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Abstract: We implement Cryptography with Chaos following and extending the original 

program of  Shannon with 3 selected Torus Automorphisms, namely the Baker Map,  the 

Horseshoe Map and  the Cat Map. The corresponding algorithms and the software 

(chaos_cryptography) were developed and applied to the encryption of picture as well as 

text in real time.  The maps and algorithms may be combined as desired, creating keys as 

complicated as desired. Decryption requires the reverse application of the algorithms.  

 

Keywords: Cryptography, Chaos, image encryption, text encryption,  Cryptography with 

Chaos. 

 

1. Chaotic Maps in Cryptography 
Chaotic maps are simple unstable dynamical systems with high sensitivity to initial 

conditions [Devaney 1992]. Small deviations in the initial conditions (due to 

approximations or numerical calculations) lead to large deviations of the 

corresponding orbits, rendering the long-term forecast for the chaotic systems 

intractable [Lighthill 1986]. This deterministic in principle, but not determinable in 

practice dynamical behavior is a local mechanism for entropy production. In fact 

Chaotic systems are distinguished as Entropy producing deterministic systems.  In 

practice the required information for predictions after a (small) number of steps, 

called horizon of predictability, exceeds the available memory and the computation 

time grows superexponentially. [Prigogine 1980, Strogatz 1994, Katok, ea 1995, 

Lasota, ea 1994, Meyers 2009]. 

Shannon in his classic 1949 first mathematical paper on Cryptography proposed 

chaotic maps as models - mechanisms for symmetric key encryption, before the 

development of Chaos Theory. This remarkable intuition was based on the use of 

the Baker’s map by Hopf in 1934 as a simple deterministic mixing model with 

statistical regularity. The Baker’s Map is defined below and the mixing character is 

presented in figure 1: 
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The reverse transformation: 
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Fig. 1: Baker Map 

The Entropy production theory of Chaotic maps was developed later by 

Kolmogorov and his group [Arnold, Avez 1968, Katok, ea 1995, Lasota, ea 1994].  

Baker’s map is the simplest example of chaotic automorphisms with constant 

Entropy production  equal to one bit at every step and has served as toy model for 

understanding the problem of Irreversibility in Statistical Mechanics [Prigogine 

1980]. Shannon observed that using chaotic maps, encryption is achieved via 

successive mixing of the initial information which is “spread” all over the available 

state space. In this way it is becoming exponentially hard to recover the initial 

message without knowing the reverse transformation. 

A variation of the transformation of Baker Map is the Horseshoe Map [Smale 

1967, Smale 1998], with the same Entropy production defined below and the 

mixing character presented in figure 2:  
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Fig. 2: HorseShoe Map 

Both Baker’s Map and the Horseshoe Map belong to the general class of torus 

automorphisms. The well known Cat Map introduced by Arnold in 1968 which is a 

torus automorphism a much stronger mix than two previous ones. The Cat Map is 

defined below and the mixing character is presented in figure 3: 
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Fig. 3: Cat Map 

The numerical analysis of the Cat Map shows interesting periodicity in the state 

space discretization [Vivaldi 1989]. Although the Cat Map and the torus 

automorphisms  admit analytical solution, computability does not increase 

significantly. [Akritas, ea 2001]. Statistical estimates for the transformation of 

Baker Map and the Cat Map are possible through the spectral analysis [Antoniou 

and Tasaki 1992, Antoniou, ea 1997, Antoniou and Tasaki 1993]. 

From Pesin’s 1977 Formula, the entropy of the Cat Map is: 2

3 5
log 1,39

2

+
; , 

ie. larger than the entropy of the Baker’s map. 

Following Shannon’s idea,  encryption is achieved by entropy producing (chaotic) 

maps like the torus automorphisms, via successive mixing of the initial information 

which is “spread” all over the available state space. In this way it is becoming 

exponentially hard to recover the initial message without knowing the reverse 
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transformation. However all results until now are restricted to the encryption of 

pictures. For review of relevant work we refer to Guan 2005 and Xiao 2009. We 

shall show how encryption of texts can also be achieved with chaotic maps. 

 

2. Text Encryption and Decryption by Torus Automorphisms 
The text Cryptography by Torus Automorphisms involves 3 steps: 

Step 1: Place the text in a 2-dimensional table so that each array element is a 

character. 

Step 2: Apply the selected transformations on the table for a number of steps 

specified by the key. 

Step 3: convert the modified table from step 2 in the text. 

The decryption process is equally simple for anyone who holds the key. Simply 

follow the steps backwards and use inverse transformations to the same number of 

steps. 

 

We propose 2 algorithms for the implementation of the text cryptography:  

 

Algorithm 1:  

Step 1: Count all characters of text including line breaks (=N1) 

Step 2: If  N1 is not a perfect square of an integer, then find the smallest integer M 

> N1 so that M is a perfect square. If the N1 is a perfect square integer number then 

set M=N1. 

Step 3: Set N M=  

Step 4: Create a character table (NxN) and place the characters of the text inside 

the table, putting also the special characters newline (enter) in a position in the 

table. 

Step 5: If there are empty cells at the end of the table place the spaces in these 

(cells).  

 

So we create a NxN table of characters with the properties:  

1) The number of rows and columns of the table depends on the length of the text 

only. 

2) The number of lines of characters changes during the encryption because all the 

special characters like “enter” are involved in encryption. 

 

Example: 

 

Cryptography with chaos 

George Makris, Ioannis Antoniou 

Thessaloniki 54124 

Greece.  

 

The above text has 82 characters. We need a 10x10 table to fit the text in table (100 

is the minimal encoding length)  
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C r y p t o g r a p 

h y  w i t h  c h 

a o s \n G e o r g e 

 M a k r i s ,  I 

o a n n i s  A n t 

o n i o u \n T h e s 

s a l o n i k i  5 

4 1 2 4 \n G r e e c 

e .         

          

 

Algorithm 2:  

Step 1: Count the number of lines (NL) of the text. 

Step 2: Count the number of letters of each line. 

Step 3: Find the M1 = max {the number of letters of each line}. 

Step 4: Set N = max {NL, M1} 

Step 5: Create a character table (NxN) 

Step 6: Place each character in text in the table so that it corresponds to each line of 

text in the corresponding row of the table. Put the special character space (‘ ‘) in all 

the blank cells.  

 

So we create a NxN table of characters with the properties:  

1) The number of rows and columns of the table defined by the structure and the 

length of the text. 

2) The number of lines of characters does not change in encryption because gaps 

were placed on each line so that all lines have the same number of characters.  

For the same example we have: 

Cryptography with chaos    �  23 characters  

George Makris, Ioannis Antoniou  �  31 characters  

Thessaloniki 54124   �  18 characters 

Greece.      �  07 characters 

 

Lines  NL = 4 

Μ1=max{23,31,18,07}=31 

N=max{4,31}=31 

 
C r y p t o g r a p h y  w i t h  c h a o s         

G e o r g e  M a k r i s ,  I o a n n i s  A n t o n i o u 

T h e s s a l o n i k i  5 4 1 2 4              

G r e e c e .                         
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Examples of text and image encryption are presented in the appendices  

 

3. Software Development for the implementation of 

"Cryptography with Chaos" 
The software for the algorithms was developed with Java, as this language  is 

independent of the operating system and platform. Moreover the Java programs run 

on Windows, Linux, Unix and Macindosh, mobile phones, Ipads, Playstations and 

other game consoles without any modification like compilation or changing the 

source code for each different operating system.  

The software developed (chaos_cryptography) has a graphical user interface and is 

very simple and user friendly (figure 4). 

The user may encrypt / decrypt images and texts. The user may use any of the 

above chaotic maps with one or the other algorithm or any combination for more  

difficult deciphering. 

Window dialogs alert the user in case of any errors in the procedure.  

The developed libraries (classes) can be used by any other software and application 

 
Fig. 4: chaos_cryptography application  (main window) 
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4. Concluding Remarks  
Shannon Cryptography indices for chaos cryptography are summarized in the table 

below.   
Shannon 

Cryptography 

indices  

Cryptography with Chaos  

Required degree 

of cryptographic 

security 

High  

Key Length 

Small 

The key is the selected transformations and the number of 

iterations that apply each transformation. 

Practical 

implementation 

of the encryption 

/ decryption 

Depends on the size of the text. Generally, permutation is a 

faster method than the replacement. 

Growth of the 

encrypted text  
involves only “spaces”  

Error Propagation 
In case of even one Error text is practically impossible. 

Correct key application is required  

 

The key length includes the map definition, the number of iterations and the 

parameters of the specific map. The proposed encryption algorithms are 

“MonoBlock” ciphers based on permutations, however  they are neither steams nor 

block ciphers. The Key is very small and does not depend on the size of text to be 

encrypted (block). 

For example, the specific key for encryption algorithm (Baker, Cat, Horseshoe) has 

a size 4 (Table 2x2). In classical permutation algorithms to encrypt a text with N 

characters (MonoBlock, size of the block = N) a key size N is required which is the 

size of the Block. 

The innovations of this work are summarized as follows:   

a) The extension of Chaos Cryptography to texts.   

b) The construction of examples of a new class on ciphers, namely the  Mono–

Block Ciphers as a third class beyond the Block  Ciphers  and  the Stream Ciphers.  

c) The key is completely independent from the length of the block that is encrypted 

and it is very small compared to the key of the classic permutation algorithms 

which is equal to the length of the  block.  

d) in the developed algorithms the key cannot operate if  some small part of the 

document is lost. 

Chaos Cryptography has only the disadvantage of all systems of symmetric 

cryptography, namely the safe transport of the key.  

In this paper three of the most famous chaotic maps were investigated. The 

proposed algorithms can be adapted to other chaotic maps.  
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Appendix A : Text encryption  
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Appendix B : Image Encryption  
 

Iterations 
Baker  

Map 

Horseshoe  

Map 

Cat  

Map  

t=0 

   

t=1 

   

t=2 

   

t=3 

   

t=4 

   

t=5 

   

t=6 
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Abstract:  The aim of this project is to derive a representation of the 

dynamical system generating the human actions directly from the 
experimental data. This is achieved by proposing a computational framework 
that uses concepts from the theory of chaotic systems to model and analyze 
nonlinear dynamics of human actions. The trajectories of human body joints 
are used as the input representation of the action. 
 

Introduction 

Our contributions include :1) investigation of the appropriateness of theory of 
chaotic systems for human action modeling and recognition, 2) a new set of 
features to characterize nonlinear dynamics of human actions, 3) 
experimental validation of the feasibility and potential merits of carrying out 
action recognition using methods from theory of chaotic systems. 
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Algorithmic Steps 

This section describes the algorithmic steps of the proposed action 
recognition framework. These are: 1) Given a video of an exemplar action, 
obtain trajectories of reference body joints, and break each trajectory into a 
time series by considering each data dimension separately; 2) obtain chaotic 
structure of each time series by embedding it in a phase space of an 
appropriate dimension using the mutual information, and false nearest 
neighborhood algorithms; 3) apply determinism test to verify the existence of 
deterministic structure in the reconstructed phase space; 4) represent 
dynamical and metric structure of the reconstructed phase space in terms of 
the phase space invariants, and 5) generate global feature vector of exemplar 
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action by pooling invariants from all time series, and use it in a classification 
algorithm. Now, we describe each step of the algorithm in more detail in 
following subsections. 
 

 

 

                  

 

                      (a) The block diagram of the crowd flow segmentation and 
instability detection algorithm. 

 

  1) Trajectory Computation 

Trajectories of six body joints (two hands, two feet, head, and belly) are used 
for representing an action. The trajectories are normalized with respect to the 
belly point, resulting in five trajectories per action. In case of the motion 
capture data set, each point of the trajectory in represented by a three-
dimensional coordinate (x, y, z). In case of the videos, we used a semi-
supervised joint detection and tracking approach for generating these 
trajectories. That is, first we extracted the body skeletons and their endpoints 
by using morphological operations on the foreground silhouettes of the actor. 
An initial set of trajectories is generated by joining extracted joint locations 
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using the spatial and motion similarity constraint. 
The broken trajectories and wrong associations were corrected manually.  

 

Trajectories for the 

ballet action from 

the motion capture 

data set.  

 

Trajectories for the walk action from the 

video data set.  

Next, each dimension of the trajectory is treated as a separate time series. The 
next figure shows these time series for the walk action from the motion 
capture data set.  

 

 

  2) Phase Space Embedding 
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Embedding is a mapping from one dimensional space to a m-dimensional 
space. It is an important part of study of chaotic systems, as it allows one to 
study the systems for which the state space variables and the governing 
differential equations are unknown. The underlying idea of embedding is that 
all the variables of a dynamical system influence one another. Thus, every 
subsequent point of the given one dimensional time series results from an 
intricate combination of the influences of all the true state variables of the 
system. This observation allows us to introduce a series of substitute variables 
to obtain the whole m-dimensional phase space, where substitute variables 
carry the same information as the original variables of the system. This is 
pictorially described in the following figure:  
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Three dimensional visualization of reconstructed phase spaces of 

different trajectories.  

 

  3) Chaotic Invariant 

Metric, dynamical and topological organization of orbits (trajectories) 
associated with the strange attractor of the reconstructed phase space can 
be used to distinguish different strange attractors representing different 
human actions. This organization is quantified in terms of phase space 
invariants. In this project, we limit ourselves only to metric and 
dynamical invariants which include: 1) Maximal Lyapunov Exponent, 
Correlation Integral, and 3) Correlation Dimension. 
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Maximal Lyapunov Exponent: 

Lyapunov exponent is a dynamical invariant of the attractor, and 
measures the exponential divergence of the nearby trajectories in the 
phase space. If the value of maximum Lyapunov exponent is great
zero, that means the dynamics of underlying system are chaotic. In order 
to compute maximum Lyapunov exponent of reconstructed phase space, 
we compute select a number of reference points and their neighboring 
points to compute the divergence.  

Correlation Integral: 

The correlation integral is a metric invariant, which characterizes the 
metric structure of the attractor by quantifying the density of points in the 
phase space. It achieves this through a normalized count of pair of points 
lying within a certain radius.  

Correlation Dimension: 

The correlation dimension also characterizes the metric structure of the 
attractor. It measures the change in the density of phase space with 
respect to the neighborhood radius $\epsilon$. The correlation dimension
can be computed from the correlation integral by exploiting the power 
law relationship.  
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Abstract: The purpose of this effort is to study changes in the amplitude noise and 
timing jitter of an optical pulse chain from a mode-locked laser, as it undergoes soliton 
propagation through a nonlinear silicon nanowire waveguide.  A numerical model was 
developed using the Non-Linear Schrödinger Equation to model the soliton formation 
with two-photon absorption.  The amplitude noise was modeled as a separate noise 
envelope, and the phase noise and timing jitter was modeled using Monte-Carlo 
simulations of jitter-induced phase-shifts.  It was observed that while increased pulse 
energy will result in increased amplitude and phase noise, the presence of two-photon 
absorption, which attenuates optical nonlinearities in the waveguide, results in a 
reduction in phase noise at the output of the silicon waveguides.   
Keywords: Noise, Phase Noise, Timing Jitter, Monte-Carlo, Non-Linear Schrödinger 
Equation, Silicon, Photonics, Soliton, Dispersion, Waveguides, Self-Phase Modulation, 
Kerr, Nonlinear Optics,  

 
1. Introduction 
One of the challenges that must be overcome for the practical implementation of 
optical data transfer is the issue of noise, particularly phase noise, amplitude 
noise, and timing jitter.  Practical optical data communication often requires 
pulse repetition rates of tens of gigahertz (GHz), and therefore timing jitter on 
the order of femtoseconds (fs) is often necessary to ensure a low bit-rate error in 
the data.  This paper investigates numerically the effects of soliton pulse 
propagation within silicon nanowire waveguides, and the effects of these 
nonlinearities on noise and jitter, for the purpose of applied optical data 
communications.   
 
Much research has previously been conducted on the effects of optical 
propagation through a dispersive waveguide on the phase noise, timing jitter, 
and amplitude noise [1-2].  This research to date has predominantly focused on 
optical fibers [3], photonic crystal fibers [4], and mode-locked lasers [5].  The 
purpose of this paper is to investigate optical soliton propagation [6-8] through 
silicon nano-waveguides.  Silicon waveguides are of interest to the scientific 
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community for their high-nonlinearities and tight optical confinement.  
Compared to optical fibers, silicon nano-waveguides have much smaller length 
scales, and offers many applications at the chip-scale level for all-optical data 
transfer, information manipulation, and computing.   
 
2. Simulations 
It has been previously observed that the the noise can often be attributed as a 
separate envelope [2,9] of much weaker intensities than the undisturbed pulse 
input:  
 

A(z,t) = (P0
½ + a(z,t))*exp(-j*φ(z))  a(z,ω) = -∞∫∞ a(z,t)*exp(-i*ωt) 

 
With this assumption, the NLSE can be linearly separated, and a separate NLSE 
for the noise can be derived:  
 

(j/2)*β2*ω2*a + (j/6)*β3*ω3*a + j*γ*P0*{a+a*}*exp(–α*z) = – ∂a/∂z 
 
The noise can be assumed to be an independent envelope propagating through 
the waveguide, and analyzed as a separate NLSE problem, propagating 
concurrently with the pulse.   
 
In the time domain, a(z,t) = ar(z,t) + j*ai(z,t), where ar(z,t) and ai(z,t) are real 
functions.  By substituting these terms into the noise-NLS equation, one gets a 
simple relationship for the real and imaginary components of the noise function 
in the spectral domain:  

∂ar(z,ω)/∂z = ρ * ai(z,ω) 
∂ai(z,ω)/∂z = –{ρ + (2*j*γ*P0*exp(–α*z))} * ai(z,ω) 

ρ = (β2*ω2/2) + (β3*ω3/6) 
 
Using this assumptions, with a given noise input, one can estimate the change in 
the power spectral density after optical soliton propagation through a given 
distance increment of a waveguide [9] by using the following equations:  
 

Φ (L,ω) = ½*Φ(0,ω)*exp(–α*z)*(2*|M11(ω)|2 + |M12(ω)|2 + |M21(ω)|2) 
M11(ω) = cos(δ(ω)*L) 

M12(ω) = (ρ/δ)*sin(δ(ω)*L) 

M21(ω) = –(δ/ρ)*sin(δ(ω)*L) 

δ = [ρ2 + 2*ρ*γ*P0]^½  
 

Using these terms and incorporating them into the NLSE numerical simulation, 
an accurate prediction of the changes in the frequency noise after propagation 
through a silicon waveguide could be obtained.   
 
Many NLSE simulations were conducted in order to complement the 
experimental silicon waveguide used in this experiment.  The silicon waveguide 
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parameters include a length of 4.1 mm, an effective area of 250 nm by 450 nm, 
a Kerr coefficient of 4.4 * 10-18 m2/W, an effective index of 2.5, a group index 
of 4.5, and a 2nd and 3rd order GVD of 4.5 ps2/m and 0.01 ps3/m, respectively.  
The model took into account both two-photon absorption (TPA), free-carrier 
absorption (FCA), and linear loss of the pulse envelope.  Because the noise is 
assumed to be substantially weaker compared to the pulse envelope, only linear 
loss is applied to the noise envelope.   
 
For the initial simulations, the wavelength was set at 2543 nm, so that there 
would be no effects of TPA or FCA.  Simulations were run repeatedly for 
various input pulse energies ranging from 1 pJ to 500 pJ; these energies are far 
in excess of the fundamental soliton energy for the 2.3 ps hyperbolic secant 
pulse.  As the lasers timing jitter was in excess of the pulse duration, the 
simulation assumed a constant noise envelope for the temporal window 
analyzed.  It was observed that at lower input pulse powers, the noise would 
decrease after propagation through the waveguide, but this loss would decrease 
with increasing powers.  After an input pulse energy of 250 pJ, it was found that 
the energy would in fact increase exponentially with increasing energy.  This is 
expected, as previous work in glass photonic crystal fibers [4] has also noticed 
an increase in jitter from solitons not subjected to TPA.   

 

 
 

Figure 1 – Results of NLSE simulations of noise after propagation in the silicon 
waveguide, with a wavelength of 2543 nm that is not subjected to the nonlinear 

effects of two-photon and free-carrier absorption.   
 
The simulation was then conducted for optical pulses at 1543 nm, which are 
now subjected to a considerable amount of TPA at this wavelength [10,11].  It 
was observed numerically that for optical soliton propagation in a silicon 
waveguide, the noise would consistently be reduced from 1.6 to 1.4 dB; this 
reduction would decrease with increasing input pulse energies within the 
waveguide.  After 1 nJ of energy, which is far more than will be practically 
realized experimentally, the noise decrease will plateau, and there will be little 
change with increasing power.   
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Figure 2 – Results of NLSE simulations of noise after propagation in the silicon 
waveguide, with a wavelength of 1543 nm that is subjected to the nonlinear 

effects of two-photon and free-carrier absorption.   
 
3. Monte-Carlo Analysis of Soliton Timing Jitter  
One of the challenges of performing a numerical analysis on the effects of 
optical soliton propagation on phase noise and timing jitter is the fact that such 
noise can reasonably be assumed to be random jitter.  Even though most of this 
jitter is deterministic and repeatable, the variation of each pulse can still have a 
significant amount of randomness involved.  Therefore, in an effort to 
numerically model the changes in phase noise after soliton propagation, Monte-
Carlo simulations of pulse phase-shifts will be used in conjunction with the 
Non-Linear Schrödinger Equation (NLSE) solver.   
 
The goal of this solver is to determine the change in timing jitter after 
propagation through a silicon waveguide for various energies and wavelengths.  
Input pulse energies from 5 pJ to 5 nJ were studied, and the wavelengths of 
1550 nm and 2300 nm were analyzed.  At each pulse-energy being studied, the 
program first solves the NLSE for a transform-limited hyperbolic secant squared 
pulse with no chirp; the output pulse shape and phase of the NLSE simulation 
will be used for comparison against a number of random trial simulations of 
jitter-shifted pulses.  Before propagating these pulses, the same hyperbolic 
secant-squared input pulses are phase-shifted to represent the timing jitter.  The 
phase shift is as follows:  
 
Phase Shift = exp[i*(2*f*Jitter)*((2*rand)-1)] 
 
where f is the frequency of the mode-locked laser (39.11 MHz), Jitter is the 
RMS of the input timing jitter (this study used 20 ps), and rand is a random 
number from zero to 1.  The code is written so that the phase shift varies up to 
twice the specified average jitter, and can be either positive or negative.   
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After applying the random phase shift, the pulse was analyzed with the NLSE 
solver.  The new output pulse phase was compared to the original non-shifted 
phase, the difference in phase was converted to timing jitter, and the RMS of the 
jitter was calculated.  As Monte-Carlo simulations require many repeated 
random terms to be statistically significant, the simulation was repeated 1,000 
times at each energy level, for a total of over 400,000 separate NLSE 
simulations.  The raw data of the results can be seen in Figure 3, which shows 
the output timing jitters as a function of input pulse-energy.   
 

 
 

Figure 3 – Raw Data of simulations, (a) λ = 2300 nm and (b) λ = 1550 nm.   
 
After all of the simulations were completed, in order to remove any statistical 
outliers, the code went through and factored out all simulations greater than 2 
standard deviations away from the mean jitter.  The RMS of this noise was then 
collected, and a final output timing jitter was given for each energy level. The 
data of the timing jitter as a function of energy was cleaned up of statistical 
outliers, and averaged out to obtain the trend of output timing jitter as a function 
of energy. 
 

 
 

Figure 4 – Output timing jitter as a function of pulse energy, for (a) λ = 2300 nm 
and (b) λ = 1550 nm.   
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In the study of the 2300 nm pulse without TPA, the simulation clearly 
demonstrated the timing jitter growing exponentially with increasing pulse 
energy, just as the NLSE simulation of the separate noise envelope has 
demonstrated.  In the case of the 1550 nm pulse subjected to TPA, the Monte-
Carlo simulations showed the output timing jitter to consistently decrease from 
20 ps RMS to 11.6 ps of RMS timing jitter.  Just as observed with the study of 
the NLSE of the phase-noise envelope, the presence of TPA has attenuated the 
jitter, rather than allowed it to develop with increasing energies.  It is therefore 
concluded, based on these two separate simulations, that soliton propagation in 
the presence of TPA will result in a decrease in phase noise and timing jitter.   
 
4. Conclusion 
The numerical simulations have demonstrated that an optical pulse propagating 
in the optical C-band within a silicon waveguide will see an attenuation of the 
amplitude noise and timing jitter due to the presence of the two-photon 
absorption.  The two-photon absorption has the property of attenuating the pulse 
proportionally to the intensity, which acts to inhibit the self-phase modulation 
and thus soliton compression.  If this attenuation were not present, an increase in 
intensity will result in an increase in nonlinear effects and thus an increase 
sensitivity to jitter-induced phase-shifts; for this reason high optical intensities 
have shown to increase the timing-jitter in the simulations of longer 
wavelengths not subjected to two-photon absorption.  In the presence of two-
photon absorption, however, less variation in the pulse phase-shifts can be 
expected as a result the reduction in two-photon absorption.  For this reason, it 
is concluded that optical soliton propagation in the presence of two-photon 
absorption has the ability to attenuated the phase noise and timing jitter of a 
mode-locked optical pulse.   
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Abstract. Introducing the Lamé operator in the telegraph equation, we obtain
theoretically a similar nonlinear system. In this work we are interested in the
existence and uniqueness of function u = u(x, t), x ∈ Ω , t ∈ (0, T ) solution for the
new system by the elliptic regularization method.

1 Notations and position of the problem

Let Ω an open bounded domain of Rn, with regular boundary Γ.We denot
by Q the cylinder Rnx × Rt : Q = Ω × ]0, T [, with boundary Σ. L designe
Lamé system define by µ∆+ (λ+ µ)∇div;λ and µ are constants Lamé with
λ+ µ ≥ 0. and h, f are functions, .We look for the existence and uniqueness
of a function u = u(x, t), x ∈ Ω , t ∈]0, T [, solution of the problem (P ).

(P )


u′′ + u′ + u− Lu+ |u′|p−2 u′ = f in Q

u = 0 on Σ
u(x, 0) = u(x, T ) x ∈ Ω
u′(x, 0) = u′(x, T ) x ∈ Ω

1.1.1
1.1.2
1.1.3
1.1.4

(1.1)

2 Existence of the solution

Theorem 1. Assume that Ω is bounded open of Rnare given f,with f ∈
Lq (Q) .Then there exists a function u = w0 + w satisfying (P )

w0 ∈ H1
0 (Ω) +W 2,q(Ω) ∩W 1,q

0 (Ω) (1.2)

w ∈ L2
(
0, T ;H1

0 (Ω)
)
, (1.3)

w′ ∈ Lp (Q) (1.4)

we use an approach due to G.Prodi [10] we have
u = w0 + w

w0 independent of t∫ T
0
wdt = 0

(1.5)
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We introduce the Prodi idia (1.5) in (1.1.1) we having

u′′ + u′ + u− Lu+ |u′|P−2 u′ − f = f + Lu0 (1.6)

We consider the derivative of (1.6) we obtain

d

dt

(
u′′ + u′ + u− Lu+ |u′|P−2 u′

)
=
df

dt
. (1.7)

and 
∫ T
0
udt = 0

u(T ) = u(0)
u′(x, 0) = u′(x, T )

(1.8)

We deduce to (1.7)

u′′ + u′ + u− Lu+ |u′|P−2 u′ − f = h0 with h0 independent of t (1.9)

For resolve (1.7) and (1.8) we denotes. A = (I−L); β(u′) =
(

1 + |u′|p−2
)
u′

and we define the functional space V :

V =

{
v : v ∈ L2(0, T,H1

0 (Ω)); v′ ∈ L2(0, T,H1
0 (Ω)) ∩ Lp(Q);

v′′ ∈ L2(0, T, L2(Ω));
∫ T
0
v(t)dt = 0; v(0) = v(T ); v′(0) = v′(T )

(1.10)
.The Banach structure of V is defined by

‖v‖V = ‖v‖L2(0,T,H1
0 (Ω)) + ‖v′‖L2(0,T,H1

0 (Ω)) + ‖v′‖LP (Q) + ‖v′′‖L2(0,T,L2(Ω))

We define the bilinear form:

b (u, v) =

∫ T

0

[(u′′, v) + 〈Au, v′〉+ 〈β(u′), v′〉]dt (1.11)

The weak formulation of (1.7)and(1.8) is to find u ∈ V such that

b (u, v) =

∫ T

0

(f ; v′)∀v ∈ V (1.12)

But b (u, v) not coercive
Then we following some ideas of Lions for obtain the elliptic regulariza-

tion, given δ > 0 and u, v ∈ V we define

πδ (u, v) = δ

∫ T

0

[(u′′, v′′)+(u
′
, v

′
)+(Au′, v′)]ds+

∫ T

0

(u′′+Au+β(u′), v′)]ds

(1.13)
The application v −→ πδ (u, v) is continuous on V so there existes an

application Bδ ∈ V ′ :
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πδ (u, v) = (Bδ (u), v) (1.14)

The linear operator Bδ : V −→ V ′satisfies the four properties:
Bδ is bounded in V ′ for all bounded set in V and is a hemicontinuous and

is a strictly monotonous and is coercive
In view of these properties and as consequence of theorem of Lions [5],

there existe unique a function uδ ∈ V :

πδ (uδ , v) =

∫ T

0

(f ; v′)dt ∀v ∈ V (1.15)

2.1 A priori estimates I.

Explicitly the elliptic regularization (1.15) and setting v = uδ we obtain

δ

∫ T

0

[
|u′′δ |

2
+ ‖u′δ ‖

2
]
dt+

∫ T

0

[
|u′δ |

2
+ (β(u′δ ), u′δ )

]
dt =

∫ T

0

(f, uδ ) dt

(1.16)

or
∫ T
0

(β(u′), u′) dt = ‖u′‖PLP (Q) and
∫ T
0
udt = 0 ⇒ ‖u‖L2(0,T,H1

0 (Ω)) ≤
c ‖u′‖L2(0,T,H1

0 (Ω))

Then
u′δ is bounded in Lp(Q) when δ → 0 (1.17)

δ

∫ T

0

[
|u′′δ |

2
+ |u′δ |

2
+ ‖u′δ ‖

2
]
dt ≤ c (1.18)

or,
∫ T
0
uδ dt = 0 we have by (1.17) and (1.18) that :we have by

uδ is bounded in Lp(Q) (1.19)

δ

∫ T

0

‖uδ ‖2 dt ≤ c1 (1.20)

2.2 A priori estimates II

Intoduce in (1.15) v

v (t) =

∫ T

0

uδ (s)ds− 1

T

∫ T

0

(T − s)uδ (s)ds (1.21)

{∫ T
0
vdt = 0 ∀v ∈ V

v′ = uδ
(1.22)

Taking into account (1.21) in (1.15) we get
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δ
∫ T
0

[(u′′δ , u
′
δ ) + (u′δ , uδ ) + (Au′δ , uδ )]dt+

∫ T
0

[(u′′δ , uδ ) + (u′δ , uδ )

+ ‖uδ ‖2 + (β(u′δ ), u′δ )]dt =
∫ T
0

(f, uδ ) dt
(1.23)

By using periodicity of uδ , u
′
δ ∈ V , we obtain:∫ T

0

(u′′δ , u
′
δ )dt =

∫ T

0

(Au′δ , uδ )dt = 0 (1.24)

And∫ T

0

(u′′δ , uδ )dt = (u′δ (T ), uδ (T ))− (u′δ (0), uδ (0))−
∫ T

0

(u′δ , u
′
δ )dt1.25(1)

= −
∫ T

0

|u′δ |
2
dt

By (1.24), 1.) and (1.17) we have∣∣∣∣∣
∫ T

0

(u′′δ , uδ )dt

∣∣∣∣∣ ≤ c when δ → 0 (1.26)

Also, from (1.17) and (1.19) we obtain∣∣∣∣∣
∫ T

0

(β(u′δ ), uδ )dt

∣∣∣∣∣ ≤ ‖β(u′δ )‖Lq(Q) ‖uδ ‖Lp(Q) ≤ c
′ (1.27)

Combining (1.24), (1.26), (1.27) with (1.23) we deduce∫ T

0

‖uδ ‖2 dt ≤ C (1.28)

2.3 Passage to the limit

From (1.17) and (1.28) that there exists a subsequence from (uδ ), such that

uδ −→ u weak in L2(0, T ;H1
0 (Ω)) (1.29)

u′δ −→ u′ weak in Lp(Q) (1.30)

β(u′δ ) −→ χ weak in Lq(Q)) (1.31)

Passage to the limit in (1.15) we obtain∫ T

0

((−u′, v′′) + (Au, v′) + (χ, v′))dt =

∫ T

0

(f ; v′)dt ∀v ∈ V (1.32)

Use the convolution technic in (1.32) we have
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∫ T

0

(χ, u′ ∗ ηδ ∗ ηδ )dt =

∫ T

0

(f ;u′ ∗ ηδ ∗ ηδ )dt (1.33)

When ∫ T

0

(χ, u′)dt =

∫ T

0

(f ;u′)dt (1.34)

3 Uniqueness of solution:

Theorem 2. Under the hypotheses of the theorem of existence,we consider
two solutions u1 and u2 of the problem (P ) then u1 = u2

Proof. We subtract the equations (1.5) corresponding to u1 and u2 and setting
φ = u1 − u2 we have

φ′′ +Aφ+ β(u′1 )− β(u′2 ) (2.1)

Denoting by (ηδ ) the regularizing sequence a similar argument by Brézis [2]
we obtain

φ′ ∗ ηδ ∗ ηδ = φ ∗ η′δ ∗ ηδ (2.2)

Hence, by using (1.2) and (1.3), we have

φ = ϕ+ φ0: φ0 ∈ V and ϕ ∈ L2
(
0, T ;H1

0 (Ω)
)

(2.3)

From (2.2) we get

φ′ ∗ ηδ ∗ ηδ = φ ∗ η′δ ∗ ηδ = ϕ′ ∗ ηδ ∗ ηδ (2.4)

show that ∫ T

0

(φ′′, φ′ ∗ ηδ ∗ ηδ )dt = 0 and have sense

When ∫ T

0

d

dt
(φ′, φ′ ∗ ηδ ∗ ηδ )dt =

∫ T

0

(φ′′, φ′ ∗ ηδ ∗ ηδ )dt

+

∫ T

0

(φ′, φ′′ ∗ ηδ ∗ ηδ )dt = +2

∫ T

0

(φ′′, φ′ ∗ ηδ ∗ ηδ )dt = 0 (2.5)

Therefore∫ T

0

(φ′′, φ′ ∗ ηδ ∗ ηδ )dt =
1

2

∫ T

0

d

dt
(φ′, φ′ ∗ ηδ ∗ ηδ )dt = 0 (2.6)
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φ′and ηδ periodic then we have∫ T

0

(φ, φ′ ∗ ηδ ∗ ηδ )dt =

∫ T

0

(φ′, φ′ ∗ ηδ ∗ ηδ )dt =

∫ T

0

(Aφ, φ′ ∗ ηδ ∗ ηδ )dt = 0

(2.7)
From (2.1); (2.6); (2.7);we obtain∫ T

0

(β(u′1 )− β(u′2 ), φ′ ∗ ηδ ∗ ηδ )dt = 0 (2.8)

Passage to the limit in (2.8) we have∫ T

0

(β(u′1 )− β(u′2 ), u′1 − u′2 )dt = 0 (2.9)

where

u′1 − u′2 = 0⇒ u′1 = u′2 (2.10)

This implies that

φ = u1 − u2 = θ, θ independent of t (2.11)

But

(Aθ, θ) =

∫
Ω

(−L+ I) θ.θdx = ‖θ‖22 + µ ‖∇θ‖22 +(µ+ λ) ‖divθ‖22 (2.12)

We deduce from (1.2)

θ ∈ H1
0 (Ω) +W 2,q(Ω) ∩W 1,q

0 (Ω) (2.13)

By (2.12) and (2.13) we have the uniqueness of solution.
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linéaires. Dunod. (1969).
5.Luc Tartar, Topics in non lineair analysis. Université de Paris-Sud, Publications

Mathematiques d’Orsay,novembre (1978).
6.M. Meflah, Study of Nonlinear Elasticity Problem by Elliptic Regularization with
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Abstract. Pseudo random numbers are used for various purposes. Pseudo random
number generators (PRNG) are useful tools to provide pseudo random numbers.
The FIPS 140-2 test issued by the American National Institute of Standards and
Technology has been widely used for the verifications the statistical properties of
the randomness of the pseudo random numbers generated by PRNGs.

First this paper analyzes the FIPS 140-2 test. The results show that

• The required interval of the FIPS140-2 Monobit Test corresponds to the con-
fident interval with significant level α = 0.0001(1− α).

• The required interval of the FIPS140-2 Pork Test corresponds to χ2 test with
significant level α = 0.0002(1 - α).

• The required intervals of the FIPS140-2 Run Test correspond to the confident
interval with significant level α = 0.00000016(1− α).

Second this study considers a novel chaotic map (NCP), whose prototype is the
Lorenz three-dimensional Lorenz chaotic map. A NCP -based PRNG (CPRNG) is
designed. Using the FIPS 140-2 test measures the 1000 keystreams randomly gen-
erated by the RC4 algorithm, and the 1000 keystreams generated by the CPRNG
with perturbed randomly initial conditions in a range |ε| ∈ [10−16, 10−4]. The
results show that the statistical properties of the randomness of the sequences gen-
erated via the CPRNG and the RC4 do not have significant differences. Our results
confirm once again that suitable designed chaos-based PRNGs may generate sound
random sequences, in particular for a replacement for the one-time pad system.
Keywords: FIPS 140-2 Test, Analysis in required intervals, Chaos-based pseudo-
random number generator, RC4, Randomness comparison..

1 Introduction

Pseudorandom numbers are important in applications such as simulations
of physical systems[1], in cryptography[2], in Entertainment[3], and in pro-
tecting computer systems. John von Neumann was the first contributor in
computer-based random number generators. Today algorithmic pseudoran-
dom number generators (PRNGs) have replaced almost random number ta-
bles and hardware random number generators in practical uses.

A algorithmic PRNGs is an algorithm for generating sequences of numbers
that approximate the properties of random numbers. A poor PRNG will lead

345



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

to weak or guessable its keys, and leak the information which is prevented.
There are many designed tests for measuring the randomness quantities of
the sequences of numbers generated via PRNGs. The FIPS 140-2 test[4], the
SP800-22 test[6], the Diehard battery[5] test are popular tests to be used in
evaluating the randomness quantities of the sequence numbers deriving from
PRNGs.

Since Lorenz’s influential book[7] and Li and York’s pioneer paper [8],
the study of chaos has been rapidly developed. Matthews has first derived
a chaotic encryption algorithm and shown that it may be suitable for a re-
placement for the one-time pad system[9].

Lérrez et al. have considered a modified Chua’s circuit generator of 5-
scroll chaotic attractor and shown that it may have a potential application
to transmit encrypted audio and image information[11]. Stojanovski and
Kocarev [10] have analyzed the application of a chaos-based PRNG. Li et
al.[12] have reported that using only 120 consecutive known plain-byres can
broken the whole secret key of a multiple one-dimensional chaotic map -
based PRNG. Yu et al[13] have introduced and analyzed a quadric polynomial
chaotic map based PRNG by the FIPS 140-2 test.

This paper analyzes the standards of the randomness criteria of the FIPS
140-2 test, introduces a novel chaotic map (NCM), designs a NCM-based
PRNG. Using the FIPS 140-2 test measures and compares the randomness
performances of the NCM-based PRNG and the RC4 algorithm – a famous
algorithm PRNG used in computer prevent.

The rest of this paper is organized as follows. Section 2 discusses the
standards of the randomness criteria of the FIPS 140-2 test. Section 3 in-
troduces the NCM, stimulates numerically its dynamic orbits, designed the
NCM-based PRNG. Section 4 compares the randomness quantities of the
NCM-based PRNG and the RC4 PRNG. Section 5 gives concluding remarks.

2 Analysis of FIPS 140-2 Test

The FIPS 140-2 Test issued by the National Institute of Standard and Tech-
nology consists of four tests: Monobit test, Poker test and long Run test.
Each test needs a single stream of 20,000 one and zero bits from keystream
generation. Any failure in the test means the sequence of stream must be
rejected. The four test are listed as for follows:

(1) Monobit test: Count the numbers N of “0” and “1” in the 20,000 bit-
stream, respectively. The test is passed if the N is fallen into the required
interval given in the second column in Table 1.

(2) Poker test: Divide a sequence of 20,000 into 5,000 consecutive 4-bit
segments. Denote f(i) to be the number of each 4-bit valve i where
0 < i < 15. Then calculate the following:

N =
16

5000

16∑
i=1

f(i)2 − 5, 000. (1)
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The test is passed if the N is fallen into the required interval given in the
second column in Table 1.

(3) Run test: Run is defined as maximal sequence of consecutive bits of
either all ′1′ or all ′0′ that is the part of a 20,000 bitstream. Count and
store the run bits with ≥ 1. The test is passed if the length of each run
is fallen into the required interval listed in the second column in Table 1

Table 1. The required intervals of the FIPS 140-2 Monobit Test Pork Tests and
Run Test, and the calculated confident intervals of random sequences with different
significant level α′s. Here MT, and PT represent the Monobit Test and the Pork
Test; LR represents the length of the run of a tested sequence.

FIPS 140-2 Standard α = 10−4 Golomb’s
Required Interval Confident Interval Postulates

MT 9,725∼10,275 9,725∼10,275 10000

α = 2× 10−4

PT 2.16∼46.17 2.41∼44.26 16.01

RT FIPS 140-2 Standard α = 1.6× 10−7 Golomb’s
k Required Interval Confident Interval Postulates

1 2,315∼2,685 2,315∼2,685 2,500

2 1,114∼1,386 1,119∼1,381 1,250

3 527∼723 532∼718 625

4 240∼384 247∼378 313

5 103∼209 110∼203 156

6+ 103∼209 110∼203 156

Golomb has proposed three postulates on the randomness that pseudo-
random sequences should satisfy [14]:

1. Balance Property. In one period of a pseudorandom sequence, if the
period p is even, then the number of ones is equal to the number of zeros
otherwise they differ only by one.

2. Run Distribution Property. In one period of a pseudorandom se-

quence, the frequency of runs of length k is
1

2k
. The numbers of the

same length one run and zero run are the same.
3. Ideal Autocorrelation Property. The autocorrelation functionAC(k)

has two values for a period. Explicitly:

AC(k) =
1

p

p∑
i=1

sisi+k =

 1 for k = np
−1

p
otherwise

where 0’s of the sequence are replace by 1’s and 1’s by -1’s, sisj denote
the multiplication of two bits si and sj .
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According to Golomb’s postulates (1) and (2), the idea values of the N’s
of the Monobit test and the Run test should be those listed in the 4th column
in Table 1.

1. Monobit test analysis: Let ε = ε1ε2 · · · εn be an one and zero bit
sequence where n is the length of the bit string. Denote Xi = 2εi − 1,
then Sn = X1 +X2 + · · ·Xn = 2(ε1 +ε2 + · · ·+εn)−n If ε is a sequence of
independent identically distributed Bernoulli random variables, then[6]

Sn√
n
∼ N(0, 1)

where N(0, 1) is a standard normal distribution.

The confident interval of S′n = ε1 + ε2 + · · · εn with significant level α is
given by

n

2
−
√
n

2
Zα

2
≤ S′n ≤

n

2
+

√
n

2
Zα

2

where Zα
2

(Matlab command norminv(1 − α/2)) is the inverse of the
normal cumulative distribution function. In the case n = 20, 000 and
α = 0.0001, the calculated result is given in the third column in Table 1
which is the same as the required interval given by the FIPS 140-2 test.

2. Run test analysis. Pick up the the runs of length k from the an one
and zero bitstream and construct a new bit stream. Replace each one run
of length k by 1, and zero run of length k by 0. Then we obtain an one
and zero bit sequence ε′ = ε′1ε

′
2 · · · ε′n′ where n′ is the length of the new

bit string. Assume ε′ is a sequence of independent identically distributed
Bernoulli random variables, then similar to the analysis in the case of the
Monobit test, we obtain

Sn′
√
n′
∼ N(0, 1)

The confident interval of S′n′ = ε′1 + ε′2 + · · · ε′n′ with significant level α is
given by

n′

2
−
√
n′

2
Zα

2
≤ S′n′ ≤

n′

2
+

√
n′

2
Zα

2

For an idea 20,000 one and zero bit pseudorandom stream, the length
n′ of a bit sequence ε′ generated via the runs of length k should equal
to 10000/2k. Let α = 1.6 × 10−7, the calculated confident intervals are
listed in the third column in Table 1 which are almost the same as the
required intervals given by the FIPS 140-2 test.
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3. Poker test analysis. Assume the the 4-bit segments are distributed
independently and identically. Then the statistic quality

N =
16

5000

16∑
i=1

f(i)2 − 5, 000

=

16∑
i=1

5000

1/16
(
f(i)

5000
− 1

16
)2

obeys χ2 distribution. Hence the confident interval of the statistic quality
of N with significant level α is given by

χ2
1−α

2
(15) ≤ N ≤ χ2

α
2

(15),

where χ2
α(15) (Matlab command chi2inv(α,15) ) is the inverse of the χ2

cumulative distribution function with free degree 15.

Let α = 0.0002. The calculated confirmation interval is given in Table 1
which is similar to the one given by the FIPS 140-2 test.

3 New Chaotic Map and Pseudorandom Number
Generator

we consider a novel chaotic map (NCP), whose prototype is the Lorenz three-
dimensional Lorenz chaotic map [15].X(n+ 1) = k1X(n)Y (n)− k2Z(n)− k3X(n)

Y (n+ 1) = k4X(n)− k5Y (n)
Z(n+ 1) = k6Y (n)− k7Z(n)

where

k1 = 1− 10−6, k2 = 1 + 10−6, k3 = 2× 10−6,

k4 = 1 + 10−6, k5 = 3× 10−6, k6 = 1− 10−6, k7 = 10−6.

The
Lyapunov exponents of the NCM are [λ1, λ2, λ3] = [+0.0824, 0,−0.0824].

If select an initial condition [X0, Y0, Z0] = [0.5 0.5 -1], The numerical simu-
lations of the orbits of the NCM display are given in Fig. 1. Observe that
the dynamic patterns are similar to those of the 3D Lorenz map[7].

Let

Kn =
√

3X(n) +
√

5Y (n) +
√

2Z(n), n = 1, 2, · · · , N ;

Min(K) = min
1≤n≤N

Kn,Max(K) = max
1≤n≤N

Kn.
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Fig. 1. Orbits of the first 5000 iterations: (a) X(n), Y (n), Z(n), and (b) X(n) and
Y (n).

Define a transformation T by

T (Kn) = mod

(
round

(
255
√

2× 105(Kn −Min(K))

Max(K)−Min(K)

)
, 256

)
, n = 1, 2, · · · , N.

Transferring T (Kn) into binary codes, we obtain a binary sequence

s(k) = binary(T (Kn)), n = 1, 2, · · · , N. (2)

Hence, we construct a chaos-based pseudorandom number generator (CPNG).

4 FIPS 140-2 test

The RC4 was designed by Ron Rivest of RSA Security in 1987, and widely
used in popular protocols such as Secure Sockets. Now we use the FIPS
140-2 test to test the 1000 keystreams randomly generated by the RC4,
and the 1000 keystreams generated by the CPNG with an initial condi-
tion [X(0), Y (0), Z(0)] = [0.5, 0.5, -1] perturbed randomly in a range |ε| ∈
[10−16, 10−4]. The results are shown in Table 2. It follows that the statistical
properties of the randomness of the sequences generated via the CPNG and
the RC4 do not have significant differences.

Matlab commands for implement the RC4 algorithms are listed as follows.
L=8; K=randint(1,2∧L,[0 2∧L-1]);S=[0:2∧L-1]; j=0;
for i=1:2∧L
j=mod(j+S(i)+K(i),2∧L);
Sk=S(j+1); S(j+1)=S(i); S(i)=Sk;
end
l=1; C=zeros(1,20000/8+10); j=0;i=0; k=1;
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for l=1:20000/8+10; i=mod(i+1,2∧L); j=mod(j+S(i+1),2∧L);
Sk=S(j+1); S(j+1)=S(i+1); S(i+1)=Sk;
C(k)=S(mod(S(j+1)+S(i+1),2∧L)+1);
k=k+1;
end

Table 2. The confident intervals of the FIPS 140-2 tested values of 1000 key
streams generated by the RC4 and the CPNG respectively. The significant level.
α = 0.00001

Test bits Golomb’s RC4 CPNG

item {0, 1} Postulates Confident Interval Confident Interval

MT
0 10000 9992.2 ∼ 10012 9990.1 ∼ 10010
1 10000 9988 ∼ 10008 9989.6 ∼ 10009

PT – 16.01 14.408 ∼ 15.899 13.373 ∼ 13.914

LT
0 < 26 13.443 ∼ 13.971 13.405 ∼ 13.913
1 < 26 13.340∼13.872 13.328∼ 13.823

LR Run Test

1
0 2500 2493.6 ∼ 2506.9 2492.0 ∼ 2504.9
1 2500 2493.7 ∼ 2506.6 2489.9 ∼ 2503.3

2
0 1250 1244.9 ∼ 1253.8 1244.7∼ 1253.9
1 1250 1242.6 ∼ 1251.3 1243.6∼ 1252.2

3
0 625 621.46 ∼ 628 622.10 ∼ 628.60
1 625 622.44 ∼ 629.25 622.96 ∼ 629.31

4
0 313 310.09 ∼ 314.68 309.92∼ 314.56
1 313 311.27 ∼ 315.74 310.29∼ 314.83

5
0 156 154.8 ∼ 158.21 154.18∼157.44
1 156 154.79 ∼ 158.2 154.66∼ 158.14

6+ 0 156 154.29 ∼ 157.64 155.32∼ 158.56
1 156 154.54 ∼ 157.93 155.28 ∼158.67

5 Concluding Remarks

Based on the Golomb’s postulates for the randomness of pure pseudorandom
sequences, this paper analyzes the required intervals of the statistic quantities
of three tests given in the FIPS 140-2. The results show that the required
intervals for different tests do not have the same significant levels.

This study introduces a perturbed 3D Lorenze discrete map. This map
The Lyapunov exponents and the dynamic orbits of the map are both similar
to those of the 3D Lorenz map.

This paper constructs a chaos-based PRNG which has 7 key parameters.
This feature of the PRNG may make it have large key space. Comparing
the results of the FIPS 140-2 test for the RC4 PRNG and our chaos-based
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PRNG shows that statistical properties of the randomness of the sequences
generated via the our PRNG and the RC4 PRNG do not have significant
differences.

Our results confirm once again that suitable designed chaos-based PNGs
may generate sound random sequences, in particular for a replacement for
the one-time pad system[9]. Further research along this line is promising.
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Abstract. In this paper the idea of harmonic balance method is used in a new
framework to analyze and predict the periodic solutions of the Lorenz system. An
analytic equation has been derived for these predicted limit cycles for the first time.
The proposed method is fairly straightforward avoiding complicated calculations.
A multi-input multi-output Delayed Feedback Controller (DFC) is designed and
implemented for stabilizing unstable periodic solutions of the Lorenz system. All
previous works done on stabilization of periodic solutions of this system, using
a simple DFC (without adding a new dynamic to the system) were unsuccessful.
Choosing an appropriate signal to use in the delayed feedback loop and an appro-
priate point for introducing the control signal are very important tasks in DFC
implementation. Considering these facts, we overcome the mentioned problem by
choosing the third state variable of the Lorenz system that to our knowledge has
not been used before, in the delayed feedback loop and introducing the control sig-
nal to the system in a different point from previous works. Our proposed controller
is also able to stabilize the equilibrium points (EPs) of the system. The stability
analysis is also done.
Keywords: Lorenz system, delay feedback control, harmonic balance.

1 Introduction

DFC is an efficient method of chaos control, which stabilizes Unstable Pe-
riodic Orbits (UPO) embedded in a chaotic attractor. In 1994 researchers
found out that DFC is not able to stabilize systems with odd number of Flo-
quet exponents. In other words, they thought it is impossible to stabilize any
UPOs with odd-number of real characteristic multipliers greater than unity
[1–3]. So they tried to overcome this limitation. In [4] authors used an ex-
panded DFC. In [5] it was shown that this stable controller can not overcome
all the DFCs limitations. Since they thought these limitations were due to
the odd number of positive Floquet exponents, in later studies, researchers
tried to solve this problem by adding an unstable term to change the total
number of real-positive Floquet exponent to an even number [6,7]. Another
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method was using some different values of delay in the feedback to increase
the controllers degrees of freedom [8,9].

Variety of methods were suggested to eliminate this problem till 2007,
but in[10] it was shown that, this limitation that scientists were trying to
overcome for more than fifteen years did not exist at all and theoretical
analysis and simulations confirmed this fact too [11]. One of the systems
that was thought it can not be stabilized with the use of the DFC, due to the
“odd-number limitation” was the Lorenz system. Several studies were done
to avoid this limitation (see [7,12,13]. In all these studies, it was tried to avoid
the limitation by introducing an unstable degree of freedom in a feedback loop
to change the number of unstable torsion-free modes to an even number and
the control signal was just applied to one of the state variables (the second
one).

In this paper we use a simple DFC to stabilize an unstable periodic so-
lution of the Lorenz system. The key idea of our work is using the third
state variable of the Lorenz system in the control loop and introducing the
controller to both the second and the third state equations (see Eq.1). The
next section is devoted to the open loop analysis of the system. Using the
Harmonic Balance (HB) idea, the analytical predicted periodic solutions of
the system have been derived and their stability features have been studied.
In section 3 an analysis is done to predict the chaotic dynamics and finally
in section 4, a MIMO DFC is used to stabilize an unstable periodic solution
of the system. Also it has shown that this control structure can be used for
stabilization of the EPs of the system.

2 The open loop analysis

Consider the following classical Lorenz chaotic system ẋ = −σx+ σy
ẏ = ρx− y − zx
ż = −µz + xy

(1)

The Lorenz equations have three parameters σ, µ and ρ. To simplify
matters, most researchers have kept σ = 10 and µ = 8/3 while varying ρ .
As shown in [14] by assuming f = x the system equations can be rewritten
in the following form{

1
σ + (1 + 1

σ )ḟ + (1− ρ) + fz = 0

ż = −µz + f( 1
σ ḟ + f)

(2)

Eq.2 puts in evidence the feedback structure of the system, as shown in
Fig.1 where a linear subsystem is connected to a nonlinear one. Due to the
existence of the dynamical term 1/(s+µ) in the nonlinear subsystem of Fig.1,
it may be difficult to use the general approach originally proposed by Tesi
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Fig. 1. The feedback structure of the Lorenz system.

and Genesio in 1992 to find the periodic solutions of the system. So in this
paper we use the idea of the well-known HB method in the following simple
manner.

2.1 Periodic solutions

At the first step, it is assumed that these steady solutions can be approxi-
mated as

x = A+B cosωt (3)

Substituting Eq.3 in the first state equation of Eq.1 results in

y =
1

σ
ẋ+ x = A+B cos(ωt)− 1

σ
Bω sin(ωt) (4)

Then by substituting Eq.3 and Eq.4 in the third state equation of Eq.1,
eliminating the second harmonics which appear, and ignoring the transient
solution, we conclude the steady solution of z as

z =
3

80
(10A2 + 5B2 +

8AB(160 + 3ω2) cos(ωt)

64 + 9ω2
+

416ABω sin(ωt)

64 + 9ω2
) (5)

After substituting Eq.3 and Eq.5 in the second state equation of Eq.1 and
doing similar calculations, we obtain an expression for y that should be equal
to Eq.4. Equalizing the related coefficients results in the following three
equations for A2, B2 and ω2 in terms of ρ

A2 =
−2

1561512117
(527280000

√
3ρm− 3845514915ρ+ 4056000

√
3m3

− 12168000
√

3ρ2m+ 106221667541− 9892726305
√

3m) (6)

B2 =
4

425866941
(21884475789− 2258100

√
3m3 + 4498028807

√
3m

− 319929891ρ− 293553000
√

3ρm+ 6774300
√

3ρ2m) (7)

ω2 =
40

201
(−1113 + 39ρ+ 13

√
3m) (8)
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where m =
√

2123− 130ρ+ 3ρ2. The solution of the problem is possible,
when the termsA2, B2 and ω2 are real and positive. Therefore, we can derive
the domain of parameter space where there are admissible solutions. The
domain of existence is

7.7693 ≤ ρ ≤ 24.7368 (9)

The obtained results on periodic solutions (Predicted Limit Cycles) are ap-
proximate, due to the first harmonic analysis carried out on the system. The
reliability of a PLC is based on a strong attenuation (filtering hypothesis) of
the higher frequency components 2ω, 3ω ,· · · along the loop.

2.2 Stability analysis

The system EPs are: C± = (±
√

(µ(ρ− 1)),±
√

(µ(ρ− 1)), ρ− 1) that exist
for ρ > 1 and C0 = (0, 0, 0). In this region C0 is a saddle and C± are
symmetric stable fixed points. For 0 < ρ ≤ 1 there exist just C0 which is
a stable node. We use the Loeb criterion to check the stability features of
PLCs. according to this criteria, in case the PLC be stable, the following
inequality will be true[14]:

∆ω

∆B
=
δω/δρ

δB/δρ
≤ 0 (10)

That is true in our case for ρ ≥ 15.1 .

3 The chaotic dynamic prediction

In this section the famous phenomenon of Homoclinic Orbit (HO) which
is one of the main routes to chaos in the most dynamic systems has been
analyzed and an approximate region of parameter space is derived in which
this phenomenon may occur. As stated in [15], the HO conditions includes the
existence of a stable PLC and a saddle type EP (different from that generating
the PLC) and the interaction between PLC and EP as B ≥ |E − A|, where
E denotes the mentioned saddle EP and is equal to zero in the Lorenz case.
This inequality is valid for 7.77 ≤ ρ ≤ 15.06. Considering the regions of
PLC existence (Eq.9), PLC stabilization (ρ ≥ 15.1) and the region in which
the interaction condition is satisfied (7.77 ≤ ρ ≤ 15.06), we predict that
the HO phenomenon may occur at some values around ρ = 15. Therefore
the Lorenz system may show chaotic behaviors. Numerical solutions show
that Homoclinic bifurcation occurs at ρ = 13.962 which is near the predicted
value.

4 Chaos control

It is obvious that this system exhibits a chaotic behavior in some regions of
its parameter space, for example at ρ = 24.5. Whereas the efforts for stabi-
lization of this system with the use of a SISO DFC have not been successful
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Fig. 2. (a) MIMO Lure form of the Lorenz system. (b) The closed loop system.

up to now, in this paper we consider the system as a MIMO system with the
Lure form shown in Fig.2a; which L and n denote respectively the dual-input
dual-output linear and nonlinear parts of the system.

n =

[
−zx
xy

]
(11)

L :



 ẋẏ
ż

 =

−σ σ 0
ρ −1 0
0 0 −µ

xy
z

+

 0 0
1 0
0 1

[u1
u2

]
[
y1
y2

]
=

[
1 0 0
0 0 1

]xy
z


=⇒ L(s) =

[
σ

s2+(1+σ)s+σ(1−ρ) 0

0 1
s+µ

]
(12)

The goal is to design a MIMO DFC to stabilize an unstable periodic solution
of the system. The closed loop system is shown in Fig.2b. So the MIMO
DFC will be in the following form

U =

[
k11 k12
k21 k22

] [
x(t− τ)− x(t)
z(t− τ)− z(t)

]
(13)

The aim is to determine the gain matrix and delay (τ) of the controller, so
that the closed loop system has a periodic response in the form of Eq.3 for
(ρ = 24.5). For simplicity we consider a simple case that is in the following
form

U =

[
u1
u2

]
=

[
0 k
0 k

] [
x(t− τ)− x(t)
z(t− τ)− z(t)

]
(14)

So our suggested closed loop system is as follows ẋ = −σx+ σy
ẏ = ρx− y − zx+ k(z(t− τ)− z(t))
ż = −µz + xy + k(z(t− τ)− z(t))

(15)
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Fig. 3. (a) Control signal tends to zero. (b) The steady state periodic responses of
the closed loop system.

τ coincides with the period of the desired periodic solution of the closed loop
system. In case stabilization be successful, the control signal will vanish and
there will not be any power dissipation in the feedback loop. So by setting
τ = 2π/ω and using the approximation e−τs ≈ 1−τs, we try to determine k.
Once more looking back to Eq.3, after doing some calculations similar to those
of section (2.1) and substituting A, B and ω with their values at (ρ = 24.5)
from Eqs. 6-8 (A = 7.8685, B = 1.0405, ω = 9.5104 rad/s ⇒ T = 0.6607 s),
the controller’s gain k = 2.5227 is obtained. The value obtained for delay
here (T = τ) is nearly equal to the value obtained for it in [7] that was 0.67 s.

Fig.3a and Fig.3b show the control signal and the steady state stable
periodic responses of the closed loop system. The control signal tends to zero
which means that the stabilization strategy has been successful.

Fig.4 shows a zoom view of the steady response of the first state variable
of the system (x(t)). It illustrates that the bias A, amplitude B and period
T of x are equal to those obtained from Eqs. 6-8 at ρ = 24.5 and confirms the
accuracy of the implemented analytical approach. A noticeable point about

Fig. 4. The bias, amplitude and period of the state variable x.
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Fig. 5. Stabilizing an unstable periodic orbit embedded in the strange attractor of
the open loop system.

the closed loop system is that we have stabilized one of the unstable periodic
solutions of the open loop system. In other words we have selected one of the
infinite number unstable periodic orbits embedded in the strange attractor
and stabilized the system towards it. This fact is shown in Fig.5.

The implemented control structure can be also used for stabilizing the
EPs of the Lorenz system. As shown in Fig.6, using k = 2.5 and τ = 0.8,
the closed loop system will be stabilized to C+ with the stable eigen values
λ1,2 = −3.7987± j3.84365 and λ3 = −1.561087.

5 Conclusion

In our paper, using straightforward calculations, the Lorenz system’s periodic
solutions have been analytically calculated. The results are approximate, due
to the first harmonic analysis carried out on the system. The purpose of the
paper is to design a DFC in order to stabilize unstable periodic solutions of

Fig. 6. Lorenz system stabilization to its EPs C+.
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the system. For ρ = 24.5 the open loop system shows chaotic behaviors. But
the implemented MIMO DFC stabilizes an unstable periodic solution of the
system at this value. The key point of our controller, which makes it able to
stabilize Lorenz system, is using a different signal in the feedback loop and
applying the control signal to the appropriate points. It is the first time,
that a simple DFC is implemented successfully for Lorenz periodic solutions
stabilization. The simulation results confirm the accuracy of the implemented
analytical approach.
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Abstract: Two modified inductorless sinusoidal oscillators are presented as two chaotic 

oscillators. The active component employs a current-feedback operational amplifier 

(CFOA) whereas the nonlinear component employs a simple diode. Numerical and 

PSpice simulations are demonstrated in terms of chaotic attractors. A bifurcation diagram 

is also included. 
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1. Introduction 
The design and development of autonomous chaotic oscillators over the 

past three decades have been increasing due to a variety of applications in, for 

example, spacecraft trajectory control, stabilization of the intensity of a laser 

beam, noise radars and sonar [1], synchronization [2, 3] and secure 

communications [4, 5, 6]. One of the best known chaotic circuits is Chua’s 

circuit [7] as well as its variants [8, 9], using a Chua’s diode. However, an active 

nonlinear resistor such as the Chua’s diode is not recommended by [10] because 

it does not follow the design rules of [10]. Instead, a passive nonlinear 

component for chaos has been suggested using either a diode or a junction field 

effect transistor (JFET) [10]. 

A current-feedback operational amplifier (CFOA) is currently recognized as 

a versatile alternative to the traditional op amp for its excellent performance in 

high-speed and high slew-rates analog signal processing, and therefore does not 

suffer from the finite gain bandwidth product typically encountered in the 

conventional voltage op amps [11]. A chaotic oscillator has been designed using 

a modified CFOA-based sinusoidal oscillator with two capacitors and an 

inductor for a third-order chaotic system [11]. Such a chaotic oscillator has 

subsequently been further investigated by [12] using three capacitors. The 

nonlinear device of both chaotic oscillators has exploited a two-terminal 

nonlinear resistor formed by a JFET (J2N4338). However, chaos has not 

successfully found in [12] using a single diode as a nonlinear component.    

In this paper, chaos in two modified CFOA-based inductorless sinusoidal 

oscillators is presented. The active element employs the CFOA whereas the 

nonlinear component employs a single diode. Chaos can be found by replacing a 

JFET resistor of [12] with a sub-circuit consisting of a diode and a resistor. 
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2. Circuit Implementation 
Figures 1(a) and 1(b) show two proposed chaotic oscillators using a single 

diode as a nonlinear device. Both circuits are modified CFOA-based 

inductorless sinusoidal oscillators which almost resemble the existing circuits 

reported in [12], except that the JFET nonlinearity of [12] is replaced with a new 

sub-circuit consisting of a diode D1 and a resistor R3. The latter is connected to a 

negative DC supply.  

 

 
 

(a)                                                         (b) 

 

Fig. 1 Modified CFOA-based inductorless sinusoidal oscillators using a diode 

for : (a) the first chaotic oscillator, (b) the second chaotic oscillator.  

 

The proposed chaotic oscillator shown in Figure 1(a) is described by a set 

of differential equations as follows : 

 

2 1
1 1

1

2 1 2
2 2

1 2

3
3 3

3

( )

( )

9
( )

C C
DC

C C C
C

C
DC

V V
C V I

R

V V V
C V

R R

V
C V I

R

−
= −

−
= −

+
= −

&

&

&

         (1) 

 
where the overdot denotes a time (t) derivative. The voltages across capacitors 

C1, C2, and C3 are VC1, VC2, and VC3, respectively. A diode current ID = 

IS{exp[(VC1−VC3)/nVT] − 1} where IS is the reverse saturation current, n is the 

nonideality factor, and VT is the thermal voltage of 25.85 mV at room 

temperature (300K). The proposed chaotic oscillator shown in Figure 1(b) is 

described by another set of differential equations as follows : 
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where the diode current ID = IS{exp[(VC2−VC3)/nVT] − 1}  

 

3. Simulation Results 
The CFOA can be implemented using the commercially available AD844. 

The diode D1 is 1N4001 using PSpice parameters IS = 14.11×10
-9

 A and n = 

1.984. The junction capacitance of 1N4001 is typically 15 pF and, for 

simplicity, may be neglected compared to the much larger values of C1, C2 and 

C3. For a PSpice simulation, Figure 2(a) shows a circuit diagram of (i) a diode 

circuit (D4, R2), (ii) a nonlinear JFET resistor (J1, R4), and (iii) a sub-circuit 

consisting of a diode and resistors (D3, R1, R3). Figure 2(b) shows a comparison 

of the three simulation results of current-voltage characteristics in (i), (ii) and 

(iii) where the currents on the vertical axis are through R2, R4 and R1, 

respectively, and the voltage on the horizontal axis is Vs, which is swept linearly 

from -2V to +1V with an increment of 0.01 V. It should be noted that the 

current in (i) is always positive whereas the current in (ii) can be either positive 

or negative. This may probably be the reason why the authors in [12] could not 

find chaos in their proposed oscillators using only a diode in (i). With a new 

sub-circuit in (iii), the current in (iii) can be either positive or negative, as 

shown in Figure 2, and chaos can be quickly found without changing the 

connections of other components. 

 

 
(a)                                                         (b) 

Fig. 2 (a) A circuit diagram of three circuits using (i) a diode circuit (D4, R2), (ii) 

a nonlinear JFET resistor (J1, R4), and (iii) a sub-circuit consisting of a diode 

and resistors (D3, R1, R3), (b) A comparison of three simulation results. 
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Fig. 3. A numerical result of a chaotic attractor projected onto VC3−VC1 plane of 

equation (1). 

 

           V(C3)-400mV -350mV -300mV -250mV -200mV -150mV -100mVV(C1)-400mV-200mV0V200mV400mV
 

 

Fig. 4. A PSpice simulation of a chaotic attractor projected onto VC3−VC1 plane 

of the oscillator shown in Figure 1(a). 

 

Figure 3 shows a numerical result of a chaotic attractor projected onto a 

VC3−VC1 plane of equation (1) using a fourth-order Runge-Kutta integrator with 

a fixed step size of 0.1µs. The same values of components reported in [12] are 

used except R3, i.e. C1 = C2 = 10 nF, C3 = 18 nF, R1= 220 Ω, R2 = 1.5 kΩ, and R3 

= 170 kΩ. Figure 4 shows a PSpice simulation of a chaotic attractor projected 

onto VC3−VC1 plane of the oscillator shown in Figure 1(a) with the same values 

of components reported in [12] except R3 = 180 kΩ. As shown in Figure 4, the 

PSpice simulation runs up to 30 ms with a fixed step size of 0.5 µs. The results 

in the first 20 % are discarded to ensure that the solution is on the attractor. 

Initial conditions are (VC1, VC2, VC3) t=0 = (0, 0, 0). The numerical and PSpice 

results are in a similar manner. 
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It can be seen from Figures 1(a) and 1(b) that R3 is connected in series with 

the diode D1. This enables R3 to control the current of D1 in DC operation (by 

opening C1, C2, and C2). Therefore R3 can be exploited as a tunable bifurcation 

parameter. As an example, Figure 5 depicts a bifurcation diagram of the peak of 

VC3 (VC3−max) of Figure 1(a) versus R3 varied from 140 to 220 kΩ. A period-

doubling route to chaos is evident. There are various periodic windows 

immersed in chaos. 

 

 
 

Fig. 5. A bifurcation diagram of the peak of VC3 of Figure 1(a). 

 

Figure 6 shows a numerical result of a chaotic attractor projected onto a 

VC3−VC2 plane of equation (2) using a fourth-order Runge-Kutta integrator with 

a fixed step size of 0.1µs, C1 = 10 nF C2 = 11 nF, C3 =5 nF, R1= 220 Ω, R2 = 2.7 

kΩ, and R3 = 220 kΩ. Figure 7 illustrates a PSpice simulation of a chaotic 

attractor projected onto VC3−VC2 plane of the oscillator shown in Figure 1(b) 

with the same values of components used in Figure 6. The PSpice simulation 

runs up to 20 ms with a fixed step size of 0.1 µs. The results in the first 20 % are 

discarded to ensure that the solution is on the attractor. Initial conditions are 

(VC1, VC2, VC3) t = 0 = (0, 0, 0). 
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Fig. 6. A numerical result of a chaotic attractor projected onto VC3−VC2 plane of 

equation (2). 
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Fig. 7. A PSpice simulation of a chaotic attractor projected onto VC3−VC2 plane 

of the oscillator shown in Figure 1(b). 

 

4. Conclusions 
Two chaotic oscillators have been presented through the use of two 

modified CFOA-based inductorless sinusoidal oscillators. A CFOA has been 

exploited as the active component whereas a single diode has been exploited as 

the nonlinear component. Numerical and PSpice simulations have been 

demonstrated with chaotic attractors. A bifurcation diagram has been studied.  
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Performance Analysis of Time Hopping Ultra
Wide Band System Using Chaotic vs.

Conventional system
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Abstract. This paper proposes to use chaotic modulation and coding for Time-
Hopping Ultra Wide Band (TH-UWB) system with multi-path channel.

We compare the performances of chaotic systems using the Skew tent map
against those of a conventional systems, as the Gold code, and demonstrate that
chaotic system enhances the system performances when compared with the con-
ventional system in terms of Bit Error Rate (BER).
We report simulation results clearly showing that the chaotic system outperforms
the conventional system.

Keywords: Ultra wide band systems, Time-Hopping, Multi-path, Chaotic sys-
tem, Bit error rate.

1 Introduction

Ultra-wideBand (UWB) systems is a spread-spectrum technique, that em-
ploys pulses of temporal extension of less than one nano second [1].

The sucess of UWB systems for short-range wireless communications [1,2]
is due to the fact that they potentially combine reduced complexity with low
power consumption, low probability-of-intercept (LPI) and immunity to mul-
tipath fading. In 2004, the IEEE 802.15.4a group presented a comprehensive
study of the UWB channel over the frequency range 2-10 GHz for indoor
residential, indoor office, industrial, outdoor and open outdoor environments
[3].
In this work we are concerned with the indoor residential environment chan-
nel.
In Time Hopping format (TH-UWB), TH codes are used as a multiple user
diversity and Pulse Position Modulation (PPM) as data [1,2].
In wireless communication system where more than one user share the same
channel, the interference between users represents an additional source of
noise. this may degrade the performance of the system. Thus the choice of
the modulation type, the multiple access techniques and the codes allowing
multiple access is crucial for the determination of system performance.
Different works have dealt with the statistical characteristics of the Multi-
User Interference (MUI). In many works, the MUI has been modeled by a
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random Gaussian process [1,2,4], others works tackled with the optimization
of the performance by code selection [5], and thus no optimization with re-
spect to the TH codes has been done. In the most detailed analysis [5], the
authors considered the asynchronous case, multi-channel propagation such
as IEEE 802.15.3a channel. They derived a criterion to find optimal codes
that minimizes the variance of MUI. But, the optimization is done for only
one reference user, and so even if the codes satisfied the given criterion, it is
not guaranteed that the performance of the other users is optimized or even
improved. In [6] we introduced a criterion named Average Collision Number
(ACN) that minimize the MUI variance. It has been shown that sequences
having smaller ACN allow better BER. In another work [7] we showed that,
ACN criterion is unsuitable in some cases for selecting codes. Hence an im-
proved criterion called Average of Squared Collision Number (ASCN).
Based on this criterion we study in the present paper how much chaoticity of
the chaotic codes affects the performance of the considered TH-UWB system.
To validate our criterion, the performance in terms of BER is computed by
simulating the TH-UWB system with line-of-sight (LOS) multi-path channel
in a residential environment IEEE 802.15.4a.

This paper is organized as follows. Section 2 gives a detailed description
of UWB signal generations; after introducing the TH-UWB-PPM system
model, we give the format of the receiver signal. In Section 3, we define
the different sequences considered in this work. For chaotic sequences, the
ASCN is computed versus bifurcation parameter and compared to Lyapunov
exponent.

In Section 4, we define the new chaotic modulation and we validate our
method by reporting simulation results showing the advantage of using ASCN
and the relevance of chaotic sequences. Finally we conclude in section 5.

2 UWB signal generations

In this section, we begin by describing the TH-UWB system model and the
expression of the received signal in an asynchronous TH-UWB system using
the PPM modulation. Then we compute the variance of the MUI in the case
of TH-code sequences when a correlating receiver is used.

2.1 TH-UWB System model

In this paper, we assume pulse position modulation for the transmitted binary
symbols in both the UWB techniques. Second derivative of the Gaussian
pulse was used as basic UWB pulse shape. The pulse waveform, w(t) can be
expressed as,

w(t) = (1− 4π(
t

τ
)2) exp(−2π(

t

τ
)2) (1)
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The pulse waveform w(t) is assumed to be non-zero only during the interval
0 ≤ t ≤ Tc, Tc is the chip duration and τ is the pulse duration. The second
derivative of Gaussian pulse is shown in Figure 1.
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Fig. 1. The second derivative of Gaussian pulse

A typical expression of the TH-UWB transmitted signal for a user j is given
by equation 2.

s(j)(t) =

∞∑
k=−∞

Nf−1∑
l=0

w(t− kTs − lTf − c̃(j)l Tc − d(j)k δ) (2)

Where Ts is the period of one bit. Every bit is conveyed by Nf frames. Each
frame has a duration of Tf and is divided into Nc time slots. Each time slot

has a duration of Tc. c̃
(j)
l is the TH code sequence assigned to the user j,

where c̃
(j)
l ∈ {0, 1, . . . , Nc − 1}. The location of each pulse in each frame is

defined by the code c̃
(j)
l . d

(j)
k ∈ {0 , 1} is the binary transmitted symbol at

time k by user j, δ is the time shift associated with binary PPM, the pulses
corresponding to bit 1 are sent δ seconds later than the pulses corresponding
to bit 0. N = NcNf presents the total processing gain of the system. The
signals corresponding to bits 1 and 0 are depicted in Figure 2.
In this work, we use the IEEE 802.15.4a UWB channel model [3] in a resi-
dential area. According to this model the impulse response is [3,8],

h(j)(t) =

M−1∑
m=0

R−1∑
r=0

α(j)
r,mδ(t− T (j)

m − τ (j)r,m) (3)

where αr,m is the tap weight of the r-th ray (path) in the m-th cluster, Tm
is the arrival time of the m-th cluster and τr,m is the arrival time of the r-th
ray in the m-th cluster. The distribution of the cluster arrival times is given
by a Poisson process and the distribution of the ray arrival times is given by
a mixed Poisson process [3]. The channel model which is used in the paper is
for LOS scenarios in residential environments as shown in Figure 3, referred
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Fig. 2. A TH-UWB signal with binary PPM modulation where Nf = 4, Nc = 8
and the TH code sequence is {0 1 2 1}. (a): Bit 1, (b): Bit 0.
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Fig. 3. Impulse response channel model 1 in residential environments.

to as CM1 [3].
If Nu is the number of active users transmitting asynchronously; the received
signal is

r(t) =

Nu∑
j=1

M−1∑
m=0

R−1∑
r=0

α(j)
r,ms

(j)(t− T (j)
m − τ (j)r,m) + n(t) (4)

2.2 Receiver Signal Processing

The output of the correlation receiver of the ith user at time h is given by:

s
(i)
h =

Nf−1∑
p=0

∫ hTs+pTf+c̃
(i)
p Tc+Tc+τ

(i)
0,0+T

(i)
0

hTs+pTf+c̃
(i)
p Tc+τ

(i)
0,0+T

(i)
0

r(t)v(t−hTs−pTf−c̃(i)p Tc−τ (i)0,0−T
(i)
0 )dt

(5)
where v(t) is the receiver’s template signal defined by v(t) = w(t+ δ)−w(t).
From the previous equations and after variable changes, we obtain

s
(i)
h = TU (i) + TISI(i) + TI(i) + TN (i) (6)

with TU is the useful signal, TISI is inter-symbol interference signal, TI is
the MUI and TN is the term corresponding to the noise. For more details see
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[6,7].
In [6], it has been shown that,

TI(i) = Ew

Nu∑
j=1,j 6=i

α(j)(2d
(j)
h − 1)cn(i, j) (7)

where Ew is the amplitude which controls the transmitted power, α(j) is the

tap weight of the user j, d
(j)
h is the binary sequence, cn(i, j) is the number

of collision between codes c̃(i) and c̃(j). c̃(j) can be computed by taking into
account the developed Time-Hopping Codes (DTHC) corresponding to TH
codes as follows, for a given code c̃(j), the DTHC is a binary code of length
NcNf and is defined by

c(j)r =

{
1 if r = c̃

(j)
l + lNc, 0 ≤ l ≤ Nf − 1

0 otherwise.
(8)

where r = 0 . . . , NcNf − 1. The relation between TH sequence c̃
(j)
l and the

developed code c
(j)
r is illustrated in Figure 4.

Fig. 4. Correspondence between DTHC and THC.

cn(i, j) =

NfNc−1∑
l=0

c
(i)
l c

(j)
l (9)

The Average Collision Number ACN of the sequence set (c̃(j)), j = 1, . . . Nu
is therefore defined by [6]:

ACN =
1

Nu(Nu − 1)

Nu∑
i=1

Nu∑
j=1,j 6=i

cn(i, j) (10)

In [6] we have defined the ACN criterion, and we have showed that the
experimental results validate the relevance of the ACN as an ’off-line’ perfor-
mance evaluation criterion for codes sequences. These results motivated us
to use the ACN as a tool to predict the performance of code sequences.
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However, we found intuitively that this criterion may in some cases be un-
suitable for code selection [7]. To remedy to this drawback, we defined a new
criterion called Average of Squared Collision Number ASCN which is defined
as:

ASCN =
1

Nu(Nu − 1)

Nu∑
i=1

Nu∑
j=1,j 6=i

cn2(i, j) (11)

This is motivated by the observation that when the collisions are regrouped
on few positions the performance are significantly degraded.

3 Generation of sequence

Chaotic sequences have some properties that motivate researchers to use
them in various applications: determinism, long term unpredictability and
high sensitivity to initial conditions. Especially, chaotic sequences generated
by one dimensional non linear transformation have been used in cryptogra-
phy, watermarking, spectrum spreading systems [9].

We begin by defining chaotic and Gold sequences that will be considered
in this work. Then we show the ASCN for chaotic sequence versus their bifur-
cation parameter. Next, we analyse how chaoticity measured by Lyapunov
exponent is correlated with the ASCN.

3.1 Sequences generated by Skew tent map

Chaotic sequences are generated by the Skew tent map (STM) defined by:

xn+1 =

{ xn

r , 0 ≤ xn ≤ r
1−xn

1−r , r < xn ≤ 1
(12)

The STM exhibits chaotic behavior for every value of the bifurcation param-
eter r ∈ [0 1].
Figure 5, show the Lyapunov exponent and ASCN versus the bifurcation
parameter r for STM chaotic sequences. We can see that the curve of the
ASCN follow the one of Lyapunov exponent and that the greater the expo-
nent is the smaller the ASCN. For r = 0.5, the STM have a best ASCN and
Lyapuonv exponent. We showed numerically that the ASCN of a quantized
chaotic sequence depends on the chaoticity of these sequences measured by
their Lyapunov exponent.
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Fig. 5. Lyapunov exponent and ASCN for skew tent map.

3.2 Gold sequences

The Gold sequence based TH codes are generated as shown in [7], where we
illustrate how is generated a sequence taking values in {0, 1, · · · , Nc − 1 = 7}
and with a length Nf ≤ 29.

In Figure 6, we represent the ASCN versus user number for Nc = 8; for
Gold sequences considered here as a reference and STM sequence defined
above; the ASCN of chaotic sequence are averaged over 100 realizations. For
STM we considered the bifurcation parameter that gives the best ASCN, i.e.
r = 0.5.
The results show that STM, have a better ASCN than Gold sequences. We
can notice likewise that Gold sequences show better performance compared
to the chaotic sequence when Nu < 6, this is because of the orthogonality of
this sequences.
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Fig. 6. ASCN versus user number for STM and Gold sequences. Nc = 8.

4 BER performance analysis

In our simulation, the second derivative of the Gaussian pulse is selected as
UWB pulse in a residential environment CM1 channel with the correlation
receiver. The simulation parameters are listed in Table 1. For simplicity, we
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Table 1. Simulations parameters of TH-UWB system

Simulation parameters acronym Value
Chip duration Tc 1ns
Pulse duration τ 0.2ns
Number of chip Nc 8
Number of path L 10
Number of frame Nf 4

Sampling frequency Fs 8GHz
Number of sampling Ne 50
Signal to Noise Ratio SNR 10dB

Number of bits for each user Nb 105

Factor for spread spectrum Gold N 31

assume that the number of paths L is the same for all users.

To enhances the performance of the TH-UWB system we propose a chaotic
modulation combined with chaotic code. The idea is to split the state space
of STM and to associate a symbol to each partition. We suppose that the
state space is represented by the interval I = [0 1], and we define the two
sub-intervals I0 = [0 0.5− τ [ and I1 = [0.5 1− τ ], where τ is the pulse du-
ration. According to this consideration we associate the transmitted binary
sequence 0 and 1 to the sub-intervals I0 and I1, respectively. This process of
modulation is called Chaotic Position Pulse Modulation (CPPM). A similar
scheme was designed in [9].

The simulation results are shown in Figure 7, where we presented the BER
of the system versus the user number for Gold, STM+PPM and STM+CPPM
sequences. We can see that STM combined with CPPM modulation allow
the best performance. This is due to the random effect of chaotic systems
which reduce the interference between users. Moreover, Gold sequence allow
the worst performance, excepted when Nu < 10. These results compared to
the results shown in Figure 6, prove that the ASCN is a suitable criterion to
select TH-codes.
For STM, we fixed the bifurcation parameters r to 0.5. This value correspond
to the minimal of the ASCN (the maximal of Lyapunov exponent).
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Fig. 7. BER performance evaluation of TH-UWB systems: Chaotic vs. Gold.
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We can clearly see that the THC generated by the STM can get bet-
ter performance than THC generated by Gold sequence. Thus, the proposed
STM chaotic system considered is not only advantageous in terms of synchro-
nization, but it can also generate TH-codes that outperform the conventional
system.

5 Conclusion

In this paper, we proposed a chaotic pulse position modulation and chaotic
time hopping spectrum spreading in UWB system. It has been proved that
the chaotic sequences are appropriate for UWB systems with multiple access.
The performance comparaison of TH-PPM-UWB system showed that chaotic
sequences has better performance in term of bit error rate than Gold se-
quences. We specifically showed that the higher the Lyapunov exponent is
the lower is the ASCN, and subsequently the better the performances.
In addition, chaotic systems enhances the quality and the security of the
transmission.
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Abstract. The world is filled with complex systems whether it is the traffic pat-
terns of city’s, weather patterns, information flow in the internet, or turbulence in
fusion reactors. These complex systems are not often amenable to simple analytic
solutions, understanding these systems requires a new statistical method beyond
traditional equilibrium theory, i.e. Boltzmann Gibbs statistics. We present a novel
method for understanding complex dynamics of such systems by using the Ob-
servable Representation which has been successfully applied to complex systems
in detailed balance. Specifically we generalise it to non-equilibrium systems where
detailed balance does not hold, i.e. the system has non zero currents. We construct
a new transition matrix by accounting for this current and compute the eigenval-
ues and eigenvectors. From these, we define a metric whose distance provides a
useful measure of correlation among variables. This is a very general method of
understanding correlation in various systems, in particular, long-range correlation,
or chaotic properties. As an example we show that these distances can be utilized
to control chaos in a simple dynamical system given by the logistic map.
Keywords: detailed balance, non-equilibrium, chaos, complex systems.

1 Introduction

When studying a system in nature, we often devise experiments whose goal
is to understand the interactions of a set of proposed variables. The ultimate
goal of these investigations is to try and discover how the variables interact
to form the underlying dynamical equations which govern the system. Often
though the system is so complicated that finding these unknown equations
is impossible. Instead of attempting to derive the underlying functions of a
system, we take a different approach. Just as the field of dynamical systems
uses graphical representations of systems that are difficult or impossible to
solve analytically. We use a graphical representation of the system which
comes from a master equation. The distances in this representation can be
used to understand the original system without having any knowledge of its
underlying functions which govern the system.
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This representation of a system is called the Observable Representation
(OR), it was originally developed by Schulman and Gaveau to try and un-
derstand non-equilibrium phase transitions, [4], [5]. Since its inception the
OR has been applied to Ising models [6], course graining [1] and the recon-
struction of coordinate spaces [2] among others. Coifmann et.al. have also
used an extremely similar spectral approach which has been applied to the
Fokker-Planck equation [3]. This paper will outline the notation of both the
detailed balance OR and our non-detailed balance extension of the OR, the
NOR. We will then show how to use this approach to control chaos in a sim-
ple dynamical system given by the Logistic map. Finally we will summarize
with a brief conclusion.

2 Observable Representation with detailed balance

The system which is being studied is represented by the NxN stochastic
matrix of transition probabilities Rxy. States of the system are given by
x, y ∈ X, X is a state space of cardinality N < ∞. The system moves
according to Rxy, Rxy is defined as,

Rxy = Pr(x← y) = Pr[state at (t+ 1) is x |state at t is y]. (1)

po(x) is a unique strictly positive stationary distribution such that
∑

x po =
1, and Rxypo(y) = po(x). There are several requirements of Rxy, the two
main ones are that

∑

xRxy = 1. We also require that Rxy is irreducible
and assume Rxy is diagonalizable though the ideas should carry over if Rxy

requires a Jordan form. These lead to an eigenvalue λo = 1 which corre-
sponds to the stationary probabilities po(x). We rearrange the eigenvalues
in decreasing magnitude, 1 = λo ≥ |λ1| ≥ |λ2| ≥ . . . ≥ |λN |. The eigenvec-
tors corresponding to each eigenvalue are reordered accordingly. The left and
right eigenvectors of Rxy are defined as,

Aα(x)
TRxy = λαA

T
α(y), RxyPα(y) = λαPα(x). (2)

The subscript α denotes column number while the argument of the eigen-
vector x or y denotes the row, T is the transpose. The slowest decaying
eigenfunctions of Rxy, will be the macroscopic “observables” which will give
the averaged quantities of the system. While the faster decaying eigenvectors
are the quickly fluctuating quantities of the system, which average themselves
out. It follows from the form of Rxy that ∃ a left eigenvector, Ao = 1, s.t.
AT

o R = AT
o . We normalize the eigenfunctions, Aj and Pk to form an or-

thonormal basis, 〈Aj |Pk〉 = δjk.
To see how the OR can be used to represent the coordinate space under-

lying system, we will build the basic structure of the Sierpinski fractal. This
self similar fractal at its heart consists of three points or states as we will refer
to them connected to form a triangle, with a smaller rotated triangle inside.

380



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

To find the coordinate space we first built an adjacency matrixWN×N of the
connections between the states of the system,

W =

















0 1 0 0 0 1
1 0 1 1 0 1
0 1 0 1 0 0
0 1 1 0 1 1
0 0 0 1 0 1
1 1 0 1 1 0

















(3)

Where each non zero value in Wxy says that the system can move from

state y to state x in one time step. This is normalized so that Rxy =
Wxy∑
x
Wxy

.

Diagonalizing Rxy and plotting A1, A2 in figure (1) we recover the basic
structure of the Sierpinski fractal. This process can be increased for as many
layers of the fractal as one wishes. A 3-D version can also be created using
the same process. This time plotting A1, A2 and A3 in figure (2).
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A
2

Fig. 1. Plotting the OR for the basic structure of the Sierpinski fractal. The lines
have been added in to show connections.

It was shown in [2] that using the left eigenvectors, one can create a
distance metric. The metric inequality is defined as,

∑

x

∣

∣

∣

∣

∣

Rxi −Rxj
√

po(x)

∣

∣

∣

∣

∣

≥

√

√

√

√

m
∑

α

|λα(Aα(i)− Aα(j))|
2
. (4)

The right hand side is the distance in the OR called, DOR. While the
left hand side is a distance using Rxy. m is the dimension of the OR, where
m ≤ N . The inequality says that states of the system, which are related
dynamically are also related in the OR. For the inequality to hold, Rxy must
satisfy detailed balance, which is defined as,
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Fig. 2. Plotting the OR for the basic structure of the 3-D Sierpinski fractal. The
lines have been added in to show connections.

Jxy = Rxypo(y)−Ryxpo(x) = 0. (5)

Though, even when Jxy 6= 0 the OR can often still recover the topology
of the underlying coordinate space for simple systems. The derivation of
the right hand side of equation (4) which represents the distance in the OR,
abbreviated DOR, relies on the eigenfunctions of Rxy having a one to one
relation with a similarly symmetric matrix, Sxy. When Jxy 6= 0 this is not
guaranteed. To recover the ability to relate distances in an OR, we define a
new matrix Bxy,

Bxy = Rxy −
Jxy

2po(y)
. (6)

Bxy is an NxN matrix which is column wise stochastic. This is due to
the fact that Jxy follows Kirchoff’s loop rule, that the amount of current into
a node is equal to the amount out. We also require Bxy to be irreducible.
It can easily be shown that Rxy and Bxy share the same unique stationary
distribution, po(x). There is at least one eigenvalue of order unity, νo = 1.
The rest we again reorder into decreasing magnitude, νo ≥ |ν1| ≥ . . . ≥ |νN |.
The right and left eigenvectors of Bxy are similarly defined as,

Bxyϕα(y) = ναϕα(x) Γα(x)
TBxy = ναΓα(y)

T . (7)

There is a relationship between the matrix Bxy and the corresponding
matrix Sxy, which can be shown to be symmetric even when Jxy 6= 0. The
symmetry in Sxy is what guarantees the completeness of the eigenvectors of
Bxy. The eigenvectors of Bxy and Sxy also share a relationship,
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ϕα(i)
√

po(i)
= ψα(i), Γα(i)

√

po(i) = ψα(i). (8)

Using Sxy and the left eigenvectors of Bij we can construct the non-
detailed balance version of the OR, which we denote the (NOR). As was done
in [2] we can also construct a distance metric where in equation (4) λα → να
and Aα(i) → Γα(i). The metric which we will call DNOR quantifies the
relationship between the dynamical relations of a system to its macroscopic
behavior when the system does not satisfy detail balance. The derivation of
our metric conveniently follows just as was done in [2]. This simple extension
opens up an entirely new class of systems to be studied using the NOR. As
an example we will control the chaotic properties of the logistic map when
its control parameter, a = 4.

3 Controlling chaos in the Logistic map

The Logistic map is defined as,

xn+1 =M(xn) = axn(1− xn), (9)

xn is the position of a test particle in the system on iteration n, a is the
control parameter which will be equal to 4 in the following. To control chaos
in this system we initially track how the position of particles changes over
many iterations and use this information to make, Rxy and Bxy. Bxy is then
used to find the distancesDNOR between course grained points in the domain
of the Logistic map. The minimum of the first off-diagonal of DNOR will be
the point that we perturb the system to when the Lyapunov exponents L, is
greater than 0. L is defined as,

L =
1

n

∑

i

log |M
′

(xn)|. (10)

We see in figure (3) that from 1 ≤ n ≤ 50, L > 0 for all the particles. From
n > 50 we start to perturb the system on each iteration which is 50 < n ≤ 75
until L ≤ 0 for all particles. From approximately n > 75 the system is
allowed to freely evolve unless L > 0 for a particle, then it is perturbed back
to the chosen position.

4 Conclusion

In this paper we have shown a general method for deciphering the interactions
of complex system when they no longer satisfy detailed balance. We have
then applied this to the toy problem of stopping chaos in the Logistic map.
Future work will consist of applying this method to real world system and
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Lyapunov exponents before and after adative noise is turned on

Fig. 3. The evolution of Lyapunov exponents for 100 particles in the Logistic map.
we see the Lyapunov exponents become greater than zero until we begin to perturb
the system at n = 50. Then the Lyapunov exponents approach and stay around
zero.

system with more variables. We will also address questions with regards to
the correct dimension of the OR and the NOR for a general system in future
publications. We would like to thank Paul Mitchener, Mike Ruderman, Chris
Nelson, Nabil freij and Stuart Mumford for their useful discussions.
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Abstract. The usual class of Markov processes which we involve many times has
some restrictions that it does not cover many interesting processes. We shall refer,
in this paper, to some problems involving stochastic calculus, diffusion approxima-
tion and Markov processes. In this context the problem of absorbing and reflecting
barriers is also discussed.
Keywords: stochastic differential equations, Markov chains, transition probabili-
ties, Brownian motion.

1 Introduction

When a stochastic differential equation is considered if it is allowed for some
randomness in some of its coefficients, it will be often obtained a so-called
stochastic differential equation which is a more realistic mathematical model
of the considered situation.

Many practical problems conduct us to the following notion: the equation
obtained by allowing randomness in the coefficients of a differential equation
is called a ”stochastic differential equation”.

Therefore, it is clear that any solution of a stochastic differential equation
must involve some randomness. In other words one can hope to be able to
say something about the probability distribution of the solutions.

In the sequel we shall refer to some aspects relating to the approximation
in the study of Markov processes and Brownian motion. Such problems were
developed particularly by Schuss[13], Kushner and Yin[5], Itô and McKean
Jr.[3], Wasan[14].

Results on almost sure convergence of stochastic approximation processes
are often proved by a separation of deterministic (pathwise) and stochastic
considerations. A key problem in effective applications concerns the amount
of noise in the observations, and this leads to variations that incorporate
variance reduction methods. With the use of these methods, the algorithm
becomes more effective, but also more complex. Hence, it is desirable to have
robust algorithms, which are not overly sensitive to unusually large noise
values.

More details and related topics can be found in Schuss[13], Kushner and
Yin[5], Itô and McKean Jr.[3], Itô[4], Øksendal[6], Øksendal and Sulem[7],
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Stroock[12], Orman[9], [10], Wasan[14] which are also the basis in our deve-
lopment.

2 Preliminaries

Definition 1. The sample space Ω of a random experiment is the collection
of all possible outcomes. An event A is a subset of the sample space, that is,
a set of outcomes.

Definition 2. A probability measure on a sample space Ω of a random ex-
periment is a function P[·] that maps events in Ω to real numbers such that:

(i) P[Ω] = 1,
(ii) P[A] ≥ 0 for all events A,

(iii) P
[⋃
i∈I

Ai

]
=
∑
i∈I

P [Ai] where I is a finite or countable infinite set of

integers and any pair of the events A1, A2, A3, · · · is disjoint.

Let us consider the triplet (Ω,K, P ) where

• Ω is the sample space. Its elements are referred to as sample points;
• K is a σ-field of subsets of Ω containing Ω itself. Its elements are events;
• P is a probability measure on the measurable space (Ω,K).

If an event A is of the type A = {ω ∈ Ω |R(ω)} for some property R(·),
(of the probability) we may write P (R) for P (A). An event is called a sure
event if P (A) = 1 and a null event if P (A) = 0. Alternatively, R(·) is said to
hold a.s. if P (R) = 1.

The triplet (Ω,K, P ) is referred to as a probability space.
Let now consider an experiment that is repeated n times and suppose

that m (m ≤ n) times the event B occurred. Also suppose that k times
(k ≤ m) the event A occurred, provided that B occurred. Then, the event
A ∩ B occurred k (k ≤ n) times, such that we have P (A ∩ B) = k

n . Now
k
n = m

n ·
k
m = P (B) · P (A |B). In this way the following relation is obtained

P (A ∩B) = P (B) · P (A |B) or

P (A |B) =
P (A ∩B)
P (B)

, P (B) > 0. (1)

P (A |B) in (1) is called a conditional probability whenever P (B) > 0. We
retain that the function

PB(A) = P (A |B) (2)

is a probability measure in B, where B is now considered as a smaller sample
space.
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Hence, the measure P (A |B) is the probability of the event A provided
that B occurs.

A fundamental concept of probability is the notion of random variable. A
random variable is a function that gives a numerical value to each outcome
of a random experiment. The distinction between the random variable and
the experimental outcome itself can become blurry in this case, because if ω
denotes an outcome, then X(ω) = ω. But we retain that the random variable
is a function and the outcome is its input. The domain of the random variable
is the sample space and that its range is a set of numbers.

Definition 3. Let (Ω,K, P ) be a probability space and let us denote by E
a subset of Rn. A random variable X is a function from Ω into E. We refer
to E as being the state space of the random variable.

So, a random variable encodes an experimental outcome as a number,
or a vector of real numbers in the multidimensional case. When a random
variable has a multidimensional state space, we emphasize that fact by calling
it a random space.

Let (E, ξ) be a measurable space and X : (Ω,K, P ) → (E, ξ) a random
variable (i.e. a measurable map). The image µ of P under X is a probability
measure on (E, ξ), called the law of X and denoted by L(X). The events
{ω |X(ω) ∈ A} for A ∈ ξ form a sub-σ-field of K called the σ-field generated
byX and denoted by σ(X). More gneral, given a familyXα, α ∈ I, of random
variables on (Ω,K, P ) taking values in measurable spaces (Eα, ξα), α ∈ I,
respectively, the σ-field generated by Xα, α ∈ I, denoted by σ(Xα, α ∈ I), is
the smallest sub-σ-field with respect to which they are all measurable. They
may be situations where it is preferable to view {Xα, α ∈ I} as a single
random variable taking values in the product space

∏
Eα endowed with the

product σ-field
∏
ξα. If so, this definition reduces to the preceding one.

Two (or more) random variables are said to agree in law if their laws
coincides. They could be defined on different probability spaces. A random
variable X(ω) generates a field (σ-field) KX of events generated by events of
the form {ω |X(ω) = a} where a is any number. The field consists of events
which are unions of events of the form {ω |X(ω) = a}. The probability
function P on the events of this field KX generated by X(ω) is called the
probability distribution of X(ω).

Suppose we have n random variable X1(ω), · · · , Xn(ω) defined on a pro-
bability space. The random variables X1, · · · , Xn are said to be independent
if the fields (σ-fields) KX1 , · · · , KXn

generated by them are independent.

Definition 4. A stochastic process is a parametrized collecion of random
variables

{Xt}t∈T

defined on a probability space (Ω,K, P ) and assuming values in Rn.
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The parameter space T may be the halfline [0,+∞), or it may also be an
interval [a, b], or the non-negative integers and even subsets of Rn, for n ≥ 1.

Now, for each t ∈ T fixed, we have a random variable ω → Xt(ω), ω ∈ Ω.
On the other hand, fixing ω ∈ Ω, we can consider the function

t→ Xt(ω), t ∈ T (3)

which is called a path of the random variable Xt. It is useful to think of t as
time and each ω as an individual particle or experiment. Thus, Xt(ω) would
represent the position (or the result) at time t of the particle (experiment)
ω. In some cases it is convenient to write X(t, ω) instead of Xt(ω), such that
the process can be regarded as a function of two variables (t, ω) → ψ(t, ω)
from T × Ω into Rn. In stochastic analysis this is often a natural point of
view, because there it is crucial to have X(t, ω) jointly measurable in (t, ω).

In this paper we shall denote a stochastic process by X(t).

3 Markov process and diffusion process

Definition 5. A stochastic process X(t) on [0, T ] is called a Markov process
if for n = 1, 2, 3, · · · and any sequences 0 ≤ t0 < t1 < · · · < tn ≤ T and
x0, x1, · · · , xn, the following equality is satisfied:

P (X(tn) < xn |X(tn−1) = xn−1, X(tn−2) = xn−2, · · · , X(t0) = x0) =
= P (X(tn) < xn |X(tn−1) = xn−1). (4)

The equation (4) means the fact that the process forget the past, provided
that tn−1 is regarded as the present.

Let ΩX be the state space of the random variables Xt. Take KX as the
σ-field of measurable subsets of ΩX . For convenience, assume that there is a
first point to the set T . The probability structure is specified in terms of an
initial probability measure and a transition probability function describing
how transitions take place from one time to another.

We denote by P (t0, A) a probability measure on the sets A of KX . This is
the probability distribution at the initial time t0. Further let the transition
probability function p(t, x; τ,A), t0 ≤ τ < t, x ∈ ΩX , A ∈ KX be a
function with the following properties:

i p(t, x; τ,A) is a probability measure in A ∈ KX for fixed t, x, τ ;
ii p(t, x; τ,A) is measurable in x with respect to KX for fixed t, τ, A;
iii p(t, x; τ,A) satisfies the integral equation (commonly called the Chapman-

Kolmogorov equation)

p(t, x; τ,A) =
∫
ΩX

p(s, y; τ,A)p(t, x; s, dy) (5)

for any s with t < s < τ .
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As it is shown in the theory of stochastic processes, the transition pro-
bability function p(t, x; τ,A) is the conditional probability

p(t, x; τ,A) = P [Xτ (ω) ∈ A |Xt(ω) = x]. (6)

Now the transition distribution function

F (t, x; τ, y) = P (Xτ (ω) < y |Xt(ω) = x) (7)

can be obtained, corresponding to the case when in p(t, x; τ,A) we take A of
the form (−∞, y). It verifies the following relation

F (t, x; τ, y) =
∫
R

F (s, z; τ, y)dzF (t, x; s, z).

Then, the transition density function with respect to y is as follows

f(t, x; τ, y) =
∂

∂y
F (t, x; τ, y), (8)

and verifies the equalities

F (t, x; τ, y) =

y∫
−∞

f(t, x; τ, z) dz,
∫
R

f(t, x; τ, y) dy = 1. (9)

Furthermore, the Markov property (4) implies that

f(t, x; τ, y) =
∫
R

f(s, z; τ, y)f(t, x; s, z)dz, t < s < τ (10)

that is, the probability that X(t) goes from x to y in the time interval [t, T ]
is that probability that X(·) goes to any point z at any time s and then,
independently of the way it reached z, it goes to y. The equality (10) is also
referred to as the Chapman-Kolmogorov equation for Markov processes.

In certain conditions of existence, the transition density function satisfies
the following two equations which are referred to as the backward Kolmogorov
equation and respective the forward Kolmogorov equation

∂f(t, x; τ, y)
∂t

= −a(t, x)
∂f(t, x; τ, y)

∂x
− 1

2
b(t, x)

∂2f(t, x; τ, y)
∂x2

(11)

and

∂f(t, x; τ, y)
∂τ

= − ∂

∂y
[a(τ, y)f(t, x; τ, y)] +

1
2
∂2

∂y2
[b(τ, y)f(t, x; τ, y)](12)

where a(t, x), b(t, x), a(τ, y), b(τ, y) are functions satisfying some condi-
tions to assure the existence and the uniqueness of the solution of the equa-
tions. The forward Kolmogorov equation is also referred to as the Fokker-
Planck equation.
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Definition 6. A Markov process X(t) is called a diffusion process if the
following conditions are satisfied:

i For every ε > 0, t and x,

lim
∆t→0

1
∆t

∫
|y−x|>ε

F (t, x, t+∆t, y)dy = 0. (13)

ii There exist the functions a(t, x) and b(t, x) such that for all ε > 0, t and
x,

lim
∆t→0

1
∆t

∫
|y−x|≤ε

(y − x) f(t, x, t+∆t, y)dy = a(t, x), (14)

lim
∆t→0

1
∆t

∫
|y−x|≤ε

(y − x)2 f(t, x, t+∆t, y)dy = b(t, x). (15)

The function a(t, x) is called the (infinitesimal) drift coefficient of X(t)
and b(t, x) is called the (infinitesimal) diffusion coefficient. The intuitive
meaning of conditions (13) - (15) and of the coefficients a(t, x) and b(t, x) is
the following. In a short time interval h, the displacement ofX(·) from a point
x at time t is given by a(t, x)∆t+ δx+ 0(∆t), where a(t, x) is the velocity of
the medium in which a particle (whose motion is described by X(·)) drifts, δx
is the random fluctuation of the particle due to random collision or thermal
fluctuation, a.s.o. Furthermore, E δx = 0, V ar δx = b(t, x)∆t. That is to
say b(t, x) is proportional to the average energy of the fluid molecules in the
neighborhood of the particle. One can observe that the following conditions
imply the conditions i and ii above:

(a) For any positive number δ, as ∆t→ 0

1
∆t

Ex,t |X(t+∆t)−X(t)|2+δ → 0

(b) and

1
∆t

Ex,t [X(t+∆t)−X(t)]→ a(t, x),

1
∆t

Ex,t [X(t+∆t)−X(t)]2 → b(t, x).

4 Absorbing and reflecing barriers

Let us consider that a particle located on a straight line moves along the line
via random impacts occurring at times t1, t2, t3, · · ·. The particle can be at
points with integral coordinates a, a+ 1, a+ 2, · · · , b. At points a and b there
are absorbing barriers. Each impact displaces the particle to the right with
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probability p and to the left with probability q = 1−p so long as the particle
is not located at a barrier. If the particle is at a barrier then, it remains in
the states A1 and An−1 with probability 1.

A similar example can be considered for a particle being in a random
walk, when at points a and b there are reflecting barriers. The conditions
remain the same as in the former case, the only difference being that if the
particle is at a barrier, any impact will transfer it one unit inside the gap
between the barriers.

1. Let now be the case of a Brownian motion with an absorbing barrier.
The forward Kolmogorov equation (12) for a Brownian motion on x > 0 with
an absorbing boundary at x = 0 is given by

∂p

∂t
=

1
2
∂2p

∂y2
in y > 0

p(0, t, y) = 0, t > 0, y > 0
p(x, t, y)→ δ(x− y) as t ↓ 0, x > 0, y > 0.

The solution of such an initial boundary value problem is as follows

p(x, t, y) =
1

t
√

2π

[
e−

(x−y)2

2t2 − e−
(x+y)2

2t2

]
.

It can be seen that by symmetry, p(x, t, 0) = 0. Then, it can be shown that

1
t
√

2π

∫ +∞

−∞
e−

(x+y)2

2t2 ϕ(x)dx→ ϕ(−y) = 0

as t ↓ 0 if y > 0. Therefore,

p(x, t, y)→ δ(x− y) as t ↓ 0 for all x > 0, y > 0.

2. Now let us consider the Brownian motion on x > 0 but with a reflection
barrier at the origin.

The forward Kolmogorov equation for a Brownian motion on x > 0 with
an absorbing boundary at x = 0 is given by

∂p

∂t
=

1
2
∂2p

∂y2
, y > 0

∂p(x, t, y)
∂y

∣∣∣∣
y=0

= 0

p(x, t, y)→ δ(x− y) as t ↓ 0, x > 0, y > 0.

In this case the following solution is found

p(x, t, y) =
1

t
√

2π

[
e−

(x−y)2

2t2 + e−
(x+y)2

2t2

]
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and the condition

∂p(x, t, y)
∂x

∣∣∣∣
x=0

= 0

holds too.
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Abstract: In this communication, we discuss the dynamical behaviour of driven simple 

pendulum under the effect of nonlinear damping.  We particularly consider the nonlinear 

damping term proportional to the power of velocity and focus our attention on how the 

damping exponent affects the global dynamical behaviour of the forced pendulum.  We 
obtain analytically the threshold condition for the occurrence of homoclinic bifurcation 

using Melnikov technique and compare the results with the computational results. We 

also identify the regions of the 2D parameter space (consists of external forcing 

amplitude and damping coefficient) corresponding to the various types of asymptotic 
dynamics under linear (viscous or friction like) and nonlinear (drag like) damping. We 

also analyse how basin of attraction patterns corresponding to various attractors change 

with the introduction of nonlinear damping as well as damping strength. 

Keywords: Chaos, driven pendulum, nonlinear damping, Melnikov analysis  

 
Nonlinearity is abundant in nature. It is having an increasingly important impact 

on a variety of applied subjects ranging from the study of turbulence and the 

behavior of weather, through the investigation of electrical and mechanical 

oscillations in engineering systems, to the analysis of various biological, 

ecological and economic phenomena. The nonlinearity in the dynamical systems 

may exist in various forms e.g., in a mechanical system: the nonlinearity may be 

due to the presence of nonlinear elastic/spring elements, nonlinear damping, 

systems with fluids, nonlinear boundary conditions etc., in an electromagnetic 

system: the nonlinear resistive, inductive, capacitive elements, hysteresis 

properties of ferromagnetic materials, nonlinear active elements like vacuum 

diode, transistor etc. may be responsible for nonlinearities in the system. The 

oscillatory motion of driven simple pendulum has been the most investigated 

motion in physics as well as in various fields of science and technology. The 

driven simple pendulum is one of the most common examples of nonlinear 

systems [1] (under the large amplitude oscillations) exhibiting chaotic motion 

and it is also isomorphic to many nonlinear systems such as Josephson junctions 

and the phase-locked-loop configuration of a voltage-controlled oscillator 

(VCO) etc [2, 3].  It is very important to point out here that seemingly simple 

situation of a driven pendulum is quite complex due to fact that the parameter 

space is very large. Besides the amplitude and frequency of the driving force, 

one has to investigate the role of strength of dissipation/damping as the 

simultaneous consideration of supply and dissipation of energy in the oscillatory 

system decides the boarder of stability and instability.  In addition to this the 
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type of dissipation/damping (whether linear or nonlinear) also plays a major role 

in deciding the global dynamical behavior of the oscillator [4]. During the last 

decade there has been a growing interest to study some of the ubiquitous 

nonlinear physical oscillators (e.g. forced Duffing, escape oscillator, Rayleigh-

Duffing oscillator etc.) under the presence of nonlinear damping [4-8] due to the 

fact that the nonlinear dissipation/damping is necessary in several engineering 

applications such as rolling in ship dynamics [9], vibration isolators [10], drag 

forces in flow induced vibrations [11] etc. 

The simple pendulum is essentially a nonlinear dynamical system modeled by a 

second order nonlinear differential equation but in many practical situations it is 

described by a linear differential equation due to small amplitude oscillations.  

Very few nonlinear systems can be solved explicitly hence one has to resort to 

numerical techniques to understand the dynamics of such systems.   

 
 

Fig. 1. The plot of  ( )         for     , (b) phase trajectories of 

undamped and unforced simple pendulum 

 

We consider the following form of generalized driven simple pendulum to 

understand the effect of nonlinear damping on its global dynamical behavior 
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Here, α is the damping coefficient,   is damping exponent, F and ω respectively 

are the amplitude and frequency of driving force.  The unperturbed and 

undamped system can be written as (i.e. α=0 and F = 0) 

  ̇     

  ̇        ,               (2) 

which is equivalent to the unit mass particle moving in negative cosine potential 

(i.e.  ( )        , Fig. 1(a)). The unperturbed system has centers at (nπ,0) 
for n = 0, ±2, ±4….. and saddle points at (nπ,0) for n = ±1, ±3, ±5…….. as the 

equilibrium points. In fig 1(b), we have depicted the phase space trajectories for 

the system (2) with     (i.e a unit mass particle in a cosine potential which 

has minima at      and local maxima at  (    ) , where n=0, 1, 2, 3 …… 

as shown in Fig 1(a)).  

 
Fig. 2. Critical value of forcing amplitude Fc : (a) as a function of damping 

coefficient α for     ,       and p = 1, 2 and 3,  (b) as a function of 

external frequency ω for     ,       and p = 1, 2 and 3. 
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Fig. 3. Dynamical behavior of driven simple pendulum under linear/viscous 

damping (p = 1) as a function of forcing amplitude (F) for           and 

      : (a) bifurcation diagram showing route to chaos, (b) all three Lyapunov 

exponents and (c) the Kaplan-Yorke dimension. 

 

The solution of the unperturbed system (2) obtained by integrating it is given as 
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  ̇ ( )   √     [√  ]     (4) 
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Fig. 4. Dynamical behavior of driven simple pendulum under drag like damping 

(p = 2) as a function of forcing amplitude (F) for           and       : 
(a) bifurcation diagram showing route to chaos, (b) all three Lyapunov 

exponents and (c) the Kaplan-Yorke dimension. 
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function give the critical value of the forcing amplitude (for a given set of other 

system parameters α, p, β and ω) for which the distance between stable and 

unstable manifolds becomes zero and a homoclinic orbit originates. The 

Melnikov function for the driven simple pendulum with nonlinear damping (Eq. 

(1)) is given by 

 (  )  ∫  ̇ (    )[   ̇ (    )| ̇ (    )|
          ]  

 

  
 (5) 

 (  )    ∫ [ ̇ (    )]
 | ̇ (    )|

       ∫  ̇ (    )     
 

  
  

 

  
   (6) 

Using Eq. (4) and then evaluating the integrals, we obtain  

 (  )    
     

 
 ⁄  (

 

 
 
   

 
)   √        

∑ (  )   
⌊√    ⁄ ⌋

     √     (
(    )  

 √ 
)

[      (  )]
  (7) 

Here  (   )  and ⌊ ⌋ respectively, are the Euler beta and floor functions. For a 

given set of parameters F, α, p, β and ω,  (  ) will vanish if a real solution can 

be found for   . Assuming that F, α, β >0, the above condition will be met if 
|      |     Hence 

     
       

 
    (

 

 
 
   

 
)[       (  )]

 ∑ (  )       (
(    )  

 √ 
)

⌊√    ⁄ ⌋
   

                       (8) 

The above formula (Eq. 8) gives the critical value of forcing amplitude (  ) 
where homoclinic orbit originates for a unit mass particle in a driven negative 

cosine potential. In Figure 2 we have shown the theoretical comparison of the 

variation of critical values of forcing amplitude (  ): particularly in Frame (a) 

the variation of    with damping coefficient (α) for a specific choice of external 
forcing frequency       and β=1  (i.e.,     (   ) 

  (  ⁄  (   ) 
 )    (  ⁄ )) and different values of damping exponent p = 1, 2 and 3. In 

Frame (b) the variation of    with external forcing frequency (ω) for a specific 

choice of damping coefficient       and β=1 (i.e., 

   (   ) 
    (  ⁄  (   )  )    (   ⁄ )) and different values of 

damping exponent p = 1, 2 and 3 have been depicted. It is clear that    linearly 

increases with the damping coefficient (α) and for a fixed set of α and β, Fc 

increases with damping exponent  .  However    increases exponentially with 

the external forcing frequency (ω) and for a fixed set of ω and β, Fc increases 

with damping exponent  . The variation of critical value of forcing amplitude 

(  ) with respect to the damping exponent   in case of driven simple pendulum 

is opposite to the case of forced Duffing oscillator [4]. To understand the 

various features of the dynamical behavior of driven simple pendulum under the 

nonlinear damping we have done extensive numerical computation for the 

bifurcation diagrams, Lyapunov exponent and Kaplan Yorke dimension for 

various types of damping i.e. p=1 and 2.  The results have been depicted in 

Figures 3 and 4.   We observe that the number of periodic windows decreases as 

we increase the damping exponent (p) and the range of external forcing 

amplitude (F) for which chaos exists also decreases with the increment in the 

damping exponent (p).  The Lyapunov exponent results shown in frames (b) of 

each figures are computed by integrating the system up to upto       with the 

step size         and then averaged. The results of corresponding Kalpan 

Yorke Dimension for phase space attractor are shown in frames (c) of each 
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figure. The Kaplan Yorke Dimension [13] is calculated using the following 

relation:       ∑
  

    

 
   , where     is Kaplan Yorke Dimension and   

is the largest integer for which sum of first m Lyapunov exponents is positive.   

 

 
Fig. 5. Parameter space consisting of external forcing amplitude and damping 

coefficient corresponding to chaotic and periodic behavior in the driven simple 

pendulum for          ⁄ under: (a) linear/viscous damping (p = 1), (b) 

drag like damping (p = 2). 
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Lyapunov exponent (LLE), we have integrated the system and averaged the 

results up to          with a time step           . The different 

regions of parameter space corresponding to chaotic and period behavior are 

shown with different colors in Figure 5. The whole parameter space region is 

divided into four sub-regions corresponding to different range of largest 

Lyapunov exponent (LLE). The periodic regions is shown by the light-blue/cyan 

(        ) and blue (          ) colors whereas the chaotic regions is 

shown by yellow (           ) and red (              ) colors. 

We may clearly observe that the chaos becomes less fragile i.e. the number of 

periodic windows decreases as we increase the damping exponent (p), which is 

also confirmed by corresponding bifurcation diagrams. We also observe that 

chaos is less global in the parameter space with the increase in the nonlinearity 

in the damping.  

We have also calculated the percentage of the regions of parameter space 

corresponding to chaotic and periodic motions. The results are summarized in 

Table 1, which confirms that chaotic region is decreasing with the increase in 

damping exponent. These results are opposite in nature as compare to the case 

of forced Duffing oscillator [4]. 
Table 1: Comparison of the regions of parameter space corresponding to chaotic and 

periodic motions 

 Colour P=1 P=2 

Chaos 

Red                16.07% 

 31.67% 

5.64% 

14.55% 
Yellow             

 
15.60% 8.91% 

Periodic 

Blue            

 
40.32% 

68.33% 

44.46% 

85.45% 
Light Blue          

 
28.01% 40.99% 

 

To observe the effect of nonlinear damping on the fractalness and complexity of 

basin boundaries, we have computed the basin of attraction patterns for a set of 

initial conditions defined by              and        ̇       with 

steps         and   ̇       for p =1 and 2. In Figure 6 one such 

comparison is shown between the basin of attraction patterns for a period-1 

attractor observed at the forcing amplitude values        and        for 

viscous (p=1) and drag like damping (p=2) (by fixing the other parameters at 

α=0.5,       and β=1) respectively.   For the driven simple pendulum there 

are two stable rotary modes with average components of angular velocity either 

positive or negative for different basins. The phase portraits of these modes are 

shown in frame (a), (b), (e) and (f) of Figure 6.  For drawing the basin of 

attractions we have considered          different initial conditions defined 

by              and        ̇       with steps         and   ̇  
    . For each pair of initial condition we calculate the trajectory over many 

cycles and then average the angular velocity. To eliminate transient effect, the 

first 100 cycles are discarded. The two basins of attraction are distinguished by 
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the sign of average of angular velocity. For positive average velocity we assign 

the green color and for negative average velocity we assign the red color. 

 

 
Fig. 6. Comparison of the basin of attraction patterns of a period-1 attractors in 

driven pendulum under the linear/viscous damping (p=1) and drag like damping 

(p=2) for the parameters         ⁄                   and   
      ⁄                   respectively 

 

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0
p = 2

 = 0.5

F = 1.70

y = a+b*x

a = -1.03419

b = 1.91306

Log10(r)

Lo
g

10
C

(r
)

 

 

  

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

y = a+b*x

a = -0.91572

b = 1.99739

 

 

Lo
g

10
C

(r
)

Log10(r)

p = 1

 = 0.5

F = 1.35

(a) 

(b) (f) 

(e) 

(c) 

P=1 

(g) 

P=2 

401



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

The results of basins of attractions patterns are shown in frame (c) and (g) of 

Figure 6. From the first visualization it appears that the basin of attraction 

patterns become more complex due to nonlinear damping. To quantify the 

fractalness of these basins of attraction patterns, we have also computed the 

correlation dimension [14] for these patterns by converting them into binary 

images (each points in these patterns has been considered as a pixel and the 

positive average velocity and negative average velocity respectively are denoted 

by 1 and 0). Then we calculate the correlation dimension of the object 

represented by all nonzero pixels. The results have been depicted in the frames 

(d) and (h) of Figure 6 respectively for the basin patterns shown in Frames (c) 

and (g) of same figure and the correlation dimension values respectively are 

1.99739 and 1.91306. Hence the increase in the order of nonlinear damping does 

not increase the fractalness of the basin boundaries.  

In conclusion, we have revisited the driven simple pendulum to observe the 

effect of nonlinear damping on the global dynamical behavior.  Overall the 

effect of nonlinear damping on the dynamics of driven simple pendulum is 

opposite in nature as compare to the forced Duffing oscillator. 
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Abstract: Tsallis q-extension of statistics and fractal generalization of dynamics are two 

faces of the same physical reality, as well as the Kernel modern complexity theory. The 

fractal generalization dynamics is based at the multiscale – multifractal characters of 

complex dynamics in the physical space-time and the complex system’s dynamical 

phase space. Tsallis q-triplet of non-extensive statistics can be used for the experiment 

test of q-statistic as well as of the fractal dynamics. In this study we present indicative 

experimental verifications of Tsallis theory in various complex systems such as solar 

plasmas, (planetic magnetospheres, cosmic stars and cosmic rays), atmospheric 

dynamics, seismogenesis and brain dynamics. 

Keywords: Tsallis non-extensive statistics, Non-equilibrium phase transition, 

intermittent turbulence, Self Organized Criticality, Low Dimensional Chaos, 

Magnetosphere, Superstorm.  

 

 

1. Introduction 
 

Physical theory today has been led into admirable experience and knowledge. 

Namely, at all levels of physical reality a global ordering principle is operating. 

Prigogine [1], Nicolis [2], Davies [3], El Naschie [4], Iovane [5], Nottale [6], 

Castro [7]. All classical physical theory dominates the Demokritean and 

Euclidean reductionistic point of view. That is, cosmos is created from 

elementary particles which obey to the fundamental laws, space consists of 

points and time from moments points or moments have zero measure. In 

Einstein’s relativistic physical theory Democritean (elementary material 

particles) and Euclidian (points, space, point view) are joined into a unified 

physical entity that of the space time manifold. Here, geometry explains physics 

since the forces-fields are identified with the curvature of the space-time 

manifold. Although Einstein showed, with a rare genius way, the unity of 

universe through a mathematization and geometrization modification of the 

cosmos subject-matter, however he didn’t escape from the reductionistic and 

deterministic point of view [8]. According to this concept, the observed and 

macroscopic reality is illusion as the only existed reality is the fundamental 

geometrical and objective reality of the space-time manifold in general. This is 

the Democritian, Parmenidian, Euclidian, Spinozian point of view. 
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The overthrow of the dogmatic determinism and reductionism in science started 

to be realized after the novel concept of Heisenberg according to which the 

physical magnitude properties are not objective and divided realities but 

operators as the dynamical states are infinite dimensional vectors. This new 

concept of Heisenberg led to a new theoretical status corresponding to a 

microscopical complexity point view of cosmos. Neuman inspired from 

Heisenberg’s novel theory introduced non-commutatively in geometry, 

according to which Space does not consist of points but from “states”. In 

addition, superstring theory forced physicists to introduce non-commutatively 

at the Planck scale of space-time, confirming Neuman’s as well as Heisenberg’s 

intuition. This, of course, was the initiation of an avalanche of serious of 

changes in the fundamentals of physical theory, corresponding to new 

theoretical concepts as: poly-dimensional and p-adic physics, scale relativity 

fractal dynamics and fractal space-time etc El Naschie [4], Khrenminov [9], 

Nottale [6], Castro [7], Kroger [10], Pezzaglia [11], Tarasov [12], El-Naboulsis 

[13], Gresson [14], Goldfain [15]. 

 

Prigogine [1] and Nicolis [2] were the principal leaders of an outstanding 

transition to the new epistemological ideas in the macroscopical level. Far from 

equilibrium they discover an admirable operation of the physical-chemical 

systems. That is, the discovered the possibility of long range spatiotemporal 

correlations development when the system lives far from equilibrium. Thus, 

Prigogine and Nicolis opened a new road towards to the understanding of 

random fields and statistics, which lead to a non-Gaussian reality. This behavior 

of nature is called Self-Organization. Prigogine’s and Nicoli’s self-organized 

concepts inspired one of the writers of this paper to introduce the self 

organization theory as basic tool to interpret the dynamics of the space plasmas 

dynamics [16] as well as seismogenesis [17] as a result of the self organization 

of Earth’s manage-crust system. However Lorenz[18] had discovered the 

Lorenz’s attractor as the weather’s self organization process while other 

scientists had observed the self organization of fluids (e.g. dripping faucet 

model) or else, verifying the Feinebaum [19] mathematical scenarios to 

complexity includes in nonlinear maps or Ordinary Differential Equations – 

Partial Differential Equations [20]. However, scientists still now prefers to 

follow the classical theory, namely that macro-cosmos is just the result of 

fundamental laws which can be traced only at the microscopical level. 

Therefore, while the supporter of classical reductionistic theory considers the 

chaos and the self organization macroscopic characteristics that they ought to 

be the result of the fundamental Lagrangian or the fundamental Hamiltonian of 

nature, there is an ongoing a different perception. Namely, that macroscopic 

chaos and complexity not only cannot be explained by the hypothetical 

microscopic simplicity but they are present also in the microscopic reality.  

 

Therefore, scientists like Nelson [21], Hooft [22], Parisi [23], Beck [24] and 

others used the complexity concept for the explanation of the microscopic 
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“simplicity”, introducing theories like stochastic quantum field theory or 

chaotic field theory. This new perception started to appear already through the 

Wilsonian theories of renormalization which showed the multiscale cooperation 

of the physical reality [25]. At the same time, the multiscale cooperativity goes 

with the self similarity characters of nature that allows the renormalization 

process. This leads to the utilization of fractal geometry into the unification of 

physical theories, as the fractal geometries are characterized by the scaling 

property which includes the multiscale and self similar character. Scientists like 

Ord [26], El Naschie [4], Nottale [6] and others, will introduce the idea of 

fractal geometry into the geometry of space-time, negating the notion of 

differentiability of physical variables. The fractal geometry is connected to non-

commutative geometry since at fractal objects the principle of self similarity 

negates the notion of the simple geometrical point just like the idea of 

differentiability. Therefore, the fractal geometry of space-time is leading to the 

fractal extension of dynamics exploiting the fractal calculus (fractal integrals- 

fractal derivatives) [27]. Also, the fractal structure of space-time has 

intrinsically a stochastic character since a presupposition for determinism is 

differentiability [6, 14]. Thus, in this way, statistics are unified with dynamics 

automatically, while the notion of probability obtains a physical substance, 

characterized as dynamical probabilism. The ontological character of 

probabilism can be the base for the scientific interpretation of self-organization 

and ordering principles just as Prigogine [1] had imagined, following 

Heisenberg’s concept. From this point of view, we could say that contemporary 

physical theory returns to the Aristotetiles point of view as Aristotelianism 

includes the Newtonian and Democritian mechanistical determinism as one 

component of the organism like behavior of Nature [28]. 

 

Modern evolution of physical theory as it was described previously is 

highlighted in Tsallis q-statistics generalization of the Boltzmann-Gibbs 

statistics which includes the classical (Gaussian) statistics, as the q=1 limit of 

thermodynamical equilibrium. Far from equilibrium, the statistics of the 

dynamics follows the q-Gaussian generalization of the B-G statistics or other 

more generalized statistics. At the same time, Tsallis q-extension of statistics 

can be produced by the fractal generalization of dynamics. The traditional 

scientific point of view is the priority of dynamics over statistics. That is 

dynamics creates statistics. However for complex system their holistic 

behaviour does not permit easily such a simplification and division of dynamics 

and statistics. Tsallis q − statistics and fractal or strange kinetics are two faces 

of the same complex and holistic (non-reductionist) reality. 

Moreover, the Tsallis statistical theory including the Tsallis extension of 

entropy to what is known as q-entropy [29], the fractal generalization of 

dynamics [6, 7] and the scale extension of relativity theory C [6, 7] are the 

cornerstones of modern physical theory related with nonlinearity and non-

integrability as well as with the non-equilibrium ordering and self organization. 

In the following, in section (2) we present the theoretical concepts of q-statistics 

and fractal dynamics, while in section (3) we present indicative experimental 
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verification of the Tsallis statistical theory. Finally in section (4) we present 

estimations of q-statistics index for various kinds of complex systems and in 

section (5) we summarize and discuss the results of this study. 

 

2. Theoretical Concepts 

 

2.1 Complexity Theory and the Cosmic Ordering Principle 
 

The conceptual novelty of complexity theory embraces all of the physical 

reality from equilibrium to non-equilibrium states. This is noticed by Castro [7] 

as follows: “…it is reasonable to suggest that there must be a deeper 

organizing principle, from small to large scales, operating in nature which 

might be based in the theories of complexity, non-linear dynamics and 

information theory which dimensions, energy and information are intricately 

connected.” [7]. Tsallis non-extensive statistical theory [29] can be used for a 

comprehensive description of space plasma dynamics, as recently we became 

aware of the drastic change of fundamental physical theory concerning physical 

systems far from equilibrium. 

The dynamics of complex systems is one of the most interesting and persisting 

modern physical problems including the hierarchy of complex and self-

organized phenomena such as: intermittent turbulence, fractal structures, long 

range correlations, far from equilibrium phase transitions, anomalous diffusion 

– dissipation and strange kinetics, reduction of dimensionality etc [30-37]. 

More than other scientists, Prigogine, as he was deeply inspired by the arrow of 

time and the chemical complexity, supported the marginal point of view that the 

dynamical determinism of physical reality is produced by an underlying 

ordering process of entirely holistic and probabilistic character at every 

physical level. If we accept this extreme scientific concept, then we must accept 

also for complex systems the new point of view, that the classical kinetic is 

inefficient to describe sufficiently the emerging complex character as the 

system lives far from equilibrium. However resent evolution of the physical 

theory centered on non-linearity and fractality shows that the Prigogine point of 

view was so that much extreme as it was considered at the beginning. 

   After all, Tsallis q − extension of statistics [29] and the fractal extension for 

dynamics of complex systems as it has been developed by Notalle [6], El 

Naschie [4], Castro [7], Tarasov [12], Zaslavsky [38], Milovanov [32], El 

Nabulsi [13], Cresson [14], Coldfain [15], Chen [39], and others scientists, they 

are the double face of a unified novel theoretical framework, and they constitute 

the appropriate base for the modern study of non-equilibrium dynamics as the 

q-statistics is related at its foundation to the underlying fractal dynamics of the 

non-equilibrium states. 

 

For complex systems near equilibrium the underlying dynamics and the 

statistics are Gaussian as it is caused by a normal Langevin type stochastic 

process with a white noise Gaussian component. The normal Langevin 
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stochastic equation corresponds to the probabilistic description of dynamics by 

the well-known normal Fokker – Planck equation. For Gaussian processes only 

the moments-cummulants of first and second order are non-zero, while the 

central limit theorem inhibits the development of long range correlations and 

macroscopic self-organization, as any kind of fluctuation quenches out 

exponentially to the normal distribution. Also at equilibrium, the dynamical 

attractive phase space is practically infinite dimensional as the system state 

evolves in all dimensions according to the famous ergodic theorem of 

Boltzmann – Gibbs statistics. However, in Tsallis q − statistics even for the 

case of 1q = (corresponding to Gaussian process) the non-extensive character 

permits the development of long range correlations produced by equilibrium 

phase transition multi-scale processes according to the Wilson RGT [40]. From 

this point of view, the classical mechanics (particles and fields), including also 

general relativity theory, as well as the quantum mechanics – quantum field 

theories, all of them are nothing else than a near thermodynamical equilibrium 

approximation of a wider theory of physical reality, characterized as complexity 

theory. This theory can be related with a globally acting ordering process which 

produces the q − statistics and the fractal extension of dynamics classical or 

quantum. 

   Generally, the experimental observation of a complex system presupposes 

non-equilibrium process of the physical system which is subjected to 

observation, even if the system lives thermodynamically near to equilibrium 

states. Also experimental observation includes discovery and ascertainment of 

correlations in space and time, as the spatio-temporal correlations are related or 

they are caused by from the statistical mean values fluctuations. The theoretical 

interpretation prediction of observations as spatial and temporal correlations – 

fluctuations is based on statistical theory which relates the microscopic 

underling dynamics with the macroscopic observations indentified to statistical 

moments and cumulants. Moreover, it is known that statistical moments and 

cumulants are related to the underlying dynamics by the derivatives of the 

partition function ( Z ) to the external source variables ( J ) [41]. 

   From this point of view, the main problem of complexity theory is how to 

extend the knowledge from thermodynamical equilibrium states to the far from 

equilibrium physical states. The non-extensive q − statistics introduced by 

Tsallis [29] as the extension of Boltzmann – Gibbs equilibrium statistical theory 

is the appropriate base for the non-equilibrium extension of complexity theory. 

The far from equilibrium q − statistics can produce the q -partition function 

( qZ ) and the corresponding q − moments and cumulants, in correspondence 

with Boltzmann – Gibbs statistical interpretation of thermodynamics. 

   The miraculous consistency of physical processes at all levels of physical 

reality, from the macroscopic to the microscopic level, as well as the 

inefficiency of existing theories to produce or to predict the harmony and 

hierarchy of structures inside structures from the macroscopic or the 

microscopic level of cosmos. This completely supports or justifies such new 

409



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 

 

concepts as that indicated by Castro [7]: “of a global ordering principle or that 

indicated by Prigogine, about the becoming before being at every level of 

physical reality.” The problem however with such beautiful concepts is how to 

transform them into an experimentally testified scientific theory. 

 

The Feynman path integral formulation of quantum theory after the 

introduction of imaginary time transformation by the Wick rotation indicates 

the inner relation of quantum dynamics and statistical mechanics [42, 43]. In 

this direction it was developed the stochastic and chaotic quantization theory 

[22-24, 44], which opened the road for the introduction of the macroscopic 

complexity and self-organization in the region of fundamental quantum field 

physical theory. The unified character of macroscopic and microscopic 

complexity is moreover verified by the fact that the n − point Green functions 

produced by the generating functional ( )W J of QFT after the Wick rotation 

can be transformed to n − point correlation functions produced by the partition 

function ( )Z J of the statistical theory. This indicates in reality the self-

organization process underlying the creation and interaction of elementary 

particles, similarly to the development of correlations in complex systems and 

classical random fields Parisi [23]. For this reason lattice theory describes 

simultaneously microscopic and macroscopic complexity [40, 42]. 

   In this way, instead of explaining the macroscopic complexity by a 

fundamental physical theory such as QFT, Superstring theory, M-theory or any 

other kind of  fundamental theory we become witnesses of the opposite fact, 

according to what Prigogine was imagining. That is, macroscopic self-

organization process and macroscopic complexity install their kingdom in the 

heart of reductionism and fundamentalism of physical theory. The 

Renormalizable field theories with the strong vehicle of Feynman diagrams that 

were used for the description of high energy interactions or the statistical theory 

of critical phenomena and the nonlinear dynamics of plasmas [45] lose their 

efficiency when the complexity of the process scales up [40]. 

   Many scientist as Chang [31], Zelenyi [30], Milovanov [32], Ruzmaikin [33], 

Abramenko [36], Lui[46], Pavlos[37], in their studies indicate the statistical 

non-extensivity as well as the multi-scale, multi-fractal and anomalous – 

intermittent character of fields and particles in the space plasmas and other 

complex systems far from equilibrium. These results verify the concept that 

space plasmas and other complex systems dynamics are part of the more 

general theory of fractal dynamics which has been developed rapidly the last 

years. Fractal dynamics are the modern fractal extension of physical theory in 

every level. On the other side the fractional generalization of modern physical 

theory is based on fractional calculus: fractional derivatives or integrals or 

fractional calculus of scalar or vector fields and fractional functional calculus 

[12, 39]. It is very impressive the efficiency of fractional calculus to describe 

complex and far from equilibrium systems which display scale-invariant 

properties, turbulent dissipation and long range correlations with memory 
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preservation, while these characteristics cannot be illustrated by using 

traditional analytic and differentiable functions, as well as, ordinary differential 

operators. Fractional calculus permits the fractal generalization of Lagrange – 

Hamilton theory of Maxwell equations and Magnetohydrodynamics, the Fokker 

– Planck equation Liouville theory and BBGKI hierarchy, or the fractal 

generalization of QFT and path integration theory [12-15, 39]. 

   According to the fractal generalization of dynamics and statistics we conserve 

the continuity of functions but abolish their differentiable character based on 

the fractal calculus which is the non-differentiable generalization of 

differentiable calculus. At the same time the deeper physical meaning of fractal 

calculus is the unification of microscopic and macroscopic dynamical theory at 

the base of the space – time fractality [4, 6, 39, 47-49]. Also the space-time is 

related to the fractality – multi-fractality of the dynamical phase – space, whish 

can be manifested as non-equilibrium complexity and self-organization. 

Moreover fractal dynamics leads to a global generalization of physical theory as 

it can be related with the infinite dimension Cantor space, as the microscopic 

essence of physical space – time, the non-commutative geometry and non-

commutative Clifford manifolds and Clifford algebra, or the p-adic physics [4, 

7, 13, 50, 51]. According to these new concepts introduced the last two decades 

at every level of physical reality we can describe in physics complex structure 

which cannot be reduced to underlying simple fundamental entities or 

underlying simple fundamental laws. Also, the non-commutative character of 

physical theory and geometry indicates [51, 52] that the scientific observation is 

nothing more than the observation of undivided complex structures in every 

level. Cantor was the founder of the fractal physics creating fractal sets by 

contraction of the homogenous real number set, while on the other side the set 

of real numbers can be understood as the result of the observational coarse 

graining [27, 50, 53]. From a philosophical point of view the mathematical 

forms are nothing else than self-organized complex structures of the mind-

brain, in self-consistency with all the physical reality. On the other side, the 

generalization of Relativity theory to scale relativity by Nottale [6] or Castro 

[7] indicates the unification of microscopic and macroscopic dynamics through 

the fractal generalization of dynamics.    

   After all, we conjecture that the macroscopic self-organization related with 

the novel theory of complex dynamics, as they can be observed at far from 

equilibrium dynamical physical states, are the macroscopic emergence result of 

the microscopic complexity which can be enlarged as the system arrives at 

bifurcation or far from equilibrium critical points. That is, far from equilibrium 

the observed physical self-organization manifests the globally active ordering 

principle to be in priority from local interactions processes. We could 

conjecture that is not far from thruth the concept that local interactions 

themselves are nothing else than local manifestation of the holistically active 

ordering principle. That is what until now is known as fundamental lows is the 

equilibrium manifestation or approximation of the new and globally active 

ordering principle. This concept can be related with the fractal generalization of 

dynamics which is indentified with the dynamics of correlations supported by 
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Prigogine [1], Nicolis [2] and Balescu [54], as the generalization of Newtonian 

theory. This conjecture concerning the fractal unification of macroscopic and 

microscopic dynamics at can be strongly supported by the Tsallis nonextensive 

q-statistics theory which is verified almost everywhere from the microscopic to 

the macroscopic level [7, 29]. From this point of view it is reasonable to 

support that the q-statistics and the fractal generalization of space plasma 

dynamics is the appropriate framework for the description of their non-

equilibrium complexity. 

 

2.2 Chaotic Dynamics and Statistics 
 

The macroscopic description of complex systems can be approximated by non-

linear partial differential equations of the general type: 

( , )
( , )

U x t
F u

t
λ

∂
=

∂

r r
rr r

    (1) 

where u  belongs to a infinite dimensional state (phase) space which is a 

Hilbert functional space. Among the various control parameters, the plasma 

Reynold number is the one which controls the quiet static or the turbulent 

plasma states. Generally the control parameters measure the distance from the 

thermodynamical equilibrium as well as the critical or bifurcation points of the 

system for given and fixed values, depending upon the global mathematical 

structure of the dynamics. As the system passes its bifurcation points a rich 

variety of spatio-temporal patterns with distinct topological and dynamical 

profiles can be emerged such as: limit cycles or torus, chaotic or strange 

attractors, turbulence, Vortices, percolation states and other kinds of complex 

spatiotemporal structures [31, 49, 55-63]. 

 

Generally chaotic solutions of the mathematical system (1) transform the 

deterministic form of equation (1) to a stochastic non-linear stochastic system: 

( , ) ( , )
u

u x t
t

λ δ
∂

= Φ +
∂

r
r rr r r

   (2) 

where ( , )x tδ
r r

corresponds to the random force fields produced by strong 

chaoticity [64, 65]. 

   The non-linear mathematical systems (1-2) include mathematical solutions 

which can represent plethora of non-equilibrium physical states included in 

mechanical, electromagnetic or chemical and other physical systems which are 

study here. 

 

The random components ( ( , )x tδ
r

) are related to the BBGKY hierarchy: 

[ , ] , 1, 2,...,
q

q a q

f
H f S q N

t

∂
= + =

∂
   (3) 
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where qf  is the q − particle distribution function, qH  is the q − th 

approximation of the Hamiltonian q − th correlations and qS  is the statistical 

term including correlations of higher than q-orders [45, 65]. 

 

The non-linear mathematical systems (1, 2) correspond to the new science 

known today as complexity science. This new science has a universal character, 

including an unsolved scientific and conceptual controversy which is 

continuously spreading in all directions of the physical reality and concerns the 

integrability or computability of the dynamics [66]. This universality is 

something supported by many scientists after the Poincare discovery of chaos 

and its non-integrability as is it shown in physical sciences by the work of 

Prigogine, Nicolis, Yankov and others [1, 2, 66] in reality. Non-linearity and 

chaos is the top of a hidden mountain including new physical and mathematical 

concepts such as fractal calculus, p-adic physical theory, non-commutative 

geometry, fuzzy anomalous topologies fractal space-time etc [4, 7, 12-15, 38, 

39, 50-52]. These new mathematical concepts obtain their physical power when 

the physical system lives far from equilibrium.  

 

After this and, by following the traditional point of view of physical science we 

arrive at the central conceptual problem of complexity science. That is, how is 

it possible that the local interactions in a spatially distributed physical system 

can cause long range correlations or how they can create complex 

spatiotemporal coherent patterns as the previous non-linear mathematical 

systems reveal, when they are solved arithmetically, or in situ observations 

reveal in space plasma systems. For non-equilibrium physical systems the 

above questions make us to ask how the development of complex structures and 

long range spatio-temporal correlations can be explained and described by local 

interactions of particles and fields. At a first glance the problem looks simple 

supposing that it can be explained by the self-consistent particle-fields classical 

interactions. However the existed rich phenomenology of complex non-

equilibrium phenomena reveals the non-classical and strange character of the 

universal non-equilibrium critical dynamics [31, 35]. 

In the following and for the better understanding of the new concepts we follow 

the road of non-equilibrium statistical theory [31, 36]  

The stochastic Langevin equations (11, 13, 17) can take the general form: 

( ) ( ) ( , )
( , )

i
i

i

u H
x x n x t

t u x t

δ
δ

∂
= −Γ +Γ

∂
r r r

r    (4) 

where H is the Hamiltonian of the system, / iH uδ δ  its functional derivative, 

Γ  is a transport coefficient and in are the components of a Gaussian white 

noise: 
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< >= Γ − − 

r

r r r r r  (5) 

[31, 65, 67, 68]. The above stochastic Langevin Hamiltonian equation (18) can 

be related to a probabilistic Fokker – Planck equation [31]: 

 [ ]1
( )

( )

P
P x P

x t u u u

δ δ δ
δ δ δ

∂ Η = ⋅ + Γ Γ ∂  

r
r r r r   (6) 

where { }( )( , ) ,iP P u x t t=
r

 is the probability distribution function of the 

dynamical configuration { }( , )iu x t
r

of the system at time t . The solution of the 

Fokker – Planck equation can be obtained as a functional path integral in the 

state space { }( )iu x
r

: 

{ }( ) { }( )0 0( ) , exp( ) ( ) ,i iP u x t Q S P u x t∆ −∫
rr r

�   (7) 

where { }( )0 0( ) ,iP u x t
r

is the initial probability distribution function in the 

extended configuration state space and S i Ldt= ∫  is the stochastic action of 

the system obtained by the time integration of it’s stochastic Lagrangian (L) 

[31, 69]. The stationary solution of the Fokker – Planck equation corresponds to 

the statistical minimum of the action and corresponds to a Gaussian state: 

{ }( ) ( ) { }( )exp 1/i iP u u − Γ Η �    (8) 

The path integration in the configuration field state space corresponds to the 

integration of the path probability for all the possible paths which start at the 

configuration state 0( , )u x t
r r

of the system and arrive at the final configuration 

state ( , )u x t
r r

. Langevin and F-P equations of classical statistics include a 

hidden relation with Feynman path integral formulation of QM [23, 31, 42, 43]. 

The F-P equation can be transformed to a Schrödinger equation: 

  ( )0 0
ˆ ˆ ˆ, ( , )

d
i U t t H U t t

dt
= ⋅    (9) 

by an appropriate operator Hamiltonian extension 

( ) ( )ˆ ˆ( , ) ( , )H u x t H u x t⇒
r r

of the classical function ( )H where now the 

field ( )u is an operator distribution [31, 68]. From this point of view, the 

classical stochasticity of the macroscopic Langevin process can be considered 

as caused by a macroscopic quandicity revealed by the complex system as the 

F-K probability distribution P  satisfies the quantum relation: 

  ( )0 0 0
ˆ, | , | ( , ) |P u t u t u U t t u=   (10)         
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This generalization of classical stochastic process as a quantum process could 

explain the spontaneous development of long-range correlations at the 

macroscopic level as an enlargement of the quantum entanglement character at 

critical states of complex systems. This interpretation is in faithful agreement 

with the introduction of complexity in sub-quantum processes and the chaotic – 

stochastic quantization of field theory [22-24, 44], as well as with scale 

relativity principles [6, 7, 49] and fractal extension of dynamics [4, 12, 13-15, 

39] or the older Prigogine self-organization theory [1]. Here, we can argue in 

addition to previous description that quantum mechanics is subject gradually to 

a fractal generalization [7, 12, 13-15]. The fractal generalization of QM-QFT 

drifts along also the tools of quantum theory into the correspondent 

generalization of RG theory or path integration and Feynman diagrams. This 

generalization implies also the generalization of statistical theory as the new 

road for the unification of macroscopic and microscopic complexity.           

 

If [ ]( , )P u x t
r r

is the probability of the entire field path in the field state space 

of the distributed system, then we can extend the theory of generating function 

of moments and cumulants for the probabilistic description of the paths [60, 

69]. The n-point field correlation functions (n-points moments) can be 

estimated by using the field path probability distribution and field path 

(functional) integration: 

( )1 1 2 2 1 1( , ) ( , )... ( , ) , ( , )... ( , )n n n nu x t u x t u x t uP u x t u x t u x t= ∆   ∫
r r r r r r r

  (11) 

For Gaussian random processes which happen to be near equilibrium the n − th 

point moments with 2n > are zero, correspond to Markov processes while far 

from equilibrium it is possible  non-Gaussian (with infinite nonzero moments) 

processes to be developed. According to Haken [69] the characteristic function 

(or generating function) of the probabilistic description of paths: 

  [ ] ( )1 1 2 2( , ) ( , ), ( , ),..., ( , )n nu x t u x t u x t u x t≡
r r r

  (12) 

is given by the relation: 

( )1 1 2 2

1

( ), ( ),..., ( ) exp ( , )
N

path n n i i i

i path

j t j t j t i j u x t
=

Φ = ∑ r
 (13) 

while the path cumulants 
1

( ... )
ss a aK t t are given by the relations: 

( )
1 11

1 1 2 2 ,... 1
1

( ), ( ),..., ( ) exp ( ... ) ...
! s ss

s
n

path n n s a a a aa a
s

i
j t j t j t K t t j j

s

∞

=
=

 
Φ = ⋅ 

 
∑ ∑ (14) 

and the n − point path moments are given by the functional derivatives: 

{ }( )( ) { }1 1 2 2 1( , ), ( , ),..., ( , ) / ... 0n

n n i n iu x t u x t u x t j j j t jδ δ δ= Φ =
r r r

  (15) 

 For Gaussian stochastic field processes the cumulants except the first two 

vanish ( )3 4 ...0k k= = . For non-Gaussian processes it is possible to be 
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developed long range correlations as the cummulants of higher than two order 

are non-zero [69]. This is the deeper meaning of non-equilibrium self-

organization and ordering of complex systems. The characteristic function of 

the dynamical stochastic field system is related to the partition functions of its 

statistical description, while the cumulant development and multipoint moments 

generation can be related with the BBGKY statistical hierarchy of the statistics 

as well as with the Feynman diagrams approximation of the stochastic field 

system [41, 70]. For dynamical systems near equilibrium only the second order 

cumulants is non-vanishing, while far from equilibrium field fluctuations with 

higher – order non-vanishing cumulants can be developed. 

Finally, we can understand how the non-linear dynamics correspond to self-

organized states as the high-order (infinite) non-vanishing cumulants can 

produce the non-integrability of the dynamics. From this point of view the 

linear or non-linear instabilities of classical kinetic theory are inefficient to 

produce the non-Gaussian, holistic (non-local) and self-organized complex 

character of non-equilibrium dynamics. That is, far from equilibrium complex 

states can be developed including long range correlations of field and particles 

with non-Gaussian distributions of their dynamic variables. As we show in the 

next section such states such states reveal the necessity of new theoretical tools 

for their understanding which are much different from the classical linear or 

non-linear approximation of kinetic theory. 

 

2.3 Strange attractors and Self-Organization 
 

When the dynamics is strongly nonlinear then for the far from equilibrium 

processes it is possible to be created strong self-organization and intensive 

reduction of dimensionality of the state space, by an attracting low dimensional 

set with parallel development of long range correlations in space and time. The 

attractor can be periodic (limit cycle, limit m-torus), simply chaotic (mono-

fractal) or strongly chaotic with multiscale and multifractal profile as well as 

attractors with weak chaotic profile known as SOC states. This spectrum of 

distinct dynamical profiles can be obtained as distinct critical points (critical 

states) of the nonlinear dynamics, after successive bifurcations as the control 

parameters change. The fixed points can be estimated by using a far from 

equilibrium renormalization process as it was indicated by Chang [31]. 

From this point of view phase transition processes can be developed by 

between different critical states, when the order parameters of the system are 

changing. The far from equilibrium development of chaotic (weak or strong) 

critical states include long range correlations and multiscale internal self 

organization. Now, these far from equilibrium self organized states, the 

equilibrium BG statistics and BG entropy, are transformed and replaced by the 

Tsallis extension of q − statistics and Tsallis entropy. The extension of 

renormalization group theory and critical dynamics, under the q − extension of 

partition function, free energy and path integral approach has been also 
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indicated [37, 70-72]. The multifractal structure of the chaotic attractors can be 

described by the generalized Rényi fractal dimensions: 

1

0

log
1

lim ,
1 log

N
q

i

i
q

p

D
q

λ

λ λ
=

→
=

−

∑
   (16) 

where 
( )i

ip αλ� is the local probability at the location ( i ) of the phase space, 

λ is the local size of phase space and ( )a i is the local fractal dimension of the 

dynamics. The Rényi q numbers (different from the q − index of Tsallis 

statistics) take values in the entire region ( ,−∞ +∞ ) of real numbers. The 

spectrum of distinct local fractal dimensions ( )iα is given by the estimation of 

the function ( )f α [73, 74] for which the following relations hold:  

( ')' ( ') '
q f

i
d p dp

αα α λ α−=∑ ∫   (17) 

min

( ) ( 1) ( )
a

q q Dq q fτ α α≡ − = −   (18) 

[ ( )]
( )

d q
a q

dq

τ
=    (19) 

( ) ( )f q qα α τ= − ,   (20) 

  

The physical meaning of these magnitudes included in relations (2.15-2.18) can 

be obtained if we identify the multifractal attractor as a thermodynamical 

object, where its temperature (T ), free energy ( F ), entropy ( S ) and internal 

energy (U ) are related to the properties of the multifractal attractor as follows: 

1
, ( ) ( 1)

, ( )

qq q q D F
T

U f S

τ

α α

⇒ = − ⇒ 

⇒ ⇒ 

  (21) 

This correspondence presents the relations (2.17 -2.19) as a thermodynamical 

Legendre transform [75]. When q increases to infinite ( +∞ ), which means, 

that we freeze the system ( ( ) 0qT =+∞ → ), then the trajectories (fluid lines) are 

closing on the attractor set, causing large probability values at regions of low 

fractal dimension, where minα α= and qD D−∞= . Oppositely, when 

q decreases to infinite ( −∞ ), that is we warm up the system ( ( ) 0qT =−∞ → ) 

then the trajectories are spread out at regions of high fractal dimension 

( maxα α⇒ ). Also for 'q q> we have 'q qD D<  and ( )qD D D+∞ −∞⇒ for 
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min max( )α α α⇒ correspondingly. However, the above description presents 

only a weak or limited analogy between multifractal and thermodynamical 

objects. The real thermodynamical character of the multifractal objects and 

multiscale dynamics was discovered after the definition by Tsallis [29] of the 

q − entropy related with the q − statistics as it was summarized previously in 

relations (2.1-2.13). 

 

2.4 Intermittent Turbulence 
 

According to previous description dissipative nonlinear dynamics can produce 

self-organization and long range correlations in space and time. In this case we 

can imagine the mirroring relationship between the phase space multifractal 

attractor and the corresponding multifractal turbulence dissipation process of 

the dynamical system in the physical space. Multifractality and multiscaling 

interaction, chaoticity and mixing or diffusion (normal or anomalous), all of 

them can be manifested in both the state (phase) space and the physical 

(natural) space as the mirroring of the same complex dynamics. We could say 

that turbulence is for complexity theory, what the blackbody radiation was for 

quantum theory, as all previous characteristics can be observed in turbulent 

states.  The theoretical description of turbulence in the physical space is based 

upon the concept of the invariance of the HD or MHD equations upon scaling 

transformations to the space-time variables ( ,X t
r

) and velocity (U
r

): 

' ,X Xλ=
uur uur

 
/3'U Uαλ=

ur ur

,
1 /3' at tλ −=   (22) 

and corresponding similar scaling relations for other physical variables [45, 76]. 

Under these scale transformations the dissipation rate of turbulent kinetic or 

dynamical field energy nΕ (averaged over a scale nl n nl Rο οδ δ= = ) rescales 

as nε : 

1

0 n 0(l \ )n l αε ε −
�    (23) 

Kolmogorov [77] assumes no intermittency as the locally averaged dissipation 

rate, in reality a random variable, is independent of the averaging domain. This 

means in the new terminology of Tsallis theory that Tsallis q -indices satisfy 

the relation 1q = for the turbulent dynamics in the three dimensional space. 

That is the multifractal (intermittency) character of the HD or the MHD 

dynamics consists in supposing that the scaling exponent α included in 

relations (2.20, 2.21) takes on different values at different interwoven fractal 

subsets of the d − dimensional physical space in which the dissipation field is 

embedded. The exponent α and for values a d< is related with the degree of 

singularity in the field's gradient (
( )A x

x

∂
∂

) in the d − dimensional natural 
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space [78]. The gradient singularities cause the anomalous diffusion in physical 

or in phase space of the dynamics. The total dissipation occurring in a 

d − dimensional space of size nl scales also with a global dimension qD for 

powers of different order q  as follows: 

( 1) ( )

n n n
qq Dq d q

n

n

l l l τε − =∑ �
   (24) 

Supposing that the local fractal dimension of the set ( )dn a which corresponds 

to the density of the scaling exponents in the region ( , dα α α+ ) is a function 

( )df a  according to the relation: 

( )
( ) ln dfdn da

αα −
�    (25) 

where d indicates the dimension of the embedding space, then we can conclude 

the Legendre transformation between the mass exponent ( )qτ and the 

multifractal spectrum ( )df a : 

( ) ( 1)( 1) 1

[( 1)( 1)]

d q

q

f a aq q D d d

d
a q D d

dq

= − − − + + − 

= − − + 


  (26) 

For linear intersections of the dissipation field, that is 1d = the Legendre 

transformation is given as follows: 

( ) ( ),f a aq qτ= −  [( 1) ] ( )q

d d
a q D q

dq dq
τ= − = ,  

( )df a
q

da
=    (27) 

The relations (24-27) describe the multifractal and multiscale turbulent process 

in the physical state. The relations (16-19) describe the multifractal and 

multiscale process on the attracting set of the phase space. From this physical 

point of view, we suppose the physical identification of the magnitudes 

, , ( )qD a f a and ( )qτ estimates in the physical and the corresponding phase 

space of the dynamics. By using experimental timeseries we can construct the 

function qD  of the generalized Rényi d − dimensional space dimensions, 

while the relations (26) allow the calculation of the fractal exponent ( a ) and 

the corresponding multifractal spectrum ( )df a . For homogeneous fractals of 

the turbulent dynamics the generalized dimension spectrum qD  is constant and 

equal to the fractal dimension, of the support [76]. Kolmogorov [79] supposed 

that qD does not depend on q as the dimension of the fractal support is 

3qD = . In this case the multifractal spectrum consists of the single point 

( 1a = and (1) 3f = ). The singularities of degree ( a ) of the dissipated fields, 
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fill the physical space of dimension d  with a fractal dimension ( )F a , while 

the probability ( )P a da , to find a point of singularity ( a ) is specified by the 

probability density
( )( ) lnd F aP a da −

� . The filling space fractal dimension 

( )F a is related with the multifractal spectrum 

function ( ) ( ) ( 1)df a F a d= − − , while according to the distribution function 

( )dis nεΠ of the energy transfer rate associated with the singularity a  it 

corresponds to the singularity probability as ( ) ( )dis n nd P a daε εΠ =  [78]. 

Moreover the partition function 
q

i

i

P∑ of the Rényi fractal dimensions 

estimated by the experimental timeseries includes information for the local and 

global dissipation process of the turbulent dynamics as well as for the local and 

global dynamics of the attractor set, as it is transformed to the partition function 
q

i q

i

P Z=∑ of the Tsallis q-statistic theory.  

 

2.5 Fractal generalization of dynamics 
 

 Fractal integrals and fractal derivatives are related with the fractal contraction 

transformation of phase space as well as contraction transformation of space 

time in analogy with the fractal contraction transformation of the Cantor set 

[27, 53]. Also, the fractal extension of dynamics includes an extension of non-

Gaussian scale invariance, related to the multiscale coupling and non-

equilibrium extension of the renormalization group theory [38]. Moreover 

Tarasov [12], Coldfain [15], Cresson [14], El-Nabulsi [13] and other scientists 

generalized the classical or quantum dynamics in a continuation of the original 

break through of El-Naschie [4], Nottale [6], Castro [7] and others concerning 

the fractal generalization of physical theory. 

According to Tarasov [12] the fundamental theorem of Riemann – Liouville 

fractional calculus is the generalization of the known integer integral – 

derivative theorem as follows: 

if                   
a( ) ( )xF x I f xα=             (28) 

then    
a ( ) ( )a xD F x f x=

 
            (29) 

where 
a

a xI is the fractional Riemann – Liouville according to: 

a

1 a

1 ( ') '
( )

(a) ( ')

x

a x
a

f x dx
I f x

x x −
≡

Γ −∫    (30) 

and 
a

a xD is the Caputo fractional derivative according to: 
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a

1 a-n

( ) ( )

1 ' ( )

( a) ( ')

n a n

a x a x x

x

n

a

D F x I D F x

dx dnF x

n x x dx

−

+

= =

=
Γ − −∫

  (31) 

for ( )f x a real valued function defined on a closed interval [ ],a b . 

In the next we summarize the basic concepts of the fractal generalization of 

dynamics as well as the fractal generalization of Liouville and MHD theory 

following Tarasov [12]. According to previous descriptions, the far from 

equilibrium dynamics includes fractal or multi-fractal distribution of fields and 

particles, as well as spatial fractal temporal distributions. This state can be 

described by the fractal generalization of classical theory: Lagrange and 

Hamilton equations of dynamics, Liouville theory, Fokker Planck equations and 

Bogoliubov hierarchy equations. In general, the fractal distribution of a 

physical quantity ( M ) obeys a power law relation: 

   0

0

D

D

R
M M

R

 
 
 

�       (32) 

where  ( DM ) is the fractal mass of the physical quantity ( M ) in a ball of 

radius ( R ) and ( D ) is the distribution fractal dimension. For a fractal 

distribution with local density ( )xρ
r

 the fractal generalization of Euclidean 

space integration reads as follows: 

( ) ( )D D

W

M W x dVρ= ∫    (33) 

where    ( )3 3,DdV C D x dV=
r

         (34) 

and    ( )
3

3

3

2 (3 / 2)
,

( / 2)

D
D

C D x x
D

−
−Γ

=
Γ

r r
                     (35) 

Similarly the fractal generalization of surface and line Euclidean integration is 

obtained by using the relations: 

  ( )2 2,ddS C d x dS=
r

   (36) 

( )
2

2

2

2
,

( / 2)

d
d

C d x x
d

−
−

=
Γ

r r
    (37) 

for the surface fractal integration and 

   1 1( , )dl C x dlγ γ=
r

   (38) 

   
( )

( )

1
1

1

2 1/ 2
( , )

/ 2
C x x

γ
γ

γ
γ

−
−Γ

=
Γ

r r
                  (39) 

for the line fractal integration. By using the fractal generalization of integration 

and the corresponding generalized Gauss’s and Stoke’s theorems we can 
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transform fractal integral laws to fractal and non-local differential laws [12] 

The fractional generalization of classical dynamics (Hamilton Lagrange and 

Liouville theory) can be obtained by the fractional generalization of phase 

space quantative description [12]. For this we use the fractional power of 

coordinates: 

    sgn( )
aaX x x=    (40) 

where sgn( )x is equal to +1 for 0x ≥ and equal to -1 for 0x < . 

The fractional measure a ( )M B of a n − dimension phase space region ( )B  is 

given by the equation: 

   a a( ) (a) ( , )
B

M B g d q pµ= ∫   (41) 

where a ( , )d q pµ is a phase space volume element: 

   

[ ]

a a

a 2
a (a)

K Kdq dp
dµ

Λ
= Π

Γ
   (42) 

where (a)g is a numerical multiplier and 
a a

K Kdq dpΛ  means the wedge 

product.  

 The fractional Hamilton’s approach can be obtained by the fractal 

generalization of the Hamilton action principle: 

   [ ]( , , )S pq H t p q dt= −∫   (43) 

The fractal Hamilton equations: 

   ( ) 1 a2

q

a

p

dq
a p D H

at

−  = Γ − 
 

  (44) 

a a

t qD p D H= −    (45) 

while the fractal generalization of the Lagrange’s action principle: 

    ( ), ,S L t q u dt= ∫   (46) 

Corresponds to the fractal Lagrange equations: 

   ( ) a a2 0a

q t U U q
D L a D D L

=
 −Γ − =  &

 (47) 

Similar fractal generalization can be obtained for dissipative or non-

Hamiltonian systems [12]. The fractal generalization of Liouville equation is 

given also as: 

   
N

N N

p
L p

t

∂
=

∂

%
%     (48) 

where Np%  and NL are the fractal generalization of probability distribution 

function and the  Liouville operator correspondingly. The fractal generalization 
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of Bogoliubov hierarchy can be obtained by using the fractal Liouville equation 

as well as the fractal Fokker Planck hydrodynamical  - magnetohydrodynamical 

approximations [12]. 

 The fractal generalization of classical dynamical theory for dissipative systems 

includes the non-Gaussian statistics as the fractal generalization of Boltzmann – 

Gibbs statistics. 

Finally the far from equilibrium statistical mechanics can be obtained by using 

the fractal extension of the path integral method. The fractional Green function 

of the dynamics is given by the fractal generalization of the path integral: 

 

( ) [ ]

{ }

a a a

a

, ; , ( ) exp ( )

exp ( )

f

i

x

f f i i

x

i
K x t x t D x S

h

i
S

hγ

τ γ

γ

 
  

 
  

∫

∑

�

�

     (49) 

where aK is the probability amplitude (fractal quantum mechanics) or the two 

point correlation function (statistical mechanics), [ ]a ( )D x τ means path 

integration on the sum { }γ of fractal paths and a ( )S γ is the fractal 

generalization of the action integral [13]: 

  [ ] ( )a a 1

a

1
( ), ( )

(a)

f

i

x

x

S L D q t dγγ τ τ τ τ−= −
Γ ∫  (50) 

     

 

2.6 The Highlights of Tsallis Theory 
  

 As we show in the next sections of this study, everywhere in space plasmas we 

can ascertain the presence of Tsallis statistics. This discovery is the 

continuation of a more general ascertainment of Tsallis q-extensive statistics 

from the macroscopic to the microscopic level [29]. 

  In our understanding the Tsallis theory, more than a generalization of 

thermodynamics for chaotic and complex systems, or a non-equilibrium 

generalization of B-G statistics, can be considered as a strong theoretical 

vehicle for the unification of macroscopic and microscopic physical 

complexity. From this point of view Tsallis statistical theory is the other side of 

the modern fractal generalization of dynamics while its essence is nothing else 

than the efficiency of self-organization and development of long range 

correlations of coherent structures in complex systems. 

 From a general philosophical aspect, the Tsallis q-extension of statistics can be 

identified with the activity of an ordering principle in physical reality, which 

cannot be exhausted with the local interactions in the physical systems, as we 

noticed in previous sections.  
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2.6.1 The non-extensive entropy ( qS ) 

 

It was for first time that Tsallis [1], inspired by multifractal analysis, conceived 

that the Boltzmann – Gibbs entropy: 

lnBG i iS K p p= − ∑ , 1,2,...,i N=   (51) 

is inefficient to describe all the complexity of non-linear dynamical systems. 

The Boltzmann – Gibbs statistical theory presupposes ergodicity of the 

underlying dynamics in the system phase space. The complexity of dynamics 

which is far beyond the simple ergodic complexity, it can be described by 

Tsallis non-extensive statistics, based on the extended concept of q − entropy: 

( )
1

1 / 1
N

q

q i

i

S k p q
=

 
= − − 

 
∑    (52) 

for discrete state space or  

[ ] ( )1 ( ) / 1
q

qS k p x dx q = − − ∫   (53) 

for continuous state space. 

For a system of particles and fields with short range correlations inside their 

immediate neighborhood, the Tsallis q − entropy qS  asymptotically leads to 

Boltzmann – Gibbs entropy ( BGS ) corresponding to the value of 1q = . For 

probabilistically dependent or correlated systems ,A B it can be proven that: 

( ) ( ) ( / ) (1 ) ( ) ( / )

( ) ( / ) (1 ) ( ) ( / )

q q q q q

q q q q

S A B S A S B A q S A S B A

S B S A B q S B S A B

+ = + + −

= + + −
    (54) 

Where { }( )( ) A

q q iS A S p≡ , { }( )( ) B

q iS B Sq p≡ , ( / )qS B A and 

( / )qS A B  are the conditional entropies of systems ,A B
 
[29]. When the 

systems are probabilistically independent, then relation (3.1.4) is transformed 

to: 

( ) ( ) ( ) (1 ) ( ) ( )q q q q qS A B S A S B q S A S B+ = + + −  (55) 

The dependent (independent) property corresponds to the relation: 

( )A B A B A B A B

ij i j ij i jp p p p p p+ +≠ =    (56) 

Comparing the Boltzmann – Gibbs ( BGS ) and Tsallis ( qS ) entropies, we 

conclude that for non-existence of correlations BGS  is extensive whereas qS  

for 1q ≠ is non-extensive. In contrast, for global correlations, large regions of 
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phase – space remain unoccupied. In this case qS  is non-extensive either 

1q = or 1q ≠ . 

 

2.6.2 The q − extension of statistics and Thermodynamics 
 

Non-linearity can manifest its rich complex dynamics as the system is removed 

far from equilibrium. The Tsallis q − extension of statistics is indicated by the 

non-linear differential equation / qdy dx y= . The solution of this equation 

includes the q − extension of exponential and logarithmic functions: 

[ ]1/(1 )
1 (1 )

qx

qe q x
−

= + −    (57) 

( ) ( )1ln 1 / 1q

q x x q−= − −   (58) 

and 
[ ( ) ] [ ( ') ]

( ) / 'q q q qf x F f x F

opt q qp x e dx e
β β− − − −= ∫  (59) 

for more general q − constraints of the forms ( ) qq
f x F= . In this way, 

Tsallis q − extension of statistical physics opened the road for the 

q − extension of thermodynamics and general critical dynamical theory as a 

non-linear system lives far from thermodynamical equilibrium. For the 

generalization of Boltzmann-Gibbs nonequilibrium statistics to Tsallis 

nonequilibrium q-statistics we follow Binney [41]. In the next we present q-

extended relations, which can describe the non-equilibrium fluctuations and 

n − point correlation function ( G ) can be obtained by using the Tsallis 

partition function qZ of the system as follows: 

1 2 n

1 2

1 2 i

1
( , ,..., ) , ,...,s

...
n

n

qn

q n i i
q

i i i

Z
G i i i s s

z j j j

∂
≡ =

∂ ⋅∂ ∂
 (60) 

Where { }is  are the dynamical variables and { }ij  their sources included in the 

effective – Lagrangian of the system. Correlation (Green) equations (62) 

describe discrete variables, the n − point correlations for continuous 

distribution of variables (random fields) are given by the functional derivatives 

of the functional partition as follows: 

1 2 1 2

1

1
( , ,..., ) ( ) ( )... ( ... ( )

( ) ( )

n

q n n qq
n

G x x x x x x Z J
Z J x J x

δ δ
ϕ ϕ ϕ

δ δ
≡ =

r r r r r r
r r

 

(61) 

where ( )xϕ
r

are random fields of the system variables and ( )j x
r

 their field 

sources. The connected n − point correlation functions 
n

iG are given by: 
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1 2

1

( , ,..., ) ... log ( )
( ) ( )

n

q n q

n

G x x x Z J
J x J x

δ δ
δ δ

≡
r r r

r r       (62) 

The connected n − point correlations correspond to correlations that are due to 

internal interactions defined as [41]: 

1 2 1 1( , ,..., ) ( )... ( ) ( )... ( )n

q n n nq q
G x x x x x x xϕ ϕ ϕ ϕ≡ −

r r r r r

    
(63) 

 

The probability of the microscopic dynamical configurations is given by the 

general relation: 

( ) confS
P conf e

β−=      (64) 

where 1/ ktβ =  and confS  is the action of the system, while the partition 

function Z of the system is given by the relation: 

confS

conf

Z e
β−= ∑     (65) 

 

The q − extension of the above statistical theory can be obtained by the 

q − partition function qZ . The q − partition function is related with the meta-

equilibrium distribution of the canonical ensemble which is given by the 

relation: 
( )/i q qq E V Z

i qp e
β− −=

  
        (66) 

with 
( )i qq E V

q q

conf

Z e
β− −= ∑        (67) 

and 

/ q

q i

conf

pβ β= ∑        (68) 

where 1/ KTβ = is the Lagrange parameter associated with the energy 

constraint: 

    /q q

i i i qq
conf conf

E p E p U≡ =∑ ∑   (69) 

The q − extension of thermodynamics is related with the estimation of 

q − Free energy ( qF ) the q − expectation value of internal energy ( )qU  the 

q − specific heat ( )qC  by using the q − partition function: 

1
lnq q q qF U TS qZ

β
≡ − = −    (70) 
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1
ln ,

q

q q

q

S
U qZ

T Uβ

∂∂
= =

∂ ∂
   (71) 

2

2

q q q

q

U F
C T T

T T T

δ∂ ∂ ∂
≡ = = −

∂ ∂ ∂
   (72) 

 

2.6.3 The Tsallis q − extension of statistics via the fractal extension 
of dynamics 
 

 At the equilibrium thermodynamical state the underlying statistical dynamics is 

Gaussian ( 1q = ). As the system goes far from equilibrium the underlying 

statistical dynamics becomes non-Gaussian ( 1q ≠ ). At the first case the phase 

space includes ergodic motion corresponding to normal diffusion process with 

mean-squared jump distances proportional to the time 
2x t�  whereas far 

from equilibrium the phase space motion of the dynamics becomes chaotically 

self-organized corresponding to anomalous diffusion process with mean-

squared jump distances 
2 ax t� , with 1a <  for sub-diffusion and 1a >  

for super-diffusion. The equilibrium normal-diffusion process is described by a 

chain equation of the Markov-type: 

( ) ( ) ( )3 3 1 1 2 3 3 2 2 2 2 1 1, ; , , ; , , ; ,W x t x t dx W x t x t W x t x t= ∫   
           (73) 

where  ( ), ; ', 'W x t x t is the probability density for the motion from the 

dynamical state ( ', ')x t  to the state ( , )x t  of the phase space. The Markov 

process can be related to a random differential Langevin equation with additive 

white noise and a corresponding Fokker – Planck probabilistic equation [38] by 

using the initial condition: 

          
0

( , ; ) ( )
t

x y t x yW δ
∆ →

∆ = −
                     (74)

 

This relation means no memory in the Markov process and help to obtain the 

expansion: 

 

( ) ( ) ( ) ( ) ( ) ( )1
, ; ; ' ; ''

2
W x y t x y a y t x y b y t x yδ δ δ∆ = − + ∆ − + ∆ −

   (75)

 

where ( );A y t∆  and ( );B y t∆  are the first and second moment of the 

transfer probability function ( ), ;W x y t∆ : 

  ( ); ( ) ( , ; )a y t dx x y W x y t y∆ = − ∆ ≡ ∆∫             (76)
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 ( )22( ; ) ( ) ( , ; )b y t dx x y W x y t y∆ = − ∆ ≡ ∆∫
             (77)

 

By using the normalization condition: 

    ( , ; ) 1dyW x y t∆ =∫                            (78)
 

we can obtain the relation: 

  
1 ( ; )

( ; )
2

b y t
a y t

y

∂ ∆
∆ = −

∂
                  (79)

 

The Fokker – Planck equation which corresponds to the Markov process can be 

obtained by using the relation: 

  

 
0

( , ) 1
lim ( , ; ) ( , ) ( , )

t

p x t
dyW x y t p y t p x t

t t

+∞

∆ →
−∞

 ∂
= ∆ − ∂ ∆  

∫
      (80)

 

where 0( , ) ( , ; )p x t W x x t≡  is the probability distribution function of the 

state ( , )x t  corresponding to large time asymptotic, as follows: 

 

   ( )( ) ( )( )2( , ) 1
, ,

2
x x

P x t
AP x t BP x t

t

∂
= −∇ + ∇

∂
       (81) 

where ( )A x  is the flow coefficient: 

  
0

1
( , ) lim

t
A x t x

t∆ →
≡ ∆

∆
           (82) 

and ( , )B x t is the diffusion coefficient: 

 
2

0

1
( , ) lim

t
B x t x

t∆ →
≡ ∆

∆
r

    

                (83) 

The Markov process is a Gaussian process as the moments 
0

lim m

t
x

∆ →
∆ for 

2m > are zero [63]. The stationary solutions of F-P equation satisfy the 

extremal condition of Boltzmann – Gibbs entropy: 

 ( ) ln ( )BG BS K p x p x dx= − ∫             (84) 

corresponding to the known Gaussian distribution: 

  ( )2 2( ) exp / 2p x x σ−�
 

 (85) 

According to Zaslavsky [38] the fractal extension of Fokker – Planck (F-P) 

equation can be produced by the scale invariance principle applied for the phase 

space of the non-equilibrium dynamics. As it was shown by Zaslavsky for 

strong chaos the phase space includes self similar structures of islands inside 
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islands dived in the stochastic sea [38]. The fractal extension of the FPK 

equation (FFPK) can be derived after the application of a Renormalization 

group of anomalous kinetics (RGK): 

    ˆ : 'K sR s Sλ= , ' tt tλ=
 
 

where s is a spatial variable and t is the time.  

 Correspondingly to the Markov process equations: 

( ) ( )0 0
0

( , ) 1
lim , ; , ;

( )t

p t
W t t W t

t t

β

β β

ξ
ξ ξ ξ ξ

∆ →

∂
≡ + ∆ −  ∂ ∆

 

(86) 

    

(87) 

 

as the space-time variations of probability W are considered on fractal space-

time variables ( , )t ξ with dimensions ( , )aβ . 

For fractal dynamics ( ; )a n t∆ , ( ; )b n t∆
 
satisfy the equations: 

  ( ; ) ( , ; )
a

a n t n W n t d
αξ ξ ξ ξ∆ = − ∆ ≡ ∆∫

  
(88) 

 
2 2

( ; ) ( , ; )
a

b n t n W n t d
αξ ξ ξ ξ∆ = − ∆ ≡ ∆∫

 
(89) 

and the limit equations: 

   
0

( ; )
( ) lim

( )t

a t
A

t β

ξ
ξ

∆ →

∆
=

∆
                               

(90) 

 
0

( ; )
( ) lim

( )t

b t
B

t β

ξ
ξ

∆ →

∆
=

∆
     

(91) 

By them we can obtain the FFPK equation. 

Far from equilibrium the non-linear dynamics can produce phase space 

topologies corresponding to various complex attractors of the dynamics. In this 

case the extended complexity of the dynamics corresponds to the generalized 

strange kinetic Langevin equation with correlated and multiplicative noise 

components and extended fractal Fokker – Planck - Kolmogorov equation 

(FFPK) [38, 80]. The q − extension of statistics by Tsallis can be related with 

the strange kinetics and the fractal extension of dynamics through the Levy 

process: 

                   

( ) ( ) ( )0 0 1 1 1 1 1 1 0 0, ; ... , ; , ... , ; ,n n N N N N NP x t x t dx dx P x t x t P x t x t− − −= ∫  (92) 

The Levy process can be described by the fractal F-P equation: 

                    

[ ] [ ]
1

1

( , )
( ) ( , ) ( ) ( , )

( ) ( )

a a

a a

P x t
A x P x t B x P x t

t x x

β

β

+

+

∂ ∂ ∂
= +

∂ ∂ − ∂ −
  (93) 

( ) (2 )1
( , ; ) ( ) ( ; ) ( ) ( ; ) ( ) ...

2

aW n t n A n t n B n t nαξ δ ξ δ ξ δ ξ∆ = − + ∆ − + ∆ − +
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where / tβ β∂ ∂ , / ( )a ax∂ ∂ −  and 
1 1/ ( )a ax+ +∂ ∂ −  are the fractal time and 

space derivatives correspondingly [38]. The stationary solution of the F F-P 

equation for large x  is the Levy distribution 
(1 )( )P x x γ− +

� . The Levy 

distribution coincides with the Tsallis q − extended optimum distribution 

(3.2.4) for ( ) ( )3 / 1q γ γ= + + . The fractal extension of dynamics takes into 

account non-local effects caused by the topological heterogeneity and fractality 

of the self-organized phase – space. Also the fractal geometry and the complex 

topology of the phase – space introduce memory in the complex dynamics 

which can be manifested as creation of long range correlations, while, 

oppositely, in Markov process we have complete absence of memory. 

 In general, the fractal extension of dynamics as it was done until now from 

Zaslavsky, Tarasov and other scientists indicate the internal consistency of 

Tsallis q − statistics as the non-equilibrium extension of B-G statistics with the 

fractal extension of classical and quantum dynamics. Concerning the space 

plasmas the fractal character of their dynamics has been indicated also by many 

scientists. Indicatively, we refer the fractal properties of sunspots and their 

formation by fractal aggregates as it was shown by Zelenyi and Milovanov [30, 

32], the anomalous diffusion and intermittent turbulence of the solar convection 

and photospheric motion shown by Ruzmakin et al. [33], the multi-fractal and 

multi-scale character of space plasmas indicated by Lui [46] and Pavlos et al. 

[37]. 

 Finally we must notice the fact that the fractal extension of dynamics identifies 

the fractal distribution of a physical magnitude in space and time according to 

the scaling relation ( ) aM R R� with the fractional integration as an 

integration in a fractal space [12]. From this point of view it could be possible 

to conclude the novel concept that the non-equilibrium q − extension of 

statistics and the fractal extension of dynamics are related with the fractal space 

and time themselves [6, 39, 80]. 

 

2.6.4 Fractal acceleration and fractal energy dissipation 
 

The problem of kinetic or magnetic energy dissipation in fluid and plasmas as 

well as the bursty acceleration processes of particles at flares, magnetospheric 

plasma sheet and other regions of space plasmas is an old and yet resisting 

problem of fluids or space plasma science.  

 

Normal Gaussian diffusion process described by the Fokker – Planck equation 

is unable to explain either the intermittent turbulence in fluids or the bursty 

character of energetic particle acceleration following the bursty development of 

inductive electric fields after turbulent magnetic flux change in plasmas [81]. 

However the fractal extension of dynamics and Tsallis extension of statistics 
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indicate the possibility for a mechanism of fractal dissipation and fractal 

acceleration process in fluids and plasmas. 

According to Tsallis statistics and fractal dynamics the super-diffusion process: 

  
2

R tγ�
         (94)

 

with 1γ > ( 1γ = for normal diffusion) can be developed at systems far from 

equilibrium. Such process is known as intermittent turbulence or as anomalous 

diffusion which can be caused by Levy flight process included in fractal 

dynamics and fractal Fokker – Planck Kolmogorov equation (FFPK). The 

solution of FFPK equation [38] corresponds to double (temporal, spatial) fractal 

characteristic function: 

  ( )( , ) expP k t constxt k aβ= −
   (95)

 

Where ( ),P k t  is the Fourier transform of asymptotic distribution function: 

  
1( , ) /P t constxtβ αξ ξ +

� , ( )ξ → ∞
  (96)

 

This distribution is scale invariant with mean displacement: 

   constxt
α βξ � , ( )t → ∞

                    (97)
 

According to this description, the flights of multi-scale and multi-fractal profile 

can explain the intermittent turbulence of fluids, the bursty character of 

magnetic energy dissipation and the bursty character of induced electric fields 

and charged particle acceleration in space plasmas as well as the non-Gaussian 

dynamics of brain-heart dynamics. The fractal motion of charged particles 

across the fractal and intermittent topologies of magnetic – electric fields is the 

essence of strange kinetic [38, 80]. Strange kinetics permits the development of 

local sources with spatial fractal – intermittent condensation of induced 

electric-magnetic fields in brain, heart and plasmas parallely with fractal – 

intermittent dissipation of magnetic field energy in plasmas and fractal 

acceleration of charged particles. Such kinds of strange accelerators in plasmas 

can be understood by using the Zaslavsky studies for Hamiltonian chaos in 

anomalous multi-fractal and multi-scale topologies of phase space [38]. 

Generally the anomalous topology of phase space and fractional Hamiltonian 

dynamics correspond to dissipative non-Hamiltonian dynamics in the usual 

phase space [12]. The most important character of fractal kinetics is the 

wandering of the dynamical state through the gaps of cantori which creates 

effective barriers for diffusion and long range Levy flights in trapping regions 

of the phase space. Similar Levy flights processes can be developed by the 

fractal dynamics and intermittent turbulence of the complex systems. 

 In this theoretical framework it is expected the existence of Tsallis non 

extensive entropy and q-statistics in non-equilibrium distributed complex 

systems as, fluids, plasmas or brain and heart systems which are studied in the 

next section of this work. The fractal dynamics corresponding to the non-

extensive Tsallis q − statistical character of the probability distributions in the 
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distributed complex systems indicate the development of a self-organized and 

globally correlated parts of active regions in the distributed dynamics. This 

character can be related also with deterministic low dimensional chaotic profile 

of the active regions according to Pavlos et al. [37,]. 

 

3. Theoretical expectations through Tsallis statistical theory and 

fractal dynamics 
 

Tsallis q − statistics as well as the non-equilibrium fractal dynamics indicate 

the multi-scale, multi-fractal chaotic and holistic dynamics of space plasmas. 

Before we present experimental verification of the theoretical concepts 

described in previous studies as concerns space plasmas in this section we 

summarize the most significant theoretical expectations. 

 

3.1 The q − triplet of Tsallis 
 

The non-extensive statistical theory is based mathematically on the nonlinear 

equation: 

qdy
y

dx
= , ( (0) 1,y q= ∈ℜ )  (98) 

with solution the q − exponential function defined previously in equation (2.2). 

The solution of this equation can be realized in three distinct ways included in 

the q − triplet of Tsallis: ( , ,sen stat relq q q ). These quantities characterize three 

physical processes which are summarized here, while the q − triplet values 

characterize the attractor set of the dynamics in the phase space of the dynamics 

and they can change when the dynamics of the system is attracted to another 

attractor set of the phase space. The equation (2.36) for 1q = corresponds to 

the case of equilibrium Gaussian Boltzmann-Gibbs (BG) world [35, 36]. In this 

case of equilibrium BG world the q − triplet of Tsallis is simplified to 

( 1, 1, 1sen stat relq q q= = = ). 

 

a. The statq  index and the non-extensive physical states 
 

According to [35, 36] the long range correlated metaequilibrium non-extensive 

physical process can be described by the nonlinear differential equation: 

( )
( ) statqi stat

stat i stat

i

d p Z
q p Z

dE
β= −   (99) 

The solution of this equation corresponds to the probability distribution: 

/stat i

stat stat

E

i q qp e Z
β−=    (100) 
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where

1
statq

statKT
β = , 

stat j

stat

q E

stat q

j

Z e
β−=∑ . 

Then the probability distribution function is given by the relations: 
1/1

1 (1 )
stat

stat

q

i q ip q Eβ
−

 ∝ − −           (101) 

for discrete energy states { }iE by the relation: 

   
1/1

2( ) 1 (1 )
stat

stat

q

qp x q xβ
−

 ∝ − −              (102) 

for continuous X states{ }X , where the values of the 

magnitude X correspond to the state points of the phase space. 

 The above distributions functions (2.46, 2.47) correspond to the attracting 

stationary solution of the extended (anomalous) diffusion equation related with 

the nonlinear dynamics of system [36]. The stationary solutions ( )P x  describe 

the probabilistic character of the dynamics on the attractor set of the phase 

space. The non-equilibrium dynamics can be evolved on distinct attractor sets 

depending upon the control parameters values, while the statq exponent can 

change as the attractor set of the dynamics changes. 

 

b. The senq index and the entropy production process 
 

The entropy production process is related to the general profile of the attractor 

set of the dynamics. The profile of the attractor can be described by its 

multifractality as well as by its sensitivity to initial conditions. The sensitivity 

to initial conditions can be described as follows: 

 1 1( ) q

q

d

d

ξ
λ ξ λ λ ξ

τ
= + −                     (103) 

where ξ describes the deviation of trajectories in the phase space by the 

relation:
( ) 0lim { ( ) \ (0)}x x t xξ ∆ →≡ ∆ ∆ and ( )x t∆ is the distance of 

neighboring trajectories [82]. The solution of equation (2.41) is given by: 

1

1

1
(1 )

1 1

1 sen

q
q tsen senq q

e
λλ λ

ξ
λ λ

−
− 

= − + 
 

  (104) 

The senq exponent can be also related with the multifractal profile of the 

attractor set by the relation: 

min max

1 1 1

senq a a
= −    (105) 
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where min max( )a a corresponds to the zero points of the multifractal exponent 

spectrum ( )f a [36, 79, 82]. That is min max( ) ( ) 0f a f a= = . 

The deviations of neighboring trajectories as well as the multifractal character 

of the dynamical attractor set in the system phase space are related to the 

chaotic phenomenon of entropy production according to Kolmogorov – Sinai 

entropy production theory and the Pesin theorem [36]. The q − entropy 

production is summarized in the equation: 

( )
lim lim lim

q

q
t W N

S t
K

t→∞ →∞ →∞

< >
≡ .  (106) 

The entropy production ( /qdS t ) is identified with qK , as W are the number 

of non-overlapping little windows in phase space and N the state points in the 

windows according to the relation 
1

W

ii
N N

=
=∑ . The qS entropy is estimated 

by the probabilities ( ) ( ) /i iP t N t N≡ . According to Tsallis the entropy 

production qK is finite only for senq q= [36, 82]. 

 

c. The relq index and the relaxation process 
 

The thermodynamical fluctuation – dissipation theory [63] is based on the 

Einstein original diffusion theory (Brownian motion theory). Diffusion process 

is the physical mechanism for extremization of entropy. If S∆ denote the 

deviation of entropy from its equilibrium value 0S , then the probability of the 

proposed fluctuation that may occur is given by: 

exp( / )P s k∆� .   (107) 

The Einstein – Smoluchowski theory of Brownian motion was extended to the 

general Fokker – Planck diffusion theory of non-equilibrium processes.  The 

potential of Fokker – Planck equation may include many metaequilibrium 

stationary states near or far away from the basic thermodynamical equilibrium 

state. Macroscopically, the relaxation to the equilibrium stationary state can be 

described by the form of general equation as follows: 

1d

dτ τ
Ω

− Ω� ,    (108) 

where ( ) [ ( ) ( )] / [ (0) ( )]t O t O O OΩ ≡ − ∞ − ∞ describes the relaxation of 

the macroscopic observable ( )O t relaxing towards its stationary state value. 

The non-extensive generalization of fluctuation – dissipation theory is related to 

the general correlated anomalous diffusion processes [36]. Now, the 

equilibrium relaxation process (2.46) is transformed to the metaequilibrium 

non-extensive relaxation process: 
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1
rel

rel

q

q

d

dt T

Ω
= − Ω    (109) 

the solution of this equation is given by: 
/

( ) rel

rel

t

qt e
τ−Ω �     (110) 

The autocorrelation function ( )C t or the mutual information ( )I t can be used 

as candidate observables ( )tΩ for the estimation of relq .  However, in contrast 

to the linear profile of the correlation function, the mutual information includes 

the non linearity of the underlying dynamics and it is proposed as a more 

faithful index of the relaxation process and the estimation of the Tsallis 

exponent relq .  

 

3.2 Measures of Multifractal Intermittence Turbulence 
 

In the following, we follow Arimitsu and Arimitsu [78] for the theoretical 

estimation of significant quantitative relations which can also be estimated 

experimentally. The probability singularity distribution ( )P a can be estimated 

as extremizing the Tsallis entropy functional qS . According to Arimitsu and 

Arimitsu [78] the extremizing probability density function ( )P a  is given as a 

q − exponential function: 

12
1 10( )

( ) [1 (1 ) ]
2 ln 2

q

q

a a
P a Z q

X

− −−
= − −   (111) 

where the partition function qZ is given by the relation: 

   2 /[(1 ) ln 2]qZ X q= − (1 2,2 1 )B q− , (112) 

and ( , )B a b is the Beta function. The partition function qZ as well as the 

quantities X and q can be estimated by using the following equations: 

2 2

0

(1 )

2

2 (1 ) (1 ) /

(1 2 ) / [(1 ) ln ]q

X a q q b

b q− −

 = + − − −   
= − − 

  (113) 

We can conclude for the exponent’s spectrum ( )f a  by using the 

relation
( )( ) lnd F aP a −≈ as follows: 
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2
1

0 2

( )
( ) log [1 (1 ) ] / (1 )

2 ln 2

oa a
f a D q q

X

−−
= + − − −  (114) 

where 0a corresponds to the q − expectation (mean) value of a through the 

relation: 
2

0 0( ) ( ( ) ( ) ) / ( )q q q

qa a daP a a a daP a< − > = −∫ ∫ . (115) 

while the q − expectation value 0a corresponds to the maximum of the 

function ( )f a as 0( ) / | 0df a da a = . For the Gaussian dynamics ( 1q → ) 

we have mono-fractal spectrum 0 0( )f a D= . The mass exponent ( )qτ can be 

also estimated by using the inverse Legendre transformation: 

( ) ( )q aq f aτ = − (relations 2.24 – 2.25) and the relation (2.29) as follows: 

2

0 2

2 1
( ) 1 [1 log (1 )]

11
q

q

Xq
q qa C

qC
τ = − − − − +

−+ , (116) 

Where 
21 2 (1 ) ln 2qC q q X= + − .  

The relation between a and q can be found by solving the Legendre 

transformation equation ( ) /q df a da= . Also if we use the equation (2.29) 

we can obtain the relation: 

0 (1 ) / [ (1 ) ln 2]q qa a C q q− = − −   (117) 

The q − index is related to the scaling transformations (2.20) of the multifractal 

nature of turbulence according to the relation 1q a= − . Arimitsu and Arimitsu 

[78] estimated the q − index by analyzing the fully developed turbulence state 

in terms of Tsallis statistics as follows: 

1 1 1

1 q a a− +

= −
−    (118) 

where a± satisfy the equation ( ) 0f a± = of the multifractal exponents 

spectrum ( )f a . This relation can be used for the estimation of senq − index 

included in the Tsallis q − triplet (see next section). 

The above analysis based at the extremization of Tsallis entropy can be also 

used for the theoretical estimation of the structure functions scaling exponent 

spectrum ( )J p of the ( )pS τ , where 1, 2,3,4,...p = The structure functions 

were first introduced by Kolmogorov [79] defined as statistical moments of the 

field increments: 

( ) | ( ) ( ) | | |p p

p nS r u x d u x uδ=< + − >=< >
uur rr r

  (119) 
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( ) | ( ) ( ) |p

pS r u x x u x=< + ∆ − >
r r r r

  (120) 

After discretization of x∆
r

displacement the above relation can be identified to: 
n( ) | |p

nSp l uδ=< >    (121) 

The field values ( )u x
r

can be related with the energy dissipation values nε by 

the general relation 
3 n( ) /n nu lε δ= in order to obtain the structure functions 

as follows: 
n ( 1) ( )

0( ) ( ) p p a j p

p n n nS l ε ε δ δ−=< >=< >=  (122) 

where the averaging processes ...< > is defined by using the probability 

function ( )P a da as ... (...) ( )da P a< >= ∫ . By this, the scaling exponent 

( )J p of the structure functions is given by the relation: 

( ) 1 ( )
3

p
J p qτ= + =    (123) 

By following Arimitsu [78] the relation (2.30) leads to the theoretical prediction 

of ( )J p  after extremization of Tsallis entropy as follows: 

2

0
2 /3

/3

2 1
( ) [1 log (1 )]

3 1(1
p

p

a p Xp
J p C

qq C
= − − − +

−+          (124) 

The first term 0 3a p corresponds to the original of known Kolmogorov theory 

(K41) according to which the dissipation of field energy nε is identified with 

the mean value 0ε according to the Gaussian self-similar homogeneous 

turbulence dissipation concept, while 0 1a =  according to the previous analysis 

for homogeneous turbulence. According to this concept the multifractal 

spectrum consists of a single point. The next terms after the first in the relation 

(2.39) correspond to the multifractal structure of intermittence turbulence 

indicating that the turbulent state is not homogeneous across spatial scales. That 

is, there is a greater spatial concentration of turbulent activity at smaller than at 

larger scales. According to Abramenko [36] the intermittent multifractal 

(inhomogeneous) turbulence is indicated by the general scaling exponent 

( )J p  of the structure functions according to the relation: 

( ) ( )( ) ( ) ( )
3

u Fp
J p T p T p= + + ,  (125) 

where the 
( ) ( )uT p term is related with the dissipation of kinetic energy and the 

( ) ( )FT p  term is related to other forms of field's energy dissipation as the 

magnetic energy at MHD turbulence [36, 83] . 
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The scaling exponent spectrum ( )J p can be also used for the estimation of the 

intermittency exponent µ according to the relation: 

2 (2)(2) / J

n nS µε ε δ δ≡< > =�   (127) 

from which we conclude that (2)Jµ = . The intermittency turbulence 

correction to the law 
5/3( )P f f −

� of the energy spectrum of Kolmogorov’s 

theory is given by using the intermittency exponent: 
(5/3 )( )P f f µ− +

�    (128)  

The previous theoretical description can be used for the theoretical 

interpretation of the experimentally estimated structure function, as well as for 

relating physically the results of data analysis with Tsallis statistical theory, as 

it is described in the next sections. 

 

4. Comparison of theory with the observations 
 

4.1 The Tsallis q-statistics 
 

  The traditional scientific point of view is the priority of dynamics over 

statistics. That is dynamics creates statistics. However for complex system their 

holistic behaviour does not permit easily such a simplification and division of 

dynamics and statistics. Tsallis q − statistics and fractal or strange kinetics are 

two faces of the same complex and holistic (non-reductionist) reality. As Tsallis 

statistics is an extension of B-G statistics, we can support that the thermic and 

the dynamical character of a complex system is the manifestation of the same 

physical process which creates extremized thermic states (extremization of 

Tsallis entropy), as well as dynamically ordered states. From this point of view 

the Feynman path integral formulation of physical theory [84] indicates the 

indivisible thermic and dynamical character of physical reality. After this 

general investment in the following, we present evidence of Tsallis non-

extensive q − statistics for space plasmas. The Tsallis statistics in relation with 

fractal and chaotic dynamics of space plasmas will be presented in a short 

coming series of publications.          

 

In next sections we present estimations of Tsallis statistics for various kinds of 

space plasma’s systems. The statq  Tsallis index was estimated by using the 

observed Probability Distribution Functions (PDF) according to the Tsallis q-

exponential distribution: 

[ ] ( ) ( )
1

2 11 1 q

q qPDF A q β −∆Ζ ∆Ζ ≡ + −  , (129)  

where the coefficients Aq, βq denote the normalization constants and statq q≡  

is the entropic or non-extensivity factor ( 3statq ≤ ) related to the size of the tail 
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in the distributions. Our statistical analysis is based on the algorithm described 

in [56]. We construct the [ ]PDF ∆Ζ  which is associated to the first difference 

1n nZ+∆Ζ Ζ= −  of the experimental sunspot time series, while the ∆Ζ  range is 

subdivided into little ``cells'' (data binning process) of width δz , centered at iz  

so that one can assess the frequency of ∆z -values that fall within each cell/bin. 

The selection of the cell-size  δz  is a crucial step of the algorithmic process 

and its equivalent to solving the binning problem: a proper initialization of the 

bins/cells can speed up the statistical analysis of the data set and lead to a 

convergence of the algorithmic process towards the exact solution. The 

resultant histogram is being properly normalized and the estimated q-value 

corresponds to the best linear fitting to the graph lnq i(p(z )) vs 
2

iz . Our 

algorithm estimates for each 0,01qδ =  step the linear adjustment on the graph 

under scrutiny (in this case the lnq i(p(z )) vs 
2

iz  graph) by evaluating the 

associated correlation coefficient (CC), while the best linear fit is considered to 

be the one maximizing the correlation coefficient. The obtained statq , 

corresponding to the best linear adjustment is then being used to compute the 

following equation: 

 

2

( , ) z

q q

q

G z e
C

ββ
β −=    (130) 

where 
3 1

( ) / 1 ( )
2( 1) 1

q

q
C q

q q
π

−
= ⋅Γ − ⋅Γ

− −
, 1 3< q <  for different β-

values. Moreover, we select the β-value minimizing 

the
2[ ( , ) ( )]

sstatq i i

i

G z p zβ −∑ , as proposed again in [56]. 

In the following we present the estimation of Tsallis statistics 
stat

q for various 

cases of space plasma system. Especially, we study the q − statistics for the 

following space plasma complex systems: I Magnetospheric system, II Solar 

Wind (magnetic cloud), III Solar activity, IV Cosmic stars, IIV Cosmic Rays. 

 

4.2 Cardiac Dynamics 
 

For the study of the q-statistics we used measurements from the cardiac and 

especially the heart rate variability timeseries which includes a multivariate 

data set recorded from a patient in the sleep laboratory of the Beth Israel 

Hospital in Boston, Massachusetts. The heart rate was determined by measuring 

the time between the QRS complexes in the electrocardiogram, taking the 
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inverse, and then converting this to an evenly sampled record by interpolation. 

They were converted from 250 Hz to 2 Hz data by averaging over a 0.08 

second window at the times of the heart rate samples. 

 Figure 1a presents the experimental time series, while Fig.1b presents the q-

Gaussian functions 
q

G , corresponding to the time series under scrunity. The q-

Gaussian function presents the best fitting of the experimental distribution 

function ( )P z  estimated for the value 1.26 0.1
stat

q = ±  for the stationary 

heart variability time series. The q-value was estimated by the linear correlation 

fitting between ( )lnq iP z  and ( )2

i
z , shown in fig. 1c, were ( )P z  

corresponds to the experimental distribution functions, according to the 

description in section 4.1. The fact that the heart’s variability observations obey 

to non-extensive Tsallis with a q − values higher than the Gaussian case 

( 1q = ) permit to conclude for the heart’s variability dynamics case the 

existence of q-statistics . 

 

 
Figure 1: (a) Time series of heart rate variability (b) PDF P(zi) vs. zi q 

Guassian function that fits P(zi) for the heart rate variability (c) Linear 

Correlation between lnqP(zi) and (zi)
2
 where q = 1.26 ± 0.10 for the heart rate 

variability. 

 

 

4.3 Brain Epilepsy Dynamics 
 

In this section we present the q-statistics obtained from real EEG timeseries 

from epileptic patients during seizure attack. Each EEG timeseries consisting of 

3.750 points. The width of the timeseries is ranging from -1,000 Volt to 1,000 

Volt. 

In Figure 2a the experimental time series during the epilepsy is presented. The 

q-value was found to be 1.64 0.14
stat

q = ± . The results of the q-statistics 

analysis are shown in Figure 2b and Figure 2c. 
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Figure 2: (a) Time series of seizure state (b) PDF P(zi) vs. zi q Guassian 

function that fits P(zi) for the seizure state (c) Linear Correlation between 

lnqP(zi) and (zi)
2
 where q = 1.63 ± 0.14 for the seizure state. 

 

 

4.4 Eartquakes Dynamics 
 

In this sub-section we present the q-statistics of the experimental data from 

earthquakes in the region of whole Greece with magnitude greater from 4 and 

time period 1964-2004. The data set was found  from the National Observatory 

of Athens (NOA). 

In Figure 3a the time series of Interevent Times is presented, while the 

corresponding q-value is shown in Figure 3b and was found to be 

2.28 0.12
stat

q = ±  . In Figure 3d we present the experimental time series of 

Magnitude data. The q-statistics for this case are presented in Figure 3e. The 

corresponding q-value was found to be 1.77 0.09
stat

q = ±  . The results 

reveal clearly non-Gaussian statistics for the earthquake Interevent Times and 

Magnitude data. The results showed the existence of q-statistics and the non-

Gaussianity of the data sets. 

  

 

4.5 Atmospheric Dynamics 
  
  In this sub-section we study the q-statistics for the air temperature and rain fall 

experimental data sets from the weather station 20046 Polar GMO in E.T. 

Krenkelja for the period 1/1/1960 – 31/12/1960. In Figure 4(a,d) the 

experimental time series from temperature and rainfall correspondingly are 

presented and in the Figure 4(b,c,e,f) the results of the q-statistics analysis are 

shown. The estimated q-values were found to be  for the temperature data set 

and for the rainfall data set. In both cases we observed clearly non Gaussian 

statistics. 
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Figure 3: (a) Time series of Interevent Times (b) PDF P(zi) vs. zi q Guassian 

function that fits P(zi) for the Interevent Times (c) Linear Correlation between 

lnqP(zi) and (zi)
2
 where q = 2.28 ± 0.12 for the Interevent Times (d) Time series 

of Magnitude (e) PDF P(zi) vs. zi q Gaussian  function that fits P(zi) for the 

Magnitude (f) Linear Correlation between lnqP(zi) and (zi)
2
 where q = 1.77 ± 

0.09 for the Magnitude. 

 

 

 
 

Figure 4: (a) Time series of Temperature (b) PDF P(zi) vs. zi q Guassian 

function that fits P(zi) for the Temperature (c) Linear Correlation between 

lnqP(zi) and (zi)
2
 where q = 1.89 ± 0.08 for the Temperature (d) Time series of 

Rainfall (e) PDF P(zi) vs. zi q Gaussian  function that fits P(zi) for the Rainfall 

(f) Linear Correlation between lnqP(zi) and (zi)
2
 where q = 2.21 ± 0.06 for the 

Rainfall. 
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4.6 Magnetospheric Magneto Hydro Dynamics (MHD) Dynamics 
 

The estimation of ,
x z

V B  Tsallis statistics during the substorm period is 

presented in fig.5(a-f). Fig. 2(a,d) shows the experimental time series 

corresponding to spacecraft observations of bulk plasma flows 
x

V  and 

magnetic field 
z

B  component. Fig. 2(b,e) presents the estimated q-values for 

the 
x

V  plasma velocity time series and for the magnetic field 
z

B  component 

time series. The q-values of the signals under scrutiny were found to be 

1.98 0.06
stat

q = ±  for the 
x

V  plasma velocity time series and 

2.05 0.04
stat

q = ±  for the magnetic field 
z

B  component. The fact that the 

magnetic field and plasma flow observations obey to non-extensive Tsallis with 

q − values much higher than the Gaussian case ( 1q = ) permit to conclude for 

magnetospheric plasma the existence of non-equilibrium MHD anomalous 

diffusion process. 

 

 

 
 

 
 

Figure 5: (a) Time series of Bz storm period (b) PDF P(zi) vs. zi q Gaussian  

function that fits P(zi) for the Bz storm period (c) Linear Correlation between 

lnqP(zi) and (zi)
2
 where q = 2.05 ± 0.04 for the Bz storm period (d) Time series 

of Vx storm period (e) PDF P(zi) vs. zi q Guassian function that fits P(zi) for the 

Vx storm period (f) Linear Correlation between lnqP(zi) and (zi)
2
 where q = 1.98 

± 0.06 for the Vx storm period. 
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4.7 Magnetospheric Fractal Accelerator of Charged Particles 
 

Already Tsallis theory has been used for the study of magnetospheric energetic 
particles  non-Gaussian by Voros [61] and Leubner [62]. In the following we 
study the q-statistics of magnetospheric energetic particle during a strong sub-
storm period. We used the data set from the GEOTAIL/EPIC experiment 
during the period from 12:00 UT to 21:00 UT of 8/2/1997 and from 12:00 UT 
of 9/2/1997 to 12:00 UT of 10/2/1997. The Tsallis statistics estimated for the 
magnetospheric electric field and the magnetospheric particles ( ),e p− +  

during the storm period is shown in Fig. 6(a-i). Fig. 6(a,d,g) present the 

spacecraft observations of the magnetospheric electric field 
y

E  component and 

the magnetospheric electrons ( )e −  and protons ( )p + . The corresponding 

Tsallis q-statistics was found to correspond to the q-values: 

2.49 0.07
stat

q = ±  for the 
yE  electric field component, 

2.15 0.07
stat

q = ±  for the energetic electrons and 2.49 0.05
stat

q = ±  for 

the energetic protons. These values reveal clearly non-Gaussian dynamics for 
the mechanism of electric field development and electrons-protons acceleration 
during the magnetospheric storm period. 

 

 

 
Figure 6: (a) Time series of Ey storm period (b) PDF P(zi) vs. zi q Guassian 
function that fits P(zi) for the Ey storm period (c) Linear Correlation between 
lnqP(zi) and (zi)

2
 where q = 2.49 ± 0.07 for the Ey storm period (d) Time series 

of electrons storm period (e) PDF P(zi) vs. zi q Gaussian  function that fits P(zi) 
for the electrons storm period  (f) Linear Correlation between lnqP(zi) and (zi)

2
 

where q = 2.15 ± 0.07 for the electrons storm period time series (g) Time series 
of protons storm period (h) PDF P(zi) vs. zi q Gaussian  function that fits P(zi) 
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for the protons storm period (i) Linear Correlation between lnqP(zi) and (zi)
2
 

where q = 2.49 ± 0.05 for the protons storm period. 

 

4.8 Solar Wind Magnetic Cloud 
 

From the spacecraft ACE, magnetic field experiment (MAG) we take raw data 

and focus on the Bz magnetic field component with a sampling rate 3 sec. Tha 

data correspond to sub-storm period with time zone from 07:27 UT, 20/11/2001 

until 03:00 UT, 21/11/2003. 

 Magnetic clouds are a possible manifestation of a Coronal Mass Ejection 

(CME) and they represent on third of ejectra observed by satellites. Magnetic 

cloud behave like a magnetosphere moving through the solar wind. Carbone et 

al. [58], de Wit [63] estimated non-Gaussian turbulence profile of solar wind. 

Bourlaga and Vinas [55] estimated the q-statistics of solar wind at the q-value 

1.75 0.06
stat

q = ± . Fig. 7 presents the q-statistics estimated in the magnetic 

cloud solar plasma for the z-component 
Z

B  of the magnetic field. The 
Z

B  

time series is shown in Fig. 7a. The q-statistics for 
Z

B  component is shown at 

Fig. 7(b,c), while the q-value was found to be  2.02 0.04
stat

q = ± . This value 

is higher than the value 1.75
stat

q =  estimated from Bourlaga and Vinas [55] 

at 40 AU. 

 

 
Figure 7: (a) Time series of Bz cloud (b) PDF P(zi) vs. zi q Gaussian  function 

that fits P(zi) for the Bz cloud (c) Linear Correlation between lnqP(zi) and (zi)
2
 

where q = 2.02 ± 0.04 for the Bz cloud. 

 

4.9 Solar Activity: Sun Spot-Flares Dynamics 
 

In this sub-section we present the q-statistics of the sunspot and solar flares 

complex systems by using data of Wolf number and daily Flare Index. 

Especially, we use the Wolf number, known as the international sunspot 

number measures the number of sunspots and group of sunspots on the surface 

of the sun computed by the formula: (10)R=k*(10g+s) where: s is the number 

of individual spots, g is the number of sunspot groups and k is a factor that 

varies with location known as the observatory factor. We analyse a period of 

184 years. Moreover we analyse the daily Flare Index of the solar activity that 

was determined using the final grouped solar flares obtained by NGDC 

(National Geophysical Data Center). It is calculated for each flare using the 
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formula: ( * )Q i t= , where "i" is the importance coefficient of the flare and 

“t” is the duration of the flare in minutes. To obtain final daily values, the daily 

sums of the index for the total surface are divided by the total time of 

observation of that day. The data covers time period from 1/1/1996 to 

31/12/2007.  

 

     

   
 

Figure 8: (a) Time series of Sunspot Index concerning the period of 184 years 

(b) PDF P(zi) vs. zi q Guassian function that fits P(zi) for the Sunspot Index (c) 

Linear Correlation between lnqP(zi) and (zi)
2
 where q = 1.53 ± 0.04 for the 

Sunspot Index (d) Time series of Solar Flares concerning the period of 184 

years (e) PDF P(zi) vs. zi q Guassian function that fits P(zi) for the Solar Flares 

(f) Linear Correlation between lnqP(zi) and (zi)
2
 where q = 1.90 ± 0.05 for the 

Solar Flares. 

 

Although solar flares dynamics is coupled to the sunspot dynamics. 

Karakatsanis and Pavlos [64] and Karakatsanis et al. [64] have shown that the 

dynamics of solar flares can be discriminated from the sunspot dynamics. Fig. 8 

presents the estimation of q-statistics of sunspot index shown in fig. 8(b,c) and 

the q-statistics of solar flares signal shown in fig. 8(e,g). The q-values for the 

sunspot index and the solar flares time series were found to be 

1.53 0.04
stat

q = ±  and 1.90 0.05
stat

q = ± correspondingly. We clearly 

observe non-Gaussian statistics for both cases but the non-Gaussianity of solar 

flares was found much stronger than the sunspot index.   

 

4.10  Solar Flares Fractal Accelerator 
 

At solar flare regions the dissipated magnetic energy creates strong electric 

fields according to the theoretical concepts. The bursty character of the electric 

field creates burst of solar energetic particles through a mechanism of solar 
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flare fractal acceleration. According to theoretical concept presented in 

previous section the fractal acceleration of energetic particles can be concluded 

by the Tsallis q-extenstion of statistics for non-equilibrium complex states. In 

the following we present significants verification of this theoretical prediction 

of Tsallis theory by study the q-statistics of energetic particle acceleration.  

Finally we analyze energetic particles from spacecraft ACE – experiment 

EPAM and time zone 1997 day 226 to 2006 day 178 and protons (0.5 – 4) MeV 

with period 20/6/1986 – 31/5/2006, spacecraft GOES, hourly averaged data. 

Figure 9 presents the estimation of the solar protons - electrons q-statistics. The 

q-values for solar energetic protons and electrons time series were found to be 

2.31 0.13
stat

q = ±
 
and

 
2.13 0.06

stat
q = ±  correspondingly. Also in this 

case we clearly observe non-Gaussian statistics for both cases. 

 
   

 
Figure 9: (a) Time series of Solar proton (b) PDF P(zi) vs. zi q Guassian 

function that fits P(zi) for the Solar proton data (c) Linear Correlation between 

lnqP(zi) and (zi)
2
 where q = 2.31 ± 0.13 for the Solar proton (d) Time series of 

Solar electrons (e) PDF P(zi) vs. zi q Guassian function that fits P(zi) for the 

Solar electrons (f) Linear Correlation between lnqP(zi) and (zi)
2
 where q = 2.13 

± 0.06 for the Solar electrons. 

 

4.11 Cosmic Stars 
 

In the following we study the q-statistics for cosmic star brightness. For this we 

used a set of measurements of the light curve (time variation of the intensity) of 

the variable white dwarf star PG1159-035 during March 1989. It was recorded 

by the Whole Earth Telescope (a coordinated group of telescopes distributed 

around the earth that permits the continuous observation of an astronomical 

object) and submitted by James Dixson and Don Winget of the Department of 

Astronomy and the McDonald Observatory of the University of Texas at 

Austin. The telescope is described in an article in The Astrophysical Journal 

(361), p. 309-317 (1990), and the measurements on PG1159-035 will be 

described in an article scheduled for the September 1 issue of the Astrophysical 
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Journal. The observations were made of PG1159-035 and a non-variable 

comparison star. A polynomial was fit to the light curve of the comparison star, 

and then this polynomial was used to normalize the PG1159-035 signal to 

remove changes due to varying extinction (light absorption) and differing 

telescope properties.  
 

Figure 10 shows the estimation of q-statistics for the cosmic stars PG-1159-

035. The q-values for the star PG-1159-035 time series was found to be 

1.64 0.03
stat

q = ± . We clearly observe non-Gaussian statistics.  

 
Figure 10: (a) Time series of cosmic star PG-1159-035 (b) PDF P(zi) vs. zi q 

Guassian function that fits P(zi) for the cosmic star PG-1159-035 (c) Linear 

Correlation between lnqP(zi) and (zi)
2
 where q = 1.64 ± 0.03 for the cosmic star 

PG-1159-035. 

 

4.12 Cosmic Rays 
 

In this sub-section we study the q-statistics for the cosmic ray (carbon) data set. 

For this we used the data from the Cosmic Ray Isotope Spectrometer (CRIS) on 

the Advanced Composition Explorer (ACE) spacecraft and especially the 

carbon element (56-74 Mev) in hourly time period and time zone duration from 

2000 – 2011.The cosmic rays data set is presented in Fig.11a, while the q-

statistics is presented in Fig.11[b,c]. The estimated  
stat

q  value was found to he 

1.44 0.05
stat

q = ± . This resulted reveals clearly non-Gaussian statistics for 

the cosmic rays data. 

 

 
Figure 11: (a) Time series of cosmic ray Carbon (b) PDF P(zi) vs. zi q 

Guassian function that fits P(zi) for the cosmic ray Carbon (c) Linear 

Correlation between lnqP(zi) and (zi)
2
 where q = 1.44 ± 0.05 for the cosmic ray 

Carbon. 
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System q_stat 

Cardiac (hrv) 1.26 0.10±  

Brain (seizure) 1.63 0.14±  

Seismic (Interevent) 2.28 0.12±  

Seismic (Magnitude) 1.77 0.09±  

Atmosphere (Temperature) 1.89 0.08±  

Atmosphere (Rainfall) 2.21 0.06±  

Magnetosphere (Bz storm) 2.05 0.04±  

Magnetosphere (Vx storm) 1.98 0.06±  

Magnetosphere (Ey storm) 2.49 0.07±  

Magnetosphere (Electrons storm) 2.15 0.07±  

Magnetosphere (Protons storm) 2.49 0.05±  

Solar Wind (Bz cloud) 2.02 0.04±  

Solar (Sunspot Index) 1.53 ± 0.04 

Solar (Flares Index) 1.8700 

Solar (Protons) 2.31 0.13±  

Solar (Electrons) 2.13 0.06±  

Cosmic Stars (Brigthness) 1.64 0.03±  

Cosmic Ray (C) 1.44 0.05±  

 

TABLE 1: This table includes the estimated qstat indeces for the brain and 

heart activity, the Magnetospheric dynamics (Bz, Vx, Ey, electron, protons time 

series), solar wind magnetic cloud, sunspot-solar flare time series, cosmic stars 

and cosmic rays 

 

5. Summary and Discussion 
 

In this study we presented novel theoretical concepts (sections 2-3) and novel 

experimental results (section 4) concerning the non-equilibrium distributed 

dynamics of various kinds of complex systems as : brain and heart activity, 

seismic and atmospheric dynamics as well as space plasmas dynamics 

corresponding to planetic magnetospheres, solar wind, solar corona, solar 

convection zone, cosmic stars and cosmic rays. In all of these cases the 

statistics was found to be non-Gaussian as the q-statistics index was estimated 

to be larger than the value q=1 which corresponds to Gaussian dynamics. The 

values of qstat index for the systems which were studied are presented in table 

1. This experimental result constitutes strong evidence for the universality of 

non-equilibrium complex or strange dynamics as it was presented in section 2 
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of this study. As for the theory in the theoretical description of this study we 

have shown the theoretical coupling of Tsallis non-extensive statistical theory 

and the non-equilibrium fractal dynamics. That is has been shown also the 

internal correlation of the Tsallis q-extension of Boltzmann-Gibbs statistics 

with modern fractal generalization of dynamics. Our theoretical descriptions 

showed the possibility of the experimental testing of Tsallis statistics and fractal 

dynamics through the Tsallis q-triplet as well as the structure functions 

exponent spectrum. Moreover at this study we have tested the theoretical 

concepts only through the q-statistics index of Tsallis non extensive theory, the 

tests of the entire q-triplet and the structure functions exponent spectrum are 

going to be presented in a short coming paper [37].  

Finally the theoretical concepts and the experimental results of this study 

clearly indicate the faithful character of the universality of Tsallis q-statistics 

and fractal dynamics in a plenty of different physical systems. In this way we 

can indicate faithfully that the Tsallis q-entropy theory as well as the fractal 

dynamics constitutes the new basis for a novel unification of the complexity 

physical theory. 
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Abstract. Assimilating similar music bars with the axial-diagonal self-affine car-
toons as defined by Mandelbrot [4], [5] to construct very general multi-fractals, we
use one page of a score of Philip Glass’ Glassworks to define the transition matrix
of an order 1 Markov chain to simulate surrogates of the same piece, to investigate
whether in this minimalist setting we obtain (i) an exact reproduction of the orig-
inal, or (ii) something that though different sounds pleasantly.
Keywords: superposition of fractals, multifractals, complexity, self-affine cartoons
and self-affine bars.

1 Introduction

Schröder[9], p. 109, boldly presents the key ideas of Birkhoff’s theory of aes-
thetic value: an aesthetic creation is pleasing and interesting when it is neither
too regular and predictable like a boring brown noise with a frequency de-
pendence f−2, nor a pack of too many surprises like an unpredictable white
noise with a frequency dependence f−0.
Multifractal measures — for an early overview of the field cf. Evertsz and
Mandelbrot [2] — is a candidate tool to analyze the complexity of musical
scores, since a single similarity exponent characterizing a monofractal set is
hardly appropriate to render the rich complexity of even minimalist compo-
sitions.
Philip Glass’ Façades, whose interpertrations range from strings, piano,
flute/saxophone and oboe to piano and flute (or even an initial 42s sec-
tion fingerpicked in guitar) is used as a case study on the appropriateness of
multifractal tools in the description of musical complexity.

This is a first essay on using such tools, and we shall limit ourselves to
assimilate the musical notion of bar (or measure) with the “cartoons” used
by Mandelbrot [5], namely chapter N1, or chapter E6 in [4], analyzing bars
19–39 (page 14 of the score of Glassworks).

The idea of achieving aesthetic value blending harmoniously repetition
with innovation and contrast — in Platzer [8] definition of the classical
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rondo, for instance, a principal theme (sometimes called the “refrain”) al-
ternates with one or more contrasting themes, generally called “episodes,”
but also occasionally referred to as “digressions” or “couplets” — will be fur-
ther discussed on an appendix of the full version of this note, where Platzner’s
specialist description of the rondo is contrasted to the “amateur” — but nev-
ertheless more eloquent — description in Sorti and Monaldi’s Imprimatur.
Proust’s lyrical description of the “petite phrase de Vinteul”, and Poe’s The
Philosophy of Composition where he expresses the essentil role of the refrain
(limited to the word “nevermore” in his masterpiece The Raven, that never-
theless has some dose of consonance with the name of the dead Leonore, and
whose component never is phonetically the reversion of “raven”

2 Façades

Although Façades first appeared on Philip Glass’ album Glassworks, it was
conceived as part of the soundtrack to Godfrey Reggio’s Koyaanisqatsi,
see http://www.youtube.com/watch?v=vz_R2y1oAzw&feature=related or
http://www.youtube.com/watch?v=GQsoMIGuPD8 for the stream introduc-
ing a similar musical theme. Originally scored for an orchestral string section
and two saxophones, it is often performed using two flutes instead of saxo-
phones, or scored for 2 soprano sax, viola, cello; synthesizer doubles va/vc. In
fact, as Patrick Gary observed in MusicWeb International, “Philip Glass is a
composer whose body of work readily lends itself to re-orchestration. In fact,
many of his early works were written with intentionally vague orchestrations
to allow for greater ease in performance.”

Some comments by Philip Glass himself:
“Although I quite liked the way it turned out, it was not used for the

film and ended up on my 1982 album for CBS, Glassworks. It also has
become a staple of the live performances of the Philip Glass Ensemble and
was included in Glasspieces, the production put on at the New York City
Ballet in the spring of 1990, choreographed by Jerome Robbins.” — more
precisely, it is Part 5 of Glassworks, for more information cf. the appendix
on The IBM Glass Engine.

“GLASSWORKS was intended to introduce my music to a more general
audience than had been familiar with it up to then.”

“I’m very pleased with it, the way it’s received in performance. The pieces
seem to have an emotional quality that everyone responds to, and they work
very well as performance pieces.”

On the appraisal published in Gramophone Magazine, the reviewer wrote
“the Glass works gathered together on Glassworks make an excellent in-
troduction to the sharp, hard sonorities, densely packed, slowly changing
patterns and seemingly unstoppable linear flow of this important aspect of
contemporary music.” — we cannot adhere to the expression “linear flow”,
that certainly is written to convey the more general idea of smoothness.
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Musical scores are available from www.ChesterNovello.com, that
stores interesting information on Glass achievements and works at
http://www.chesternovello.com/default.aspx?TabId=2431&State_
2905=2&composerId_2905=540.

3 Self-Affine Cartoons, Self-Affine Bars

One of the pathways described by Mandelbrot [4], [5] is via diagonal-axial
self-affine cartoons, cf. for instance figures N1-6 and N1-7, pp. 33–34 in [4].
This inspired us to assimilate the idea of self-affine cartoons and of self-affine
bars (measures).

Observe however that in any practical human made artifact, or in other
practical applications, an important difference does exist: while in the con-
struction of multifractals infinite iteration is conceived, in practical applica-
tions a rather limited number of iterations is mandatory, and hence some
stopping rule has to be defined, see Pestana and Aleixo [6] and Aleixo et al.
[1] on stuttering Cantor sets.

For instance, looking at bars 19–39 from page 14 of the score of Glass-
works, reproduced in the left and “exploded” in the right of Fig. 3 below

Fig. 1. Page 14 of the score of Glassworks, and an “exploded” view of the 21 bars
# 19–39.

we observe that there exist in it only six types of bars, cf. Fig. 3, types 1 and
2, and 4 and 5 being obviously very similar.
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Fig. 2. Bar types in the 21 bars 19–39 in page 14 of the score of Glassworks.

The description of this piece of the score can obvi-
ously be rendered very simply as the sequence of bar types
{1− 1− 1− 2− 1− 1− 1− 2− 3− 3− 4− 4− 4− 4− 5− 5− 4− 4− 5− 5− 6}.

In this preliminary investigation, we decided to assess the probability of
recomposing this 21 bars piece using the bar types identified in Fig. 3 together
with an order 1 Markov chain defined by the initial state

1
0
0
0
0
0


and transition matrix

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Type 1 2
3

1
3 0 0 0 0

Type 2 1
2 0 1

2 0 0 0

Type 3 0 0 1
2

1
2 0 0

Type 4 0 0 0 2
3

1
3 0

Type 5 0 0 0 1
4

1
2

1
4

(this of course can generate sequences with less than 21 bars, in case a tran-
sition from state 5 to state 6 effectively does occur at a discrete time less
than 20). The assessment has been made generating 10,000 sequences

{1− 1− 1− 2− 1− 1− 1− 2− 3− 3− 4− 4− 4− 4− 5− 5− 4− 4− 5− 5− 6}

{1− 1− 2− 2− 2− 1− 1− 2− 3− 3− 4− 4− 4− 4− 5− 5− 4− 4− 5− 5− 6}
{1− 1− 1− 2− 1− 1− 1− 2− 2− 3− 4− 4− 4− 4− 5− 5− 4− 4− 5− 5− 6}
{1− 1− 1− 2− 1− 1− 1− 2− 3− 3− 4− 4− 4− 4− 5− 5− 4− 4− 5− 5− 6}
{1− 1− 1− 2− 2− 1− 1− 2− 3− 3− 4− 4− 4− 4− 5− 5− 4− 5− 6− − }
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{1− 1− 1− 2− 1− 1− 1− 2− 3− 3− 4− 4− 4− 4− 5− 5− 4− 4− 5− 5− 6}
{1− 1− 1− 2− 1− 1− 1− 2− 3− 3− 4− 4− 4− 4− 5− 5− 4− 4− 5− 5− 6}
{1− 1− 1− 2− 1− 1− 1− 2− 3− 3− 4− 4− 4− 4− 5− 5− 4− 4− 5− 5− 6}
...

Alternatively, we also generated sequences using as transition matrix

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Type 1 2
3

1
3 0 0 0 0

Type 2 1
2 0 1

2 0 0 0

Type 3 0 0 1
2

1
2 0 0

Type 4 0 0 0 2
3

1
3 0

Type 5 0 0 0 1
4

1
2

1
4

Type 6 1
6

1
6

1
6

1
6

1
6

1
6

and also with discrete uniformly distributed initial state

1
6

1
6

1
6

1
6

1
6

1
6


Other sensible variations are under investigation, as well as a comparison

with more linear and iterative procedures to generate musical scores, as for
instance the Lindenmayer systems described in Pestana [7].

4 Conclusions

The proportion of 21 bars scores randomly generated as described that are
strictly coincidental with Glass’ original — that will be revealed at Chaos
2012 — is rather less than we had expected in such minimalist setting.

Deeper results may indeed be obtained using higher order Markov chains,
assimilating tied pairs of bars or tied triplets of bars with digrammas and
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trigrammas as used in mathematical linguistics and its applications to en-
cryptation.

We also observe that a large proportion of the random scores produced
using the transition matrix so roughly defined is rather pleasing. Romantism
brought in a respect for the artist and the idea of inspiration that tends to
convince us that any modification of an inspired masterpiece cannot but spoil
it. On his authoritative Le Mythe de Rimbaud, Etiemble [3] reports that in
many occasions he recited Le Bateau Ivre purposely interchanging lines and
blocks of the poem — with no complains from none of the many specialists
that fiercely claim that not a single word can be changed in this immortal
“chef-d’oeuvre”...

In fact, a subjective evaluation, using our own taste, is that 96.3% of
the sequences of 21 bars randomly generated using the transition matrix are
reasonably pleasant.

5 Appendix A: The IBM Glass Engine

The IBM Glass Engine enables deep navigation of the music of Philip Glass.
Personal interests, associations, and impulses guide the listener through an
expanding selection of over sixty Glass works.

The glass engine was developed at the IBM T.J. Watson Research Cen-
ter in 2001. You can download it from Phip Glass page http://www.
philipglass.com/music/compositions/facades.php.

Fig. 3. glassengine — locating the track Façades.

The answers to two of the Frequently Asked Questions deserve to be
recorded:

Q: Who decided how to assign the subjective values (such as JOY) to the
tracks? Was this done by a computer?
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Fig. 4. glassengine — assignement of Joy, Sorrow, Intensity, Density and Velocity
to the track Façades.

A: These values were assigned by Philip Glass’s longtime producer and sound
designer, Kurt Munkacsi, while eating several pounds of chocolate chip
cookies.

Q: How is it possible for a track to have high amounts of both joy and sorrow?

A: Music can contain two conflicting emotions. Really.

6 Appendix B: Koyaanisqatsi

Koyaanisqatsi, Life Out Balance, 1982, directed by Godfrey Reggio, music by
Philip Glass, “is the first film of the QATSI trilogy. The title is a Hopi Indian
word meaning ‘life out of balance’. Created between 1975 and 1982, the film is
an apocalyptic vision of the collision of two different worlds — urban life and
technology versus the environment. [...] Koyaanisqatsi attempts to reveal
the beauty of the beast!”.

Aside from the MGM release presented by Francis Ford Coppola, (Cred-
its: Music: Philip Glass. Philip Glass Music: Produced & Recorded
by Kurt Munkacsi. Conducted by Michael Riesman), you may be inter-
ested in KOYAANISQATSI — Godfrey Reggio — making of, retrieved in
http://www.youtube.com/watch?v=_Mr26_m5rGQ.

http://www.youtube.com/watch?v=GQsoMIGuPD8 is Part 1/9 uploaded
by schipflingerfred in youtube (some other parts have been blocked on copy-
right infringement rights). Other url addresses where parts of the movie can
be watched:

http://www.youtube.com/watch?v=Me7QaFMcQ9A&feature=relmfu,
http://www.youtube.com/watch?v=DlFg1MgATu4&feature=related,
http://www.youtube.com/watch?v=-iNJ8u4ewD8&feature=relmfu,
http://www.youtube.com/watch?v=M27874iHwpg&feature=relmfu.

For more information, cf. also the section http://www.philipglass.
com/music/films/koyaanisqatsi.php in Philip Glass’ webpage.
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7 Appendix C: Repetition and Innovation in the
Philosophy of Music Composition

(Platzner’s and a layman description of the musical structure of the form
rondo to be developed in the full length paper.)
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Abstract. Previous published researches on chaos, controlling and synchroniza-
tion in phased–locked loops focused only on integer–order phase–locked loops. In
this paper, we study control and synchronization of phase–locked loop systems
based on fractional–order differential equations. Stability analyses of commensu-
rate fractional–order linear system are utilized to control chaotic behaviour exhib-
ited by fractional–order differential equation–based phase–locked loop. Further-
more, chaos synchronization is obtained by employing the nonlinear state observer
method. Finally, numerical simulations verify the effectiveness and applicability of
our approaches.
Keywords: Fractional–order equation, Phase–locked loop, Chaos control, Chaos
synchronization.

1 Introduction

Fractional calculus was introduced in the early 17th century and has been
applied to describe various real systems such as transmission lines, electrical
noises, dielectric polarization and heat transfer phenomena Arena et al.[1].
Recently, there are amount of efforts to discover the chaos of fractional–order
systems. Specifically, chaotic features have been proofed in fractional–order
Lorenz system, fractional–order Chua’s system, fractional–order Duffing’s os-
cillator, fractional–order Genesio–Tesi system and fractional–order Lotka–
Volterra system Caponetto et al.[2]. Moreover, the synchronization and con-
trolling fractional–order chaotic systems are the topics which received more
attention because of their practical applications. Li et al. implemented syn-
chronization of fractional Lorentz system, Chen system and Chua circuit by
the aid of controller and driving signals Li and Yan[3]. Matouk[4] proposed
the feedback control and synchronization of a fractional–order modified Van
der Pol–Duffing circuit using fractional Routh–Hurwitz conditions.

Phase–locked loop (PLL) plays a vital role in communication and control
systems Gardner[5] where applications of PLL include clock synchronization,

469



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

carrier recovery, frequency or phase modulation and demodulation, frequency
synthesis, and PLL controlled motors. Generally, PLL works in the locked
range in which average frequency of the voltage controlled oscillator (VCO)
exactly equal to the average frequency of the input signal. However, chaotic
behaviours of PLLs have been observed and studied with second–order loop
filter Endo and Chua[6] under certain conditions. In order to control unde-
sirable chaos effects in PLLs, Zhao et al.[7] represented the state observer
to design a non–linear feedback controller for second–order non–autonomous
PLL. Experimental synchronization of two PLLs driven by a common chaotic
signal derived from a master PLL was also observed Endo and Chua[6] if the
detuning of the VCO free-running frequencies was not large. Even through, a
fractional–order differential equation–based phase–locked loop is still not con-
sidered. There is an expectation that fractional–order differential equation–
based phase–locked loop (FOPLL), which processes key features of classical
PLL, will have important potential applications in such areas as communica-
tions and control. Motivated by this expectation, in this work, we introduce a
new model of the FOPLL and propose control and synchronization methods
for it.

This paper is organized as follows. In the next Section, we review the frac-
tional calculus and the stability of the fractional–order systems. The model
of FOPLL will be given in Section 3. After explaining chaos controlling for
FOPLL in Section 4, the synchronization between two FOPLLs is described
in Section 5. Finally, Section 6 draws some concluding remarks.

2 Fractional calculus review

The fractional–order differentiator can be denoted by a general fundamental
operator aD

α
t as a generalization of the differential and integral operators

Caponetto et al.[2], which is defined as follows

aD
α
t =


d

α

dtα R(α) > 0,

1 R(α) = 0,
t∫
a

(dτ)−α R(α) < 0,

where a is the initial value, in addition, α is the fractional order which can also
be complex, and R(α) is the real part of the fractional order. The commonly
used definition of fractional derivative is Grunwald-Letnikov definition which
is described as the following form

aD
α
t f(t) = lim

h→0

1
hα

[(t−a)/h]∑
j=0

(−1)j
(
α
j

)
f(t− jh),
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where [.] means the integer part. Other way to study fractional–order func-
tion is applied the Laplace transform of fractional derivative as

L {0Dα
t f (t)} = sαF (s) .

The commensurate fractional–order linear time–invariant system can be
presented by the state–space model{

0D
α
t x (t) = Ax (t) + Bu (t) ,

y (t) = Cx (t) ,

where x ∈ Rn, u ∈ Rr and y ∈ Rp are the state, input and output vectors of
the system and A ∈ Rn×n, B ∈ Rn×r, C ∈ Rp×n. According to Matignon[8],
the system is stable if it satisfies the condition:

|arg (eig (A))| > α
π

2
, (1)

where 0 < α < 1 and eig (A) is the eigenvalues of matrix A.
On the other hand, the commensurate fractional order nonlinear system

could be described by
0D

α
t x = f (x) ,

where 0 < α < 1 and x ∈ Rn. The equilibrium points of system are asymp-
totically stable Tavazoei and Haeri[9] if the following condition is satisfied:

|arg (eig (J))| = |arg (λi)| > α
π

2
, (2)

where λi are the eigenvalues of the Jacobian matrix J, which is evaluated at
the equilibrium points.

3 Mathematical model of fractional–order differential
equation–based phase–locked loop

The model of one conventional phase–locked loop is considered firstly. The
PLL contains three main components: a phase detector (PD), a loop filter
(LF) and a VCO as shown in Fig. 1. PD compares the phase of input signal
against the phase of VCO and creates the control voltage which is applied to
VCO to change the VCO frequency. As the result, the average phase of the
VCO tracks the average phase of input. To analyse the dynamical features
of PLL, its model in term of phase is presented as in Fig. 2.

In Fig. 2, θi and θo denote the input and output phase, respectively;
while φ = θi − θo is the phase error. There, PD is a mixer and LF is a first
order filter with the transfer function

FLPF (s) =
1

1 + τs
,
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LF VCOPD

Fig. 1. Block diagram of the typical phase–locked loop.

sin  0 LPFK F s
1

s


i

o



Fig. 2. Phase model of the typical phase–locked loop.

where τ is time constant and s is an operator denoting d
dt . The differential

equation that characterizes the PLL can be written as

d2φ

dt2
+ β

dφ

dt
+ sinφ = βσ + βM sin (Ωt) +MΩ cos (Ωt) ,

where β, σ, Ω, M are normalized natural frequency, normalized frequency
detuning, normalized modulation frequency and normalized maximum fre-
quency derivation, respectively. Let x1 = φ and x2 = φ̇, the previous equa-
tion has the following form:{

ẋ1 = x2

ẋ2 = −βx2 − sinx1 + βσ + βM sin (Ωt) +MΩ cos (Ωt) .

The variation of Lyapunov exponents Wolf et al.[10] when the parameter β
changes in the range [0.05, 0.4] is given in Fig. 3. For the parameter value β =
0.056, integer–order PLL is chaotic since the Lyapunov exponent is positive.
By replacing integer–order derivatives in above equation by fractional–order
ones, the fractional–order differential equation–based PLL is introduced as{

0D
α
t x1 = x2

0D
α
t x2 = −βx2 − sinx1 + βσ + βM sin (Ωt) +MΩ cos (Ωt) , (3)

where α is the derivative order. We found the presence of chaos in fractional–
order PLL equation by observing the largest Lyapunov exponent (see Fig. 3).
When α = 0.98, β = 0.056, σ = 0.2, M = 0.8, Ω = 0.7 the fractional–order
differential equation–based phase–locked loop exhibits chaos behaviour. The
phase portrait and time response are illustrated in Figs. 4, 5. It is notable
that there are some similarities between two kinds of phase–locked loops in
dynamical behaviour (Fig. 3) as well as tracking range (Fig. 6).
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Fig. 3. Largest Lyapunov exponents according to β and σ of the typical integer–
order phase–locked loop and the phase–locked loops based on fractional–order dif-
ferential equation when M = 0.8, Ω = 0.7.
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Fig. 4. Chaotic attractor in FOPLL with α = 0.98.
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Fig. 5. Chaotic time domain representations of FOPLL with α = 0.98: (a) x1, (b)
x2.

4 Chaos control in fractional–order differential
equation–based phase–locked loop

Control chaos is a progress to manage the unexpected performances in di-
verse areas of research such as biology, physiology, fluid mechanics, electron-
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Fig. 6. Tracking errors of the typical integer–order phase–locked loop and the
phase–locked loops based on fractional–order differential equation versus the deriva-
tive order α.

ics, chemical engineering, and so on [11]. The study of chaos control in this
Section provides the designer one tool to develop applications involving FO-
PLL without undesired chaos. Specifically, FOPLL (3) could be rewritten in
the matrix form as follows

0D
α
t x = Ax + Bf (x) + u,

where A =
[

0 1
0 −β

]
, B =

[
0 0
0 −1

]
, f (x) =

[
0

sinx1

]
, x =

[
x1

x2

]
, and u =[

0
βσ + βM sin (Ωt) +MΩ cos (Ωt)

]
. To control chaos, one addition control

term uc is applied in FOPLL. Hence, the controlled FOPLL system can be
obtained as

0D
α
t x = Ax + Bf (x) + u + uc.

There, by combining the feedback control method Schöll and Schuster[11]
and condition (2), uc is selected as

uc =
[

0
k (x1 + x2)− βσ − βM sin (Ωt)−MΩ cos (Ωt)

]
.

Therefore, the controlled FOPLL system has the reduced form

0D
α
t x = g (x) , (4)

in which

g (x) =
[

x2

− sinx1 + kx1 + (k − β)x2

]
.
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Fig. 7. Times series plots of the controlled FOPLL (a) x1(t), (b) x2(t). Controller
is turned on at t = 100.

The Jacobian matrix of (4) is given by

J =
[

0 1
k − cosx1 k − β

]
. (5)

Replacing equilibrium points of system (4) x∗ =
[
x∗1 x

∗
2

]
=
[

0 0
]

into the
Jacobian matrix, we have

J |x=x∗ =
[

0 1
k − 1 k − β

]
. (6)

The eigenvalues λi of J |x=x∗ are the solutions to the equation

det (J |x=x∗ − λI) = 0. (7)

By choosing the parameter k such that the condition (2) satisfies, equi-
librium points of FOPLL (4) are asymptotically stable. To illustrate the
effectiveness of the proposed controlling approach, numerical simulation is
implemented with the chosen parameter k = −16, which makes (7) has two
separated negative real solutions. Simulation results of chaos control are dis-
played in Fig. 7. Obviously, after applying the controlling process, FOPLL
works in locked region where phase and frequency errors equal zeros.

5 Synchronization of chaos in fractional–order
differential equation–based phase–locked loops

Synchronization in chaotic systems has received amount of attention because
of practical application such as secure chaotic communication. As reporting
in Section 3, FOPLL can be chaotic; hence, the synchronization in two FO-
PLL systems can derive the secure communication systems. In this Section,
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Fig. 8. Synchronization behaviour of two FOPLLs (a) x1m − x1s, (b) x2m − x2s.

the synchronous scheme between two FOPLLs, named master and slave sys-
tem Boccaletti[12] is demonstrated. This synchronous scheme is based on
the nonlinear state observer. Similar to the previous Section, the master is
defined as

0D
α
t xm = Axm + Bf (xm) + u,

where xm =
[
x1m

x2m

]
, f (xm) =

[
0

sinx1m

]
. While the slave system is built as

follows
0D

α
t xs = Axs + Bf (xm) + u + Ke,

where xs =
[
x1s

x2s

]
, K ∈ R2×2 is the feedback gain matrix and e =

[
e1
e2

]
=[

x1m − x1s

x2m − x2s

]
is the synchronization error. The dynamical synchronization

error of system could be written as

0D
α
t e = 0D

α
t xm − 0D

α
t xs = (A−K) e. (8)

The synchronization occurs when K is chosen appropriately such that

lim
t→∞

‖xm − xs‖ = lim
t→∞

‖e‖ = 0.

It is clear to see that (8) is the fractional–order linear time–invariant system;
hence, the condition (1) could be applied to find matrix K. There, K is
achieved as

K =
[

1 1
0 2− β

]
,

which makes |arg (eig (A−K))| > απ2 by the eigenvalues eig (A−K) =[
−1 −2

]
. Simulation results in Fig. 8 show the feasibility of the proposed

synchronization scheme.
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6 Conclusion

We have introduced a novel model of fractional–order differential equations of
phase–locked loops. Some principal characteristics of FOPLL, such as phase
tracking and chaos, are investigated. The control of chaotic behaviour in
FOPLL is implemented in order to guarantee the precision on phase track-
ing in practice. Moreover, synchronization scheme based on nonlinear state
observer is performed. We have also obtained the simulation results which
fixed with theoretical analyses. In our future researches on this subject, the
discovery of the novel features and promising applications of the FOPLL will
be estimated.
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Abstract: An existing anti-symmetric-case piecewise-linear delay differential 

equation (DDE) has exhibited chaos at a delay time τ = 3 using an odd term fa = f1 for a = 

1. Three new compound anti-symmetric-case piecewise-linear DDEs are presented. Each 

DDE exhibits chaos using τ < 3. The first compound DDE is a combination of two odd 

terms f1 and f3 where a = 1 and 3, and 1.70 < τ < 2.10. The second compound DDE is a 

combination of two even terms f2 and f4 where a = 2 and 4, and 1.50 < τ < 1.90. Finally, 

the third compound DDE is a combination of two odd terms f1 and f3, and an even term f2 

where a = 1, 2, and 3, and 1.05 < τ < 1.27. Not only can the higher value of ‘a’ reduce the 

value of τ for chaos, but the more combination of terms fa also can. The reduction in τ 

enables simple implementation of a LC network in the delay unit.  

Keywords: chaos, delay differential equation; reduced-delay 

 

1. Introduction 
Since the discovery of the eminent Lorenz chaotic attractor in 1963 [1], 

studies of chaotic behavior in nonlinear systems have attracted great attention 

due to a variety of applications in science and technology, e.g. chaos-based 

secure communications [2], [3], [4]. Time-delay systems can exhibit chaos with 

a relatively simple model involving a value of the dynamical variable at one or 

more times in the past [5]. They have an infinite-dimensional state space with a 

large value of positive Lyapunov exponents and are good candidates for highly 

secure communications. In general, a first-order time-delay system is described 

by a delay differential equation (DDE) of the form. 

 

�x(t) = f [x(t),x
τ
]    (1) 

 

where the overdot denotes a time (t) derivative, xτ = x(t−τ) is the value of x at an 

earlier time (t−τ), and τ is a delay time, i.e. τ ≤ t.  

One of the earliest and most widely studied DDE is the Mackey-Glass 

equation [6], as shown in (2), proposed to model the production of white blood 

cells. The equation exhibits chaos with parameters such as a = 0.2, b = 0.1, c = 

10, and τ = 23. Other examples of DDEs exhibiting chaos include Ikeda DDE 

[7] and sinusoidal DDE [5]. 

�x =
ax

τ

1+ x
τ

c
+ bx,      (2) 
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Recently, chaos in an anti-symmetric-case piecewise-linear DDE has been 

reported [5], as shown in (3). 

 

�x = x
τ
+1 − x

τ
−1 − x

τ
    (3) 

 

for τ = 3. The largest Lyapunov exponent λ = 0.0909. Such a system is 

especially amenable to implementation with electronic circuits [8]. A delay unit 

may be implemented using an LC network [9]. As the size of the LC network is 

proportional to the value of the delay time τ, a reduction of τ in (3) is preferable. 

In this paper, three new compound anti-symmetric-case piecewise-linear 

DDEs are presented. Each DDE exhibits chaos using delay time τ < 3. Such a 

reduction of the delay time in the DDEs enables simple implementation of the 

LC network in the delay unit.  

 

2. Compound Anti-Symmetric-Case Piecewise-Linear DDEs 
For simplicity, the right hand side of (3) can be modified as a general 

function fa as shown in (4) 

 

  
af x a x a x

τ τ τ
= + − − −    (4) 

 
where the parameter ‘a’ is an integer. Equation (3) is therefore represented by 

an odd term f1 as a = 1. Three new compound anti-symmetric-case piecewise-

linear DDEs are proposed. The first compound DDE is a combination of two 

odd terms f1 and f3 where a = 1 and 3, as shown in (5). The second compound 

DDE is a combination of two even terms f2 and f4 where a = 2 and 4, as shown 

in (6). Finally, the third compound DDE is a combination of two odd terms f1 

and f3, and an even term f2 where a = 1, 2, and 3, as shown in (7).   

 

�x1 = f1 + f3

= x
τ
+1 − x

τ
−1 + x

τ
+ 3 − x

τ
− 3 − 2x

τ

                  (5) 

 
�x2 = f2 + f4

= x
τ
+ 2 − x

τ
− 2 + x

τ
+ 4 − x

τ
− 4 − 2x

τ

                    (6) 

 

   

�x
3
= f

1
+ f

2
+ f

3

= x
τ
+1 − x

τ
−1 + x

τ
+ 2 − x

τ
− 2 + x

τ
+ 3 − x

τ
− 3 − 3x

τ

  (7) 
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3. Numerical Results 
For the first compound DDE shown in (5), Figures 1, 2 and 3 visualize 

numerical results of a chaotic waveform, a chaotic attractor, and a bifurcation 

diagram, respectively, using τ = 2.07. The largest Lyapunov exponent is λ = 

0.3112. 

 
 

Fig. 1.  A chaotic waveform of (5) with τ = 2.07. 

 

 
 

Fig. 2.  A chaotic attractor of (5) with τ = 2.07. 

 

 
Fig. 3.  A bifurcation diagram of (5). 
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For the second compound DDE shown in (6), Figures 4 and 5 illustrate 

numerical results of a chaotic attractor and a bifurcation diagram, respectively. 

(6), using τ = 1.75. The largest Lyapunov exponent is λ = 0.1174.  

 
 

Fig. 4.  A chaotic attractor of (6) with τ = 1.75. 

 
 

Fig. 5.  A bifurcation diagram of (6). 

 

For the third compound DDE shown in (7), Figures 6 and 7 depict 

numerical results of a chaotic attractor and a bifurcation diagram, respectively, 

using τ = 1.20. The largest Lyapunov exponent is λ = 0.2823. 
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Fig. 6.  A chaotic attractor of (7) with τ = 1.20. 

 
 

Fig. 7.  A bifurcation diagram of (7). 

 

Table 1 summarizes ranges of delay time τ of equations (5), (6), and (7), for 

which chaos occurs. There are various periodic windows immersed in chaos. It 

can be notice from Table 1 that not only can the higher value of the parameter 

‘a’ of fa reduce the value of the time delay τ for chaos, but the more 

combination of terms fa also can. 

 

 Table 1: Summaries of Ranges of τ For Chaos 

 

Equations Ranges of τ 

�x
1
= f

1
+ f

3
 1.70 < τ < 2.10 

�x
2
= f

2
+ f

4
 1.50 < τ < 1.90 

�x
3
= f

1
+ f

2
+ f

3
 1.05 < τ < 1.27 
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3. Conclusions 
Three new compound anti-symmetric-case piecewise-linear DDEs have 

been presented. The first combines two odd terms f1 and f3 and chaos occurs for 

1.70 ∠ τ ∠ 2.10. The second combines two even terms f2 and f4 and chaos 

occurs for 1.50 ∠ τ ∠ 1.90. Finally, the third combines three terms f1, f2 and f3 

and chaos occurs for 1.05 ∠ τ ∠ 1.27.  Chaos occurs using less delay timeτ than 

that of the existing approach. The reduction in delay time enables the reduction 

in size of the LC network of the delay unit. 
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Abstract. We study similar statistical properties observed in distinct real world
data. In particular, we focus on the power law (PL) distribution. We find that some
data is well fitted by a single PL distribution whereas other phenomena force the
use of two distinct PLs. This behavior is similar in, a priori, unrelated phenomena,
such as catastrophes (terrorism, earthquakes) and variables associated to man-made
systems, such as distribution of the number of words in texts or of the number of
hits received by websites.
Keywords: power law, double power law, real world phenomena.

1 Introduction

Pareto [13] and Zipf [19] laws are examples of Power law (PL) distributions.
These distributions are characterized by heavy tails and were first studied in
1896 by Pareto [13]. Pareto observed that the relative number of individuals
with an annual income larger than a certain value x was proportional to a
power of x. The later can be expressed mathematically by the expression (1).

F (x) = P (X ≥ x) =
C

α− 1
x−(α−1) (1)

where α > 0, C > 0, and F (x) is the complementary cumulative distribution
function of the income x. In the text, we will consider α̃ = α−1 and C̃ = C

α̃ .
Zipf law is a special case of the Pareto law with exponent α̃ = 1.

485



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

Variable x in equation (1) has been used to describe quantities in a wide
variety of real data. Namely, x may represent the number of: (i) individuals
in a population of a city [2,19,6], (ii) articles’ citations [11], (iii) hits in web-
pages [1], (iv) victims in wars, terrorist attacks, or earthquakes [7,16,4], (v)
words in texts [5,19], and several other phenomena [12,10]. In the literature
interesting reviews on on PL behavior and applications can be found [9,18,14].

Application of PL behavior in natural or human-made phenomena usually
comes with a log-log plot, where the axes represent the size of an event and
its frequency. The log-log plot is asymptotically a straight line with negative
slope.

The paper is organized as follows. In Section 2, we review literature con-
cerning distinct phenomena where PL behavior has been fitted. In Section 3,
we present a numerical analysis of real data where PL and double PL be-
havior is observed. Finally, in Section 4, we state the main conclusions and
discuss future research directions.

2 Real events

PL behavior has been used to model the number of casualties in natural
and human-made phenomena, such as earthquakes, tornados, terrorist at-
tacks and wars. Understanding patterns of the number of casualties in these
events may help to organize rescue operations. [7,16,4]. Other applications
of PL behavior, with less impact in terms of human lives, are city and forest
fires, words’ frequency in texts, or the number of hits in webpages. In what
concerns the study of city and forest-fire distributions, results may help to
take measures beforehand in view of possible hazards, thus saving natural
resources and animal and human lives.

We observe a common underneath behavior considering the number of
casualties and the frequency of natural and human-made disasters. Large
casualties are less frequent and are associated with low frequency phenomena.
Two world wars are two examples of this type. Other wars, not so harmful
in terms of preserving human lives [15], are more frequent. Analogously for
earthquakes, the frequency of occurrence of terrific earthquakes, that cause
a large number of victims, is much lower than that of smaller earthquakes
with few casualties [7].

Johnson et al [8] studied war and global terrorism patterns, and developed
a theory for explaining their similar dynamical evolution. The later was
invariant to underlying ideologies, motivations and the terrain in which they
operated. They considered each insurgent force as a generic, self-organizing
system, which evolved dynamically through the continual coalescence and
fragmentation of its constituent groups. Researchers have used wars in Iraq
and Afghanistan, and long-term guerrilla war in Colombia, as examples. On
global terrorism, attacks to London, Madrid, and New York (September 11)
were main choices. Results obtained showed a PL behavior for Iraq, Colombia
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and Afghanistan, with coefficient value (close to) α̃ = 2.5. This value of the
coefficient equalized the coefficient value characterizing non-G7 terrorism. In
2007, Clauset et al [3] plotted a log-log chart for the frequency versus the
severity of terrorist attacks, since 1968, and found a straight line, denoting
PL behavior.

In 2003, Song et al [17] studied fire distribution in Chinese and Swiss
cities. The authors computed the frequency loss and the rank-size plots and
verified validity of a PL in both cases. The frequency loss was the frequency
of fires with loss L, that is, fire loss L converted into Chinese Yuan. The rank
was computed by sorting city fires from large to small, and considering the
largest with rank 1. The PL distribution was invariant for scale and time,
meaning that fire distribution is common for different places and times.

3 Application to real data

PLs are present in many natural and man-made systems and, for certain
cases, a single PL distribution holds over the entire data range. As an exam-
ple, Figure 1 represents the rank/frequency log-log plot of the largest private
American companies, with respect to their annual revenue, in the year 1997,
according to Forbes (http://www.forbes.com/). The data was collected,
sorted and ranked, and then the normalization of the values was carried out.
That is, the data (x-axis) was divided by the highest annual revenue, and the
rank (y-axis) was divided by the rank of the smallest company. A PL was
adjusted to the data using a least squares algorithm. As can be seen in Fig-
ure 1, a PL behavior distribution with parameters (C̃, α̃) = (0.0031, 1.3004)
holds over the entire range of the companies’ annual revenue.

In other real applications, different PLs, characterized by distinct param-
eters, may also be observed. In the sequel, several cases of such behavior are
illustrated.

Figure 2 shows the cumulative distribution function of the size of for-
est fires in Portugal, over the year 2001. The adopted measure for size is
the total burned area. Only fires greater than 100 ha in total burned area
are considered. The data is available on the Portuguese National Forest
Authority (AFN) website (http://www.afn.min-agricultura.pt/). For
this case, two distinct PLs with parameters (C̃1, α̃1) = (0.0383, 0.9232) and
(C̃2, α̃2) = (0.0065, 2.4665) fit the data. The change in the behavior occurs
at the relative value of 0.35, approximately.

Figure 3 represents the severity of tornadoes in the USA, during 2003.
The total number of human victims (killed and injured) directly related to a
given occurrence is used to quantify its severity. The data is available at the
U.S. National Oceanic and Atmospheric Administration (http://www.noaa.
gov/), National Weather Service, Storm Prediction Center website (http://
www.spc.noaa.gov/). The chart reveals a dual PL behavior with parameters
(C̃1, α̃1) = (0.0413, 0.5804), (C̃2, α̃2) = (0.0100, 1.2374).
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Fig. 1. Rank/frequency log-log plot of the size of the largest American companies
in 1997.

10
−2

10
−1

10
0

size/max size

10
−3

10
−2

10
−1

10
0

ra
n
k
/m

a
x
 r

a
n
k

ln(y) = −2.46649 ln(x) − 5.04367

ln(y) = −0.923242 ln(x) − 3.26338

Fig. 2. Rank/frequency log-log plot of a system presenting dual PL behaviour: size
of forest fires in Portugal, year 2001.
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Fig. 3. Rank/frequency log-log plot of a system presenting dual PL behaviour:
severity of tornadoes in the USA in 2003.

For the finale, we remark that several examples of real world phenomena,
where a double PL behavior is observed, were presented. Future work will
focus on possible explanation for this peculiarity seen in distinct phenomena,
that are described by PLs.

4 Conclusion

In this paper, we focused on PL distributions as models of sets of real data.
We presented examples of data that was well fitted by a single straight line
and examples that were best described by two distinct PL distributions. The
reason behind this type of behavior in distinct and not related phenomena is
still to be found.
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Long ago it was stated [7,5] that quantum vortices in superfluid helium
can be studied either as open lines with their ends terminating on free surfaces
of walls of the container or as closed curves. Nowadays the closed vortices are
treated as topological objects equivalent to circles. The existence of struc-
tures such as knotted and linked vertex lines in the turbulent phase is almost
obvious [12] and has forced researchers to develop new mathematical tools
for their detailed investigation. In this proposed direction Z. Peradzyński [8]
proved a new version of the Helicity theorem, based on differential-geometric
methods applied to the description of the collective motion in the incom-
pressible superfluid. The Peradzyński helicity theorem describes in a unique
way, both the superfluid equations and the related helicity invariants, which
are, in the conservative case, very important for studying the topological
structure of vortices.

By reanalyzing the Peradzyński helicity theorem within the modern sym-
plectic theory of differential-geometric structures on manifolds, we propose
a new unified proof and give a magneto-hydrodynamic generalization of this
theorem for the case of an incompressible superfluid flow. As a by-product,
in the conservative case we construct a sequence of nontrivial helicity type
conservation laws, which play a crucial role in studying the stability problem
of a superfluid under suitable boundary conditions.

1 Symplectic and symmetry analysis

We consider a quasi-neutral superfluid contained in a domain M ⊂ R3 and
interacting with a “frozen” magnetic field B : M −→ E3, where E3 := (R3, <
., . >) is the standard three-dimensional Euclidean vector space with the
scalar < ., . > and vector “×” products. The magnetic field is considered to
be source-less and to satisfy the condition B = ∇×A, where A : M −→ E3 is
some magnetic field potential. The corresponding electric field E : M −→ E3,
related with the magnetic potential, satisfies the necessary superconductivity
conditions

E + u×B = 0, ∂E/∂t = ∇×B, (1)

where u : M −→ T (M) is the superfluid velocity.
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Let ∂M denote the boundary of the domain M . The boundary conditions
〈n, u〉|∂M = 0 and 〈n,B〉|∂M = 0 are imposed on the superfluid flow, where
n ∈ T ∗(M) is the vector normal to the boundary ∂M , considered to be almost
everywhere smooth.

Then adiabatic magneto-hydrodynamics (MHD) quasi-neutral superfluid
motion can be described, using (1), by the following system of evolution
equations:

∂u/∂t = −〈u,∇〉u− ρ−1∇P + ρ−1(∇×B)×B,

∂ρ/∂t = −〈∇, ρu〉, ∂η/∂t = −〈u,∇η〉, ∂B/∂t = ∇× (u×B),
(2)

where ρ : M −→ R+ is the superfluid density, P : M −→ E3 is the internal
pressure and η : M −→ R is the specific superfluid entropy. The latter is
related to the internal MHD superfluid specific energy function e = e(ρ, η)
owing to the first law of thermodynamics:

T dη = de(ρ, η)− Pρ−2dρ, (3)

where T = T (ρ, η) is the internal absolute temperature in the superfluid. The
system of evolution equations (2) conserves the total energy

H :=

∫
M

[
1

2ρ
|µ|2 + ρe(ρ, η) +

1

2
|B|2

]
d3x, (4)

called the Hamiltonian, since the dynamical system (2) is a Hamiltonian
system on the functional manifold M := C∞(M ;T ∗(M) × R2 × E3) with
respect to the following [4] Poisson bracket:

{f, g} :=
∫
M

{
〈µ, [ δfδµ , δg

δµ ]c〉+ ρ
(
〈 δgδµ ,∇ δf

δρ 〉 − 〈 δfδµ ,∇ δg
δρ 〉

)

+η〈∇, ( δgδµ
δf
δη − δf

δµ
δg
δη )〉+ 〈B, [ δgδµ ,

δf
δB ]c〉

+〈 δf
δB , 〈B,∇〉 δgδµ 〉 − 〈 δg

δB , 〈B,∇〉 δfδµ 〉
}
dx,

(5)

where we denoted by µ := ρu ∈ T ∗(M) the specific momentum of the su-
perfluid motion and by [., .]

c
the canonical Lie bracket of variational gradient

vector fields:

[
δf

δµ
,
δg

δµ
]c := 〈δf

δµ
,∇〉 δg

δµ
− 〈 δg

δµ
,∇〉δf

δµ
(6)

for any smooth functionals f, g ∈ D(M) on the functional space M. More-
over, as was shown in [4], the Poisson bracket (5) is, in reality, the canonical
Lie–Poisson bracket on the dual space to the Lie algebra G of the semidi-
rect product of vector fields on M and the direct sum of functions, den-
sities and differential one-forms on M . Namely, the specific momentum
µ = ρu ∈ T ∗(M) is dual to vector fields, ρ is dual to functions, η is dual
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to densities and B is dual to the space of two-forms on M . Thus, the set of
evolution equations (2) can be equivalently recast as follows:

∂u/∂t = {H,u}, ∂ρ/∂t = {H, ρ},

∂η/∂t = {H, η}, ∂B/∂t = {H,B}.
(7)

The Poisson bracket (5) can be rewritten for any f, g ∈ D(M) as

{f, g} = (Df, ϑ Dg), (8)

with Df :=
(

δf
δµ ,

δf
δρ ,

δf
δη ,

δf
δB

)
∈ T ∗(M) and ϑ : T ∗(M) −→ T (M), being the

corresponding (modulo the Casimir functionals of bracket (5)) invertible [3]
co-symplectic operator, satisfying the standard [10,2] properties

ϑ∗ = −ϑ, δ(δw,∧ ϑ−1δw) = 0, (9)

where the differential variation complex condition δ2 = 0 is assumed, the
differential variation vector δw := (δµ, δρ, δη, δB) ∈ T ∗(M) and the symbol
“∗” denotes the conjugate mapping with respect to the standard bilinear
convolution (., .) of the spaces T ∗(M) and T (M). Note here that the second
condition of (9) is equivalent [2,10] to the fact that the Poisson bracket (5)
satisfies the Jacobi commutation condition. Thus, one can define the closed
generalized variational differential two-form on M

ω(2) := (δw,∧ϑ−1 δw), (10)

which provides the symplectic structure on the functional factor manifold M
(modulo the Casimir functionals of bracket (5)). Owing now to the commu-
tation property

[∂/∂t+ Lu, Lv] = 0, (11)

equivalent to the subgroup Dt and Dτ commuting for any suitable t, τ ∈ R,
from the invariance condition

∂ρ/∂τ = 0, (12)

we deduce that the quantities

γn := Ln
vγ (13)

for all n ∈ Z+ are invariants of the MHD superfluid flow (2) if the density
γ ∈ Λ3(M) is also an invariant on M .

We construct the following new functionals on the functional manifold M

H̃n :=

∫
M

γ̃n d3x =

∫
M

ρLn
v (ρ

−1〈B,A〉) d3x (14)
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for all n ∈ Z+, which are invariants of our MHD superfluid dynamical system
(2). In particular, when n = 0 we obtain the well-known [4] magnetic helicity
invariant

H̃0 =

∫
M

〈A,∇×A〉 d3x, (15)

which exists independently of boundary conditions, imposed on the MHD
superfluid flow equations (2).

The result obtained above can be formulated as the following theorem.

Theorem 1. The functionals (14), where the Lie derivative Lv is taken
along the magnetic vector field v = ρ−1B, are global invariants of the system
of compressible MHD superfluid and superconductive equations (2).

Below we proceed to a symmetry analysis of the incompressible superfluid
dynamical system and construct the related local and global new helicity
invariants. The case of superfluid hydrodynamical flows [9] is of great interest
for many applications owing to the very nontrivial dynamical properties of
so-called vorticity structures appearing in the motion.

2 The incompressible superfluid: symmetry analysis
and conservation laws

The helicity theorem result of [8], where the kinematic helicity invariant

H0 :=

∫
M

〈u,∇× u〉 d3x (16)

was derived, employed differential-geometric tools in Minkowski space in the
case of an incompressible superfluid in the absence of a magnetic field (B =
0). We shall now describe its general dynamical symmetry nature. The
governing equations are

∂u/∂t = −〈u,∇〉u+ ρ−1∇P, ∂ρ/∂t+ 〈u,∇ρ〉 = 0, 〈∇, u〉 = 0, (17)

where the density conservation properties

(∂/∂t+ Lu)ρ = 0, (∂/∂t+ Lu)d
3x = 0 (18)

hold for all suitable t ∈ R. Define now the vorticity vector ξ := ∇× u and
find from (17) that it satisfies the vorticity flow equation

∂ξ/∂t = ∇× (u× ξ). (19)

Actually, the first equation of (17) can be rewritten as

∂u/∂t = u× (∇× u)− ρ−1∇P − 1

2
∇|u|2. (20)
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Then, applying the operation “∇×· ” to (20), one easily obtains the vorticity
equation (19). Moreover, equation (19) can be recast in the equivalent form

∂ξ/∂t+ 〈u,∇〉ξ = 〈ξ,∇〉u, (21)

which allows a new dynamical symmetry interpretation. Now, define β(1) ∈
Λ1(M) as the one–form

β(1) := 〈u, dx〉 (22)

and readily conclude that

(∂/∂t+ Lu)β
(1) = −ρ−1dP +

1

2
d|u|2 = d(ρ−1P +

1

2
|u|2). (23)

We have shown that the following generalized functionals

Hn :=

∫
M

ρLn
v (u× ξ) d3x (24)

for all n ∈ Z+are new helicity invariants for (17). Notice here that all of the
constraints imposed above on the vorticity vector ξ = ∇×u are automatically
satisfied if the condition supp ξ ∩ ∂M = ∅ holds. The result obtained can be
summarized as follows.

Theorem 2. Assume that an incompressible superfluid, governed by the set
of equations (17) in a domain M ⊂ E3, possesses the vorticity vector ξ =
∇ × u, which satisfies the boundary constraints Ln

ρ−1ξξ|∂M for all n ∈ Z+.

Then all of the functionals (24) are generalized helicity invariants of (17).

The results obtained above allow some interesting modifications. To
present them in detail, observe that equality (23) can be rewritten as

(∂/∂t+ Lu)β
(1) − dh = (∂/∂t+ Lu)β̃

(1) = 0, (25)

where, by definition,

h := ρ−1P +
1

2
|u|2, β̃(1) := 〈u−∇ϕ, dx〉, (26)

and the scalar function ϕ : M −→ R is chosen in such a way that

(∂/∂t+ Lu)ϕ = ∇h. (27)

Then, obviously, one obtains the additional equation

(∂/∂t+ Lu)dβ̃
(1) = 0, (28)

following from the commutation property [d, ∂/∂t + Lu] = 0. Then, we see
that the density λ̃ := β̃(1) ∧ dβ̃(1) ∈ Λ3(M) satisfies the condition

(∂/∂t+ Lu)µ̃ = 0, (29)
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for all t ∈ R. A similar result holds for densities λ̃n := Ln
v λ̃ ∈ Λ3(M),

n ∈ Z+; namely,

(∂/∂t+ Lu)λ̃n = 0, (30)

owing to the commutation property (11). Therefore, the following functionals
on the corresponding functional manifold M are invariants of the superfluid
flow (2):

Υn :=

∫
M

λ̃n =

∫
Dt

ρLn
ρ−1ξ〈(u−∇ϕ), ξ〉 d3x (31)

for all n ∈ Z+ and an arbitrary domain Dt ⊂ M , independent of boundary
conditions, imposed on the vorticity vector ξ = ∇× u on ∂M . Notice here
that only the invariants (31) strongly depend on the function ϕ : M −→
R, implicitly depending on the velocity vector u ∈ T (M). It should be
mentioned here that the practical importance of the constructed invariants
(31) remains to be fully clarified.

3 Conclusions

The symplectic and symmetry analysis of compressible MHD super-fluids
developed above, appears to be an effective approach for constructing the
related helicity type conservation laws, which are generally important for
practical applications. In particular, these conserved quantities play a de-
cisive role [4,1] when studying the stability of MHD superfluid flows under
special boundary conditions. Some of the results in this direction can also
be obtained making use of group-theoretical and topological tools developed
in [1,13,11], where the importance of the basic group of diffeomorphisms
Diff(M) of a manifold M ⊂ R3 and its differential-geometric characteris-
tics were shown in considerable detail.
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