
 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

Chaotic Attractors of Control Systems

David N. Cheban1 and Cristiana Mammana2

1 State University of Moldova, str. A. Mattevich 60 , MD-2009,
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Abstract. The paper is dedicated to the study of the problem of existence of
chaotic attractors of discrete control systems and to description of its structure.
We consider a family of continuous mappings of metric space W into itself, and
(W, fi)i∈I is the family of discrete dynamical systems. On the metric space W we
consider a discrete inclusion

ut+1 ∈ F(ut)

associated by M := {fi : i ∈ I}, where F(u) = {f(u) : f ∈ M} for all u ∈ W. If
the family M consists of a finite number of maps, then the corresponding attractor
is chaotic. We study this problem in the framework of non-autonomous dynamical
systems (cocyles).
Keywords: Chaotic attractor; set-valued dynamical system; control system, col-
lage, cocycle.

1 Introduction

The aim of this paper is the study of the problem of existence of compact
global chaotic attractors of discrete control systems (see, for example, Cheban
[4,5] Bobylev, Emel’yanov and Korovin [2] and the references therein). Let
W be a metric space, M := {fi : i ∈ I} be a family of continuous mappings
of W into itself and (W, fi)i∈I be the family of discrete dynamical systems,
where (W, f) is a discrete dynamical system generated by positive powers of
continuous map f : W → W . On the space W we consider a discrete inclusion
ut+1 ∈ F (ut) associated by M := {fi : i ∈ I} (denotation DI(M)), where
F (u) = {f(u) : f ∈M} for all u ∈ W.

A solution of the discrete inclusion DI(M) is called (see, for example,
[2,7]) a sequence {{xj} | j ≥ 0} ⊂ W such that

xj = fij xj−1 (1)

for some fij ∈M (trajectory of DI(M)).
We can consider that it is a discrete control problem, where at each mo-

ment of the time j we can apply a control from the set M, and DI(M) is
the set of possible trajectories of the system.
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The problem of existence of compact global attractors for a discrete in-
clusion arise in a number of different areas of mathematics (see, for example,
[5,6] and the references therein).

A sequence ω : Z+ 7→ {1, 2, . . . , m} is called p ∈ N := {1, 2, . . .} periodic,
if ω(n + p) = ω(n) for all n ∈ Z+.

A point x0 ∈ W is said to p-periodic for DI(M) if there exists an p-
periodic sequence ω : Z+ 7→ {1, 2, . . . , m} such that solution {x(k)}k∈Z+ of
equation (1) (ω(i) = ij for all i ∈ Z and ij ∈ {1, 2, . . . , m}) with initial data
x(0) = x0 is mp-periodic, i.e., x(k + p) = x(k) for all k ∈ Z+.

It is well known the following result.

Theorem 1. [1, Ch.II,IV] Let M = {f1, f2, . . . , fm} be a finite family of
continuous mappings from W into itself. If there exists a number q ∈ (0, 1)
such that ρ(fi(x1), fi(x2)) ≤ qρ(x1, x2) for all x1, x2 ∈ W and i ∈ {1, 2, . . . , m},
then the following statement hold:

1. DI(M) admits a compact global attractor I, i.e.,
(a) I is a nonempty, compact and invariant set (F (I) = I, where F (x) :=

{f1(x), f2(x), . . . , fm(x)) for all x ∈ W and F (I) :=
⋃{F (x) : x ∈

I});
(b) lim

n→∞
β(Fn(x), I) = 0 for all x ∈ W uniformly with respect to x

on every compact subset M from W , where β(A,B) := sup
a∈B

ρ(a,B)

(A,B ⊆ W ).
2. I coincides with the closure of the all periodic points of DI(M).

In the book [5] (Chapter VI) it was generalized this theorem for the finite
family M = {f1, f2, . . . , fm} when it is contracting in the generalized sense,
i.e., there are two positive numbers N and q ∈ (0, 1) such that

ρ(finfin−1 . . . fi1(x1), finfin−1 . . . fi1(x2)) ≤ N qnρ(x1, x2) (2)

for all x1, x2 ∈ W and n ∈ N , where i1, i2, . . . , in ∈ {1, 2, . . . , m}.

2 Some Notions and Facts from Dynamical and
Control Systems

In this paper we will use some notions and facts from the theory of dynamical
and control systems [5]. In this Section we collect some of them.

2.1 Set-valued dynamical systems and their compact global
attractors

Let (X, ρ) be a complete metric space, S be a group of real (R) or integer
(Z) numbers, T (S+ ⊆ T ) be a semi-group of additive group S. By C(X) we
denote the family of all non-empty compact subsets of X. For every point
x ∈ X and number t ∈ T we put in correspondence a closed compact subset
π(t, x) ∈ C(X). So, if π(P, A) =

⋃{π(t, x) : t ∈ P, x ∈ A}(P ⊆ T ), then
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1. π(0, x) = x for all x ∈ X ;
2. π(t2, π(t1, x)) = π(t1 + t2, x) for all x ∈ X;
3. lim

x→x0,t→t0
β(π(t, x), π(t0, x0)) = 0 for all x0 ∈ X and t0 ∈ T , where

β(A,B) = sup{ρ(a,B) : a ∈ A} is a semi-deviation of the set A ⊆ X
from the set B ⊆ X.

In this case it is said [11] that there is defined a set-valued semi-group
dynamical system.

Let T ⊂ T ′ ⊂ S. A continuous mapping γx : T ′ → X is called a motion
of the set-valued dynamical system (X, T, π) issuing from the point x ∈ X at
the initial moment t = 0 and defined on T ′, if

a. γx(0) = x;
b. γx(t2) ∈ π(t2 − t1, γx(t1)) for all t1, t2 ∈ T ′ (t2 > t1).

The set of all motions of (X,T, π), passing through the point x at the
initial moment t = 0 is denoted by Fx(π) and F(π) :=

⋃{Fx(π) | x ∈ X}
(or simply F).

The trajectory γ ∈ F(π) defined on S is called a full (entire) trajectory
of the dynamical system (X,T, π).

Denote by Φ(π) the set of all full trajectories of the dynamical system
(X, T, π) and Φx(π) := Fx(π)

⋂
Φ(π).

A system (X, T, π) is called [3],[5] compactly dissipative, if there exists a
nonempty compact K ⊆ X such that

lim
t→+∞

β(πtM, K) = 0;

for all M ∈ C(X).
Let (X, T, π) be compactly dissipative and K be a compact set attracting

every compact subset of X. Let us set

J := ω(K) :=
⋂

t≥0

⋃

τ≥t

πτK. (3)

It can be shown [3],[5] that the set J defined by equality (3) does not
depend on the choice of the attractor K, but it is characterized only by
the properties of the dynamical system (X,T, π) itself. The set J is called
Levinson center of the compact dissipative dynamical system (X, T, π).

2.2 Discrete inclusions, ensemble of dynamical systems (collages)
and cocycles

Let W be a topological space. Denote by C(W,W ) the space of all continuous
operators f : W → W equipped with the compact-open topology. Consider
a set of operators M⊆ C(W,W ) and, respectively, an ensemble (collage) of
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discrete dynamical systems (W, f)f∈M ((W, f) is a discrete dynamical system
generated by positive powers of map f).

A discrete inclusion DI(M) is called (see, for example, [2,7]) a set of all
sequences {xj} ⊂ W (j ∈ Z+) such that

xj = fij
xj−1 (4)

for some fij ∈M (trajectory of DI(M)).
A bilateral sequence {xj} ⊂ W (j ∈ Z) is called a full trajectory of

DI(M) (entire trajectory or trajectory on Z), if xn+j = fij
xn+j−1 for all

n ∈ Z.
Let us consider the set-valued function F : W → C(W ) defined by the

equality F(x) := {f(x) |f ∈ M}. Then the discrete inclusion DI(M) is
equivalent to the difference inclusion

xj ∈ F(xj−1). (5)

Denote by Fx0 the set of all trajectories of discrete inclusion (5) (or
DI(M)) issuing from the point x0 ∈ W and F :=

⋃{Fx0 | x0 ∈ W}.
Below we will give a new approach concerning the study of discrete inclu-

sions DI(M) (or difference inclusion (5)). Denote by C(Z+, W ) the space of
all continuous mappings f : Z+ → W equipped with the compact-open topol-
ogy. Denote by (C(Z+, X), Z+, σ) a dynamical system of translations (shifts
dynamical system or dynamical system of Bebutov [9,10]) on C(Z+,W ), i.e.
σ(k, f) := fk and fk is a k ∈ Z+ shift of f (i.e., fk(n) := f(n + k) for all
n ∈ Z+).

We may now rewrite equation (4) in the following way:

xj+1 = ω(j)xj , (ω ∈ Ω := C(Z+,M)) (6)

where ω ∈ Ω is the operator-function defined by the equality ω(j) := fij+1

for all j ∈ Z+. We denote by ϕ(n, x0, ω) the solution of equation (6) issuing
from the point x0 ∈ E at the initial moment n = 0. Note that Fx0 =
{ϕ(·, x0, ω) | ω ∈ Ω} and F = {ϕ(·, x0, ω) | x0 ∈ W,ω ∈ Ω}, i.e., DI(M) (or
inclusion (5)) is equivalent to the family of non-autonomous equations (6)
(ω ∈ Ω).

From the general properties of difference equations it follows that the
mapping ϕ : Z+ ×W ×Ω → W satisfies the following conditions:

1. ϕ(0, x0, ω) = x0 for all (x0, ω) ∈ W ×Ω;
2. ϕ(n + τ, x0, ω) = ϕ(n, ϕ(τ, x0, ω), σ(τ, ω)) for all n, τ ∈ Z+ and (x0, ω) ∈

W ×Ω;
3. the mapping ϕ is continuous;
4. for any n, τ ∈ Z+ and ω1, ω2 ∈ Ω there exists ω3 ∈ Ω such that

U(n, ω2)U(τ, ω1) = U(n + τ, ω3), (7)

where ω ∈ Ω, U(n, ω) := ϕ(n, ·, ω) =
∏n

k=0 ω(k), ω(k) := fik
(k =

0, 1, . . . , n) and fi0 := IdW .
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Let T1 ⊆ T2 be two sub-semigroups of group S, X, Y be two metric (or
topological) spaces and (X,T1, π) (respectively (Y, T2, σ)) be a semigroup dy-
namical system on X (respectively on Y ). A triplet 〈(X,T1, π), (Y, T2, σ), h〉
is called a non-autonomous dynamical system, where h : X → Y is a homo-
morphism from (X,T1, π) onto (Y, T2, σ), i.e., h(π(t, x)) = σ(t, h(x)) for all
x ∈ X and t ∈ T1.

Let W,Ω be two topological spaces and (Ω,T2, σ) be a semi-group dy-
namical system on Ω.

Recall [9] that a triplet 〈W,ϕ, (Ω, T2, σ)〉 (or briefly ϕ) is called a cocycle
over (Ω,T2, σ) with the fiber W , if ϕ is a mapping from T1 ×W × Ω to W
satisfying the following conditions:

1. ϕ(0, x, ω) = x for all (x, ω) ∈ W ×Ω;
2. ϕ(t+τ, x, ω) = ϕ(t, ϕ(τ, x, ω), σ(τ, ω)) for all t, τ ∈ T1 and (x, ω) ∈ W×Ω;
3. the mapping ϕ is continuous.

Let X := W×Ω, and define the mapping π : X×T1 → X by the equality:
π((u, ω), t) := (ϕ(t, u, ω), σ(t, ω)) (i.e., π = (ϕ, σ)). Then it is easy to check
that (X, T1, π) is a dynamical system on X, which is called a skew-product
dynamical system [9]; but h = pr2 : X → Ω is a homomorphism of (X, T1, π)
onto (Ω,T2, σ) and hence 〈(X, T1, π), (Ω,T2, σ), h〉 is a non-autonomous dy-
namical system.

From the presented above it follows that every DI(M) (respectively, in-
clusion (5)) in a natural way generates a cocycle 〈W,ϕ, (Ω, Z+, σ)〉, where
Ω = C(Z+,M), (Ω,Z+, σ) is a dynamical system of shifts on Ω and ϕ(n, x, ω)
is the solution of equation (6) issuing from the point x ∈ W at the initial
moment n = 0. Thus, we can study inclusion (5) (respectively, DI(M)) in
the framework of the theory of cocycles with discrete time.

Below we need the following result.

Theorem 2. [6] LetM be a compact subset of C(W,W ) and 〈W,φ, (Ω, Z+, σ)〉
be a cocycle generated by DI(M). Then

1. Ω = Per(σ), where Per(σ) is the set of all periodic points of (Ω,Z+, σ)
(i.e. ω ∈ Per(σ), if there exists τ ∈ N such that σ(τ, ω) = ω);

2. the set Ω is compact;
3. Ω is invariant, i.e., σtΩ = Ω for all t ∈ Z+;
4. ϕ satisfies the condition (7).

3 Chaotic attractors of discrete control systems

In Section 3 we give the conditions of existence of chaotic attractor for discrete
control systems.

Denote by A the set of all mapping ψ : Z+ × R+ 7→ R+ possessing the
following properties:
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(G1) ψ is continuous;
(G2) there exists a positive number t0 such that:

(a) ψ(t0, r) < r for all r > 0;
(b) the mapping ψ(t0, ·) : R+ 7→ R+ is monotone increasing.

(G3) ψ(t + τ, r) ≤ ψ(t, ψ(τ, r)) for all t, τ ∈ Z+ and r ∈ R+.

Remark 1. 1. Note that the functions ψ(t, r) = N qtr (N > 0 and q ∈ (0, 1))
and ψ(t, r) = r

1+rt belong to A, where (t, r) ∈ Z+ ×R+.
2. Let f : R+ be a continuous function satisfying the conditions:

1. f(r) < r for all r > 0;
2. f is monotone increasing.

Then the mapping ψ : Z+ ×R+ 7→ R+ defined by equality

ψ(t, r) = x(t) (8)

for all (t, r) ∈ Z+×R+, where x(t) is a unique solution of difference equation
xt+1 = f(xt) with initial data x0 = r, belongs to A.

Let ψ ∈ A. A set M of operators from C(W,W ) is said to be ψ-
contracting, if

ρ(fitfit−1 . . . fi1(x1), fitfit−1 . . . fi1(x2)) ≤ ψ(t, ρ(x1, x2)) (9)

for all x1, x2 ∈ W and t ∈ N , where fi1 , fi2 , . . . , fit ∈ C(W ) and i1, i2, . . . , it ∈
N .

The set S ⊂ W is

1. nowhere dense, provided the interior of the closure of S is empty set,
int(cl(S)) = ∅;

2. totally disconnected, provided the connected components are single points;
3. perfect, provided it is closed and every point p ∈ S is the limit of points

qn ∈ S with qn 6= p.

The set S ⊂ W is called a Cantor set, provided it is totally disconnected,
perfect and compact.

The subset M of (X, T, π) is called (see, for example, [8]) chaotic, if the
following conditions hold:

1. the set M is transitive, i.e. there exists a point x0 ∈ X such that M =
H(x0) := {π(t, x0) : t ∈ T};

2. M = Per(π), where Per(π) is the set of all periodic points of (X, T, π).

Recall that a point x ∈ X of the dynamical system (X, T, π) is called
Poisson’s stable, if x belongs to its ω-limit set ωx :=

⋂
t≥0

⋃
τ≥t π(τ, x).

Theorem 3. Suppose that the following conditions are fulfilled:
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a. M is a finite subset of C(W,W ), i.e., M := {f1, f2, . . . , fm} and m ≥ 2;
b. M is ψ-contracting for some ψ ∈ A.

Then the following statement hold:

1. the cocycle 〈W,ϕ, (Ω, Z+, σ)〉 (Ω := C(Z+,M)) generated by DI(M) is
compactly dissipative;

2. the skew-product dynamical system (X,Z+, π) generated by DI(M) is
compactly dissipative;

3. I = Per(ϕ), where Per(ϕ) := {u ∈ W : ∃τ ∈ N and ω ∈ Ω such that
σ(τ, ω) = ω and ϕ(τ, u, ω) = u};

4. if every map f ∈M is invertible, then
1. Levinson’s center J of the skew-product dynamical system (X, Z+, π)

is a chaotic Cantor set;
2. there exists a residual subset J0 ⊆ J (large in the sense of Baire cat-

egory), consisting from Poisson’s stable points, such that the positive
semi-trajectory of every point x0 ∈ J0 is dense on J ;

3. I = pr1(J) (pr1 : X → Ω, where I is the Levinson’s center of cocycle
ϕ and X := W ×Ω), i.e., I is a continuous image of the Cantor set
J .

Proof. Let Y = Ω := C(Z+, Q) and (Y,Z+, σ) be a semi-group dynamical
system of shifts on Y . Then Y is compact. By Theorem 2, Per(σ) = Ω and
Ω is compact and invariant.

Let 〈W,ϕ, (Ω,Z+, σ)〉 be a cocycle generated by DI(M) (i.e., ϕ(n, u, ω) :=
U(n, ω)u, where U(n, ω) =

∏n
k=0 ω(k) (ω ∈ Ω)), (X, Z+, π) be a skew-

product system associated by the cocycle ϕ (i.e., X := W×Ω and π := (ϕ, σ))
and 〈(X,Z+, π), (Y,Z+, σ), h〉 (h := pr2 : X → Y ) be a non-autonomous dy-
namical system generated by cocycle ϕ. Under the conditions of Theorem 2
we have

ρ(ϕ(n, u1, ω), ϕ(n, u2, ω)) ≤ ψ(n, ρ(u1, u2)) (10)

for all n ∈ Z+, u1, u2 ∈ W and ω ∈ Ω. Now to finish the proof of the
theorem it is sufficient to apply Theorem 6.1.3 [5, Ch.VI] and Theorem 2
to the non-autonomous dynamical system 〈(X,Z+, π), (Ω, Z+, σ), h〉 and de-
note by Iω := pr1(Jω), where J is Levinson center of the dynamical system
(X, Z+, π), Jω := J

⋂
h−1(ω) and h := pr2.

Let M ⊂ C(W ), 〈W,ϕ, (Ω, Z+, π)〉 (respectively (X, Z+, π) ) be a cocy-
cle (a skew-product dynamical system) generated by DI(M) and let I (J)
be Levinson center of the cocycle ϕ (respectively, skew-product dynamical
system (X, Z+, π)).

The set I is said to be a chaotic attractor of DI(M), if

1. the set J is chaotic, i.e. J is transitive and J = Per(σ), where J is
the Levinson center of the skew-product dynamical system (X, Z+, π)
generated by DI(M);
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2. I = pr1(J).

Remark 2. 1. Theorem 3 it was proved in [6] for the special case, when
ψ(t, r) = N qt ((t, r) ∈ Z+ ×R+, N > 0 and q ∈ (0, 1)).

2. The problem of the existence of compact global attractors for DI(M)
with finite M (collage or iterated function system (IFS)) was studied before
in works [1,2] (see also the bibliography therein). In [1,2] the statement close
to Theorem 3 was proved. Namely:

1. in [1] it was announced the first and proved the second statement of
Theorem 3, if ψ(t, r) = qtr (t ∈ Z+ and q ∈ (0, 1));

2. in [2] they considered the case when W is a compact metric space and
every map f ∈ M = {f1, f2, . . . , fm} (i = 1, . . . ,m) is contracting (not
obligatory invertible). For this type of DI(M) it was proved the existence
of a compact global attractor A such that for all u ∈ A and almost all
ω ∈ Ω (with respect to certain measure on Ω) the trajectory ϕ(n, u, ω) =
U(n, ω)u (U(n, ω) :=

∏n
k=0 fik

, (ik ∈ {1, . . . , m}) and fi0 := IdW ) was
dense in A.

The problem of description of the structure of the attractor I of DI(M) in
general case (when the maps f ∈M are not invertible) is more complicated.
We plan to study this problem in one of our next publication.
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Abstract. Viterbi decoder is commonly utilized in digital communication because
of its effectiveness in error correction. In this paper, we implement Viterbi algorithm
based on Cellular Neural Network (CNN) in which cells play roles as nodes in the
trellis diagram. The simulation and realization of CNN–based Viterbi decoder
show the feasibility and the accuracy of our approach. Moreover, our results are
compared with ones of current FPGA–based Viterbi decoders.
Keywords: Viterbi decoder, Cellular Neural Network, Field Programmable Gate
Array.

1 Introduction

Digital communication systems have been widely used because of their better
features comparing to analog ones Viterbi and Omura[1]. Generally, quality
of digital system is estimated by the bit error rate (BER). Due to the channel
impairment as noise and fading, channel coding is required to improve per-
formance of digital signal. There are two common types of channel coding:
block coding and convolutional coding. Different from block coding, convolu-
tional coding can be utilized for both block of data and data stream. Hence,
convolutional coding has been applied to amount of practical applications,
especially in wireless communication.

An effective decoding algorithm for convolutional coding was proposed
by Viterbi Viterbi[2]. Viterbi algorithm reduced the computational load by
taking advantage of the special structure of the trellis, was therefore realized
by an application–specific integrated circuit Dawid et al.[3]. Applying the
Cellular Neural Network (CNN) to the Viterbi decoder is another approach
for achieving full parallelism Kim et al.[4]. Kim et al. proposed a decod-
ing structure with a circularly connected CNN cell array for a fully parallel
Viterbi decoder. This structure, corresponding to CNN analog processing
array, had specific features as lower power consumption, no path memory
requirement and no trace–back requirement.
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With the developing of electronic design automatic tools, Viterbi decoder
is possible to be synthesized on an Field Programmable Gate Array (FPGA)
chip Yeh et al.[5], Hema et al.[6]. Viterbi decoders have designed by different
hardware description languages such as VHDL Zengliang et al.[7] or Verilog
Kavinilavu et al.[8]. In addition, the principal parameters of decoders can
vary for diverse applications, for example general wireless communication Ali
et al.[9], Wong et al.[10]. However, these FPGA–based Viterbi decoders are
always required memories to store the metric and previous state information.
Therefore, parallel computing ability of decoder is reduced significantly. In
this paper, different from conventional Viterbi decoders, we introduce the
CNN–based Viterbi decoding which is expected to implement effectively on
FPGA platform.

The paper is structured as follows. Viterbi decoding algorithm is reviewed
in the next Section while our CNN–based architecture for Viterbi decoder is
introduced in Section 3. Section 4 presents obtained results. Finally some
conclusions are given in the last Section.

2 Viterbi decoding algorithm

In order to understand the Viterbi algorithm, we consider firstly the oper-
ation of a convolutional encoder. A convolutional code is described by two
parameters R and K, the code rate and the constraint length, respectively.
Fig. 1 illustrates a convolutional encoder with R = 1/2 and K = 3. The
encoder consists of 2–stages shift register and three modulo–2 adders. Two
bit stream outputs are created when one bit stream input is applied.

Another way to represent a convolutional encoder is with a state diagram
as shown in Fig. 2 where the states of register are noted as 00, 01, 10, and
11. There are two transitions from each state, corresponding to zero input bit
(dashed path) and one input bit (solid path). Notice that the output word
is written next to each path between two states.

Viterbi algorithm bases on trellis diagram for decoding as shown in Fig.
3. The algorithm calculates Hamming distances of paths entering each state
node and chooses the path with smallest distance. On the other word, Viterbi
algorithm performs minimum distance metric Kim et al.[4] as follows

Di,j = min {Dk,l + dij,kl, (k, l) ∈ S} , (1)

where Di,j , Dk,l and dij,kl are the accumulated minimum distance metric
at node (i, j), the minimum total distance metric from the start node to
the node (k, l) and the distance metric for a data bit assigned on the path
between the two nodes (i, j) and (k, l), respectively. S is the set of the nodes
in the neighbour of the node (i, j).

A hardware realization of Viterbi decoder [11] as presented in Fig. 4
is often includes: branch metric unit (BMU), add compare and select unit
(ACS), trace back unit (TBU), bit error rate monitor (BER), memory (MEM)
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Fig. 1. Convolutional encoder with R = 1/2 and K = 3.
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input: 1

input: 0

Fig. 2. Encoder state diagram with R = 1/2 and K = 3.

and memory management unit (MMU). MEM stores the accumulated met-
ric and the previous state information while MMU generates addresses and
read/write signals for MEM during different phases of operation. It is signif-
icant that the store requirement of Viterbi decoder increases exponentially
with parameter K Sklar[12] as given by

u = h2K−1, (2)

where u is the amount of path storage and h is the length of the information
bit path history per stage. A novel structure of Viterbi encoder based on
CNN is expected to solve this problem.

3 CNN–based architecture for Viterbi decoding
algorithm

CNN has introduced by Chua and Yang[13], [14] in which cells are connected
directly to nearest neighbours. In addition, because each cell is consisted of
a capacitor, resistors and voltage–controlled current, CNN has been imple-
mented successfully through VLSI process Roska and Chua[15]. Applications
of CNN have been reported in a considerable amount of fields such as image
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Fig. 3. Decoder trellis diagram with R = 1/2 and K = 3.

BMU ACS TBU

BER

MEMMMU

din dout

BER

Fig. 4. Block diagram of a classical Viterbi decoder.

processing, solving partial differential equation Chua and Yang[13], mod-
elling complex system Arena et al.[16] or realizing FFT/IFFT algorithm Le
et al.[17].

CNN is suitable for real–time parallel signal processing, thus CNN is
possible in convolutional decoding. By employing CNN cells at nodes on the
trellis diagram, a circularly connected two–dimensional analog CNN enabled
very high performance Viterbi decoder Kim et al.[4]. In this part, we present
a novel CNN structure for Viterbi decoding algorithm as in Fig. 5. Each cell
communicates with two cells at the left–hand side and two cells at the right–
hand side. This structure is similar to the trellis diagram where there are two
paths entering each state. Cell (i, j) (see Fig. 6) calculates the accumulate
minimum distance metric Pmi,j of distance metrics received from left–hand
side cells Pmk,l and the distance metric at the cell Dmi,j

Pmi,j = min{Pmk,l + Dmi,j}. (3)

Thus, from Eq. (1) and Eq. (3) it can be proved that the new CNN structure
can implement Viterbi algorithm.
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Fig. 5. Modified CNN model which is similar to a trellis diagram.
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Fig. 6. Detail connections of cells in the modified CNN.

4 Implementation results

Firstly basic cell is designed in Matlab/Simulink as illustrated in the Fig.
7. Here accumulation distance metric is calculated and is transmitted to
the next right–hand side cells. Moreover the cell also corrects output bits.
After constructing basic cells, they are connected together to create a com-
plete Viterbi decoder. The simulation results show the correction of Viterbi
decoder.

Using the hardware description language VHDL, CNN–based Viterbi de-
coder is implemented on EP2C35F672C6 FPGA chip. Detail of basic cell
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Table 1. Utilized FPGA resources for realization of CNN–based Viterbi decoder

FPGA Components Utilized

Total logic elements 2%

Total registers 23

Total memory bits 0%

Table 2. Comparison with different architectures

R K Memory

This work 1/2 3 no

Zengliang et al. [7] 1/2 5 yes

Kavinilavu et al. [8] 1/2 7 yes

Wong et al .[10] 1/2 3 yes

Fig. 7. Detail of a basic cell constructed in Matlab/Simulink.

is displayed in Fig. 8 by Register–Transfer Level (RTL) Viewer tool. Table
1 presents the resource utilization of our design. Note that no memory re-
quirement is obtained in this case. From the simulation of the decoder by
Quartus II software as in Fig. 9, it is obvious that it takes two clock durations
to complete the calculation.

The comparison of our work and other implementations is summarized in
Table 2. Obviously, our architecture has the advanced features comparing to
conventional others because of non–memory necessity.

5 Conclusion

In this paper, we propose a new architecture of Viterbi decoder based on
CNN. Unlike current Viterbi decoders, our architecture does not require
memories, the vital factor reduces the calculating rate. As the result our
CNN–based Viterbi decoder could be implemented easily on programmable
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Fig. 8. RTL representation of a basic cell synthesised on FPGA.

Fig. 9. Simulation of the CNN–based Viterbi decoder which is implemented by
VHDL.

devices. The new Viterbi decoder has been shown to be able to implement
in FPGA chip of Altera. Although the parameters of the decoder are cho-
sen relatively small R = 1/2 and K = 3, they could be modified to support
diverse applications in communication.
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Abstract: In the paper we focused on a general model for the growth of a single-species 

population with non-overlapping generations. The data we have used correspond to 

Nicholson’s blow-flies population and lie in the chaotic regime. The population was 

divided in two groups. If these groups evolve in distinct locations, their behavior is 

chaotic and, after a few generations, the initial small difference in number of individuals 

becomes big enough and behaves randomly. The question I want to answer in the paper 

is: What happens with the two populations if the individuals can migrate in both 

directions within the time intervals between their reproduction and death? The effect of 

coupling the two groups consisted in a rich dynamic behavior depending on the coupling 

strength. It was found that there is a consistent region where the coupling brings out the 

full synchronization of the two chaotic systems, two transition regions where an 

intermittent behavior was observed and two peripheral regions where control of chaos is 

shown to coexist with quasi-periodic and chaotic regimes. 

Keywords: Single-species populations, Synchronization, Intermittent chaos, Control of 

chaos.  

 

1. Introduction 
According to May [1], models for population growth in a limited environment 

are based on two fundamental premises: a) the populations have the potential to 

increase exponentially; b) there is a density-dependent feedback that 

progressively reduces the actual rate of increase. By using a variety of data from 

field and laboratory populations, some researchers have proposed continuous or 

discrete models of population growth. The most known of these models is the 

logistic equation (Verhulst, 1838). Other simple models were introduced by 

May (1974), Li & Yorke (1975), May & Oster (1976), and Hassel et al (1976). 

Their models, which refer to single-species population with discrete, non-

overlapping generation, predict that most of the populations show monotonic 

damping back to an equilibrium following a disturbance, with some exceptions 

of oscillatory damping or some sort of low-order limit cycles. They concluded 

that high-order limit cycles and chaos appear to be relatively rare phenomena in 

naturally occurring single-species populations. Guckenheimer et al (1987) have 

found that more realistic models of population growth, such as these that include 

overlapping generations, are more likely to exhibit complex behaviors. If data 

from laboratory population are used, even for these simple models, it was found 

that some populations will not exhibit stable equilibrium points but stable cycles 

or chaotic behavior [2]. That is because the laboratory situation (homogeneous 

environment, constant food supply, no competitors, no predators) make possible 
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an exaggerated non-linear behavior. In this paper we focused on a general model 

for growth of a single-species population with non-overlapping generations, 

namely 

                       ( ) ( ) b

tttt NaNNfN
−

+ +== 11 λ                                  (1) 

 

where tN and 1+tN  are the populations in successive generations, λ is the finite 

rate of increase and a, b are constant defining the density-dependent feedback 

term. The values for parameters correspond to Nicholson’s blowflies and lie in 

the chaotic regime [3].  

The population of blowflies was divided in two groups. If these groups evolve 

in distinct locations their behavior is chaotic and, after a few generations, the 

initial small difference in number of individuals becomes big enough and 

behaves randomly. The question I want to answer in the paper is: What happens 

with the two populations if the individuals can migrate in both directions within 

the time intervals between their reproduction and death? 
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Fig. 1. Divergence of the two isolated populations versus time 

 

2. The Model of Two-coupled Single-species Populations 
To answer the above question let us hereafter turn our attention towards the 

following system of two-coupled single-species populations: 
 

   ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]tttttttt MfNfcMfMNfMfcNfN −+=−+= ++ 11 ,      (2) 

 

where the coupling parameter c can be thought as the fraction of the two 

populations which migrate to the neighboring location. Throughout the paper I 

used the fixed parameter values 003.0,60 == aλ  and .6=b The total 

population 3950=tN was divided in two unequal groups, 1950=tN and 
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.2000=tM  If no change between the groups was permitted, the initial small 

difference in number of individuals, 50=∆ tN , increased quickly and behaved 

chaotically (see Figure 1). The effect of coupling consisted in a rich dynamic 

behavior having the main features as follows. 

 
2.1. Complete synchronization 
If two or more chaotic systems are couple, it is possible that the attractive effect 

of a suitable coupling to counterbalance the trend of the trajectories to separate 

due to chaotic dynamics. Synchronization of chaotic systems can be explained 

by the suppression of expanding dynamics in the state space transversal to the 

synchronization manifold (here tt NM = ). It is natural then to ask for which 

values of coupling strength c the two systems will oscillate in a coherent and 

synchronized way. 

Laureano et al [4] have demonstrated that, for this kind of coupling, the range of 

synchronization (in the linear approximation) is given by  
 

                      ( ) ( ))exp(_15.0)exp(15.0 uu c λλ −<<−−                             (3) 

 

where uλ is the Lyapunov exponent for the uncoupled map f. For our data it 

was found that 35.0≅uλ , so ( ) Sc =∈ 85.0;15.0 .As an example, let consider 

16.0=c . The synchronization takes place after 200 generations (see figure 2). 
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Fig. 2. Evolution to synchronous state for 16.0=c  

 

Each of the systems shows chaos and their states are identical at each moment in 

time (full synchronization). To verify that the synchronous state is chaotic, a 

Lyapunov exponent versus coupling strength diagram was considered (see 

Figure 3. 
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Fig. 3. Lyapunov exponent versus coupling strength 

  

If c is chosen deep inside the interval S, the synchronous state is reached after 

only few steps (see Figure 4). Otherwise, if c is chosen near the borders of S the 

synchronization is hard to obtain, a lot of steps being necessary (e.g. 2000 steps 

for 15.0=c . 
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Fig. 4. Evolution to synchronous state for 25.0=c  
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2.2. Intermittent chaos 

If the coupling strength c falls short of the critical value 15.0=critc the 

synchronized state tt NM = becomes unstable and an intermittent dynamics is 

observed.  Figure 5 shows the time evolution of the transverse coordinate 

ttt MNDN −= for 1467.0=c . The time periods of synchronicity are 

interrupted by aperiodic chaotic bursts.  
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Fig. 5. Time periods of synchronicity interrupted by aperiodic chaotic bursts 

( 1467.0=c ) 
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Fig. 6. A completely erratic state for 14.0=c  
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The basic intermittency mechanism comes from the competition between the 

trajectory instability of chaotic elements and the synchronization tendency due 

to the diffusion-type coupling [8]. For 14.0=c  the chaotic bursts were already 

merged so the synchronization started to dissolve into a completely erratic state 

(see Figure 6). 

 
2.3. Stabilization to an ordered state 
Outside the interval of synchronization the dynamics is quite complicated. For 

very small values of c (weak coupling) the system behaves chaotically,  the tN  

values being distributed over an entire interval. By increasing c the chaotic 

distribution of tN  comes undone in strips, thinner  and thinner (see Figure 7). 
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Fig. 7. A part of the bifurcation diagram )(cNN tt=  

 

At 007.0≅c the system entered a periodic regime, and was subjected to a 

sequence of changes from a n2 - period cycle to a 12 −n - period cycle.  A 8-

period cycle was obtained for ( )0080.0;0072.0∈c (see Figure 8). 

Then, a quasi-periodic regime with two strips appeared (Figure 9) which, in its 

turn, was changed by a 2-period cycle for ( )11.0;013.0∈c . This periodic 

regime is interrupted by windows corresponding to a 4-period cycle or even to 

thin windows of chaotic regime. 

Beginning with 1.0≅c the number of steps required for stabilization to the 2-

period cycle became bigger and bigger so, finally, the chaotic regime was 

reached. An analogous discussion can be done for  ( )1;85.0∈c . 
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Fig. 8. Time evolution of tt MN ,  for 0079.0=c (8-period cycle) 
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Fig. 9. Time evolution of tN for 99.0=c (quasi-period regime) 
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3. Conclusions 
The dynamics for many biological populations, which breed seasonally and 

have non-overlapping generations, are described by a density-dependent relation 

of the form ( ) ( ) b
tttt NaNNfN
−

+ +== 11 λ  . If data from laboratory tests are 

used it was found that populations can exhibit even a chaotic behavior. Two 

almost identical populations, living in distinct locations, evolved so that the 

initial small difference in number of individuals became big enough and 

behaved randomly. If the individuals representing the two populations could 

migrate in both directions within the time intervals between their reproduction 

and death then a rich dynamic behavior depending on the coupling strength was 

observed. It was found that there is a consistent region where the coupling 

brings out the full synchronization of the two chaotic systems, two transition 

regions where an intermittent behavior was observed and two peripheral regions 

where control of chaos is shown to coexist with quasi-periodic and chaotic 

regimes. 
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Abstract: 

At temperatures above absolute zero, particles can emit as well as absorb and 
scatter electromagnetic radiation. Emission does not strictly fall within the 
bounds. It is more akin to such phenomena as luminescence than to elastic 
scattering. Consider an enclosure of dimensions large compared with any 
wavelengths under consideration, which is opaque  but otherwise arbitrary in 
shape and composition. If the enclosure is maintained at a constant absolute 
temperature T, the equilibrium radiation field will be isotropic, homogenous, 
and unpolarized. At any point the amount of radiant energy per unit frequency 
interval, confined to a unit solid angle about any direction, which crosses a unit 
area normal to this direction in unit time is given by the Plank  function Pe= 
ћω³/4π³c²· 1/ exp(ћω/kBT)-1. Optical properties of liquids are similar in many 
ways to those of solids. Electrically, there are metallic liquids such as mercyry 
and molten iron, but the majority of common liquids are nonmetallic. As an 
illustration of a liquid we have chosen H2O, a ubiquitious substance on our 
planet; water dominates not atmospheric processes but the chemistry of life. The 
optical properties of water had been studied for centuries; the modern results are 
scattered throughout the literature of many scientific fields. Dielectric functions 
calculated from refractive indices tabulated by Hale and Querry. Optical 
constants at wavelengths shorter than 0.2 µm were taken from the work of Kerr 
et al, where electronic absorption by H2O begins. Dipole relaxation in H2O 
maintains a high level of absorption from the microwave well in to the infrared; 
this also is the cause of the major differences between the optical properties of 
liquid and solid water. 
 

Introduction   

Let us contemplate the sea water near the costs. This water includes some 
particles of sodium chloride, the quantity of them is increasing or decreasing 
according to meteorological conditions and to electromagnetical moon’s 
functions. So the thermal emission and light scattering is up to particles 
assemple, phenomenon that affects the life of the aquatic organisms. 
Scattering or extinction   measurements  allow to determine size and distribution 
of sizes, shape and orientation, and chemical composition of the particles. If we 
consider that the salt (sodium chloride) consists of small scaterring and 
absorbing particles, we write the complex refractive index of the salt as m=ñ-iñ'. 
The light scattered from a fluid containing optically isotropic molecules. Many 
new features arise in the spectrum of light scattered from fluids containing 
optically anisotropic molecules, of course. In the dense water of these arises as 

155



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

to how the collective motions of the fluid can be described by the rotation and 
how the thermal emission is changed. Let us note that the depolarization 
spectrum  Ivн(ω) consists of Lorentzian bads, all centered at zero frequency. If 
we have symmetric top rotors, the spectrum consists of a single band with a 
width [q2D+6Θ] which depends only on the translational self- diffusion D and 
on the rotational diffusion coefficient Θ. Then, the spectrum appears to be split. 
So, it is presented a spectrum theory from a molecular point of view.  
 

 
 

0PTICAL PROPERTIES OF WATER: 
Optical properties of water are similar in many ways to this of solid. 
Electrically, there are metallic liquids such as mercury and molten iron, but the 
majority of common liquids are non metallic. As liquid we have chosen the 
water because it is much important for the chemistry of life. During the 
centuries, the optical properties of water have been studied by the scientists. 
Irvine and Pollack (1968), Hale and Querry (1973) have calculated n and k for 
small particle calculations .Dielectric functions  calculated by Hale and Querry. 
Instant to other scientists who use electron volts, we use a wavelength scale. As 
was done for ClNa, e' is plotted linearly and e'' is plotted logarithmically. We 
also include on the e'' plot some results for solid H2O from Irvine and Pollack. 
The comparison of ice and water gives the field of  the similarities and 
differencies  between the solid and the liquid phase. The insulating liquid H2O  
is not unlike the insulating solid ClNa. The electrons and vibrational excitation 
regions for both materials are well separated by a highly transparent region. 
Electronic absorption by H2O begins at about 0.2 µm. The major difference 
between clear water and salt water occurs longward of the vibrational absorption 
region. Dipole relaxation of H2O  maintains a high level of absorption from the 
microwave well well into the infrared. This is the cause that makes the 
differencies between the optical properties of liquid and solid water. 
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THERMAL EMISSION 
In our case, let us have a spherical particle that is placed in the enclosure, then 
in equilibrium the distribution of radiation is uncharged. A spherical surface of 
radius R is surrounding the particle that has radius a, each element has 
entropydS of which is the source of a nearly plane wave that illuminates the 
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particle with irradiance Pe.dS/R2. The amount of energy absorbed per unit time 
by the particle is; ∫₀∞ ∫s PeCabs .d/S. dω=4π∫₀∞ PeCabc.dω. 

 
 
 
CALCULATION OF THE ENTROPY PRODUCTION 
The sunrays are scattering on the water particles and this scattering is related to 
the water density, because of the salt (ClNa). By Gibbs equation we have: 
                           n 
TdS=dE + PdV-∑µidni  where S,E,P,V,µi,di, are the total entropy, internal ene 
                          i=1 
rgy, pressure, volume, chemical potential of species I and the number of moles 
of salt respectively. 
The integrated form of this equation: 
                  n 
TS=E+PV-∑µini. 
                 i=1 
Dividing this later equation by V, we get an expression for the local densities 
s,e,ci, corresponding to S,E,ni. So we have:  
Ts=e+P-∑µici. 
              i 
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Then, substituting sV to S, eV to E, ciV to ni we have: 
 
Td(Vs)=d(Ve)+PdV-∑µid(Vci) 
                                  i 
 
So; V(TdS-de+∑µidci)=dV(-Ts+e+p-∑µici). 
 
The right part of this equation is zero and we obtain: 
 
              n 
Tds=de-∑ -µidci 
              i=1 
 
This equation is a view of entropy density, internal energy density, and the 
molecules concentration. Alternatively, this equation can be expressed: 
 
TdS=dq-∑µidci 
              i=1 
 
dq is the increment of pure heat per unit volume. 
 
CONCLUSION 
 These equations make evidence how much serious and important for the 
seawater life is the influence of the light scattering, the density of the water, and 
the thermal emission. The density of the water can be changes because of the 
pouring rain, the snow’s dissolving, the atmosphere thermal changes. If the 
seawater has high density of sodium chloride, then, it has the possibility to 
gather much more energy by the sunshine. It creates the presuppositions for 
growth of phytoplangton, zooplangton and fish. 
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Abstract: As known, modification of specified slow sodium channels (Na1,8) in the 

membrane of nociceptive neurons is the basis of the pain perception by the human brain. 

The work is devoted to determination of parameters of the channels most sensitive to 

perceiving the painful signals. Using the bifurcation analysis of the model system 

describing the impulse activity of the membrane of mammalian nociceptive neuron we 

partition the parameter planes into the regions corresponding to stable and unstable 

periodic solutions. The left boundary of the region corresponds to subcritical Hopf 

bifurcation and emergence of the rough excitation in the form of large amplitude 

oscillations. The right boundary relates to supercritical Hopf bifurcation and appearance 

of the smooth excitation in the form of small large amplitude. Integrating inside the 

region of stable solutions we obtain the relationship between the parameter and 

frequency values. Bifurcation parameters such as the effective charge transfer of the 

activation gating system of the sodium channels and the maximal conductance of the 

channels play the main role in increasing the frequency and, hence, in transformation of 

the unpainful stimulus into the painful one. The results explain ionic mechanisms of 

action of analgesic drugs having high selectivity to NaV1,8 channels independently of the 

primary target of action. 

Keywords Hopf bifurcation, Membrane model, Sodium channels, Nociceptive neuron.  

 

1. Introduction  
It is known that in response to injury of nervous system nociceptive neurons can 

become hyper-excitable and generate spontaneous impulse activity of unusual 

frequency [1]. Perception of painful feeling is connected with activation of 

peripheral nociceptors recording painful signals and transmitting them by 

afferent nerve fibers to nociceptive neurons soma of which are in spinal ganglia. 

Low frequency of nerve impulses carries information about adequate tactile 

action and rise of the frequency for amplification of signal testifies about 

possible injury [2]. Slow sodium NaV1,8 channels are considered significant in 

generation of painful feeling since the enhancement of synthesis and functional 

activity of these channels is related to hyper-excitability of nociceptive neurons 

and high frequency neurophatic pain [3, 4]. The failure in the synthesis of the 

channels causes the reduce of neurophatic pain [5]. Modulation of activity of the 

channels by mediators of inflammation can lead to pathological state such as 

hyperalgesia (an increase of painful sensitivity) [6]. Hyperalgesia is removed by 

agents descending impulse activity of NaV1,8 channels [7].That is why these 
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agents  are believed as the analgesic highly selective drugs [2].The aim of the 

work is to answer the question: what parameters of the slow sodium NaV1,8 

channels do maximal influence on pain signaling transduction?To answer the 

question it is necessary 1) to study relations between these parameters, an 

applied external stimulus and a type of stable solution of the model system 

describing the impulse activity of the nociceptive neuron;2) to clarify what 

parameters do determine the possibility of the nociceptive neuron to generate 

spontaneously a signal of a painful range frequency? 

2. The model 
We have used the space-clamped Hodgkin-Huxley type model: 
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where E  is the membrane potential, the variables m, h, n, ms, hs represent the 

probabilities of activation and inactivation of fast sodium, potassium and slow 

sodium channels, respectively. 

The constants cm=20 pF,      gNaf  =40 nS,   gK = 20 nS, gL = 5 nS,  ENa =55 mV, 

EK= - 85 mV, EL= -70 mV  are the membrane capacitance, the maximal 

conductance of the fast sodium, potassium and leakage ions channels and the 

reversal potentials for Na
+
, K

+
 and leakage ions. 

The voltage-dependent expressions 
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describe rates of transfer of the activation and inactivation gating structures of 

ionic channels between the closed and open states. 

According to the Boltzmann’s principle for the channel with the two-state open-

closed structure the ratio of the number of open channels (N0) to the number of 

closed channels (NC) is determined by  
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where Zeff    is the effective charge of the activation gating structure (in electron 

units) coupled with conformational change of the gating structure during the ion 

transfer through the membrane, k is the Boltzmann’s constant, T is the absolute 

temperature, e  is the electron charge,  E is the membrane potential such that 

N0=NC. 

Then at EE =  for the activation gating structure of the slow sodium channels 

one can write 
SS mm βα = , whence it follows that the effective charge value of 

the activation gating structure can be gained as  

 

)21( kk
e

kT
effZ += . 

 

3. Partition of the model parameter space into regions of 

qualitatively different solutions  

To obtain relationship between the type of stable solution of the system, its 

parameters and an applied external stimulus it is sufficient to find points 

belonging to the boundary partitioning the parameter space of the model system 

into the regions of the qualitatively different types of stable solutions (steady 

states and stable periodic oscillations). For constructing the boundary the 

method of bifurcation analysis is applied. 

On the I axis there are at least 3 bifurcation points (I0<I1<I2) [8]. For I<I0     and  

I>I1       there is a one-to-one correspondence between the type of steady state  

(unstable or stable) and the presence or absence of a stable periodic solution. 

For    I≤I0    and    I≥I2 the steady state is stable and a limit cycle does not exist. 

While the bifurcation parameter I increases in interval    (I0<I≤I1)    the steady 

state is stable and a stable and unstable periodic solutions coexist appearing via 

fold limit cycle bifurcation. The unstable periodic solution shrinks down to the 

rest state and makes it lose stability via subcritical Andronov-Hopf bifurcation.  

163



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

Therefore, for    I>I1      the stable periodic oscillations of large amplitude exist 

both with decreasing and increasing I value. But for     I0<I≤I1     the stable limit 

cycle of large amplitude is exhibited only with decreasing I  

Since for the Hodgkin-Huxley type system     I0≈I1       for all the physiologically 

possible parameter values [9], the value of   I1 can be used as an approximate 

value of I0. That is why the task of finding the boundary of qualitatively 

different types of stable solutions can be reduced to the more simple numerical 

task of constructing the boundary of various steady states (stable and unstable). 

We write system (1) in the form  

 

),,,( IpxF
dt

dx
=                 (2) 

 

where x=(E, m, h, n, mS, hS) is a vector of the phase coordinates,  

p=(gNaS, k1, k2) is a vector of parameters which can be considered as bifurcation 

ones. 

The method for determining the boundary points of the region of stable periodic 

solutions is reduced to the sequence of operations: 

1) finding the equilibrium state of system (2) as a unique solution x0 (p, I) of the 

equation  

F(x, p, I)=0, 

 

2) calculating the eigenvalues { }61),( Ipiλ  of the Jacobian matrix  
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3) finding the parameter values satisfying the Hopf bifurcation, namely, arising 

of a pair of purely imaginary eigenvalues  

 

06   ,05   ,04   ,03    ,2    ,1 <<<<−== λλλλωλωλ ii . 

 

To determine values I1 (p) and I2 (p) at which maximal real part 

)),(( Ipmλ becomes equal to zero the following algorithm is used. 

1) The interval [I0, IK] of possible values is discretized with k consecutive 

subintervals of length ∆.  

In the case of existence even though one solution I1 (p) of equation  

 

 0),( =Ipmλ , 
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the i - subinterval involving the solution, is determined by the consecutive 

search beginning from the left side of the interval. The value of this solution is 

determined by linear interpolation. 

2) The value of I2 (p) is calculated in the interval [i*∆, IK] by the method of 

bisection followed by linear interpolation. 

The numerical solution of system (1) inside the obtained region of stable 

periodic solutions is found by a fourth-order Runge-Kutta method with a 

modified variable step size and Gear algorithm. The frequency of the periodic 

solution is calculated by the time values corresponding to local maxima. 

 

4. Results and discussion  

To elucidate the role of slow sodium channels in generation of the painful 

stimulus the maximal conductance of the slow sodium channels (gNaS), the 

effective charge transfer of the activation gating system of the channels (Zeff) 

and the shift (G) of the activation curve along the membrane potential axis have 

been used as variable parameters. 

The family of the plane sections of the boundary partitioning the parameter 

space (gNaS, Zeff,  I) into the regions of stable and unstable steady states are given 

in Fig.1 a, b. 

Inside the each found region the steady state is unstable and there is a stable 

limit cycle corresponding to stable periodic solution. 

Stain-stepping effect of the left boundary of the region is related to features of 

arising limit cycles on the left and right sides of the boundary. The left boundary 

of the region corresponds to subcritical Hopf bifurcation and emergence of the 

rough excitation in the form of large amplitude oscillations. The right boundary 

relates to supercritical Hopf bifurcation and appearance of the smooth excitation 

in the form of small large amplitude. 

As is seen, if gNaS =0, periodic oscillations are absent at any stimulus value. 

The minimal value of gNaS such that the oscillations emerge is equal to 14,9 nS 

at the stimulus – 142,5 pA and the value grows when Zeff  increases. 

When the effective charge is less than e5 the periodic oscillations arise only 

by hyperpolarizing stimulus (I<0 pA). 

With increasing Zeff the steady periodic solutions region extends significantly 

and shifts in direction of depolarizing stimulus (I>0 pA). 

Integrating inside the constructed regions we obtain the relationship between the 

model parameter and frequency values. The examples of steady periodic 

solutions are represented in Fig.2 and Fig.3. 

The periodic oscillations emerging on the left boundary of the region have large 

amplitude and small frequency. When moving inside the region from left to 

right an amplification of the external stimulus tends to change in amplitude and 

frequency of the nociceptive neuron. In other words, for the constant maximal 

conductance of the slow sodium channels and effective charge transfer of the 

activation gating system an enhancement of the external stimulus leads to the 

increase of the frequency of periodic oscillations and then their disruption. 
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Fig. 1. The examples of the plane sections of the boundary partitioning the 

parameter space (gNaS, Zeff,  I) into the regions of stable and unstable steady 

states. Each section is constructed with 800 points on the (gNaS,  I) plane 

corresponding to 700 net values of the parameter gNaS .Values G=10 mV, 

{ } { }eeeeeeeeeeeeffZ 10 ,9 ,8 ,7 ,5.6 ,6 ,5.5 ,5 ,5.4 ,4 ,5.311
1

= . 

 

The periodic oscillations emerging on the left boundary of the region have large 

amplitude and small frequency. When moving inside the region from left to 

right an amplification of the external stimulus tends to change in amplitude and 

frequency of the nociceptive neuron. In other words, for the constant maximal 

conductance of the slow sodium channels and effective charge transfer of the 

activation gating system an enhancement of the external stimulus leads to the 

increase of the frequency of periodic oscillations and then their disruption. 
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Fig. 2. The examples of steady solutions for nSNaSgeeffZ 100     ,5.6 ==  and 

various values of stimulus. 
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Fig.3. The examples of steady solutions 0     ,5.6 == IeeffZ  and different 

values of .NaSg  

 

The periodic oscillations emerging on the left boundary of the region have large 

amplitude and small frequency. When moving inside the region from left to 

right an amplification of the external stimulus tends to change in amplitude and 

frequency of the nociceptive neuron. In other words, for the constant maximal 

conductance of the slow sodium channels and effective charge transfer of the 

activation gating system an enhancement of the external stimulus leads to the 

increase of the frequency of periodic oscillations and then their disruption. 
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When moving inside the region from bottom to top a growth of the maximal 

conductance of the slow sodium channels for the constant stimulus value results 

in increase of the frequency, period doubling and also failure of periodic 

oscillations (Fig.3). 

Thus, both factors, namely, decrease of effective charge transfer of the 

activation gating system of the slow sodium channels for the constant maximal 

conductance of the channels and decrease of the maximal conductance of the 

slow sodium channels for the constant stimulus decline the frequency of impulse 

activity. Since an increase in the frequency of impulse activity of nociceptive 

neurons is related to the emergence of neuropathic pain, our findings indicate 

the direction of looking for chemical agents possessing analgesic properties. 

 

3. Conclusion 
The form of the constructed regions demonstrates that ability of each parameter 

to be bifurcation one significantly depends on the other parameter values. Thus, 

the conclusions about bifurcation properties of the system parameters are 

determined by the investigated point in the parameter space. 

The character of changes in the system solutions and in the frequency of 

periodic solutions can be used in searching of chemical agents aimed for 

selective removal of neuropathic pain. 
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Abstract: We report on theoretical modeling of a scenario of transition to chaos in 

plasma through sub-harmonic bifurcations, based on scale relativity theory. Experimental 

results show that a discharge plasma which self-structures as concentrically multiple 

double layers is able to evolve towards chaos through a cascade of spatio-temporal sub-

harmonic bifurcations when the applied constrain is gradually increased. By considering 

that the plasma particles (electrons, ions, neutrals) move on continuous but non-

differentiable curves (because of the collisions), i.e. on fractal curves, we develop a 

model based on scale relativity theory capable to explain the self-structuring of the 

electrically conductive plasma as multiple double layers, as well as the transition to chaos 

through sub-harmonic bifurcations of these structures when the applied constrain 

increases. Thus, by considering that the complexity of the physical processes in plasma is 

replaced by fractality, it is no longer necessary to use the whole classical “arsenal” of 

quantities from the standard physics (differentiable physics). The plasma system will 

behave as a special interaction-less “fluid” by means of geodesics in a fractal space. In 

such context, by using the fractional revival formalism, a Reynold’s fractional criterion 

of evolution to chaos through cascade of spatio-temporal sub-harmonic bifurcations was 

stated. A good agreement between the experimental results and those provided by the 

theoretical model was obtained. 

Keywords: Chaotic modeling, Fractal, Scale relativity theory, Pattern formation, Sub-

harmonic bifurcations.  

 

1. Introduction 
Concentrically multiple double layers are complex nonlinear potential structures 

in plasmas, consisting of two or more double layers attached to the anode of a 

dc glow discharge [1] or to a positively biased electrode immersed into plasma 

[2]. They appear as several bright and concentric shells attached to the 

electrode. The number of layers depends on the background gas, on its pressure, 

on the electrode voltage and on the discharge current. The axial profile of the 

plasma potential has a stair step shape, with potential jumps close to the 

ionization potential of the working gas [2]. At high values of the voltage applied 

to the electrode, the multiple double layer structure passes into a dynamic state 

which consists of periodic disruptions and re-aggregations of the constituent 

double layers [2]. 

In many systems where deterministic chaos arises, spatial and temporal 

structures were also experimentally observed. For time scales large with respect 
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to the inverse of maximum Lyapunov exponent, deterministic trajectories can be 

replaced by families of potential trajectories and the concept of definite 

positions by that of probability density. This allows the description of chaos in a 

stochastic way by a diffusion process as described in [3]. By considering that 

the particles movement takes place on continuous but non-differentiable curves, 

i.e. on fractal curves, the scale relativity theory approaches the chaotic effects in 

the same way as in [3], except diffusion, which becomes a spatio-temporal scale 

dependent process [4]. 

The theory of scale relativity (SR) applies the principle of relativity to scale 

transformations. In such conjecture, the principle of SR requires that the 

fundamental laws of nature apply whatever the state of scale of the coordinate 

system. In order to include the non-differentiable quantum motion, the quantum 

space-time must be considered relative and fractal, as described in [5]. In this 

theoretical framework, it is not necessary to endow a point particle with mass, 

energy, momentum or velocity. The particle may be reduced to and identified 

with its own trajectory [4]. 

Here we report on experimental results revealing how the electrically 

conductive plasma can self-structure in the form of concentrically multiple 

double layers. We show that these new structures evolve towards chaos through 

a cascade of spatio-temporal sub-harmonic bifurcations when the applied 

constraint in form of the voltage applied on a supplementary electrode increases. 

A theoretical model based on the scale relativity theory is developed, and its 

results are found to be in good agreement with the experimental data. 

 

2. Experimental Results 
The experiments were performed in a plasma diode, schematically presented in 

Fig. 1. Plasma is created by an electrical discharge between the hot filament 

(marked by F in Fig. 1) as cathode and the grounded metallic tube as anode. The 

plasma was pulled away from equilibrium by gradually increasing the voltage 

applied to a tantalum disk electrode (marked by E in Fig. 1) with 1 cm diameter, 

under the following experimental conditions: argon pressure p = 10
-2

 mbar, 

plasma density npl = 10
9
 cm

-3
 and electron temperature kTe ≅ 2 eV. When the 

voltage on the electrode reaches VE ≅ 55 V, a double layer structure appears in 

front of the electrode (see photo in Fig. 2(a)). The structure is in dynamic state, 

phenomenon extensively described in [6]. The FFT of the oscillations of the 

current collected by the electrode is shown in Fig. 3(a). By a further increase of 

the voltage on the electrode, new double layers develop in front of the electrode, 

giving rise to a dynamic multiple double layer structure (see photos in Fig. 2(b)-

2(e)). Simultaneously with every new double layer formation, a new sub-

harmonic appears in the FFT spectrum of the current oscillations (see Fig. 3(b)-

3(f). Thus, we recorded, in fact, spatio-temporal bifurcations in the plasma 

system (sudden changes in the spatial symmetry and in the temporal dynamics 

of the plasma system). At high values of the applied potential, the plasma 

system passes into a chaotic state, characterized by uncorrelated and intermittent 

oscillations (see FFT’s of these oscillations in Fig. 3(g)). 
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Fig. 1. Schematic of the experimental setup (F – filament, A – anode, E – 

supplementary electrode, U1 – power supply for heating the filament, U2 – 

power supply for discharge, PS – power supply for supplementary electrode 

bias, R1, R2 – load resistors). 

 

   
 (a)             (b)   (c) 

  
          (d)                (e) 

Fig. 2. Photos of the multiple double layers in different stages (at different 

increasing value of the potential applied on the electrode) of its formation. 

 

3. Theoretical Model 
Assuming that the discharge plasma particles (electrons, ions, neutrals) motions 

take place on continuous but non-differentiable curves, i.e. on fractal curves of 

fractal dimension DF, the dynamics of such a system can be described by the 

complex operator (see [7]): 

 

 

U1 U2 

E 
R1 

PS 

A 

F 

R2 
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         (a)          (b)        (c) 

 
         (d)           (e)          (f) 

    
                                                   (g) 

Fig. 3. FFT of the oscillations of the current collected by the supplementary 

electrode, at different increasing values of the voltage applied on it. 

 

             ( )( ) ∆−∇⋅+
∂
∂

= −12ˆ
ˆ

FD
dti

tdt

d
DV             (1) 

   
where 

 

                              UVV i−=ˆ              (2) 

 

The real part V  of the complex field V̂  represents the standard classical 

velocity, which is differentiable and independent of resolution dt , while the 

imaginary part U  is a new quantity arising from fractality, which is non-

differentiable and resolution-dependent. The quantity D  is Nottale’s coefficient 

and corresponds to the fractal – non-fractal transition. The geodesics equation (a 

generalization of the first Newton’s principle) can be written in the form: 

 

                 ( ) VVV
VV ˆˆˆ
ˆˆˆ

∆−∇⋅+
∂
∂

= η
tdt

d
            (3) 
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which is a Navier-Stokes type equation with the imaginary “viscosity 

coefficient”: 

 

                             ( )( ) 12 −= FD
dtiDη             (4) 

 

If the motions of the fractal fluid are irrotational, i.e. 0ˆ =×∇ V , we can choose 

V̂  on the form: 

 

                     ( )( ) ψln2ˆ 12 ∇−= −FD
dtiDV             (5) 

 

with ψ  being the scalar potential of the complex velocity. Then, by substituting 

(5) in (3) and using the method described in [9] it results: 
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02
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ˆ
1212 =







 ∇
−

∂
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∇−= −−

ψ
ψψ

FF DD
dti

t
dti

dt

d
DD

V
               (6) 

 

This equation can be integrated in a universal way and yields: 

 

            
( )( ) ( )( )

t
dtidtL

L

FF DD

∂
∂

+∆=

=
−− 12242 24ˆ

0ˆ

DD

ψ
                         (7a,b) 

 

up to an arbitrary phase factor which may be set to zero by a suitable choice of 

the phase of ψ . Equation (7a) is of Schrödinger type. If the fractal fluid is 

placed into the external field W, then (7a,b) become: 

 

        
( )( ) ( )( )

0

12242
24'ˆ

0'ˆ

m

W

t
dtidtL

L

FF DD −
∂
∂

+∆=

=
−−

DD

ψ
      (7c,d) 

 

where m0 is the rest mass of the fractal fluid particle. 

In our experiment the particle interacts with an external potential which results 

in a discontinuous change in momentum. This interaction can be theoretically 

modeled by means of a one-dimensional infinite square-well potential that 

confines a particle to a box of given width. Localized time-dependent solutions 

for this problem can be constructed in a very straightforward way from solutions 

of the free-particle problem [9]. 

The one-dimensional infinite square-well potential confines a particle to a box 

of width a and is described by 
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A particle of mass 
0m  is placed in this potential. The energy eigenvalues and 

eigenstates are found by solving the time-independent Schrödinger-type 

equation (as (7c,d)). The discrete energy eigenvalues are 
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for positive integer n . The scalar potential eigenvalues corresponding to the 

energy eigenvalues (9a,b) are 
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Let’s consider the expression 2

1

22 knkn =  induced by the generalized coherence 

(in the present context, the physical mean of the generalized coherence refers to 

the generation of multiple double layers) (see for details [10]). Then, the relation 

 

               2
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π
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expanded around n  either in the form 
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or in the form 
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induces the characteristic times: 
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Because Tβ  is independent of n , expression (14b) defines a universal time 

scale. By means of relations (14b) and (11b), a characteristic frequency can be 

associated: 
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          (15) 

 

Let us evaluate expression (15) with respect to the experimental results. Thus, 

by identifying a  with a characteristic length of the double layer, namely the 

width of the double layer, ( )1 2

0 02a V enε= , expression (15) takes the form 

 

                             
2
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00

10
0

2

1
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
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


=

Vm

Een
f

ε
          (16) 

 

where 
1E  is the ion energy, 

0m  is the ion mass, 
0n  is the ion density in the 

double layer and V  is the voltage on the electrode. For our experimental 

conditions f0 ≅ 150 kHz. This value is in a good agreement with those 

experimentally obtained by us (see Fig. 3). 

Now, the fractional revival formalism may be applied. A fractional revival of a 

physical function occurs when a physical function evolves in time to a state that 

can be described as a collection of spatially distributed physical sub-functions 

that each closely reproduces the initial physical function shape – see for details 

[11]. In this context, we write the particle’s initial ( 0t = ) scalar potential 

velocity function in the square well as: 

 

                             ( ) ( )xtx iψψ == 0,           (17) 

 

We expand this scalar potential velocity function by using the relation (10) 

 

                            ( ) ( )∑
∞

=

=
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with 
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By using the time scale Tβ , the time evolution of the system is found from the 

Schrödinger’s type equation (the charge transport takes place on fractal curves – 

see the operator 'L̂  from (7c,d)) 
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to be 

 

            ( ) ( ) ( )∑ −=
n

nn xcnTtitx ψπψ β ][ 22exp,          (21) 

 

A function ( )F n  whose domain is restricted to the integers ( n Z∈ ) can be 

written as a finite sum of exponentials if and only if it is r  periodic, that is, if 

there is an integer r  such that ( ) ( )F n F n r= +  for all n . Such a finite sum is 

called the finite Fourier series. In our case, we identify 

( ) ( ) 2exp 2F n i t T nβπ = −  . The necessary and sufficient condition for this 

exponential to be a periodic function of the quantum number n  is that the time 

ratio t Tβ  must be rational, and we write 

 

                                ( ) βT
q

p
qpT =,            (22) 

 

for relatively prime integers p  and q  (that is, p q  forms a simplified 

fraction). In terms of frequency, expression (48) takes the form: 
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The condition p q>  specifies the presence of sub-harmonics in the Fourier 

spectra. Now, through the fractal expressions 
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we can introduce the Reynolds’s “fractional” criterion 
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                         ( )
q

pLV
qp cc ==

ν~
,Re           (25) 

 

where we used the substitutions: 

 

        
cV V= , ( )qpVfLc ,1−= , ( )( ) 12

8~ −= FD
dtDπν     (26a-c) 

 

From (25) and [12] it results a critical value for the Reynolds number, Rec
. Up 

to this value the fractal fluid flow becomes turbulent. Because from (23a) with 

p q>  results sub-harmonics for Rec
, according to [13-15] a criterion of 

evolution to chaos through a cascade of spatio-temporal sub-harmonic 

bifurcations is stated. We call this criterion the “fractional” criterion of 

transition towards chaos. 

 

3. Conclusions 
A scenario of transition to chaos through cascade of sub-harmonic bifurcations 

was experimentally evidenced in connection to the generation and dynamics of 

concentric multiple double layers in plasma. 

By considering that the particles movements in the gas discharge plasma take 

place on fractal curves, a mathematical model according with the scale relativity 

theory was developed in order to describe its dynamics. In this model, the self-

structuring of a discharge plasma as concentric multiple double layers was 

analyzed, a good similarity between the experimental and theoretical 

dependences being obtained. By using the fractional revival formalism, a 

Reynold’s fractional criterion of evolution to chaos through cascade of spatio-

temporal sub-harmonic bifurcations was stated.  
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Abstract. Height fields provide efficient means for representing surface elevation
data which can be used for rendering 3D terrains or landscapes. In this paper, a
novel method for representing height fields using fractal interpolation techniques
is presented. The proposed methodology allows describing natural surfaces with
an intrinsic fractal structure in a more convenient manner. Specifically, fractal
interpolation surfaces constructed on rectangular domains have been used. Results
indicate the feasibility and advantages of the proposed method in terms of quality
of representation as well as compression ratios.
Keywords: Fractals, IFS, Interpolation, Surfaces.

1 Introduction

Height fields provide an efficient tool for representing surface elevation data
and are often used, among other applications, in 3D computer graphics for
rendering 3D terrains or landscapes. A height field is essentially a 2D array
of height values and is usually stored as a raster image; the pixel intensity
corresponds to the height at the location defined by the pixel coordinates. An
example of landscape rendering based on a height field is shown in Figure 1.

Fig. 1. Rendering of a landscape defined by a height field.
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Fractal interpolation as defined by Barnsley[1] and other researchers is
based on the theory of iterated function systems. It provides an alternative
to traditional interpolation techniques, aiming mainly at data which present
detail at different scales or possess some degree of self-similarity. These prop-
erties define an irregular, non-smooth, structure which is inconvenient to be
described by using elementary functions such as polynomials. A fractal in-
terpolation function is a continuous function whose graph is the attractor of
an appropriately chosen iterated function system. In case this graph, usually
of non-integral dimension, belongs to the three-dimensional space and has
Hausdorff - Besicovitch dimension between 2 and 3, the resulting attractor
is called fractal interpolation surface.

In this paper, a novel methodology for representing height fields using
fractal interpolation techniques is introduced. Our motivation stems from
the fact that natural surfaces, such as earth terrains, present an intrinsic frac-
tal structure, i.e. detail at multiple scales and some degree of self-similarity.
The most important and non-trivial part for constructing fractal interpola-
tion surfaces on rectangular domains involves ensuring their continuity. We
also present the application of the proposed methodology to terrain data,
indicating its feasibility and advantages in terms of quality of representation
as well as compression ratios.

The paper is structured as follows. In Section 2 we briefly review the
theory of iterated function systems. The necessary concepts of fractal in-
terpolation surfaces, focusing on the proposed construction on rectangular
domains, are introduced in Section 3. In Section 4, we present the proposed
methodology for height field representation and compression using the sur-
faces of the previous section. Section 5 contains the result of the application
of our method to terrain data, in terms of quality of representation as well
as compression ratios. Finally, Section 6 summarizes our conclusions and
indicates areas of further work.

2 Iterated function systems

Let X,Y ⊂ R
n. A function f :X → Y is called a Hölder function of exponent

a if

|f(x)− f(y)| ≤ c |x− y|a

for x, y ∈ X , a ≥ 0 and for some constant c. Note that, if a > 1, the functions
are constants. Obviously, c ≥ 0. The function f is called a Lipschitz function
if a may be taken to be equal to 1. A Lipschitz function is a contraction with
contractivity factor c, if c < 1. An iterated function system, or IFS for short,
is a collection of a complete metric space (X, ρ) together with a finite set
of continuous mappings wn:X → X , n = 1, 2, . . . , N , where ρ is a distance
between elements of X . It is often convenient to write an IFS formally as
{X ;w1, w2, . . . , wN} or, somewhat more briefly, as {X ;w1−N}.
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The associated map of subsets W :H(X) → H(X) is given by

W (E) =

N⋃

n=1

wn(E) for all E ∈ H(X),

where H(X) is the metric space of all non-empty, compact subsets of X with
respect to some metric, e.g. the Hausdorff metric. The map W is called the
collage map to alert us to the fact that W (E) is formed as a union or ‘collage’
of sets. Sometimes H(X) is referred to as the “space of fractals in X” (but
note that not all members of H(X) are fractals).

If wn are contractions with corresponding contractivity factors sn for
n = 1, 2, . . . , N , the IFS is termed hyperbolic and the map W itself is then
a contraction with contractivity factor s = max{s1, s2, . . . , sN} (Barnsley[1],
Theorem 7.1, p. 81). In what follows we abbreviate by fk the k-fold compo-
sition f ◦ f ◦ · · · ◦ f . The graph of f is the set of points G(f) = {(x, f(x)) :
x ∈ X}.

The attractor of a hyperbolic IFS is the unique set A∞ for which limk→∞
W k(E0) = A∞ for every starting set E0. The term attractor is chosen to
suggest the movement of E0 towards A∞ under successive applications of
W . A∞ is also the unique set in H(X) which is not changed by W , so
W (A∞) = A∞, and from this important perspective it is often called the
invariant set of the IFS.

3 Rectangular subdomain fractal interpolation surfaces

Fractal interpolation surfaces constructed as attractors of iterated function
systems were first proposed by Peter R. Massopust[4], where he considered
the case of a triangular domain with coplanar boundary data. A slightly more
general construction of such fractal surfaces was later presented by Jeffrey
S. Geronimo and Douglas Hardin[3], where the domain used was a polygo-
nal region with arbitrary interpolation points but same contractivity factors.
Here, we focus on fractal interpolation surfaces constructed on rectangular
domains with arbitrary boundary data and same contractivity factors.

Let D be a closed nondegenerate rectangular region in R
2 and let S =

{q0, q1, . . . , qm−1} bem, with m > 4, distinct points in D such that {q0, q1, q2,
q3} are the vertices of D. Given real numbers z0, z1, . . . , zm−1 we wish to
construct a function f such that f(qj) = zj, j = 0, 1, . . . ,m − 1 and whose
graph is self-similar. Notice that the constructed FIS in the present work is
not self-affine since it is resulting from bivariate functions. Let us denote by
C(D) the linear space of all real-valued continuous functions defined on D,
i.e. C(D) = {f :D → R | f continuous}. The basic idea is to decompose D
into N subrectangles R1, R2, . . . , RN with vertices chosen from S and define
affine maps Li:D → Ri and contractions Fi:D×R → R, i = 1, 2, . . . , N such
that Φ defined by

(Φf)(x, y) = Fi(L
−1
i (x, y), f(L−1

i (x, y))) (1)
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maps an appropriate subset of C(D) onto itself. If Li is invertible, G(f) is
mapped onto G (Φ(f)|Ri) by (Li(x, y), Fi(x, y, f(x)). Henceforth we assume
that {Ri}Ni=1 consists of nondegenerate rectangles whose interiors are non-
intersecting, L−1

i (Ri) = D and that the set of vertices of {Ri}Ni=1 equals S.
Let k: {1, 2, . . . , N}×{0, 1, 2, 3}→ {0, 1, . . . ,m− 1} be such that {qk(i,j)}3j=0

gives the vertices of {Ri}Ni=1.
Let i ∈ {1, 2, . . . , N}. SinceD and Ri are nondegenerate, there is a unique

invertible affine map Li:R
2 → R

2 satisfying

Li(qj) = qk(i,j), j = 0, 1, 2, 3. (2)

Let si be given such that |si| < 1 and Fi:R
3 → R be defined by

Fi(x, y, z) = aix+ biy + gixy + siz + ci, (3)

where ai, bi and ci are uniquely determined by

Fi(qj , zj) = zk(i,j), j = 0, 1, 2, 3. (4)

With these definitions for Li and Fi we have Φ(f)|Ri ∈ C(Ri) and
(Φf)(qk(i,j)) = zk(i,j), j = 0, 1, 2, 3, whenever f ∈ C(D) and f(qj) = zj ,
j = 0, 1, 2, 3. If Ri and Ri′ are adjacent rectangles with common edge qjqj′ , it
remains to be determined whether Φf is well-defined along qjqj′ , i.e., whether
Φf satisfies the “join-up” condition

Fi(L
−1
i (x, y), f(L−1

i (x, y))) = Fi′(L
−1
i′ (x, y), f(L−1

i′ (x, y))),

for all (x, y) ∈ qjqj′ . We consider the case where the graph associated with
the tesselation {Ri}Ni=1 has chromatic number 4. The chromatic number of
a graph is the least number of symbols required to label the vertices of the
graph so that any two adjacent vertices (i.e., joined by an edge) have distinct
labels. Since each edge is part of some Ri this implies the vertices {qj}m−1

j=0

can be labelled with l = l(j) ∈ {0, 1, 2, 3} such that the vertices of each
Ri have distinct labels. For i = 1, 2, . . . , N and j = 0, 1, 2, 3 let k(i, j) be
determined by the condition

k(i, l(j′)) = j′ for all vertices qj′ of Ri.

Then, Eqs. (2) and (4) become

Li(ql(j)) = qj , Fi(ql(j), zl(j)) = zj (5)

for each of the vertices qj of Ri.
Let CB(D) denote the collection of continuous functions f such that

f(qj) = zj , qj ∈ ∂D.

Theorem 31 Suppose the graph associated with {Ri}Ni=1 has chromatic num-
ber 4. Let Li and Fi, i = 1, 2, . . . , N , be determined by (3) and (5) with
si = s(|s| < 1). Let Φ be defined by (1). Then Φ:CB(D) → CB(D) is well-
defined and contractive in the sup-norm with contractivity s. Furthermore
(Φf)(qj) = zj, j = 0, 1, . . . ,m− 1 and f ∈ CB(D).
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Proof. See Drakopoulos and Manousopoulos[2] �	
Then the corresponding IFS is of the form {R3;w1−N}, where

wi(x, y, z) = (Li(x, y), Fi(x, y, z)).

An illustration of this is shown in Fig. 2, where the left part indicates the
vertices and connecting edges of D and the middle and right parts of the
figure indicate where these vertices are mapped by the domain contractions.
For larger data sets, this pattern is repeated as necessary.

0 1

3 2

0 0

00 1

23 3

0 1

1

2

2 2

2

1 1

10

3

0

0

3

33

Fig. 2. Rectangular domain contractions to satisfy join-up conditions.

4 Height fields

A height field or relief map (see e.g. Theoharis et al.[5], p. 505) is defined as
a 2D array of height values:

H = {(xi, yj, zij : i = 0, 1, . . . ,M and j = 0, 1, . . . , N},

where the x, y coordinates define a rectangular grid on the plane and the z
coordinate defines the height. The underlying grid is usually regular, i.e.

xi = x0 + iΔx, yj = y0 + jΔy,

for every i = 0, 1, . . . ,M and j = 0, 1, . . . , N , where Δx = (xM − x0)/M and
Δy = (yN − y0)/N . From the above definition, it is clear that a height field
can be directly represented by a fractal interpolation surface of Section 3.
The only issue to be determined is whether all of the height field data will
be used in the construction of the surface or only a subset of them. This can
be achieved by regularly sampling the height field along the x, y dimensions.
The sampling frequency defines a trade-off between quality of representation
and compression ratio.
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The proposed representation is expected to be especially fruitful for height
fields defining natural surfaces, such as terrains. These often possess an in-
trinsic fractal structure which is conveniently described by fractal interpola-
tion models. The idea of representing natural surfaces using fractal interpo-
lation has also been suggested in Xie et al.[6], where the generation of rock
fracture surfaces using fractal interpolation was examined.

5 Results

A height field of resolution 257× 257 is presented in Figures 3(a) and 3(b).
Specifically, the former figure depicts the height field as a 2D raster image
where brighter areas indicate greater height; the latter figure contains its 3D
depiction. This height field, which was created using TerragenTM Classic,
contains a total of 257× 257 = 66049 points.

x

y

(a) (b)

Fig. 3. The original height field depicted (a) as a 2D image and (b) as a 3D surface.

Figures 4(a) and 4(b) show the 2D and 3D representation of this height
field, respectively, using the proposed method. Specifically, it has been repre-
sented by a fractal interpolation surface constructed on a subset of the original
data with s = 0.02; every 8th point along each dimension of the height field
has been chosen as interpolation point. This results in a rectangular grid of
resolution 33 × 33, containing 1089 points in total, i.e. about 1.65% of the
original points. Despite the significant sparsity of the interpolation points,
the quality of the reconstructed height field is satisfactory.

Another example is given in Figures 5(a) and 5(b), where the same height
field has been represented by a fractal interpolation surface using even fewer
interpolation points. Specifically, every 16th point along each dimension has
been chosen as interpolation point. This results in a rectangular grid of
resolution 17 × 17, containing 289 points in total, i.e. about 0.44% of the
original points. Also in this case, the results are satisfactory despite the even
smaller number of interpolation points. These results indicate that fractal
interpolation surfaces are indeed capable of describing natural surfaces, such
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x

y

(a) (b)

Fig. 4. The reconstructed height field, using every 8th data point as interpolation
point, depicted (a) as a 2D image and (b) as a 3D surface.

as terrains, with considerable quality even when high compression ratios are
involved.

x

y

(a) (b)

Fig. 5. The reconstructed height field, using every 16th data point as interpolation
point, depicted (a) as a 2D image and (b) as a 3D surface.

Figures 6–7 depict an artistic rendering of the original height field as well
as its two aforementioned reconstructions; these figures were created using
TerragenTM Classic. As shown in the figures, the reconstructed height fields
produce equivalent results compared to the original one, even though the
significant sparsity of the interpolation points.

6 Conclusions and future work

We have presented a novel method for the representation and compression
of height fields using fractal interpolation techniques. Specifically, we have
represented a height field as a fractal interpolation surface constructed on the
rectangular domain defined by a subset of the original data. The results indi-
cate that the proposed methodology is feasible, while achieving satisfactory
results in terms of quality of representation as well as compression ratios.
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Fig. 6. Artistic rendering of the original height field.

(a) (b)

Fig. 7. Artistic rendering of the reconstructed height field, using as interpolation
point (a) every 8th data point and (b) every 16th data point.

Further work will focus on the calculation of the optimal values of the verti-
cal scaling factors in order to achieve increased localized accuracy, as well as
on the exploration of alternative fractal interpolation surface models, affine
or bivariate, including recurrent fractal interpolation surfaces.
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Abstract: Community Earth System Model (CESM) is a coupled climate model that 

consist of five separate components with additional central coupler which controls time, 

exchanging data, domains, grids and other model data. Here CESM was adopted for the 

Baltic Sea and called 3D-CEMBS. This is not fully coupled configuration. In our case we 

have been taken into account ocean (POP model, version 2.1) and ice (CICE model, 

varsion 4.0) models which are forced by atmospheric data model (datm7). Other models 

are turned off in our configuration. However the main task of the datm7 is to interpolate 

data on model domain, we have interpolated data outside of the models. As an external 

forces daily-averaged forty-years reanalysis data derived from European Centre for 

Medium-range Weather Forecasts (ECMWF, ERA-40 reanalisys) has beed used. 

Currently in pre-operational state 3D-CEMBS is using 48-hour atmospheric forcing data 

from ICM-UM model (University of Warsaw). 3D-CEMBS model has also ecosystem 

part (currently work in progress). 

The study was financially supported by the Polish State Committee of Scientific 

Research (grants: No N N305 111636, N N306 353239). 

Keywords: Baltic Sea, 3D model, hydrodynamic variables 

 

1. Introduction 

In 2011, the operational ecohydrodynamic model (3D CEMBSv2 - new version) 

was launched at the Institute of Oceanology PAS in the parallel version on the 2 

km grid with rivers and the open boundary for the hydrodynamic module 

http://deep.iopan.gda.pl/CEMBaltic/new_lay/index.php).  

Therefore, the following works were completed:  

- a new version of the model was launched (3D CEMBSv2), which includes the 

ocean-ice module POP-CICE (POP, version 2.1, the ice module CICE, version 

4.0) and the ecosystem module (Fig.1):  

• compilation of the 2 km bathymetric grid,  

• adaptation of the model to meteorological data UM (ICM UW), 

• compilation of a data set with meteorological forecasts (UM) from 2010 and 

2011 in the required format, preparation of the initial fields for the Baltic area in 

the 2 km grid, 

- development of the operational system for data retrieval necessary for the 

model 3D CEMBSv2, 

- development of the operational ecohydrodynamic model (3D CEMBSv2) in 

the parallel version on the 2 km grid with rivers and the open boundary: 

• compilation of climatic river discharge , 

• compilation of climatic conditions along the open boundary.   

This paper presents an integrated, operational model of the Baltic ecosystem – 

the hydrodynamic part, the ocean-ice module POPCICE (version 2.1 and 4.0) 
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and the initial verification, the comparison of the obtained results with data from 

other models and measurements in situ.  

 
Fig. 1. Schematic presentation of the Baltic model  

 

2.  3D-CEMBSv2 MODEL  

CCSM4.0/CESM1.0 (the Community Climate System Model/Community Earth 

System Model) consists of five separate elements with an additional coupler 

(CPL7), which monitors the time, exciting forces, domains, grids and exchange 

of information between models. The central part of the model is based on MCT 

(The Model Coupling Toolkit) – which is a parallel tool providing a number of 

services, such as a register of particular components of the model, descriptors of 

the domain distribution into processes, communication, redistribution of data 

and other very helpful tools. For our purposes, CESM was adapted for the Baltic 

Sea and was called 3D-CEMBS. However, it is not an entirely active 

configuration. The ocean model (POP, version 2.1) and the ice model (CICE, 

version 4.0) work in the active mode, and they are imposed by the model of 

atmospheric data (datm7). Other models are excluded from this configuration 

(the stub mode). The main task of datm7 is interpolation of atmospheric data 

into the domain of the model. External forces are daily-averaged for the period 

of forty years, which come from the ECMWF re-analysis (ERA-40). At present, 

in the operational mode, 48-hour atmospheric forecasts are used, which are 

supplied by the UM model of the Interdisciplinary Centre for Mathematical and 

Computational Modelling of the Warsaw University. 3D-CEMBS Model is also 

equipped with the ecosystem module, on which works are being currently 

carried out in order to incorporate it into the operational mode. 

 

POP 

The ocean model is based on the Parallel Ocean Program (POP, [7]) from the 

National Laboratory in Los Alamos (LANL), which is derived from the global 

ocean model ([6]) with additional conditions for free surface. This is a model of 

‘z’ type (identical thickness of layers for every cell); the three-dimensional 
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equations describing the behaviour of the stratified ocean are solved by 

parametrization. Numerically the model defines spatial derivatives in the 

spherical coordinates using the method of finite elements. Physical quantities of 

the model are embedded in the spherical grid of Arakaw B ([1]). The barotropic 

equation is solved by ’preconditioned conjugate gradient solver’ (PCG), and 

advection is determined by a centred differential. Parametrization of horizontal 

mixing is accomplished by a biharmonic operator, and vertical turbulence is 

determined by KPP parametrization. The equation of state, introduced by 

McDougall et al. ([5]), is also used. 

POP is a three-dimensional hydrodynamic model derived from the ocean model 

created in the late 1960s by Kirk Bryan ([3]) and Michael Cox from the NOAA 

Geophysical Fluid Dynamics Laboratory in Princeton. The model was later 

modified and adapted by Semtner ([6]) for vector processors. The whole class of 

models from which POP is derived are of Brayan-Cox-Semtner type (B-C-S). 

The code of the model is adapted inter alia for supercomputers, but is well 

adaptable (porting) also for machines of different architecture, such as cluster 

types. The code of the POP model is characterised by good numerical 

performance and is well scalable on a large number of O(1000) processors. A 

special feature of the POP code (written in Fortranie 90) is orientation to 

parallel machines and the use of MPI (Message Passing Interface) or SHMEM 

(Shared Memory) libraries to communicate between processors. And therefore, 

the most technologically advanced machines can be used to perform 

calculations and to solve major computational problems. 

CICE 

CICE (Community Ice CodE) is based on elastic-visco-plastic (EVP) rheology 

([4]). It is designed to work in accordance with the POP ocean model using the 

parallel computing machines. It consists of several interactive elements: the 

thermodynamic model, which computes local growth rates of snow and ice 

owing to vertical conduction of energy and momentum fluxes. It also defines 

velocity of each ice cell based on wind and ocean velocity. It has a few vertical 

categories, so that the stress distribution is much closer to the real one. 

CICE was applied worldwide in different configurations. It was used to study 

the variability and the impact of ice on the processes occurring in the 

atmosphere and the ocean in time scales ranging from decades to hundreds of 

years ([2]). It is used in regional models and global applications. Incorporation 

of the CICE model (version 4.0) into the regional POP model (version 2.1), 

completed within the scope of the research grant (No NN305111636 − the 

Polish State Committee for Scientific Research), is the first application of such 

an advanced ice model for the Baltic Sea. 

Ecosystem 

The ecosystem model consists of 11 main components: zooplankton, small 

phytoplankton, diatoms, cyanobacteria, two types of detritus deposits (fraction 

of dissolved DOM and molecular POM detritus), dissolved oxygen, and 

components of nutrients, such as: nitrates, ammonia, phosphates and silicates. 

The class of small phytoplankton should reflect nano- and picophytoplankton, 

and can be limited by nitrates and phosphates. The class of larger phytoplankton 
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is represented by diatoms and can be limited by the aforementioned factors, as 

well as by silicates. The growth rate of cyanobacteria may depend on 

phosphates and the available light. Many biotic and detrital compartments 

contain multiple elemental pools as we track carbon, nitrogen, phosphorus and 

silicon through the ecosystem. 

3D-CEMBS model is currently configured at two horizontal resolutions of 9 km 

and approximately 2km (1/12° and 1/48° respectively). The model bathymetry 

is represented by 21 vertical levels and the thickness of the first four surface 

layers was five metres. The bottom topography is based on ETOPO1 1 arc-

minute global relief model  

(http://www.ngdc.noaa.gov/mgg/global/global.html, National Geophysical Data 

Center). The bathymetric data were interpolated to the model grid using the 

kriging method. The initial state of the ocean model was prepared using 

temperature and salinity climatic data. The ocean surface level (5m deep) is 

restored based on the monthly timescale to the monthly average T and S 

climatology, as a correction term to the explicitly calculated fluxes and 

overlying atmosphere or sea ice. The restoring time was set to 30 days at the 

surface and 10 days at the domain boundary. 3D-CEMBS model domain is 

based on stereographic coordinates, but the equator of these coordinates is in the 

centre of the Baltic Sea (so we actually use rotated stereographic coordinates) 

and we can assume that shape of the cells is square and they are identical. 

The current calculations are performed on supercomputers of cluster type, 

Galera, which is located at TASK (the Academic Computer Centre in Gdańsk). 

The time needed for computing 1 model year, for the ecohydrodynamic model, 

for resolution of 9km, is 30 h on 16 processors, and for resolution 2km – 120 h 

on 256 processors.  

 

3.     Results 

In the first half of 2011, the new CESM model (Community Earth System 

Model - UCAR/NCAR USA) was adapted for the Baltic domain.  

Models have been adapted and work properly (see the website). The results of 

simulations for 48-hour forecast are presented for the model with resolution of 

9 km and 2 km. 

Select 2km forecast for the area or the point (Fig. 2). 
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Fig. 2. Select 2km forecast for the area.   

Simulations for 48-hour forecast for 2 km:  

Forecast for the area: 

• select the time of forecast (48-hour forecast) (Fig. 3a), 

• select a required variable (temperature, salinity, currents, sea surface height, 

ice cover area) (Fig. 3b), 

• select the depth, one of the ten layers for which you would like to see the 

model results (Fig. 3c),  

• optionally you may provide boundaries to narrow the area of your query by 

selecting two random points (corners of a rectangle) on the map (Fig. 3d), 

• to change coordinates x and y of selected points, press: Reset Coordinates  

(Fig. 3e), 

• after all parameters are selected, press: Submit (Fig. 3f). 
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 Fig. 3. Forecast for the area. Choose parameters of forecast for 05.03.2012. 

 

The example is presented below for the following situations:  

1. Forecast start: 2012.03.05, 18:00 UTC (Fig. 4) 

Select forecast parameters: hour: +6 (forecast is for 2012.03.06, 00:00 UTC), 

variable: currents (cm s
-1

); depth: 20-26 m (5th layer), coordinate X: 187 to 425, 

coordinate Y: 32 to 168. After selection of parameters, press: Submit and the 

screen will show a drawing with results of the model. 
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Fig. 4. Forecast for the area. 

 

Forecast for the point :  

• select the depth, 

• select a point on the map to get 48 h time series,  

• to change coordinates x and y of selected points, press: Reset Coordinates,   

• after selection of all parameters, press: Submit 

The example is presented for the following situation:  forecast start: 2012.03.05, 

12:00 UTC (Fig. 5). 

 

4. Conclusion 

The work presents the idea of a three-dimensional Coupled Ecosystem Model 

Baltic Sea version 2 (3D CEMBSv2) – a hydrodynamic part, which determines 

the main physical parameters of the environment:  horizontal components of the 

velocity u,v and the vertical component of velocity w, pressure p, density ρ , 

temperature T and salinity S of water. Variables presented on the website for 48-

hour forecast are as follows: temperature, salinity, currents, sea surface height 

and ice area cover. 

The 3D CEMBSv2 model (at present – the hydrodynamic module) is a suitable 

tool for studying the annual, seasonal, monthly and daily variability of 

environmental parameters in the southern Baltic Sea. It can therefore be applied 

in the forecasting of ecological changes in the Baltic. 
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Fig. 5. Forecast for the point.. 
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Abstract: This paper aims at describing a novel approach to the analysis of the 

experimental void fraction time series detected from air-water upward two phase flows in 

a vertical channel. This system can express a great variety of different flow patterns, 

whose characterisation and classification strongly depends on the approach used for 

feature extraction. Phase space analysis in a traditional delayed embedding has allowed 

for the observation of the complex dynamics of the system. Nonetheless, the attractors 

obtained in a delayed embedding, though characterised by a regular complex structure, 

appear partly folded and are affected by noisy hydrodynamic high order dynamics. 

The present paper proposes the application of the SVD approach with the aim of 

assessing a more appropriate embedding into the phase space spanned by the principal 

vectors. In this way the dominant features of the system dynamics can be separated from 

noise-like dynamics, i.e. unfolded and noise-free attractors can be obtained. 

 

Keywords: Feature extraction, Two-phase flows, Experimental nonlinear dynamics, 

SVD analysis. 

 

1. Introduction 
Several basic industrial processes, ranging from power generation, chemical and 

processing plants to oil pipelines, present heat and mass transfer applications of 

two phase flows. When two phase flows occur, very different flow patterns can 

be observed as well as transitions from a flow pattern to another. Indeed, the 

dynamical behaviours associated to the various types of flow pattern established 

in the system represent critical factors for the performances of such industrial 

systems. This explains the great efforts that have been and are still devoted to 

flow patterns identification, which represents a fundamental basis for 

appropriate characterisation of two phase flow systems. 

The dynamics of two phase flows are typically of highly complex pulsating 

nature, under the effect of several nonlinearities deriving from the strong 

coupling of different mechanisms and of the dependence on various factors. 

Among the others, the most important factors are the differential action of 

gravity on the two phases and the effect of shear and surface tension forces at 

their interface. As a consequence, several different flow patterns can be 

identified, each of which can be characterised in terms of the dynamical 

behaviour of the void fraction time series. 
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Among the other, two phase flows of air-water mixtures are often theoretical 

and experimental analysed with the aim of achieving a reference perspective on 

the general dynamical behaviours, often valid also for more complex flows, 

such as those arising in presence of phase changes. In particular, the present 

study aims at analysing the behaviour of ascending air-water two phase flows in 

vertical pipes. For this kind of flows heat transfer phenomena connected to 

phase change are not involved, so that the flow pattern established in the system 

mainly depends on the mass flow rates of the two phases. By varying the mass 

flow rate of the two phases, in fact, bubbly, slug, churn and annular flows can be 

identified as the main flow patterns typical of several classifications [1-3]. 

The bubbly flow exists for low values of the gas mass flow rate and consists in 

the motion of dispersed and small gas bubbles in the liquid phase. Coalescence 

phenomena are at the basis of the transition from bubbly to slug flow, which can 

be observed by increasing the gas mass flow rate. Slug flow is characterised by 

gas bubbles, namely Taylor bubbles, enveloped by a liquid film separating them 

from the pipe walls, alternated to liquid slugs. In the class of slug flow, it is 

possible to distinguish between: cap flow, with short air bubbles (with the head 

approximately connected to the tail) separated by long liquid slugs; plug flow, 

with gas bubbles and liquid slugs of comparable length; proper slug flow, 

characterised by elongated gas bubbles separated from relatively short liquid 

slugs, often aerated for the presence of small dispersed air bubbles. 

For growing gas mass flow rate, bubble coalescence and increasing aeration of 

the liquid slug leads to a highly unstable flow pattern addressed as churn flow, 

characterised by waves propagating through the liquid film enveloping the 

bubbles and occasionally falling within the tube, so to form a short, unstable and 

highly aerated liquid slug. Finally, the annular flow consists of a thin annular 

liquid film at the tube wall on which small ripples, interspersed occasionally 

with large disturbance waves, flow in a regular manner up the tube. 

It is usual practice to perform flow pattern identification on the basis of the 

differences of the dynamical behaviour of the time series of the local void 

fraction. Therefore, the reliability of the identification approach is highly 

dependent on the accuracy of the technique adopted to measure the void 

fraction. Several techniques have been proposed [4-9] and impedance 

measurements seem to be recognized as the most reliable [6]. At the same time, 

the performances of flow patter identification approaches depend also on the 

techniques adopted for time series analysis and feature extraction. Statistical [1, 

2, 6] or spectral [9-12] techniques indeed represent the typical approach for flow 

patterns identification on the basis of the analysis of the experimental void 

fraction time series. Nonlinear techniques have been also adopted, among the 

others see [10, 13-16], but a main drawback has been represented by the 

relatively poor spatial and temporal resolution of the experimental time series. 

In order to address this problem, the experimental time series considered in the 

present study have been detected by means of a resistive probe characterised by 

high temporal and spatial resolution, which has been appositely set-up as 

described in [17]. The preliminary analysis in a delayed embedding of the void 
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fraction time series detected by means of this sensor has shown the existence of 

strange attractors of interesting morphology for the various flow patterns [18]. 

Nonetheless, attractors obtained in this way are somewhat noisy as a 

consequence of the superposition of high order dynamics to the dominant 

dynamics characterizing the flow pattern. Among the others, the most important 

high order “noisy” dynamics are those of hydrodynamic nature associated to 

small diameter bubbles dispersed in the liquid slugs and to disturbances on the 

liquid film enveloping the Taylor bubbles. 

Therefore, the present study aims at extracting the dominant features of the flow 

dynamics under various flow pattern conditions so to separate the dominant 

features of the system dynamics from noise-like dynamics. The proposed 

approach is analogous to that proposed in [19] and is based on the calculation of 

the singular vectors of a n-dimensional delayed embedding, through the 

application of the technique known as Singular Value Decomposition (SVD) 

[20], and in the analysis of the restricted portion of the dynamics that is obtained 

by projecting the attractor onto the phase space spanned by the singular vectors 

corresponding to the three highest singular values. 

Reported results, show that the attractors described in the new embedding 

present a well defined and regular structure, indicating the existence of a low 

order source of the system dynamics, which will be analysed in future studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Experimental apparatus 

 

2. Experimental Apparatus 
The experimental apparatus reported in Fig. 1 has been built and tested in order 

to study the dynamics of two-phase flow in vertical pipes. The test section is a 

vertical pipe of diameter 0.026 m diameter and length 3 m. The apparatus is 

equipped by an electromagnetic flowmeter and three air flow metres, 
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respectively used for the measure of the water velocity and mass flow rate and 

for the regulation of the air flow rate in the range between 10 and 210 l/min. The 

air is supplied to the mixing section by a pressurised tank fed by a compressor, 

whereas the water flow rate can be varied in the range 0-150 l/min by means of 

a series of valves and bypasses placed at the pump outlet. 

A resistive probe for the measure of the void fraction is placed at a distance of 

over 100 times the diameter of the pipe from the mixing section, i.e. over the 

required entry region for two phase flows, in order to ensure a well established 

flow regime. In particular, the void fraction probe has been designed and 

realised for the experimental campaign and operates in the resistive range 

(carrier frequency of 20 kHz). The sampling frequency was set at 1 kHz with a 

cut-off frequency of 200 Hz. A detailed description of the experimental probe 

and on the wide set of experimental tests performed is reported in [17]. 

 

3. Dynamical Feature Extraction 
The results of preliminary linear analyses of the experimental time series have 

been shown to be unable to deal with the intrinsic complexity of two phase 

flows dynamics. Hence, in [18] a morphological analysis of the three-

dimensional attractors has been proposed in a classical Takens’ delayed 

embedding of the experimental void fraction time series [21]. In particular, it 

has been observed that the attractors obtained for some of the flow patterns are 

characterised by a regular fractal structure, which is indeed one of the most 

important evidences of deterministic chaotic behaviour. 

In the present study, the aim is to improve the dynamical representation by 

adopting a new embedding, derived through the application of Singular Value 

Decomposition technique, SVD [20], to the classical delayed embedding based 

on Takens’ theorem, similarly to the approach proposed in [19]. The new 

representation is characterised by a drastic reduction of noisy dynamics and, 

above all, a sensitive improvement of the attractor unfolding, so that the 

dominant morphological characteristic can be fully exploited. 

As a first step, the phase space reconstruction consists in the creation of a n × w 

matrix, S, where n is the length of a window moving through the data and w are 

the independent variables defining the phase space, i.e. delayed version of the 

experimental void fraction time series s(t)=(s0, s1, s2, …, si, …), with each 

column delayed τ time steps from the previous. The condition w>2d+1 for an 

appropriate embedding is implicitly respected if w is set much greater than the 

unknown fractal dimension d on the basis of a preliminary estimation. 

The second step consists in the application of the SVD approach to matrix S. 

This is done through the calculation of a new diagonal matrix, equivalent to the 

original one, i.e. with identical singular values but in decreasing order. In 

particular, S is factorized into its singular values according to equation: 

Λ = M
T
 S C (1) 

In (1) Λ is the diagonal matrix containing the singular values of S in decreasing 

order and M and C are the matrices of the singular vectors associated with Λ. 
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Details on the factorization can be found in [20]; what is interesting for the 

scopes of the present study is that the high level singular values in Λ are 

associated to the dominant singular vectors, i.e. those representing the dominant 

features of the system dynamics, whereas the low level ones correspond to local 

behaviors or noise-like components. Therefore, the system can be virtually 

partitioned into two subsystem: the first deriving from noise free data (i.e. the 

main features and the relevant details) and the second from noisy dynamical 

behaviours, which can be considered superimposed and then eliminated. 

 

4. Results and Discussion 
The described approach has been used in the present study in order to obtain a 

denoised and unfolded representation of the experimental dynamics. The SVD 

technique has been applied to the delayed embedding S of the experimental void 

fraction time series, created considering τ=1 and w=40 in order to ensure that w 

is sufficiently greater than m, i.e. greater than the (unknown) system dimension. 

The length n of the observation window has been set at 10000 data samples in 

order to be wide enough to obtain a well defined attractor in phase space, i.e. an 

attractor whose morphology does not change if further data samples are added. 

The claimed advantages of the proposed methodology can be observed in the 

results reported in the Fig. 3 to 8, which report the attractors of the same 

operating condition in two different embeddings. In particular, the phase space 

adopted for the plots on the left hand side of each figure is the basic three 

dimensional Takens’ delayed embedding, whereas the projections on the 

pseudo-phase space spanned by the three dominant principal vectors of the 

improved embedding obtained through application of SVD are those reported on 

the right hand side of each figure. By comparing the two methods of 

representation it is possible to observe that the attractors in the delayed phase 

space are in all cases sensibly affected by a higher noise level and are not 

sufficiently unfolded with respect to the corresponding attractors in the principal 

component embeddings, the last being characterised by a very low level of noise 

and a satisfactory unfolding. It is worth to remind that, even if the two attractors 

of each flow pattern appear different, they are, nonetheless, expressions of the 

same dynamical behaviour. In fact, they are morphologically equivalent and, 

therefore, characterised by the same invariants of the dynamics, such as fractal 

dimension and Lyapunov exponents [22-25]. 

The successful unfolding contributes to the achievement of a clear and well 

defined morphology of the attractors. This is a main advantage for the 

distinction of different flow patterns through a comparison of the representation 

of their dynamics in the phase space spanned by the principal components. 

Moreover, in some cases the proposed embedding amplifies important 

characteristics of the system dynamics. For example, the right hand cap flow 

attractor in Fig. 4 shows a clear distribution of the trajectory in alternated bands, 

which is a hint of the fractal (i.e. chaotic) nature of the system dynamics. 

Finally, the representation in the principal component phase space is very 

effective in underlining the differences between the various flow patterns. 
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Fig.3 Attractors in the delayed and principal component embeddings for the 

bubbly flow; air flow rate 2 lit/min - water flow rate 32.4 lit/min. 

 
Fig.4 Attractors in the delayed and principal component embeddings for the cap 

flow; air flow rate 5 lit/min - water flow rate 20.28 lit/min. 

 
Fig.5 Attractors in the delayed and principal component embeddings for the plug 

flow; air flow rate 10 lit/min - water flow rate 9.06 lit/min. 

 

Each type of flow pattern is, in fact, characterised by a specific morphology, 

sufficiently different from that of the other flow patterns. 

In particular:  

- each flow pattern attractor occupies a different phase space region; 

- each attractor differently “fills” its own region of phase space; for example, 

the cap flow attractor (properly 3-D) has a higher filling rate than that of the 

plug flow (which moves around a sort of 2-D limit cycle); 
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- the attracting region is progressively shifted, with a continuous trend from 

bubbly to annular flow, with respect to the first principal component. 
 

These differences are very important as the morphological considerations drawn 

insofar are related to the fractal nature and to the stretch and folding behaviour 

of the attractors [24], which can be considered as the topological expressions of 

the mentioned invariants of the dynamics, whose calculation is behind the scope 

of the present study and will be the object of future studies. 

 

5. Conclusions 

This study proposes a phase space approach for the description of typical 

complex dynamics of two-phase flow. At first the singular vectors of the 

classical delayed embedding are calculated and the attractors of the system 

dynamics are projected on the state space spanned by these eigenvectors. In this 

way the dominant feature of the dynamics, corresponding to a subset of the 

highest singular values, are separated from noisy dynamics in the time series, 

corresponding to the remaining lower singular values. The morphology of the 

attractors in the obtained unfolded and noise-free representation are analysed. 

Reported results demonstrate that the proposed approach represent a powerful 

tool for the identification of two-phase flow patterns. 

 

 
Fig.6 Attractors in the delayed and principal component embeddings for the slug 

flow; air flow rate 40 lit/min - water flow rate 16.80 lit/min. 

 
Fig.7 Attractors in the delayed and principal component embeddings for the 

churn flow; air flow rate 80 lit/min - water flow rate 9.01 lit/min. 
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Fig.8 Attractors in the delayed and principal component embeddings for the 

annular flow; air flow rate 80 lit/min - water flow rate 5.58 lit/min. 
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