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Abstract. Finite element simulations have been performed along side Galerkin-
type calculations that examined the development of volumetrically heated flow pat-
terns in a horizontal layer controlled by the Prandtl number, Pr, and the Grashof
number, Gr. The fluid was bounded by an isothermal plane above an adiabatic
plane. In the simulations performed here, a number of convective polygonal plan-
forms occurred, as Gr increased above the critical Grashof number, Grc at Pr = 7,
while roll structures were observed for Pr < 1 at 2Grc.
Keywords: Non-linear, bifurcation, stability, volumetric heating, asymmetric bound-
aries.

1 Introduction

This work is concerned with the numerical simulation of the early stage tran-
sition regime of an internally heated fluid layer situated between a conduct-
ing upper boundary and an insulating lower boundary. The study described
here is motivated by earlier studies ([4], [6], [8]) and the importance such flow
structures have in the development of flows found in many engineering and
geophysical applications.

Examples of volumetric heating cover thermal convection driven by the
radioactive decay of fluid components. Asfia and Dhir [2] who studied thermal
convection in a pool that mimicked the motion caused by fission product
decay in the molten fuel elements that collect in the lower head of a nuclear
reactor during a severe accident. Briant and Weinberg [3] devised the molten
salt nuclear reactor concept, where the fissile material is dissolved in the
coolant and thus provides volumetric heating to the fluid phase. Geophysical
flows in the Earth’s mantle are driven by radioactive decay ([5], [10], [13],
[14]). Tritton and Zarraga [18], Tasaka et al. [16], Takahashi et al. [15] have
studied the phenomena experimentally using various approaches to generate
fluid motion and record the structures observed.

Several numerical studies of thermal convection driven by internal heating
have been performed using a variety of techniques to resolve the evolving
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circulation cells via the application of mean field approximations ([12]), finite
amplitude expansions used in pseudospectral techniques ([8], [10], [13], [14],
[9], [20], [17]) and finite volume or element approaches ([6], [11]).

Cartland Glover and Generalis [6] focussed on domains with aspect ratios
of

{
1 : 4
√

3 : 12
}

suggested by Ichikawa et al. [11]. Several types of circu-
lation cells were observed by Cartland Glover and Generalis [6], as Gr was
increased. Nevertheless, two key factors that affected the development of the
circulation cells in Cartland Glover and Generalis [6] was how the internal
heating conditions were defined and the influence of the periodic conditions
on the flow field. Cartland Glover and Generalis [6] assumed a constant tem-
perature difference and varied the depth between the parallel plates to control
Gr and the internal heating supplied. Therefore, a further study has been
performed, where the variation of the internal heating condition was driven
by the temperature difference rather than modifying the depth between the
parallel planes, which is more consistent with experimental methods, for ex-
ample Tasaka et al. [16] and Takahashi et al. [15]. The extent of the domain
was also increased from

{
1 : 4
√

3 : 12
}

to {1 : 12 : 12}.

2 Theory

2.1 Non-dimensional numbers

Two non-dimensional numbers were used to control the volumetric heating
supplied to the horizontal layer and the influence of the thermal diffusivity.
These were the Grashof number with the form Gr = gρ2βSiL

5/2µ2k and the
Prandtl number, Pr = cpµ/k. Here Si and L are the volumetric heat source
and the layer depth. The fluid properties are defined by the specific heat
capacity at constant pressure, cp, thermal conductivity, k, dynamic viscosity,
µ and the density, ρ. Several Gr over the range 1 ≤ ε ≤ 12 were selected
in order to vary the temperature difference at Pr = 7 and therefore the
heat flux applied, where ε = Gr/Grc. Then Pr was varied to observe the
influence of thermal diffusivity on the resolved flow states. The treatment of
the non-dimensional numbers differs between the finite element method and
the Galerkin-Tau type method.

2.2 Linear stability analysis

A linear normal mode analysis of the problem is resolved using a Galerkin-Tau
approach. Chebyshev polynomials are used in the expansion of the pertu-
bation equations, which are evaluated at collocation points as an eigenvalue
problem via the QZ algorithm. The asymmentry in the boundary condi-
tions is dealt with by applying the zero gradient condition to the bottom
row of the matrix for the temperature equation. The boundary conditions
applied to the temperature take the form −0.5Gr(x2 + 2 ∗ x − 3) based on
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the profile reported by Roberts [12]. No-slip conditions are applied to the
Orr-Sommerfeld equation. Note that 20 modes are used to resolve the neutral
curves presented here.

Fig. 1. Diagram of the homogeneous layer with an isothermal surface above an
adiabatic surface. The coordinate axis is at the origin and the midplane surface is
also indicated by the coarse grid.

2.3 Simulation method

As the solver used in the finite element method used dimensional equations
[1], it is necessary to specify Si = 2k∆Ti/L

2 in terms of Gr (see below) and
L = 0.007 m, which was defined according to the experimental studies of
Tasaka et al. [16]. The boundary conditions are T |x=L = Tr, ∂xT |x=0 = 0 K
m−1, u|x=0 = v|x=0 = w|x=0 = u|x=L = v|x=L = w|x=L = 0 m s−1 and the
initial conditions are T = Tr and u = v = w = 0 m s−1. Tr is the reference
temperature of the fluid modelled. Periodic conditions are applied to the
vertical surfaces of the domain Figure 1. Please refer to Cartland Glover
and Generalis [6] for a thorough description of the specifications required to
perform the finite element method. Key exceptions from [6] are the domain
used, which was a square layer with an aspect ratio of {1 : 12 : 12} that had
the respective node resolution of {30 : 180 : 180} and the assumed physical
time-scale, cpρL

2/k, to control the rate of convergence.

3 Results

The resultant solutions for convection caused by volumetrically heating a
horizontal layer show the deviations from the conductive laminar state. At
Pr = 7, the transition from conductive to convective flow occurs at Grc =
198, which corresponds to Rac = 1386 ([12], [11], [20]). The structures are
indicated by the change in characteristic parameters, which are plotted be-
tween Figure 2 and Figure 5. Figure 2 presents the neutral curves obtained
by the linear analysis. Contour plots of the temperature and the vertical
velocity component for Pr = 7, where ε∀ (1, 2, 3, 6, 12) are illustrated by Fig-
ure 3. The change of velocity components and the temperature with ε are
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plotted in Figure 4. Contour plots of the temperature and the vertical veloc-
ity component for Pr∀ (0.005, 0.659− 0.745, 0.802− 0.883, 8.933) are given in
Figure 5.
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Fig. 2. Neutral curves of stability (solid lines) obtained from the linear normal
mode analysis, where α is the wavenumber.

3.1 Fluids with Pr=7

The neutral curves obtained from the linear normal mode analysis are given
in Figure 2, where the curves indicate the highest value allowed by the linear
analysis for the basic flow to retain its laminar form. The curves for each Pr
considered coincide with one another, which is consistent with the findings
of Generalis and Nagata [8].

At ε=0, Figure 3 already shows non-vanishing hexagonal pattern. This is
due to the fact that the lower bound of stable down-hexagons is subcritical
i.e. ε <1. Indeed, the branch of stable down-hexagons ends up with a limiting
point (or saddle-node point) at which the stable branch is connected with the
solution branch of the transcritical bifurcation stemmed subcritically from
the point ε=1. Note that the stable down-hexagons are generated in the
following sequence: hexagons true to the transverse axis at ε = 1 (Figure 3A),
hexagons perpendicular to the transverse axis (Figure 3B), hexagons aligned
at ∼ 50o to transverse axis (Figure 3C), polygonal structures (Figure 3D),
hexagons with spokes (Figure 3E). Note that the change in the alignment of
the hexagons between Figure 3A and 3C indicates that there is no preference
between the wavenumbers for longitudinal or transverse waves.

The structures depicted Figure 3 are qualitatively comparable with the
experimental studies of Takahashi et al. [15] and Tasaka et al. [16], where
measurements of the temperature field [16] and the velocity field [15] were
made ε ∈ (3, 6). These conditions correspond to cases C and D presented
in Figure 3. The increase in the size of the circulation cell is of a similar
magnitude in both the experiments and the simulation. The range of vertical
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Fig. 3. Non-dimensional temperature (left) and vertical velocity (right) contours
on the midplane surface in Figure 1. Here ∆Ts = |T − Tmin|s. Cases – A: ε = 1;
B: ε = 2; C: ε = 3; D: ε = 6; E: ε = 12;

velocities observed in the simulations described are similar to those reported
by Takahashi et al. [15].

In Figure 4 we show the change of key variables with ε for the simulations
using the finite element code. A significant increase in all the velocity com-
ponents at ε = 1 in Figure 4a. The increases in the velocity are associated
with the change in the state of the fluid layer at the critical transition, where
we conjecture that isotropic hexagons are formed. The patterns formed are
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Fig. 4. Profiles against ε obtained from the finite element code. a) The max-
imum and the minimum values of the velocity components; b) ∆Ts/∆Ti =
|T −Tmin|s/

(
Grµ2

)
/
(
gρ2β L3

)
, where s refers to the temperature extracted from

the solved flow field. f(T ) = 5.95(ε ∗Rac)−0.23, an empirical profile given by Tur-
cotte et al. [19] as reported by Takahashi et al. [15]; Horizontal line: Conduction
condition; Vertical line: Transition between conduction and convection.

considered to be isotropic as the minima and maxima of the v and w display
similar magnitudes.

The down-welling minimum velocity indicated in figure 11 of Takahashi et
al. [15] gave vertical velocities, which were approximately one third less than
the vertical velocities in Figure 4. This difference could be due to methods
used to assess the minimum vertical velocity or the influence of the heat flux
across the lower boundary used. The minimum vertical velocity of Takahashi
et al. [15] was determined from the planes defined by the laser sheets used for
their PIV measurements, while the velocities in Figure 4a are the minimum
and maximum values for the whole of the simulated domain.

The effect of the transition from conductive to convective flow is also
shown by the change in the temperature difference relative to the initial
or conductive temperature difference (Figure 4b). At higher heat fluxes the
temperature difference caused by convection drops below the conductive tem-
perature difference. This is due to the influence that cellular convection has
on the layer as energy from the volumetric heat source is used to drive the
fluids across the layer [5]. A portion of the internal heating supplied is also
lost from the system through the top isothermal boundary [18]. An empiri-
cal relation of the decrease in the temperature difference due to convection
is also plotted in Figure 4 [19].

3.2 Other fluids

To confirm the secondary flows predicted by the finite element code soon
after Grc are appropriate, fluids of different Pr were tested for ε = 2. For
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Fig. 5. Non-dimensional temperature (left) and vertical velocity (right) contours on
the midplane surface in Figure 1, for different Pr at ε = 2. Here ∆Ts = |T −Tmin|s.
Cases – A: Pr = 0.005; B: Pr = 0.705; C: Pr = 0.883; D: Pr = 8.933;

Pr < 1, the circulation cells take the form of stable (0.5 < Pr < 1) or un-
stable (Pr < 0.1) two-dimensional rolls. While a mix of polygonal structures
occur for Pr = 8.933. For Pr ∼ 0.70 dislocations in the roll structures are
also observed, which may disappear in time-averaged plots obtained from a
time-marching solution. For Pr ∼ 0.85, where supercritical or high pressure
fluids were considered, small non-measureable differences in the temperature
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resulted from the strict limits applied in the Boussinesq approximation. This
lead to the formation of sharply defined differences in the temperature.

4 Conclusions

The main interest in the present work is the hierarchical transition from con-
ductive flow to convective flow and on to the turbulent regime in an asym-
metric horizontal layer. We have concentrated on the stability boundary of
the basic flow in order to compare states found numerically with those ob-
served in experiments ([16],[15]). The present study used both finite element
simulations and linear stability analysis to indicate that hexagonal cells are
the preferred mode for the instability evolution of homogeneous systems at
and just beyond the critical point for Pr = 7.

Beyond ε = 6 at Pr = 7, the finite element code predicts that the sec-
ondary structures deform resulting in different possibly rectangular states
that are qualitatively comparable with the experimental studies of the Takeda
group ([16],[15]). Between ε = 1 and ε = 3 the changes in orientation of the
hexagons indicates that there is no preference between the wavenumbers for
transverse and longitudinal waves. Further non-linear analyses are being
performed to explore the stability of the flow patterns observed at the tran-
sition to convective flow for a homogeneously heated layer with asymmetric
boundary conditions.
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Nomenclature

cp specific heat capacity at constant pressure, J kg−1 K−1

Gr Grashof number, Gr = gβρ2SiL
5/2µ2k

Grc critical Grashof number, Grc
g acceleration due to gravity, m s−2

k thermal conductivity, W m−1 K−1

L characteristic length, 0.007 m
Pr Prandtl number, Pr = cp/µk
Ra Rayleigh number Ra = GrPr
Rac critical Rayleigh number Rac = 1386
Si volumetric heat source Si = 2k∆Ti/L

2, kg m−1 s−3

T temperature, K
Tr reference temperature, K
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∆Ti initial temperature difference, ∆Ti =
(
Grµ2

)
/
(
gρ2β L3

)
, K

∆Ts temperature difference of the solved flow, K
t time, s
u, v, w velocity vector components, m s−1

x, y, z direction vector components, m

Greek symbols
α wavenumber
β expansion coefficient, 1/K
ε reduced Grashof number = Gr/Grc
µ dynamic viscosity, kg m−1 s−1

ρ density, kg m−3
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Abstract. We seek the possibility of using multifractal spectrum as a diagnostic
tool to differentiate between healthy and pathological time series. The data sets
used for the analysis consist of EEG and Heart Rate Variability (HRV) time seres
downloaded from Physio Bank archives. We use the automated algorithmic scheme
recently proposed by us to compute the multifractal spectrum, which provides a
set of parameters to compare different data sets. We show that the set of parame-
ters characterising the multifractal spectrum can distinguish between healthy and
pathological states in both EEG and HRV.
Keywords: Time Series Analysis, Physiological Chaos, Multifractal Spectrum.

1 Introduction

Recently, many authors [1,2] have stressed the importance of multifractal-
ity in the study of heart rate variability and suggested that it could provide
a new observational window into the complexity mechanism of heart rate
control. The study also highlights the need for evaluating new nonlinear
parameters for a better physiologcal investigation and for finding new clini-
cal applications. The main issues regarding the characterisation of complex
physiological signals are discussed in a recent review [3].

Out of the large number of studies done on physiological data, the focus
has mainly been on the analysis of EEG and ECG time series data, with
the purpose of characterisation and prediction from a dynamical systems
point of view. The analysis of EEG data from healthy persons and epiletic
patients has lead to a better understanding of various aspects of epileptic
seizure activities and the corresponding brain states [4,5], but the question
of whether the seizure can be predicted in advance is still an open one [6].

There have been a multitude of studies on ECG data sets recorded from
healthy persons as well as during some pathological cases, such as, congestive
heart disorders and ventricular fibrillation [7–9]. Most of these studies have
searched for deterministic nonlinearity in the time series from cardiac system
[10,11], and the reliability of these results have also been questioned [12–
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14] due to various reasons, such as, insufficient data, presence of noise, the
subjective nature of the computational techniques and so on.

In this paper, we present some preliminary results for the analysis of phys-
iological data, by computing the f(α) spectrum from the time series using
an automated algorithmic scheme. The details of the scheme are presented
and tested in the next section and it is applied to physiological data in §3.
The conclusions are drawn in §4.
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Fig. 1. The Dq spectrum (points) and its best fit curve (continuous line) for the
Rossler attractor computed from 10000 data points are shown in the upper panel.
The lower panel shows the f(α) spectrum computed from the best fit curve using
our scheme.

2 Computing the Multifractal Spectrum

Here we discuss only the salient features of the algorithmic scheme and more
mathematical details are presented elsewhere [15,?]. The scheme provides us
with a set of parameters characterising the spectrum which are good quanti-
fiers to compare the changes in the multifractal character as reflected in the
time series.
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As the first step, the spectrum of generalised dimensions Dq is computed
from the time series using the equation

Dq ≡
1

q − 1
lim
R→0

log Cq(R)

log R
(1)

where Cq(R) are the generalised correlation sum. This is done by choosing the
scaling region algorithmically as discussed earlier [16]. We make the condi-
tions for Rmax and Rmin fixed by the algorithm itself so that the comparison
between data sets becomes nonsubjective.

We then use an entirely different algorithmic approach for the computa-
tion of the smooth profile of the f(α) spectrum. The f(α) function is a single
valued function between αmax and αmin and also has to satisfy several other
conditions, such as, it has a single maximum and f(αmax) = f(αmin) = 0.
A simple function that can satisfy all the necessary conditions is

f(α) = A(α − αmin)γ1(αmax − α)γ2 (2)

where A, γ1, γ2, αmin and αmax are a set of parameters characterising a
particular f(α) curve. It can be shown [16] that only four of these parameters
are independent and any general f(α) curve can be fixed by four independent
parameters. Moreover, by imposing the conditions on the f(α) curve, it can
also be shown that

0 < γ1, γ2 < 1 (3)

The scheme first takes α1(≡ D1), αmin(≡ D∞) and αmax(≡ D−∞) as
input parameters from the computed Dq values and choosing an initial value
for γ1 in the range [0, 1], the parameters γ2 and A are calculated. The f(α)
curve is then computed in the range [αmin, αmax]. From this, a smooth Dq

versus q curve can be obtained by inverting using the Legendre transformation
equations, which is then fitted to the Dq spectrum derived from the time
series. The parameter values are changed continuously until the Dq curve
matches with the Dq spectrum from the time series and the statistically best
fit Dq curve is chosen. From this, the final f(α) curve can be evaluated. An
important aspect of the scheme is that it also provides a set of parameters that
can completely characterise a given f(α) curve. The parameters can play an
important role in the nonsubjective comparison of the multifractal properties
of the same system under different conditions, such as, the changes in the
chaotic attractor due to parameter variation, changes in the physiological
conditions etc.

To illustrate our scheme, we choose the time series from a standard chaotic
attractor, namely the Rossler attractor with parameter values a = 0.2, b = 0.2
and c = 7.8. We use 10000 data points generated with a time step ∆t = 0.1.
The Dq spectrum is first computed with embedding dimension M = 3, for q

values in the range [−20, +20], taking a step width of ∆q = 0.1. Choosing
D−20, D1 and D20 as the input values for the f(α) function Eq. (2), the
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Fig. 2. The top panel shows the Dq spectrum computed using our scheme from
representative EEG time series for healthy persons (continuous line) and during
epileptic seizure (dashed line). The bottom panel shows the corresponding f(α)
spectrum.

parameters γ1 and γ2 are scanned in the range [0, 1] and the statistically best
fit Dq curve is chosen. The complete f(α) spectrum is then computed from
the best fit Dq curve. The Dq spectrum and the best fit Dq curve are shown
in Fig. 1 (top panel). The complete f(α) profile computed from the best fit
Dq curve is also shown in Fig. 1 (bottom panel).

3 Application to Physiological Data

Physiological systems are, in general, complex where several nonlinearities are
involved. We use physiological data commonly used for this kind of analysis,
namely, EEG and HRV. In the case of EEG, we analyse signals from normal
state and during epileptic seizure. Four data sets each from both cases are
used for the analysis. In the case of HRV, we use three catagories of time
series. The first one is from normal healthy persons, while the second and
third corresponding to different pathological conditions of the heart, namely,
congestive heart failure (CHF) and atrial fibrillation (AF). Four data sets for
each of the above mentioned classes of HRV are analysed.
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The EEG data were downloaded from the website of the Department of
Epileptology, University of Bonn while the ECG data were obtained from
http://www.physionet.org/physiobank/archives. The EEG data sets consist
of continuous data streams of about 24 secs long and with approximately 5000
data points. The HRV data sets for different catagories consist of continuous
data streams of approximately 5400 data points with a time step of 0.04 secs.
All computations are done for an embedding dimension M = 3 and we show
results for representative time series from each class.

The Dq and f(α) spectra for the two classes of EEG signals computed
by our scheme are shown in Fig. 2. Similarly, the Dq and f(α) spectra for
the three different classes of HRV time series are shown in Fig.3 and Fig. 4
respectively. One result which is clear from the figures is that all these signals
show multifractal character. Some earlier studies had suggested that there
could be a loss of multfractality for HRV in some pathological states [?]. But
we find that there is only a change in the multifractal character from healthy
to pathological states.

-20 -10 0 10 20
1

2

3

4

5

Fig. 3. Typical Dq spectra for HRV signals computed from healthy persons (con-
tinuous line), persons with CHF (dotted line) and those with AF (dashed line).
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Fig. 4. The f(α) spectrum corresponding to the three cases of HRV signals shown
in the previous figure.

Of course, the difference between healthy and pathological time series is
evident even visually, with the healthy signals appearing much like random
fluctuations and the pathological ones do have some spiky nature. So we
expect that these differences are also reflected in their Dq and f(α) spectra.
The question is whether these qualitative changes can be quantified using our
algorithmic scheme. It is quite evident from the figures that the nature of
the f(α) profile is different for healthy and pathological states, in the case of
both EEG and HRV. There is significant change in the profile of the spectrum
and the parameter values between healthy and pathological states, for both
EEG and HRV.

The range of α values, |αmax − αmin|, generally tend to change from
healthy to pathological states in all cases. But the changes in the other
three parameter values seems to be more significant. The values of γ1 and γ2

appear to be more sensitive to the changes in the multifractal character of the
time series, especially since the range of γ1 and γ2 is limited (0 < γ1, γ2 < 1).
For example, for the healthy data sets, the values of γ1 and γ2 are very close
and always γ1, γ2 > 0.8. But in the case of pathological states, their values
are generally found to be much less, with the difference |γ1 − γ2| increasing.
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This, in turn, increases the asymmetry between the two branches of the f(α)
profile.

Thus our results clearly indicates the importance of computing the multi-
fractal spectrum using an algorithmic scheme and the utility of the associated
parameters in differentiating signals from different physiological conditions.
But we have used only limited number of data sets for the analysis. Whether
all the trends shown by the parameters as discussed above are genuine and
whether they can be used as diagnostic tools from a practical point of view
will have to be confirmed by a much more comprehensive data analysis.

4 Conclusion

In this paper, we analyse an ensemble of physiological signals generated from
different physiological conditions and try to distinguish them based on their
multifractal properties. We use the automated algorithmic scheme recently
proposed by us to compute the f(α) spectrum from the time series. The
scheme provides a set of parameters to characterise a given f(α) spectrum.
The scheme is first tested and illustrated using synthetic time series from
standard chaotic systems. It is then applied to two catagories of physiological
data, namely, EEG and HRV. The signals from healthy and pathological
states in both catagories are analysed. Our analysis indicates that the set
of parameters characterising the f(α) spectrum show systematic difference
between healthy and pathological states in both catagories. Thus, we find
that measures based on multifractal structure can be effectively employed for
differentiating signals from healthy and pathological states.

The authors thank the Department of Epileptology, University of Bonn,
for making the human brain EEG data available on their website.

KPH and RM acknowledge the financial support from Department of Sci-
ence and Technology, Govt. of India, through a research grant No. SR/SP/HEP-
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Abstract. We propose a calculation method of the bifurcation point for an impact oscillator
with periodic function. First, we show a physical model and explain its dynamics. Next, the
Poincaré map is constructed for the following analysis. Furthermore, we specify the deriva-
tive of the Poincaré map to calculate the bifurcation point. Finally, we apply the proposed
method for a rigid overhead wire-pantograph system and confirm the validity of the method
for calculate the bifurcation point in an impact oscillator.
Keywords: Impact oscillator with periodic function, Bifurcation point, Poincaré map, Jaco-
bian matrix, Fixed point.

1 Introduction

The switching system depending on its state and a periodic interval has the inter-
rupted characteristics (we call these systems as interrupted system in this paper).
In particular, impact oscillator is the interrupted system; impact oscillator has the
characteristics that the solution jumps when the trajectory hits the border. Impact
oscillator can be observed in many engineering field. Thus, analyzing the qualitative
property of the impact oscillator is a crucial topic from the practical view point.

On the other hand, the impact oscillators have rich compelling phenomena. For
instance, bifurcation phenomena can be observed in impact oscillator depending on
its complex impact behavior and many researchers have analyzed it since old times,
e.g., bifurcation analysis in impact-dampers [1] [2], in spiking neuron model [3] [4],
in forest fire model [5], and so on. However, it is difficult to calculate the exact
solution in the impact oscillators if the system is high-dimensional or the system
has the nonlinear property. For this reason, there are few calculation method for the
bifurcation point in the impact oscillator. In the previous work, we have proposed
the calculation method for the bifurcation point of the fixed point [6]. Although, it
is possible to calculate the bifurcation point for the fixed point in a wide parameter
space by solving the characteristic equation iteratively. Hence, we improve previous
method in order to calculate the bifurcation point for the fixed point more effectively
in this paper. Here, we propose a calculation method of the bifurcation point for an
impact oscillator with periodic function.

First of all, we show the two-dimensional differential equation of impact oscil-
lator. Next, we define the function of jump and Poincaré map. Furthermore, we
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describe the derivative of Poincaré map to solve the characteristic multiplier for the
fixed point. In addition, we can calculate the bifurcation point by solving a simulta-
neous equation of the fixed point and the characteristic equation. Finally, we apply
this method for a rigid overhead wire-pantograph system [7] to confirm the validity
of the method.

2 Analytical method

2.1 Poincaré map

x

x

x

x

x

x

x0 1 k-1 k

1a- 2a- ka-

t = 0 0 T 2T (k-1)T k-11 kT

x2

0
1

x(t)
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t
v

v

vvv

v

v v

v

vv0
1a- 2a- ka-

1 k-1 k2

1a+ 2a+ ka+

0

v(t)

P PPP

Fig. 1. Two-dimensional impact oscillator.

We consider the impact oscillator shown in Fig. 1. The solutions in Fig. 1 can
be described by the following two-dimensional system



























dx
dt
= f (x, v,λ)

dv
dt
= g(x, v,λ)

, (1)

where the parameters t, x, v and λ satisfy t ∈ R, x, v ∈ R
2, f , g : R

2 → R
2. Now,

Eq. (1) is written as follows:

{

x(t) = ϕ(t; x0, v0,λ), x(0) = x0

v(t) = φ(t; x0, v0,λ), v(0) = v0
, (2)

where x0 and v0 means the initial value at time t = 0. Next, we define the following
local section Π ∈R

2 by using scalar function q : R
2 ∈R

2.
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Π = {x, v ∈ R
2 : q0(x, v) = 0, q : R

2 → R}, (3)

q(t + T ; x, v) = q(t; x, v). (4)

Also, the map P is written by using functions r and s. If x reaches toΠ , the solutions
are jumped by the map P :

P : R
2 → R

2,

x1a− =

[

x1a−

v1a−

]

=

[

ϕ(τ0; x0, v0,λ)
φ(τ0; x0, v0,λ)

]

7→ x1a+ =















x1a+

v1a+















=

[

r(τ0; x0, v0)
s(τ0; x0, v0)

]

(5)

where τ0 denotes the time when the solution reaches to Π . The discretized solutions
x1 are expressed as

x1 =















x1

v1















=















ϕ(T − τ0; x1a−, v1a+,λ)

φ(T − τ0; x1a−, v1a+,λ)















. (6)

Next, we define the maps as follow:

M0 : R
2 → Π1

x0 7→ x1a−,
M1 : Π0 → R

2

x1a+ 7→ x1.
(7)

Consequently, the Poincaré map is given by

M : R
2 → R

2

x0 7→ M1 ◦ P ◦ M0.
(8)

In the following analysis, we discuss the derivative of the Poincaré map written as
follows:

DM(x0,v0) =
∂M
∂x0
=































∂[1 0]M(x0, v0)
∂x0

∂[1 0]M(x0, v0)
∂v0

∂[0 1]M(x0, v0)
∂x0

∂[0 1]M(x0, v0)
∂v0































= −

































∂ϕ

∂t

∣

∣

∣

∣

∣

t=T−τ0

∂τ0

∂x0

∂ϕ

∂t

∣

∣

∣

∣

∣

t=T−τ0

∂τ0

∂v0

∂φ

∂t

∣

∣

∣

∣

∣

t=T−τ0

∂τ0

∂x0

∂φ

∂t

∣

∣

∣

∣

∣

t=T−τ0

∂τ0

∂v0

































+































∂ϕ

∂x1a−

∂ϕ

∂v1a−

∂φ

∂x1a−

∂φ

∂v1a−





























































∂r
∂x0

∂r
∂v0

∂s
∂x0

∂s
∂v0































. (9)

Now, derivative of the function P is given by next equation depending on the initial
value.
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





























∂r
∂x0

∂r
∂v0

∂s
∂x0

∂s
∂v0































=

































∂r
∂t

∣

∣

∣

∣

∣

t=τ0

∂τ0

∂x0

∂r
∂t

∣

∣

∣

∣

∣

t=τ0

∂τ0

∂v0

∂s
∂t

∣

∣

∣

∣

∣

t=τ0

∂τ0

∂x0

∂s
∂t

∣

∣

∣

∣

∣

t=τ0

∂τ0

∂v0

































+































∂x1a−

∂x0

∂x1a−

∂v0

∂v1a−

∂x0

∂v1a−

∂v0































. (10)

Furthermore,































∂x1a−

∂x0

∂x1a−

∂v0

∂v1a−

∂x0

∂v1a−

∂v0































=

































∂ϕ

∂t

∣

∣

∣

∣

∣

t=τ0

∂τ0

∂x0

∂ϕ

∂t

∣

∣

∣

∣

∣

t=τ0

∂τ0

∂v0

∂φ

∂t

∣

∣

∣

∣

∣

t=τ0

∂τ0

∂x0

∂φ

∂t

∣

∣

∣

∣

∣

t=τ0

∂τ0

∂v0

































+































∂ϕ

∂x0

∂ϕ

∂v0

∂φ

∂x0

∂φ

∂v0































. (11)

We should remark that the function

q(τ0(x0, v0); x0, v0,λ) = 0 (12)

is differentiable for x0. Hence,
∂τ0

∂x0
and
∂τ0

∂v0
can be obtained as

∂τ0

∂x0
=

−

(

∂q
∂x
∂ϕ

∂x0
+
∂q
∂v
∂φ

∂x0

)

∂q
∂x
∂ϕ

∂t

∣

∣

∣

∣

∣

t=τ0

+
∂q
∂v
∂φ

∂t

∣

∣

∣

∣

∣

t=τ0

+
∂q
∂t

∣

∣

∣

∣

∣

t=τ0

, (13)

∂τ0

∂v0
=

−

(

∂q
∂x
∂ϕ

∂x0
+
∂q
∂v
∂φ

∂x0

)

∂q
∂x
∂ϕ

∂t

∣

∣

∣

∣

∣

t=τ0

+
∂q
∂v
∂φ

∂t

∣

∣

∣

∣

∣

t=τ0

+
∂q
∂t

∣

∣

∣

∣

∣

t=τ0

. (14)

2.2 Derivation method of bifurcation curve

A fixed point of the Poincaré map is given by

x0 − M(x0) =















x0 − [1 0] M(x0, v0)

v0 − [0 1] M(x0, v0)















= 0. (15)

The characteristic equation for the fixed point is expressed

χ(µ) = det |µI2 − DM(x0)| . (16)

Therefore, simultaneous equation is written as

F(x, v, λa) =





























x0 − [1 0] M(x0, v0)

v0 − [0 1] M(x0, v0)

χ(µ)





























= 0. (17)
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Eq. (17) can be calculated for the unknown variables, x0, v0, and a bifurcation
parameter λ by using Newton’s method. Then, the Jacobian matrix of F is

DF(x0, λ) =





























































∂M
∂x0
− 1

∂M
∂v0

∂M
∂λ

∂M
∂x0

∂M
∂v0
− 1

∂M
∂λ

∂χ(µ)
∂x0

∂χ(µ)
∂v0

∂χ(µ)
∂λ





























































. (18)

The characteristic equation and the Poincaré map can be differentiated in a similar
way.

3 Example of the application

3.1 A rigid overhead wire-pantograph system

We apply the method to a rigid overhead wire-pantograph system shown in Fig.
2 [7]. The basic element of the pantograph model is composed of a spring, damper
and mass, respectively. The mass of the pantograph model impacts the oscillat-
ing stopper. The considered model can be described by the following differential
equation































dx
dt
= v

dv
dt
= −x − 2ζv

, (19)

where a damping ratio, the displacement, and the velocity in the pantograph model
are expressed in ζ, x, and v. The normalized equation of the overhead wire model is
given by

S (t) = ε sinΩt + 1, (20)

where the displacement of rigid overhead wire, the amplitude, and the angular fre-
quency are expressed in S (t), ε, and Ω here. When x(t) reaches to S (t), the velocity
of mass changes as follows:

v+ = −αv− + (1 + α)
dS (t)

dt
. (21)

Note that v+ is the velocity after the impact, and v− is the previous velocity. Also, α
is a coefficient of restitution between the pantograph model and the overhead wire
model.
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d
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0 overhead wire model
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 S(t)

Fig. 2. A rigid overhead wire-pantograph system.

3.2 Application result

Figure 3 shows the numerical results with variousΩ. The point in the phase plane of
Fig. 3 indicates the periodic solution. By calculating Fig. 3, we can confirm period
doubling bifurcation between Ω = 5.64 and Ω = 5.65. Figure 4 shows the one-
dimensional bifurcation diagram about x and Ω. Also, we can verify the bifurcation
in Fig. 4.
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Fig. 3. Solutions and phase plane (α = 0.5, ε = 0.068, ζ = 0.1).
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Table 1. Calculation of the fixed point and characteristic multiplier with Ω (α = 0.5, ε =
0.068, ζ = 0.1).

Ω µ1 µ2 x v Remarks

5.64000 -0.20420 -0.97974 1.13916 -0.47575 Stable
5.64400 -0.20246 -0.98832 1.13920 -0.47511 Stable
5.64800 -0.20076 -0.99687 1.13923 -0.47446 Stable
.
..

.

..
.
..

.

..
.
..

.

..

5.64947 -0.20014 -1.00000 1.13925 -0.47422 Period-doubling bifurcation
...

...
...

...
...

...

5.65000 -0.19992 -1.00114 1.13925 -0.47414 Unstable

 1

 1.05

 1.1

 1.15

 1.2

 5.4  5.5  5.6  5.7  5.8

x k PD

Fig. 4. One-dimensional bifurcation diagram (α =
0.5, ε = 0.068, ζ = 0.1).
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Fig. 5. Two-dimensional bifurcation
diagram (α = 0.5, ε = 0.068).

Table. 1 shows the fixed point and the characteristic multiplier. This table can be
calculated by solving Eq. (15), (16). The fixed point exists stable untilΩ = 5.64950.
After this value, the fixed point become unstable because of period-doubling bifur-
cation. Next, Figure 5 shows the two-dimensional bifurcation diagram for various of
Ω and ζ. In this figure, the curve indicates the bifurcation point of period-doubling
bifurcation from period-1 solution to period-2 solution. We found this curve by cal-
culating Eq. (17). Therefore, the method can effectively obtain the region of the
bifurcation point of period-1 solution.

4 Conclusion

In this paper, we have proposed a calculation method of the bifurcation point for
an impact oscillator with periodic function. First, we defined the Poincaré map
and showed the derivative of the map. Next, we expressed the fixed point and the
characteristic equation by using the Poincaré map and its derivative. Finally, we
applied this method for a rigid overhead wire-pantograph system, and we could
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confirm the validity of this method. The future work is establishment of the method
which is capable of adapting various subharmonic solution.
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Chaos and its regularization in the stellar wind
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Abstract. It is well known that the power stellar wind of OB and Wolf-Rayet
(WR) stars consist of the numerous dense inhomogenuities (clumps) and more
rarefied homogeneous interclump medium. Clumps are randomly distributed in
the whole volume of stellar wind and have arbitrary sizes and fluxes. Formation of
the clumps appears to be the chaotic process connected with internal instability of
the radiation dominated stellar wind. Our modelling of the line profiles in spectra
of OB and WR stars with clumped wind show that initially chaotic ensemble of the
clumps can be regularized. As a result of that regularization the clusters of clumps
which manifest themselves as strong bumps on the line profiles cam be developed.
Keywords: chaos, stellar wind, clumps, regularization.

1 Introduction

Twenty-first-century theoretical physics is coming out of the chaos revolution
[2]. Astrophysics, as a part of physics is also a field for an application of the
chaos theory [21].

Chaotic structures can be found in the Solar System [5], in the arrays of
orbits of exoplanets [18] and in the atmospheres of the late-types AGB and
post-AGB stars [6,7].

Atmospheres of early-type stars quite a long time were considered as
homogeneous spherically symmetric flows [13]. In the beginning of 80th the
first indications of the presence of high density regions (blobs or clumps) in
the atmospheres (winds) of the early-type (hot) stars both from the theory
and the observations were revealed [1,4].

This inhomogeneous wind were described in the clump model [1]. In this
model a stellar wind is proposed to be composed of the numerous dense
clumps and low density interclump medium. Total number of the clumps
can exceeds 103. The ions of the low and moderate ionization stages are
located dominantly in the clumps while the interclump medium seems to be
strongly ionized.

A separate clump forms a small detail in the line profiles in the spec-
trum of early-type stars. All ensembles of the clumps in the winds of these
stars form a stochastic line profile variability (LPV) in the stellar spectra.
A stochastic character of the LPV allows us to conclude that clumps born
and dissipate chaotically. A chaotic ensemble of clumps in the atmosphere
may be described in the framework of the Stochastic clump model proposed
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by Kostenko & Kholtyhin [11] and Kudryashova & Kholtygin [12] and close
to the model of discrete wind emission elements proposed by Lepine & Mof-
fat [14].

Spectral observations of Wolf-Rayet (WR) and OB stars show that to-
gether with dissipative processes in the stellar atmospheres resulting in a
chaotization of the stellar wind and a formation a stochastic wind structure,
some kinds of a regularization processes leading to the formation of quasi-
regular structures in the wind can be also effective. In the present paper we
consider these evidences of the wind regularizations.

2 Chaos in stellar wind: stochastic clump ensemble

In our stochastic clump model [11,12] we suppose that there is no way to
know where in the wind, when and how the next clump can appear. Ith
means that one can only say about the probability for clump to born in the
fixed wind volume and has a determined values of the mass, size, fluxes in the
lines and other parameters. For each clump these values are defined through
the distribution function Ncl(Mcl, Rcl, θ, φ) of clumps on masses Mcl, sizes
Rcl and other parameters. Here Mcl is a mass of the clump, Rcl is its radius,
θ is an angle between the direction of the clump motion and line of sight
and φ is an azimuthal angle of the clump in the coordinate system where the
origin of coordinates is located in the center of star and the Z-axis coincides
withy the line of sight.

The total flux in the line formed by a clumped atmosphere in a frequency
interval [ν, ν + dν can be presented as

F (ν)ν = F icl(ν)ν + F cl(ν)ν + F cl−icl(ν)ν . (1)

Here the value of F icl(ν) is the part of the line flux formed by the ho-
mogeneous interclump medium only, F cl(ν) is the clumps contribution and
F cl−icl(ν) refers to the contribution of the clump - interclump medium inter-
actions to the line profile.

Due to of the large velocity gradients in the stellar wind the contributions
of the separate clumps into the total line flux can be considered independently
and a part of the total line flux formed by clumps

F cl(ν) =
∑
i

F i
ν =

∫
(4π)

∫ Mmax

Mmin

∫ Rwind

R∗

Ncl(Mcl, Rcl, θ, φ)F
i
cl(ν) dΩ dMcl dRcl ,

(2)
where Mmin and Mmax are the minimal and maximal masses of the clumps
in the ensemble. A function F i

cl(ν)d describes a flux, which a clump with a
number i emits in the frequency interval [ν, ν + dν] in the solid angle dΩ =
2πsinθ dθ dφ. R∗ is a stellar radius and Rwind is the wind radius.

As it was shown by Kostenko & Kholtygin [11] the contribution of the
interclump medium into the total intensity of most of the lines in the early-
type star spectra (e.g. lines of ions CIII, HeI-II, etc.) is small. The interaction
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of clumps with the interclump medium gives contribution mainly in the X-ray
region and weakly impacts on the profiles of optical and UV lines considered.
It means that the intensity of these lines are mainly determined by chaotic
clumps in the wind.

Studies of LPV for O and WR stars (Kaper et al. [15], Lépine & Moffat
[14]) specify that clumps are mainly formed in a narrow area of an atmosphere
near the stellar core. It means that distribution of clumps on distances from
the stellar core, masses and directions can be considered independently:

Ncl(Mcl, Rcl, Ω) = Nm(Mcl)Nr(Rcl)Ncl(Ω). (3)

Early-type stars are the powerful sources of X-Ray emission (e.g., Oski-
nova et al. [20]). For explanation both the UV optical an X-Ray spectra of
these stars Kholtygin at al. [8] propose the 3-phase model of the early-type
star winds. In this model is supposed that wind can be in 3 phase states: ho-
mogeneous warm wind with a mean temperature ≈ 105K, cold clumps with
T ≈ 104K and hot clumps (hot zones with a temperature T up to 108 K.
Warm wind and cold clumps emit in an optical and UV range, whereas a
radiation of hot zones are mainly in a X-Ray region.

For WR stars clumps give the main contribution in the line emission, but
for OB stars clumps give the smaller one. There exist a phase transitions
between hot and cold phases. Cold clumps can be heated by shocks up to
108 K (Bychkov & Aleksandrova [3]), whereas hot zones cool very fast with
cooling time is less than 1 min and the hot clumps became th cold clumps
again soon after their heating. The agreement of the characteristic times of
optical and X-Ray variability supports the 3-phase model (see Oskinova et
al. [19] and reference therein for details).

3 Modelling the clump ensemble

To model the chaotic distribution of clumps in the stellar winds we need to
know the distributions Nm(Mcl), Nr(Rcl) and Ncl(Ω).

We present a distribution of clumps on masses in atmospheres of early-
type stars as Nm(Mcl) ∼ (Mcl)

−γ and adopt the values of γ ≈ 2.0 (see
arguments presented by Kudryashova & Kholtygin [12]).

For modelling the distribution Nr(Rcl) we suppose that clumps are born
randomly near the stellar core, the total clump number in the atmosphere
is constant and their distribution on radius R is determined by a relation
R2Nr(R)(R)Vcl(R) = const. For a dependence of the clump velocity Vcl(R)
on the distance R from the center of star we adopt standard β-law:

Vcl(R) = V cl
0 + (V cl

∞ − V cl
0 )

(
1− R∗

R

)β

. (4)

Here V cl
0 is the formal clump velocity at a level R = R∗, V

cl
∞ is the terminal

clump velocity at R ≫ R∗, and a typical value of a parameter β = 0.5 − 1.
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We use mainly the spherical-symmetric distribution NΩ(Ω) of directions of
clumps.

We assume that each clump forms a detail of the line profile (subpeak)
with gauss distribution of intensity. Dependencies of a total flux in the differ-
ent lines formed by separate clump at the distance R to star were calculated
by Kostenko & Kholtygin [11]. As in a paper by Lépine ([16]) we suppose
that the full fluxes of subpeaks Fi ∝ σ2

i , where σ
2
i is a velocity dispersion

inside a clump with number i.
Follow Kudryashova & Kholtygin [12] we suppose that mean clump life-

time is determined via a relation

T cl = Tmax
cl (Fmax

cl /Fcl)
γ , (5)

where Tmax
cl is a lifetime of a clump wich have a maximal flux Fmax

cl of the
considered line and γ ≈ 1 (see Lépine [16] for details. The lifetime of a clump
is an interval between two moments of times. The first one is a moment when
a clump is formed an emit in the line. The second is a moment when the
clump can exists by does not emit in the considered line. It means that in a
common case the lifetime of clump depends of the line whic we consider.

Fig. 1. Left panel: a typical mean line profiles in a dependence on τmax
cl =

0.0, 1.0, 5.0 and 20.0 and for ζ = 0.5. Right panel: the same as in the left
panel, but for a value of the parametr ζ = 0.0, 0.1 0.2 0.5, 1.0 and 2.0 for τmax

cl =10.

The resonance lines of ions of the most elements in the atmospheres of the
early-type stars have the strong absorption components. This absorption can
appear when a large clump is on the line of sight and screen the emission of the
stellar core. We use the next procedure to take into account the absorption
of the stellar emission by clumps. Suppose that there are a number of clumps
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which on the line of sight can absorb the radiation of the stellar photosphere
and the and a total optical depth for absorption of the continuum radiation
can be presented as a sum of all optical depths of all such clumps.

To calculate an optical depth τi(ν) of a clump with a number i in the
central frequency of the line we use the scaled relations

τi(0) = τmax
cl (Fi/Fmax)

µτ ,

where τmax
cl is an optical depth of a clump with a maximal line flux Fmax.

From calculations by Kostenko & Kholtygin [11] of the ionization structure
of the early-type stars we conclude that parameter µτ ≈ 2.

4 Line profile calculations for the clumped wind

For the sake of the simplicity hereinafter will plot the calculated line profile
in the dimensionless frequencies

x = (ν − ν0)/∆ν∞ , (6)

where ∆ν∞ = ν0(V∞/c) is the total line width, c is the light velocity, ν0 is
the central frequency of the line.

It should me mention that the relation (2) gives us the instantaneous line
profile only, whereas the observed line profiles are the mean of all instan-
taneous profiles over the whole interval of the observations. For evaluating
the quasi-observed line profile we average all instantaneous line profiles over
the typical time of observations of one line profile ∆T . The typical values of
∆T = 10− 30min.

Main parameters of the stochastic model are σmax, a velocity dispersion
in a clump with a maximal flux, ε, a ratio of a minimal and a maximal fluxes
of line formed by an ensemble of clumps and τmax

cl , the optical depth of a
clump with the maximal flux. To normalize the line profile at the level of
the continuum we introduce a parameter ζ = Fline/Fcont, where Fline is the
total flux emiited in the emission component of the line and Fcont is the flux
in the continuum within the frequencies of the line.

For example we plot a dependence of mean model line profile versus Tmax
cl

in Fig. 1 for a resonance doublet CIVλ 1548,1550.
The LPV can be clearly seen in the case of using the difference line profiles

(individual profiles minus mean line profile). For obtaining the difference
model profile we calculate the averaged quasi-observed line profiles over the
whole period of observation Tobs. For an illustration we plot the typical
difference line profiles in the stochastic clump model in Fig. 2. The dashed
lines show the displacement of subpeaks on the line profiles from the center
to the wings of the line.

This displacement reflects the acceleration of the clumps in the wind
and can be seen in Fig. 3 where we plot the dynamical spectra for line
CIVλ 1548,1550 LPV for typical parameters of a clump ensemble at a to-
tal duration T full = 10h of quasi-observations.
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Fig. 2. Left panel: difference line profiles for the pure emission line (τmax = 0) for
the stochastic clump model with parameters ε = 10−5 and σmax = 0.20.The time
interval between the successive profiles is 30 min. Right panel: the same as in
the left panel but for opaque clumps with τmax = 25.

-1 -0.5 0 0.5 1
0

100

200

300

400

500

600

X

T, min

-1 -0.5 0 0.5 1
0

100

200

300

400

500

600

X

T, min

Fig. 3. Left panel: dynamical spectra in the Stochastic Clump Model for param-
eters σmax = 0.20, ε = 10−3 and a parameter τmax

cl = 0 and for 10h of total time of
”quasi-observations”. Right panel: the sam as in the left panel, but for τmax

cl = 0.

5 Using wavelets for testing clumps

For OB stars the clump contribution, connected with small-scale structures
in the stellar wind, in the total line profile variations is not so significant as for
WR ones. For this stars the share of the regular variations of the line profiles,
connected with the large-scale structures in the stellar wind, is significant.
It means that we have to use the more effective methods for testing a clump
contribution in the LPV.
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The most convenient tool for a decomposition the clump contribution
in the LPV is the wavelet analysis. The wavelet transform of the analyzed
function f(x) (in our case it is a difference line profile) is

W (s, u) =
1

s

∞∫
−∞

f(x)ψ

(
x− u

s

)
dx =

∞∫
−∞

f(x)ψsu(x)dx . (7)

where ψ(x) is the mother wavelet, s is a scale. In our case the most suit-
able is the so-called MHAT wavelet ψ(x)=(1 − x2)exp(−x2/2), which has a
narrow energy spectrum. The MHAT wavelet is proportional to the second
derivative of a Gaussian and can be used to select the gauss-like features in
the differential line profiles.
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Fig. 4. Left panel: dynamical wavelet spectra for line HeIIλ 4686 in a spectra of
star δOri A for the scale S = 50 km/s. Rightt panel: the same as in the left
panel, but for S = 25 km/s

Kholtygin et al. ([9]) described a obtaining the dynamical wavelet spectra
for lines in spectra of early-type stars. Those spectra are the wavelet trans-
form of the difference spectra for the analyzed line in the velocity V space in
a dependence of the time of observation t and for the fixed scale s. In this
case, the scale variable s is expressed in km/s.

In Fig. 4 we plot the dynamical wavelet spectra for line HeIIλ 4686 in
spectra of O star δ Ori A for the scales S = 50 and 25 km/s. Details of our
observations are described by Kholtygin et al. [9]).

For small scales in an interval S = 1 − 5 km/s the dynamical wavelet
spectra is determined by the noise contribution mainly and do not plot in
the Fig. 4. In the same time for large scale S = 50 km/s mainly regular
variations in the dynamical wavelet spectra can be detected, as it can be seen
in Fig. 4 (left panel). For intermediate values of the scales S we can detect in
the dynamical wavelet spectra both the stochastic variations connected with
clumps and regular variations induced by the large scale structures. Both
types of variations are seen in Fig. 4 (right panel).
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6 Regularization of the chaotic clump ensemble

Fig. 5. Left panel: mean wavelet power spectra for lines CIIIλ 5696 and
HeIIλ 5511 in a spectra of star WR103 as a function of a scale S (solid line)
in a comparison with wavelet power spectra for mean model profiles of these lines
(dashed lines). Right panel: the same as in the left panel, but for WR135.

To study what is a real structure of the clumps in the wind of early-type
stars we compare the wavelet power spectra of the difference line profile in the
spectra of selected WR stars with calculated for model profiles in the stichas-
tic clump model. The methodic how to calculate the wavelet power spectra
is described by Kudryashova and Kholtygin [12] and by Kholtygin [10].

The wavelet power spectra for 8 WR stars were taken from a paper by
Lépine et al. [17]. The quality of the fit of the model and obtained from the
real line profiles wavelet power spectra is good as it can be see in Fig. 5.

Table 1. Parameters of the clump ensembles for selected WR stars

Star Sp. Class ζ V∞(km/s) ε σmax

WR103 WC9 17.0 1190 10−4 0.22

WR111 WC5 1.7 2415 10−5 0.25

WR134 WN6 2.0 1905 10−3 0.20

WR135 WC8 10.0 1405 10−5 0.21

WR136 WN6 2.3 1605 10−5 0.20

WR137 WC7+OB 2.5 2550 10−5 0.22

WR138 WN5+OB 0.4 1345 10−5 0.23

WR140 WC7+O4-5 1.25 2900 10−4 0.035

The parameters of the stochastic clump model which provide the best fit
are presented in the Table 1. It should be mention that the values of σmax for
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all WR stars excluding the binary system WR140 are very close. It means
that the parameters of the clump ensembles and their structure are also close.

The velocity dispersion σmax in the clumps are rather large as it can be sin
from the Table 1. For typical for WR stars terminal velocities v∞ = 1500−
2000 km/s the value of σmax=200-600 km/s for clumps with the maximal
fluxes in the considered line. The sizes of such clumps can be as large as 4R∗
as it follows from the simple estimations.

It may be concluded that the detai;ls of the line profiles with very large
velocity dispersion can not be formed by a separate clump but by cluster
of the smaller clumps with close values of the radial velocities and probably
with close locations in the wind. It means, in turn, that the initially chaotic
ensemble of the clumps can be regularized and the regular structure of clumps
can appear.

7 Conclusion

From an analysis the structure of winds of the early-type stars we can con-
clude:

1. The line profiles in spectra of early-type stars and their variations can
be descibed in the stochastic clump model.

2. The initially stochastic clump ensemble does not remain totally chaotic.
The large cluster of clumps which forms the large details of the line profiles
are formed in the wind.
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Abstract: Aircraft amphibian (SA), as a control object, has an extremely complex 

structure consisting of a set of subsystems including exchange processes of force, energy, 

matter and information. This control object operates in the complex environments as 

atmosphere as well as adjoining surface of water and air. 

The problem is to design a regulator that to control the flight modes with impact on the 

surrounding environment. Requirement to designed regulator is quick responsibility to 

adapt to the impact of chaotic disturbances of environments. In this report we consider a 

method synthesis nonlinear control system of aircraft amphibian motion with state 

observers of harmonic disturbances based on synergetic approach in modern control 

theory 

Keywords: Synergistic, system’s synthesis, regulator design, chaotic disturbances, 

aircraft amphibian, nonlinear dynamic modeling. 

 

1. Introduction 
The solution of the various control tasks based on using of a control object state 

vector. In real conditions of full state vector measurement for one reason or 

another is not feasible. For this purpose, the control system introduces a 

subsystem of state estimation - a state observer. 

For linear systems, it is distinguished full-order state observers (Kalman 

Observer), which have a dimension of the state vector as same as that of the 

control object, reduced order observers (Luenbergera Observer) and observers 

of increased order (adaptive observers) [1, 2] 

Proposed in this article, the nonlinear observer can be referring to the reduced 

order observers. Even more challenging is a problem of estimating the 

unmeasured external disturbances. The basic idea of perturbation estimation is 

as follows: To construct a model of external influences, which is in the form of 

a homogeneous differential equation system with known coefficients and 

unknown initial conditions. The model is combined with the perturbation model 

and with this received enhanced system observer is constructed. Obtained with 

it estimates include the estimates of object state variables, and evaluation of 

external influences. 

The asymptotic observer design methods are applicable for a wide class of 

nonlinear systems proposed in [3, 4, 5]. In this work, a new version of an 

amphibian control methods and problems, which are solved by the dynamic 

synergistic regulators to such observers, is described. These observers have 
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carried out a unmeasured harmonic external disturbance evaluation effecting on 

the amphibian. The nonlinear external perturbation observers (NEPO) consist of 

a monitoring contour and a control circuit that operates in parallel. 

 

2. The Problem Statement 
Suppose that the control object's behavior and an external disturbances effecting 

on it could be described by the differential equations system: 

( )
( ).,,

;,,

uzxhz

uzxgx

=

=

&

&
  

Where n  vector x  и m vector z  – components of state vector; u  – a control 

vector; (.)g  и (.)h  – continuous nonlinear functions. Vector x  is assumed 

observable, and vector z  – unobservable. 

Then the observer synthesis problem can be formulated as follows. Need to 

synthesize NEPO with form: 

( ) ( )
( ) ( ),,ˆ

;,

wxKtz

wxRtw

=

=&
  

where w  – observer state vector; ẑ  – unmeasured external disturbances 

evaluation vector. 

In this case, NEPO must provide: 

• a closed system asymptotic stability; 

• stabilization of the pitch angle, altitude and flight speed; 

• assessment of unobserved external perturbations; 

• compensation of external disturbances. 

The NEPO synthesis procedure is divided into three stages: 

a) Synthesis of control laws iu to ensure implementation of the required 

technological problem (in this case assume that all control object state 

variables are observable);  

b) Synthesis of an observer for the unobservable state variables and 

unmeasured disturbances. 

c) Replacement of unobservable variables in the synthesized controls by 

their evaluations. 

 

3. The synergistic procedure of the control laws for the 

longitudinal motion with harmonic disturbances 

a). Synergistic synthesis procedure of control laws iu  

Common model of SA’s space movement is present by 12
th

 order differential 

equations system through Euler angles. In SA’s movement on water or in taking 

off, it’s rational to consider longitudinal motion model: 
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(1) 

Where: 21, xx  – the projections of velocity vector yx VV ,  on corresponded the 

intertwined coordinate system axes; 3x  – longitudinal angular velocity zω ; 

4x , 6x  – projections coordinate SA’s center of gravity cc xy ,  on corresponded 

axes Oy  and Ox ; 4x  – pitching angle ϑ ; m  – SA’s weight; 

( ) ( )mmmm yx 21 1,1 λλ +=+=  – SA’s «attached» weights; ayax FF ,  – 

projections total vector of aerodynamic forces on corresponded intertwined 

coordinate system axes Ox  and Oy ; hyhx FF ,  – projections total vector of 

hydrodynamic and hydrostatic forces on corresponded intertwined coordinate 

system axes Ox  and Oy ; Oy ; 
h

z

a

z MM ,  – longitudinal aerodynamic 

moment and longitudinal moment formed by hydrodynamic and hydrostatic 

forces; )(tM i  – disturbances; 

;;;
1

3

1

2

1

1

−−− === zyx Iamama
y

x

x

y

m

m
b

m

m
b −=21 ; . 

In control the SA’s longitudinal motion elevator, flaps and engine thrust control 

lever are the active control organs. Technical solutions that provide basing and 

operation of the aircraft on the water surface, effectively determine its shape - 

the seaplane aerodynamic scheme. Consequently, controls in the model (2) will 

be the engine thrust, depending on the deviation of the engine thrust control 

lever; the total aerodynamic forces and the total longitudinal moment, 

depending on changes in the flaps and elevator deflection. 

For control the SA’s longitudinal motion there are some strategies: controlling 

individual channels or all channels simultaneously. Of course that the vector 

strategy requires a more complex algorithmic structure of the regulator, but it 

allows more flexible three-channel control of SA. 

The problem of controlling the longitudinal motion is finding the control vector. 

( ) ( ) ( )[ ]зврурzзврурyзврурx MFFu δδδδδδδδδ ,,;,,;,, ............=  as a coordinate 

function of the system states, which provides SA’s longitudinal short-period 

movement (2) at a given speed 0V , height 0H and pitching angle 0ϑ , i.e. the 

following invariants: 

050401 ;; ϑ=== xHxVx  (2) 
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Rewriting the mathematic model of the control object following: 
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 (3) 

where гxаxx FFPu −−=1 , гyаyy FFPu ++=2 , гzaz MMu +=3  – are 

control acts. 

For model (3), the goal is implementation of desired invariants (2), we 

formulate the first set of macro-variables 321 ,, ψψψ , 

),,,,,(

);,,,,(

;

32154233

32154122

011

zzzxxx

zzzxxx

Vx

ϕψ

ϕψ

ψ

−=

−=

−=

 (4) 

which must satisfy the solution of following functional equations: 

( ) ,31,0,0 Κ& =>=+ iTtT iiii ψψ ; (5) 

At the intersection of invariant manifolds, 3,,1,0 Κ== iiψ , there is a 

dynamic “phase space compression”, and the dynamics of closed-loop system 

will be described by decomposed model: 
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 (6) 

Now to introduce a second set of macro variables 

044 Hx −=ψ ; 055 ϑψ −= x . (7) 

The set of macro variables introduced by (7) must satisfy solutions of functional 

equation systems: 

( ) 5,4,0,0 =>=+ iTtT iiii ψψ& . (8) 

And to solve jointly equations from (6) to (8) for determining “inner” controls 

21,ϕϕ in form of functions depending on state variables: 

.;
cos
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5
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2

54

04504
1

T

x

xT

HxxVT ϑ
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+−
=
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−=  (9) 

Further external control vectors iu
is found by solving simultaneously 

functional equation systems (4) and equation model (1): 
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Whereas synthesized control laws, 1u , 2u , 3u , of object (1), provide 

implementation required technological problems, it is necessary to move to 

description of the observer synthesis procedure. 

b) The observer synthesis procedure 
According to the method of Analytical Design of Aggregated Regulators, in 

synergistic synthesis procedure of observers it should be used following an 

extended system model (11) [3, 4]: 
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 (11) 

Where iσ  – harmonic disturbance angular frequencies, 321 ,, zzz  – the 

projections of indignant linear, longitudinal and angular accelerations 

respectively. 
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The last six equations in system (11) is dynamic model of harmonic 

disturbances, and 3..1,, =isz ii  are state variables. 

The state variable observer design is based on the synergistic approach 

principles in the control theory, videlicet on the ADAR method, which is 

described in works [3, 4]. In particular case, when 1)(dim =tψ , the 

expression 

( ) ( )ψψ yLt =&  (12) 

Could be present in following form: 

( ) .0,0 >=+ iiii LLt ψψ&  (13) 

To conduct the synthesis of the observers for the object (1), let 

[ ] 5,...,1, == ixy i , [ ] 3,2,1,, == jszv jj . To determine the assessments 

of the state variables 11, sz , choosing forms of 21,ψψ : 
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Where 0≠ijβ  – constants, 021122211 ≠− ββββ . In this the valuations 

11
ˆ,ˆ sz  of the state variables 11, sz  could be formed by 
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where )(),( 1211 xfxf  – unknown functions. Then to put (14) into the equation 

in formed (13): 
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while subject to the equations (15), receiving 
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 With the equations (17) subject to the object equations (11) , receiving: 

248



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

( )

( )

( ) ( )[ ] ;0)()(

sin
)(

sin
)(

2121121111111

2
1115

1

12
1

2

112

1
1115

1

11
111

=−−+−−+









−++−

∂
−−

+







−++−

∂
−

wxfswxfzL

dt

dw
zuaxg

x

xf
z

dt

dw
zuaxg

x

xf
s

ββ

σβ

β

 

( )

( )

( ) ( )[ ] .0)()(

sin
)(

sin
)(

2121221111212

1

2
1115

1

12
1

2

122

1
1115

1

11
121

=−−+−−+









−++−

∂
−−

+







−++−

∂
−

wxfswxfzL

dt

dw
zuaxg

x

xf
z

dt

dw
zuaxg

x

xf
s

ββ

σβ

β

 

(18) 

In the equations of the observer (18) must not be present at unobserved 

coordinators 11, sz . In order to exclude them out of system, choosing 

( )

( )
,)(

,)(

1

2

1

211222112212

21
2

121111
2

2221
12

1

211222112212

11
2

22
2

21
2

12
2

11

xxf

xxf









−

−
−

=

−
−

=

σ
ββββββ
ββββββ

ββββββ
ββββ

 

0,0
22

21
2

12

11
1 >−=>−=

β
β

β
β

LL  

(19) 

Subject to (19), to solve the system of equations (18), finding 
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And the valuations 11
ˆ,ˆ sz  of the state variables 11, sz are 
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Similarly, to define the estimations 22
ˆ,ˆ sz , 22

ˆ,ˆ sz of the state variables 22 , sz , 

22 , sz , choosing following the macro variables 
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The assessments of state variables 22 , sz , 22 , sz can be defined 
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(23) 

The macro variables (22) must be satisfy functional equations 

( ) 6,...,3,0,0 =>=+ iLLt iiii ψψ& . (24) 

With received equations formed by putting (22) in to (16) object to model (11), 

we need to choose functions )(),(),(),( 36352423 xfxfxfxf , 6,...,3, =iLi  

so that the expressions of the observers must not consist in itself the unobserved 

state variables. Choosing 
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LL  

Consequently the equations of the observer is formed 
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(27) 

And expressions of state variable evaluations 3232 ,,, sszz  is described 
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(28) 

Thus, combining equations (20) and (27), we obtain a nonlinear state observer 

for the external harmonic wave disturbances. Note that the unobserved variable 

321 ,, zzz  in the synthesized controls (10) should be replaced by its estimates 

321
ˆ,ˆ,ˆ zzz  (15) and (28). 

 

4. Simulation 
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The results of computer simulation of closed-loop system (11) with the 

synthesized NEPO are shown in figure 1 to figure 17. 

  
Fig. 1 Transient process relatively 

horizontal speed xV  

Fig. 2 Transient process relatively 

vertical speed yV  

 
Fig. 3 Transient process relatively 

angular speed zω  

Fig. 4 Transient process relatively 

flight height H  

 
 

Fig. 5 Transient process relatively 

pitch angular speed ϑ  

Fig. 6 Transient process relatively 

flight distance X  
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Fig. 7 Transient process relatively 

control 1u  

Fig. 8 Transient process relatively 

control 2u  

 
 

Fig. 9 Transient process relatively 

control 3u  

Fig. 10 Projection of system phase 

trajectory on surface ( )tx1 & ( )tx6  

 
 

Fig. 11 Projection of system phase 

trajectory on surface ( )tx2 & ( )tx4  

Fig. 12 Projection of system phase 

trajectory on surface ( )tx3 & ( )tx5  
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Fig. 13 Phase portrait in space 

( )tx4 , ( )tx5 , ( )tx6  

Fig. 14 Phase portrait in space 

( )tx5 , ( )tx1 , ( )tx2  

  
Fig. 15 Transient process relatively 

disturbance )(1 tz and its estimation 

Fig. 16 Transient process relatively 

)(2 tz  and its estimation 

 
Fig. 17 Transient process relatively )(3 tz  and its evaluation 

5. Conclusion 
This work is described the synergistic approach to problem of synthesis of 

effective correlated control laws of longitudinal motion SA under sea wave 

conditions, particularly in taking off process from water surface. 

In conducting the simulation showed that the SA’s longitudinal motion control 

objectives are achieved and using synthesized control laws can significantly 

improve motion performance: decreasing pitch angle oscillation, angular rate 

fluctuations and SA’s gravity center oscillation. The observers estimate the 

unobserved disturbances with high measurement accuracy (fig.15-fig.17). 

Thus, using synergetic control theory enable to create new classes of SA’s 

motion control systems. 
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Rq0r� lqwhuplwwhqf| lq wkh Lvlqj prgho zlwk
whpshudwxuh udqgrpo| ydu|lqj lq wlph

D1 Nudzlhfnl
Zduvdz Xqlyhuvlw| ri Whfkqrorj|/ Nrv}|nrzd :8/ SO0330995 Zduvdz/ Srodqg
+H0pdlo= dnudzCli1sz1hgx1so,

Devwudfw1 Ihuurpdjqhwlf Lvlqj prgho lv lqyhvwljdwhg e| phdqv ri Prqwh Fduor
vlpxodwlrqv/ zlwk whpshudwxuh udqgrpo| ydu|lqj lq wlph/ zklfk dvvxphv udqgrpo|
ydoxhv deryh dqg ehorz wkh fulwlfdo whpshudwxuh lq wkh frqvhfxwlyh vlpxodwlrq vwhsv1
Lw lv nqrzq wkdw iru phdq0�hog frxsolqj rq0r� lqwhuplwwhqf| dqg dwwudfwru exeeolqj
fdq eh wkhq revhuyhg/ fkdudfwhul}hg e| wkh vhtxhqfh ri odplqdu skdvhv/ gxulqj
zklfk wkh pdjqhwl}dwlrq lv doprvw }hur/ dqg fkdrwlf exuvwv/ gxulqj zklfk wkh v|vwhp
ehfrphv deuxswo| rughuhg1 Dw wkh lqwhuplwwhqf| wkuhvkrog glvwulexwlrq ri wkh ydoxhv
ri pdjqhwl}dwlrq reh|v d srzhu vfdolqj odz1 Khuh/ srvvlelolw| ri wkh rffxuuhqfh ri
dqdorjrxv skhqrphqd lv vwxglhg lq wkh Lvlqj prgho rq _0glphqvlrqdo vtxduh odwwlfhv
dqg rq vpdoo0zruog qhwzrunv zklfk duh rewdlqhg iurp wkh vtxduh rqhv e| udqgrp
uhzlulqj ri hgjhv +fruuhvsrqglqj wr qrq0}hur h{fkdqjh lqwhjudov, zlwk suredelolw| R1
Iru wkh prghov rq vtxduh odwwlfhv +R ' f, lqwhuplwwhqw vhtxhqfhv ri odplqdu skdvhv
dqg exuvwv ri pdjqhwl}dwlrq duh revhuyhg rqo| iru _ D e> dovr rqo| iru _ D e wkh
glvwulexwlrqv ri ydoxhv ri pdjqhwl}dwlrq h{klelw srzhu0odz wdlov1 Iru wkh prghov rq
vpdoo0zruog qhwzrunv +R : f, vxfk glvwulexwlrqv rffxu iru _ D 21 Wkxv/ wlph vhulhv
zlwk fhuwdlq surshuwlhv ri rq0r� lqwhuplwwhqf| fdq eh revhuyhg forvh wr wkh skdvh
wudqvlwlrq srlqw lq wkh deryh0phqwlrqhg jhqhulf prghov ri vwdwlvwlfdo sk|vlfv1
Nh|zrugv= rq0r� lqwhuplwwhqf|/ dwwudfwru exeeolqj/ Lvlqj prgho1

Rq0r� lqwhuplwwhqf| +RRL, dsshduv lq fkdrwrf v|vwhpv lq zklfk wkh re0
vhuyhg vljqdo irupv d vhtxhqfh ri odplqdu skdvhv/ gxulqj zklfk lw lv doprvw
frqvwdqw dqg forvh wr }hur +wkh %r�% skdvh, dqg fkdrwlf exuvwv +%rq% vwdwh,
^4/5`1 Wkh v|vwhp fdq vwd| lq wkh odplqdu skdvh iru d orqj wlph/ diwhu zklfk
wkh exuvw fdq dsshdu/ l1h1/ udslg ghsduwxuh iurp/ dqg uhwxuq wr/ wkh %r�% vwdwh1
RRL rffxuv lq v|vwhpv zklfk srvvhv d fkdrwlf dwwudfwru frqwdlqhg zlwklq dq
lqyduldqw pdqlirog zlwk glphqvlrq vpdoohu wkdq wkdw ri wkh skdvh vsdfh1 Dv
d frqwuro sdudphwhu lv ydulhg/ wklv dwwudfwru fdq orvh wudqvyhuvh vwdelolw| dv d
uhvxow ri d vxshufulwlfdo eorzrxw elixufdwlrq ^6`/ dqg d qhz dwwudfwru lv iruphg
zklfk hqfrpsdvvhv wkdw frqwdlqhg zlwklq wkh lqyduldqw pdqlirog1 Mxvw deryh
wkh elixufdwlrq wkuhvkrog wkh skdvh wudmhfwru| vshqgv prvw ri wkh wlph lq
wkh ylflqlw| ri wkh lqyduldqw pdqlirog dqg rqo| rffdvvlrqdoo| ghsduwv iurp
lw/ zklfk uhvxowv lq wkh vhtxhqfh ri wkh odplqdu skdvhv dqg exuvwv1 Lq wxuq/
li gxulqj wkh odplqdu skdvhv lqvwhdg ri dssurdfklqj }hur wkh vljqdo vkrzv
 xfwxdwlrqv zlwk dpsolwxgh vpdoo lq frpsdulvrq zlwk wkdw ri fkdrwlf exuvwv/
wkh fruuhvsrqglqj skhqrphqrq lv fdoohg dwwudfwru exeeolqj +DE, ^5/7`1 DE
dsshduv lq v|vwhpv zlwk RRL xqghu wkh lq xhqfh ri wkh lqwhuqdo ru h{whuqdo
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qrlvh/ zklfk dpsol�hv orfdo wudqvyhuvh lqdvwdelolwlhv lq wkh dwwudfwru frqwdlqhg
zlwklq wkh lqyduldqw pdqlirog ^5`1 Wklv uhvxowv lq wkh dsshdudqfh ri lqwhuplw0
whqw exuvlwqj ehorz wkh eorzrxw elixufdwlrq wkuhvkrog1 RRL dqg DE zhuh
revhuyhg lq pdq| qrqolqhdu g|qdplfdo v|vwhpv/ h1j1/ lq prgho pdsv zlwk
wlph0ghshqghqw frqwuro sdudphwhu ^4`/ lq v|vwhpv ri frxsohg fkdrwlf rvflo0
odwruv forvh wr wkh v|qfkurql}dwlrq wkuhvkrog/ zkhuh wkh lqyduldqw pdqlirog
lv wkh v|qfkurql}dwlrq pdqlirog ^8`/ lq fkdrwlf g|qdplfv ri vslq zdyhv ^9`/
plfurvfrslf prghov ri �qdqfldo pdunhwv ^:/;`/ hwf1

Lw lv lqwhuhvwlqj wr qrwh wkdw RRL dqg DE fdq rffxu lq pdq|0erg| v|v0
whpv ri vwdwlvwlfdo sk|vlfv/ h1j1/ lq wkh Lvlqj dqg Lvlqj0olnh prghov ^;043` ru
hohfwurfrqyhfwlrq ri qhpdwlf oltxlg fu|vwdov ^44`/ xqghu wkh lq xhqfh ri udq0
grp yduldwlrq ri h{whuqdo sdudphwhuv +wkh whpshudwxuh ru wkh hohfulf yrowdjh
lq wkh wzr deryh0phqwlrqhg fdvhv/ uhvshfwlyho|,1 Lq sduwlfxodu wkh ihuurpdj0
qhwlf Lvlqj prgho zlwk whpshudwxuh udqgrpo| ydu|lqj lq wlph fdq vzlwfk
lqwhuplwwhqwo| ehwzhhq wkh sdudpdjqhwlf dqg rughuhg skdvh/ zklfk uhvxowv lq
wkh vhtxhqfh ri wkh odplqdu skdvhv dqg exuvwv lq wkh wlph vhulhv ri pdjqhwl}d0
wlrq/ wuhdwhg dv wkh vljqdo1 Lq wkh odwwhu fdvh RRL dqg DE kdyh ehhq revhuyhg
vr idu lq wkh Lvlqj prgho zlwk phdq0�hog +PI, frxsolqj ^<`1 Wkh sxusrvh ri
wklv sdshu lv wr vkrz wkdw wkhvh skhqrphqd fdq dsshdu dovr li wkh PI dssur{0
lpdwlrq lv qrw h{dfw/ h1j1/ lq wkh g0glphvqlrqdo Lvlqj prgho zlwk g @ 5>6>7 = = =
dqg/ srvvleo|/ d vpdoo iudfwlrq ri udqgrp frqqhfwlrqv fruuhvsrqglqj wr orqj0
udqjh h{fkdqjh lqwhudfwlrqv ehwzhhq glvwdqw vslqv1 Lw vkrxog eh hpskdvl}hg
wkdw wkh Lvlqj prgho lv d vwrfkdvwlf rqh +Jodxehu wkhupdo edwk g|qdplfv lv
xvhg lq wkh Prqwh Fduor +PF, vlpxodwlrqv,/ dqg wkh lqwhuplwwhqf| w|slfdo
ri g|qdplfdo v|vwhpv dsshduv lq lw dv d uhvxow ri lqwhudfwlrqv dprqj d odujh
qxpehu ri vwrfkdvwlf xqlwv +vslqv,1 Wkxv wkh qdph %hphujhqw% RRL dqg DE
fdq eh jlyhq wr wklv nlqg ri lqwhuplwwhqw skhqrphqd1

Wkh prgho lqyhvwljdwhg lq wklv sdshu lv wkh ihuurpdjqhwlf Lvlqj prgho
rq d qhwzrun zklfk fdq eh hlwkhu d xvxdo g0glphqvlrqdo vtxduh odwwlfh/ zlwk
g � 5/ ru d vpdoo0zruog qhwzrun rewdlqhg iurp wkh g0glphqvlrqdo vtxduh
odwwlfh e| udqgrp fxwwlqj dqg uhzlulqj ri hgjhv ^45`1 Iru wkh odwwhu sxusrvh/
hdfk hgjh ri wkh vtxduh odwwlfh lv fxw zlwk suredelolw| s dqg uhzluhg vr wkdw
rqh +udqgrpo| vhohfwhg, hqg uhpdlqv dwwdfkhg wr dq rog qrgh zkloh wkh rwkhu
rqh lv dwwdfkhg wr d qhz qrgh/ fkrvhq udqgrpo| iurp dprqj doo qrghv lq wkh
qhwzrun1 Pxowlsoh frqqhfwlrqv ehwzhhq qrghv/ vhoi0frqqhfwlrqv dqg fxwwlqj
hgjhv rqfh uhzluhg duh iruelgghq1 Wkh suredelolw| s frqwurov wkh ghjuhh ri
udqgrpqhvv lq wkh qhwzrun= lq sduwlfxodu/ iru s @ 3 wkh qhwzrun lv wkh g0
glphqvlrqdo vtxduh odwwlfh/ dqg iru s @ 4 lw lv d udqgrp judsk1 Wkh vslqv
�l/ l @ 4>5> = = = Q/ Q @ Og/ zkhuh O lv wkh vl}h ri wkh ruljlqdo vtxduh odwwlfh
dqg Q lv wkh qxpehu ri vslqv/ kdyh wzr srvvleoh rulhqwdwlrqv/ �l @ 	4/ dqg
duh orfdwhg lq wkh qrghv ri wkh qhwzrun1 Wkh h{fkdqjh lqwhjudo ehwzhhq
wkh vslqv �l/ �m lv Mlm @ M A 3 li wkhuh lv dq hgjh ehwzhhq qrghv l/ m/
dqg Mlm @ 3 rwkhuzlvh> khqfh/ iru s A 3 d fhuwdlq iudfwlrq ri orqj0udqjh
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lqwhudfwlrqv ehwzhhq vslqv lv suhvhqw1 Wkh Kdplowrqldq iru wkh prgho lv

K @ �
Q[

l>m@4
Mlm�l�m= +4,

PF vlpxodwlrqv ri wkh deryh0phqwlrqhg prgho duh shuiruphg zlwk whp0
shudwxuh udqgrpo| ydu|lqj lq wlph/ W +w, @ W3 � W4�+w,/ zkhuh wkh glvfuhwh
wlph vwhsv w duh htxlydohqw wr wkh frqvhfxwlyh PF vlpxodwlrq vwhsv +hdfk
vwhs fruuhvsrqglqj wr dv|qfkurqrxv xsgdwlqj ri doo Q vslqv,/ �+w, lv d udq0
grp yduldeoh zlwk xqlirup glvwulexwlrq rq wkh lqwhuydo +3>4,/ dqg W3/ W4 duh
frqvwdqwv1 Wkh prgho reh|v wkh Jodxehu wkhupdo0edwk g|qdplfv/ zlwk wkh
wudqvlwlrq udwhv ehwzhhq wzr vslq frq�jxudwlrqv zklfk gl�hu e| d vlqjoh  ls
ri rqh vslq/ h1j1/ wkdw lq wkh qrgh l/ lq wkh irup

zl +�l> w, @ 4
5
�
4� �l wdqk

� Ll
W +w,

��
> +5,

zkhuh
Ll @ M [

m5Nl

�m +6,

lv d orfdo �hog dfwlqj rq wkh vslq l/ dqg wkh vxp lq Ht1 +6, uxqv ryhu doo
qhljkeruv ri wkh qrgh l +lq sduwlfxodu/ lq wkh fdvh ri wkh g0glphqvlrqdo vtxduh
odwwlfh/ fruuhvsrqglqj wr s @ 3/ wkhuh duh } @ 7> 9> ; = = = qhduhvw qhljkeruv iru
g @ 5>6>7 = = =/ zkhuh } lv wkh frruglqdwlrq qxpehu,1 Ohw xv hpskdvl}h wkdw
wkh wudqvlwlrq udwhv +5, ghshqg rq wlph gxh wr wkh wlph ghshqghqfh ri wkh
whpshudwxuh W +w,1

Iru W4 @ 3 wkh prghov xqghu vwxg| zlwk g @ 5>6> 7 = = = vkrz ihuurpdj0
qhwlf skdvh wudqvlwlrq iru s � 3/ dqg wkh fulwlfdo whpshudwxuh Wf iru jlyhq g
lv dq lqfuhdvlqj ixqfwlrq ri s1 Wkh rughu sdudphwhu lv/ ri frxuvh/ wkh pdjqh0
wl}dwlrq P @ Q�4SQ

l@4 �l1 Khqfhiruwk lq wkh PF vlpxodwlrqv lw lv dozd|v
dvvxphg wkdw W3 A Wf iru jlyhq g/ s dqg wkh qhwzrun vl}h Q 1 Iru W4 A 3
wkh pdjqhwl}dwlrq fdqqrw eh wuhdwhg dv wkh +vwdwlf, rughu sdudphwhu vlqfh lw
fdq ehfrph ghshqghqw rq wlph/ lq sduwlfxodu li W3 � W4 ? Wf1 Lqvwhdg/ wkh
vwdwlvwlfdo surshuwlhv ri wkh wlph vhulhv P+w, fdq eh dqdo|}hg wr vhdufk iru
wkh rffxuuhqfh ri wkh RRL ru DE1

Lq wkh PI dssur{lpdwlrq/ dqg lq wkh wkhuprg|qdplf olplw/ wkh htxdwlrq
iru wkh wlph ghshqghqfh ri wkh pdjqhwl}dwlrq ehfrphv

P+w.4, @ wdqk
�Mk}l
W +w,P+w,

�
� Mk}l

W +w,P+w,> +7,

zkhuh k}l lv wkh dyhudjh frruglqdwlrq qxpehu +k}l @ } @ 7> 9>; = = = iru s @ 3
dqg g @ 5>6> 7 = = =,/ dqg wkh dssur{lpdwh htxdolw| lv ydolg iru P � 31 Iru
W4 @ 3 dqg W +w, @ W3 @ frqvw wkh pdjphwl}dwlrq P+w, iru w $ 4 frq0
yhujhv wr }hur li W3 A W +pi,f @ k}lM / l1h1/ deryh wkh PI fulwlfdo whpshudwxuh/
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zklfk fruuhvsrqgv wr wkh sdudpdjqhwlf skdvh/ dqg wr d qrq0}hur ydoxh li
W3 ? W +pi ,f / zklfk fruuhvsrqgv wr wkh rughuhg skdvh1 Iru W4 A 3 Ht1 +7, fdq
eh wuhdwhg dv d rqh0glphqvlrqdo pds ghvfulelqj wkh hyroxwlrq ri wkh pdjqh0
wl}dwlrq P+w, lq glvfuhwh wlph w1 Wklv pds srvvhvvhv dq lqyduldqw pdqlirog
P+w, � 3/ fruuhvsrqglqj wr wkh sdudphjqhwlf skdvh/ dqg wkh whpshudwxuh
W +w, lv d +udqgrp, yduldeoh ghvfulelqj wkh g|qdplfv ri wkh wzr0glphqvlrqdo
v|vwhp +P+w,> W +w,, zlwklq wklv pdqlirog1 Wkh pds +7, ehorqjv wr d jhqhudo
fodvv ri v|vwhpv {w.4 @ i +{w> �w, zklfk diwhu olqhdul}dwlrq lq wkh ylflqlw| ri
wkh lqyduldqw pdqlirog {w � 3 kdyh d irup ri pxowlsolfdwlyh qrlvh/ {w.4 @ �w{w/
zkhuh �w lv d udqgrp yduldeoh1 Dv wkh vwuhqjwk ri wkh qrlvh �w ulvhv wkh pdq0
lirog {w � 3 orvhv vwdelolw| yld vxshufulwlfdo eorzrxw elixufdwlrq dqg RRL lq
wkh wlph vhulhv ri {w lv revhuyhg> lq Ht1 +7,/ vlqfh W3 A W +pi,f / wklv kds0
shqv dv W4 lv lqfuhdvhg1 Lq idfw/ RRL zdv revhuyhg lq Ht1 +7, dv zhoo dv lq
wkh wlph vhulhv ri pdjqhwl}dwlrq rewdlqhg iurp PF vlpxodwlrqv ri wkh Lvlqj
prgho zlwk whpshudwxuh udqgrpo| ydu|lqj lq wlph dqg zlwk PI frxsolqj ^<`/
zkhuh Ht1 +7, lv vwulfw iru Q $ 4/ dv W4 zdv lqfuhdvhg deryh wkh wkuhvk0
rog ydoxh iru wkh eorzrxw elixufdwlrq1 Ehvlghv/ lq wkh PF vlpxodwlrqv DE
zdv dovr revhuyhg/ l1h1/ fkdrwlf exuvwv ri pdjqhwl}dwlrq zklfk rffxuuhg iru
W4 ? W3�Wf/ ehorz wkh lqwhuplwwhqf| wkuhvkrog/ gxh wr wkhupdo  xfwxdwlrqv
+lqwhuqdo qrlvh, zklfk ghvwdelol}h wkh lqyduldqw pdqlirog +wkh sdudpdjqhwlf
vwdwh, lq �qlwh0vl}h v|vwhpv1

Lq wkh fdvhv vwxglhg lq wklv sdshu qhlwkhu RRL qru DE rffxu lq wkh wzr0
dqg wkuhh0glphqvlrqdo Lvlqj prgho rq vtxduh odwwlfhv +iru s @ 3 dqg g @ 5>6/
W3 A Wf dqg 3 ? W4 ? Wf,= wkh pdjqhwl}dwlrq h{klelwv rqo| vpdoo  xfwxdwlrqv
durxqg }hur +Ilj1 4+d/f,,1 Krzhyhu/ dgglwlrq ri hyhq d vpdoo iudfwlrq ri
uhzluhg hgjhv +s A 3, ohdgv wr wkh rffxuuhqfh ri fkdrwlf exuvwv lq wkh wlph
vhulhv ri P+w, w|slfdo ri DE iru odujh hqrxjk W4 lq wkh prghov zlwk g @ 5> 6
+Ilj1 4+e,,1 Lq frqwudvw/ lq wkh irxu0glphqvlrqdo Lvlqj prgho exuvwv lq wkh
wlph vhulhv ri P+w, rffxu erwk iru s @ 3 +wkh vtxduh odwwlfh/ Ilj1 4+g,,/ li W3
lv voljkwo| deryh Wf dqg W4 lv odujh hqrxjk/ dqg iru s A 3 +wkh vpdoo0zruog
qhwzrun/ Ilj1 4+h/i,,/ lq d pxfk zlghu udqjh ri wkh sdudphwhuv W3/ W41

D fkdudfwhulvwlf ihdwxuh ri RRL lv wkh glvwulexwlrq ri ohqjwkv � ri odplqdu
skdvhv dw wkh lqwhuplwwhqf| wkuhvkrog/ S +�, 2 ��6@5 ^4`> lq wkh fdvh ri DE/
gxh wr wkh suhvhqfh ri qrlvh/ orqj odplqdu skdvhv duh ohvv suredeoh wr rffxu
dqg wkh wdlo ri wkh glvwulexwlrq ehfrphv h{srqhqwldo ^7`1 Lq wkh prghov vwxg0
lhg lq wklv sdshu/ hyhq iru Q * 437/ wkh wkhupdo  xfwxdwlrqv zhuh wrr vwurqj
wr revhuyh wkh srzhu vfdolqj odz/ dqg hyhq iru vkruw odplqdu skdvhv wkh glvwul0
exwlrq S +� , ghfuhdvhg h{srqhqwldoo|1 Dqrwkhu fkdudfwhulvwlf ihdwxuh ri DE lv
wkh glvwulexwlrq ri wkh ydoxhv ri wkh phdvxuhg vljqdo zklfk h{klelwv srzhu0odz
wdlov ^46/47`1 Lq wkh wzr0 dqg wkuhh0glphvlrqdo Lvlqj prgho rq vtxduh odwwlfhv
+iru s @ 3 dqg g @ 5> 6/ W3 A Wf dqg 3 ? W4 ? Wf, wkh glvwulexwlrqv S +P,
kdyh h{srqhqwldo udwkhu wkdq srzhu0odz wdlov +Ilj1 5+d/e,,/ zklfk frq�upv
wkdw qr DE rffxuv1 Lq frqwudvw/ lq wkh Lvlqj prgho rq vpdoo0zruog qhwzrunv
zlwk g @ 5>6 dqg s A 3 wkh wdlov ri wkh glvwulexwlrqv ri pdjqhwl}dwlrq reh|

260



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

� ��� ��� ��� ��� ����W�>0&66@
��

����

�
���

�
0

�D�

� ��� ��� ��� ��� ����W�>0&66@
��

����

�

���
�

0

�E�

� ��� ��� ��� ��� ����W�>0&66@
��

����
�

���
�

0

�F�

� ��� ��� ��� ��� ����W�>0&66@
��

����

�

���
�

0

�G�

� ��� ��� ��� ��� ����W�>0&66@
��

����

�

���
�

0

�H�

� ��� ��� ��� ��� ����W�>0&66@
��

����

�

���
�

0

�I�

Ilj1 41 Wlph vhulhv ri pdjqhwl}dwlrq �E|� iru wkh prghov zlwk +d, _ ' 2/ u ' 2DS/
R ' f +wzr0glphqvlrqdo vtxduh odwwlfh,/ Af ' 2�eD/ A� ' 2�ee> +e, _ ' 2/ u ' 2DS/
R ' f�2 +vpdoo0zruog qhwzrun rewdlqhg iurp wkh wzr0glphqvlrqdo vtxduh odwwlfh,/
Af ' ��2D/ A� ' ��2e> +f, _ ' �/ u ' ef/ R ' f +wkuhh0glphqvlrqdo vtxduh odwwlfh,/
Af ' e�Sf/ A� ' e�Db> +g, _ ' e/ u ' �S/ R ' f +irxu0glphqvlrqdo vtxduh odwwlfh,/
Af ' S�.D/ A� ' S�.e> +h, _ ' e/ u ' �S/ R ' f�2 +vpdoo0zruog qhwzrun rewdlqhg
iurp wkh irxu0glphqvlrqdo vtxduh odwwlfh,/ Af ' �f�f/ A� ' b�bb> +i, _ ' e/ u ' �S/
R ' f�2/ Af ' .��D/ A� ' .��e1
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Ilj1 51 Glvwulexwlrqv ri wkh pdjqhwl}dwlrq � E�� +vrolg olqhv, dqg srvvleoh �wv ri
wkh srzhu vfdolqj odzv wr wkh wdlov ri wkh glvwulexwlrqv +gdvkhg olqhv, iru wkh prghov
zlwk +d, _ ' 2/ u ' 2DS dqg R ' f/ Af ' 2�eD/ A� ' 2�ee +fxuyh E@�,/ R ' f�2/
Af ' ��2D/ A� ' ��ff +fxuyh EK�,/ R ' f�2/ Af ' ��2D/ A� ' ��2e +fxuyh ES�,> +e,
_ ' 2/ u ' 2DS dqg R ' f�2/ Af ' e�2D/ A� ' e�2e +fxuyh E@�,/ _ ' 2/ u ' �ff dqg
R ' f�2/ Af ' ��2D/ A� ' ��2e +fxuyh EK�,/ _ ' �/ u ' ef dqg R ' f�f/ Af ' e�Sf/
A� ' e�Db +fxuyh ES�,> +f, _ ' e/ u ' �S/ R ' f dqg Af ' S�.D/ A� ' ��f +fxuyh
E@�,/ Af ' S�.D/ A� ' S�.e +fxuyh EK�,/ Af ' .�.D/ A� ' .�.e +fxuyh ES�,> +g, _ ' e/
u ' �S/ R ' f�2 dqg Af ' �f�f/ A� ' b�bb +fxuyh E@�,/ Af ' H�f/ A� ' .�bb +fxuyh
EK�,/ Af ' .��D/ A� ' .��e +fxuyh ES�,1
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wkh srzhu vfdolqj odz/ S +P, 2P��/ � A 3/ iru d fhuwdlq udqjh ri W3 A Wf
dqg odujh hqrxjk W4 +Ilj1 5+d/e,,1 Lq wkh irxu0glphqvlrqdo Lvlqj prgho rq
wkh vtxduh odwwlfh +g @ 7/ s @ 3, iru W3 mxvw deryh Wf dqg odujh hqrxjk W4 wkh
glvwulexwlrq S +P, reh|v wkh srzhu vfdolqj odz rq d qduurz lqwhuydo> rwkhu0
zlvh/ S +P, kdv h{srqhqwldo wdlov +Ilj1 5+f,,1 Iru g @ 7 dqg wkh vpdoo0zruog
qhwzrunv zlwk s A 3 wkh wdlov ri wkh glvwulexwlrq ri wkh pdjqhwl}dwlrq reh| d
srzhu vfdolqj odz S +P, 2 P�� iru d zlgh udqjh ri wkh sdudphwhuv W3/ W4
+Ilj1 5+g,,1 Wkhvh uhvxowv frq�up wkdw wkh rffxuuhqfh ri exuvwv lq wkh wlph
vhulhv ri pdjqhwl}dwlrq vkrzq lq Ilj1 4 +e/g/h/i, iru wkh fdvhv g @ 5>6/ s A 3
dqg g @ 7/ s � 3 fdq eh dwwulexwhg wr DE1 Lq jhqhudo/ li wkh srzhu vfdolqj odz
S +P, 2P�� lv revhuyhg wkh h{srqhqw � A 3 ghfuhdvhv dv W3 dssurdfkhv Wf
iurp deryh dqg dv W4 lv lqfuhdvhg +Ilj1 5+e/g,,/ vlqfh wklv ohdgv wr vwurqjhu
dqg pruh iuhtxhqw exuvwv lq wkh wlph vhulhv ri pdjqhwl}dwlrq +Ilj1 4+h/i,,1

Wkh deryh0phqwlrqhg uhvxowv vkrz wkdw li wkh whpshudwxuh ydulhv udq0
grpo| lq wlph zlwklq d fhuwdlq lqwhuydo DE fdq eh revhuyhg lq wkh Lvlqj
prgho rq vpdoo0zruog qhwzrunv rewdlqhg iurp wkh wzr0 dqg wkuhh0glphqvlrqdo
vtxduh odwwlfhv e| fxwwlqj dqg uhzlulqj hgjhv zlwk suredelolw| s A 31 Gxh wr
wkh suhvhqfh ri vkruwfxwv wkh lqwhudfwlrqv ehwzhhq vslqv kdyh d PI fkdudfwhu
wr vrph ghjuhh/ exw rqo| iru s @ 4 wkh qhwzrun ehfrphv d udqgrp judsk dqg
wkh PI dssur{lpdwlrq/ Ht1 +7, ehfrphv h{dfw1 Wkxv/ DE fdq rffxu hyhq
li wkh PI dssur{lpdwlrq lv qrw vwulfw1 Lq wkh irxu0glphqvlrqdo Lvlqj prgho
DE fdq eh revhuyhg erwk lq wkh fdvh ri vtxduh odwwlfh dqg wkh vpdoo0zruog
qhwzrun1 Wkxv/ wkh fulwlfdo glphqvlrq iru wkh rffxuuhqfh ri DE lq wkh Lvlqj
prgho rq d vtxduh odwwlfh/ zlwk whpshudwxuh udqgrpo| yduxlqj lq wlph/ lv
g @ 71

Lw vkrxog eh phqwlrqhg wkdw d fodvv ri prghov vlplodu wr wkh rqhv frqvlg0
huhg lq wklv sdshu zdv xvhg lq Uhi1 ^43` wr vlpxodwh wkh wlph vhulhv ri sulfh
uhwxuqv lq wkh vwrfn pdunhw1 Wkh wzr srvvleoh rulhqwdwlrqv ri vslqv +djhqwv,
fruuhvsrqghg wr wkh ghflvlrqv wr vhoo ru wr ex| vwrfnv/ dqg lqvwhdg ri whpshud0
wxuh ydu|lqj udqgrpo| lq wlph/ h{fkdqjh lqwhjudov ehwzhhq sdluv ri lqwhudfwlqj
djhqwv ydulhg udqgrpo| lq wlph durxqg wkh dyhudjh zklfk zdv dovr d udqgrp
ixqfwlrq ri wlph1 Wkh djhqwv zhuh sodfhg rq d wzr0glphqvlrqdo vtxduh odw0
wlfh/ dqg lqwhudfwlrqv zlwk wkh �uvw/ vhfrqg/ wklug/ hwf1 qhduhvw qhljkeruv
zhuh wdnhq lqwr dffrxqw> wkhq/ vpdoo0zruog qhwzrunv zhuh dovr frqvwuxfwhg
e| udqgrpo| fxwwlqj dqg uhzlulqj hgjhv zlwk suredelolw| s1 Sdudooho xsgdwlqj
ri wkh vwdwhv ri doo djhqwv zdv shuiruphg1 Vxfk Lvlqj0olnh pxowl0djhqw prghov
edvhg rq wkh vrfldo lpsdfw wkhru| ^48` duh riwhq xvhg wr uhsurgxfh vr0fdoohg
%vw|ol}hg idfwv%/ ru xqlyhuvdo surshulwhv ri wkh  xfwxdwlrqv ri wkh vwrfn sulfhv
^49`1 Lq sduwlfxodu/ wkh suredelolw| glvwulexwlrqv ri wkh vwrfn sulfh uhwxuqv re0
wdlqhg iurp PF vlpxodwlrqv/ sursruwlrqdo wr wkh pdjqhwl}dwlrq/ frxog h{klelw
srzhu0odz wdlov iru s A 3/ zklfk lv w|slfdo ri wkh hpslulfdo glvwulexwlrqv ri
uhwxuqv1 Dovr wkh wlph vhulhv ri uhwxuqv +pdjqhwl}dwlrq, h{klelwhg wkh hpslu0
lfdoo| revhuyhg %yrodwlolw| foxvwhulqj%/ l1h1/ d vhtxhqfh ri txlhvfhqw +odplqdu,
skdvhv dqg exuvwv1
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Wkh uhvxowv ri wkh suhvhqw sdshu dv zhoo dv wkhvh ri Uhiv1 ^;044` frq�up wkdw
%hphujhqw% RRL dqg DE duh xeltxlwrxv skhqrphqd lq pdq|0erg| v|vwhpv
ri vwdwlvwlfdo sk|vlfv1 Lq wkh Lvlqj prgho vwxglhg lq wklv sdshu wkh dsshdudqfh
ri RRL lq wkh wlph vhulhv ri pdjqhwl}dwlrq fdq eh hdvlo| xqghuvwrrg zlwklq
wkh PI dssur{lpdwlrq= dv wkh dpsolwxgh ri wkh vwrfkdvwlf yduldwlrq ri wkh
h{whuqdo sdudphwhu +whpshudwxuh, lqfuhdvhv wkh lqyduldqw pdqlirog P @ 3/
fruuhvrsqglqj wr wkh sdudpdjqhwlf skdvh/ orvhv wudqvyhuvh vwdelolw| dv d uh0
vxow ri wkh eorzrxw elixufdwlrq> lq �qlwh0vl}h v|vwhpv wkh rffxuuhqfh ri fkdrwlf
exuvwv ri pdjqhwl}dwlrq lv idflolwdwhg gxh wr lqwhudo qrlvh +wkhupdo  xfwxd0
wlrqv, dqg DE lv revhuyhg1 Krzhyhu/ wkh uhvxowv ri wkh PF vlpxodwlrqv vkrz
wkdw vlplodu lqwhuplwwhqw skhqrphqd rffxu hyhq li wkh PI dssur{lpdwlrq lv
qrw h{dfw1

Uhihuhqfhv
41Q1 Sodww/ H1 D1 Vslhjho/ dqg F1 Wuhvvhu/ Sk|v1 Uhy1 Ohww1 :3=5:</ 4<<6> M1 I1 Khdj|/

Q1 Sodww/ dqg V1 P1 Kdppho/ Sk|v1 Uhy1 H 7<=4473/ 4<<7> V1 F1 Yhqndwdudpdql
hw do1/ Sk|vlfd G <9=99/ 4<<91

51S1 Dvkzlq/ M1 Exhvfx/ dqg L1 Q1 Vwhzduw/ Sk|v1 Ohww1 D 4<6=459/ 4<<71
61H1 Rww dqg M1 Vrpphuhu/ Sk|v1 Ohww1 D 4;;=6</ 4<<71
71Q1 Sodww/ V1 P1 Kdppho/ dqg M1 I1 Khdj|/ Sk|v1 Uhy1 Ohww1 :5=67<;/ 4<<7> V1 F1

Yhqndwdudpdql hw do1/ Sk|v1 Uhy1 Ohww1 ::=8694/ 4<<91
81D1 �Fhq|v hw do1/ Sk|v1 Ohww1 D 546=58</ 4<<91
91I1 Uùghovshujhu/ D1 �Fhq|v/ dqg K1 Ehqqhu/ Sk|v1 Uhy1 Ohww1 :8=58<7/ 4<<8> D1

Nudzlhfnl dqg D1 Vxnlhqqlfnl/ Dfwd Sk|v1 Srorqlfd D ;;=59</ 4<<81
:1W1 Ox{ dqg P1 Pdufkhvl/ Qdwxuh 5<:=7<;/ 4<<<>
;1D1 Nudzlhfnl/ M1 D1 Kro|vw/ dqg G1 Khoelqj/ Sk|v1 Uhy1 Ohww1 ;<=48;:34/ 53351
<1O1 Vw hslh�q dqg D1 Nudzlhfnl/ Sk|v1 Vwdw1 Vrolel +e, 569=844/ 53361
431D1 Nudzlhfnl/ Lqw1 M1 Prghuq Sk|v1 F 4<=4368/ 533;1
441W1 Mrkq/ U1 Vwdqqdulxv/ dqg X1 Ehkq/ Sk|v1 Uhy1 Ohww1 ;6=:7</ 4<<<1
451G1 M1 Zdwwv dqg V1 K1 Vwurjdw}/ Qdwxuh +Orqgrq, 6<6=773/ 4<<;1
461V1 F1 Yhqndwdudpdql/ W1 P1 Dqwrqvhq Mu1/ H1 Rww/ dqg M1 F1 Vrpphuhu/ Sk|v1

Ohww1 D 53:=4:6/ 4<<8/ Sk|vlfd G <9=99/ 4<<91
471S1 Dvkzlq dqg H1 Vwrqh/ Sk|v1 Uhy1 H 89=4968/ 4<<:1
481E1 Odwdqì/ Dp1 Sv|fkro1 69=676/ 4<;4> Z1 Zhlgolfk/ Sk|v1 Uhs1 537=4/ 4<<4> G1

Khoelqj/ Txdqwlwdwlyh Vrflrg|qdplfv +Noxzhu Dfdghplf/ Gruguhfkw/ 4<<8,
491U1 Q1 Pdqwhjqd dqg K1 H1 Vwdqoh|/ Dq Lqwurgxfwlrq wr Hfrqrsk|vlfv= Fruuh0

odwlrqv dqg Frpsoh{lw| lq Ilqdqfh +Fdpeulgjh Xqlyhuvlw| Suhvv/ Fdpeulgjh/
XN/ 4<<<,> M10S1 Erxfkdxg dqg P1 Srwwhuv/ Wkhru| ri Ilqdqfldo Ulvn +Fdp0
eulgjh Xqlyhuvlw| Suhvv/ Fdpeulgjh/ XN/ 4<<<,> K1 Ohy|/ P1 Ohy|/ dqg V1
Vrorprq/ Plfurvfrslf vlpxodwlrqv ri �qdqfldo pdunhwv +Dfdghplf Suhvv/ Qhz
\run/ 5333,> M1 Yrlw/ Wkh Vwdwlvwlfdo Phfkdqlfv ri Ilqdqfldo Pdunhwv/ 5qg hg1/
+Vsulqjhu/ Khlghoehuj 5336,1
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THE PECULIARITIES OF THE CELLS METABOLISM 

DUE TO THE FLOW OF LIQUID THROW CELL 
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Abstract: A device is designed for in vitro modeling of the 

directed flow of a nutrient medium similar to the fluid flow in the 

eyeball. The primary culture of human fibroblasts was cultivated 

in the permanent directed flow of the medium for 24 and 48 h. 

Under dynamic conditions, an increase in the intracellular 

fermentative activity of cells of the fibroblastic population and the 

acceleration of the process of their differentiation into mature 

forms were observed.  
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Implementation of morphofunctional capabilities of cells 

intermediating the initiation, development, and outcome of any 

pathological process depends significantly on the modulating 

influence of microenvironment factors. In the eyeball, the 

microenvironment consists of the interacting system of anatomico-

physiological features and extrastromal regulation components. 

Anatomico-physiological features are determined by the presence 

of the directed flow of the intraocular fluid and by the fibrillar 

structure of the vitreous body. Extrastromal components are 

represented by cellular elements migrating into the vitreal cavity 

(cells of the retinal pigment epithelium, monocytes/macrophages, 

lymphocytes, etc.) and by humoral factors (cytokines, growth 

factors). Of particular interest, in our opinion, is the directed flow 

of fluid in the eyeball induced by the pressure gradient.  

The aim of this work was to study the influence of the 

directed fluid flow on the morphofunctional state of human 

fibroblasts. 
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A device has been designed for the in vitro modeling of the 

flow of a nutrient medium similar to the fluid flow in the eyeball. 

The device is a closed system with a chamber equipped with a 

semipermeable filter. The system was first filled with the nutrient 

medium with the aid of a vessel. The nutrient medium contained 

200.0 ml of the DMEM nutrient medium in the Iscove 

modification and the 4% gentamicin solution (0.02 ml gentamicin 

per 10.0 ml of the nutrient medium). For the study, we used the 

fibroblast culture of human lung after 3 to 4 passages in a 

concentration of 5⋅10
4 

cells/ml.  

The cellular material came to the chamber through a valve 

hole. The chamber was connected to the vessel containing the 

nutrient medium through a roller pump equipped with a 

maintaining valve. 

The roller pump generated the uniform directed flow of the 

nutrient medium with a rate of 2.1-2.4 mm
3
/min. The primary 

culture was incubated in the permanent flow of the nutrient 

medium under the cultivation conditions kept unchanged for 24 

and 48 h. For control purposes, fibroblasts were cultivated on a 

semipermeable filter placed in a Petri dish with the nutrient 

medium at the strict observance of temperature conditions (37° C), 

СО2 content (5-7%), and the humidity level (100%).  

The cellular material was examined by cytochemical methods.  

At the flow cultivation of fibroblasts, the following results 

were obtained. 

Twenty four hours after the beginning of the experiment, 

the cytochemical analysis revealed the moderate activity of α-

naphtylacetatesterase (22.56+/-0.90) and alkaline phosphatase 

(10.23+/-1.05) in cultivated cells. The area of the cell surface 

averaged 238.94+/-5.36. 

Forty eight hours later, the activity of the both ferments in 

the described cells increased compared to the initial indices and to 

cells cultivated under standard conditions (pZ<0.01). In this case, 

the level of α-naphtylacetatesterase was 26.98+/-0.87, while that of 

alkaline phosphatase was 14.67+/-1.21. The area of cell surface of 

fibroblasts averaged 179.43+/-7.81 (pZ<0.001). 

When fibroblasts were cultivated under standard 

(stationary) conditions, in the entire series of experiments the 
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cytochemical analysis revealed the low activity of α-

naphtylacetatesterase in cells. This activity increased gradually 

during the cultivation (pZ<0.05). No alkaline phosphatase was 

observed in cultivated cells. The area of cell surface was 307.19+/-

6.02 24 h later and 211.66+/-5.29 (pZ<0.001) 48 h later. 

The utmost discovery of the 19
th

 century – the discovery of 

a cell in a living organism – stimulated the intense study of various 

pathologies from the position of the cellular structure of organs 

and tissues. R. Virchow in his classical paper “Die cellular 

Pathologie in ihrer Begrundung auf physiologische und 

pathologische Gewebelehre”, systematizing voluminous 

experimental data, for the first time presented a complex organism 

as a system of cell or a “cell nation.”  

However, during the whole era of optical microscopy in 

morphology, a cell was thought to be a so stable component of a 

tissue and organ structure that its functional and morphological 

changes observable in an optical microscope seemed to be not 

related to the dynamics of cellular structures. The idea of a cell as 

a versatile and unchangeable unit of tissues and organs dominated. 

Only new methods of morphological investigations, first of 

all, electronic microscopy, changed radically the idea of a cell and 

dynamics of its changes. The cell culture technique, which allows 

cells to be studied in their living state, actual action, and 

interaction with the microenvironment, has helped significantly in 

the understanding of the integration and interpenetration of the 

structure and functions. Intracellular structures and biochemical 

processes occurring in them, as well as the permanent energy flow 

in a cell are in a deep and close relation with each other, and 

together they complete the integral pattern of the united structural-

functional system, namely, a cell.  

One of the main functions of the cell surface and the 

plasmatic membrane is the perception and transfer of external 

regulatory signals into a cell. Just this function is responsible, to a 

great extent, for the interaction between the function of the cell 

membrane, its permeability, and the activity of intracellular 

metabolism processes. Now a significant progress is achieved in 

the understanding of molecular mechanisms of information 

reception, processing, and transfer from the plasmalemma to 
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intracellular organelles. It is established that modulating factors of 

the extracellular medium act as exogenous regulatory signals 

contacting with receptors of the cell surface. Under the conditions 

of our experiments, the permanent directed flow of the nutrient 

medium and the extracellular matrix can be such an exogenous 

signal for fibroblasts adhesed to the filter. 

We can assume that after the interaction of the external 

signal with cell receptors, a cascade mechanism of certain 

intracellular processes is initiated. Thus, for example, changes 

occur in the structure of receptor-related membrane ferments, 

which catalyze the synthesis of endogenous regulatory molecules. 

As a result, their concentration changes, and the cell permeability 

changes too. Variations of the membrane potential also play an 

important role.  

It should be emphasized that the plasmatic membrane not only 

serves a mechanic barrier, but also regulates the consecutive 

income of substances to a cell. Diffusion into tissue complies with 

Fick's law that reads as follows: as soon as differences in 

concentration of one or another substance appear in the medium, 

there is a flux of this substance leading to decrease in its 

concentration, which is proportionate to the concentration gradient.  

This equation applies to describe movement of molecules as 

well as microparticles if their concentration is small.  

Liposoluble low-molecular substances, first of all oxygen and 

carbon dioxide – also penetrate easily through endothelial cells.  

All macromolecules, such as proteins, nucleic acids, 

polysaccharides, and lipoproteid complexes, come to a cell 

through the vesicle formation and joining process, that is, 

endocytosis. The higher is the speed of the directed fluid flow 

through a cell, the more intense is the endocytosis process, and, 

correspondingly, the greater amount of substances comes into the 

cell. This, in its turn, determines the degree of the metabolic 

activity of the cell, which is confirmed by the results of fibroblast 

cultivation under the flow conditions.  

The speed of the movement of water molecules inside the cell 

is also caused by physical forces: gradients of the osmotic and 

hydraulic pressures on the both sides of a cell. The higher the 

gradient, the faster is the intracellular motion of water molecules 
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and, correspondingly, transport vesicles, which transport 

nonliposoluble substances, moving from one compartment to 

other. 

The directed movement of transport vesicles results in the 

reconstruction of cellular compartments and the cell surface, as 

well as the retention or destruction of intercellular units. One can 

assume that the content and components of the donor compartment 

would ultimately disappear in the process of transportation and the 

donor compartment (endoplasmic reticulum in this case) would 

decrease in size, while the size of the acceptor (Golgi complex) 

would, correspondingly, increase. However, this does not occur, 

because in the cell there homeostatic mechanisms, regulating and 

maintaining the composition of every organelle, for example, with 

the aid of the membrane return mechanism. As transport vesicles 

of the endoplasmic reticulum fuse with the acceptor membranes of 

the Golgi complex, certain proteins return from the Golgi back to 

the endoplasmic reticulum. This process is known as a retrograde 

transport. In contrast to it, at the anterograde transport, proteins 

continue to move along the secretory pathway, namely, 

intercisterna coated vesicles transport them through cisternae of 

the Golgi complex. 

At the most part of the Golgi trans-network, proteins are 

sorted, and, leaving this compartment, they are distributed over 

primary lysosomes, constitutive vesicles, and secretory granules 

depending on their designation: in the plasma membrane, in the 

cell, or outside. 

In addition, from indices of intracellular metabolism, it is 

possible to judge the state of cells and the direction and intensity 

of their activity. Thus, for example, every stage of differentiation 

is intimately connected with the activation of additional ferment 

systems and the formation of new biosynthesis mechanisms. The 

data of cytochemical investigations of fibroblasts cultivated under 

the flow conditions compared to indices under the stationary 

conditions indicate that the activity of both specific (alkaline 

phosphatase) and nonspecific (α-naphtylacetatesterase) ferment 

systems increases, which is indicative of the acceleration of the 

cell differentiation process. This is confirmed by the more 

significant (compared to the stationary case) decrease in the area 
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of cell surface of fibroblasts cultivated under the flow conditions 

as a reflection of the degree of fibroblast mature. 

Thus, at the cultivation of human fibroblasts in vitro under 

the conditions of the directed nutrient flow, the increased 

intracellular fermentative activity of fibroblasts is observed. Under 

the modulating influence of microenvironment factors (directed 

fluid flow, extracellular matrix), the process of cell differentiation 

into mature forms accelerates. 

The data obtained extend the idea of the microenvironment 

influence on the morphofunctional state of cells of a fibroblast 

population and allow cellular mechanisms of development of 

fibrovascular proliferation in the eyeball to be studied from new 

positions. 
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Abstract: A relation between the optimal solution of the optimization problem and the 

stability and bifurcation properties of the corresponding dynamical system is suggested 

in this work. There exists a relation between the optimal solution of an optimization 

problem and an equilibrium point of a dynamical system. In this sense stability 

properties, Lyapunov exponents and bifurcations of the resulting dynamical systems can 

be studied.  
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1. Introduction:  
 

Shadow price is the unit change in the objective function of the optimal solution 

of an optimization problem. The shadow price is equivalent to the Lagrange 

multiplier at the optimal solution in the nonlinear scenario. It is also referred to 

as the dual variable considering the Lagrangian is the dual problem of the 

original optimization problem. The gradient of the objective function is a linear 

combination of the constraint function gradients with the weights equal to the 

Lagrange multipliers. Investigations on various linear optimization problems 

can be formulated as dynamical systems [4]. Stability analysis, Lyapunov 

exponents and bifurcation patterns of the resulting dynamical systems can be 

studied in a localized manner [2]. There is a relation between the global 

optimum value of the optimization problem to the local stability analysis of the 

corresponding dynamical system. The bifurcation properties and Lyapunov 

exponents of the corresponding dynamical system can be studied. The aim is to 

compare these invariant parameters of the dynamical systems to the shadow 

prices of the optimization problem. The motivation for this is the fact that to 

calculate a Lyapunov exponent, each dynamical variable is given a small 

variation and the corresponding hypercube is allowed to evolve in time [1]. Let 

us start by defining an optimization problem as 

 

  
 

Then the Lagrangian function is given by (in the two variable case) 
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(with obvious generalization to higher dimensions) and by solving this function 

for its saddle point we obtain the shadow prices and the maximal utility,   

,  given by the following formula: 

 

 
 

 

On the other hand, shadow prices are found by observing the change in the 

optimal solution under a similar variation on the constraint of the direct problem 

by relaxing the constraint or alternatively, varying the corresponding parameter 

of the objective function in the dual problem. The definitions for the Lyapunov 

exponents and shadow prices are thus related to a change due to a variation. The 

former is a familiar element of the theory of dynamical systems. The route to 

chaos leads to Lyapunov exponents and this work introduces a new point of 

view for shadow prices as chaos search in dynamical systems [3]. Under the 

assumption that f be differentiable and  the variational equation is: 

 

 
 

Then the Lyapunov exponent is defined to be 

 
 

A negative Lyapunov exponent indicates a stable equilibrium point and a 

positive Lyapunov exponent indicates chaos. So Lyapunov exponents are 

studied numerically to see if the given system shows chaos for certain parameter 

values. It has been proven that discrete-time dynamical systems are used in 

optimization algorithms. We also know that a discrete-time dynamical system 

can be transformed into a continuous dynamical system, i.e. system of 

differential equations by Euler’s method. Both proofs depend on Lyapunov 

stability theory. 

 

2. Optimization problem and corresponding dynamical system 
Theorem 2.1: For the optimization problem  

kk yxyxf +=),(max  

with respect to yxyxg −−= 1),(  
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3. Bifurcation analysis: 
The optimization problem discussed in the previous section can be considered as 

the corresponding dynamical system according to the Euler scheme: 

ybyaxy

xyxx kk

−−−=

−+=

1&

&
 

Investigating the bifurcation analysis of this system around the trivial 

equilibrium point, two different bifurcation patterns are achieved according to 

the value of k being odd or even. The first case where k is even (k=2,4,…) and a 

is chosen as the bifurcation indicates a limit point (LP) and a Bogdanov-Takens 

(BT) bifurcation point as given in Figure 2.1. When b is varied another case 

where a subcritical Hopf bifurcation point and a transcritical bifurcation point 

are observed as given in Figure 2.2.  The second case where k is odd (k=1,3,…) 

and a is chosen as the bifurcation indicates two limit point (LP), a Bogdanov-

Takens (BT) and a cusp (CP) bifurcation points as given in Figure 2.3. When b 

is varied another case where a subcritical Hopf bifurcation point and a 

transcritical bifurcation point are observed as given in Figure 2.4.   
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Figure 2.1. For even k (k=2,4,…) and arbitrary a 

 

 
Figure 2.2. For even k(k=2,4,…) and arbitrary b 
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Figure 2.3. For odd k  (k=3,5,…) and arbitrary a 

 

 
Figure 2.4. For odd k (k=3,5,…) and arbitrary b 

 

4. Conclusion 
The parameter b in our model indicates subcritical Hopf bifurcation for both 

even and odd cases of k. Bogdanov-Takens bifurcation is observed in all of the 

cases. Cusp bifurcation is observed for odd values of k. The higher nonlinearity 

for x and y does not affect the bifurcation phenomena. There are two different 

bifurcation patterns for odd and even values of k. Real values are taken into 

consideration in order to study real world situations. 
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Abstract: LabVIEW software is used to decode step sequences generated by Irish light 

and hard shoes and bare feet. To remove the low frequency reverberation of the floor a 

Savitzky-Golay digital filter is used to de-convolute the percussion sound of the step 

sequences. Floor types and foot apparel are compared. 
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1. Introduction 
In the last 5 years acoustic metrology [1, 2, 3 and 4] as a means of controlling an 

atmospheric pressure plasma-surface manufacturing processes has been 

developed. The origins of this metrology go back to W. Duddell’s [5] and V. 

Paulson’s [6] ionised gas sound production experiments at the turn of 19
th

 - 20
th
 

century when radio technology was in its infancy. Today’s atmospheric plasma 

metrology uses advanced digital time- and frequency-domain instrumentation 

linked to principal component analysis techniques to capture the interaction 

between the plasma and treated surface. This work extends this acoustic 

metrology into the world of solo step dance, in particular the examination and 

comparison of Irish hard shoe, Irish light shoe and bare feet. The percussion 

plates on Irish hard shoes are constructed from fibreglass or fibreglass 

composites. These are constructed in a solid piece and are fixed to the base of 

the front of the shoe with glue and to the heels with nails/screws. American tap 

shoes use plates constructed from a thin piece of steel and are loosely fixed to 

the shoe using screws. This difference in material and shoe/plate bonding results 

in a very different sound signature between the two shoe types. The Irish shoe 

gives a deep 'woody' sound when struck, while the loosely fixed steel plates of 

the American tap shoe has a hollow 'tinny' sound. The loose bonding of the 

American percussive plates result in a distinctive double tap per strike while the 

tightly adhered Irish plates result in a single tap per strike. These two distinctive 

toe and heel tap styles are universally used in record attempts in speed dancing. 

We use sound recording software that was developed to capture and analyse 

atmospheric pressure plasma acoustics. To evaluate the techniques we sample 

and compare bare feet and Irish light shoes, and Irish hard shoes striking a 

ceramic tiled floor and a wooden surface. 

277



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 2 

2. LabVIEW software 
The sound recording and deconvolution analysis used in this study uses National 

instrument LabVIEW 20011 software program running on a Dell laptop. The 

recordings where made using a standard sampling rate of 44100 S/s and a 24 Bit 

depth. Decoding of recorded time-series dance rhythms and an Irish traditional 

dance sequence, danced to the tune of ‘Abe’s axe’, a reel from Gráda's Natural 

Angle album (Compass Records), are used to demonstrate how a Savitzky-

Golay (SG) moving window digital filter [3, 6] can be used to piece-by-piece 

de-convolve the low frequency reverberation response of the floor surface 

(wood and tile) as the dancers shoes (and bare feet) strike the floor surface. The 

SG filter uses a least square minimisation operation with a polynomial function 

(m = 1). The windowing operation is expressed in the following form, where k 

is the ± sampled data points. The block diagram of the LabVIEW deconvolution 

software is shown in Fig 1. 

 

2k +1    (1) 

 

 
 

Figure 1: Block diagram of LabVIEW de-convolution software 

 

2.1 Dance shoes 
The Irish dance shoes used in this study are manufactured by Hullachan Pro. 

(Glasgow, Scotland). The Irish light shoes are the Hullachan H1 leather soled 

pumps while the Irish hard shoes are Hullachan HIJ Jig shoes with fibreglass 

composite percussion plates on the toes and polyurethane top on the heels. 

 

3. Results 
Three sets of dance recordings were made and the recordings analysed using the 

NI software program. The first and second set of recordings where taken of two 

subjects (one female and one male, having a European shoe size of 38 and 41, 

respectively) dancing to the rhythm of ‘Abe’s Axe’. In the first test the dancers 

were in bare feet and then the female dancer with Irish light shoes. Finally both 

wore the traditional Irish hard shoe. The floor surface was also changed from 

wood to ceramic tile. The sound recordings were taken at distance of 1 meter for 
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the bare feet sequence and 3 meter for the shoe recordings. The third set of 

sound recordings where taken with the dancers wearing the Irish hard shoe and 

dancing to the rhythm of an Irish traditional step dance. Again a wooden floor 

and ceramic tiled floor were used. The results of the sound measurements and 

their de-convolution are set out in sections as follows: 3.1 surveys the four 

percussive impacts to the bar using bare feet and Irish light shoes; section 3.2 

looks at the traditional Irish step dance. And section 4 provides the conclusion. 

 

3.1. Bare feet and Irish light shoes 
In this section the LabVIEW software is employed to decode a sequence of 4 

percussive impacts to the musical bar, which is repeated for 8 bars. The foot 

timing is kept by the dancer listening (through an ear piece) to the tune of 

‘Abe’s Axe’. The recording microphone is placed 1 meter in front of the dancer. 

The 4 percussive impact sequence, which is repeated 8 times, is: 

 

1 = Right Toe 

2 = Right Heel 

3 = Left Toe 

4 = Left Heel   

 

 
Figure 2: Bare foot recording and its de-convolution. Upper trace is the raw 

recording, middle the sythenic floor and lower trace depicts the step sequence. 

 

Figure 2 shows a triplet of time-base traces, for clarity each trace is offset 

from each other. The upper trace is the raw sound recording of a male dancer 

performing the percussive sequence on a wooden floor surface; the middle trace 

is the synthetic floor that is produced by the SG window of ±10 samples; and 

the lower trace is the recovered (raw - synthetic floor) step sequence. A 
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comparison of the three traces reveals that the recovered step sequence has the 

same amplitude as the raw data with an alternating high-low impulse sequence 

with a timing interval of 0.2 seconds. Given that human perception of loudness 

[8] is subjective, an objective measure would be the bandwidth of the impulse 

caused by the foot striking the floor. For this reason the acoustic signature are 

measured and used as a comparison with the hard shoe in section 3.2 Typically 

high impulses have an attack rise time of ~micro seconds, a sustain period of 

~0.01seconds and decay a time of ~0.2 seconds to the zero-crossing point 

reference line. Figure 3 shows the dance percussion analysis (decoding) of the 

recovered step sequence discussed in Figure 2. The step sequence starts with the 

strike of the right toe (1) followed by the strike of the right heel (2) which has a 

reduced applied weight signature. The sequence continues with the toe (3) and 

heel (4) of the left foot and the completion of the first bar. From here the beats 

repeat to the end of the 8 bars and then repeat for second 8 bar sequence. The 

complete double sequence reveals 2 details of the male dancer. First, the dancer 

appears to reduce his applied weight in the beats of bars: 6, 7, and 8 bar of the 

first beats sequence. Second the dancer appears to be cognisant of the upping 

and coming end of the 8
th

 bar: this is illustrated by the added etherise (weight) to 

the start of second 8 bar sequence. 

 

 
Figure 3: Decoding of the recovered male percussive impact sequence. 

 
The required SG windowing to achieve minimum noise at the zero crossing 

point and linear time progression has been performed. The results of this 

analysis as a function floor type, male and female dancer and change to Irish 

light shoe for the female dancer is tabulated in table 1. The result shows that the 

necessary window is a constant ±10 samples across the matrix. Within these 

datasets the impulses amplitudes and beat timing are also constant, apart from 
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were a momentary change in the dancer’s balance generate an increase noise 

around the beats, see figure 4. In this example the dancer establishes balance in 

the first few bars of the dance sequence. However the recaptured composure is 

not sufficient to match the rhythm displayed in figure 3. 

 

Table 1. SG window matrix for floor, sex with bare feet and soft shoe 

Dancer Wooden floor 

bare feet 

Title floor 

Bare feet 

Wooden floors 

Soft shoes 

Tile floor 

Soft shoes 

Male dancer ±10 ±10   

Female dancer ±10 ±10 ±10 ±10 

 

 

 
Figure 4: An example of dancer momentary weight imbalance. 

 

3.2. Irish traditional step dance using a hard shoe 

In this section a traditional step dance sequence is examined, again for two 

sequences. The acoustic signal is from the shoe impact on the floor producing a 

louder noise than that of the bare feet and Irish light shoe measurements, for this 

reason the microphone was placed some 3 meters away from the dancer and 

muffled. The tempo is set to produce a sequence of 8 bars two times over a 16 

bar recording period. The sequence can be broken into 64 "beats" of equal 

duration. This 64 beats can be further broken into an 8 x 8 matrix. The dance 

sequence has 6 different types of percussive impacts and therefore 6 repeating 

sounds, the letters A, B, C, D, E & F (F being a heavy strike of the foot, and the 

silent gaps are represented with the letter P. In addition, letters that are 

underscored denote the left foot and the non-underscored letters denote the right 

foot.  The full step sequence is shown in table 2. In table 2 the 2 letters F and F 

in the last line represents a double strike at the end of the first sequence. This is 
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followed by a pause of duration 3 beats before the sequence is repeated. The 

repeat sequence leads with the “A” sound, which is made with the ball of the 

left foot. The foot movements of the letters are listed as follows: 

 

Table 2. 

Line Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 
1 A B C D E P F P 

2 A B C D E P F P 

3 A B C D A B C D 

4 A B C D E P F P 

5 A B C D E P F P 

6 A B C D E P F P 

7 A B C D A B C D 

8 E P F P F P P P 

 

A = Ball of foot 

B = Forward stroke 

C = Backwards stroke 

D = Hop (landing on ball of foot)   

E = Ball of foot (similar to A but with less weight) 

F = Strike with whole foot 

 

 
Figure 5: Comparison between male and female dancer performing the 

traditional Irish step dance on ceramic tile and wooden surface. 

 

Four deconvolved acoustic time-series trace (synthetic floor removed: ±10 

samples for the wooden floor and ± 22 sample points for the ceramic tile floor) 

of the traditional Irish step dance using the heavy shoes are shown in figure 5. 
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The traces are for both the female and male dancer on the ceramic tile and 

wooden floor, respectively. Each trace has been aligned to the double strike (F, 

F) and offset from each other to provide clear viewing. The traces provide an 

illustrative view of the individual step beats and their beat timing for both the 

wooden and ceramic tile floor. Note also the silent beats, in particular the triple 

silent gap at the end step sequence which allow the final F beat to exponentially 

decay before the start of the repeat step sequence. It is clear that there is a 

difference in emphasis on particular impacts for the two dancers. The female 

applies more weight to the F parts of the dance sequence when compared to the 

A, B, C, D & E sections of her sequence. The male dancer on the other hand 

delivers less variation in applied weight throughout his sequence. The result of 

this gives the female dancer the appearance of being lighter on her feet than the 

male, while the male appears louder overall. Figure 6 gives an analysis for the 

female dancer steps. In this sequence the F beats are stronger than the A beats as 

because of the area of the foot being used. However the A beats are stronger 

than the A beats, thus revealing a slight tendency to prefer the left foot. The 

figure also provides a qualitative comparison of loudness with the bare feet 

measurements. For example the sustain periods and decay periods are: typically 

0.1 seconds and 0.5 seconds, respectively. 

 

 
Figure 6: Percussive impact analysis of the female dancer performing the 

traditional Irish step on the wooden floor. 

 

4. Conclusion 

Acoustic recordings of two solo dancers performing the dance sequence and a 

traditional Irish step dance has been performed to the rhythm of ‘Abe’s Axe’. 

Shoe type (bare feet, Irish light shoes and Irish hard shoe) and floor type 

(ceramic tile and wooden floor) have been analysed. The analytical approach 
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taken here has been to alter plasma diagnostic software that looks for periodic 

signals in stochastic noise, to that of one that subtracts low frequency 

reverberations from high frequency quasi-periodic impulses synchronised to the 

dancer’s feet impacting on a dance floor. The deconvolution of these processes 

is performed using a SG digital filter with a moving window, k = ±10 for soft 

impact (bare feet and Irish light shoes) and k = ±10 to ±22 for hard shoes. 

The deconvolution process reveals that for bare feet and Irish light shoes the 

floor type does not have significant effect in the separation of the synthetic 

floor. A SG windowing of ±10 samples provides a clear deconvolution of the 

floor. For the hard shoe the ceramic tile and wooden floor respond differently to 

the foot impact: with wooden floor reverberating like an acoustic sounding 

board. Once the deconvolution process has been performed individual dance 

sequences within a rhythm can be identified and studied, including the 

recognition of left and right individual floor impacts. These software analysis 

attributes will make it possible to determine flaws during the performance of a 

dance piece. Discrepancies on dancers timing, applied weight, and overall dance 

sequence structure will be easily determined. It will also be possible to 

determine how a dancer performs using different equipment, for example a 

different pair of dance shoes and whether one shoe type suits a dancer over 

another. The software may help manufacturers of shoes to optimise the sound 

characteristics of different materials used in the making of the percussive plates 

as well as bench marking those currently on the market. In addition to Irish step 

dance, the step sequences in other distinctive percussive dances may be 

decoded, for example, but not exclusive to: the America Tap dance, Spanish 

Flamenco and the South America Tango. 
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Abstract: This paper models an image steganography telecom system based on a Chua 

circuit chaotic noise generator. An unpredictable chaotic system based on a Master – 

Slave Chua circuit has been used as a random number generator. The whole system is 

modeled and simulated in Simulink. A continuous linear controller has been used to 

synchronize the two Chua circuits, with the same parameters at both the transmitter and 

the receiver. On the receiver side, usage of the same parameters with the Master circuit 

produce a similar chaotic signal via the Slave Chua circuit, synchronized to the Master 

by an analog controller, in order to produce the same noise (random sequence) as that of 

the Master circuit. After removing the noise from the received ciphertext, the original 

message is revealed. The proposed system presents advanced security features.  

Keywords: Chua circuit, chaotic noise generator, image steganography, Master Chua 

circuit, Slave Chua circuit, LSB steganography, simulation, continuous linear controller.   

 

1.  Introduction 
1.1  Random Number Generators  
Traditionally, cryptography has been based on the generation of random 

numbers produced by hardware (true) random or pseudo-Random Number 

Generators (RNGs). Most pseudo-RNGs (PRNGs) are not suitable for 

cryptography for several reasons. First, while most pseudo-RNGs outputs 

appear random to assorted statistical tests, they do not resist determined reverse 

engineering. Specialized statistical tests that show the random numbers not to be 

truly random exist. Second, when the state of most PRNGs has been revealed, 

all past random numbers can be retrodicted, allowing an attacker to read not 

only future messages, but also, all past ones. This is not possible with a chaotic 

number generator; thus, Chua circuits resist this type of cryptanalysis. 

Furthermore, in our approach, even if the configuration circuit is revealed, it is 

still difficult to reproduce the crypto- signal since this also depends on the initial 

conditions and the tolerance of the components. The role of the continuous 

linear controller is to compensate for the component tolerance.   
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1.2  Steganography  
Steganography is a technique for concealing data within pure or often encrypted 

or even random/ chaotic data. The data to be concealed is first encrypted and 

then used to overwrite part of a much larger block of encrypted data or  random 

data or different kinds of (usually redundant) data such as images [10, 15, 16].  

 

2.  System Overview  

 
In the proposed steganography telecom application, the message to be 

transmitted is first encrypted using chaotic noise produced by a standard Chua 

circuit [2, 4]; then, the encrypted sequence is concealed in an image using the 

LSB's method (Figure 1).   

 

 
Fig. 1. Proposed steganography telecom application  
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The input message is in ASCII format; in order to be mixed with the chaotic 

noise, it is successively converted from ASCII characters to a binary string. For 

the sake of simplicity, conversions are not shown in Fig. 1. In the receiver the 

reverse process takes place, in order to remove the secret text from the image.  

 

3.  The Chaotic True Random Number Generator   
The Chaotic True Random Number Generator (CTRNG) used by our circuit is 

based on the Standard Chua's circuit; the latter was invented back in 1983 by 

Prof. Leon O. Chua in Japan, in his effort to demonstrate chaos in an actual 

physical model and to prove that the Lorenz double-scroll attractor is chaotic [2, 

4]. The electronic circuit suits the study of chaos well because one can precisely 

control its parameters and observe the results on an oscilloscope. The circuit 

became popular because it is easy to construct, and many people have built the 

circuit using off-the-shelf electronic components. In fact, one can model the 

circuit using only resistors, capacitors, inductors, diodes and op-amps [6].  

 

 
Fig. 2. (a) Standard Chua's circuit; (b) v–i characteristic of the nonlinear device 

Source: [4].  

 

In Figure 2 VC1 and VC2  denote  the voltages across the capacitors C1 and C2, 

respectively, iL is the current through the inductor L, and gNR(VC1) is the 

nonlinear function which defines the v–i characteristic of  the  nonlinear device, 

represented by the piecewise-linear function of Fig. 2b [3]. By solving the 

above circuit we get the following differential equations (1- 4):  

 

4.  Simulink implementation   
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The whole telecom system was successfully implemented in Simulink [8]. In 

the following an overview of the system will be given; in addition, we shall 

present the implementation of some critical blocks.  

 

4.1  Simulink implementation of the whole telecom system 
The Simulink implementation of the cryptosystem was not as easy; several extra 

problems had to be solved starting from the input of the carrier image into 

Simulink; however, all problems were solved and finally the simulation works.   

The system overview is shown in Figure 3. Next the most important blocks will 

be briefly presented.   

 
Fig. 3. Stego System overview in Simulink 

 

The message to be encrypted appears on the left side (blue box with the 

indication Txt_Msg). The cover image for Transmission appears on the left side 

in the middle (yellow box named “Image for Transmission”). The Transmitter 
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occupies the top side of the diagram.   

The summation element (in green) combines the image, the text message and 

the Chua chaotic noise, all properly formatted for compatibility. The image with 

the text message and the Chua chaotic value appears in the yellow box named 

Msg_plus_Chua_plus_Image below the Transmitter Side and it is also inserted 

into the channel.   

The Chua circuits are on the top blue box with the indications Out1 and Out2 

for the Master and Slave output values respectively. The value of the continuous 

linear controller which synchronized the two Chua circuits is K=6921 as shown 

in the blue textbox (top right).  

The receiver side occupies the bottom side of the diagram. In case an 

eavesdropper subtracts the image from the received information, he will see an 

invalid message (bottom right, in magenta).   

Finally, at the bottom left side in the blue display with the indication 

Ascii_MsgOut the successfully recovered ASCII message appears.  

 

4.2  Simulink implementation of Chua's circuits Figure 4 presents the 

Simulink implementation of Chua's circuit, based on the differential equations 

presented above. The Subsystem (bottom right) represents the nonlinear device.  

 

 
 

Fig. 4. Simulink implementation of Chua's circuit  

 

4.3  Simulink implementation of the nonlinear device  
Figure 5 presents the implementation of the nonlinear device with the v-i 

characteristic shown in Fig. 2b.   
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Fig. 5. Simulink implementation of the nonlinear device  

 

5.  Synchronization of the Master and Slave Chua circuits  
5.1  The need for  Master-Slave synchronization 

Chaotic systems present an apparently infinite number of states. This 

characteristic, together with the dependence on the initial conditions as well as 

the tolerance of the Chua circuit components, make CTRNGs totally 

unpredictable and non-reproducible, hence ideal for cryptography. However, the 

receiver must be able to reproduce exactly the same chaotic noise in order to 

subtract it from the received signal (Figure 1). This becomes possible with 

synchronization between the two Chua circuits: through the use of specific 

controllers, we can guide the trajectory of chaotic systems to specific areas 

producing specific behavior. For this reason, the initial state of the Master Chua 

circuit [X0, Y0, Z0] has to be transmitted to the Slave Chua circuit via a secure 

channel (Fig. 6). In our implementation the initial conditions for the Master and 

Slave Chua circuits are: (Vc1=0, Vc2=1, IL=0) and (Vc1=0, Vc2=1.1, IL=0) 

respectively.  

During the last two decades, the chaotic synchronization problem has received a 

tremendous interest [4]. This property is supposed to have interesting 

applications in different fields, especially in private and secure communication 

systems based on cryptography. The broadband and noise-like features of 

chaotic signals are seen as possibly highly secure media for communication. 

The cryptographic communication schemes usually consist of a chaotic system 

as transmitter along with an identical chaotic system as receiver; where the 

confidential information is embedded into the transmitted chaotic signal by 

direct modulation, masking, or another technique. At the receiver end, if chaotic 

synchronization can be achieved, then it is possible to extract the hidden 

information from the transmitted signal.  
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Fig. 6. Synchronization between Master and Slave Chua circuits  

 

5.2  Master-Slave Synchronization circuit  
For the synchronization between Master and Slave Chua circuits, Pyragas' 

continuous control method has been used [1, 3, 5, 7, 9, 11-14]. This method was 

chosen because it was relatively easy to implement. The synchronization circuit 

(simplified) is shown in Fig. 7.   
 

 

Fig. 7.  Master-Slave Synchronization circuit  

 

The Master and Slave Chua's circuits along with the Synchronization device are 

placed on the top-right side of Figure 4, in a block named Chua circuit. The 

interior of this block is shown in Figure 8 [6].  
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  Fig. 8. Chua's circuits along with the synchronization device 

 

6.  Simulation results 
Initial results show that the system works successfully. Using a small text 

message and the picture shown in Figure 9 as Cover image, the system 

produced the stego image of Figure 10.  

 

 
 

Fig. 9. Cover image 

 

Figure 10 contains the ciphertext, which is also shown (in ASCII) at the top left 

column of Figure 3. In this same Figure below we can see the decrypted 

message at the receiver. An eavesdropper with sufficient information about the 

image, even connected at a sensitive point of the receiver, won't be able to 

decode the message correctly, as shown at the bottom of Figure 3.  
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Fig. 10. Stego image  

 

7.  Security features of the proposed stegosystem  
The security features of the proposed application are based on: 

� the unknown Chua’s circuit topology;  

� the varying tolerance of  components (which changes circuit behavior); 

� the unknown initial conditions;  

� the unknown type of  the controller / compensator.  

 

8.  Conclusion  

In this work we have proposed a Steganography Telecom System Based on a 

Chua Circuit Chaotic Noise Generator with advanced security features. In this 

system the text message is encrypted using a CTRNG and then the ciphertext is 

concealed in a cover image using the LSB insertion method. The system has 

been successfully simulated in Simulink and works with both grayscale and 

color images.  
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Newtonian and special-relativistic probability densities for a 

low-speed system 
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Abstract.  The Newtonian and special-relativistic predictions for the position and momentum 

probability densities of a model low-speed (i.e., much less than the speed light) dynamical 

system are compared. The Newtonian and special-relativistic probability densities, which are 

initially the same Gaussian, are calculated using an ensemble of trajectories. Contrary to 

expectation, we show that the predictions of the two theories can rapidly disagree completely. 

This surprising result raises an important fundamental question: which prediction is empirically 

correct? 

 

 

INTRODUCTION 

 

It is conventionally believed [1-3] that the predictions of special-relativistic mechanics for the 

motion of a dynamical system are well approximated by the predictions of Newtonian 

mechanics for the same parameters and initial conditions if the speed of the system v is low 

compared to the speed of light c (v << c). However, contrary to expectation, it was shown in 

recent numerical studies [4-8] that the Newtonian prediction for the trajectory of a low-speed 

dynamical system can rapidly disagree completely with the special-relativistic prediction. 

 

In this paper, we extend the studies in [4-8] from the comparison of single-trajectory predictions 

to the comparison of the probability-density predictions calculated from an ensemble of 

trajectories. The model system we study here is the periodically delta-kicked system previously 

studied in [4]. Details of the model system and the probability-density calculations are presented 

next, followed by the results and concluding remarks. 

 

MODEL SYSTEM 

 

The periodically delta-kicked system [4] is a one-dimensional Hamiltonian system where a 

particle is subjected to a sinusoidal potential that is periodically turned on for an instant. The 

Newtonian equations of motion for this system are easily integrated exactly [9,10] to yield the 

well-known standard map, which maps the dimensionless scaled position X and dimensionless 

scaled momentum P from just before the nth kick to just before the (n+1)th kick:  

)2sin(
2

11 −− −= nnn X
K

PP π
π

        (1) 

1 mod  )( 1 nnn PXX += −         (2) 

where n = 1,2,…, and K is a dimensionless positive parameter. 

 

The special-relativistic equations of motion are also easily integrated exactly, producing a 

mapping known as the relativistic standard map [11,12] for the dimensionless scaled position X 
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and dimensionless scaled momentum P from just before the nth kick to just before the (n+1)th 

kick: 

)2sin(
2

11 −− −= nnn X
K

PP π
π

        (3) 

1 mod  
1 221 








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



+
+= −

n

n
nn

P

P
XX

β
       (4) 

where n = 1,2, …, and β, like K, is a dimensionless positive parameter. 

 

The initial probability density is a Gaussian for both position and momentum with means <X0> 

and <P0>, and standard deviations σX0 and σP0: 

( ) ( )2 2

0 0 0 0

2 2

0 0 0 0

1
exp

2 2 2X P X P

X X P P

πσ σ σ σ

 − < > − < >
− − 
  

. 

In each theory, the probability density is calculated using an ensemble of trajectories, where 

each trajectory is time-evolved using the map. The probability density is first calculated using 

10
6
 trajectories, where the accuracy of the double-precision calculation is determined by 

comparison with the quadruple-precision calculation. The probability density is then 

recalculated using 10
7
 trajectories with the same accuracy determination. Finally, the accuracy 

of the probability density is determined by comparing the 10
6
-trajectories calculation with the 

10
7
-trajectories calculation. 

 

RESULTS 

 

In the example presented here, the means and standard deviations of the initially Gaussian 

probability density are <X0> = 0.5, <P0> = 99.9 and σX0 = σP0 = 10
-10

. The parameters of the 

maps are K = 0.9 and β = 10
-7

. 

 

Figures 1, 2 and 3 show that the Newtonian and special-relativistic position and momentum 

probability densities evolve approximately as Gaussians with increasing widths up to at least 

kick 114. 

 

Figure 1 shows that, for both position and momentum, the Newtonian and special-relativistic 

probability densities are still close to one another on the whole at kick 80. The centers of the 

Newtonian and special-relativistic probability densities are displaced from each other in the 

figure because of the very small scale required for the horizontal axis to see the very narrow 

densities. 

 

By kick 89, Figure 2 shows that, for both position and momentum, although the centers of the 

Newtonian and special-relativistic probability densities are still close, the Newtonian probability 

density is significantly wider and shorter than the special-relativistic probability density. 

 

At kick 114, Figure 3 shows that not only are the widths and heights of the Newtonian and 

special-relativistic probability densities completely different for both position and momentum, 

the centers of the position probability densities are also completely different. 
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In summary, the three figures show that, although the mean speed of the system remains low, 

only 0.001% the speed of light, the Newtonian position and momentum probability densities 

disagree completely with the corresponding special-relativistic probability densities from kick 

89 onwards. 

 

CONCLUDING REMARKS 

 

We have shown that, contrary to expectation, the Newtonian and special-relativistic probability-

density predictions for a low-speed dynamical system can rapidly disagree completely. 

 

Our result raises an important fundamental question: When Newtonian and special-relativistic 

mechanics predict completely different probability densities for a low-speed dynamical system, 

which of the two predictions is empirically correct? Since special relativity has survived many 

experimental tests in the high speed regime, it would be very strange indeed if the theory is 

invalid for low speed motion. If special relativity is also empirically correct at low speed as we 

expect, then it must be used, instead of the standard practice of using Newtonian theory, to 

correctly calculate the probability density for a low-speed dynamical system. 
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Figure 1. Comparison of Newtonian (grey) and special relativistic (black) position (top plot) 

and momentum (bottom plot) probability density for kick 80. 
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Figure 2. Comparison of Newtonian (grey) and special relativistic (black) position (top plot) 

and momentum (bottom plot) probability density for kick 89. 
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Figure 3. Comparison of Newtonian (grey) and special relativistic (black) position (top plot) 

and momentum (bottom plot) probability density for kick 114. 
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Abstract. The notion of dynamical traps is proposed to allow for effect caused by
the bounded capacity of human cognition in ordering events or actions according to
their preference. As a result, in the vicinity of an optimal behavior a decision-maker
has no stimulus to change his current behavior. By way of example, one dimen-
sional system of coupled oscillators with dynamical traps is studied numerically.
The model assumes the dynamical traps to form a “low” dimensional region in
the corresponding phase space where the system motion is stagnated. It is demon-
strated that the dynamical traps and possible noise individually can cause the given
system to exhibit complex dynamics and to undergo various phase transitions.
Keywords: Human behavior, Fuzzy rationality, Dynamical traps, Complex dy-
namics, Phase transitions.

1 Introduction

During the last decades there has been considerable progress in describing
social systems based on physical formalism developed in statistical physics
and applied mathematics (for a review see articles in Encyclopedia [1]). In
particle, the notion of energy and the based on it master equation were em-
ployed to simulate opinion dynamics, the dynamics of culture and languages
(e.g., [2–4]); the social force model inheriting the basic concepts from New-
tonian mechanics was used to simulate traffic flow, pedestrian motion, the
motion of bird flocks, fish schools, swarms of social insects (e.g., [2,5–7]). Con-
tinuing the list of examples, we note the application of the Lotka-Volterra
model and the related reaction-diffusion systems to stock market, income
distribution, population dynamics [8]. The replicator equations developed
initially in the theory of species evolution were applied to the moral dynam-
ics [9]. The notion of a fixed-point attractor as a stable equilibrium point in
the system dynamics that corresponds to some local minimum in a certain
potential relief, the collection of point type attractors forming a basin, the
notion of latent attractors, periodic attractors representing limit cycles, and
deterministic chaos are widely met in social psychology [10]. In addition, the
concept of synchronization of interacting oscillators was used to model social
coordination [11].
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In spite of these achievements we have to note that the mathematical the-
ory of social systems is currently at its initial stage of development. Indeed,
animate beings and objects of the inanimate world are highly different in
their basic features, in particular, such notions as willingness, learning, pre-
diction, motives for action, moral norms, personal and cultural values are just
inapplicable to inanimate objects. This enables us to pose a question as to
what individual physical notions and mathematical formalism should be de-
veloped to describe social systems in addition to the available ones inherited
from modern physics.

The present paper discusses one of such notions, namely, the fuzzy ra-
tionality [12] introduced here to describe the bounded capacity of human
cognition in evaluating events, actions, etc. according to their preference.
When, for example, two actions are close to each other in quality from the
standpoint of a person making a decision their choice may be random be-
cause he ought to consider them equivalent. The notion of dynamical traps
accounts for this feature. In particular, dealing with a dynamical system its
stationary point rst being initially stable is replaced by a certain neighbor-
hood Qtr called the dynamical trap region such that when the system goes
into Qtr its dynamics is stagnated. This mimics vain actions of an operator
in directing the system motion towards the point rst precisely. Indeed, when
the system under the operator control gets any point in Qtr the operator may
consider the current situation perfect because he just does not “see” rst and
until the system leaves Qtr he has no reason to keep the control active. The
goal of the present work is to demonstrate that the fuzzy rationality can be
responsible for complex emergent phenomena in such systems.

2 Lazy bead model

The following model captures the basic features of such human behavior.
Let us consider a chain of N “lazy” beads (Fig. 1). Each of these beads
can move in the vertical direction and its dynamics is described in terms
of the deviation xi(t) from the equilibrium position and the motion velocity
vi(t) = dxi/dt depending on time t, here the bead index i runs from 1 to
N . The equilibrium position xi = 0 is specified assuming the formal initial
(i = 0) and terminal (i = N + 1) beads to be fixed. Each bead i “wishes” to
get the “optimal” middle position with respect to its nearest neighbors. So
one of the stimuli for it to accelerate or decelerate is the difference

ηi = xi −
1

2
(xi−1 + xi+1)

provided its relative velocity

ϑi = vi −
1

2
(vi−1 + vi+1)
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equilibrium
position

Fig. 1. The chain of N beads under consideration and the structure of their indi-
vidual phase space Ri = {xi, vi} (i = 1, 2, . . . , N). The formal initial i = 0 and
terminal i = N + 1 beads are assumed to be fixed, specifying the equilibrium bead
position.

with respect to the pair of the nearest beads is sufficiently low. Otherwise,
especially if bead i is currently located near the optimal position, it has to
eliminate the relative velocity ϑi, representing the other stimulus for bead i
to change its state of motion. The model to be formulated below combines
both of these stimuli within one cumulative impetus ∝ (ηi +σϑi), where σ is
the relative weight of the second stimulus.

When, however, the relative velocity ϑi becomes less then a threshold
θ, i.e., |ϑi| . θ, bead i is not able to recognize its motion with respect
to the nearest neighbors. Since a bead cannot “predict” the dynamics of
its neighbors, it has to regard them as moving uniformly with the current
velocities. So from its standpoint, under such conditions the current situation
cannot become worse, at least, rather fast. In this case bead i just “allows”
itself to do nothing, i.e., not to change the state of motion and to retard
the correction of its relative position. This feature is the reason why such
beads are called “lazy”. Below we will use dimensionless units in which, in
particular, the perception threshold is equal to unity θ = 1.

Under these conditions the equation governing the system dynamics is
written in the following form

dvi
dt

= −Ω(ϑi)[ηi + σϑi + σ0vi] + εξi(t) . (1)

If the cofactor Ω(ϑi) were equal to unity, the given system would be no
more then a chain of beads connected by elastic springs characterized by the
friction coefficient σ. The term σ0vi with the coefficient σ0 � 1 that can
be treated as a certain viscous friction of the beads moving via a medium
into which the given system is embedded has been introduced to prevent the
beads from attaining extremely high velocities. The factor Ω(ϑi) is due to
the effect of dynamical traps and the ansatz

Ω(ϑ) =
∆+ ϑ2

1 + ϑ2
, (2)
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is used, where the parameter ∆ ∈ [0, 1] quantifies the intensity of dynamical
traps. If 4 = 1, the dynamical traps do not exist at all, in the opposite case,
4� 1, their influence is pronounced inside the neighborhood Qi

tr of the axis
vi = (vi−1+vi+1)/2 (the trap region) whose thickness is about unity (Fig. 1).
Model (1) allows for random factors in terms of white noise ξi(t) affecting
the motion of bead i with intensity ε so that

〈ξi(t)〉 = 0 and 〈ξi(t)ξi′(t′)〉 = δii′δ(t− t′) . (3)

For the terminal fixed beads, i = 0 and i = N + 1, we set

x0(t) = 0 , xN+1(t) = 0 , (4)

which play the role of the “boundary” conditions for equation (1).
It should be noted that the emergent phenomena in a similar system mim-

icking car following dynamics were considered for the first time in Refs [13,14].
In addition, the first experimental evidence of the dynamical traps caused by
the human fuzzy rationality seems to be obtained in hybrid human-computer
experiments of balancing a damped virtual stick [15].

3 Results of simulation

The dynamics of the given system was studied numerically. Initially all the
beads were located at the equilibrium positions {xi|t=0 = 0} and pertur-
bations were introduced into the system via ascribing random independent
values to their velocities. Equation (1) was integrated using the E2 high or-
der stochastic Runge-Kutta method [16]. The integration time step of 0.001
was used; the obtained results were checked to be stable with respect to de-
creasing the integration time step tenfold. The integration time was equal to
105–106, which enabled us to deal with the steady state dynamics. The other
parameters used in simulation were taken equal to ∆ = 10−3 and σ0 = 0.01.
Besides, to simply the data visualization the bead coordinates are shown with
some individual shifts, namely, xi → xi + 50 · i.

In order to analyze the dynamical trap effect on its own the noise absence
case was studied first. The system dynamics was found to depend on the
intensity of “dissipation” quantified by the parameter σ. We remind that the
parameter σ specifies the relative weight of the stimuli to take the middle
“optimal” position and to eliminate the relative velocity; the larger the pa-
rameter σ, the more significant the latter stimulus. When the parameter σ
is not too small the system tends to get the regime of regular dynamics rep-
resented by a collection of limit cycles of individual bead motion. It should
be noted that these limit cycles could be of complex form when the number
of beads is not too large, namely, N . 10 [17]. Nevertheless for systems with
large number of beads the resulting phase portrait takes a rather universal
form shown in Fig. 2(left frame). However, the “time to formation” TN ,
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Fig. 2. The characteristic phase portrait of the steady state dynamics exhibited by
systems without noise and not too weak “dissipation” (left frame). The chain of 30
beads with σ = 1 was used in constructing the shown pattern where the limit cycles
of each second bead are visualized. The right frame depicts the characteristic time
TN required for such a system to get the steady state dynamics vs the number N
of beads. The scatted points are the data obtained for each value of N on three
trials, σ = 1 was used in simulation.

i.e. the mean time required for a given bead chain to get the steady state
regular dynamics grows exponentially as the number of beads increases. For
example, for beads with σ = 1 this time can be approximated by the function

TN ≈ Tc · exp {N/Nc} with Tc ∼ 60 and Nc ∼ 13 (5)

(see Fig. 2(right frame)). On one hand, this strong dependence explains that
for chains of oscillators with not too weak “dissipation” only chaotic motion
was found when the number of beads becomes sufficiently large, N & 100
[17]. On the other hand, it enables us to pose a question about regarding the
chaotic dynamics of such systems for N →∞ as a certain phase state.

In the case of weak “dissipation” the system dynamics exhibits sharp
transition to a stable chaotic regime as the coefficient σ decreases. It is
demonstrated in Fig. 3 showing the transition from the regular dynamics
for σ = 0.1 to a chaotic motion when σ = 0.09. As seen in Fig. 3 the
chaotic portrait can be conceived of as a highly chaotic kernel surrounded by
fragments of the regular limit cycle destroyed by instability.

Noise forces these systems to undergo two phase transitions as its intensity
ε increases. The first one can be categorized as the transition from the regular
bead motion to a cooperative chaotic bead motion. The latter means that
the beads correlate substantially with one another in motion but individual
trajectories are rather irregular and the magnitude of this irregularity cannot
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Fig. 3. The phase portraits of the middle bead motion of the 5-bead chain for the
“dissipation” parameter σ taking the values 0.1 (left frame) and 0.09 (right frame).
The period of the shown limit cycle is about 200; the chaotic phase portrait was
obtained by visualizing the system motion within time interval about 5× 105.

be due to the present noise only. The second transition is determined by the
formation of highly irregular mutually independent oscillations in the bead
position. To illustrate the first phase transition Figure 4 depicts two phase
portraits of the middle bead motion for different values of ε. As seen, for
ε = 0.01 the phase portrait looks like a regular limit cycle disturbed by
small noise. In contrast, when the noise intensity increases by two times, i.e.,
ε = 0.02, the corresponding phase portrait becomes rather complex in form
and the volume of the phase space layer containing the shown trajectory as
a whole sharply grows. Exactly the two features has enabled us to classify
the found effect as a phase transitions. It should be noted, that this phase
transition from regular motion to stochastic chaos, in contrast to the second
transition to highly irregular motion, does not manifest itself in the one-
particle distributions of all the variables x, v, η, ϑ ascribed to the beads
individually, so, it could be categorized as a “weak” phase transition.

4 Conclusion

The notion of dynamical traps was introduced to describe possible effects
caused by the bounded capacity of human cognition in ordering events or
actions according to their preference. Its particular implementation is that
human beings as active elements of a certain system cannot individually
control all the governing parameters within the accuracy required for stabi-
lizing the system dynamics perfectly. Therefore one chooses a few crucial

306



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

5000 0 5000 10000
bead position

400

300

200

100

0

100

200

300

400

be
ad

 v
el

oc
ity

noise intensity ε=0.01

5000 0 5000 10000
bead position

400

300

200

100

0

100

200

300

400

be
ad

 v
el

oc
ity

noise intensity ε=0.02

Fig. 4. The phase portraits of the middle bead motion of the 30-bead chain with
σ = 1 for two values of the noise intensity ε = 0.01 and 0.02. In plotting these
portraits bead trajectories of motion during time interval about 2× 104 were used.

parameters and mainly focuses attention on them. When the equilibrium
with respect to these crucial parameters is attained the human activity slows
down, retarding in turn the system dynamics as a whole.

By way of example, we considered emergent phenomena in chains of cou-
pled oscillators with dynamical traps. The motion of oscillating particles
(beads) in the phase space {xi, vi = ẋi} is assumed to be governed by their
interaction via effective elastic springs with viscous friction outside the dy-
namical trap region Qtr. For a given bead i the dynamical trap effect is
reduced to depressing its interaction with the nearest neighbors i − 1 and
i + 1 as the relative velocity ϑi = vi − (vi−1 + vi+1)/2 becomes small in
comparison with some threshold. The introduction of additive white noise of
intensity ε allows for possible uncontrollable factors also affecting the bead
motion.

This system was studied numerically. As demonstrated, without noise the
system dynamics tends to the regime of regular bead motion if the friction
coefficient is not too small. However, the characteristic time required for a
given system to get this regime grows exponentially with the number N of
beads. It enables us to pose a question about regarding the chaotic transient
processes as a certain phase state in the limit N →∞. When the friction co-
efficient becomes sufficiently small the steady state dynamics of such systems
can undergo transition to chaotic bead motion even for chains with small
number of beads. Depending on its intensity noise can induce the formation
of three characteristic phases, highly irregular individual oscillations of the
beads, the cooperative chaotic bead motion, and the synchronized regular
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bead motion. It should be noted that the transition between the regimes of
regular and cooperative chaotic bead motion manifests itself only the sharp
growth of the volume of the phase space layer containing the bead trajecto-
ries, whereas all the one-particle distribution functions does not change their
forms remarkably.
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