, k = 100, k1 = 15000, ωn = 10, µ = 0.1 [SI units]. These parame-
ters are kept constant and will constitute the reference case if values are not
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specified explicitly. Figure 2 (c) shows that higher vibrations start to appear
at Ω = 0.33, with an apparent periodic motion below this frequency. Fig-
ure 2 (c)-(d) correlates the bifurcation diagram together with the Lyapunov
exponents, which allows to identify chaotic motions not visible in region 1
(see Figure 3 for areas numeration). An interesting change in the diagram
also appears at Ω = 0.666 showing the route to chaotic motion by period
doubling bifurcations from 3 to 4 .

Fig. 3. Bifurcation diagram for the axially elastic blade model

Fig. 4. Axial stiffness modelling for different simulations

The model described by [5] differs in some details and complexity. In
opposition to our model, the outer ring is rigid and fixed while the blade is
elastic and can be deformed axially and transversally when contacts occur
by assuming large beam displacement theory. The relation between displace-
ment and stiffness was done by polynomial curve fitting. Though the models
are sensitively different, global bifurcations, periodic and chaotic motions ap-
pear in the same regions on Figure 3, with small differences becoming visible
in localized frequency ranges in regions 2 and 4 .
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Fig. 5. Bifurcation diagram for different k1: (a) 1.5×103 (b) 1.5×104 (c) 1.5×106

(d) exponential function

A model has been performed by changing the constant stiffness with an
exponential fit of the axial stiffness calculated in [5]. The force-displacement
fitting function is given by F (x) = a exp(bx) + c exp(dx), with a = 32.53,
b = 10.36, c = −26.25 and d = −2012. A representation of this function
together with constant stiffness curves is displayed on Figure 4. It shows
that the contact stiffness is extremely high for small displacements. As a
result, bifurcation simulations are also performed for different constant stiff-
ness values k1 = [1.5 × 103; 1.5 × 104; 1.5 × 106]. On Figure 5, bifurcation
diagrams show similar behaviour regardless of the stiffness, excepted for the
lowest stiffness (a) only showing a periodic motion over the whole frequency
range. A simulation performed for a variable stiffness ratio k1/k shows that
chaotic motion appears for a stiffness ratio of 39 (at a frequency Ω = 0.74).
Therefore the general dynamic behaviour of the system is similar for every
k1 ≥ 3900, but it confirms that weaker outer rings do not represent correctly
the dynamics of the system under a certain threshold value. Moreover, the
contact forces shown on Figure 6 vary greatly for each different stiffness k1
by a ratio 1/100 from the smallest to the biggest value, making it difficult to
know the validity of the model to get realistic contact forces as in the elastic
beam model.
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Fig. 6. Maximum force-frequency curves for different stiffness values

Regarding the influence of other parameters, tests have been performed
for damping at Ω = 0.74, showing that increasing damping has a stabi-
lizing effect. Morever, complex dynamics only occur for a minimum value
of the initial eccentricity y0,min = 0.010000019, so that a reasonable value
must be chosen for contacts to happen and get the system’s main dynamic
properties. For instance, a initial eccentricity within the range [0.0100000048-
0.010000019] will only show the first chaotic range 2 , while the chaotic range
4 disappears suddenly. Below this range, no significant dynamics occur at

all (similar to a non-contact case).

Fig. 7. Bifurcation diagram at Ω = 0.74 for: (a) varying stiffness ratio (b) varying
damping
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5 Discussion and Conclusion

Though few studies have been performed concerning blade impacts in ro-
tordynamics, it was shown that complex dynamics occur below the natural
frequency at integer fractions of ωn/3. The present study confirms the sub-
cited results by adopting a simpler model with different assumptions, only
giving small differences in localized frequency ranges. Though the general
dynamic behaviour is similar, the drawback of the new model is that no
insight is given concerning forces amplitude so that validity of the model
cannot be totally identified. Nonetheless, the main advantage is to evaluate
the influence of the design parameters (ξ, µ, y0, δ, k1/k) in a faster way due
to the model simplicity. From a numerical point of view, the Lyapunov expo-
nents calculation showed sensitivity to the initial perturbation and threshold
values, because of different solutions that may coexist for a fixed parameter
set. Hence, jumping from one attractor to another may lead to erroneous
exponents values. As a result, extraction of multiple solutions in bifurca-
tion diagrams would allow to have better confidence in maximum Lyapunov
exponents.
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gruential pseudorandom numbers yn as polynomials on number n and initial value
y0. We also estimate some exponential sums over yn.
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1 Introduction

Let p be a prime number, m > 1 be a positive integer. Consider the
following recursion

yn+1 ≡ ayn + b(mod pm), (a, b ∈ Z), (1)

where yn is a multiplicative inversive mod pm for yn if (yn, p) = 1. The pa-
rameters a, b, y0 we call the multiplier, shift and initial value, respectively.

In the works of Eichenauer, Lehn, Topuzoǧlu, Niederreiter, Flahive, Sh-
parlinski, Grothe, Emmerih ets were proved that the inversive congruential
generator (1) produces the sequence {xn}, xn = yn

pm , n = 0, 1, 2, . . ., which
passes s-dimensional serial tests on equidistribution and statistical indepen-
dence for s = 1, 2, 3, 4 if the defined conditions on relative parameters a, b,
y0 are accomplishable.

It was proved that this generator is extremely useful for Quasi-Monte
Carlo type application (see, [3],[4]). The sequences of PRN’s can be used for
the cryptographic applications. Now the initial value y0 and the constants
a and b are assumed to be secret key, and then we use the output of the
generator (1) as a stream cipher. By the works [1],[2] it follows that we must
be careful in the time of using the generator (1).

In the current paper we give the generalization for the generator (1). We
consider the following recursive relation

yn+1 ≡ ayn + b + cF (n + 1)y0(mod pm) (2)

under conditions

(a, p) = (y0, p) = 1, b ≡ c ≡ 0(mod p), F (u) is a polynomial over Z[u].
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The generator (2) we call the generator with a variable shift b + cF (n +
1)y0. The computational complexity of generator (2) is the same as for
the generator (1), but the reconstruction of parameters a, b, c, y0, n and
polynomial F (n) is a tricky problem even if the several consecutive values
yn, yn+1, . . . , yn+N will be revealed. Thus the generator (2) can be used in the
cryptographical applications. Notice that the conditions (a, p) = (y0, p) = 1,
b ≡ c ≡ 0(mod p) guarantee that the recursion (2) produces the infinite se-
quence {yn}.

Our purpose in this work is to show passing the test on equidistribution
and statistical independence for the sequence {xn}, xn = yn

pm , and hence, the
main point to be shown is the possibility for such sequences to be used in the
problem of real processes modeling and in the cryptography.

Notations: For p being a prime number

Rm := {0, 1, . . . , pm − 1},
R∗m := {a ∈ Rm | (a, p) = 1},
em(u) := e2πi u

pm , u ∈ R,

exp(x) := ex for x ∈ R,

νp(A) = α ∈ N ∪ {0} if pα ‖ A, pα+1 6 |A.

For u ∈ Z, (u, p) = 1 we write u if u · u ≡ 1(mod pm).

2 Auxiliary results

We need the following simple statements.
Let f(x) be a periodic function with a period τ . For any N ∈ N, 1 ≤

N ≤ τ , we denote

SN (f) :=
N∑

x=1

e2πif(x)

Lemma 1. The following estimate

|SN (f)| ≤ max
1≤n≤τ

∣∣∣∣∣
τ∑

x=1

e2πi(f(x)+ nx
τ )
∣∣∣∣∣ log τ (3)

holds.

Let I(A,B; p) be a number of solutions of the congruence A − Bu2 ≡
0(mod p), (u, p) = 1.

Lemma 2. Let p be a prime number and let f(x), g(x) be the polynomials
over Z

f(x) = A1x + A2x
2 + p(A3x

3 + · · · ),
g(x) = B1x + p(B2x

2 + · · · ),
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and, moreover, let νp(A2) = α > 0, νp(Aj) ≥ α, j = 3, 4, . . .. Then we have
the following estimates∣∣∣∣∣ ∑

x∈Rm

em(f(x))

∣∣∣∣∣ ≤
{

2p
m+α

2 if νp(A1) ≥ α,
0 else;

(4)

∣∣∣∣∣∣
∑

x∈R∗
m

em(f(x) + g(x))

∣∣∣∣∣∣ ≤


(I(A1, B1; p) · p)
m
2 if (B1, p) = 1,

2p
m+α

2 if νp(A1) ≥ α,
νp(Bj) ≥ α,
j = 1, 2, . . . ,

0 if νp(A1) < α ≤ νp(Bj),
j = 1, 2, 3, . . . .

(5)

3 Preparations

Consider the sequence {yn} produced by the recursion (2).
Let n = 2k. We put

y2k ≡
a
(k)
0 + a

(k)
1 y0 + · · ·

b
(k)
0 + b

(k)
1 y0 + · · ·

:=
Ak

Bk
(mod pm) (6)

Twice using the recursion (2) we infer

y2(k+1) =
Ak+1

Bk+1
≡

(
aA(k) + abB(k) + b2A(k)

)
aBk + bAk + cAkF (2k + 1)y0

+

+

(
acB(k) + bcA(k)F (2k + 2) + bcA(k)F (2k + 1)

)
y0

aBk + bAk + cAkF (2k + 1)y0
≡

≡ (aAk + abBk + b2Ak)
aBk + bAk + cAkF (2k + 1)y0

+

+
(acBk + bcAkF (2k + 2) + bcAkF (2k + 1)) y0

aBk + bAk + cAkF (2k + 1)y0
+

+
c2AkF (2k + 1)F (2k + 2)y2

0

aBk + bAk + cAkF (2k + 1)y0

(7)

Define the following matrices

S0 =
(

a + b2 ab
b a

)
, S1 =

(
b a
0 0

)
, S2 =

(
1 0
1 0

)
, S3 =

(
1 0
0 0

)
Tk = S0 + cy0F (2k + 2)S1 + bcy0F (2k + 1)S2+

+ c2y2
0F (2k + 1)F (2k + 2)S3

(8)

Now from (6)-(7) we obtain the matrix equality(
Ak+1

Bk+1

)
= TkTk−1 · · ·T1

(
A0

B0

)
,

(
A0

B0

)
=
(

y0

1

)
(9)
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Denote

Yi = cy0F (2i + 2)S1 + cby0F (2i + 1)S2 + c2y2
0F (2i + 1)F (2i + 2)S3

Then we have

T1T2 · · ·Tk = Sk
0 +

k−1∑
`=1

Sk−`
0

k∑
j=0

∑
i1,...,i`

′

Yi1 · · ·Yi`
, (10)

where the sum
∑

i1,...,i`

′
takes over all collections i1, . . . , i` for which 0 ≤ i1,...,i` ≤

k, it 6= is for t 6= s, and it 6= j, t = 1, . . . , `, s = 1, . . . , `.
We will suppose that ν = νp(b) < νp(c) = µ. Therefore Yi ≡ 0(mod pµ),

and hence, all summands of sum
∑

i1,...,i`

′
are equal to zero modulo pm if

` > k0 :=
[

m+1
µ

]
.

First we study Sk
0 in detail.

We have
S0 = aI + bZ,

where

I =
(

1 0
0 1

)
, Z =

(
b a
1 0

)
.

Hence, putting `0 = min
([

k+1
2ν

]
,
[

m+1
2ν

])
we can write

Sk
0 =

k∑
j=0

(
k
j

)
ak−jbjZj =

`0∑
j=0

j is even

+
`0∑

j=0
j is odd

:=
∑

1
+
∑

2
, (11)

where modulo pm

∑
1

=
`0∑

j=0

(
k
2j

)
ak−2jb2jZ2j ,

∑
2

=
`0∑

j=0

(
k

2j + 1

)
ak−2j−1b2j+1Z2j+1.

(12)

Notice that

Z2 =
(

b a
1 0

)2

=
(

a + b2 ab
b a

)
= aI + bZ.

Consequently, raising to square in series the matrix Z we derive for j ≤ `0

Z2j = F0(j)I + F1(j)Z (13)
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where F0(j) = f0,j + b2f2,j + · · ·+ b2j−2f2j−2,j ,
F1 = bf1,j + b3f3,j + · · ·+ b2j−1f2j−1,j ,
f0,j = aj , f1,j = aj−1j.

(14)

Moreover, it is easy to see that

f2,j = aj−1(2j − 3), f3,j = 2aj−1(3j2 − 9j + 8),
f2j−4,j = a2(2j − 3), f2j−2,j = a,
f2j−3,j = a(f2j−3,j−1 + 2j − 3), f2j−1,j = 1,
f2`,j = aj−`(f2`,j−1 + f2`−1,j−1),
f2`+1,j = aj−`(f2`,j−1 + f2`+1,j−1 + f2`−1,j−1),
` = 2, 3, . . . , j − 2.

(15)

So, for k ≥ m the coefficients f`,j does not depend on k.
From (13)-(14) we derive

Z2j+1 = (jajb + f3,ja
j−1b3 + · · ·+ ab2j−1)I+

+ (aj + aj−1b2(f2,j + j) + · · ·+ ab2j−2(2j − 1) + b2j)Z =
= G0(j)I + G1(j)Z.

(16)

Thereby the relations (13)-(16) give

Sk
0 =

`0∑
j=0

ak−2j−1b2j

((
k
2j

)
aF0(j) +

(
k

2j + 1

)
bG0(j)

)
I+

+
`0∑

j=0

ak−2j−1b2j

((
k
2j

)
aF1(j) +

(
k

2j + 1

)
bG1(j)

)
Z.

(17)

Now after the simple calculations we obtain

Sk
0 = H0(k)I + H1(k)Z, (18)

where modulo pm


H0(k) = ak + kak−1b(1 + b2h01) + k2ak−2b2(2 + b2h02)+

+ k3ak−2b3H03(k),
H1(k) = ak−1bk(1 + b2h11) + k3b3H13(k),
H03(k),H13(k) ∈ Z[k], h01, h02, h11 ∈ Z.

(19)

Repeating the argument used in the proof of relations (18),(19) we easy
deduce that

k0∑
`=1

Sk−`
0

k∑
j=0

∑
i1,...,i`

′

Yi1 · · ·Yi`
= H0(k)I + H1(k)Z, (20)
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where {
H0(k) = kcak

[
(f0,0 + H01b) + kb2H02(k)

]
,

H1(k) = kbcakH1,0(k),
(21)

H01(k), H02(k), H10(k) are the integer polynomials with coefficients depend-

ing only on a, (a)2, . . . , (a)m, b0, b
2
0, . . . , b

[m+1
ν ]

0 , c0, c
2
0, . . . , c

[m+1
µ ]

0 , b0 = b
pν ,

c0 = c
pµ .

After all this preliminaries it is straightforward to establish two represen-
tations for yn:

Lemma 3. Let p be a prime number, p ≥ 5, and let m ∈ N, m ≥ 3; a, b, c ∈
Z, GCD(a, p) = 1, b ≡ c ≡ 0(mod p), ν = νp(b), µ = νp(c), ν < µ, also, let
{yk} is the sequence from (2). Then for any y0 ∈ R∗m and k = 0, 1, 2, . . . we
have

y2k = (kb− 2−1k(k2 − 1)a−1b3 + G0(k))+

+ (1 + k(k + 1)a−1c + G1(k))y0+

+ (−ka−1b− (k3c + k2(k + 1)a−1)bc+

+ (2−13k3 − 2k2 + 2−1k)a−2b3 + G2(k))y2
0+

+ (k2a−2b2 − k2a−1c + G3(k))y3
0 + G4(k, y0)y4

0 ;
y2k+1 = ((k + 1)b− k2a−1c + k(k − 1)a−1b3 + H0(k))+

+ ((2k+)c + H1(k))y0 + (a− k2c− 2k2b2 + H−1(k))y−1
0 +

+ (−kab + 2−13k2(k + 1)b3 + 4−1k2(k2 − 1)a−1b3+

+ H−2(k))y−2
0 + y−3

0 H3(k, y−1
0 ),

where

Gi(k) ∈ Z[k], Gi(0) = 0, Gi(k) ≡ 0(mod pmin (2ν+µ,4ν)), i = 0, 1, 2, 3;
Hi(k) ∈ Z[k], Hi(0) = 0, Hi(k) ≡ 0(mod pmin (2ν+µ,4ν)), i = −2,±1, 0;
G4(k, u), H3(k, u), are the polynomials on k, u,

moreover,

G4(0, u) = H3(0, u) = 0, G4(k, u) ≡ H3(k, u)(mod pmin (2ν+µ,4ν)).

Lemma 4. For k = 0, 1, 2, . . . we have

y2k = y0 + k(b(1− a−1y2
0) + 2a−1b3(a + y2

0) + a−1cy0 + C1(y0))+

+ k2(−a−1b2y0 + a−1cy0(1− y2
0) + C2(y0)) + k3C3(k, y0)

y2k+1 = (b + cy0 + ay−1
0 ) + k(b(1− ay−2

0 ) + 2cy0 + D1(y0, y
−1
0 ))+

+ k2(c(a−1 − y−1
0 ) + D2(y0, y

−1
0 )) + k3D3(k, y0, y

−1
0 )

where C1(y0) ≡ C2(y0) ≡ C3(k, y0) ≡ 0(mod pmin (ν+µ,3ν)),
D1(y0, y

−1
0 ) ≡ D2(y0, y

−1
0 ) ≡ D3(k, y0, y

−1
0 ) ≡ 0(mod pmin (ν+µ,3ν))

for every y0, y
−1
0 ∈ R∗m, k ∈ Z.
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Corollary 1. Let τ be a period length of the sequence {yn} generated by
recursion (2), y0 be an initial value, and let νp(b) = ν, νp(c) = µ > ν.

(A) If a 6≡ y0
2(mod p), then τ = 2pm−ν .

(B) If νp(a− y2
0) = δ < min (3ν, µ), then τ = 2pm−ν−δ.

(C) Otherwise: τ ≤ 2pm−ν−min (3ν,µ).

4 Main results

Let the sequence {yn} is produced by recursion (2) and let the least length
of period for {yn} is equal to τ .

For any N , 1 ≤ N ≤ τ , and h ∈ Z we define the sum

SN (h, y0) =
N−1∑
n=0

em(hyn)

Theorem 1. Let {yn} is the sequence generated by the recursion (2) with the
parameters a, b, c and the function F (n), F (0) = 0, and let 0 ≤ νp(a−y2

0) <
ν = νp(b), 2ν < µ = νp(c), νp(h) = s. Then we have

|SN (h, y0)| ≤

{
2p

m+ν+s
2

(
N
τ + log τ

p

)
if ν + s < m

N else.

Theorem 2. In the notations of Theorem 1 we have

SN (h) =
1

ϕ(pm)

∑
y0∈R∗

m

|SN (h, y0)| ≤ 3Np−
m−s−ν

4

The proofs of these theorems are an analogue of the proofs for Theorem
7 and 8[5] and by the representations of yn which have been obtained in
Lemmas 3 and 4, and using Lemmas 1 and 2.

Now applying the Turan-Koksma inequality(see,[3]) for the discrepancy
DN we obtain

Theorem 3. Let p > 2 be a prime number, y0, a, b, c,m ∈ Z, m ≥ 3 and
let a, y0 are co-primes to p and let b ≡ c ≡ 0(mod p), 0 < νp(b) < νp(c),
a 6≡ y2

0(mod p). Then for the sequence {xk}, xk = yk

pm , k = 0, 1, . . ., where yk

determine by (2) we have

DN (x0, x1, . . . , xN−1) ≤
1

pm
+ 2N−1p

m−ν
2

(
1
p

(
2
π

log pm +
7
5

)2

+ 1

)
,

where 1 ≤ N ≤ τ , and τ is the least length of a period for {yk}.

Next, we denote

X(s)
n = (xn, xn+1, . . . , xn+s−1), s = 2, 3, 4.
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Theorem 4. The discrepancy D
(s)
N (X(s)

0 , X
(s)
1 , . . . , X

(s)
N−1) produced by the

recursion (2) with the period τ = 2pm−ν satisfies the inequality

D(s)
τ ≤

√
p

√
p− 1

p−
m
2 +ν

(
1
π

log pm−ν +
3
5

)s

+ 2p−m+ν .

From the Theorems 3 and 4 it follows that the sequence {xn}, x − n =
yn

pm passes the s-serial tests, s = 2, 3, 4 on equidistribution and statistical
independence.

Thus, by the complexity of reconstruction for the parameters a, b, c,
y0, F (u) under recursion (2) the sequence of PRN’s {yn} can be used in
cryptographical applications.
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Abstract: It is a commonplace fact that the mathematical representation of the chaos theory on the whole is very 
difficult to be given. This means that there is not any mathematical equation capable of describing and solving a 
nonlinear and chaotic problem. So, as every case is unique, our work has to contribute to the chaotic topic both 
mathematically and experimentally. Magnetized argon plasma is produced into a metallic cylinder. A coaxial antenna is 
used for the r-f energy importation and the plasma maintenance consequently. This device has a complete cylindrical 
symmetry and the mathematic elaboration in the cylindrical system is carried out. An attempt to show a repeating 
relation for ion velocities of magnitude of every order is presented as our new work. In addition, it is well known that 
the perturbation theory can be used to extend the linear theory of plasma waves into the nonlinear regime and, thus, 
give an explanation of many nonlinear phenomena. This nonlinear perturbation theory of small amplitude plasma 
waves and their interactions is well developed; on the contrary, the perturbation theory of large-amplitude plasma 
waves is still being developed. In the present paper, a generalization of the perturbation theory is attempted with the 

division of the perturbed magnitude and the use of the repeating estimation.  
 

1. Introduction 

In the early 60’s many plasma instabilities have been observed taking wavy forms into the plasma [1,2]. These waves 
absorb the plasma energy, then the plasma temperature is consequently reduced and the removal of the thermonuclear 
fusion conditions is resulted. So, the wavy instabilities are considered to be a serious obstacle to the nuclear fusion 
process and their study has been carried out constantly and in detail during the last decades [3-5]. Many special books 
constitute the Plasma Physics Literacy [6-8],  list and study  all the waves from the low frequency region [1- 5] to the 
high frequency one [9]. In the Plasma Laboratory of the Center “Demokritos” an adequate amount of experience has 
been gained, especially on the low frequency electrostatic waves [10-12] and their effect on the plasma conductivity 
[11]. The chaotic behavior of the plasma waves has been studied as well [13-14]. It is well known that the plasma can 
easily pass from a steady state into a chaotic one, which was repeatedly published in our previous papers [15, 16]. In 
the present work an attempt takes place to compare the experimental data with the computation results, and so, our 
theory may be confirmed.  A mathematic relation, which connects the different order velocities, was found and may be 
used as a repeating relation showing the chaotic behavior of the plasma. The relation is valid under the condition that 
the perturbed qualities are small in comparison with the unperturbed one [6-8]. In the present work a calculative trial 
using the relation as a repeating one may bring it into the function conditions and the perturbed theory can be therefore 
extended. Although the experimental results are in a satisfactory agreement with the calculation, the subject remains 
open as a chaotic state and requires further study. 

The paper is organized as following: The experimental devices are briefly described in Sec.2, since the experimental 
results are presented in the following Sec.3. In Sec. 4 a full mathematical elaboration and the computational results are 
curried out. The confirmation between theory and experiment and conclusions are included in Sec. 5. The appendix in 
the end provides a more detailed mathematical elaboration. 

2.  Experimental Arrangement 

      As our experience on the magnetized argon plasma is concentrated on full cylindrical symmetry, the same 
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 geometry is used at the present study as well, since the low frequencies of plasma waves are persistent [1-3, 10-12]. A 
cylindrical cavity made of steady steel is located with its’ axis along the external magnetic field . The cavity is 

long with  internal diameter and, in the center of the first disk-like base, the  rf power antenna is 
mounted; in the other disk-like base a   external driving wave antenna is mounted as well, which enables us to 
affect and control the plasma waves. Electrostatic Langmuir probes were fixed to move radially, azimouthally and 
axially with the ability to detect the plasma waves that appear and measure their physical quantities (wave frequency, 
wave amplitude, plasma temperature, plasma density, plasma potential e.t.c.). Furthermore, a disk-probe was fixed to 
move radially and around its’ axis, which allows, apart from the above quantities, the measuring of the azimouthal 
electron drift current.  In Fig.1 (a) the plasma column cut is shown, whereas an extensive drawing of the cavity’s 
position into the magnetic field is presented in Fig.1 (b). 

B
cm60 cm6 cm25

cm25

 

Fig.1 (a), the plasma column is shown.  Fig.1 (b), the cavity’s placing into the magnetic field is presented (ground 
plan). 

 

The argon entrance, its outlet to the pump and a suitable window are visible at the Fig.1 (b) as well. 

3.          Experimental  Results 

  The existence of the electrical waves into the argon plasma is confirmed once more. These low frequency waves are   
divided into three frequency regions with a quasi-same behavior in many instances. An extensive study of these waves 
was carried out at the Plasma Laboratory of NCSR ‘’Demokritos’’ previously, and two of them were absolutely 
identified [10, 12]. Figure 2 gives a middle frequency region wave indicatively with its’ spectrum of frequencies where 
the upper harmonics appear. 

The plasma is lit into an wide space of the external plasma  parameters (gas pressure , magnetic field  and rf field 

absorbed  power 

p B
P )  and results  in  a wide region of  plasma quantities as well; these quantities include the plasma 

temperature T , the plasma density , the plasma potential  n Φ , and all the wave parameters.  Table 1 shows some 
typical values of the plasma parameters.  
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      Fig. 2, a typical wave spectrum in the middle frequency region. 

 

                          Table 1 The plasma parameters ranging values 
Parameters Minimum 

value 
Maximum value 

Argon pressure  p Pa001.0  Pa1.0  
Argon number density,  gn 315102 −× m  

317102 −× m  
Magnetic field intensity,  B mT10  mT200  
Microwaves’ power, P  
Frequency of the rf power (standard value)                                 

Watt20  
GHz45.2  

Watt120  

Electron density,  0n 315102 −× m  
315106.4 −× m  

Electron temperature,  eT eV5.1  eV10  
Ion temperature,  iT eV025.0  eV048.0  
Ionization rate  %1.0  %90  
Electron drift velocity,  eu s

m4101×
 s

m4107.1 ×
 

Electron-neutral collision frequency, eν  17102.1 −× s  
19103 −× s  

 
 

The experimental part of the present paper consists of the following steps: 
 

i) By using the radially moving probe, the plasma potential )(rΦ  is measured along the cylinder radius and then, from 

the relation 
rΔ

ΔΦ
−=ε  the plasma electric field ε  is calculated. Figures 3 (a), (b) show the radial potential and 

radial electric field respectively.  
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Figs.3 (a), (b) show the plasma potential and the electric field )(rΦ ε along the cylinder radius respectively. 
 
It must be noted that the electric field ε remains nearly constant in the middle of the radius, where the wave rises and its’ 

amplitude constantly increases [5, 10-12]. The measurement has been done by .   0BB p

 
ii) The perturbed electric field E must be measured, consequently. This measurement may be a result of the 

wave amplitude as it appears along the cylinder radius. Figures 4 (a), (b) show the wave amplitude (in Volts) and the 
perturbed field E  correspondingly. The measurement was repeated for values of the magnetic field , under and 
above the upper cyclotron resonance . 

B
resB

 
 

Figs.4 (a), (b) show the wave amplitude and the perturbed  electric field E along the cylinder radius 
correspondingly (respectively). 

 
 

iii) The measurement of the azimouthal electron drift velocity is the next step. This is obtained by using the 
disk probe as it moves around its’ axis. Figure 5 indicates the method of the measurement of the azimouthal 

eu
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electron current , which requires two simple movements: the orientation of the probe surface 
perpendicularly to the electron drift course, and after, in the opposite direction of the electrons’ motion. 

θI

 
 
 
                                      Fig. 5, the electron drift current measurement 
 

 
 The next relations   and thIII += θ1 thIII +−= θ2  are valid and result in the relation below, 

2
21 II

I
−

=θ  

Taking into consideration that the relation Α= ... ee uneIθ is valid (with Α  the probe surface area), the 
azimouthal electron drift can be found.  Measurements and estimations are listed in Table 2, since the electron drift 
velocity and the perturbed velocity eu υ are presented in Fig. 6, as well. 
 

 
                 Table 2  The azimouthal electron drift current and the drift velocity along a cylinder radius 
Radius r  drift current  eI plasma density  en drift velocity   eu

ε
E  perturbed velocity θυ  

( cm ) ( Aμ ) ( ) 31510 −mx ( s
mx 310 )  ( s

m ) 

3.0  20  0.6  43.4  1.0−  443−  
6.0  26  2.6  57.5  05.0−  278−  
9.0  30  5.6  17.6  067.0−  413−  
2.1  37  0.7  02.7  04.0  281  
5.1  42 8.6  20.8  037.0  303  
8.1  46  2.6  85.9  25.0  2462  
1.2  35  9.5  92.7  1.0  792  
4.2  25 6.5  93.5  1.0  593  
7.2  16  5.5 86.3    

 
 

iv) The perturbed velocity θυ is impossible to be found directly by an experimental measuring, but it can be 

estimated from the relation θθ ε
υ uE

= , as the quantities E,ε and have been measured/determined above. The 

results for the

θu

υ  are given again in Table 2.  
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Fig. 6. The drift velocity and the perturbed velocity eu υ are presented 

 
 
 

4.  Mathematical  Elaboration-Computational Results 

                  Perturbed velocities’ study 
 
       In the Appendix it is proved that the drift and perturbed velocities are related to the electrical fields with the Eq. 
(A. 9),              

                                          rr uE
ε

υ =    and   θθ ε
υ uE

=         (A. 9)  

A. When the perturbed electric field E is very small, then the relations rr upυ and θθυ up   are valid. 

B. If the relation u≈υ is valid, the electric fields must have the same behavior as ε≈E . This means that the wave 
amplitude undergoes some big changes along the cylinder radius. 

With the replacement of the quantityΠ , the Eqs ( A. 7)  are written: 

       
[ ]22

2

)(
.

νωω

ω
υθ

+−+
=

kujB
E

c

c        and         
[ ]
[ ]22 )(

)(
.

νωω

ννω
υ

+−+

+−
==

kuj

kuj
B
E

c

c
r           (1) 

The azimouthal perturbed velocity θυ is of the most interest: by taking  and 

limiting the real part only, the first of Eqs (1) is rewritten as following, 

)(2)( 222 ωνων −+−−=Π kujku

                                              
222

2

)(
.

ωνω
ω

υ
−−+

=
kuB

E

c

c       (2) 

with υυθ =  for simplicity; this may be used as the repeating relation. 

It must be reminded that the Eq.(A. 9)  was produced with the presupposition that the relation uppυ is valid. This 
consists a necessary condition for the linearization of Eq. (A. 1) (perturbation theory).  
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 Now, if we seek a solution for u≈υ , approximately, by separating the perturbed velocity υ into small parts 

iυυυυ ,....,, 321  with  and every part ,....1000,100,10=i υυ ppi , the perturbation theory condition is satisfied. 

 Taking  and 0uu =
101
υυυ p= , the Eq. (2)  is written, 

                                            
2

0
22

2

1
)(

.
ωνω

ω
υ

−−+
=

kuB
E

c

c         (3) 

  With the addition    101 υ+= uu , the above equation gives the term 2υ , 

                                             
2

1
22

2

2
)(

.
ωνω

ω
υ

−−+
=

kuB
E

c

c  

  If it is taken 212 υ+= uu  ,  the Eq. (2) gives the term 3υ , 

  And so on, with 11 ++ += iii uu υ   the repeating relation, 

                                               
222

2

1
)(

.
ωνω

ω
υ

−−+
=+

ic

c
i

kuB
E

      (4) 

 is obtained. 

Repeating equation study 

It is evident that the minimum value of the term  is zero, and then the denominator in the Eq. (4) takes the 

maximum value. Then, we conclude that, at the value

2)( ω−iku

k
ui

ω
= , the 1+iυ has the minimum value, 

22

2

1
νω

ω
υ

+
=+

c

c
i B

E
, 

which is the same as if the quality ννω ≅+−=Π )(kuj , is taken. 

Another significant result is obtained if the relations 101 υ+= uu , 212 υ+= uu , 323 υ+= uu , ….. iii uu υ+= −1 ,        

are  added by parts, when the relation ii uu υυυυ +++++= ...3210  or 

                                                     υ+= 0uu i     (5)   is obtained 

 with iυυυυυ ++++= ....321  the whole-total large perturbed velocity. 

 The relation υ+= 0uu i  must be confirmed experimentally.  

Computational results

 The experiment leads to the following calculations; 

       
mT
mV

B
E

.70
.100 1−

≅      
s
m

B
E 1430≅⇒ ,
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2

31

2192
2

10.1,9
10.7.10.6,1.

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−

−−

e
c m

Beω   ,          2202 10.5,1 −≅⇒ scω        

2192 10 −≅ sν  

When it is taken 00 =−ωku , then  l
R

ku .
0

ωω == l
Ru .

0
ω=⇒ .   

Taking    ,  1410.7.2.2 −== sf ππω 1510..4,1 −=⇒ sπω 1=l  and    then mR 210.2 −=

s
mu 25

0 10.2.10..4,1 −= π                s
mu 4

0 10.88,0≅⇒               

In the above case the perturbed velocity 1υ is minimized at the value,  (see eq. 3) , 

                    s
m

1920

20

1
1010

10.1430
+

=υ                 s
m13001 ≅⇒υ              

On the other hand, the relation  uE
ευ =  gives, 

                                u
cmV

cmV .
.20

.2
1

1
−

−
=υ          s

m880=⇒υ             

 

 Now, with  s
muu )8808800(101 +=+= υ     s

mu 96801 =⇒ , the perturbed 2υ  from the repeating equation 

below can be calculated,  

                                                     
2

1
22

2

2
)(

.
ωνω

ω
υ

−−+
=

kuB
E

c

c  

or                                           
29

10

2
)4,4968,0.5(10.16

10.5,1.1430
−−

=υ   

                or                       78437500196249999837,13402 =υ  

Now it is taken, 212 υ+= uu ,  78437500196249999837,134096802 +=⇒ u  

, and so on. 78437500196249999837,110202 =⇒ u

5. Explanations- Conclusions 

 The existence of the low frequency waves into the argon magnetized plasma was observed in our early 
experiments at the Plasma Laboratory of Demokritos. A satisfactory explanation about it was given as well [ 10,12]. In 
previous publication the possibility for development of the low frequency waves has been presented. Two kinds of 
these waves has been identified already [10, 12]. The cylindrical symmetry of the plasma column gives them an 
azimouthal propagation, whereas the boundaries cause for standing waves formation. By using the perturbation theory 
on the two fluids model, the relation, 
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222

2

)(
.

ωνω
ω

υ
−−+

=
kuB

E

c

c  

is obtained under the conditions uppυ . 

The validity of the above equation is attempted to be proved with the present experiment. So, the value of the perturbed 
velocity υ  was found at first experimentally and then by estimation from the above equation. The direct measurement 
of the perturbed velocity υ  is impossible to be carried out as it is added on the drift velocity u , resulting in the 

inability  to be distinguished from it. For this reason, the relation uE .ευ = was used, which requires the measurement 

of the quantities E , ε  and u . As Figs 3 and 4 show, the electric fields E  and ε are maximized in the middle of the 

radius, where the wave is developed, and the ratio ε
E is very close to the perturbation theory condition. Furthermore, 

from Table 2 the values of the drift electron velocity are taken. Figure 6 gives the measured values of the perturbed 
velocityυ . Afterwards, the calculated values from the repeating equation are taken. Despite the inevitable inclinations 
of the measurements, the two results are satisfactory close, and may have the certainty that the suggested calculation 
method is right. Another significant observation is that, because of the use of the equation as a repeating one, the values 
of the perturbed velocity are slightly affected from the drift velocity enlargement. On the contrary, the drift velocity 
enlargement strengthens the function condition uppυ . 

        Appendix 

        The momentum equation on the two fluids theory based on a non-local slab is written as,                  

[ ] pVmN
c

BxV
qNEqNVV

t
mN ∇−−++=∇+

∂
∂ rv

rv
rrvrv

ααα
α

ααααααα νε
α

)(.).      
                     where the indicator α is given for both kinds of the charged particles, electrons and ions. In the 
following elaboration, the α is omitted for simplicity and the momentum equation for either electrons and ions  
becomes, 

         [ ] pVNm
c
BxVNqENqVV

t
mN ∇−−++=∇+

∂
∂ rv

rv
rrvrv

νε )(.).     (A.1) 

 
        where  ),(),,(0 trEEtrnnN tot

vvvvv
+=+= ε , and  ),(0 truV vvvv

υ+= , 

       and , and),(),,( trEtrn vvv
),( trvvυ , the perturbed qualities with harmonic influence . )( trkje ω−∝

rr

When no perturbation exists, the drift velocity , is obtained; 0u

                                   00
0

000 umn
c

Bxu
qnqn

r
rr

r
νε −+=            (A. 2) 

                        With the separation on the r
r

and θ  axis the drift components are given, 
 

                                 
22

.
νω

ωε
θ

+
=

c

c

m
qu        and         

22
.

νω
νε
+

=
c

r m
qu       (A. 3)    

                     (drift velocities are represented by the 0-order equation). 
i) If  the perturbation is taken into account,  eq.(A. 1) gives, 

α)      υννυε
υ

rr
rrrrrr

rvr
000

0
0000 nun

mc
Bxqn

mc
Bxu

nq
m
q

n
m
Eq

nun
t

n −−+++=∇+
∂
∂

      (A. 4) 
 
                           ( the 1st

  order equation) 
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∂
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rrr
rrr
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rrr
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              γ)        And finally, 
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                            (the 3rd order equation). 
_      From  the equilibrium state (zero order equation), the drift velocity components  are easily obtained, 
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_       From the first order equation, the perturbent velocity components may be given as,  
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A combination of drift and perturbed velocities components gives, 
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              If it is considered that νω pp−ku , then it is taken ν≅Π  and the perturbed  velocity components 
(eq.A. 7) become, 
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                 as the drift velocity components by replacing the dc electric field ε  with  the perturbed one E . 
If νω pp−ku , then  ν≅Π  is taken likewise  and from  Eqs  (A. 8) the below relations (A. 9) are obtained, 

                                                 rr uE
ε

υ =    and   θθ ε
υ uE

=         (A. 9)  
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Abstract. This paper presents the motion of a viscoelastic fluid in the interior of
a closed loop thermosyphon. A viscoelastic fluid described by the Maxwell consti-
tutive equation is considered for the study. This kind of fluids present elastic-like
behaviors and memory effects. Numerical experiments are performed in order to
describe the chaotic behavior of the solution for different ranges of the relevant
parameters by using the inertial manifold for this system proved in [1]. This work
comes to verify the complex nature of the behavior of viscoelastic fluids extending
the result in [2] when we consider a given heat flux instead of Newton’s linear cool-
ing law.

Keywords: Thermosyphon, Viscoelastic fluid, Asymptotic behavior, Numerical
analysis.

1 Introduction

Chaos in fluids subject to temperature gradients has been the subject of
intense work for its applications in the field of engineering or atmospheric
sciences. A thermosyphon is a device composed of a closed loop pipe con-
taining a fluid whose motion is driven by the effect of several actions such
as gravity and natural convection [3–5]. The flow inside the loop is driven
by an energetic balance between thermal energy and mechanical energy. The
interest on this system comes both from engineering and as a toy model of
natural convection (for instance, to understand the origin of chaos in atmo-
spheric systems). The theoretical results of the behavior of viscoelastic fluids
of this model has been proved in [1] but in this work we explore it numerically.

As viscoelasticity is, in general, strongly dependent on the material com-
position and working regime, here we will approach this problem by studying
the most essential feature of viscoelastic fluids: memory effects. To this aim
we restrict ourselves to the study of the so-called Maxwell model [6]. In this
model, both Newton’s law of viscosity and Hooke’s law of elasticity are gener-
alized and complemented through an evolution equation for the stress tensor,
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σ. The stress tensor comes into play in the equation for the conservation of
momentum:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ · σ (1)

For a Maxwellian fluid, the stress tensor takes the form:

µ

E

∂σ

∂t
+ σ = µγ̇ (2)

where µ is the fluid viscosity, E the Young’s modulus and γ̇ the shear strain
rate (or rate at which the fluid deforms). Under stationary flow, the equation
(2) reduces to Newton’s law, and consequently, the equation (1) reduces to
the celebrated Navier-Stokes equation. On the contrary, for short times,
when impulsive behavior from rest can be expected, equation (2) reduces to
Hooke’s law of elasticity.

The derivation of the thermosyphon equations of motion is similar to that
in [3–5]. The simplest way to incorporate equation (2) into equation (1) is by
differentiating equation (1) with respect to time and replacing the resulting
time derivative of σ with equation (2). This way to incorporate the con-
stitutive equation allows to reduce the number of unknowns (we remove σ
from the system of equations) at the cost of increasing the order of the time
derivatives to second order. The resulting second order equation is then av-
eraged along the loop section (as in Ref.[3]). Finally, after adimensionalizing
the variables (to reduce the number of free parameters) we arrive at the main
system of equations


ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
Tf, v(0) = v0,

dv
dt (0) = w0

∂T

∂t
+ v

∂T

∂x
= h(x) + ν ∂

2T
∂x2 , T (0, x) = T0(x)

(3)

where v(t) is the velocity, T (t, x) is the distribution of the temperature of the
viscoelastic fluid in the loop, ν is the temperature diffusion coefficient, G(v) is
the friction law at the inner wall of the loop, the function f is the geometry of
the loop and the distribution of gravitational forces, h(x) is the general heat
flux and ε is the viscoelastic parameter, which is the dimensionless version
of the viscoelastic time, tV = µ/E. Roughly speaking, it gives the time
scale in which the transition from elastic to fluid-like occurs in the fluid. We
consider G and h are given continuous functions, such that G(v) ≥ G0 > 0,
and h(v) ≥ h0 > 0, for G0 and h0 positive constants. Finally, for physical
consistency, it is important to note that all functions considered must be
1-periodic with respect to the spatial variable.
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2 Inertial manifold: Finite dimensional asymptotic
behavior

In this section we summarize the main results related to the finite dimen-
sional asymptotic behavior of the system of equations (3) as proved in [1].
The existence and uniqueness of the solutions of (3) was proved in [1] follow-
ing the techniques used in [2]. The main idea in [2] is that we rewrite our
main equations (3) in terms of the Fourier expansions of each function and
observing the dynamics of each Fourier mode, where h, f ∈ L̇2

per(0, 1) are
given by the following Fourier expansions:

h(x) =
∑
k∈D

bke
2πkix, f(x) =

∑
k∈D

cke
2πkix

with D = D − {0} while T0 ∈ Ḣ1
per(0, 1) is given by

T0(x) =
∑
k∈D

ak0e
2πkix

and T (t, x) ∈ Ḣ1
per(0, 1) is given by

T (t, x) =
∑
k∈D

ak(t)e2πkix

where

L̇2
per(0, 1) = {u ∈ L2

loc(IR), u(x+1) = u(x)a.e.,

∮
u = 0}, Ḣm

per(0, 1) = Hm
loc(IR)∩L̇2

per(0, 1).

(4)
The coefficients ak(t) verify the equation:

ȧk(t) + (2πkvi+ 4νπ2k2)ak(t) = bk, ak(0) = ak0, k ∈ D.

Here, we assume that h ∈ Ḣm
per with

h(x) =
∑
k∈K

bke
2πkix

where bk 6= 0, for every k ∈ K ⊂ D with 0 /∈ K, since
∮
h = 0. We denote by

Vm the closure of the subspace of Ḣm
per generated by {e2πkix, k ∈ K}. If bk = 0

then the kth mode for the temperature is dumped out exponentially and
therefore the space Vm attracts the dynamics for the temperature. Moreover
if K is a finite set, the dimension of M is |K|+ 2, where |K| is the number
of elements in K.

Under the above hypotheses we assume that

f(x) =
∑
k∈J

cke
2πkix
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with ck 6= 0 for every k ∈ J ⊂ D. Then on the inertial manifold we have:∮
(T · f) =

∑
k∈K

ak(t)c̄k =
∑

k∈K∩J

ak(t)c̄k.

Therefore the evolution of velocity v, and acceleration w depends only on
the coefficients of T which belong to the set K ∩ J . From [1], using similar
techniques as in [7,8] we will reduce the asymptotic behavior of the initial
system (3) to the dynamics of the reduced explicit nonlinear system of ODE’s
(5) where we consider the relevant modes of temperature ak, k ∈ K ∩ J.

dw

dt
+

1

ε
w +

1

ε
G(v)v =

1

ε

∑
k∈K∩J

ak(t)c̄k w(0) = w0

dv
dt = w, v(0) = v0

ȧk(t) + (2πkvi+ 4νπ2k2)ak(t) = bk, ak(0) = ak0, k ∈ K ∩ J.
(5)

Note that the set K∩J can be much smaller than the set K and therefore the
reduced subsystem may possess far fewer degrees of freedom than the system
on the inertial manifold. Also note that it may be the case that K and J
are infinite sets, but their intersection is finite. For instance, for a circular
circuit we have f(x) ∼ a sin(x) + b cos(x), i.e., J = {±1} and then K ∩ J is
either {±1} or the empty set.

3 Numerical experiments

3.1 Preliminary mathematical approximation

In this section, we integrate the system of ODEs (5), where we consider only
the coefficients of temperature ak(t) with k ∈ K ∩J (relevant modes). Thus,

dw
dt + w

ε + G(v)v(t)
ε = 2

εReal
(∑

k∈K∩J ak(t)c̄k
)
w(0) = w0

dv
dt = w, v(0) = v0

ȧk(t) + ak(t)(2πkiv + ν4π2k2) = bk, ak(0) = ak0.
We impose that all the physical observable as real functions, then a−k =

āk, b−k = b̄k and c−k = c̄k. In particular, we consider a thermosyphon with
a circular geometry, so J = {±1} and K ∩ J = {±1}. Consequently, we can
take k = 1 and omit the equation for k = −1 (is conjugated of the equation
for k = 1). Also in order to reduce the number of free parameters we make
the following change of variables a1c−1 → a1.

dw
dt = 2a1

ε −
w
ε −

G(v)v(t)
ε , w(0) = w0

dv
dt = w, v(0) = v0

ȧ1(t) + a1(t)(2πiv + ν4π2) = b1, a1(0) = a10.

We denote the real and imaginary parts of the a1(t) (the Fourier mode of
the temperature) in the following way:

a1(t) = a1(t) + ia2(t), (6)
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b1 = A+ iB (7)

with A ∈ IR,B ∈ IR. Thus we obtain the corresponding nonlinear system of
equations where we need to make explicit choice of the constitutive laws for
both the fluid-mechanical and thermal properties for this model:

dw
dt = 2a1

ε −
w
ε −

G(v)v(t)
ε , w(0) = 0

v̇ = w, v(0) = 0

ȧ1 = A− ν4π2a1 + v2πa2, a1(0) = 1

ȧ2 = B − ν4π2a2 − v2πa1 a2(0) = 1.

(8)

Hereafter, we present the numerical experiments of equations (5) that
are carried out for the resolution of the nonlinear system of ODEs using the
fourth-order explicit Runge-Kutta method. The summary of our results is
presented in the figures of section 3.2. In particular, we present the plots
for velocity, acceleration and (the fourier transform of the) temperature of
this system. All the variables and equations that we deal with are adimen-
sional. As the system is multidimensional, we present the results in temporal
graphs (variables vs time) and phase-space graphs (two physical variables
plot against each other).

In all cases, we take the same mathematical form for the friction law,
G(v) = (|v|+ 10−4), as used in the previous works (see, for instance, [2,7,8]),
for a similar model of thermosyphon with a non-viscoelastic fluid with one
component. The rationale behind this equation is that it interpolates between
a constant (low Reynolds number laminar flow) and a linear (highly turbulent
flow) function of the velocity. Likewise, A and B, which refer to the position-
dependant (x) heat flux inside the loop will be used as tuning parameters. We
will assume A = 0 in order to simplify, as different values of A only changes
the phase the periodic function h(x). We will also fix B = 50 the heat flux
parameter, ν = 0.002 the diffusion coefficient and observe the evolution of
the variables. The initial conditions are fixed to w(0) = 0, v(0) = 0, a1(0) =
1, a2(0) = 1. Finally, we have also studied the behavior of the system of
equations by keeping ε as a tuning parameter ranging from 1 to 10, to observe
the response of the system under the effects of viscoelasticity.

3.2 The chaotic behavior of the model

The impact of ε on the system has been keenly observed for various param-
eters. In general (see below), as the viscoelastic component ε increases, the
chaotic behavior of the system also increases. In Fig. 1 we show the time
evolution of the acceleration, w(t), for the viscoelastic parameter ε = 1. The
acceleration w(t) ranges from -15 to 15. The plot is chaotic but, although
this is more apparent in the acceleration plot than in the velocity one. This is
reasonable as the velocity is the time integral of the acceleration, namely, the
velocity curve looks smoother than that of acceleration (therefore the chaotic
behavior is not so apparent).
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Fig. 1. The time evolution of the acceleration, w(t), with ε = 1, A = 0, B = 50,
ν = 0.002 and G(v) = (|v| + 10−4)

-30 -20 -10 10 20 30 40
RTemp

-30

-20

-10

10

20

30

CTemp
TEMPERATURE

Fig. 2. Phase-plane of the real and imaginary parts of Fourier transform of the
temperature for ε = 1, A = 0, B = 50, ν = 0.002 and G(v) = (|v| + 10−4).

In Fig. 2 we show the phase-diagram for the real a1(t) and imaginary
a2(t) parts of the Fourier transform of the temperature. As expected, the
trajectory in this phase-plane moves inwards and outwards. This plot illus-
trates the underlying complex dynamics of the attractor as a two dimensional
projection.
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Fig. 3. The time evolution of the acceleration, w(t), with ε = 3, A = 0, B = 50,
ν = 0.002 and G(v) = (|v| + 10−4)

In the second set of numerical experiments we increase the value of vis-
coelastic component to ε = 3. As the value of viscoelastic component ε is
relatively higher than the previous experiment i.e., (ε = 3) the system tends
to be more chaotic than the previous experiment. The acceleration w(t)
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ranges from -10 to 10. The deviation in the progress of acceleration is main-
tained till the end of the progress. Apparently, the behavior is also chaotic
but this chaos seems to be embedded in larger timescale oscillations. Inter-
estingly, the number of oscillations is reduced from 15 to 9, Fig. 3 showing
less number of peaks than the first case. This is a reflection of the memory
effects associated to the viscoelastic of the fluid. Thus, as ε plays the role of
a time scale, the larger this value the longer are the memory effects (in our
case exposed through the period of the underlying oscillations).

10 20 30 40 50
time

-4

-2

2

4

Acceleration
ACCELERATION

Fig. 4. The time evolution of the acceleration, w(t), with ε = 10, A = 0, B = 50,
ν = 0.002 and G(v) = (|v| + 10−4)
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Fig. 5. Phase-plane of the real and imaginary parts of Fourier transform of the
temperature for ε = 10, A = 0, B = 50, ν = 0.002 and G(v) = (|v| + 10−4).

For ε = 10 (Fig. 4), the system still exhibits a chaotic progression, with
the acceleration ranging from -4 to 4 and with even an underlying longer-
period oscillations compared to the previous experiments.

Finally, in Fig. 5 we show the phase-diagram for a1(t) and a2(t). Again,
as expected, the trajectory in this phase-plane moves inwards and outwards.
This plot illustrates the underlying complex dynamics of the attractor of a
two dimensional projection.

In summary, larger values of the viscoelastic parameters ε, results in sus-
tained chaotic behaviors overlapped with an (almost) periodic behavior whose
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period scales with the numerical value of ε. The dynamics becomes more
complex and is characterized in all cases by periods of chaos and of violent
oscillations, giving an idea of the complexity of the solutions of the system
under these variables due to memory effects.

4 Conclusion

The physical and mathematical implications of the resulting system of ODEs
which describe the dynamics at the inertial manifold is analyzed numerically.
The role of the parameter ε which contains the viscoelastic information of the
fluid was treated with special attention. We studied the asymptotic behavior
of the system for different values of ε the coefficient of viscoelasticity. We
can conclude that for larger values of ε the system behaves more chaotic.
Physically, this induction of chaotic behaviors is related to the memory effects
inherent to viscoelastic fluids. Thus, in the same way as delayed equations
are known to produce chaos, even in the simplest situations, viscoelasticity
produces the same kind of transition.
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The term “peripheral heart,” proposed by the Russian 

scientist M.V. Yanovskii, has gained the widest popularity in the 

early 20
th

 century. Its meaning is the following: contracting, the 

left ventricle forces blood into the largest vessel – aorta. Using 

peristaltic pulsations, aorta pumps blood further to all organs and 

tissues, thus helping to the heart and playing the active role in the 

circulation.  

The peripheral bloodstream looks like a branching network 

of pliable tubules. In adults at rest, the heart pumps blood into this 

network in the amount of 4–5 L/min at a pressure of about 100 mm 

Hg. During every systole, the heart ejects about 70 ml of blood 

into the aorta and ostia of major arteries, which serve as a reservoir 

for the following parts of the arterial system. During diastole, the 

elastic walls of this reservoir relax and this provides for the inflow 

of blood at the corresponding pressure to peripheral parts of the 

arterial bloodstream. However, not only large elastic, but also 

small muscular arteries are subject to stretching upon the passage 

of the pulse wave. This is illustrated, for example, by the results of 

investigation of the eye hemodynamics with the aid of 

ophtalmodynamography, determination of the eye-orbital pulsation 

on the basis of the nuclear gamma-resonance effect, 

plethysmography, and rheorgaphy. The healthy pulse volume of 

the eye ranges within 23–27 mm
3
. If we compare the eye pulse 
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volume with the systolic volume of the heart relative to the tissue 

mass (eye weight of about 5 g, body weight of 70 kg, systolic 

discharge of 70 см
3 

– 100 %), then the eye pulse volume makes up 

as high as 245%! Certainly, the eye should not be compared with 

other tissues, in which the blood flow intensity is much lower, but 

it can be concluded that the nearly whole pulse wave goes into the 

peripheral muscular vessels. 

The viscoelastic properties of the walls of muscular arteries differ 

widely from those of arteries of the elastic type. The point is that 

the small muscular arteries (500–140 µm in diameter) and 

arterioles (140–10 µm) are analogous in their structure to 

stretchable elastic tubules, and therefore the processes, proceeding 

in them, can be described, with some assumption, by the Laplace’s 

law: 

 

F = P·R, 

 

where F is the stretching force, Р is the transmural pressure, 

and R is the tubule radius. It follows from this law that the 

pressure needed to stretch the tubule against the hoopential stress 

is inversely proportional to the tubule radius.  

The elastic properties of the vessel walls are determined by 

the elastin and collagen fibers and depend on the activity of 

smooth muscular cells. Elastin is a rubber-like material, whose 

modulus of elasticity is roughly equal to 3·10
5
 N·m

-2
. Collagen is 

much more rigid than elastin, and its modulus of elasticity is 

roughly equal to 10
8
 M·m

-2
. At small deformations, the most part 

of collagen fibers is relaxed and not stretched along a straight line, 

while the stress is created by the elastin fibers. As the radius 

increases, the collagen fibers become straight and take the growing 

part in the creation of the stress. Since they are much more rigid 

than the elastin fibers, the wall becomes more rigid as well.  

The arteries of the muscular type, pulsations of the blood 

pressure serve as the correcting force acting from the inside, while 

the myogenic autoregulation serves as the correcting force from 

the outside. The modulus of elasticity of smooth muscles is nearly 

identical to that of elastin. Its experimentally determined values 

depend on the level of physicological activity and can vary from 
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1·10
5
 N·m

-2
 to 2·10

6
 N·m

-2
 in the active state. In small arteries and 

arterioles, the percentage of smooth muscles in the walls achieves 

60%, and this allows them to adjust easily to various oscillations 

of the transmural pressure. 

It was W. M. Bayllis, who put forward the hypothesis of 

myogenic autoregulation for the first time in 1902. There are many 

proofs that the tone of the smooth vascular muscles varies as the 

intravascular pressure changes. First, very short-time arterial 

occlusion (shorter than 2 s) leads to significant vasodilatation. 

Second, the pressure drop on the outer side of an organ leads to 

pronounced vasocontraction. Third, the increase of the venous 

pressure causes the increase of the precapillary resistance in some 

organs (closing of precapillary sphincters and metarterioles). 

Fourth, the increase of the static intravascular pressure in arterioles 

in the absence of blood flow leads to the marked contraction of 

arterioles. Vessels remain narrow as long as the pressure increases. 

The return of the pressure to the initial level causes dilatation of 

arterioles. 

There exist two hypotheses, explaining the mechanisms of 

myogenic autoregulation. B. Folkov supposed that the passive 

stretching leads to the increase in the spontaneous frequency of 

discharges of smooth muscles. As the intravascular pressure rises, 

the smooth muscular cell stretches, and this hastens the beginning 

of the next contraction. If the cell is constricted or contracted, its 

length no longer exceeds the normal length, there is no stimulus 

for contraction, and the muscular cell relaxes. However, as soon as 

the cell relaxes, the increased pressure again forces the cell 

stretching to the length exceeding the initial length, due to which 

the second contraction occurs earlier than in norm. Since the 

frequency of discharges in the smooth muscular cell increases, it is 

in the state of contraction for longer time. This contraction 

becomes from the precapillary arterioles and then spread to the 

larger arterial vessels of the muscular type. 

The second hypothesis assumes that the smooth muscular 

cells have stress receptors, rather than length receptors, as is 

assumed in the above hypothesis. According to the Laplace 

equation, the hoopential stress of a vessel depends on both the 

intravascular pressure and the vessel radius. The growth of the 
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pressure causes the increase of the wall stress, which leads to the 

contraction of the smooth muscles of the vessel. As the contraction 

develops and the radius decreases, the wall releases from the 

stress. This supposed mechanism includes the negative feedback, 

which restricts the contraction, arising upon the increase of the 

transmural pressure.  

On the basis of the literature data presented and the results 

of our investigations, we have put forward the following 

hypothesis: for every pulse wave in arteries of the muscular type, 

the myogenic contraction of smooth muscular cells arises in 

response to the stretching, and this contraction forces the vessel to 

return to the initial state. As soon as the vessel radius decreases to 

the equilibrium state, that is, the contracting force becomes 

balanced with the transmural pressure (taking into account the 

Laplace law), the smooth muscular fibers relax and the vessel is 

ready to perception of a new pulse wave. 

The refractory period of muscular cells amounts to about 

0.1 s. As a result, the muscular cells favors the propagation of the 

pulse wave to the periphery in large arteries and cumulate this 

wave in small arteries.  

Thus, the systolic wave is almost completely absorbed in 

the free-stretching peripheral arteries, and the following active 

contraction of muscular cells creates the diastolic blood pressure. 

Myogenic autoregulation in arterioles 

As muscular arteries branch and become smaller, 

transforming into arterioles, their walls become thinner and the 

lumen becomes narrower. The ratio of the wall thickness to the 

lumen diameter, however, keeps nearly constant. This ratio, along 

with the approximately estimated number of layers of smooth-

muscular cells in the middle tunic is a criterion widely used for 

identification of arterioles. In small arterioles, the inner and outer 

elastic membranes become very thin and even absent in smallest 

arterioles (smaller than 35 µm in diameter). The outer tunic of 

small arterioles is very thin and consisting mostly of collagen 

fibers. The smooth-muscle cells of the middle tunic of small 

arterioles have, correspondingly, the smaller size.  
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One can see from Fig. 1 that the diameter of arterioles can 

vary significantly. Since the state of arterioles is described by the 

Laplace law, only the myogenic effect can play the leading role 

here.  

The myogenic autoregulation of arterioles performs their 

basic function – preservation of the capillary pressure at a constant 

level. The factors, determining the capillary pressure, can be 

expressed as follows: 

Pc = Pv + P · Rv , 

where Pc is the capillary pressure, Pv is the venous pressure, P is 

the blood flow, Rv is the venous resistance. 

The diameter of arterioles, as well as muscular arteries, is 

highly dynamic and depending on the intravascular pressure. The 

higher is the pressure in arterioles, the narrower are they (up to the 

complete blockage of the blood flow). To the contrary, the 

decrease of the pressure leads to the widening of arterioles until 

the smooth-muscular cells relax completely and only the 

viscoelastic forces of elastic fibers resist to the transmural 

pressure. This state corresponds to the critical positive value of the 

arterial pressure, below which the contracting force of the elastic 

fibers exceeds the stretching pressure and the vessel collapses. As 

this takes place, some lumen still exists in large arterioles, while 

smaller ones are fully blocked and the blood flow in them ceases.  

As was already mentioned, the maximal diameter is 

determined by the collagen skeleton, whose modulus of elasticity 

is many times higher than that of elastin and muscular fibers. As to 

the minimal diameter, it depends on the thickness of the inner and 

outer elastic membranes of the vascular wall, and if these 

membranes are absent, then the vessel can be fully blocked. 

One can see from Fig. 1 that the minimal diameter of 

arterioles, capillaries, and venules is nearly equal to zero. In the 

literature, this state is often described as “emptiness” of a vessel.  

We believe that this term is not adequate to the reality. Emptiness 

means some capacity free of its content, for example, an empty 

bottle. However, blood vessels in norm cannot be empty (except 

for the case of gas embolism). If they become invisible, this means 

that their lumen has approached a diameter, insufficient for an 

erythrocyte to pass through, that is, nearly zero. In capillary and 
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venules, the diameter becomes equal to zero, as the transmural 

blood pressure drops down below the critical positive pressure. 

Such a “collapse” is possible either when the studied vessel is 

pinched from the outside or when the inflow arteriole is blocked. 

The collapse usually starts from the arterial end of a capillary, 

because it is the narrowest part of the vascular bed and the 

stretching force hear is lower (according to the Laplace law), and 

spreads toward venous vessels. 

 

 
 

Fig.  1 Schematic of vessels of the eye conjunctiva (according to 

the results of vasotonometry): (A) maximal vessel diameter; (B) 

minimal vessel diameter; (I) muscular arteries; (II) arterioles; (III) 

capillaries; (IV) venules; (V) small veins. 

 

In an arteriole, in contrast to capillary and venules, the 

blood flow can be blocked due to both the collapse (for example, 

at obstruction of the central retinal artery) and the active myogenic 

narrowing, which, to the contrary, arises at the increased 

transmural pressure. 

In the biomicrospcopic investigations of the 

microcirculatory bed of the bulbar conjunctiva, the blood flow in 
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the form of isolated blood portions can be often observed. Some 

authors explain this character of the blood flow as a result of the 

inertial propagation of the pulse wave. However, this treatment, in 

our opinion, has little force. In microvessels, the character of the 

blood flow is mostly determined by the viscous forces, rather than 

inertial ones, because the Reynolds numbers here are very low: 

typically, about 0.5 for arteries 100 µm in diameter and lower than 

0.05 for capillaries 10 µm in diameter. The pressure and blood 

flow in these vessels may remain pulsating, but at any point and at 

any time the character of the flow is determined only by the 

balance between the pressure and the viscous forces. The inertial 

forces, that is, forces associated with local and convective 

accelerations, are negligibly weak in this case. Consequently, the 

blood flow by portions can be caused only by the wavy contraction 

of the muscular wall of arterioles, which can also be considered as 

an element of the “peripheral heart.” 
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Abstract. We consider a system of interacting elements that mimic certain proper-
ties of human perception, namely, the bounded capacity of ordering events, actions,
etc. according to their preference. Previously this feature was described by the no-
tion of dynamical traps, which is modified in the present work in order to take into
account the imperfectness of human perception of their own actions. Numerically
we demonstrate that the considered system under the presence of dynamical traps
of a new type exhibits complex dynamics, including highly irregular motion.
Keywords: Complex dynamics, multiparticle systems, dynamical traps.

1 Introduction

The employment of various physical models in social sciences could be ob-
served during last decades. Among the models that are used widely in study-
ing cooperative phenomena in social systems are multi-particle dynamical
models (see, e.g., Helbing and Mólnar[1], Ohnishi[2]). Advances in this field,
though, face the fact that human beings indeed differ in their basic properties
from the objects of the inanimate world described by Newtonian mechanics.
This fact may lead one to the problem of development of new physical notions
that should be introduced in addition to the well-studied ones of the modern
physics in order to reflect the essential aspects of human behavior in social
systems.

Mathematical notion of equilibrium points is one of the cornerstones of
the modern physics; it is also widely used in social psychology (see, e.g.,
Vallacher[3]). However, human as a key acting element of the dynamical
systems is often not capable to clearly recognize the desired equilibrium po-
sition among a certain set of its neighboring points in the corresponding phase
space. This feature of human cognition is referred to as bounded or fuzzy
rationality (Dompere[4]). The application of the dynamical traps notion as a
mathematical formalism for describing human fuzzy rationality was investi-
gated by Lubashevsky[5]. To briefly review this concept, let us appeal to the
car following theory and consider hypothetical dynamical system controlled
by an operator whose purpose is to maintain the system near the equilib-
rium point set to the origin. The system of equations describing the system
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dynamics under the control of the operator take the following form

ẋ = v,

v̇ = Ω(x, v)F (x, v, aopt(x, v)).
(1)

Here x and v are the system coordinate and velocity, respectively; aopt is
optimal in some sense control strategy chosen by the operator. The cofactor
Ω(x, v) equals unity for all values of (x, v) that are far enough from the
equilibrium point and Ω(x, v) � 1 in a certain neighborhood Qtr of the
equilibrium point. In order to explain the meaning of the cofactor Ω(x, v) we
consider the behavior of the operator who is approaching desired phase space
position (x = 0, v = 0). Let us assume that if the current position is far from
the origin, the operator perfectly follows the optimal control strategy. If the
current position is recognized by the operator as “good enough” ((x, y) ∈ Qtr)
(though it may be not strictly optimal) due to her fuzzy rationality, she halts
active control over the system so that the system dynamics is stagnated
in a certain vicinity of the desired position (in case of stable equilibrium).
Therefore, Qtr is called the area of dynamical traps.

Previous studies on the dynamical trap effect in chains of particles gov-
erned by equations of form (1) have shown that it may cause complex coop-
erative phenomena to arise in the systems under the presence of white noise
(Lubashevsky et al.[6]), as well as in the systems without the influence of
stochastic factors (Lubashevsky[5]). However, it should be taken into ac-
count that in the real world the operator cannot usually affect the system
velocity directly as prescribed by equations (1), e.g., in the car following the
operator is not able to directly affect the speed of the car and in fact controls
only the acceleration (Lubashevsky[7]).

It should also be noted that the operator perception of her own actions is
not perfect, and could also be described in terms of fuzzy rationality. Namely,
the value of the actual control effort could be treated as an acceptable by
the operator if its deviation from the optimal strategy is of low magnitude.
Therefore, in order to take into account the issues discussed above, in present
work we introduce the dynamical trap model of a new type. While previously
the dynamical trap region was referred to as two-dimensional region in the
“coordinate-velocity” phase space, we propose the concept of the dynamical
trap in the “space” of behavior strategies as a certain neighborhood of the
optimal one.

The purpose of the current paper is to demonstrate that bounded ratio-
nality of human cognition in perceiving their own actions could be responsible
for intrinsic cooperative phenomena in the systems of interacting elements
under the control of human operators.
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Fig. 1. The chain of N motivated particles moving along parallel axes. Terminal
particles i = 0 and i = N + 1 are fixed at x = 0. Dotted arrows indicate the
interaction between neighboring particles.

2 Model

Let us consider the chain of N motivated particles (Fig. 1) moving along
parallel vertical axes; the motion of each particle is characterized by its co-
ordinate xi, velocity vi and acceleration ai. Each particle tends to minimize
the absolute values of its relative coordinate and velocity with rescept to its
neighbors, namely, ηi = xi − 1

2 (xi−1 + xi+1) and ϑi = vi − 1
2 (vi−1 + vi+1).

Two terminal particles are assumed to be fixed: x0(t) ≡ xN+1(t) ≡ 0. The
dynamics of such system could be described by the following equations

ẋi = vi,

v̇i = ai,

ȧi = Ωa(ai, aopt
(
ηi, ϑi, vi)

)(
aopt(ηi, ϑi, vi)− ai

)
,

(2)

for i = 1, N . Here

aopt(η, ϑ, v) = −Ωϑ(ϑ)(η + σϑ+ σ0v) (3)

is the optimal strategy of the operator behavior which is considered to depend
mainly on the current values of the relative position η and velocity ϑ. σ could
be treated as a relative weight of the velocity variations as a stimulus causing
operator actions (with respect to the first stimulus ηi); σ0vi stands for the
friction force which characterizes the physical properties of the environment
where the system is placed (σ0 � 1). The dynamical trap effect in system
(2), (3) is modelled by cofactors Ωϑ and Ωa defined as follows

Ωϑ(ϑ) =
∆ϑ + ϑ2

1 + ϑ2
,

Ωa(a, aopt) =
∆a + (aopt − a)2

1 + (aopt − a)2
,

(4)

where parameters 0 ≤ ∆ϑ,∆a ≤ 1 determine the intensity of dynamical traps:
the less these parameters, the stronger the effect of corresponding dynamical
traps.
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It should be pointed out that we assume the former dynamical trap co-
factor Ωϑ not to depend on particle coordinate; it could be explained in such
a manner that the control over system relative velocity ϑ is of prior impor-
tance for the operator comparing to the control over position η. Thus, if the
relative velocity becomes sufficiently small, the operator prefers to retard the
correction of the coordinate in order not to make the velocity variations take
undesirably large values (Lubashevsky[5]).

The cofactor Ωa in (2) stands for the dynamical trap effect of a new type
which was not studied previously. Assuming Ωa = 1, one could easily see
that the last equation in (2) in fact implies the equality ai = aopt(). However,
we consider that the operator, first, is hardly able to precisely implement the
strategy aopt defined by (3), and, second, cannot distinguish between the
strategies that are close in some sense to the optimal one. Therefore, one
may think of a certain neighborhood of the optimal strategy in the space of
all possible strategies, such that each strategy from this region is treated as
the optimal one by the operator. So in case the operator feels that current
control regime is optimal, she just keeps maintaining the current value of the
control effort constant so that ȧ ≈ 0. When the operator realizes that the
current strategy is far from the optimal one, she starts adjusting it to the
desired value which means that ȧ ∼ (aopt − a).

These speculations led us to the system (2)–(4) as a model that may reflect
some of mentioned properties of human bounded rationality. The rest of the
paper is devoted to the analysis of anomalous cooperative phenomena that
could be observed in such system for various values of system parameters.

3 Numerical simulation

In the current work we present the results of the preliminary analysis of sys-
tem (2)–(4). The scope of the future work should comprise certain extensions
of the proposed model; to be specific, the characteristic time scale of the sys-
tem dynamics should be taken into account, as well as the thresholds of the
velocity and acceleration perception. Here we consider all these parameters
to take values equal to unity.

We analyze numerically the collective behavior of the particle chain by
solving equations (2)–(4) using the standard (4, 5)-Runge-Kutta algorithm.
Due to the fact that the behavior of the studied system significantly varies
depending on the number of interacting particles, the below analysis is di-
vided into three parts according to the cases 1)N = 1, 2; 2)N = 3; 3)N ≥ 4.
We should specify that all of the following results were obtained for small val-
ues of parameters ∆ϑ and ∆a, namely 0.001, which correspond to the strong
effect of dynamical trap. Below all phase space portraits depict projections
of 3-dimensional phase trajectories on the “coordinate-velocity” plane gener-
ated by the system motion during the time interval of T = 104 given small
randomly assigned initial disturbances. In case of multi-particle chains the
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middle particles trajectories are represented; particle motion structure is sim-
ilar for all particles in the given ensemble, however, particles in the center of
the chain have slightly larger fluctuations amplitude.

The numerical simulation of the single particle oscillating between its two
fixed neighbors (N = 1) figures out that the combination of two dynamical
traps causes the limit cycle to arise in the system phase space, while without
the dynamical trap effect the system has single stable fixed point (x = 0, v =
0, a = 0). Also it is notable that the previous studies discovered the stable
behavior of the single oscillator under the presence of the single dynamical
trap characterizing the fuzzy rationality in perceiving the velocity variations
(Lubashevsky[5]).

First let us consider the case of the single particle oscillating between
two fixed neighbors. The phase portrait and phase variables distributions of
the system motion are depicted on Fig.2a-c. The chain of two interacting
particles exhibits the similar behavior patterns (see Fig.2d-i), except for the
phase trajectories assymetry caused by the introduction of the second oscil-
lator. In both cases the structure of the limit cycles is stable with respect to
variations of the system parameters. Namely, the found pattern remains for
the following values of system parameters: σ = 1, 3; σ0 = 0, 0.01, 0.1.

a b c

d e f

Fig. 2. The phase trajectory projections of system (2)–(4) for N = 1 (a) and N = 2
(d) on the “coordinate-velocity” plane. The right four frames show corresponding
phase variables distributions. On figures (d)–(f) thin and thick lines are introduced
in order for one to distinguish between two moving particles. Parameters used for
simulation are σ = 1, σ0 = 0.01.
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a b

d e

g h

Fig. 3. The phase trajectory projections of the middle particle from the ensemble
(2)–(4) and corresponding phase variables distributions for N = 3. Frames a-c
illustrate the case σ = 1, σ0 = 0, frames d-f depict the case σ = 1, σ0 = 0.01,
frames g-i are for the values of parameters σ = 3, σ0 = 0

From Fig.2 it could be seen that the dynamical trap effect causes the
instability of the single particle motion; the limit cycle emerges. The similar
phenomena could be observed in almost the same form for each particle in
the pair of coupled oscillators. The situation dramatically changes when
the ensemble of three particle is taken into consideration. Adding just one
more oscillator to the system causes the anomalous cooperative phenomena
to emerge, particularly, complex 3-dimensional attractor arises in the system
phase space (see Fig.3a-c).
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a b

c

d e

f

Fig. 4. The phase trajectory projections and phase variables distributions of the
middle particle from the chain (2)–(4) for N = 4 (figures a-c) and N = 15 (figures
d-f ). Parameters used for simulation are σ = 1, σ0 = 0.

Notably, unlike the previous cases (N = 1, 2), introducing the external
friction force (σ0 6= 0) causes the attractor to become significantly blurred
(see Fig.3d-f ), while increasing the relative weight of the particle velocity as
the stimulus for the operator actions makes the particle dynamics to take
form of chaotic oscillations (Fig.3g-i).

In case of the relatively large number of interacting elements the system
dynamics becomes highly irregular. The chain of four particles demonstrate
the oscillatory behavior as could be seen on Fig.4a-c. It is worth underlining
that the well-defined attractor (Fig.3a) could be destructed just by adding
one particle to the ensemble (Fig.4a) without changing any of the system
parameters.
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The system motion trajectories for N = 15 (Fig.4d-e) are of even greater
irregularity due to the increased number of particles and corresponding co-
operative effect. For larger N the system motion exhibits the patterns of
similar structure, but the amplitude of the fluctuations increases with N).

4 Conclusion

In the present paper we discuss the new type of the dynamical trap – a model
describing human bounded rationality. The standard “coordinate-velocity”
phase space inherited from the Newtonian mechanics is proposed to be ex-
tended by the acceleration variable. By analyzing the behavior of the moti-
vated particles chain governed by bounded rationality we demonstrate that
the multi-particle system under the presence of the dynamical trap of a new
type exhibits intrinsic cooperative behavior. The various complex patterns of
the system motion are shown to arise depending on the system parameters.
First, it is demonstrated that the dynamical trap effect of a new type can
cause the instability in the single oscillator dynamics which was not observed
in the previous studies on the dynamical traps model. Second, the system
dynamics patterns are shown to take the complex 3-dimensional structure in
case of three-particle ensemble. Third, we demonstrate that with the increas-
ing number of elements the system motion becomes significantly irregular, for
large N exhibiting chaotic oscillations. The obtained results confirm that the
system under consideration could exhibit anomalous behavior; however, the
proposed model require more detailed analysis.
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