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Abstract: Negative differential resistance effect in the current-voltage characteristic of 

an electrode immersed into plasma, associated with the bistability, hysteresis and 

generation of a fireball, was experimentally evidenced. This instability is modeled in the 

frame of the scale relativity theory. So, we assume that the charged particle movements 

take place on continuous but non-differentiable curves, i.e. on fractal curves. Then, the 

complexity of these dynamics is substituted by fractality. Every type of elementary 

process from plasma induces both spatio-temporal scales and the associated fractals. The 

movement complexity is directly related to the fractal dimension; the fractal dimension 

increases as the movement becomes more complex. We obtained a very good agreement 

between the experimental results and those provided by the theoretical model. 

Keywords: Negative differential resistance, Bistability, Hysteresis, Fractal, Scale 

relativity theory, Pattern formation.  

 

1. Introduction 
The transitions between distinctly stable states are very often observed in 

physical science and technology, especially in systems in which transport of 

electrical charges occurs. These transitions are associated with bistabilites, 

experimentally manifested by the presence of the negative differential resistance 

(NDR) of S- or N-type. Despite of the existence of many models, the physical 

origin of these effects is still a disputed subject in nonlinear physics. 

In plasma physics it is well known that the S-type NDR is related to the 

appearance and disruption of a complex space charge structure (e.g. double 

layers, multiple double layers, etc.) [1,2,3], whereas the N-type NDR is related 

to the spatio-temporal dynamics of such a structure [4,5], or to the onset of low-

frequency instabilities [6,7,8]. 

A negative resistance requires an active component in the electrical circuit able 

to act as a source of energy. In plasma systems, this component could be a self-

consistent double layer existing at the border of a fireball. The double layer 

works as a nonlinear element of circuit able to convert thermal energy into 

electrical energy, creating all the conditions necessary for the appearance of the 

S-type NDR in the current-voltage characteristic of a plasma conductor. 

Here, we report on experimental results and theoretical modeling of the S-type 

NDR effect in plasma conductors. The proposed theoretical model explains the 

relation between the negative differential resistance and the self-structuring of 
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plasma as double layer, as well as the shape of the current-voltage characteristic 

of an electrode immersed into plasma, in conditions in which a double layer 

structure appears in front of it. 

 

2. Experiment 
The experiments were performed in a plasma diode, schematically presented in 

Fig. 1. Plasma is created by an electrical discharge between the hot filament 

(marked by F in Fig. 1) acting as cathode and the grounded tube (made of non-

magnetic stainless steel) as anode. Plasma density may be changed by varying 

the discharge current. The plasma was pulled away from equilibrium by 

gradually increasing the voltage applied to a tantalum disk electrode (marked by 

E in Fig. 1), under the following experimental conditions: argon pressure p = 

10
–2

 mbar, plasma density npl ≅ 10
7
 – 10

8
 cm

–3
 and the electron temperature kTe 

= 2 eV. 

 
 

Fig. 1. Schematic of the experimental setup (F – filament, A – anode, E – 

supplementary electrode, U1 – power supply for heating the filament, U2 – 

power supply for discharge, PS – power supply for supplementary electrode 

bias, R1, R2 – load resistors). 

 

Figure 2 shows a family of current-voltage (I –U) characteristics of the electrode 

E, obtained for different values of the discharge current (proportional to the 

equilibrium plasma density). These characteristics were recorded by using an X-

Y plotter, which averages the small amplitude fluctuations of the current 

collected by the electrode. The I - U characteristic starts with an ohmic branch 

(linear dependence between I and U), ending at a critical value of the voltage 

applied on the electrode, when a sudden increase of the current appears, 

associated with a negative differential resistance effect. In other experimental 

conditions (higher plasma densities and lower values of the load resistor), a 

sudden jump of the current was recorded [8]. Figure 3 shows such a 

characteristic recorded by increasing and subsequently decreasing the voltage 

applied on the electrode. The hysteresis phenomenon is also present in this case. 

Simultaneously with the current increase, an intense luminous, almost spherical 

structure develops in front of the electrode, known as fireball or ball-of-fire (see 

photo in Fig. 4). Emissive probe measurements proved that the structure consists 

U1 U2 
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R1 

PS 

A 
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of a positive core (ion-rich plasma) confined by an electrical double layer. The 

voltage across the double layer is equal with the ionization potential of the used 

gas, argon in this case. The development of the fireball corresponds to the 

negative differential resistance region of the current-voltage characteristic. 

 

 
Fig. 2. Set of current-voltage characteristics of the electrode E, for different 

values of the discharge current (proportional to the plasma density). 

 

 
Fig. 3. Current-voltage characteristic of the electrode E at the value of the 

discharge current Id = 150 mA. 
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Fig. 4. Photo of the fireball developed in front of the supplementary electrode E. 

 

2. Theoretical model 
Since the instability analyzed here is generated at spatio-temporal scales at 

which the ionic component of plasma is inertial, while the electronic one is not 

inertial, we will analyze in the following just the electronic component of 

plasma. All the physical quantities that describe the dynamics will be 

normalized with respect to the quantities characteristic of the electronic 

component of plasma. By employing the one-dimensional hydrodynamic model, 

we can write the dynamic equations for particles as follows [9] 

i) the continuity equation 

 

                              
( )

0=
∂

∂
+

∂
∂

x

nv

t

n
             (1) 

 

ii) the momentum equation 

 

                 
1v v q p

v
t x m x nm x

ϕ
ζ

∂ ∂ ∂ ∂
+ = − +

∂ ∂ ∂ ∂
            (2) 

 

where n, m, q, v are the density, mass, charge and speed of electrons, 

respectively, while p is the pressure, φ is the electrostatic potential and ζ is the 

electron-neutral collision term. Using the normalized variables 

 

         tpωτ = , 
Dx λξ = , 

0nnN = , cvV = , 

                     ( )Bq k Tφ ϕ= , 2

Bc k T mγ= , cζ ζ ω=       (3a-g) 

 

where ωp is the plasma frequency, λD is the Debye length, n0 is the equilibrium 

density of particles, c is the acoustic speed, kB is the Boltzmann constant, T is 

the particle temperature and γ is the adiabatic index, the equations systems (1) 

and (2) become 
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∂
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∂
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ξτ
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            (4) 

 

                   
1V V N

V
N

φ
ζ

τ ξ ξ ξ
∂ ∂ ∂ ∂

+ = − +
∂ ∂ ∂ ∂

            (5) 

 

In the following, we will build an analytical solution for the system (4) and (5), 

in the stationary case, by considering that the quasi-neutrality condition for 

plasma is fulfilled at any time (which involves the abandon of the Poisson 

equation), while the electron pressure adiabatically varies (for details see [9]). 

For this, in the equations system (4) and (5) we make the following change of 

variable: 

 

                                   Wθ ξ τ= −              (6) 

 

where W is a quantity that will be later specified. With this transformation, we 

find: 

 

                          
( )

0
d NVdN

W
d dθ θ

− + =             (7) 

 

              
1dV dV d dN

W V
d d d N d

φ
ζ

θ θ θ θ
− + = − +            (8) 

 

After integration, from the continuity equation it results 

 

                     ( ) 1N V W c− = − , c1 = const.       (9a,b) 

 

while from the momentum equation it results 

 

  ( )
2

2ln
2

V
WV N cφ θ− = − − , ( ) ( )2c dθ ζ θ θ= −∫    (10a,b) 

 

Now, through the current density 

 

                           
1J NV c NW= = − +           (11) 

 

we obtain the voltage-current characteristic ( ),Jφ φ θ=  in the form 
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( ) ( )
2 2

22

1 1

1

, ln ln 1
2

2 1

W W W J
J c

c cJ

c

φ θ θ
 

= − − + + + − 
   

+ 
 

        (12) 

 

In the equation (12), it’s very difficult to find the explicit form of the collision 

term ( )2c θ  (for details see [9,10]). We can simplify the problem by supposing 

that the dynamics of the electronic component of the diode plasma display 

chaotic behaviors (self-similarity and strong fluctuations at all possible scales 

[11,12]), so that the electrons move on continuous but non-differentiable curves, 

i.e. fractal curves. Between two successive collisions the trajectory of any 

particle is a straight line, while the trajectory becomes non-differentiable in the 

impact point [12,13,14]. Once such a hypothesis is accepted, specific 

mechanisms are started [12,13,14] leading to the following results: 

   (i) the explicit form of the collision term is assimilated by the fractality of the 

electrons trajectories, so that the electrons motion becomes “free”. 

Mathematically, this means that c2 is independent of the variable θ, i.e. 

( )2 2 constc cθ → = , case in which relation (12) becomes: 

 

    ( )
2 2

22

1 1

1

ln ln 1
2

2 1

W W W J
J c

c cJ

c

φ
 

= − − + + + − 
   

+ 
 

        (13) 

 

   (ii) the dynamics of the electronic component of the diode plasma can be 

described through fractal functions [11,12], i.e. functions that depend on both 

standard coordinates (time and space coordinates) and resolution scale. In such a 

conjecture, let’s consider the approximation 
1 1J c <<  in relation (13) with the 

choice ( )1 2expW c c= − . We obtain: 

 

                      
2 2

1

1

2
2 1 2

W W J

cJ

c

φ + ≈ +
 

+ 
 

          (14) 

 

By extending in the complex space and by recalibrating the coordinates origin 

 

                   

1

2
J

iJ
c

→ , W ia→ , 2 iφ φ→      (15a-c) 

 

relation (14) becomes: 
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2

1
1

a
J

J
φ  ≈ + + 

          (16) 

 

Equation (23) is of the third order in J , so it could have three real roots, i.e. to a 

single value of the field φ  correspond three different values of the field J . The 

curves ( )J F φ=  in Fig. 5 show a maximum and a minimum when the 

parameter a surpasses a certain value. These maximum and minimum values 

can be found by canceling the first derivative of the function (16): 

 

                  
( )

( )

2

2
2

1
0 1 0

1

a Jd

dJ J

φ −
= ⇒ + =

+
         (17) 

 

This is a biquadratic equation with the solutions: 

 

                    ( ) ( )2

1,2

1
2 8

2
J a a a = − ± −

 
          (18) 

 

Equation (18) will have two different real (positive) solutions only if a > 8. For 

such values of the parameter a, the curve ( )J F φ=  has two extremes, so the 

system shows bistability. This situation is easy to be understood if we look at 

the curve corresponding to a = 18 in Fig. 5. If φ  slowly increases from 0φ = , 

J  increases until it reaches the point marked by B. Further increasing φ  will 

determine a sudden jump of J  until the point marked by C is attained, because 

the region BD of the curve contains unstable states, which cannot be 

experimentally accomplished. When φ  decreases from values greater than the 

critical value corresponding to the point marked by C, J  decreases until the 

point marked by D is reached. If we further decrease the value of φ , J  will 

jump to the point marked by A, following the curve to the origin. Thus, for 

values of the field φ  in the interval AB, the field J  can have two different 

stable values. This bistable behavior determines the negative differential 

resistance. A good qualitative agreement can be observed between the 

experimental current-voltage characteristics from Figs. 2 and 3 and those 

obtained from the theoretical model in Fig. 5. In such a context, the quantity W 

is proportional (through the quantity a) to the normalized discharge current 

density. 
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Fig. 5. Theoretical dependence of the normalized current on the normalized 

potential. 

 

 

3. Conclusions 
A negative differential resistance effect in the current-voltage characteristic of 

an electrode immersed into plasma was experimentally recorded. It was found 

that this instability appears simultaneously with the generation of a fireball at 

the increasing of the voltage applied to the electrode. In order to explain these 

experimental results, a theoretical hydrodynamic model was built assuming that 

the ionic component of plasma is inertial, the electronic component is non-

inertial and that the electrons move on continuous but non-differentiable curve, 

i.e. fractal curves. The negative differential resistance effect is associated to a 

bistability. 

Acknowledgment 
This work was supported by the Romanian National Authority for Scientific 

Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0650. 

 

References 

1. R. A. Bosch and R. L. Merlino. Sudden jumps, hysteresis, and negative resistance in 

an argon plasma discharge. I. Discharges with no magnetic field, Contrib Plasma 

Phys 26:1-12, 1986. 

2. E. Lozneanu, V. Popescu and M. Sanduloviciu. Negative differential resistance related 

to self-organization phenomena in a dc gas discharge. J Appl Phys 92:1195–1199, 

2002. 

3. S. Chiriac, M. Aflori and D. G. Dimitriu. Investigation of the bistable behaviour of 

multiple anodic structures in dc discharge plasma. J Optoelectron Adv Mater 8:135–

138, 2006. 

4. M. Sanduloviciu, E. Lozneanu and S. Popescu. On the physical basis of pattern 

formation in nonlinear systems. Chaos Solitons and Fractals 17:183–188, 2003. 

5. S. Popescu. Turing structures in dc gas discharges. Europhys Lett 73:190–196, 2006. 

8



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

6. C. Avram, R. Schrittwieser and M. Sanduloviciu. Nonlinear effects in the current-

voltage characteristic of a low-density Q-machine plasma: I. Related to the potential 

relaxation instability. J Phys D: Appl Phys 32:2750-2757, 1999. 

7. C. Avram, R. Schrittwieser and M. Sanduloviciu. Nonlinear effects in the current-

voltage characteristic of a low-density Q-machine plasma: II. Related to the 

electrostatic ion-cyclotron instability. J Phys D: Appl Phys 32:2758-2762, 1999. 

8. S. Chiriac, D. G. Dimitriu and M. Sanduloviciu. Type I intermittency related to the 

spatiotemporal dynamics of double layers and ion-acoustic instabilities in plasma. 

Phys Plasmas 14:072309, 2007. 

9. F. F. Chen. Introduction to Plasma Physics, Plenum Press, New York, 1974. 

10. Y. Elskens and D. Escande. Microscopic Dynamics of Plasma and Chaos, IOP 

Publishing, Bristol, 2002. 

11. B. Mandelbrot. The Fractal Geometry of Nature, Freeman, San Francisco, 1982. 

12. L. Nottale. Scale Relativity and Fractal Space-Time – A New Approach to Unifying 

Relativity and Quantum Mechanics, Imperial College Press, London, 2011. 

13. M. Agop, D. Alexandroaei, A. Cerepaniuc and S. Bacaita. El Naschie’s ε(∞) space-

time and patterns in plasma discharge. Chaos Solitons and Fractals 30:470-489, 

2006. 

14. O. Niculescu, D. G. Dimitriu, V. P. Paun, P. D. Matasaru, D. Scurtu and M. Agop. 

Experimental and theoretical investigations of a plasma fireball dynamics. Phys 

Plasmas 17:042305, 2010. 

9



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

10



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

Dynamic similarities of rotors with rubbing blades 
 

Jan-Olov Aidanpää 

 

Luleå University of Technology, Luleå, Sweden  

 

E-mail: joa@ltu.se  

 
Abstract: The non-linear behaviour of rubbing cylindrical rotors have been studied in 

several papers. In such systems rich dynamics have been found for frequencies above the 

natural frequency. Below natural frequency the solution was found to be stationary. In 

this paper the influence of blades is studied. A Jeffcott rotor with three, five, ten and fifty 

blades is used and the contacts are described by large displacement beam theory. The 

model shows that bladed turbines have a similar dynamic behaviour if scaled properly. 

This imply that general conclusions for a simple system can be extracted to a more 

complex one. However it is also shown that the forces and amplitudes are not easily 

scaled and therefore if the values are wanted one have to simulate the actual system. 

 

Keywords: rotor, dynamic, impact, rubbing, beam, blade.  

 

1. Introduction 
In rotor dynamics there are several situations when non-linear problems can 

occur. One such example is rub-impact which is a highly non-linear 

phenomenon. The problem is of industrial interest since there are several 

applications where rub-impact is the main cause for unwanted vibrations e. g. 

gas turbines, centrifuges, compressors and generators. It has been reported that 

10.2% of 275 reported jet engine failures during 1962 to 1975 were caused was 

rubbing between rotating and stationary parts [1]. Several studies have been 

performed on the Jeffcott rotor with this kind of rubbing impacts. Some of them 

are described below, with focus on findings and development of methods.  

 

The jump phenomenon and the influence of radial clearance were studied 

analytically in [2]. A modified Harmonic Balance method has been used to 

predict the occurrence and analyse the stability of quasi-periodic motion [3].  In 

[4] Fourier series and Floquet theory was used for analysis of global bifurcation 

and stability. They also reported three routes to chaos; from stable periodic 

through period doubling bifurcations, grazing bifurcation and a sudden 

transition from periodic motion to chaos. The stability for the case of full 

annular rub and cross coupling stiffness was analysed in [5]. Chaos has been 

reported to exist over large parameter ranges and different solutions can coexist 

[6]. In [7] approximate analytical solutions was developed for non-linear 

dynamical responses and in [8] the harmonic balance method was used to 

calculate periodic responses of the non-linear system. In most cases the contact 

was modelled with an increased stiffness and Coulomb friction. However, other 

frictional models has also been considered [9]. In all models with annular rub, 
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the system reaches a stationary point below the natural frequency of the rotor. It 

is only above the natural frequency where complex dynamics and multiple 

solutions are found [10]. In these models the rotor and stator was assumed to be 

circular. Bladed rotors in aero engines have also been studied with complex 

FEM models [12]. Due to the complexity of these models only short time 

sequences has been analysed and therefore the dynamics on parameter ranges is 

still unknown. 

 

In a recent paper an attempt was made to model a rubbing Jeffcott rotor with 

three blades where the displacements were described by large displacement 

beam theory [13]. The model showed that when blades are included rich 

dynamics was found below the natural frequency of the rotor. Simulation time 

was also short which made the model suitable for numerical analysis. In this 

paper the same model is used but the dynamic influence of the number of blades 

is studied. The target is to evaluate similarities and differences in the dynamic 

when the number of blades are changed.  

 

2. The Model  
The model of the Jeffcott rotor is shown in Figure 1 for a case with three blades. 

The mass of the rotor, m, is supported by the shaft with stiffness k and damping 

c. The rotor is amplitude limited by the stator which has a radius R. The rotor is 

described by a point mass m in the centre and n mass less beams of length L, 

Young’s modulus E and area moment of inertia I. The rotor is rotating with the 

angular velocity ω. In Figure (C) the geometry of the contact is shown. When a 

blade is in contact the beam will be deformed transversally ∆ and axially δ. Both 

deformations are necessary in order to keep the beam inside the limit radius R. 

The contact force is described by a radial force P normal to the circle pointing 

from the contact point towards o and a tangential force µP, where µ is a 

coefficient of friction. To simplify the analysis it is assumed that ω t-φ is small 

which imply that P is an axial force and µP a tangential force on the beam. 
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Fig. 1. Rub impact model of the Jeffcott rotor. View of the whole system (A), 

side view (B) and geometry of the contact (C). 

 

If o is the centre of the stator, the vector to the contact point of the beam can be 

described as 

( ) ( ) jttLyyittLxr )cos()sin()()sin()cos()(
0

ωωδωωδ ∆−−+++∆+−+=
 

where i and j are unit vectors in x and y direction respectively. The 

displacement y0 is an initial misalignment of the rotor. When the rotor is in 

contact, the rotor is limited by the stator so that  

Rr =
 

The contact force is described by the radial force P pointing toward o and a 

tangential component given by a coefficient of friction µP. As noted above, it is 

assumed that the contact angle φ= ω t and therefore the forces on the beam are 

given by an axial compression force P and a transversal force µP. From beam 

theory the deformation of cantilevered beam is given by the equation 

( ) ( )( ) ( )( ) ( )( )δεµεε −−+−∆′+=′′ LPww
EI

P
w

2/32
1

 
where “ ´ ” denotes derivation with respect to ε. The beam is assumed clamped 

at ε=0 and subjected to the forces P and µP on the free end (ε=L-δ). At the free 

end, the beam will be displaced by the forces axially δ and transversally ∆. By 

numerical integration the values of P ∆ and δ can be found which 

satisfies Rr = . When a blade is in contact the forces in x and y directions are; 

 

k/2,c/2 k/2,c/2 

m 

(A) (B) 

(C) 

x y+y0 

ωt 

o 

R 

∆ δ L 

P 

ωt-φ 

φ µP 
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For n blades there will be one set of such forces (Fxi, Fyi) for each blade i, hence 

the equation of motion for the Jeffcott rotor then becomes 

∑
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In this paper four cases will be studied with different number of blades. In 

Figure 2 the four cases are shown where (a) is three blades, (b) five blades, (c) 

ten blades and (d) fifty blades. 

 
Fig. 2. Rub impact model for different number of blades. (a) three blades, 

 (b) five blades, (c) ten blades and (d) fifty blades. 

 

3. Method 
In this paper different bifurcation diagrams are used to evaluate the system. In 

these simulations a fourth order Runge-Kutta integration with adjustable time-

step is implemented in an in-house code written in Fortran. In the bifurcation 

diagrams 100 Poincaré sections was collected after 500 periods of the excitation 

(a) (b) 

(c) (d) 
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frequency ω. For the suggested model there are 5 dimensions in the state space: 

displacements yx, , velocities yx &&, and the phase tωφ = . Since the phase can be 

restricted to the interval [0, 2π] it can be described as a circle S
1
 with the 

period ωπ /2 . Thus points in the 5 dimensional state space are given by 

( ) 14,,,, SRyyxx ×∈θ&& . The Poincaré section ∑ is chosen as the cross section of 

this state space for a constant value of the phase
p

θ . In this paper this constant 

value is chosen to 2π. Therefore the Poincaré section is defined as 

{ }∑ == πθθ 2,,,, ppyyxx &&
. 

 

Points in this Poincaré sections are the intersections of a trajectory with the 

plane ∑ positioned at the constant phase πθ 2=
p

. If a root finding routine was 

applied at each contact, the time for finding P, ∆ and δ would make the 

simulation time consuming. Analysis of bifurcation diagrams and any global 

dynamics would be difficult. With the assumption φ= ω t, there will be an 

unique relation between the forces acting on the beam and the forces in the 

contact point. By curve fitting of the results from large displacement beam 

theory, a simple model can be made of the displacements and forces in contact. 

An effective simulation program can thereby be made to analyse the system. 

 

3. Results 

 
Fig. 3. Bifurcation diagrams for w=0-1 for different number of blades. (a) three 

blades, (b) five blades, (c) ten blades and (d) fifty blade. 

(a) (b) 

(c) (d) 

15



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 

A rubbing system is selected with R=0.11, L=0.1, ζ=0.1, y0=0.010001, E=2.06 

×10
11

, I=0.01×0.001
3
/12, m=1 and ωn=10 [SI units]. The values for EI 

corresponds to a blade in the shape of a rectangular steel beam with height 

0.001[m] and width 0.01[m]. In Figure 3 the bifurcation diagrams are shown for 

the four cases with three, five, ten and fifty blades. The displacement in y is 

scaled with the clearance (y/(R-L)). The figures shows rich dynamics below the 

natural frequency with an increasing number of chaotic regions for increasing 

number of blades.  

 

Since the frequency of the impacts will increase with the number of blades, an 

attempt is made to find similarities in the dynamics by scaling the excitation 

frequency.  In Figure 4 the same cases are shown for the case when the 

frequency axis is scaled with n/3. This is done in order to find similar excitation 

frequency as in (a) for the other cases. The gray dotted line indicates the 

maximum displacement for each frequency. In Figure 5 the maximum contact 

force is plotted for each case. 

 
Fig. 4. Scaled bifurcation diagrams for w=0-1 for different number of blades. (a) 

three blades, (b) five blades, (c) ten blades and (d) fifty blade. 

(a) (b) 

(c) (d) 
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Fig. 5. Maximum contact force for different number of blades. (a) three blades, 

(b) five blades, (c) ten blades and (d) fifty blade 

 

4. Discussion and Conclusion 
Rubbing rotors have been studied extensively but mainly with models 

describing the rotor and the stator as cylinders. In several industrial applications 

the rotor consists of blades which conditions at contact significantly differs from 

the perfect circle. The target of this paper is to evaluate similarities and 

differences for rubbing bladed rotors with different number of blades. Four 

cases are compared namely three, five, ten and fifty blades. In the bifurcation 

diagrams in Figure 3 it is shown that the amplitude decreases when the number 

of blades is increased. It is also shown that the number of regions with long 

periodic or chaotic behaviour increases for more blades. For three blades the 

system becomes unstable for frequencies close to the natural frequency of the 

system. For the other number of blades no such instability was found. 

 

Since the excitation frequency increases with the number of blades, the 

frequency axis is scaled with, n/3 (number of blades/3). Then, it was shown that 

the dynamics for scaled frequency was similar for the systems with peak 

amplitudes and chaotic regions in the same range. For low frequencies the 

amplitude is low but for an excitation frequency larger then ωn/n the amplitude 

starts to grow. At about 0.4ωn/n a chaotic region is found and the vibration 

reaches a peek at the end of the chaotic region at about 0.6ωn/n. Then a short 

periodic interval of low amplitude appears followed by a new chaotic interval 

(a) (b) 

(c) (d) 
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with increased amplitudes. The forces of Figure 5 shows peaks at the same 

position as the maximum vibration amplitudes. The actual value of maximum 

force or the maximum amplitude could not be scaled but it was shown that they 

will decrease with the number of blades.  

 

At low frequencies (<2.4ωn/n), the simulations indicates that general dynamics 

such as areas of high amplitudes and forces can be predicted together with 

location of the two first regions of chaotic motion. But for higher frequencies 

the dynamic will differ due to the number of blades. 
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Abstract: In this study, the International market gold prices over the last 31 years were 

analyzed for trends by five different methods, linear trend analysis, ARMA analysis, 

Rescaled range analysis, attractor reconstruction and maximal Lyapunov Exponent, 

detrended fluctuation analysis. Unfortunately not all methods give consistent results. The 

linear analysis reveals three regions with different trends. This is not supported by the 

rescaled range or detrended fluctuation analysis results. The maximal Lyapunov 

exponent calculation reveals chaotic behavior. The detrended fluctuation analysis reveals 

behavior close to brown noise. This is not corroborated by the rescaled range analysis, 

which indicates anti persistent behavior. The ARMA model implies first differencing that 

indicates a strong underlying linear trend. 

Combining these results, one probable explanation is that the strong linear trend, (also 

corroborated by ARMA analysis) affects the rescaled range calculation, because of its 

dependence on extreme values. The detrended fluctuation analysis removes this trend and 

reveals brown noise. This is consistent with a maximal positive Lyapunov exponent. 

Hence, we have a linear trend plus brown noise and neither of these two effects is 

dominant.     

 

Keywords: Dynamical systems, Gold Markets, Lyapunov exponents, Nonlinear Time 

Series Analysis.  

 

1. Introduction 
The goal of this paper is to provide a practical and accessible example for linear 

and nonlinear time series modeling. As a case study Gold prices in International 

markets between January 2, 1973 and March 31, 2011 is chosen. This field of 

study has been chosen for two main reasons. First, up-to-date data are available 

and it is free to download from international agencies. Second, Gold prices had 

important effects on international monetary system which is explained in 

Section two. In section three, time series definition and its key features are 

explained such as trend, seasonality. In section four, one dimensional time series 
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analysis of ARIMA and its components are explained. Section five is arranged 

for non linear time series analysis methods and linear and non linear time series 

analysis results are given. Gold has been the foundation of monetary systems for 

centuries. To illustrate the importance of Gold in monetary systems over the last 

century, one could start with the end of the British Gold Standard in 1914 to 

permit inflationary financing of World War I. As with all monetary inflations, it 

resulted in a buildup of debt as the public borrowed in order to spend money 

before loss of its purchasing power, with a view to repaying borrowings with 

currency after relative loss of its purchasing power. The end of monetary 

inflation in 1921 brought a return to stability for the UK and US. In 1929, 

collapse of overpriced equity markets resulted in deflation of consumer demand 

and depression. The cure for this came in 1935  by devaluing the paper money 

thus raising the paper money price of Gold. To restore stability and to avoid 

giving a message in favor of possible further inflation of the World Monetary 

Base, Foreign Exchange Rates were then fixed against Gold and the US Dollar 

was made convertible into Gold at a set price. The 1935 was ratified at Bretton 

Woods in 1944. Integrity of the US Dollar was guaranteed by the right of non-

US Central Banks to convert their US Dollars to Gold if they feared that the 

purchasing power of the Dollar could be devalued through excess creation of 

money. However, in 1968 this arrangement was informally, and in 1971 

formally, ended. The World Monetary system came off the US Gold Standard to 

permit inflationary financing which led directly to the Great Inflation of the 

1970’s and which, as usual, touched off  a resurgence in debt. The 1970’s Great 

Inflation of money ended in 1981, resulting in falling interest rates and 

strengthening bond and equity prices[1,2]. 

 

2. Nonlinear Time Series Analysis 
Chaos occurs from the nonlinear evolution of systems. Chaotic dynamical 

systems are ubiquitous in nature such as the tornado, stock market, turbulence, 

and weather. Firstly, phase space reconstruction is necessary to  understand that 

whether time series has chaotic behaviors or not[3,4,5]. 

The most striking feature of chaos is the limit of unpredictability of its future. 

This feature is usually called as the “sensitive dependence on initial conditions” 

or referring to the Lorenz models behavior, “butterfly effect. In this section, we 

will look at the details of nonlinear time series analysis by using mutual 

information, embedding dimension, maximal Lyapunov exponents, detrended 

fluctuation analysis and rescaled range analysis[6,7].  
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Fig. 1. Mutual Information of Overall Data 

 
Fig. 2. Autocorrelation function of Gold prices (ACF vs. Lag) 

 
Fig. 3. Mutual Information of Each Region and Overall Data 
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In order to reconstruct phase space delay time should be found and to find delay 

time there are basically two methods which are mutual information and 

autocorrelation function. 

As implied in Figure delay time of overall data is nearly 1500. Delay time is 

expected to be small as far as possible. As second method the calculation of 

autocorrelation functions were made with R Project statistics package program 

and also figures were drawn with this program. Figure shows autocorrelation 

ACF vs. lag and in this figure from first value to nearly 1000th value the ACF 

rapidly decreases and reaches zero. According to this figure delay time is nearly 

1000. After that value it fluctuates between -0.2 and 0.2.The lags do not fall 

within their standard errors for this reason it is not white noise[8,9].  

In each method delay times are too high to evaluate data as a whole. For this 

reason each region’s mutual information was drawn one by one. Delay time 

chosen from average mutual information is more reliable because it also takes 

into account possible nonlinearity. For this reason as shown in Figure delay time 

of each region are calculated and plotted with mutual information method only. 

Moreover, they are found different from each other. First region’s delay time is 

100. For second delay time is calculated as 300 and for third region 60. 

 
Fig. 4.  FNN vs. Embedding Dimension of Each Region and Overall Data 

After determining delay times embedding dimensions should be found. To find 

a satisfactory value for the embedding dimension, false nearest neighbors’ 

method provides a good estimate. After finding delay time for overall data and 

for each region the fraction of false nearest neighbors are calculated. In 

Figure14 and the fraction of false nearest neighbors versus embedding 

dimension are plotted. 

Although each regions delay times and trend behaviors’ are different from each 

other, their embedding dimensions are nearly same. All regions embedding 

dimension graphs’ are stabilizing after 8 dimensions. 
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Fig. 6. Lyapunov exponents of Overall Data   

The Lyapunov exponents are invariants of the dynamics. The maximal 

Lyapunov exponents are estimated with the use of TISEAN package and coded 

as the lyap_k routine. With the fit function of Gnuplot each region’s slopes are 

calculated.1st region’s Lyapunov exponent is 0.0308149, in 2nd  is  0.0308149, 

in  3rd is 0.0255495 and Lyapunov exponent of overall data is 0.0175337.As a 

conclusion a positive Lyapunov exponent is indicated from Gold prices. All 

Lyapunov exponents are positive on this account they are not stable fixed points 

.Moreover, they are not equal to ∞. Consequently,  they do not indicate random 

noise. However, they are positive and this shows that this time series is chaotic 

with a predictibility horizon of approximately 30. 

 

 
Fig. 7. R/S Analysis of Overall Data and Three Regions 

In order to calculate Hurst exponent for each region and overall data Gnuplot 

and its fit function were used. For each region the Hurst exponent is calculated 
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and the exponents are found to be very close to each other. In the graph below, 

1st region’s R/S slope is 0.315411 and for 2nd region is 0.285779, for 3rd is 

0.285779 and for overall data is 0.305127. If R/S slope was 0.5 it will be 

random series but it is positive and less than 0.5. Therefore, we consistently 

observe anti persistent behavior. There is a linear overall trend, as indicated by 

the first differencing plus noise. The positive Lyapunov exponent indicates that 

the noise is broadband. 

 
Fig. 8. Log n of  Overall Data and Three Regions  

 

As shown in Figure each regions’ DFA behavior is very similar to the others 

.Slopes are calculated with Gnuplot’ s fit function and they are found as that 1st 

region is  1.3136, for 2nd region is 1.45522,  3rd region is 1.46538 and for 

overall data is 1.4911. As explained in chapter 5 if the slope of DFA is 1.5 it is 

shows random walk model. All regions especially DFA slope of overall data is 

nearly 1.5 and it shows random walk model. 

 

3. Conclusions 
 

In this study, the International market gold prices over the last 31 years were 

analyzed for trends by five different methods, linear trend analysis, ARMA 

analysis, Rescaled range analysis, attractor reconstruction and maximal 

Lyapunov Exponent, Detrended fluctuation analysis. Unfortunately not all 

methods give consistent results. The linear analysis reveals three regions with 

different trends. This is not supported by the rescaled range or detrended 

fluctuation analysis results. The maximal Lyapunov exponent calculation 

reveals chaotic behavior. The detrended fluctuation analysis reveals behavior 
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close to brown noise. This is not corroborated by the rescaled range analysis, 

which indicates anti persistent behavior. The ARMA model implies first 

differencing. 

Combining these results, one probable explanation is the strong linear trend, 

(also corroborated by ARMA analysis) which affects the rescaled range 

calculation, because of its dependence on extreme values. The detrended 

fluctuation analysis removes this trend and reveals brown noise. This is 

consistent with a maximal positive Lyapunov exponent. Hence, we have a linear 

trend plus brown noise and neither of these two effects is dominant[7,8,9].     
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Abstract. Bifurcating thermal convection flows arising from a horizontal cylin-
der centred in a square-sectioned enclosure are studied numerically, with the aim
of achieving a more detailed description of the sequence of transitions leading to
the onset of chaos, and obtaining a more precise estimate of the critical values of
the main system parameter, the Rayleigh number Ra. Only a value of the geo-
metric aspect ratio A of the system is considered, namely A = 2.5, for which a
period-doubling cascade was previously observed. Results give evidence of new and
interesting features in the route to chaos, such as a window of quasiperiodic flow
and the detection of high-order period orbits.
Keywords: Thermal convection, period-doubling cascade, quasi-periodicity, de-
terministic chaos.

1 Introduction

Buoyancy-induced flows in enclosures represents one of the most complete
multi-scale coupled non-linear fluid flow problems. Their primary importance
in the field of the study of bifurcations and chaos is due to the fact that they
represent passive systems on which bifurcative dynamics easily show up, and,
eventually, lead to relevant observations on the relationship between the onset
of chaos and the transition from laminar to turbulent flow.

Many works have been carried out on the non-linear dynamics of thermal
convection in basic enclosure configurations, such as the rectangular enclo-
sures heated from below (the Rayleigh-Bénard problem) and from the side
[1,2] (the “vertical enclosure” case), and, more recently, the horizontal annu-
lus between two coaxial cylinders [3]. Fewer works dealt with more complex
geometrical and thermal configurations [4–6]. Nevertheless, from a theoreti-
cal and practical standpoint, the interest in this topic is growing continuously.

The physical system considered in the present study is the cavity formed
by an infinite square parallelepiped with a centrally placed cylindrical heating
source. The system is approximated to its 2D transversal square section con-
taining a circular heat source, as sketched in Fig. 1. The temperature of both
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enclosure and cylinder is assumed as uniform, the cylindrical surface being
hotter than the cavity walls. Thus, the leading parameter of the problem is
the Rayleigh number Ra, based on the gap width H, expressing the temper-
ature difference in dimensionless terms. Another fundamental parameter is
the Prandtl number, fixed for this study at a value Pr = 0.7, representative
of air at environmental conditions.

Fig. 1. Left: schematic of the system under consideration; (×) symbols indicate
locations of the sampling points. Right: quadrant of the computational grid.

From the standpoint of thermofluids, the convective system in Fig. 1 is
particularly interesting, since, due to the curvature of the cylindrical differ-
entially heated surfaces, its phenomenology encompasses the features of both
the Rayleigh-Bénard and the vertical enclosure cases. As soon as a tem-
perature difference is imposed between the cylinder and the enclosure, fluid
motion ensues immediately in the vicinity of the horizontal midplane, where
the cylindrical walls are substantially vertical. On the other hand, the fluid
in the top part of the enclosure is subject to an unstable vertical gradient, as
in the Rayleigh-Bénard problem, while vertical boundary layers are invari-
ably forming at the enclosure sidewalls. The combination of these situations
in a single problem produces a variety of flow configurations and transition
phenomena.

Previous studies [5,6] already unfolded different scenarios on the route to
chaos of the system considered here, depending on its aspect ratio A = L/H.
Accurate numerical investigations carried out for two A-values, A = 2.5 and
A = 5, revealed the existence of a period-doubling scenario following a Hopf
bifurcation for A = 2.5, and a transition to chaos via a symmetry-breaking
pattern followed by a blue-sky bifurcation for A = 5 [6].

The aim of the present work is to achieve a deeper insight into the series
of bifurcations for the case A = 2.5, in virtue of a wider set of numerical
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simulations performed by refining the step of the bifurcation parameter Ra.
Particular attention has been devoted to the analysis of the stretching and
folding attitudes of specific regions of the system attractor in proximity of
the Ra-values corresponding to the period doubling bifurcation points, and
in the chaotic range.

Numerical predictions are carried out by means of a specifically devel-
oped finite-volume code. Successive bifurcations of the low-Ra fixed point
solution are followed for increasing Ra. To this aim, time series of the state
variables (velocity components and temperature), are extracted in 5 loca-
tions represented in Fig. 1 by points P1 to P5. Nonlinear dynamical features
are described by means of phase-space representations, power spectra of the
computed time series, and of Poincaré maps.

2 Problem statement and methods

The problem is stated in terms of the incompressible Navier-Stokes formula-
tion, under the Boussinesq approximation. The governing equations (conti-
nuity, momentum and energy) are tackled in their non-dimensional form:

∇ · u = 0 (1)

∂u
∂t

+ u · ∇u = −∇p +
Pr1/2

Ra1/2
∇2u + T ĝ (2)

∂T

∂t
+ u · ∇T =

1
(RaPr)1/2

∇2T (3)

where t, u, p and T represent the dimensionless time, velocity vector, pressure
and temperature, respectively, and ĝ is the gravity unit vector. A value
Pr = 0.7 is assumed for air. Boundary conditions for T and u are reported
in Fig. 1.

Detailed descriptions of the adopted numerical techniques and of dis-
cretization choices are found in previous works [5,7]. A detail of the compu-
tational grid is shown in Fig. 1. In order to analyze the system dynamics
in the vicinity of bifurcation points, Ra was increased monotonically with
suitable steps, each simulation starting from the final frame of the preceed-
ing one. All the simulations were protracted until a fixed dimensionless time
span was covered, large enough for an asymptotic flow to be attained.

3 Results and discussion

In previous studies [5,6] a preliminary analysis of the system with A = 2.5
reported the birth of chaotic behaviours for Ra greater than Ra = 2.0·105. In
particular, power spectral density distributions, attractor representations and
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Poincaré maps were used to give a clear evidence of a basic period doubling
route to chaos. In particular, it was shown that the flow is characterised by
two fundamental harmonics at Ra = 1.7·105, four harmonics at Ra = 1.8·105

and eight at Ra = 1.9 · 105, whereas chaos was observed at Ra = 2.0 · 105.
Given the great theoretical and practical importance of an accurate deter-

mination of the bifurcating behaviour of the flow, deeper analyses have been
performed by refining the step of numerical simulation of the range of interest
of the Rayleigh number. As described in the following, two main results have
been obtained: (i) the identification of a window of quasiperiodic flow; (ii)
the identification of three further period doublings preluding appearance of
chaos.

3.1 Window of quasiperiodic flow

Several simulations performed in the range Ra = 1.7÷1.9·105 have been found
to be characterised by a well defined quasiperiodic behaviour. Again, the
observation of this result has been performed both in the frequency domain
and in the state space.

Fig. 2 reports the PSDs of the variables simulated at point P1 for the
case at Ra = 176875, in (a) for the horizontal velocity component u, in (b)
for the vertical velocity component v and in (c) for the temperature T .

The following interesting observations can be drawn from the analysis of
the three plots of Fig. 2:

• the PSDs of v and T are mainly the same, as a consequence of the vertical
character of the buoyancy-driven flow that determines the dynamics of
the thermal and velocity field;
• the quasiperiodic behaviour finds a clear expression in the excitation of

two independent frequencies, reported in the figures, and of bands formed
by their linear harmonic combinations;
• the two dominant frequencies of v and T , exactly double those of the

horizontal velocity u, as a direct consequence of the vertical symmetry of
the domain.

Fig. 3 reports the phase plots for the simulation at point P1 for the
case at Ra = 176875, i.e. for the same quasiperiodic dynamic discussed in
Fig. 2. Plot (a) reports the whole toroidal attractor, whereas plot (b) allows
for a deeper observation of the narrow toroidal structure of the attractor
itself. Finally, plots (c), (d) and (e) reports the Poincaré map obtained by
sectioning the attractor with the planes orthogonal to each of the axis in
correspondence of the mean value of respective variable in the considered
observation window. From the analysis of the plots in Fig. 3 it is possible
to draw a further clear proof of the existence of the quasiperiodic behaviour,
manifested in the state space by the torus and in the Poincaré maps by the
elliptical traces. Notice that in plot (c) two partly superimposed elliptical
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Fig. 2. PSDs of the simulated state variables at point P1 for the quasiperiodic case
at Ra = 176875: (a) horizontal velocity u; (b) vertical velocity v; (c) temperature
T .

traces appears as a consequence of the intersection of the two branches of the
torus in the chosen Poincaré plane.

It is worthy to mention that further analyses, omitted here for brevity,
revealed that the quasiperiodic torus appears Ra = 1.740 · 105, bifurcating
from the stable limit cycle which represents the solution at Ra = 1.735 · 105,
while it disappears, for Ra = 1.795 · 105, giving rise to the period-doubling
route described in the following. Such observations contribute to shed light
on the proper bifurcation path in the range Ra = 1.740÷ 1.795 · 105, which
therefore redefines the simple period doubling assumed in [6].

3.2 High order period doublings

A further refinement of the Ra steps of the simulation in the range Ra =
1.9÷2.0 ·105 allowed for the determination the critical values of Ra at which
higher order period doublings occur. In particular, the progressive increase
from Ra = 1.8·105, for which a period 8 limit cycle exists, it has been possible
to determine the birth of the limit cycles characterised by 16, 32, 64 and even
128 periods, which anticipate the appearance of chaos.
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Fig. 3. Phase plots of the quasiperiodic dynamical behaviour at point P1 for
Ra = 176875 : (a) attractor in the state space T -u-v; (b) particular evidencing
the structure of the narrow torus; (c), (d), (e) Poincaré maps.

From the analysis of the extensive simulations performed for very narrow
step of Ra in the range Ra = 1.9÷ 2.0 · 105, completed with the observation
of the window of quasiperiodic behaviour, it has been possible to summarise
the complete bifurcation path from period-2 limit cycle to chaos according
to the limits reported in Tab. 3.2. There, the notation introduced in [3] is
used to identify the different flow regimes.

P1 QP2 P2 P4 P8

Ra · 10−5 ≤ 1.735 1.74÷ 1.79 1.795÷ 1.8975 1.898÷ 1.9367 1.93675÷1.94730

P16 P32 P64 N

Ra · 10−5 1.94735÷ 1.9495 1.94955÷1.94985 1.9499 > 1.95

Table 1. Sequence of flow regimes encountered and correspondent ranges of Ra.

Fig. 4 reports the Poincaré maps for some characteristic values of the
Rayleigh number falling within the ranges of limit cycles of high-order period
(from P4 to P64) as well as for one value in the chaotic range, Ra = 1.9625·105.
In each map it is possible to observe the existence of four clusters of points,
each of which can be considered generated by the four intersections of the
original P1 limit cycle existing for Ra ≤ 1.735 · 105. In order to achieve a
deeper detail on the phenomenon, the encircled clusters in Fig. 4 are reported
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in Fig. Fig. 5, where the series of doubling of each point can be better
observed. As a final remark, it is possible to observe that the period doubling
bifurcation path is responsible for the birth of bands in the chaotic attractor,
characterised by a marked attitude to stretching and folding typical of fractal
sets, as it can be deduced by the ordered distribution of the intersections in
the Poincaré maps.

Fig. 4. Poincaré maps for characteristic Ra-values, for limit cycles of high-order
period (from P4 to P64) and chaos.

4 Concluding remarks

The sequence of bifurcations leading to deterministic chaos in natural con-
vection from a horizontal cylindrical source, centred in a square enclosure of
aspect ratio A = 2.5, was analysed in detail by numerical means.

The set of long term simulations revealed further remarkable aspects of
the route to chaos of the system, for increasing the main parameter Ra. In
first instance, a window of quasiperiodic behaviour was observed over a wide
range of Ra-values, originating from the first limit cycle and giving rise to
the subsequent the period-doubling cascade.

Furthermore, the refinement of the parameter range allowed for the de-
tection of additional stages in the sequence of period doublings of the system,
up to the observation of a P64 orbit, before the final appearance of chaos.
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Fig. 5. Details of the encircled clusters of points in the Poincaré maps of Fig. 4.
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Abstract: The paper elaborates on a recent self-organized critical (S.O.C.) model for 

stick-slip motion of fault planes incorporating material and process non-uniformities 

during earthquakes by means of internal variables. A general theoretical framework for 

earthquake constitutive equations is given by means of stochastic differential equations. 

Within the context of the proposed framework a model where shear strength, interpreted 

as an internal variable, is spatially evolved is also elaborated. In order to study the 

dynamic behavior of the proposed model a discrete automaton was built validating the 

robustness of the proposed model. Indeed, simulation results are also demonstrated 

reproducing correctly experimentally observed quantitative measures during earthquakes. 

More specifically it is demonstrated that the model address in a robust way the reported b 

values of the Richter-Gutenberg power law for pre-shocks. 

 

1. Introduction 
The understanding of earthquake dynamics as well as the possibilities for the 

prediction or forecasting of strong earthquakes by means of precursor events 

macroscopically detected in seismological signals remains a challenging topic in 

the area of seismology in the last decades (Jordan and Jones, 2010). More 

specifically, the particular role of the b-value changes, in the magnitude-

frequency or G-R relation (Gutenberg and Richter, 1944) for foreshocks has 

been underlined by several authors (Papazachos, 1975, Jones and Molnar, 1979, 

Molchan et al., 1999, Papadopoulos et al., 2009). Indeed, observations on 

seismic sequences have shown that the b-value usually drops and becomes 

significantly lower in foreshocks. This crucial seismological parameter b, 

however, seems to be a constitutive-like variable dependent on a variety of local 

seismotectonic conditions, such as the material heterogeneity, the mode of stress 

distribution, that is either symmetrical or asymmetrical, and on the existence or 

not of asperities in the fault zone.  

In another issue, it has been proposed that the b-value can be used as an 

indicator of the type of the structure of the active zone and more precisely of the 

possible asperities pattern located there (e.g., Zhao and Wu, 2008).  As will be 

discussed latter this is indeed the case since the asperities pattern defines the 

actual real contact area within the fault zone and it seems that there is a 

connection between the real contact area and the value of the b exponent.  

In this paper a general theoretical framework for earthquake constitutive 

equations is outlined. In detail, we propose the introduction of appropriate 

internal variables by means of stochastic differential equations in order to 

construct more accurate models for the mechanical behavior of earthquake 

sources. While this framework is introduced and demonstrated in the next two 
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sections an automaton incorporating shear strength as an internal variable is 

given in Section 4 where some first simulation results validating the proposed 

model are also given. In the same section, a discussion about open problems 

concerning the evolution of earthquake sources is also presented.  

 

 

2. Proposed framework for earthquake constitutive equations 
Let us consider a fault deforming in pure shear. The following constitutive 

equation for the rate of slip is assumed, 

 

                                                 (1) 

 

where   is the externally applied stress resolved in the slip direction and 

 is the total local internal stress exerted.   

 

The external stress   may be assumed constant over the space coinciding 

with the long-term loading of the tectonic plates. Some other external 

macroscopic sources of stresses may also be modeled here with this term, as 

will be shown later. On the other hand, the local internal stress exerted at the 

location , quite general, may depend on the space , the local deformation  as 

well as the corresponding rate  . As a milestone of this work we proposed that 

the dependency of local stresses to the aforementioned material properties and 

deforming conditions may be attributed to the existence and evolution of 

appropriate internal variables. To this end Eq. 1 can be generalized as follows 

(here the formalism is presented for the 1-D while generalization to higher 

dimension is straightforward), 

   

                                   (2) 

 

 We further assume that internal stresses are made up by three contributions,  

    

             (3) 

 

The first term on the right-hand side of this equation accounts for the resistance 

of deformation because of the material shear strength which in general may be 

deformation or/and velocity depended interpreted here as internal variables.  

The second and third term accounts for the internal stresses arising because of 

the specific interactions between material points and are divided into a 

deterministic and a stochastic part. As a result the initial evolution equation 

becomes a stochastic differential equation where for the random fluctuating part 

we may write quite general, =   where 

 defines the amplitude of the stress fluctuations and ( ) is the 

characteristic strain (space) interval over which such fluctuations persist (Ζaiser 

and Aifantis, 2003). 
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While the nature and the role of the stochastic term will be analyzed elsewhere 

here we focus on the role of the remaining deterministic terms. The 

deterministic part of the internal stresses may be modeled by a second order 

gradient (1-D) and a term modeling linear hardening, i.e., 

 

                                  (4) 

 

where H is a hardening coefficient. 

In the rest of the section the robustness of the proposed framework is 

demonstrated by mapping older models within its context. To this end we note 

that stresses and forces coincide if a unit space element is assumed. The same 

holds for the strains  and displacements . The well known one 

dimension Burridge and Knopoff slider-block model (Burridge and Knopoff, 

1967) can be mapped within the proposed framework assuming that the upper 

tectonic plate is moving with constant velocity and as a result the external stress 

per unit time takes the form,   where   is the elastic constant in the 

vertical direction within the fault plane. More over if next neighborhood 

interaction between material points is assumed, Eq. (4) may be derived with 

 where   is the elastic constant in the vertical direction within the fault 

plane. Finally, Burridge and Knopoff had introduced a velocity weakening 

friction. In our context this reads (in the simplest form),  

. Substituting in the initial constitutive equation, 

 

                                   (5) 

 

and as a result the BK model is fully reconstructed.  

 

In the same line, the Olami Feder Christensen model (Olami et al., 1992) can 

also be reconstructed noting that essentially is a 2-D version of the BK model, 

with constant friction law, i.e., , with  and 

. Substituting (for the isotropic case), 

 

    (6) 

 

The model proposed by Dieterich (1994) introduces the notion of the rate- and 

state- dependent friction mechanism. According to this mechanism, the 

coefficient of friction is given as a function of the slip rate as well as of a state 

variable θ that accounts for the history of sliding. As a result, within the 

proposed context, the corresponding friction must be written in the form (A and 

B are constants), 

 

              (7) 
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The model proposed by Hainzl and co-workers introduce a transient creep 

mechanism in order to explain the observed spatio-temporal clustering 

accompanying earthquakes (Hainzl et al., 1999). This has the consequence that 

in the inter-occurrence time interval between successive earthquakes, the 

stresses increase according to the tectonic loading   and additionally 

according to the transient creep   in the crust. In the proposed framework 

this is translated as, 

                                                                 (8) 

 

In this work a simple creep law was adopted, , where   is the 

corresponding viscous coefficient. The final evolution equation reads, 

  

 (9) 

 

3. Shear strength as an appropriate internal variable 
The model first presented in (Avlonitis and Tassos, 2010) introduce the shear 

strength as an internal spatially evolving variable, i.e.,  

 

            (10) 

 

where the gradient coefficient   is expressed as a function of the 

microstructural heterogeneity of the source (here the coefficient c) as well as of 

the source processes (hardening or softening modeled here by means of the 

positive or negative value of the coefficient λ) taking places during an 

earthquake. Substituting in the initial evolution equation, 

 

     (11) 

 

or, 

                                  (12) 

 

Eq. (12) is of crucial importance since it redresses the generic weakness of the 

OFC model. In fact, it introduces the effect of structural softening into the 

corresponding constitutive equation and through it to macroscopic measured 

quantities such that the b value of the Richter-Gutenberg power law.  

 

 

4. Simulation results and Discussion 
A variation of the classic OFC simulator was constructed under the line of 

reasoning present in the previous section, i.e., to model structural softening. As 

was discussed in the introduction, structural softening is believed that takes 

place before an earthquake occurs, i.e. during pre-socks. It is also known that 
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during pre-shocks a reduction of the b value of the Richter-Gutenberg relation 

occurs (Papadopoulos et al., 2009).  

 

It is our aim to reproduce these macroscopic findings via simulations of the 

proposed model. To this end we mimic structural softening by introducing 

within the simulated fault plane sites with lower shear strength, as is assumed in 

Eq. 10 for negative values of the parameter lambda λ, hereafter called soft 

phase. As the structural softening proceeds the soft phase gradually increases. 

The degree of structural softening is measured as the percentage of the soft 

phase within the simulated fault plane. Initial results are shown in Fig. 1, 

reproducing correctly the macroscopic observations for the slope of the Richter-

Gutenberg power law. Indeed, as depicted in Fig. 1, as the percentage of the soft 

phase within the fault plane is increased the b value decreases. This means that 

as the material enters deeper in the softening regime the slope within the linear 

regime of the Richter-Gutenberg power law (in log-log plot) decreases. 

 

  

  
 

 

 

Fig.1 Decreasing b values as the percentage of the soft regions increases. Results are 

depicted for a 30x30 lattice and for 0%, 20% and 40% soft phase (α, β, γ). In (δ), the 

independence on the exact value of the shear strength within the soft phase is depicted. 
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It is noted that the main scope of the present work is to introduce a general 

robust framework for earthquakes constitutive models. Moreover, we believe 

that relaxing the assumption of constant shear strength and interpreted it as an 

internal variable that is spatially evolve we can correctly reproduce 

seismological observations during earthquakes. To this end we have shown in 

this paper that spatially evolving shear strength predicts well known findings 

concerning pre-shock sequences and more specifically the corresponding 

variations of the macroscopic b value. Of course there are a series of phenomena 

inextricably linked with earthquakes, e.g. asseismic slip which are still missing 

from the “picture”. It is our aim to show in a series of forthcoming papers how 

the assumption of spatially evolve shear strength may correctly model these 

phenomena. Moreover, the spatially evolving shear strength may serve as the 

appropriate constitutive variable to model the real contact area between 

lithospheric zones. Indeed, it can be shown that due to asperities the real contact 

area is not a constant quantity and is a crucial parameter that affects the 

macroscopic earth behavior. Most importantly, what is missing is a specific 

mechanism which results to spatially evolving shear strength and which 

reproduces a non-convex hardening-softening law for the fault plane. Again this 

is the topic for a future paper where the existence of liquids within the interface 

of lithospheric zones may explain the proposed shear strength behavior. Finally, 

in the series of the above mentioned forthcoming papers the origin of the spatial 

(evolving) and stochastic terms is investigated revealing their interconnecting 

nature. 
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Abstract: A motivation for looking at chaos in the classical realizations of the Yang-

Mills or Yang Mills augmented by Higgs equations is the importance of this system in 

the initial (in)stability at big bang, since in the initial stages all interactions were of the 

same strength and were based on non abelian gauge theories, of which the SU(2) Yang 

Mills is a first example. 

In this study we consider the following two particle effective Hamiltonian suggested by 

Biro, Matinyan and Müller: 

44222222

22

4

1

2

1
)(

2

1

2

1

2
pyxybxayx

pp
H

yx
+++++

+

=  

 

Keywords: Dynamical systems, Yang-Mills, Lyapunov exponents, Chaos.  

 

1. Introduction 
Global properties for mappings such as Poincare sections, Lyapunov exponents 

and other topological properties as introduced by Poincare and Birkhoff are 

important objects of study in nonlinear dynamical systems in addition to their 

local properties such as various bifurcations and invariant manifolds[1].   

As Matinyan suggested, one of the ways to search for chaos is to investigate 

Poincare sections[4,5,6]. Since the system is described by a time independent 

Hamiltonian, the energy integral reduces the four dimensional system into a 

three dimensional system and a two dimensional Poincare map[1,2,3]. 

Unfortunately, the Hamiltonian involves the squares of the momentum. Taking 

the square root leads to missing information since the trajectory should cross 

into regions where the momentum can have either sign. There are two ways 

known to solve this problem. One of the solutions to this problem is the 

symplectic numerical integration technique and the other one is to check the 
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energy conservation numerically at every point.  Results of these investigations 

lead to the same results obtained by KAM (Kolmogorov–Arnold–Moser) theory 

and hence this numerical study is proven to be an indicator for chaos. 

If the system is integrable, the trajectory is closed. Hence a torus is obtained. If 

the system is not integrable, elliptic orbits are observed with a chaotic regime. 

According to KAM theory the invariant tori of an integrable system retain their 

topology under a perturbation that destroys the integrability of the Hamiltonian, 

however chaos is observed in some regions of the phase space of the system 

with random points on the surface of section.  

In addition to the Poincare section study done by Matinyan et. al, a Lyapunov 

exponent study can reveal the parts of the parameter space in which chaos is 

observed. Preliminary results indicate that for the case in which the Higgs terms 

(x
4
 and y

4
) are absent, all regions for the parameters a>0 and b>0 give positive 

maximal Lyapunov exponents that indicate chaos For a = b = 0, the chaoticity 

is maximum. As a or b increase, the system is still chaotic, but the system loses 

its chaoticity gradually and tends to converge to a limit cycle. On the other 

hand, for the case the Higgs terms are present with a=b=0, the system still has a 

positive maximal Lyapunov exponent whose value is smaller than that in the 

Yang Mills case. 

 

2. Chaos in Yang Mills Higgs system 

 
Although there is no universally accepted definition of chaos, most experts think 

that chaos is the aperiodic, long – term behavior of a bounded, deterministic 

system that exhibits sensitive dependence on the on initial conditions. Lyapunov 

Exponents is the mathematical method for the determination of chaos in 

dynamical systems. It is the measure of the exponential separation of two 

trajectories with a very small initial separation. A system with positive values of 

Lyapunov Exponents is chaotic, and the value of these exponents the average 

rate at which predictability is lost. 

In this section, we compute Lyapunov exponents with the aid of Fortran code 

that implement Wolf algorithm as we discussed before. In addition we also use 

Reduce code which calculates variational equations needed for the Wolf 

algorithm. Both programs are included in appendixes. We mostly emphasize on  

Yang Mills Higgs coupled system  in order to demonstrate the corresponding 

chaotic behavior. 

First of all we investigated how exponents are changing with respect to the scale 

parameter p, we found that system possesses chaotic motion in wide range of 

value of p. Especially we  scan for the interval from p=0.05 to p=4. Here are 

some of graphs for  the specific values of  p.  
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Fig. 1. Lyapunov exponents vs time for p=0.2  

 

 
Fig. 2. Lyapunov exponents vs time for p=0.5 
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 Fig. 3. Lyapunov exponents vs time for p=0.8  

 

 
Fig. 4. Lyapunov exponent vs time for p=2.2 
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On the other hand we also analyze the results of adding oscillator term to 

dynamical system by giving a coefficient “a”. We saw that all Lyapunov 

exponents tend to decrease for bigger value of “a” and there occurs a transition 

from chaotic motion to periodic or quasi periodic motion. We investigate this 

transition for the value of parameters where the Lyapunov exponents seem to be 

maximum. Some of the results are shown below 

 

 
Fig. 6. Lyapunov exponents vs time for a=0.1 and p=2.2   

 

We can deduce from these graphs that, for small values of “a” the system persist 

for a chaotic behavior. But when “a” grows system start to possess periodic 

motion.On the other hand we can see that almost all Lyapunov spectrums are  

symmetrical which is the expected result since in Hamiltonian systems the sum 

of Lyapunov exponents must be zero as we stated before so when there is an 

expanding trajectory in phase space there must be also equally contracting 

trajectory to compensate for this.  

 We also investigate phase space trajectories for the corresponding system. Here 

are some of the trajectories for this system 
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Fig. 7. Trajectory of  y vs Py 

 

 
 

Fig. 8. Trajectory of  x vs Px 
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3. Conclusions 
In this article we try to demonstrate chaotic behavior in the dynamically coupled 

Yang Mills Higgs system classically. We know that pure Yang Mills fields 

possess highly chaotic behavior. Although Yang Mills Higgs system also 

possess chaotic behavior for variety of range of scale parameter, in general the 

Higgs field is responsible for considerably regularizing motion in the dynamical 

system[4,6]. So we can say that Higgs mechanism has a stabilizing effect. On 

the other hand we also consider an additional oscillator term in the Yang Mills 

Higgs system and it is observed that for small coefficients of the oscillator term 

chaotic motion still persists. But when oscillator term gets larger chaos 

disappears and regular motion involving multi periodic motion takes place 

instead, since the oscillatory motion begins to dominate[5,6]. 
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Abstract: In this research, a new adaptive sliding mode control 

scheme which combines two algorithms mentioned before is 

introduced  to synchronize chaotic Lorenz models and the 

synchronization of chaos by designing a new method is presented. 

As the simulations show, the proposed controller is efficient to 

synchronize chaotic systems and has better performance compared 

to former methods. These results are obtained from Integral of 

Squared Sliding Surface Signal and  Integral of Squared Sliding 

Control Signal criteria. Furthermore, the boundary layer is 

proposed in the new control algorithm to avoid the chattering 

phenomenon on behaviors. 

Keywords: Chaos Syncronization, Lorenz Model, Adaptive, Sliding Mode 

Control 

 

 

1. Introduction 

 

 Chaos phenomenon is very interesting area in the nonlinear 

systems described by differential equations which can be 

extremely sensitive to initial conditions. The concept of controlling 

and synchronization of chaotic systems have been attracted by 

researchers since the early 1990s. In recent years, several 

techniques of chaos control and synchronization have been applied 

such as linear and nonlinear feedback control [1,2],  adaptive 

control [ 3-5 ] and sliding mode control [ 6-8 ]. 
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 In the past decades, the sliding mode control (SMC) has 

been effectively applied to control systems with uncertainties 

because of the nature of robustness of sliding mode [9]. The 

adaptive techniques have been also applied to control and 

synchronize chaotic systems [10,11].  Recently, researchers have 

utilized the adaptive control with sliding mode technique for many 

engineering systems to decrease the chattering in pure SMC and 

smooth the output from a sliding mode controller. Dadras and 

Momeni [ 12 ] proposed an adaptive sliding mode control to 

synchronize master-slave chatotic systems. This scheme reduces 

the chattering phenomenon and guarantees stability in presence of 

parameter uncertainties and external disturbance. Roopaei et al. 

[ 13 ]  developed an adaptive sliding mode controller to stabilize 

the novel class chaotic system.  

 

 In this research, a new adaptive sliding mode control 

scheme which combines two algorithms mentioned before is 

introduced  to synchronize chaotic Lorenz models and the 

synchronization of chaos by designing a new method is presented.  

 

2. System Description and Problem Formulation 

 

Considering system uncertainties a class of the following two n-

dimensional chaotic systems can be written as: 

 ̇                                                                          (1) 

 ̇   (   )                         [          ]   
  

 

 

 ̇                                                                                               (2) 

 ̇   (   )    ( )                                      [          ]   
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Where      is the control input,   is a given nonlinear function 

of       .   ( ) is an uncertain term representing the unmodeled 

dynamics or structural variation of (2). 
 

In this paper, the chaos synchronization is considered as a model 

tracking problem in which the slave system (2) can track the 

master system (1) asymtotically.  The two coupled system to be 

synchronized by designing an appropriate control u(t) in system (2) 

such that 
 

      ‖ ( )   ( )‖                                   (3) 
 

where  ‖ ‖ is the Euclidian norm of a vector.  Let us define the 

error states between (1) and (2) such as: 
 

                                      (4) 
 

The problem is to realize the synchronization between two chaotic 

systems is to choose a control law u(t) to make error states 

converge to zero. Here an adaptive sliding mode control design is 

used to achieve this objective. 

 

3.  Design of Adaptive Sliding Mode Control via 

Synchroziation Problem 
 

To propose a new adaptive control algorithm for synchronization 

of two chaotic systems are described in (1) and (2), an adaptive 

switching surface is considered as 
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 ( )    ( )   ( )                   (5) 

 

Because this surface was considered as in [13]  referred study as 

shown below 

 

 ( )   ( )   ( )                                                                     (5a) 

 

(5a) was designed for a control problem and we changed it to 

equation (5) in order to  adapt to our synchronization problem and 

so we obtained (5).  

 

In (5)   ( ) is the n – dimensional system error state and  ( ) is 

an adaptive function given by 

 

 ̇    (   )    (   )                                                    (6) 

 

where      and    are assumed to be the arbitrary constants. This 

adaptive function is also from Poopaei study [ ] and here it is 

adapted to the synchronization problem. When the system operates 

in sliding mode, it satisfies the following condition: 

 

 ( )    ( )   ( )                                                                 (7) 

 

Differentiating Eq.(7), leads to the following: 

 

 ̇( )   ̇ ( )   ̇( )                      (8) 

 

The equivalent control law can be obtained by utilizing (4) and (8) 

as shown below: 

 

      (   )    ( )   (   )   ̇                                      (9) 
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(The open version of (10) is given in Section 5 as equation (30)) 

 

The next step is to design the reaching mode control scheme which 

drives the system trajectories on to the sliding surface (s=0). In the 

proposed method, we aim to derive a new algorithm combining 

Dadras and Roopaei methods to increase the control performance. 

Therefore the overall control signal has the form of following: 

 

 ( )        (   )        ( )                                          (10) 

 

where  (   ) is a hyperbolic function (Dadras): 

 

 (   )       (  )                                                                     (11) 

 

and the Dadras adaptive law is: 

 

 ̇      (
  

  
)                                   (12) 

 

 ̇     (   
 ) (

  

  
)                                                              (13) 

 

The Roopaei adaptive law in combined overall control signal (10) 

is: 

 

 ̇    | |                                                                                  (14) 

where   is a positive constant number. 
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4. Case Study and Simulation Results 

 

This section of the paper presents the case study to verify and 

demonstrate the effectiveness of the proposed control scheme. The 

simulation results are carried out using the MATLAB software. 

The fourth order Runge-Kutta integration algorithm was 

performed to solve the differential equations.  

 

Consider the chaotic Lorenz master-slave systems as follows: 

 

 

                                         (15) 

 
 

and  

       

 
  ̇                ( )   ( )                                       (16) 

 
 

where a,b, c are the positive contants,   ( ) is the uncertainty 

term and u(t) is the adaptive sliding mode control law. 

 

The error states defines as given below 

 

e1 = y1 − x1, e2 = y2 − x2, e3 = y3 − x3                                      (17) 

 

The sliding surface and adaptive funtion are choosen respectively, 

regarding Eq. (5) and (6):  

 

                                                       (18) 

 ̇       α                                                    (19) 

56



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 
 
 
 
 
 
 

 

where   α  and    are the positive constants. The continious part of 

control law ( ueq) is obtained from   ̇    as shown below: 

 

     (     )   (     )                  

        (                )                                               (20) 

 

The simulation is done with the initial value [        ]
  

[      ]   [          ]
  [        ]  and system parameters are 

a=10, b=
 

 
  , c=28. Control parameters for Dadras adaptive law are 

choosen as           In addition the second adaptive law is 

used to update the ks,  ̇      | |  . The slave system is perturbed 

by an uncertainty term: 

 

          (   )    (    )     (    )         

(a) (b) 
Fig. 1. Phase Plane of two Lorenz model after synchronization (a) master (b) slave 
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Fig. 2. The Error States  
 

 
 

 

Fig. 3.  Synchronization of state variables with proposed control law 
 

Table 1 

                          Proposed Control               Proposed Control(with boundary layer)             Dadras Control        

Dadras Control(with boundary layer)              

∫   
 

 
( )                          0.99.10

-6
                                                        1.05.10

-5
                                                        1.5.10

-

5
                                                      1.13.10

-5
                                                 

 

∫   
 

 
( )                             1.15                                                                0.2013                                                            

0.2544                                                      0.2588 

 

 

 

 

 

 

 

 
Fig.4.  Control input for proposed algorithm without boundary layer 
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Fig.5.  Control input for Dadras algorithm without boundary layer 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.  Control input fo rproposed algorithm with boundary layer 

 

 

 

 

  

  

 

 

 

 

 

 

Fig.7.  Control input for Dadras algorithm with boundary layer 

 

59



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

The first parts of the simulation results are shown in Figs. 1-3 

under the proposed adaptive sliding mode control (ASMC). Fig 1. 

shows the phase plane of master-slave Lorenz systems whereas Fig 

2. exhibits the error states and Fig 3. presents the state variables 

after synchronization after ASMC application. From these results, 

it can be concluded that the obtained theoretic results are feasible 

and efficient for synchronizing Lorenz chaotic systems under  

uncertainty. 
 

In the second part of simulation study,  proposed adaptive sliding 

mode control is compared with Dadras method.  "Integral of 

Squared Sliding Surface Signal" and " Integral of Squared Sliding 

Control Signal" criteria are used. Table 1 presents the results.  

Referring to Table 1 and Figs 4-7, it can be concluded that in the 

case of using a boundary layer, our combined adaptive sliding 

mode control scheme can manage better performance compared to 

Dadras method.  
 

6. Conclusion 

 

This work presents the synchronization of chaos by designing a 

new adaptive sliding mode controller. As the simulations show, the 

proposed controller is efficient to synchronize chaotic systems and 

has better performance compared to Dadras method. These results 

are obtained from Integral of Squared Sliding Surface Signal" and 

" Integral of Squared Sliding Control Signal" criteria. Furthermore, 

the boundary layer is proposed in the new control algorithm to 

avoid the chattering phenomenon on behaviors. 
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Abstract: Rotation – Expansion – Translation – Reflection chaotic models show despite 

of its simple generators complex structures that resemble in 2 dimensions - without 

referring to any material property - well known fluid/flux vortex flow patterns as recently 

shown by Skiadas. Here the model is generalized and extended to n > 2 dimensions with 

N = n (n − 1)/2 rotational degrees of freedom and the maximum of L = n (n − 1)(n − 2)/2 

singularity rotations on the sphere and hyper sphere with rotation matrix operations given 

by the orthogonal group O(n), special orthogonal group SO(n), or Lie spin group Spin(n) 

with hierarchical relations. The radial distance to the singularities located on the rotation 

axes leads to the Skiadas power law rotation parameterized by a power exponent and 

rotation strength. Patterns often show characteristic flux lines emitted from a chaotic core 

near to a singularity. The non-commutative permutations of the non-abelian rotation 

group elements are relevant for encryption purposes.  

 

Keywords: Chaotic modeling, Discrete map, Rotation-Translation, Rotation-Rotation, 

molecular interaction, v. Kármán Street, Dipole-dipole, Chaotic simulation, Chaotic 

encryption, Spin group.  

1. Introduction 

In quantum physics the spatial probability density and its symmetries are a basic 
concept to describe the evolution of observables obtained from stochastic 
(jump) processes in phase space. The Rotation – Expansion – Translation – 
Reflection pattern generation approach of Skiadas provides also for spatial 
density structures but from iterative difference equations generating more or less 
chaotic jumps [1, 2, 3]. The first results of Skiadas are very similar to v. Kármán 
Streets, see fig. 1, or even elliptic galaxies formations. Since a translation is a 
special case of a rotation with the rotation centre located at very large distances, 
applying subsequent rotations repeatedly around different rotation centres 
should also provide for interesting patterns, especially if the rotations are a 
function of a spatial distance with respect to one or more singularities, where 
rotations grow infinite due to a power law with negative exponent. We will 
focus in this paper onto the rotation-rotation chaotic phase jump processes on 
hyper spherical loops with larger or smaller chaotic core regions, which depend 
on characteristic numbers and symmetries. Since the signal 

t
p  jumps in hyper 

space or on hyper spheres, the resulting patterns could be relevant to physics 
and quantum spin groups in higher dimensions [4]. First we will introduce the 
rotation-translation approach in two dimensions (2-D) with one or more 
singularities and then replace the translation by another rotation and generalize 
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to n dimensions on (hyper) spherical surfaces. After generating some new 
chaotic jump pattern by extending the Skiadas algorithm and relate it to proper 
physics attributes, some new input came from discussions during and shortly 
after the conference, especially from some authors of references [1]-[6]. 

2. The 3-D Expansion/Rotations/Translation Model 

In 3-D Euclidian space we can map the Skiadas model onto the sphere with 2 or 

3 rotations. A vector coordinate 
t

p  will describe the signal location at a time t 

and after on jump iteration at 
t τ+p . The signal starts at 

0
p . First we apply a 

expansion/reflection matrix E , then apply N = 3 different rotation in planes 
i

P , 

0,1,.., 1i N= − , each containing 0,1,.., 1
i

l m= −  singularities 
,i l

s  defining the 

rotation centre. At this location the axes 
,i l

X  intersect 
i

P  orthogonally. The 

rotation angle 
,i l

ϑ  with 

2

,

,

2i l i

t i l

c
τ

ϑ π
 
 =
 − 

v

p s
, (1) 

shows a characteristic Skiadas power-law dependence [1] on the distance  

between signal and singularity coordinates ,t i l−p s  with power exponent value  

usually in the range 1-3, where the magnitude is given by the coupling constants 

i
c . We have chosen a form producing patterns linearly scaling with the jump 

distance τv  while preserving shape. For one singularity per dimension 1
i

m =  

the three rotations with angles 
i
ϑ  are computed by the rotation matrices 

i
R  

applied in a given permutation sequence. We take a proper coordinate system 

diagonalizing E  with pure diagonal expansion/reflection components 0
ij

e =  for 

i j≠  and  0xx yy zze e e= = > . For this case we will use the short notation 

ED( , , )
xx yy zz

e e e=E , a negative sign shows a so-called reflection in the 

corresponding coordinate. These components and boundary conditions provide 

for the basic 3-D recurrent algorithm and difference equation as a simple 

extension to [1, 2, 3] generating one jump with distance τv  after the 

intervalτ . If we assume orthogonal rotation axes with rotation matrices 
i

R  

elements of the SO(3) rotation group, we have a common rotation centre located 

at r  as the intersection of the rotation axes with one singularity fro every 

dimension ( 1
i

m = ) and 
0,0 1,0 2,0
⊥ ⊥X X X ,  where the chaotic map given by  

 [ ]2 1 0t tτ τ+
   = + − +   

p v R R R E p r r . (2) 

To get pure rotations, the straight translation shift τv  in eqs. (2) and (1) could 

be approximated by constant orbital rotations in one dimension with label j and  

2j jϑ π τ=r v  leading to the Skiadas rotations coupling 
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,

,

,

2
2

i ld

j j

i l i

t i l

c
ϑ

ϑ π
π

 
 =
 − 

r

p s
, in 3-D usually 2

j
d = , (3) 

where the coupling factor 
i

c  can be varied in a wide range. Spin is given by an 

orbital rotation with label i j=  that has one singularity at the centre 

,0
(0,0,0)

j
=s , where   

1

2

j
j

j

dd

jj

j d

t

c
ϑ

π

−
 

= 
 

r

p
, for 1

j
d =  simply t j jc=p r . (4) 

The iterative 3-D difference equation (2) for one start point or delta distribution 

0 0t==p p  with 3 singularities and 3 orthogonal rotations is now  

[ ]
2 1 0t tτ ϑ ϑ ϑ+
   = − +   

p R R R E p r r . (5) 

To obtain interesting patterns on the spherical surface we set 
3,1 θ=R R  as the 

constant longitude or orbital advance, and 
1,2 ϑ=R R  for the altitude. Both 

rotations rotate around singularities given by  

• 
3,1

1m = , one longitude rotation 
3,1 θ=R R  rotating around 

3,1,1
(0,0,0)=s  

with power law exponent 
3,1,1

0d =  and rotation/coupling strength 
1

3,1,1
2c jMπ −= ,  

• 
1,2

1m = , one latitude rotation 
1,2 ϑ=R R  rotating around 

1,2,1
(0,0,1)=s  with 

power law exponent 
1,2,1

2d =  and rotation/coupling strength 
2 2

1,2,1
2c k Mπ − −= . 

As an example, a two-angle rotation and signal position 
t

p  subject to rotation in 

3-D spherical coordinates ,ϕ φ  and singularity rotations 
0
ϑ ϑ= ,  

1
ϑ θ= , is 

given by 

   

sin cos

( , ) cos

sin sin

t

ϕ φ
ϕ φ φ

ϕ φ

 
 =  
 
 

p ,

cos cos sin cos sin

( , ) sin cos 0

cos sin sin sin cos

ϑ θ ϑ θ θ
θ ϑ ϑ ϑ

ϑ θ ϑ θ θ

− 
 =  
 − 

R . 

With one singularity located at 
0

(0,0,1)=s  with d = 2 and one at the centre 

1
(0,0,0)=s  with d = 0 we get the two scalar rotations in spherical coordinates 

2

4 (1 sin sin )
c

θ
ϑ

π ϕ θ
=

−
, 

2 j

M

π
θ = , 

2 2

1
c

j k
= . (6) 
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3. Hyper-Sphere Expansion-Reflection-Rotations Map   

The extension to the n-D signal map 
t t τ+→p p  with rotations embedded in n-D 

Euclidean space for 3n ≥  is straight forward. The matrix operations are based 

on the orthogonal group O(n), or the Lie spin group Spin(n) as the double cover 

of the special orthogonal group SO(n) defining the n n×  rotation matrices 
,a b

R . 

The number of rotational degrees of freedom and number of orthogonal rotation 

planes 
,a b

P   is 

       
( 1)

( )
2 2

n n n
N n

  −
= = 
 

, ( 2) 1,3,6,10,15,21,28,36,45,...N n ≥ = . (7) 

One plane can have orthogonal axes 
l

X  intersecting the plane at the singularity 

locations 
, ,a b l

s , l labels all orthogonal axes with ,l a l b≠ ≠ . We rotate on this 

plane if the rotation plane has at least one orthogonal intersection 
,

0
a b

m >  at the 

singularity locations. The maximum is 
,

( 2)
a b

m n= − , if 
,

0
a b

m =  there are no 

singularities and no rotations in 
,a b

P . So the total number of possible orthogonal 

axis intersections for all planes and the maximum number of singularities is 

( 2) ( 1)( 2) / 2L n N n n n= − = − − . There is a set of N orthogonal matrices 
1

, , ,

T

a b b a a b

−= =R R R  with 
,

det 1
a b
=R  defining the special orthogonal group 

SO(n) given according to [4] by  

, , ,

, , ,

, , ,

, , , ,

, , ,

,

,

cos( )

cos( )

sin( )
( )

sin( )

1, ,

0,  elsewhere

a a a b l

b b a b l

a b a b l

a b a b l i j

b a a b l

j j

i j

r

r

r
r

r

r j a j b

r

ϑ
ϑ
ϑ

ϑ
ϑ

 =
 = 
 = −

=  
= 

 = ≠ ≠
 

=  

R , (8) 

with trace , ,2 1 cos( )a b ln ϑ − −   and angles 
, ,a b l

ϑ , ,l a l b≠ ≠ . The signal is 

located on the hyper-spheres. The sequence of orthogonal matrices rotating a 

vector 
t

x  in Euclidean space must be ordered   

[ ] [ ], ... , ...... ...A B t a b t
    =      

R x R R R x , (9) 

covering all possible rotations or a subset as a permutation. Building the chaotic 

map with an n-D expansion/reflection E  then applying the rotation sequence 

,A B
R  we have  

[ ],t A B tτ+  = − + p R E p r r . (10) 
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We are left to specify the generalized rotation angles 
, ,a b l

ϑ , the matrix 

coefficients for a rotation 
, , ,

( )
a b a b l
ϑR , the number of singularities 

,a b
m , and the 

temporal order of rotations. The angles 
, ,a b l

ϑ  corresponding to 
, ,a b l

s  will have 

with strength 
, ,a b l

c ∈ ΅ , metric distance , ,t a b l−p s , and power exponent 

, ,
0

a b l
d ≥  a form given by 

, ,

, , , ,

, ,

2

a b ld

a b l a b l

t a b l

c
τ

ϑ π
 
 =
 − 

v

p s
.  (11) 

To systematically generate meaningful setup values in higher dimensions 

providing for interesting patterns for n > 2 with physical relevance, we 

recommend for simplicity to take a Gauss-type classical coupling field gradient 

power exponent  

, ,
1

a b l
d n= − ,   (12) 

where the gradient power exponent is the Gauss’ law field strength exponent 

plus 1 (for 3-D we have 
, ,

2
a b l

d = , see below). But of course, as Skiadas has 

shown there are several exponents that can lead to nice patterns. The power law 

coupling strength is scaling with the field gradient power exponent and coupling 

number k 

, ,

, ,
a b ld

a b l
c k

−= .  (13) 

The temporal order of rotations 
,a b

R  part of the global sequence 
,A B

R as a 

permutation sequence must be given in order to setup the map and reproduce 

results. For the purposes of this paper we let run a in an outer loop from 0 to 

1n − , then b in the next inner loop from 1a +  to 1n −  covering the 

( 1) / 2N n n= −  orthogonal rotation planes 
,a b

P  with orthogonal matrices 
,a b

R , 

and finally l in the most inner loop from 0 to 1n −  with ,l a l b≠ ≠ , since every 

plane has 2n −  orthogonal axes intersecting at the singularities providing for 

the total number of singularities rotations ( 1)( 2) / 2L n n n= − − .   
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4. Results  

4.a Four basic 2-D rotation-translation types with radial power -3 

 

         
 

Fig. 1. Left (Skiadas [1]): EC = (1,-1). Right EC = (-1,1) , randomized starts. 

 

          
 

Fig. 2. Left (Skiadas [3]): EC = (1, 1). Right EC = (-1,-1), randomized starts. 

 

4.b Periodic boundary (at 
0

16d τ= )  in 2-D at power -3 

 

 
 

Fig. 3. EC = (1, 1), if distance x > d0  then x � x - 2-D0, y � y, slightly random. 

 

 
 

Fig. 4. The periodic Skiadas pattern, same parameter like fig.3 but EC = (1, -1). 

 

 
Fig. 5. Parity change for EC = (1, -1): if distance x > d0 , then x � -x  y � y. 
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4.c Helical twist and 2-D rotation in 3-D  

 
Fig. 6. 3-D cyclic within 

0
16d τ= , power -3, with extra double-helix rotation 

0
5 /x dψ π=  proportional to distance x, EC = (1, -1), randomized starts. 

 

4.d. Multi-singularity and multi-expansion in 2-D, overlapping patterns 

  
Fig. 7. Two equal singularities: positive at (0,0) and negative located at (0, 2j),  j 

= 1,2,3,4,5, power -3, EC = (1, 1). Right: enlarged j = 1 with one positive (blue) 

and one negative (red) singularity.  

  

 

 
 

Fig. 8. Three singularities at different locations, power -3, multi expansion, 3 

different EC: (1, 1) and (1, -1) and (-1, -1), randomized starts. 
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4.e Rotation-Rotation in 3-D, rotation centre at (0,0,0), singularity at (0,0,1) 

 

 
Fig. 9. Dipole ring, power -2, M = 7, EC = (1,-1, 1), k = 8, slightly random. 

Flow directions are indicated by blue arrows.  

 

 
 

Fig. 10. Rings deformed to a wave, power -2, M = 113, EC = (1, 1, 1), k = 20, 

2

0,
s ( , 1 ,1)

i i i
x x= −

r
, / /10, 1,2,...,10

i
x i M i= = , j =1. 

 

  
 

Fig. 11. Similar to fig. 10 but chaotic core with k = 2, power -2, M = 13, EC = 

(1, 1, 1), 
2

0,
s ( , 1 ,1)

i i i
x x= −

r
, / /10, 1,2,...,10

i
x i M i= = , j =1. 
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Fig. 12. Left: dipole patterns from random starts, power -2, M = 3, EC = (1,-1, 

1), k = 4,  j =1. Right: ( )
t t
ϑ θ  with EC = (1, 1, 1), chaotic core, power -2, M = 13. 

 

 

 
 

Fig. 13. Dipole pattern mapped to the rectangular phase space, power -2, M = 3, 

EC = (1,-1, 1), k = 3,  j =1 after 32000 steps. Red are some jump path lines. 
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Fig. 14. M = 128, k = 1, EC = (1, -1, 1), radial variation, d = (2,0)    

 

 
 

Fig. 15. M = 20 , k = 2.3, EC = (1, 1, 1), radial variation, d = (2,0)         

 

4.f  Higher-Dimensional Rotated-Rotations  

 

 
 

Fig. 16. n = 3,  k = 2, EC = (1, -1, 1), angular variation, d = (2,2,2)     
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Fig. 17. n = 4, 3-D Projection, k = 1, EC = (1, -1, 1,-1)     

 

 

 
 

Fig. 18. n = 4 , 3-D Projection, k = 12, EC = (1, -1, 1,-1), d = (3,0,3,0)       
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Fig. 19. n = 5, 3-D Projection, k = 1, EC = (1, -1, 1,-1,1), d = (4,0,4,0,4)           

 

 

 
 

Fig. 20. n = 6, 3-D Projection, k = 6, EC = (1, -1, 1,-1, 1,-1), d = (5,0,5,0,5,0,5)   
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Fig. 21. n = 10, 3-D Projection, k = 12, EC = (1,1,1,1,1,1,1,1,1,1), d = 

(9,9,9,9,9,9,9,9,9,9)             

 

5. Measure of Chaos/Exponents     
Since the map can be extended to an arbitrary number of dimensions n and 

singularities, we can have a higher-dimensional chaos located in or on hyper-

spheres with rotation axes defined by hyper-planes, so it could be called hyper-

chaos [5,6] or hyper-sphere chaos. As a measure of chaos we have computed the 

mean space trajectory separation exponent in n-D between two nearby vectors 

1, 2,
,

t t
p p  for one complete n-D iteration step during the time τ  averaging 

0 i I< <  successive steps with t iτ=  

 

 
Fig. 22. The 1-step exponent Eτ  for n = 3,4,…,10 dimensions and I = 500 

 

1

1, ( 1) 2, ( 1) 1, 2,

0

1
log /

I

t i t i t i t i

i

E
I

τ τ τ τ τ

−

+ + + + + +
=

 = − − ∑ p p p p , (14) 
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which is a cheap estimate of the Lyapunov exponent. This exponent is highly 

stable and increases with the number of dimensions n and with the 

amplitude/strength factor k of rotation, see fig 24. In our simulation the 1-step 

exponent Eτ  was in our case limited to about 35 due to the double precision 

limit of the floating point computing unit. It starts to increase strongly near to 

the control parameter value k = 0.5, see eq.(12). There the pattern becomes 

"randomized" and chaotic especially at higher hyper sphere rotation dimensions. 

At higher exponents we find that the map is a good pseudo-random number 

generator in any dimension n > 2. Fig. 22 was obtained without expansion or 

compression EC = (1,1,1, ...) like all of shown patterns in all figures. With 

compression-reflection coefficients smaller 1 like EC = (0.99,0.99,0.99, ...) we 

get negative exponents for 0.5k ?  and in-spiralling towards the centre. 

6. Cryptography with Hyper-Chaos on the Hyper-Sphere   

The rotations 
,a b

R  part of the global sequence 
,A B

R  do not commute, so the 

time ordering is crucial. The non-commutative permutations of the non-abelian 

group elements are relevant for encryption purposes. If the permutation is a 

sequence with a selection of K elements out of L  = N(n-2) = n(n-1)(n-2)/2 

rotations that contains each element once, the number of combinations is given 

by !/ ( )!C L L K= − . Knowing the rotation angles 
, ,a b l

ϑ  and the global sequence 

,A B
R , the rotation can only be reversed by applying the rotations and 

expansion/reflections part of 
,A B

R  in reversed order. This is an encryption given 

by a rotation permutation from a series of linked non-commuting mathematical 

operations, where decryption is done by simply reversing the process applied to 

signal packages containing some bits of information. The key complexity 

defining the variations in the rotation sequence would be given by the 

permutation of combinations. In addition there is the freedom to choose the 

rotation angles, the initial condition in the signal 
0

( 0)
t

t= =p p , and the 

singularity locations 
, ,a b l

s  with given precision. Secret key sharing could be 

done by hiding the initial conditions 
0

( 0)
t

t= =p p , the singularity locations 

, ,a b l
s , and eventually some rotation axes 

b
X  with Blakley's scheme from the 

intersection of distributed planes P  [7], where any of the N nonparallel 2-

dimensional hyperplanes intersect at a specific point or axis, and each 

participant is given enough information to define one of the hyper-planes P . Of 

course, key-shifting during the sequence could also be introduced, which could 

be done by mobile singularities providing for extreme confusion and diffusion 

properties. Thus reversibility is practically limited to a small number of 

encryption/decryption operations due to a limited calculation precision and the 

high exponential divergence and pseudo-randomness, see fig. 24.  

7. Mobile Singularities Exchanging Momentum Quanta 

Up to now the simulated singularities had a static location. But a physical 

situation usually requires mobile singularities.  
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Fig. 23: Two massive mobile singularities generating and absorbing yellow and 

pink signals carrying momentum and providing for a vector-field. 

An important extension would be given by mobile singularities 

, , , , , , ,
( )

a c l a c l t a c l
t→ =s s s  or mobile rotation axes carrying momentum like 

spinning particles with spin – orbit coupling. In the real world the emission or 

absorption of a rotation-translation or rotation-rotation signal would transfer a 

linear or angular momentum quantum to and from the singularity if it has a 

nonzero angular momentum. In addition to the various possibilities to introduce 

local rotations and accelerations from distance-dependent interactions between 

singularities is to provide for an extra rotational interaction dynamics between 

two mobile singularities 
, , ,t a c l

s  and 
, , ,t b c l

s , there could be a common rotation 

, ,
( )

t c t c
ϑR  with common axis 

c
X  (length is the rotation angle) performing the 

interaction of singularities. Here are two possibilities: 

(1) parallel to one of the rotation axes 
c a

X XP  or 
c b

X XP  or  

(2) orthogonal to the interacting singularities rotation axis 
c a b
⊥ ⊥X X X , 

c a b
= ×X X X  having SO(3) symmetry with new interaction singularity 

located on the intersection of the three axes.  

To get something like a mass or providing for inertia and angular momentum a 

density of visited points after many jumps at time t or spatial sampling function 

dependent on the initial conditions 
0t

ρ =  could be defined by  

1

0

1
( ) ( )

I

t I i

iI
τ τρ δ

−

=
=

= −∑x x p . (15) 
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With the expanded density by [ ]t t
ρ ρ= E% , [ ]1

t t
ρ ρ− =E %  we get the difference 

operator equation [ ] [ ]1

,A B t t τρ ρ−
+=R E% % . Equilibrium is approached for 

t t
ρ ρ →∞≈% % .  

8. Discussion 

How do patterns emerge from eq.10? At the present stage we just start to 

explore the very rich system of pattern formation from map parameter and 

initial value customization. Without systematic approach this task is hard to do. 

A basic pattern property at lower dimensions can be assigned to the sign of the 

reflection exponent, a negative sign leads to an up/down oscillatory behaviour in 

the jumps shaping the pattern in the altitude, see fig. 13. In the other direction 

the orbital loops with 
,

2 /
j M

j Mθ π=  around axes at coupling exponent d = 0 

can provide at any radius M/j orbital jump position that are only slightly shifted 

after every loop, see figs 9-16. At higher dimensions even at high k-values (see 

figs 19, 21, and 23) the patterns look often more random than the nice structures 

and symmetries that can be easily obtained at lower dimensions, see figs 1-16. 

In 4, 5, and 6 dimensions we found interesting structures just by trial, see 17-20. 

The Skiadas singularity rotation varies with radial distance to the singularity and 

coupling factor or rotation strength 1/k as an important tuning parameter to 

obtain the pattern structures, see figs. 12-15 and 22. The smaller k, the higher 

the extra rotation providing for a more nonlinear behaviour and chaotic or even 

pseudo-random stochastic structure in the pattern, especially near the equatorial 

location of the singularity, see fig. 12 right. Subject to periodic boundaries and 

closed loop/orbits our chaotic jump functions show especially at higher k values 

in the non-chaotic regime ( 1k ? ) a small chaotic core at the centre. At strong 

rotations the divergence and exponents can grow unbounded, see fig 22, leading 

to pseudo-random patterns. Due to the singularity on the orbit there is no perfect 

rotational M-gonal symmetry, the angular parts are slightly different, most 

different is the orbital part where the singularity is located, see fig. 13, where 

every dipole has a slightly different shape, especially the chaotic core is 

different.. Smaller shifts produce traces and linear flows with basic symmetries 

known from other fields. At special values of j, k, and initial conditions we get 

almost M-independent regular structures like rings and waves or dipole type 

flows, see figs 9-15.  

It can be found that the path and singularity determines the shift, which is 

typical for geometric shifts or phases. In physics this extra shift is known as a 

geometric phase emerging on curved surfaces. In [8] we have presented a 

strange attractor involving geometric phases from three rotations on the sphere, 

where a linear rotation – translation coupling (rolling or helical paths) provides 

for simplifications with very interesting holonomic attractor singularities from 

iterations. We think that the geometric phase interpretation and correspondent 

phase shift concepts are also valid here, but near to the singularities or 

“monopole charges” the geometric phase extra rotation is small compared to the 

78



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

singularity rotation. Since sum of the rotations given by the rotation vector field 

provides for a vector potential it is not surprising that the patterns at small 

coupling strengths and far away from singularities look like iso-potential lines 

for inverse power interaction laws, in fig.9 for a magnetic dipole chain and in 

fig.10 for a shear flow or pendulum chain. For smaller couplings 1/k we get the 

some rather linear physical properties: 

- monopoles and dipoles (dipole see fig. 1b and chain in fig. 9), 

- twistorial spin (vortex structures, see fig. 1 and 20, helical twist fig. 6), 

- parity properties and even/odd symmetries (see figs. 3-5), 

- j and M could be interpreted as spin and orbital number, respectively,  

- inbuilt constant propagation velocity in the translation or rotation in eq. (2), 

- Gauss flux exponent d in 1n d= +  dimensions, 

- wave/particle duality with discrete jumps providing for density patterns, 

- scalar and vector fields with standard gauge symmetries, 

- angular momentum transfer, interaction and kinetic energy. 

- hierarchy of patterns, see figs. 18 and 20,   

 

Opening the loop and translating it into a helical path keeps the basic pattern 

units if proper periodic boundaries with reflection are introduced. Remarkably, 

periodic rotation-rotation dipole-dipole interaction patterns emerge on the 

spherical or helical loop, where the characteristic flux lines are emitted from a 

chaotic core, see figs. 9, 12-16. Dipole chain patterns play a very important role 

for living organisms since the molecular dipole interaction leads to protein 

folding. “Every process of protein formation, from the binding of individual 

amino acids to secondary structures to tertiary structures and even the formation 

of quaternary structures is dependent on dipole-dipole interactions [9].”  

4-D patterns projected to 3-D show often torus shapes, see fig. 17, typically 

relevant to Hamiltonian system of spin-spin and spin-orbit coupling. Spin(n) is 

simply connected and so coincides with the universal cover of SO(n) with 

isomorphisms and decompositions among the classical Lie groups like Spin(2) = 

U(1) = SO(2), Spin(3) = SU(2), Spin(4) = SU(2) x SU(2), SU(4) = Spin(6). So 

Spin(2) and Spin(3) structures can be embedded together in Spin(4). The same 

can be done in arbitrary high dimensions providing in our case for interplay of 

low-dimensional ordered states part of a higher-dimensional chaos. This could 

point to a kind of “itinerancy” [10]. Figs. 18 and 20 show connected (by thin 

wormholes) lower-dimensional chaotic structures embedded in 4-D and 6-D 

higher-dimensional systems with very low LE in the projection to three 

dimensions. This could have relevance to the standard model high energy 

particle physics with separable but interconnected subgroups in the 10-D gauge 

field embeddings ( ) ( ) ( )SU 3 ×SU 2 ×U 1 (5)SU;  [4].  

Introducing mass and momentum, mobile singularities emitting and absorbing 

the jumping chaotic signal quanta carrying momentum and travelling at constant 
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speed provide for a very rich chaotic behaviour and dynamics, see the special 

example in fig. 23. 

9. Conclusions 

We conclude that using an iterative reflection-rotation-rotation/translation 

difference equation modelling approach according to Skiadas we can obtain 

many new interesting patterns with attributes similar to those known from 

physics. The multiple rotation formula generating hyper-sphere chaos can be 

extended to an arbitrary number of dimensions, rotations, and singularities. 

Mobile singularities could even produce more chaos. If the singularity is located 

at very large distances a small rotation can approximate a translation. At special 

numbers with smaller coupling 1/k and special initial conditions regular 

structures like rings, spirals, and waves or the many dipole-dipole interaction 

flows emerge, which could be promising for molecular science and new basic 

level concepts. Important for a pattern generation on the orbit is a tiny but 

nonlinear shift in both angular variables due to a cyclic and path dependent 

singularity extra rotation that is small compared to the orbital angular steps and 

more linear at smaller coupling (higher k) values. The hyper-sphere chaos from 

rotation permutations could act s a pseudo-random generator of chaotic patterns 

relevant for crypto applications with key given by initial conditions and the 

special rotation permutation sequence in higher dimensions.  
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Abstract. Necessary and sufficient conditions for normal solvability are obtained
for linear differential equations in Banach space. Constructed examples demon-
strate that even in the linear case (but certainly not correct) you can select a
family of bounded solutions, which tend to an equilibrium positions, so-called ho-
moclinic and heteroclinic trajectories.

Keywords: exponential dichotomy, normally-resolvable operator, pseudoinverse
operator.

A lot of papers are devoted to development of constructive methods for the
analysis of different classes of boundary value problems. They traditionally
occupy one of the central places in the qualitative theory of differential equa-
tions. This is due to practical significance of the theory of boundary-value
problems for various applications - theory of nonlinear oscillations, theory of
stability of motion, control theory and numerous problems in radioengineer-
ing, mechanics, biology etc.

Correct and incorrect boundary value problems are studied. Ususally
correctness is understood as uniqueness of the solution for arbitrary right-
hand side of the equation. Correct boundary value problems for ordinary
differential equations, impulsive systems, Noether operator equations became
popular relatively recently, they were studied in detail [5]. Analysis of a large
class of incorrect boundary value problems was associated with the properties
of the generalized inverse operator (which exists for any linear operator in a
finite dimensional space).

Efforts aimed to solving problem of the existence of bounded solutions
of linear differential equations are mainly devoted to the correct case. Ad-
ditional boundary conditions can be full filled only in a trivial situations for
such problems. After Palmer’s work [2] it became clear that in the general
case, even a finite set of differential equations can not have one bounded solu-
tion, and it makes sense to study the boundary value problem in the incorrect
case. Using the pseudoinverse operators approach one can obtain the condi-
tions under which a family of bounded solutions satisfying the supplementary
boundary conditions can be identified.
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1 Statement of the Problem

In a Banach space X we consider a boundary value problem

dx

dt
= A(t)x(t) + f(t) , (1)

lx(·) = α , (2)

where the vector - function f(t) acts from R into the Banach space X,

f(t) ∈ BC(R,X) := {f(·) : R→ X, f(·) ∈ C(R,X), |||f ||| = sup
t∈R
‖f(t)‖ <∞},

BC(R,X) is the Banach space of functions continuous and bounded on
R; the operator-valued function A(t) is strongly continuous with the norm
|||A||| = supt∈R ||A(t)|| < +∞; BC1(R,X) := {x(·) : R → X, x(·) ∈
C1(R,X), |||x||| = sup

t∈R
{‖x(t)‖, ‖x1(t)‖} < ∞}, - the space of functions con-

tinuously differentiable on R and bounded together with their derivatives; l
- linear and bounded operator acts from the space of BC1(R,X) into the
Banach space Y. We determine the conditions of the existence of solutions
x(·) ∈ BC1(R,B) of boundary value problem (1), (2) under the assumption
that the corresponding homogeneous equation

dx

dt
= A(t)x(t) (3)

admits an exponential dichotomy [1–3] on the semi-axes R+ and R− with
projectors P and Q, respectively, i.e., there exist projectors P (P 2 = P ) and
Q(Q2 = Q) and constants k1,2 ≥ 1 and α1,2 > 0 such that the estimates{ ∥∥U(t)PU−1(s)

∥∥ ≤ k1e−α1(t−s), t ≥ s,∥∥U(t)(E − P )U−1(s)
∥∥ ≤ k1eα1(t−s), s ≥ t, for all t, s ∈ R+,

and { ∥∥U(t)QU−1(s)
∥∥ ≤ k2e−α2(t−s), t ≥ s,∥∥U(t)(E −Q)U−1(s)

∥∥ ≤ k2eα2(t−s), s ≥ t, for all t, s ∈ R−

hold, where U(t) = U(t, 0) is the evolution operator of Eq. (3) such that

dU(t)

dt
= A(t)U(t), U(0) = E is the identity operator [1, p.145] .

2 Preliminaries

Now we formulate the following result, which is proved in [4] for the nonho-
mogeneous equation (1).
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Theorem 1. Suppose that the homogeneous equation (3) admits an expo-
nential dichotomy on the semi-axes R+ and R− with projectors P and Q,
respectively. If the operator

D = P − (E −Q) : X→ X (4)

acting from the Banach space X onto itself is invertible in the generalized
sense [5, p.26], then

(i) in order that solutions of Eq. (1) bounded on the entire real axis exist,
it is necessary and sufficient that the function f(t) ∈ BC(R,X) satisfies the
condition

+∞∫
−∞

H(t) f(t) dt = 0; (5)

where
H(t) = PN(D∗)QU

−1(t) = PN(D∗)(E − P )U−1(t),

(ii) under condition (5), solutions bounded on the entire axis of Eq. (1) have
the form

x(t, c) = U(t)PPN(D)c+ (G[f ])(t), ∀ c ∈ X, (6)

where

(G[f ])(t) = U(t)



t∫
0

PU−1(s)f(s) ds−
∞∫
t

(E − P )U−1(s)f(s) ds+

+PD−
[∞∫
0

(E − P )U−1(s)f(s) ds +
0∫
−∞

QU−1(s)f(s)ds

]
, t ≥ 0,

t∫
−∞

QU−1(s)f(s) ds−
0∫
t

(E −Q)U−1(s)f(s) ds+

+(E −Q)D−
[∞∫
0

(E − P )U−1(s)f(s) ds+
0∫
−∞

QU−1(s)f(s) ds

]
, t ≤ 0

(7)
is the generalized Green operator of the problem for solutions bounded on the
entire axis, D− - is the generalized inverse of D , mathcalPN(D) = E−D−D
and PN(D∗) = E−DD− , c is an arbitrary constant element of the Banach
space X.

3 Main result

We now show that under condition from the theorem 1, the boundary value
problem can be solved using the operator B0 = lU(·)PPN(D) : X→ Y.
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Theorem 2. Let’s conditions from the theorem 1 are satisfied. If the
operator

B0 : X −→ Y

acting from the Banach space X into the Banach space Y is invertible in the
generalized sense, then

(i) in order that solutions of boundary value problem (1), (2) exist, it is
necessary and sufficient that

PN(B∗
0 )

(α− l((G[f ])(·))) = 0 ; (8)

(ii) under condition (8) solutions of boundary value problem (1), (2) have
the form

x(t, c) = U(t)PPN(D)PN(B0)c+U(t)PPN(D)B
−
0 (α−l(G[f ])(·))+(G[f ])(t),∀c ∈ X,

where (G[f ])(·) - is generalized Green operator defined below; B−0 - is gener-
alized inverse of B0, PN(B∗

0 )
- projector, which project X onto the kernel of

adjoint operator B∗0 .
Proof. From the theorem 1, we have that the family of bounded solutions

of the equation (1) has the form x(t, c) = U(t)PPN(D)c + (G[f ])(t). We
substitute this solutions to the equation (2):

l(U(·)PPN(D)c+ (G[f ])(·)) = α.

Since the operator l is linear we have :

l(U(·)PPN(D))c+ l((G[f ])(·)) = α,

and we have finally the operator equation :

B0c = α− l((G[f ])(·)).

Since operator B0 is invertible in the generalized sence , then in order that
solutions of the boundary value problem (1),(2) exist it is necessary and
sufficient [5] that

PN(B∗
0 )

(α− l((G[f ])(·))) = 0.

If this condition is satisfied, then

c = PN(B0)c+B−0 (α− l((G[f ])(·))), ∀c ∈ X.

Then the family of bounded solutions of the boundary value problem (1), (2)
has the form:

x(t, c) = U(t)PPN(D)PN(B0)c+U(t)PPN(D)B
−
0 (α− l((G[f ])(·))) + (G[f ])(t)

Remark. If Y = X×X, lx = (x(+∞), x(−∞)) = (α, α) ∈ X×X, where
α - equilibrium point of (1), then all bounded solutions of boundary value
problem (1), (2) are homoclinic paths [6].
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4 Examples

1. We now illustrate the assertions proved above. Consider the next boundary
value problem

dx

dt
= A(t)x(t) + f(t), (9)

lx(·) = x(b)− x(a) = α, (10)

where A(t) - is operator in the form of a countably-dimensional matrix that,
for every real value t, acts on the Banach space B = lp, p ∈ [1; +∞) and

x(t) = col{x1(t), x2(t), . . . xk(t), . . .} ∈ BC1(R, lp),

f(t) = col{f1(t), f2(t), . . . , fk(t), . . .} ∈ BC(R, lp)

- are countable vector - columns; a, b ∈ R, b > 0, a < 0;

α = col{α1, α2, . . . , αk, . . .} ∈ lp

- constant vector (αi ∈ R, i ∈ N).
Consider boundary value problem (9), (10) with the operator

A(t) =



k︷ ︸︸ ︷
th t 0 0 . . . . . .

0 th t 0 . . . . . .
. . . . . . . . . . . . . . .

0 0 th t . . . . . .
0 0 0 − th t . . .
. . . . . . . . . . . . . . .


: lp → lp. (11)

The evolution operator of system (9), (11) has the form:

U(t) =



k︷ ︸︸ ︷
(et + e−t)/2 0 0 . . . . . .

0 (et + e−t)/2 0 . . . . . .
. . . . . . . . . . . . . . .
0 0 (et + e−t)/2 . . . . . .
0 0 0 2/(et + e−t) . . .
. . . . . . . . . . . . . . .


;

The operator inverse to U(t) has the form

U−1(t) =



k︷ ︸︸ ︷
2/(et + e−t) 0 0 . . . . . .

0 2/(et + e−t) 0 . . . . . .
. . . . . . . . . . . . . . .
0 0 2/(et + e−t) . . . . . .
0 0 0 (et + e−t)/2 . . .
. . . . . . . . . . . . . . .


;
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and the corresponding homogeneous system is exponentially - dichotmous on
both semi-axes R+ and R− with the projectors

P =



k︷ ︸︸ ︷
0 0 . . . . . .
. . . . . . . . . . . .
0 0 . . . . . .
0 0 1 . . .
0 0 0 . . .
. . . . . . . . . . . .


and Q =



k︷ ︸︸ ︷
1 0 . . . . . .
. . . . . . . . . . . .
0 . . . 1 . . .
0 0 0 . . .
0 0 0 . . .
. . . . . . . . . . . .


, respectively. Thus, we have

D = P − (E −Q) = 0, PN(D) = PN(D∗) = E.

Since dimR[PN(D∗)Q] = k, then operator PN(D∗)Q is finite-dimensional:

H(t) = [PN(D∗)Q]U−1(t) =



k︷ ︸︸ ︷
1 0 . . . . . .
. . . . . . . . . . . .
0 . . . 1 . . .
0 0 0 . . .
0 0 0 . . .
. . . . . . . . . . . .


U−1(t) = diag{Hk(t), 0},

where

Hk(t) =

2/(et + e−t) . . . 0
...

. . .
...

0 . . . 2/(et + e−t)

 is a k× k− dimensional matrix .

According theorem 1, for the existence of solutions of system (9), (11) bounded
on the entire axis, it is necessary and sufficient that following conditions be
satisfied:

∫ +∞

−∞
Hk(t)f(t)dt = 0 ⇔


∫ +∞
−∞

f1(t)
et+e−t dt = 0

. . .∫ +∞
−∞

fk(t)
et+e−t dt = 0.

(12)

Thus, in order that system (3), (11) have solutions bounded on the en-
tire axis, it is necessary and sufficient that exactly k conditions be satisfied;
the other functions fi(t) for all i ≥ k + 1 can be taken arbitrary from the
class BC(R, lp). Moreover, system (3), (11) has countably many linearly
independent bounded solutions. For example, as a vector function f from
the class BC(R, lp), one can take an arbitrary vector function whose first k
components are odd functions.
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For solving boundary value problem we find the matrix B0 :

B0 = lU(·)PPN(D) = U(b)PPN(D) − U(a)PPN(D),

and finally

B0 =



k︷ ︸︸ ︷
0 0 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 . . . 0 . . . . . . . . .
0 . . . 0 cha−chb

cha·chb . . . . . .
0 . . . 0 . . . cha−chb

cha·chb . . .
. . . . . . . . . . . . . . . . . .


: lp → lp.

Since a 6= b then operator PN(B∗
0 )

have the form :

PN(B∗
0 )

=



k︷ ︸︸ ︷
1 0 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 . . . 1 . . . . . . . . .
0 . . . 0 0 . . . . . .
0 . . . 0 . . . 0 . . .
. . . . . . . . . . . . . . . . . .


: lq → lq (1/p+ 1/q = 1),

and

G[f ](b)−G[f ](a) =



−
∫ a
−∞

2f1(s)
es+e−s ds−

∫ +∞
b

2f1(s)
es+e−s ds

. . .

−
∫ a
−∞

2fk(s)
es+e−s ds−

∫ +∞
b

2fk(s)
es+e−s ds

1
2

∫ b
a

(es + e−s)fk+1(s)ds
. . .


.

PN(B∗
0 )

(α− l(G[f ])(·)) = 0 ⇔


∫ a
−∞

2f1(s)
es+e−s ds+

∫ +∞
b

2f1(s)
es+e−s ds = −α1

. . .∫ a
−∞

2fk(s)
es+e−s ds+

∫ +∞
b

2fk(s)
es+e−s ds = −αk.

(13)
Thus, according to Theorem 2, boundary value problem (9), (10), (11)

possesses at least one solution bounded on R if and only if the vector-function
f satisfies conditions (12), (13).

2.Consider one-dimensional boundary value problem

dx(t)

dt
= −tht x(t) + f(t),

lx = (x(+∞), x(−∞)) = (α1, α2) ∈ R2. (14)
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a) let f(t) = 2e−t

et+e−t and (α1, α2) = (0,−2). The set of bounded solutions
which satisfy boundary condition (14) have the form:

x(t, c) =
2

et + e−t
c− 2e−t

et + e−t
+

2

et + e−t
, for all c ∈ R.

Integral curves for different values of the parameter c are shown in Figure 1.

Fig. 1. Integral curves for different values of the parameter c

b) let f(t) = 2 tht and (α1, α2) = (2, 2). In this case equation (1) has
equilibrium solution x0(t) = 2 and a set of homoclinic paths have the next
form:

x(t, c) =
2

et + e−t
c+ 2− 4

et + e−t
, for all c ∈ R.

Integral curves for different values of the parameter c are shown in Figure 2.

Fig. 2. Integral curves for different values of the parameter c

3. Consider two-dimensional boundary value problem

dx1(t)

dt
= −tht x1(t) + f1(t),

dx2(t)

dt
= −tht x2(t) + f2(t),

l(x1, x2) = (x1(+∞), x1(−∞), x2(+∞), x2(−∞)) = (α1, α2, α3, α4) = (0,−2, 2, 2) ∈ R4,
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where f1(t) = 2e−t

et+e−t , f2(t) = 2 tht (direct product of examples 2a, 2b). This
problem has a two-parametric family of bounded solutions

x1(t, c1) = 2
et+e−t c1 − 2e−t

et+e−t + 2
et+e−t ,

x2(t, c2) = 2
et+e−t c2 + 2− 4

et+e−t ,

for all c1, c2 ∈ R.

The phase portrait of this system is shown for different parameters in Figure
3 (in plane x1, x2).

Fig. 3. The phase portrait of system

We see that the portrait resembles a horseshoe.
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Abstract. An analysis is made of the hyperchaotic behaviour of a triple plane
pendulum. It is shown that there are only eight physically distinct equilibrium
configurations for the pendulum and that the types of eigen solutions obtained, for
the Jacobian matrix evaluated at each equilibrium configuration, are independent
of the system parameters. A new method for extracting the periodic orbits of the
system is also developed. This method makes use of least-squares minimisation
and could possibly be applied to other non-linear dynamic systems. As an example
of its use, four periodic orbits, two of which are numerically unstable, are found.
Time series plots and Poincaré maps are constructed to investigate the periodic to
hyperchaotic transition that occurs for each unstable orbit.
Keywords: Triple pendulum; hyperchaos; fixed points; periodic orbits.

1 Introduction

The present work is motivated by recent interest in studying pendulum sys-
tems for possible exploitation in various technological applications. There
have been a number of experimental and theoretical investigations aimed at
understanding the stability of human gait (manner of stepping) through the
use of inverted pendulum models [1,2]. Experimental investigations of either
simple or coupled electro-mechanically driven pendulums have been under-
taken with the view of developing more precise conditions for the onset of
chaos in such systems [3,4]. Also, a triple pendulum suspension system has
been developed to seismically isolate optical components on the GEO 600
interferometric gravitational wave detector [5]. The latter development has
allowed the detector to achieve a seismic noise sensitivity level which is well
below the level from thermal noise.

Coupled pendulums with obstacles have been used to model real mechan-
ical systems that exhibit nonlinear phenomena such as resonances, jumps
between different system states, various continuous and discontinuous bi-
furcations, symmetry breaking and crisis bifurcations, pools of attractions,
oscillatory-rotational attractors, etc. [6–9]. In Ref. [9], for example, it has
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been shown that a triple pendulum model can provide insight into the real,
highly-complicated dynamics of a piston connecting-rod crankshaft system.

An experimental triple pendulum has been constructed by Awrejcewicz et

al. [10]. This pendulum has been analysed numerically and experimentally,
and good agreement has been obtained between the mathematical model
and the real system. In the present work, higher order effects that pertain
to specific experimental systems, like [10], are neglected. For example, we
have not included finer details of the frictional forces that act on the joints
of the pendulum, or asymmetries in its driving mechanism. One of the mo-
tivating factors for neglecting such higher order effects is the correspondence
that exists between the equations for a damped simple pendulum, driven
by a constant torque, and the well-known phenomenological model of a su-
perconducting Josephson junction [4,11]. It is thought that our somewhat
simplified model of the triple pendulum could, with minor modifications,
serve as a useful mechanical analogy for a series system of three resistively
coupled Josephson junctions.

This paper is organised as follows. In Section 2, the basic model and
equations are described. The system is linearised at its equilibria in Section
3. In Section 4 a new method is developed for finding the periodic orbits of the
system, based on least-squares minimisation. Four examples of found periodic
orbits are discussed, including their time series and Poincaré maps. In two
of the examples interesting periodic-hyperchaotic transitions are observed.
Section 5 concludes with a discussion of the main advantages and possible
disadvantages of the new method.

2 Description of model and equations

The current work is a continuation of our previous work [12], in which a three-
dimensional animation of a model triple plane pendulum was created by using
the Visual module in the Python programming language [14]. As shown in
Fig. 1, the model consists of a series of absolutely rigid bars which form
the three links of the pendulum (shown in red, green and blue). Additional
point-like masses are attached to the bottom of each link (shown as yellow
cylindrical disks).

The equations for the pendulum have been derived in a very general form
which allows each link in the pendulum to have an arbitrary moment of
inertia [8]. In the present work we consider the equations for a pendulum
consisting of three point masses, i.e. we neglect the moments of inertia of the
three links shown in Fig. 1. The equations for this special case are given in
Appendix A of Ref. [12] in the form,

dx

dt
= f (x, α, t) . (1)

In Eq. (1), α ≡ (m1,m2,m3, ℓ1, ℓ2, ℓ3, c1, c2, c3), represents the system pa-
rameters, where c1−3 model the viscous damping in each joint. The vector
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Fig. 1. Visualisation of the triple plane
pendulum. The pendulum is made of
rigid bars (two of length ℓ1, two of
length ℓ2 and one of length ℓ3) to which
point-like masses may be attached (two
of mass m1

2
, two of mass m2

2
and one of

mass m3). The pendulum is assumed
to be under the influence of gravity
(g = 9.81 ms−2) and in vacuum. Also
shown is the trajectory followed by the
centre of m3.

x ≡ (θ1, θ2, θ3, θ̇1, θ̇2, θ̇3), where θ1−3 are the angles made between the vertical
and each of the three links.

3 Linearisation at the equilibria

The spatial distribution and local dynamical characteristics of the equilibria
of a system greatly influence its nonlinear dynamics. Since the un-damped
pendulum is conservative, having only time independent constraints, its equi-
libria are defined by the vanishing of the generalised forces Qi [13], i.e. by,

Qi =
∂V

∂xi

= 0 (for i = 1, 2, 3) , (2)

where V (x1, x2, x3) = (m1 + m2 + m3) gℓ1 cos x1 + (m2 + m3) gℓ2 cos x2 +
m3gℓ3 cos x3 is the potential energy. The solutions to Eq. (2) produce eight
physically distinct equilibria, as shown in Fig. 2.

Fig. 2. The eight physically distinct equilibrium configurations of the pendulum.
Configurations (i) to (vii) are unstable. Configuration (viii) is stable.

To characterize the linearised dynamics of the system near each equi-
librium, we calculate the Jacobian matrix of the system and determine its
eigenvalues at the equilibria. The Jacobian matrix, evaluated at any of the
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equilibria, has the form

J =

















0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

±J1 ±J2 0 0 0 0
±J3 ±J4 ±J5 0 0 0
0 ±J6 ±J7 0 0 0

















, (3)

where J1 = g (m1 + m2 + m3) / (ℓ1m1), J2 = g (m2 + m3) / (ℓ1m1), J3 =
g (m1 + m2 + m3) / (ℓ2m1), J4 = g (m1 + m2) (m2 + m3) / (ℓ2m1m2), J5 =
gm3/ (ℓ2m2), J6 = g (m2 + m3) / (ℓ3m2) and J7 = g (m2 + m3) / (ℓ3m2). To
evaluate J at any particular equilibrium, the signs preceding J1−7 in Eq. (3)
must be chosen according to the convention given in Table 1.

Equilibrium config. J1 J2 J3 J4 J5 J6 J7

(i) (π, π, π, 0, 0, 0) + - - + - - +

(ii) (π, π, 0, 0, 0, 0) + - - + - + -

(iii) (π, 0, π, 0, 0, 0) + - + - + - +

(iv) (π, 0, 0, 0, 0, 0) + - + - + + -

(v) (0, π, π, 0, 0, 0) - + - + - - +

(vi) (0, π, 0, 0, 0, 0) - + - + - + -

(vii) (0, 0, π, 0, 0, 0) - + + - + - +

(viii) (0, 0, 0, 0, 0, 0) - + + - + + -

Table 1. The choice of signs pre-
ceding J1−7 in Eq. (3) for each
of the eight possible equilibrium
configurations listed in the left
hand column. These combina-
tions of signs should also be used
in the definitions of b, c and d in
Eq. (4).

The eigenvalues η of the Jacobian matrix were determined by solving the
characteristic equation det(J− η1) = 0, where 1 is the 6× 6 identity matrix.
By choosing all the signs in Eq. (3) to be positive, we found the characteristic
equation,

0 = aη6 + bη4 + cη2 + d , (4)

where a = 1, b = J1J4J7 −J1J5J6 −J2J3J7, c = J1J4 −J2J3 −J1J7 −J4J7 +
J5J6 and d = J7 − J1 − J4. In the expressions for b, c and d the correct
combination of signs, for a particular equilibrium, must once again be chosen
from Table 1. For example, for the second equilibrium, row (ii) in Table 1,
one obtains d = (−)J7 − (+)J1 − (+) J4.

Since Eq. (4) is a cubic polynomial in η2, its solutions could be written
algebraically [15]. The discriminant of each eigen solution was then used
to prove that the type of solution associated with a particular equilibrium
configuration is independent of the system parameters. These results are
presented in Table 2. To present the complete analysis of the fixed points
associated with each equilibrium in Table 2 is beyond the scope of the present
article. Briefly, our analysis reveals that (i) to (vii) may be associated with
various types of saddle points (depending on the parameter values) and that
(viii) will always remain a nonlinear centre.
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Table 2. The various types of eigenvalues obtained by solving Eq. (4) at each of
the eight possible equilibrium configurations.

Equilibrium config. Stability Eigenvalues of J

(i) (π, π, π, 0, 0, 0) unstable all real

(ii) (π, π, 0, 0, 0, 0) unstable 4 real, 2 imaginary

(iii) (π, 0, π, 0, 0, 0) unstable 4 real, 2 imaginary

(iv) (π, 0, 0, 0, 0, 0) unstable 2 real, 4 imaginary

(v) (0, π, π, 0, 0, 0) unstable 4 real, 2 imaginary

(vi) (0, π, 0, 0, 0, 0) unstable 2 real, 4 imaginary

(vii) (0, 0, π, 0, 0, 0) unstable 2 real, 4 imaginary

(viii) (0, 0, 0, 0, 0, 0) stable all imaginary

4 New method for locating periodic orbits

Knowledge of the periodic orbits and their stability is an important aspect
of understanding chaotic systems and therefore a great deal of research has
already gone into developing more efficient methods for discovering the peri-
odic orbits and periods of non-linear dynamic systems. See, for example, Refs.
[16–18], and references therein. In this section we will develop a new method
for finding the periodic orbits by making use of the Levenberg-Marquardt
algorithm for least-squares estimation of nonlinear parameters [19].

Assume that the system has a periodic orbit with principle period T .
As pointed out by Li and Xu [17], it is convenient to use T as one of the
optimisation parameters. We therefore re-write Eq. (1) in terms of a dimen-
sionless time parameter τ , by setting t = Tτ . This substitution produces the
equivalent equation,

dx

dτ
= T f (x, α, T τ) . (5)

Since τ is measured in units of T , Eq. (5) has the advantage that it can be
integrated over exactly one period, by letting τ run from zero to one.

In order to search for periodic orbits we define the residual (error vector),

R = (x (1) − x (0) , x (1 + ∆τ) − x (∆τ) , . . . , x (1 + n∆τ) − x (n∆τ)) , (6)

where ∆τ is the integration step size. In Eq. (6), n is an integer which must
be chosen large enough to ensure that R has a greater number of components
than the number of quantities which are to be optimised simultaneously. This
choice is required by the Levenberg-Marquardt algorithm, which is used to
locate the global minimum in R (note that R = 0 for periodic orbits). In the
case of the un-damped pendulum, for example, if all possible quantities are to
be optimised simultaneously, i.e. six initial conditions, plus six parameters,
plus the period (13 quantities); then one must choose n ≥ 2. The smallest
possible choice for this case is n = 2, which produces a residual with 6(n+1) =
18 components (see Eq. 6).
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The definition of R requires the system to be integrated from τ = 0 to
τ = 1 + n∆τ . In the present work we have used a fourth-order Runge-Kutta
integration scheme with n = 3 and ∆τ = 1/N , where N = 2000. We have
implemented the method in the Python programming language [14]. The
module Scipy.optimize contains the function leastsq, which makes use of a
modified Levenberg-Marquardt algorithm [20].

When applied to the triple pendulum, the method produces a surprisingly
large number of (numerically) stable and unstable periodic orbits. Many of
the found orbits at first appear to be qualitatively similar (when viewed
on a screen), but are in fact quantitatively different, when studied numeri-
cally. In Fig. 3 we have plotted four examples of different periodic orbits
that were found. Figure 3 (a) shows a stable symmetric orbit of period

Fig. 3. Four different periodic orbits followed by the centre of m3, i.e. here Y =
−ℓ1 cos x1−ℓ2 cos x2−ℓ3 cos x3 is plotted against X = ℓ1 sin x1+ℓ2 sin x2+ℓ3 sin x3,
for the first 10 s. (a) Symmetric and stable. (b) Broken-symmetric and stable. (c)
Broken-symmetric and unstable. (d) Symmetric and unstable. The colour of each
orbit represents the speed of m3 in the range zero (red) to 2ms−1 (blue).

T = 3.0363595 s. One point on the orbit is (−0.20813379, −0.47019033,
0.80253405, −4.0363589, 4.42470966, 8.3046730), with the parameters
m1−3 = 0.1 kg, ℓ1 = 0.15m and ℓ2−3 = 0.1m. Figure 3 (b) shows a sta-
ble broken-symmetric orbit of period T = 2.78866884 s. One point on the
orbit is (−0.22395671, 0.47832902, 0.22100014, −1.47138911, 1.29229544,
−0.27559337), with the parameters m1 = 0.1 kg, m2 = 0.2 kg, m3 = 0.1 kg,
ℓ1 = 0.15m, ℓ2 = 0.2m and ℓ3 = 0.3m. The Lyapunov exponents for the
orbits shown in Figs. 3 (a) and (b) confirm that the orbits are periodic.

Figure 3 (c) shows an unstable broken-symmetric orbit of period
T = 3.23387189 s. One point on the orbit is (−0.78539816, 0.79865905,
0.72867705, 0.74762606, 2.56473963, −2.05903234), with the parameters
m1 = 0.35 kg, m2 = 0.2 kg, m3 = 0.3 kg, ℓ1 = 0.3m, ℓ2 = 0.2m and
ℓ3 = 0.25m. The Lyapunov exponents, sampled every 0.0005 s for 2000 s, con-
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firm that this orbit is hyperchaotic, with λ1 = 0.90, λ2 = 0.19 and λ3 = 0.002.
Figure 3 (d) shows an unstable symmetric orbit of period T = 3.44620156 s.
One point on the orbit is (1.30564176, 1.87626915, 1.13990186, 0.75140557,
1.65979939, −2.31442362), with the parameters m1 = 0.35 kg, m2 = 0.2 kg,
m3 = 0.3 kg, ℓ1 = 0.3m, ℓ2 = 0.2m and ℓ3 = 0.25m. The Lyapunov ex-
ponents, sampled every 0.0005 s for 2000 s, confirm that the orbit is also
hyperchaotic, with λ1 = 2.95, λ2 = 1.10 and λ3 = 0.004.

To investigate the rapid transition that occurs from periodic to hyper-
chaotic the time series and Poincaré maps of each orbit have been studied.
Figure 4(a) shows the time series of x6 for each of the four orbits.

Fig. 4. (a) Time series of x6 for the orbits discussed in connection with Figs. 3 (a)
magenta (top), (b) red, (c) green and (d) blue (bottom). (b) The corresponding
Poincaré maps. Parameter values and initial conditions are as for Fig. 3.

The corresponding Poincaré maps, shown in Fig. 4 (b), were constructed
by sampling the trajectories every 0.001 s, for 100 s. For this relatively short
time interval the periodic parts of the two unstable orbits are still clearly
visible within the surrounding (so-called) stochastic layer that is thought to
replace the region of destroyed separatrices [21].

5 Discussion and conclusion

The equations for a triple plane pendulum, consisting of three point masses
connected by massless links, have been analysed. It was shown that there
are only eight physically distinct equilibrium configurations for the pendulum
and that the type of eigen solutions obtained for the linearised system at each
equilibrium is independent of the system parameter values. A new method
for extracting the periodic orbits of the system was also developed. The new
method exploits the high-efficiency of the modified Levenberg-Marquardt al-
gorithm. It is simple to implement and does not require the computation
of the Jacobian matrix. In addition, the minimisation algorithm may easily
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be constrained in order to restrict the search to specific regions of the phase
space; for example, to a constant energy surface. One possible disadvantage
of the method is that it does not discriminate between unstable and stable
periodic orbits. However, this aspect of the method may in fact be an im-
portant advantage, since it enables the method to be used for studying the
coexistence of both regions of stable dynamics and hyperchoas within the
phase space.
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Abstract. Erratic behaviour in the simulated current-voltage characteristics of
coupled intrinsic Josephson junctions, for certain ranges of the parameters, are ob-
served and are shown to be chaotic in origin. In order to demonstrate the chaotic
origin of the erratic behaviour, the Lyapunov exponents for the system are calcu-
lated. System trajectories and their Poincaré maps are used to confirm the chaotic
signature obtained from the Lyapunov spectrum in certain ranges of the bias cur-
rent, below the break point current.
Keywords: Chaos; Hyperchaos; CCJJ+DC model; Intrinsic Josephson Junctions.

1 Introduction

Systems of coupled intrinsic Josephson junctions (IJJs) are prospective can-
didates for the development of superconducting electronic devices [1]. Ques-
tions about their dynamics are, for a variety of reasons, of great technological
importance [2]. For example, systems of junctions can produce much greater
power output that a single junction and they also provide a model which may
help to elucidate the physics of high temperature superconductors (HTSC)
[3,4]. The intrinsic Josephson effect (IJE) [5], i.e. tunneling of Cooper pairs
between superconducting layers inside of strongly anisotropic layered HTSC,
provides a further motivation for considering HTSC as stacks of coupled
Josephson junctions. The IJE also plays an important role in determining
the current voltage characteristics (CVC) of tunneling structures based on
HTSC and the properties of the vortex structures in these materials.

Although there has been a recent report on the hyperchaotic behaviour
of an array of two resistive-capacitive-inductive-shunted Josephson junctions
[6], the so-called RCLSJJ model [7], chaotic behaviour does not feature in
the literature on other closely-related phenomenological models; such as, the
capacitively-coupled model (CCJJ) [8], the resistive-capacitive shunted model
(RCSJJ) [5,9], or the CCJJ plus diffusion current (DC) model [10,11] of the
present work. One possible reason for the comparatively late discovery of
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chaos in these systems may be that the (often subtle) chaotic features may
have been masked by numerical instability and added noise in simulations.

This paper is organized as follows. In Section 2 we present the CCJJ+DC
model and describe the numerical method used to calculate the Lyapunov ex-
ponents. In Section 3 we describe the observation of erratic behaviour in the
CVC, which led to the discovery of chaos in the model. In section 4 we
demonstrate that the erratic behaviour is chaotic in origin by looking as the
Lyapunov exponents, system trajectories and Poincaré maps. In Section 5 we
conclude that the erratic behaviour is chaotic in origin and that experimen-
tal investigations are required to ascertain whether this feature of the model
is observable in real systems that satisfy the assumptions of the CCJJ+DC
model. We also suggest that further work could be done on developing meth-
ods for controlling the observed chaos (hyperchaos) in this model.

2 Theory and simulation methods

2.1 The CCJJ+DC model

We solve the system of dynamical equations for the gauge-invariant phase

differences ϕℓ(τ) = θℓ+1(τ) − θℓ(τ) − 2e
h̄

∫ ℓ+1

ℓ
dzAz(z, τ) between supercon-

ducting layers (S-layers), for stacks consisting of different numbers of IJJs,
within the framework of the CCJJ+DC model [12,13]. In this model, θℓ is the
phase of the order parameter in the ℓth S-layer and Az is the vector potential
in the insulating barrier. For a system of N junctions the equations are,

dϕℓ

dτ
=

N
∑

ℓ′=1

Aℓℓ′Vℓ′ and (1)

dVℓ

dτ
= I − sinϕℓ − β

N
∑

ℓ′=1

Aℓℓ′Vℓ′ , (2)

where ℓ = 1, 2, . . . , N and the matrix A contains coupling parameters such
as α. Note that A differs in form depending on whether periodic or non-
periodic boundary conditions (BCs) are used [14]. The dissipation parameter
β is related to the McCumber parameter βc as β = 1/

√
βc. For the purpose

of numerical simulations we make use of a dimensionless time parameter
τ = tωp, where ωp =

√

2eIc/(h̄C) is the plasma frequency, Ic is the critical
current and C is the capacitance. We measure the DC voltage on each
junction Vℓ in units of the characteristic voltage Vc = h̄ωp/(2e) and the bias
current I in units of Ic. The critical currents in these (series) systems can
typically range from 1 to 1000µA, corresponding to voltages of RIc ∼ 1mV
across individual junctions. Further details concerning this model can be
found in Refs. [14,15]
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2.2 Calculation of Lyapunov exponents

The Lyapunov exponents of a nonlinear dynamical system provide a quan-
titative measure of the degree of chaos inherent in the system, i.e. they
quantify the sensitivity of the system to changes in initial conditions [16].
Usually one Lyapunov exponent is associated with each independent coordi-
nate in the system. The numerical value of this exponent then characterizes
the long term average exponential convergence (negative exponent) or diver-
gence (positive exponent) of that coordinate with respect to some arbitrarily
small initial separation.

Although the calculation of the Lyapunov exponents is in principle straight
forward, in numerical calculations one has to guard against cumulative round-
off errors which occur because of the exponential manner in which the small
initial differences in coordinates may be amplified. Since real experimental
data sets are typically small and noisy, it has taken a sustained effort to de-
velop efficient algorithms for estimating the Lyapunov exponents associated
with chaotic data sets [17–20]. In the preset simulations, since the system
of Eqns. (1) and (2) are know in analytical form, we make use of the well-
known algorithm by Wolf et al. [17]. Unlike some other methods, which only
calculate the maximal Lyapunov exponent [21,22], the algorithm by Wolf et

al. calculates the full spectrum of Lyapunov exponents and thus allows one
to distinguish between chaotic attractors, which are characterised by only
one positive exponent, and hyperchaotic attractors, which is characterised
by more than one positive exponent.

In addition to Eqs. (1) and (2), the algorithm by Wolf et al. requires
analytical expressions for the action of the system Jacobian J on an arbitrary
column vector x = (ϕ1,ϕ2, . . . ,ϕN ,V1,V2, . . . ,VN )

T
in the (ϕ, V ) coordinate

space. For the present system the action of J on x is given by

Jx =





























A11V1 + A12V2 + . . . + A1NVN

A21V1 + A22V2 + . . . + A2NVN

...
AN1V1 + AN2V2 + . . . + ANNVN

−ϕ1 cos ϕ1 − βA11V1 − βA12V2 − . . . − βA1NVN

−ϕ2 cos ϕ2 − βA21V1 − βA22V2 − . . . − βA2NVN

...
−ϕN cos ϕN − βAN1V1 − βAN2V2 − . . . − βANNVN





























(3)

To calculate the Lyapunov exponents for a particular current I, we typically
used 30000 dimensionless time steps, with a step size of ∆τ = 0.2. In all
our calculations the number of steps and step size were chosen so that the
magnitude of the zero exponent always converged to a value which was at
least two orders of magnitude smaller than the magnitude of the smallest
non-zero exponent. A fifth-order Runge-Kutta integration scheme was used.
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3 Observation of erratic behaviour in the CVC

Erratic behaviour was first observed in the simulated CVC for certain ranges
of parameter values. Figure 1 presents the simulated outermost branches in
the CVC for a stack of nine IJJs. Here V is the sum of the time averaged

0.3 0.4 0.5 0.6 0.7 0.8
I

15

20

25

30

V

N=9 (PBC)
α=1

β=0.1

β=0.2

β=0.3

β=0.4

Fig. 1. Simulated outermost branches of the current voltage characteristics of an
array with nine IJJ with α = 1 and periodic boundary conditions (PBC). The
curves for four different values of β are shown. The break point of each curve has
been marked by a cross.

voltages across each junction, i.e. V = 〈V1〉 + 〈V2〉 + . . . + 〈V9〉, and I is
bias current through the stack. As explained in Section 2.1, V and I are in
units of Vc and Ic respectively. In Fig. 1 one can see the variation of the
branch slope and the breakpoint (marked by a cross), for the four different
values of dissipation parameter. As expected, the value of the break point
current increases with increasing β; however, for 0.1 < β < 0.4 the break
point boarders on a so-called break point region (BPR). In Fig. 1 this region
can be clearly seen to the left of the break points for the β = 0.2 and β = 0.3
curves. For these two values of β, erratic behaviour is observed to the left of
each breakpoint. Initially this erratic behaviour was thought to be numerical
in origin; however, as we will demonstrate in the next section, it is in fact
chaotic.
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4 Results and discussion

4.1 Demonstration of chaotic behaviour via Lyapunov exponents

Since we were unable to account for the observed erratic behaviour in terms of
numerical instability, we decided to check whether or not the system is chaotic
by calculating its Lyapunov exponents according to the method described in
Section 2.2. Typical results are shown in Fig. 2, for a stack of seven junctions,
using the PBC. Here the left vertical axis is for the Lyapunov exponents
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Fig. 2. Lyapunov exponents and CVC for a stack of seven IJJs with periodic bound-
ary conditions.

(λ1, . . . , λ14), while the right vertical axis is for ln(V ) (red dashed curve). The
largest two Lyapunov exponents, λ1 and λ2 (plotted in blue) both become
positive exactly over the range of currents for which the erratic behaviour in
V was observed, indicating that this system is hyperchaotic within the range
0.5520 < I < 0.5570. In this range, as the current is decreased, λ1 and λ2

steadily increase, reaching their respective maxima of 0.052 and 0.031. At
I ≈ 0.5520 the system makes an abrupt transition to one of the inner branches
of the CVC, over the range 0.5515 < I < 0.5520. For the inner branch there is
only one positive Lyapunov exponent (λ1 = 0.075), which suggests that this
transition may be associated with a change in the dynamics of the system,
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from hyperchaotic to chaotic. We have also performed other simulations at
different parameter values and for N in the range 7-13, using both the PBC
and NPBC. In all cases, for which erratic behaviour in the CVC was observed,
we found either one or two positive Lyapunov exponent.

4.2 Comparison of system trajectories

To further verify that the observed behaviour is chaotic (hyperchaotic), we
also looked at the system trajectory for a variety of different parameter values
and initial conditions. Our observations are consistent with the values ob-
tained for the Lyapunov exponents. For example, Fig. 3 shows a projection
onto the ϕ3V5-plane of two different trajectories corresponding to a nine junc-
tion system (N = 9) with periodic boundary conditions and the parameters
α = 1 and β = 0.2. Both trajectories correspond to the outer branch of the

−3 −2 −1 0 1 2 3
ϕ3

2.0

2.2

2.4

2.6

2.8

3.0

3.2

V
5

Fig. 3. A projection of two different system trajectories for a stack of nine IJJs
with periodic boundary conditions. The solid red curve corresponds to a current
above the break point value and is quasi-periodic, while the dashed green curve
corresponds to a current below the break point, where the system is hyperchaotic.

CVC and have been integrated for 250 dimensionless time units. The solid
red trajectory appears to be quasi-periodic, corresponding to I = 0.5650 and
zero maximal Lyapunov exponent. The dashed green trajectory is hyper-
chaotic, corresponding to I = 0.5575, with the three largest exponents given
by λ1 = 0.035, λ2 = 0.022 and λ3 = 0.00005. In this figure the quasi-periodic
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nature of the non-chaotic trajectory (solid red curve) is clearly discernible
from the hyperchaotic trajectory (dashed green curve).

4.3 Poincaré maps

To investigate further the differences between regular and chaotic regimes
of the system, several Poincaré maps were constructed. Figure 4 shows a
comparison of the maps for the trajectories described in Fig. 3. Here the

2.0 2.2 2.4 2.6 2.8 3.0
V3

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

V
9

Fig. 4. Poincaré maps for the trajectories shown in Fig. 3. The intersection plane
is given by V2 = 2.6. The red pixels are for the intersection of the quasi-periodic
trajectory while the green pixels are for the intersection of the hyperchaotic trajec-
tory.

intersection of the V3V9-projection of the trajectory with the plane V2 =
2.6 is shown. Note the intersection is only from one side of the V2 = 2.6
plane, i.e. the map was constructed by plotting the coordinates (V3, V9)
for each intersection point, defined by a change in V2 from V2 − 2.6 ≤ 0
to 0 ≤ V2 − 2.6, over one integration step. In order to obtain the large
number of intersection points shown (between 8000 − 9000 in each case)
both trajectories were integrated for 20000 dimensionless time units, using
a step size of ∆τ = 0.025. The quasi-periodic (hyperchaotic) behaviour of
the red (green) trajectory is clearly visible, in agreement with Fig 3 and the
calculated values of the Lyapunov exponents.
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5 Conclusions

We have demonstrated that the observed erratic behaviour in our simulations
of the CVC of coupled IJJs within the CCJJ+DC model is chaotic in origin.
We have also shown that transitions can take place between hyperchaotic and
chaotic dynamics, as the system jumps from the outermost CVC branch to
inner branches. In this preliminary work we have not addressed many other
important physical aspects; such as, the influence of the number of junctions,
boundary conditions and charge correlations. A more detailed analysis of the
chaos is currently in preparation [23].

In future work it would be interesting to establish whether or not the ob-
served chaotic features in the present simulation are also experimentally ob-
servable in systems that satisfy the underlying assumptions of the CCJJ+DC
model. Perhaps further work could also be done on controlling and exploiting
(for technological use) the observed chaos (hyperchaos) in these systems.
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Abstract: Semiconductor lasers are non-linear devices that exhibit stable, periodic,  

complex or chaotic dynamics, and in coupled configurations - under strict conditions - 

can be efficiently synchronized. Applications in communications using such devices for 

increased security usually employ a twofold system, the emitter and the receiver. In this 

investigation we examine the potential of this synchronization property to extend to 

communication networks with as many as 50 or a 100 users (nodes) that are coupled to 

each other through a central node, in a star network topology. 

Keywords: Chaos synchronization, mutual coupling, network synchronization, 

semiconductor lasers.  
 

1. Introduction 
Over the past decades a lot of effort has been put into exploiting chaotic 

dynamics of signals in areas like communications [1-3], control systems [4], 

artificial intelligence [5] and more. Chaotic signals emitted from semiconductor 

lasers (SLs) have been frequently used in security applications for data 

encryption [6], random number generation [7] etc. A usual configuration that the 

above types of applications employ consists of two elements - the emitter and 

the receiver - whose outputs are efficiently synchronized. More complex 

configurations have been adopted in recent works, where the idea of building a 

network of coupled SLs emitting synchronized chaotic signals has been 

proposed [8]. More specifically, Fischer et al [9] have demonstrated isochronal 

synchronization between two SLs relayed through a third SL, even in cases of 

large coupling time delays. Zamora-Munt et al [10] have shown operation in 

synchrony of 50 to 100 distant lasers, coupled through a central SL in a star 

network topology. In the above work, couplings between distant lasers and the 

central one are symmetric and the time delays (distances) from the central to the 

star lasers are assumed equal. The optical injection effect is based on moderate 

coupling strengths while little attention has been paid on the complexity and the 

spectral  distribution of the signals.   

In our work we use a large population -50 to 100- distant lasers which proves to 

be a sufficient number for good synchrony of the optical signals emitted, as 

discussed in [10]. Strong optical injection and asymmetric mutual couplings are 

adopted, enabling the increase on the effect that lasers have to each other 

through mutual coupling, while preserving the level of output optical power in 

logic values (up to a few mW). Although intrinsic laser characteristics are 

selected to be identical in our simulations, different laser operational frequencies 

were assumed in terms of detuning values from a reference frequency ω0.  
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2. Network Architecture and Rate Equations 
We first consider a star network topology with Ν=50 semiconductor lasers, 

which from now on we will refer to as 'star lasers', relayed through a central 

similar semiconductor laser, called 'hub laser'.  

HUB SL

STAR SL3 STAR SLi

STAR SLj

STAR SL2

STAR SL1

  .   .   .   .   .    
  

.   

.   

.   

.   

.    

  .   .   .   .   .    

 
Figure 1. Star network architecture of N 'star' lasers, relayed through 

mutual couplings with a central 'hub' laser 
 

A rate equation mathematical model is used to describe the operation and 

dynamics of the above system of devices. This model is based on the Lang 

Kobayashi rate equation model [11], originating from the representation used in 

[9] and including frequency detuning terms as in [10].  The complex optical 

fields and carrier numbers for the star and hub lasers  can be calculated from : 
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All laser have identical intrinsic parameters, with values as follows: 

TABLE 1 

INTRINSIC LASER PARAMETERS 

α linewidth enhancement factor 5 

tph photon lifetime 2psec 

ω0 reference laser frequency 2·π·λ0 

λ0 reference laser wavelength 1550nm 

D noise strength 10
-5

 nsec
-1

 

e electronic charge 1.602·10
-19

 C 

ts carrier lifetime 1.54nsec 

gn gain coefficient 1.2·10
-5

 nsec
-1

 

N0 carrier density at transparency 1.25·10
8
 

s gain saturation coefficient 5·10
-7

 
 

ξj(t) and ξH(t) are uncorrelated complex Gaussian white noises for the star and 

hub lasers respectively. The star lasers are biased at Ij=25mA, while the hub 

laser is biased at IH=9mA, well below the solitary lasing threshold (Ith=17.4mA). 

Each laser is detuned with respect to the reference laser frequency ω0, at 

variable values Δωj (star lasers) and ΔωH  (hub laser). Especially for the hub 

laser detuning, we can assume ΔωH =0 without loss of generality. Delay times 

(τj=τH=5ns) and coupling strengths kj=kH=k are identical. Coupling asymmetry is 

achieved through the asymmetry coupling coefficient β. While each star laser 

receives a single injection field from the hub (kH), the hub laser receives the sum 

of  injection fields (kj) of the N star lasers, which could be rather large. To 

counteract for this large value, β receives values smaller than 1, decreasing the 

overall injected optical field into the hub, keeping it within a realistic range of 

values.   
 

3. Simulations and Numerical Results 
Simulations were performed for the set of rate equations presented, using the 4

th
 

order Runge-Kutta method, with a time-step of 0.8psec. Optical power is 

deducted from the complex optical field using the appropriate conversion [12].  

First we have evaluated the behavior of N=50 star lasers with detuning values 

±1GHz around the reference frequency, following a Gaussian distribution, for 

different values of coupling strength and coupling asymmetry coefficient. Star 

lasers are ordered based on their detuning, so the 1
st
 laser has the most negative 

detuning, while the 50
th

 has the largest positive one. Based on these simulations, 

a mapping of mean and minimum zero-lag cross-correlation between the 50 star 

lasers was built.  As we can see in figure 2, two different yellow-white areas of 

high correlation exist, one for low and one for high values of the product of 

coupling strength and coupling asymmetry coefficient (k·β).  

Moving along the diagonal from lower left to upper right corner of figure 2(i) - 

that is from lower to higher values of the product k·β - we encounter the 

following areas:  first a small area in black, where correlation is low, the star 

lasers operate in CW mode with noise and the hub is not receiving enough 

coupling in order to emit in lasing mode. 
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Figure 2. Mean (i) and minimum (ii) zero-lag correlation for 50 lasers 

with ±1GHz detuning values 

 

Then we come across a white area, where k·β product has small values; the star 

lasers are characterized with periodic dynamics and the hub laser emits just 

above threshold. A further increase of k·β leads to star laser emission with 

chaotic dynamics (yellow-orange area). The hub laser now emits in the order of 

few hundreds μW but the mean correlation experiences significant decrease. As 

the product k·β increases optical injection becomes large enough to drive the star 

lasers into emitting signals of high correlation (small yellow-white stripe). The 

complexity of these signals slightly decreases and the hub laser now emits in the 

order of several mW. Finally the hatched area is an uncharted region where 

optical injection and emitted optical powers are unrealistically large and the rate 

equation model does not converge.  

 
Figure 3 Time traces (i) and spectra (ii) of a single laser for network of 50 lasers 

with ±1GHz detuning values, coupling strengths kj=kH=60nsec-1 and coupling 

asymmetry coefficients (a) β=0.15, (b) β=0.2, (c) β=0.4, (d) β=0.8 and (e) β=1.   
 

Time traces and spectra of the different cases we have just described are shown 

in figure 3(ii), for a fixed coupling strength value of k=60nsec
-1

. It is evident 

that for larger values of the product k·β we have faster oscillations attributed to 
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bandwidth enhancement, as has been commonly reported in cases of strong 

optical injection [13-14].    

 

 
Figure 4. Mean (a) and maximum (b) synchronization error for 50 lasers 

with ±1GHz detuning values 

 

Another useful parameter we have estimated to evaluate the star lasers output 

waveforms is the zero-lag synchronization error. Synchronization error is 

normalized in the mean value of the ith and jth laser, averaged in the duration 

Tav and is thus expressed in the form: 

 
           (6) 

 
 

As expected, small values of synchronization error between the i
th

 and j
th

 laser 

are achieved in the same areas where good zero-lag cross-correlation exists 

(figure 4 vs figure 2). Based on figure 4 we can identify (k,β) pairs where the 

maximum synchronization error, which indicates the worst behavior in our 

network, is minimal. One such pair is k=60nsec
-1

, β=0.5. For this case of 

parameters we depict the zero-lag correlation between the i
th

 and j
th

 laser (figure 

5i). The worst case of synchronization - in which we encounter the minimum 

correlation - occurs for the pair of lasers with the far most frequency detuning, 

that is between lasers 1 and 50. We can also observe that lasers with similar 

detuning values have good correlations with respect to each other, even when 

possessing large absolute detuning values.  

The superimposed time traces of the 50 star lasers for the above pair of 

parameters are shown in figure 5(ii). We can observe highly synchronized 

signals at zero lag  for  the  biggest  part  of  the  time window  depicted. 

However  we can identify small periods of time where synchronization may be 

lost. 

    〈
|  ( )    ( )|

    (  ( )    ( ))
〉 
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Figure 5. (i) Zero-lag correlation between 50 lasers with ±1GHz detuning values, 

coupling strengths kj=kH=60nsec-1 and coupling asymmetry coefficient β=0.5. 

(ii) Time traces of 50 superimposed star laser outputs ±1GHz detuning values, for 

he parameter pair k=60nsec-1 , β=0.5 

 

The star lasers rapidly synchronize again after a few ns. This phenomenon is 

repeated in the complete time series and is mainly responsible for the 

synchronization error calculated, since the synchronization error in the rest of 

the time window is almost zero.  

By increasing the frequency detuning range of the star lasers from ±1GHz to 

±10GHz, the system necessitates much larger values of the product k·β in order 

to force the hub laser into lasing emission (figure 6i). As a result, the first area 

examined, where the star lasers emit in CW mode, is enlarged. The area of non-

convergence remains almost the same, while areas of complex dynamics and 

large cross-correlation values are minimized.  

To counteract the increase in the detuning values we attempt to increase the 

number of star lasers in the network from N=50 to N=100. It is apparent in 

figure 6ii that inserting more lasers in the network leads to more optical power 

injected in the hub laser, which now emits for smaller values of the product k·β. 

However, small increase in the areas of  good cross-correlation is observed.     

 
Figure 6. Mean zero-lag correlation for (i) N=50 and (ii) N=100 lasers 

with ±10GHz detuning values 
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Another attempt to counteract the increase in detuning values is to lower the 

pump current of the star lasers to I=18mA near the lasing threshold. This 

reduces the effect the star lasers dynamics have in the network. In figure 7 we 

can observe significant increase of the areas of good cross-correlation.   

 
 

Figure 7. Mean zero-lag correlation for N=50 and pump current I=18mA for the 

star lasers 

 

Finally, a small analysis was carried out on the type of synchronization 

occurring in the network and the role the hub laser plays on it. Figure 8 clearly 

shows that the hub lasers dynamics lag behind the dynamics of the star lasers by 

exactly the time delay between star and hub lasers, that is τj=τH=5ns. As a 

deduction we can say that the hub laser holds a passive role in the network, 

operating solely as a relay between  the star lasers. The internal parameters of 

the star lasers, the time delay, coupling strength, asymmetry and driving current 

seem to be solely responsible for the dynamics of the system. 

 

 
 

Figure 8. (i) Time traces of hub(red) and one random star (blue) delayed by  

5nsec lasers, (ii) Cross-correlation time lag of hub and one random star laser   
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4. Conclusions 
A star network topology with multiple nodes consisting of typical 

semiconductor lasers has been presented and investigated. Two general areas of 

good synchronization have been identified, each one with different 

characteristics in terms of dynamics. The first one, for small values of total 

optical injection (k·β product), produces optical signals of simpler dynamics, 

while the second one, for large values of k·β, produces signals with high 

complexity dynamics. An increase in the number of nodes in the network has 

proved to enlarge these areas and provide synchronization improvement. 
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Abstract. Starting from the Beta(2,2) model, connected to the Verhulst logistic
parabola, several extensions are discussed, and connections to extremal models are
revealed.
Aside from the classical GEV (General Extreme Value Model) from the iid case,
extreme value models in randomly stopped extremes schemes are discussed; in this
context, the classical logistic Verhulst model is a max-geo-stable model, i.e. geomet-
ric thinning of the observations curbs down growth to sustainable patterns. The
general differential models presented are a unified approach to population dynamics
growth, with factors of the form [− ln(1−N(t))]P−1 and the linearization [N(t)]p−1

modeling two very different growth patterns, and factors of the form [− lnN(t)]Q−1

and the linearization [1−N(t)]q−1 leading to very different environmental resources
control of the growth behavior.
Keywords: Verhulst logistic model, Beta and BeTaBoOp models, population dy-
namics, extreme value models, geometric thinning, randomly stopped maxima with
geometric subordinator.

1 Introduction

Let N(t) denote the size of some population at time t. Verhulst [16],
[17], [18] imposed some natural regularity conditions on N(t), namely that

d
dtN(t) =

∞∑
k=0

Ak[N(t)]k, with A0 = 0 since nothing can stem out from an

extinct population, A1 > 0 a “growing” parameter, A2 < 0 a retroaction pa-
rameter controlling sustainable growth tied to available resources, see also
Lotka [9].

The second order approximation d
dtN(t) = A1N(t) + A2[N(t)]2 can be

rewritten
d

dt
N(t) = r N(t)

[
1− N(t)

K

]
(1)

115



 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

 
 

Proceedings, 5th Chaotic Modeling and Simulation International 

Conference, 12 – 15 June 2012, Athens Greece 

 

where r > 0 is frequently interpreted as a Malthusian instantaneous growth
rate parameter when modeling natural breeding populations, and K > 0 as
the equilibrium limit size of the population.

The general form of the solution of the (1) differential equation approx-

imation is the family of logistic functions N(t) =
KN0

N0 + (K −N0) e−rt

(where N0 is the population size at time t = 0), and this is the reason why
in the context of population dynamics r x (1− x) is frequently referred to as
“the logistic parabola”.

Due to the seasonal reproduction and time life of many natural popula-
tions, the differential equation (1) is often discretized, first taking r∗ such that

N(t+ 1)−N(t) = r∗N(t)
[
1− N(t)

K

]
and then α = r∗ + 1, x(t) = r∗N(t)

r∗+1 , to

obtain x(t+1) = αx(t)[1−x(t)], and then the associated difference equation

xn+1 = αxn [1− xn], (2)

where it is convenient to deal with the assumption xk ∈ [0, 1], k = 1, 2, . . .
The equilibrium xn+1 = xn leads to a simple second order algebraic equation
with positive root 1− 1

α , and to a certain extent it is surprising that anyone
would care to investigate its numerical solution using the fixed point method,
which indeed brings in many pathologies when a steep curve — i.e., for some
values of the iterates |α (1 − 2xk)| > 1 — is approximated by an horizontal
straight line. This numerical investigation, apparently devoid of interest, has
however been at the root of many theoretical advances (namely Feigenbaum
bifurcations and ultimate chaotic behavior), and a posteriori led to many
interesting breakthroughs in the understanding of population dynamics.

Observe also that (2) may be rewritten xn+1 = α
6 6xn [1− xn], and that

f(x) = 6x (1 − x) I(0,1)(x) is the Beta(2, 2) probability density function.
Extensions of the Verhulst model using difference equations similar to (2),
but where the right hand side is tied to a more general Beta(p, q) probability
density function have been investigated in Aleixo et al. [1] and in Rocha et
al. [13].

Herein we consider further extensions of population dynamics first dis-
cussed in Pestana et al. [10], Brilhante et al. [5] and in Brilhante et al. [3],
whose inspiration has been to remark that 1−x is the linear truncation of the
series expansion of − ln x, as well as x is the linear truncation of the series
expansion of − ln(1− x).

In Section 2, we describe the BeTaBoOp(p, q, P,Q), p, q, P,Q > 0 family
of probability density functions, with special focus on subfamilies for which
one at least of those shape parameters is 1.

In section 3, some points tying population dynamics and statistical ex-
treme value models are discussed, namely discussing the connection of the
instantaneous growing factors xp−1 and [− ln(1− x)]P−1 to models for min-
ima, and the retroaction control factors (1− x)q−1 and [− ln x]Q−1 to mod-
eling population growth using maxima extreme value models — either in the
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classical extreme value setting, either in the geo-stable setting, where the
geometric thinning curbs down growth to sustainable patterns.

2 The Xp,q,P,Q _ BeTaBoOp(p, q, P,Q) models,
p, q, P,Q > 0

Let {U1, U2, . . . , UQ} be independent and identically distributed (iid) stan-

dard uniform random variables, V =

Q∏
k=1

U
1
p

k , p > 0 the product of iid

Beta(p, 1) random variables. As − ln V _ Gamma(Q, 1p ), the probability

density function (pdf) of V is fV (x) = pQ

Γ (Q) x
p−1(− ln x)Q−1I(0,1)(x).

Brilhante et al. [5] discussed the more general Betinha(p,Q) family of
random variables {Xp,Q}, p,Q > 0, with pdf

fXp,Q(x) =
pQ

Γ (Q)
xp−1(− ln x)Q−1I(0,1)(x), p,Q > 0

that can be considered an extension of the Beta(p, q), p, q > 0 family, since

1− x is the linearization of the MacLaurin expansion − ln x =

∞∑
k=1

(1− x)k

k

to derive population growth models that do not comply with the sustainable
equilibrium exhibited by the Verhulst logistic growth model.

On the other hand, if Xq,P _ Betinha(q, P ), the pdf of 1−Xq,P is

f1−Xq,P (x) =
qP

Γ (P )
(1− x)q−1(− ln(1− x))P−1I(0,1)(x), q, P > 0,

and the family of such random variables also extends the Beta(p, q) family
in the sense that x is the linearization of − ln(1− x).

Having in mind Hölder’s inequality, it follows that

xp−1(1− x)q−1[− ln(1− x)]P−1(− ln x)Q−1 ∈ L1
(0,1), p, q, P,Q > 0,

and hence

fXp,q,P,Q(x) =
xp−1(1− x)q−1[− ln(1− x)]P−1(− ln x)Q−1I(0,1)(x)∫ 1

0

xp−1(1− x)q−1[− ln(1− x)]P−1(− ln x)Q−1dx

(3)

is a pdf for all p, q, P,Q > 0. Obviously, 1 − Xp,q,P,Q = Xq,p,Q,P . For
simplicity, in what follows we shall use the lighter notation fp,q,P,Q instead
of fXp,q,P,Q for the density of Xp,q,P,Q.

Brilhante et al. [3] used the notation Xp,q,P,Q _ BeTaBoOp(p, q, P,Q)
for the random variable with pdf (3) — obviously the Beta(p, q), p, q > 0
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family of random variables is the subfamily BeTaBoOp(p, q, 1, 1), and the
formerly introduced Betinha(p,Q), p,Q > 0 is in this more general setting
the BeTaBoOp(p, 1, 1, Q) family. The cases for which some of the shape
parameters are 1 and the other parameters are 2 are particularly relevant in
population dynamics. In the present paper, we shall discuss in more depth
Xp,1,1,Q and X1,q,P,1, and in particular X2,1,1,2 and X1,2,2,1.

Some of the 15 subfamilies when one or more of the 4 shape parameters
p, q, P,Q are 1 have important applications in modeling; below we enumerate
the most relevant cases, giving interpretations, for integer parameters, in
terms of products of powers of independent Uk _ Uniform(0, 1) random
variables.

1. X1,1,1,1 = U _ Uniform(0, 1); f1,1,1,1(x) = I(0,1)(x).

2. Xp,1,1,1 = U
1
p _ Beta(p, 1); fp,1,1,1(x) = p xp−1I(0,1)(x).

3. X1,q,1,1 = 1− U
1
q _ Beta(1, q); f1,q,1,1(x) = q (1− x)q−1I(0,1)(x).

4. X1,1,P,1, that for P ∈ IN is 1 minus the product of P iid standard uniform
random variables,

X1,1,P,1 = 1−
P∏
k=1

Uk, Uk _ Uniform(0, 1), independent.

More generally, for all P > 0, f1,1,P,1(x) =
(− ln(1− x))P−1

Γ (P )
I(0,1)(x),

where Γ (P ) =

∫ ∞
0

xP−1e−xdx is Euler’s gamma function.

5. X1,1,1,Q, that for Q ∈ IN is the product of P iid standard uniform random
variables,

X1,1,1,Q =

Q∏
k=1

Uk, Uk _ Uniform(0, 1), independent;

alternatively, X1,1,1,Q may be described in the following hierarchical con-

struction: denote Y1
d
=X1,1,1,1 _ Uniform(0, 1), Y2 _ Uniform(0, Y1),

Y3 _ Uniform(0, Y2), . . . , YQ _ Uniform(0, YQ−1). Then

YQ
d
=X1,1,1,Q _ BeTaBoOp(1, 1, 1, Q).

More generally, for all Q > 0, f1,1,1,Q(x) =
(− ln(x))Q−1

Γ (Q)
I(0,1)(x).

6. Xp,q,1,1 _ Beta(p, q), with fp,q,1,1(x) =
xp−1(1− x)q−1

B(p, q)
I(0,1)(x), where

as usual B(p, q) =

∫ 1

0

xp−1(1 − x)q−1dx =
Γ (p)Γ (q)

Γ (p+ q)
is Euler’s beta

function.
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7. Xp,1,P,1, with pdf fp,1,P,1(x) = C
p,1,P,1

xp−1 [− ln(1 − x)]P−1 I(0,1)(x),

where C
p,1,P,1

=
1∫ 1

0
xp−1 [− ln(1− x)]P−1dx

. For p ∈ IN, C
p,1,P,1

=

1
p∑
k=1

(−1)k+1

(
p− 1

k − 1

)
Γ (P )

kP

.

8. X1,q,P,1, with pdf f1,q,P,1(x) =
qP

Γ (P )
(1−x)q−1 [− ln(1−x)]P−1 I(0,1)(x).

9. Xp,1,1,Q, with pdf fp,1,1,Q(x) =
pQ

Γ (Q)
xp−1 [− ln x]Q−1 I(0,1)(x), that for

Q ∈ IN is the product of Q iid Beta(p, 1), i.e. standard uniform random
variables raised to the power 1

p , cf. also Arnold et al. [2].
10. . . .

(we postpone the discussion of the more complicated models 10-15 to the
full paper, since they are not discussed in this shorter version; observe also
that the only models for which an explicit evaluation of raw and of central
moments is straightforward are those with q = P = 1 or with P = Q = 1, and
so they are the natural candidates to model population dynamics).

3 Population Dynamics, BeTaBoOp(p, q, P,Q) and
extreme value models

Brilhante et al. [3] used differential equations

d

dt
N(t) = r N(t) [− ln[N(t)]]

1+γ
(4)

obtaining as solutions the three extreme value models for maxima, Weibull
when γ < 0, Gumbel when γ = 0 and Fréchet when γ > 0. The result for γ =
0 has also been presented in Tsoularis [14] and in Waliszewski and Konarski
[19], where as usual in population growth context the Gumbel distribution
is called Gompertz function. Brilhante et al. [3] have also shown that the
associated difference equations

xn+1 = αxn [− ln xn]1+γ ,

exhibit bifurcation and ultimate chaos, when numerical root finding using
the fixed point method, when α = α(γ) increases beyond values maintaining
the absolute value of the derivative limited by 1.

On the other hand, if instead of the right hand side N(t) [− ln[N(t)]]
1+γ

associated to the BeTaBoOp(2, 1, 1, 2 + γ) we use as right hand side

[− ln[1−N(t)]]
1+γ

[1−N(t)], associated to the BeTaBoOp(1, 2, 2 + γ, 1),

d

dt
N(t) = r [− ln[1−N(t)]]

1+γ
[1−N(t)]
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the solutions obtained are the corresponding extreme value models for minima
(and bifurcation and chaos when solving the associated difference equations
using the fixed point method). In view of the duality of extreme order statis-
tics for maxima and for minima, in the sequel we shall restrict our observation
to the case (4) and the associated BeTaBoOp(2, 1, 1, 2 + γ) model.

As − lnN(t) =

∞∑
k=1

[1−N(t)]k

k
> 1 − N(t), for the same value of the

malthusian instantaneous growth parameter r we have r N(t) [1 − N(t)] <
rN(t)[− ln[N(t)]], and hence while (1) models sustainable growth in view
of the available resources, (4) models extreme value, arguably destructive
unsustained growth — for instance cell growth in tumors.

The connection to extreme value theory suggests further observations:
Assume that U1, U2, U3, U4 are independent identically distributed stan-

dard uniform random variables.

1. The pdf of min(U1, U2) is fmin(U1,U2)(x) = 2 (1− x) I(0,1)(x) and the pdf
of max(U1, U2) is fmax(U1,U2)(x) = 2x I(0,1)(x). Hence the Beta(2, 2) ≡
BeTaBoOp(2, 2, 1, 1) tied to the Verhulst model (1) is proportional to
the product of the pdf of the maximum and the pdf of the minimum of
independent standard uniforms.

2. The pdf of the product U3U4 is f(U3U4)(x) = − ln x I(0,1)(x) — and more
generally, the pdf of n independent standard uniform random variables is
a BeTaBoOp(1, 1, 1, n) — and hence the pdf of the BeTaBoOp(2, 1, 1, n)
tied to (4) is proportional to the product of fmax(U1,U2) by f(U3U4). In-
terpreting fmax(U1,U2) f(U3U4) and fmax(U1,U2) fmin(U1,U2) as “likelihoods”,
this shows that the model (4) favors more extreme population growth
than the model (1).
More explicitly, the probability density functions f1,1,1,2f(U3U4)(x) =
− lnx I(0,1)(x) and f1,2,1,1fmin(U1,U2)(x) = 2 (1−x) I(0,1)(x) intersect each
other at x ≈ 0.203188, and scrutiny of the graph shows that the prob-
ability that U3 U4 takes on very small values below that value is much
higher than the probability of min(U1, U2) < 0.203188, and therefore the
controlling retroaction tends to be smaller, allowing for unsustainable
growth.
For more on product of functions of powers of products of independent
standard uniform random variables, cf. Brilhante et al. [4] and Arnold et
al. [2].

3. Rachev and Resnick, [11] developed a theory of stable limits of randomly
stopped maxima with geometric subordinator (also called geo-max sta-
bility) similar to what had been independently achieved by Rényi [12],
Kovalenko [7] and in all generality by Kozubowski [8], for a panorama cf.
also Gnedenko and Korolev, [6].
The geo-stable maxima laws are the logistic, the log-logistic and the
simetrized log-logistic (corresponding to the Gumbel, Fréchet and Weibull
when there is no geometric thinning, and with similar characterization
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of domains of attraction). Hence, the classical Verhulst (1) population
growth model can also be looked at as an extreme value model, but in a
context where there exists a natural thinning that maintains sustainable
growth.

More involved population dynamics growth differential equation models
do have explicit solution for special combinations of the shape parameters,
for instance the solution of

d

dt
N(t) = r [N(t)]2−γ

[
1− N(t)

K

]γ
, γ < 2 (5)

is

N(t) =
K

1 +

{
(γ − 1) rK1−γt+

(
K
N0
− 1
)1−γ} 1

1+γ

as shown by Turner et al. [15], cf. also Tsoularis [14].
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Abstract. Binomial, Poisson and Negative Binomial are the basic count models
whose probability mass function satisfies a simple recursive relation. This has been
used by Panjer [6] to iteratively compute the density of randomly stopped sums,
namely in the context of making provision for claims in insurance. Pestana and
Velosa [7] used probability generating functions of randomly stopped sums whose
subordinator is a member of Panjer’s family to discuss more involved recursive
relations, leading to refinements of infinite divisibility and self-decomposability in
count models. After discussing multifractal measures generated by the geometric
and by the Poisson laws, as guidelines to define multifractals generated by gen-
eral count measures with denumerably infinite support, the complex recursivity of
Pestana and Velosa [7] classes of randomly stopped sums is exhibited, hinting that
randomness can bring in deeper meaning to multifractality, that, as Mandelbrot
argues, is a vague concept that remains without an agreed mathematical definition.
A simple random extension of binomial and multinomial multifractals, considering
that each multiplier of a cascade is the outcome of some stochastic count model, is
also discussed in depth.
Keywords: Count models, probability generating functions, multifractal mea-
sures, random multipliers.

1 Introduction

Simple introductory texts on multifractals, e.g. Evertsz and Mandelbrot [1],
use binary splitting and multiplicative cascades generating binomial measures
as a straightforward and intuitive example. Mandelbrot [4] (p. 83–84 and
89–91) also uses the binomial measure to exhibit the complications that arise
when self-similarity and self-affinity are applied to measures rather than to
sets, restricting the probability p to take values in the interval [0, 1

2 ].1

1 In fact, for p = 1/2 the procedure leads to the uniform measure in (0,1), a
straightforward consequence of the binary representation of real numbers in the
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Evertsz and Mandelbrot [1], under the heading “Beyond Multinomial
Measure” (p. 937–938), briefly mention multifractal measures generated by a
countably infinite support probability mass function. In Section 2 we detail
the construction of such measures starting either from a geometric distribu-
tion or from a Poisson distribution.

On the other hand, Mandelbrot [4] (p. 14) states that “the terms fractal
and multifractal remain without an agreed mathematical definition”, although
the fact that self-similarity, self-affinity and the ensuing mild or wild variabil-
ity play an essential role in their theory. Binomial, negative binomial and
Poisson count measures probability mass functions satisfy some sort of self-
similarity, in the sense that pn+1 = (a + b

n+1 ) pn, n = 0, 1, . . . , a recursive
expression that has been successfully used by Panjer [6] to iteratively com-
pute densities of randomly stopped sums whose subordinator is one of the
above mentioned count models, and our first choice has been to exploit impli-
cations and extensions of this extended kind of self-similarity. Observe that
the simplest cases are N _ Poisson(b) for a = 0 and N _ Geometric(1− a)
for b = 0, leading to simple forms of extended self-similarity, and that for this
reason are the topic of Section 2.

In Section 3 we briefly mention the basic count models whose probability
mass function satisfies some sort of mitigated self-similarity, extending Pan-
jer’s [6] class, and we use probability generating functions investigated in [7]
to discuss multiple self-similarity.

In Section 4 we discuss other pathways to multifractality, extending the
construction of binomial/multinomial measures to accommodate the case of
countably infinite support discrete generators, using randomness as a device
to operate this alternative extension of multifractality.

2 Geometric and Poisson generated measures

Let X _ Exponential (1/δ), and define the countably discrete random vari-
able

N =

 k k = 0, 1, . . .

pk = P[N = k] = P[k ≤ X < k + 1] = (1− e−δ)(e−δ)k

interval (0,1) and of Borel’s pioneering construction of continuous probability.
As Mandelbrot [4] (p. 45) states, “The definition of multifractality used in this
book and almost everywhere else in the literature [. . . ] is limited to singular non-
negative measures constructed using continuous non-decreasing generators.”

Feller [2] (p. 141–142), on the same issue, denoting Fp the distribution of
Yp =

P∞
k=1

Xk
2k

, where Xk _ Bernoulli(p), observes that Y 1
2

is the standard

uniform random variable, and that Yp is a singular random variable for each
p 6= 1/2. He further comments that “A little reflection [. . . ] reveals that a decision
[on the fairness of a coin] after finitely many trials is due to the fact that Fp

is singular with respect to F 1
2

(provided p 6= 1/2). The existence of singular

distributions is therefore essential to statistical practice.”
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i.e., N = bXc_ Geometric(1− e−δ) (bxc denotes the integer part of x).
On the other hand, from the probability integral transform,

1− e−δX d= e−δX d=U _ Uniform[0, 1].

Thus, starting from the interval [0,1], in the first step [0,1] is splitted in
countably many subintervals,

[0, 1] =
∞⋃
k=0

(
e−(k+1), e−k

]
=
∞⋃
k=0

Ik(1)

to which we attach probabilities mk = (1− e−δ)(e−δ)k, k = 0, 1, . . . .
In step 2, each Ik(1) is treated as a reduction of the original [0,1] interval,

i.e., using self-explaining standard notations for the translation and scaling
of sets,

Ik(1) =
∞⋃
j=0

{
e−(k+1) +

(
e−k − e−(k+1)

)(
e−(j+1), e−j

]}
=
∞⋃
j=0

Ij
k
(2),

so that [0, 1] =
∞⋃
k=0

( ∞⋃
j=0

Ij
k
(2)

)
, and to each interval Ij

k
(2) we attach the

probability mkmj .
In step 3, the subintervals Ij

k
(2) are treated as the Ik(1) intervals in step

2, and similarly in the countably infinite steps that follow to build up a mul-
tifractal generated by a Geometric initial measure. Notations soon become
cumbersome, but the principles used in the build up of the multiplicative
cascade mk1mk2 · · · are simple.

The procedure described above is intuitive in view of the geometric dis-
cretization of the exponential measure, but it can in fact be used with an
initial generator whose support is IN, namely N _ Poisson(λ).

NG _ Geometric(p) may be looked at as the “unit” of the class
of NegativeBinomial(r, p) random variables, in the same sense that
NB _ Bernoulli(p) is the unit of Binomial(n, p) random variables; on
the other hand the sum of independent Poisson random variables is Pois-
son, and hence we may consider that NP _ Poisson(1) is the unit of
the class of Poisson(λ) random variables. Observe also that the Poisson
is a yardstick in the perspective of dispersion, since its dispersion index
Var[NP ]
E[NP ] = 1, while Binomial(n, p) random variables are underdispersed and
NegativeBinomal(r, p) random variables are overdispersed.

Observe also that Binomials, Poissons and NegativeBinomials are the only
discrete classes of natural exponential families whose variance is at most a
quadratic function of the mean value (Morris [5]), who writes “Much theory is
unified for these [...] natural exponential families by appeal to their quadratic
variance property, including [...] large deviations”, one of the tools routinely
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used to investigate dimensionality issues in multifractals. Without pursuing
the matter further herein, we remark that a differential simile of Panjer’s
difference iteration is f ′

f = a + b
x , where f denotes the density function of

a positive absolutely continuous random variable, and hence f must be the
density of a Gamma(b+ 1,− 1

a ) random variable, for b > −1 and a < 0. The
gamma random variables are the sole Morris continuous random variables
q-th positive support.

3 Extended self-similarity of basic count models

Consider discrete random variables Nα, β, γ whose probability mass functions
(p.m.f.)

{
pn = fNα, β, γ(n)

}
n∈N satisfy the relation

fNα, β, γ(n+ 1)
fNα, β, γ(n)

= α+ β
E(Un0 )
E(Unγ )

= α+
β∑n

k=0 γ
k
, α, β ∈ IR, n = 0, 1, . . .

where Uγ _ Uniform(γ, 1), γ ∈ (−1, 1). As

E(Unγ ) =
1

n+ 1
1− γn+1

1− γ
−→
γ→1

1,

Panjer’s class corresponds to the degenerate limit case, letting γ−→ 1 so
that Uγ −→

γ→1
U1, the degenerate random variable with unit mass at 1. Further

generalizations may be constructed relaxing the iterative expression to hold
for n ≥ k0, see Hess et al. [3] construction of what they call basic count
models.

The probability generating function Gα, β, γ(s) =
∞∑
n=0

fNα, β, γ(n) sn must

then satisfy Gα, β, γ(s) = Gα, β, γ(γn+1s)
∏n
k=0

1−αγk+1s
1−[α+β(1−γ)]γks . Observing

that
Gα, β, γ(s)
Gα, β, γ(1)

=
Gα, β, γ(γn+1s)
Gα, β, γ(γn+1)

n∏
k=0

1−αγk+1s
1−[α+β(1−γ)]γks

1−αγk+1

1−[α+β(1−γ)]γk

and letting n→∞,

Gα, β, γ(s) =
∞∏
k=0

1− αγk+1s

1− αγk+1

1− [α+ β(1− γ)]γk

1− [α+ β(1− γ)]γks
. (1)

If γ ∈ [0, 1), α < 0 and β ∈
{
− α

1−γ ,
1−α
1−γ

}
, we recognize in (1) the

probability generating function of an infinite sum of independent random
variables, the k-th summand being the result of randomly adding 1, with
probability αγk+1

αγk+1−1
, to an independent Geometric(1− [α+ β(1− γ)]γk)
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random variable. Each summand exhibits its own scale of extended self-
similarity, a characteristic feature observed, in what concerns self-similarity
and self-affinity, in strict sense (in Mandelbrot’s perspective) multifractals.

The limiting case γ = 1 may be approached as follows: observing that

Gα, β, γ(s)− Gα, β, γ(γs)
αs[Gα, β, γ(s)− Gα, β, γ(γs)] + (1− γ)s[βGα, β, γ(s) + αGα, β, γ(γs)]

= 1,

dividing the numerator and the denominator by (1 − γ)s and letting γ→ 1,
we get

G′α, β, 1(s)
αsG′α, β, 1(s) + βGα, β, 1(s) + αGα, β, 1(s)

= 1⇐⇒
G′α, β, 1(s)
Gα, β, 1(s)

=
α+ β

1− αs
,

the expression we obtain working out the probability generating function in
Panjer’s iterative expression pα, β(n+ 1) =

(
α+ β

n+1

)
pα, β(n) , α, β ∈ IR,

n = 0, 1, . . . .

4 A simple generalization of the binomial/multinomial
measure

There are many ways to expand the notion of a multiplicative cascade, one is
to consider that each multiplier is the outcome of some stochastic rule. These
kind of multiplicative iterative schemes are usually called random multiplica-
tive cascades.

In Section 2 we introduced the geometric and Poisson generated measures.
In this section we shall expand differently the notion of random multiplicative
cascades by allowing the number of subdivisions that each interval undergoes,
at each step of the measure’s construction, to be determined by the outcome
of a discrete random variable N , where P[N ≥ 2] = 1. This procedure gen-
eralizes the binomial and multinomial measures in the sense that at step k,
k = 1, 2, . . . , the outcome of N dictates the number of subdivisions that each
existing interval suffers. On the other hand, the binomial and multinomial
measures correspond to N being a degenerate random variable at b, with
b = 2 and b > 2, respectively. In this new scenario the multipliers used at
each step also depend on the outcome of N , i.e., mi = m

(N)
i .

Starting with the interval [0,1], having uniformly distributed unit mass,
the new measure is formally constructed as follows:

Step 1: Generate an observation n1 from the random variable N . Split the
interval [0,1] into the n1 equally length subintervals

[in−1
1 , (i+ 1)n−1

1 ] , i = 0, 1, . . . , n1 − 1, (2)

receiving uniformly distributed masses m(n1)
i , i = 0, 1, . . . , n1−1, respec-

tively;
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Step 2: Generate a second observation n2 from N , independent from n1.
Split each interval in (2) into n2 equally length subintervals and use the
multipliers m(n2)

i , i = 0, 1, . . . , n2 − 1, to uniformly distribute the parent
interval’s mass by these subintervals. After this step is completed the
subintervals formed are [i(n1n2)−1, (i+1)(n1n2)−1], i = 0, 1, . . . , n1n2−1;

Step k: Generate an observation nk from N , independent from the pre-
vious k − 1 observations of N . Split each interval from the previ-
ous step into nk subintervals of equal length and use the multipliers
m

(nk)
i , i = 0, 1, . . . , nk − 1, to uniformly distribute the parent interval’s

mass by these subintervals. The subintervals formed after this step are
[i(n1n2 . . . nk)−1, (i+ 1)(n1n2 . . . nk)−1], i = 0, 1, . . . , n1n2 . . . nk − 1;

The new measure µ results from applying the previous procedure infinitely.

An example of a family of multipliers that can be used in this type of
measure construction is

m
(n)
i =

2(i+ 1)
n(n+ 1)

i = 0, 1, . . . , n− 1 , (3)

when N = n. (Note that with the multipliers defined in (3) we never observe
the case m(n)

0 = m
(n)
1 = . . . = m

(n)
n−1 = 1/n.)

In order to illustrate how the measure is obtained we give a simple exam-
ple. Suppose that the random variable N has support on the finite set {2, 3}
with p.m.f. P[N = 2] = 1/4 and P[N = 3] = 3/4. Let us further assume that
we observe for the first two steps of the measure’s construction the sequence
of divisors (N1, N2) = (3, 2), where N1 and N2 are independent replicas of
N . Using the multipliers defined in (3), we get m(2)

0 = 1/3 and m
(2)
1 = 2/3,

and m
(3)
0 = 1/6, m(3)

1 = 1/3 and m
(3)
2 = 1/2.

At step one we obtain the subintervals [0, 1
3 ], [ 13 ,

2
3 ] and [ 23 , 1], with masses

1/6, 1/3 and 1/2, respectively, and after step two the intervals [0, 1
6 ], [ 16 ,

1
3 ],

[ 13 ,
1
2 ], [12 ,

2
3 ], [23 ,

5
6 ] and [ 56 , 1], with masses 1/18, 1/9, 1/9, 2/9, 1/6 and

1/3, respectively. We should point out that when a measure of this type
is being formed, one actually does not know which generator sequence of
divisors (N1, N2, . . . ) is being used in the construction, and consequently
which multipliers are being considered at each step.

In the binomial and multinomial measures the multipliers used throughout
all steps are both fixed in value and in number. In this new scheme each
multiplier should be regarded as a random variable, since the magnitude and
number of multipliers used are directly determined by the distribution of N .

Lets go back to the example to see how this is the case. For the multipliers
defined in (3) we can have, e.g., m0 = 1/3 or m0 = 1/6, with probability 1/4
and 3/4, respectively, and we shall need to define 3 random multipliers. If
Mi denotes the random variable that represents the value of the i-th random
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Table 1. Masses for all possible addresses obtained after step 2 using N as divisor

(2,2) (2,3) (3,2) (3,3)
Address [1/16] [3/16] [3/16] [9/16] Mean mass

0.00 1/9 1/18 1/18 1/36 25/576

0.01 2/9 1/9 1/9 1/18 25/288
0.10 2/9 1/9 1/9 1/18 25/288

0.11 4/9 2/9 2/9 1/9 25/144

0.02 0 1/6 0 1/12 5/64
0.20 0 0 1/6 1/12 5/64

0.12 0 1/3 0 1/6 5/32
0.21 0 0 1/3 1/6 5/32

0.22 0 0 0 1/4 9/64

multiplier,

M0 =

{
1
3

1
6

1
4

3
4

, M1 =

{
2
3

1
3

1
4

3
4

and M2 =

{
0 1

2
1
4

3
4

. (4)

(The expected values for the multipliers given in (4) are E[M0] = 5/24,
E[M1] = 5/12 and E[M2] = 3/8.) For an arbitrarily random variable N , the
number of random multipliers Mi will depend on the number of points where
N has non null mass.

In each step of this new multiplicative cascade we can also attach an ad-
dress to each interval generated, as is done in the binomial and multinomial
measures (for more details see e.g. Evertsz and Mandelbrot [1]). However,
given the way the measure is constructed, we can have different intervals
attached to the same address, i.e. there is no one-to-one correspondence be-
tween address and interval, contrarily to what happens with the binomial
and multinomial measures. Furthermore, intervals with the same address do
not have necessarily the same mass. For example, the address 0.00 can be
linked to the intervals [0, 1

4 ] if (N1, N2) = (2, 2), [0, 1
6 ] if (N1, N2) = (2, 3) or

(N1, N2) = (3, 2) and [0, 1
9 ] if (N1, N2) = (3, 3), having masses 1/9, 1/18 and

1/36, respectively. In Table 1 we indicate all possible masses associated with
all possible addresses at step 2 (the probability of observing each generator
sequence of divisors is shown in brackets underneath). From Table 1 we see
that addresses that are permutations of one an other have the same mean
mass (this remains true at any step).

The question now is “How can we determine the measure of a partic-
ular address 0.β1β2 . . . βk, βi = 0, 1, . . . , i = 1, 2, . . . , k, which can have a
multitude of intervals attached to it, if one does not know which generator
sequence (N1, N2, . . . , Nk) was used?” As we shall see next, the answer is
quite simple.
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We can prove that the address 0.β1β2 . . . βk has expected measure

µE(0.β1β2 . . . βk) = E(Mβ1)E(Mβ2) . . .E(Mβk),

not depending on the generator sequence, but only on the multipliers ex-
pectations, which ultimately are influenced by the distribution of N (this is
implicit in Table 1). For example, both addresses 0.01 and 0.10 have expected
measure E(M0)E(M1) = 25/288.

On the other hand, the singularity of this kind of measure construction
prevents the direct application of the classic definitions of coarse and local
Hölder exponents given in the literature. However, these definitions can be
generalized in order to accommodate this new case. For the generalized coarse
Hölder exponent we use

αk(0.β1β2 . . . βk) =
log(µE(0.β1β2 . . . βk))

log
(

E
[(∏k

i=1Ni

)−1
]) ≈ − log(µE(0.β1β2 . . . βk))

k log(E[N ])

and for the generalized local Hölder exponent,

α = lim
k→∞

αk(0.β1β2 . . . βk) ≈ − lim
k→∞

log(µE(0.β1β2 . . . βk))
k log(E[N ])

,

if the limit exists. Note that
(∏k

i=1Ni

)−1

represents the (random) length of
the intervals at step k, k = 1, 2, . . . .
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