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Abstract. The hyperbolic prism is a transparent optical element with spherical polished 

surfaces that refracts and reflects the light, acting as an optical element of foam. Using 

the hyperbolic prism we can face the question: is there any self-similarity in foams due to 

light scattering? In order to answer this question, we have constructed two optical 

elements: the hyperbolic kaleidoscope and the hyperbolic prism. The key feature of the 

light scattering in such elements is that this phenomenon is chaotic. The propagation of 

light in foams creates patterns which are generated due to the reflection and refraction of 

light. One of these patterns is observed by the formation of multiple mirror images inside 

liquid bridges in a layer of bubbles in a Hele-Shaw cell. We have observed the existence 

of these patterns in foams and their relation with hyperbolic geometry using the Poincaré 

disc model. The images obtained from the experiment in foams are compared to the case 

of hyperbolic optical elements, and there is a fractal dimension associated with the light 

scattering which creates self-similar patterns 
Keywords: Hyperbolic Prism, Poincaré Disc, Foams, Kaleidoscope.   

 
 

 

1  Introduction 
 

Physically based visualization of foams improves our knowledge of optical 

systems. As long as the light transport mechanisms for light scattering in foams 

are understood, some interesting patterns observed can be connected with some 

concepts involving hyperbolic geometry, and this study involves mainly the 

classical scattering of light in foams and geometrical optics. This scattering 

system is an open system, in which the trajectories of light are not confined to a 

bound region [1]. The trajectories can leave the foam and eventually escape to 

infinity, as it is shown in Figure 1. 

 The physical system constituted by light interacting with foams can 

give hints for the understanding of collision processes, chaotic dynamics, the 

scatterers for wireless communications, and the construction of light traps, just 

to cite a few areas of the interest. Besides these scientific and technological 

applications, the enthrallment of the interaction of light, mirrors and curved 

surfaces can be found in many art works of great painters and writers from 

medieval to modern times, such as the Van Eyck’s Arnolfini Marriage, La 

Reproduction Interdite by René Magritte, Soap Bubbles by Chardin, many 
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works of the Dutch graphic artist M. C. Escher, Lewis Carroll or Jorge Luis 

Borges. 

 A light ray entering in a foam can reflect and refract chaotically, 

because of the geometry of the interface of bubbles. In this study we present 

some patterns involving self-similarity and hyperbolic geometry. 

 

 
Fig. 1. Some transformations of the image a square grid behind a foam.  The triangles are 

elements of foams known as Plateau borders. We can observe some contractions and 

transformations showing that the foam can act as a refractive system.  

 

 

2  Kaleidoscopes 
 

The branch of optics related to the geometry, the geometric optics, is based on 

the laws of ray reflection and refraction that are very simple: 
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In which i is the angle of the incident ray in the interface of the foam, r is the 

reflected ray, t is the angle of the refracted ray, ni and nt are the refractive 

indices of the air and the liquid respectively. However the boundary conditions 

are very difficult to be determined precisely due to the bubble geometry and the 

paraxial approximation cannot be used for every scattered light ray.  

Because of this aspect, we explore first some features of the pure 

reflective systems, obtaining some main features that can be compared with the 

concepts of geometry, and after that we can apply these concepts to explain 

some observed patterns. 
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Fig. 2. A kaleidoscope can be obtained with two plain mirrors showing some Möbius 

transformations. 

 

 A kaleidoscope is a physical object made with two or more mirrors 

side by side, operating in the principle of multiple reflection, as it is shown in 

Figure 2. In general, the mathematics of kaleidoscopes in N dimensions is the 

study of finite groups of orthogonal N x N matrices that are generated by 

reflection matrices. We can observe transformations such inversions, 

translations and rotations. For certain angles of incidence, bubbles reflect the 

light, and we have done some experiments using Christmas balls as reflective 

spheres in order to understand the geometry of light scattering in curved 

surfaces.  In Figure 3, there is an image of curved kaleidoscope using three 

Christmas balls. We can obtain more complex reflections increasing the number 

of spheres, which resembles some properties of fractal systems, as it is shown in 

Figure 4. These three mirrored spheres could be an analogy to a stereographic 
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projection of a regular kaleidoscope. Such stereographic projection is related to 

the Poincaré hyperbolic disc illustrated in Figure 5(e). 

 

 
Fig. 3. Image of a curved kaleidoscope using three Christmas balls. We have used two 

different colors in order to provide the observation of the sequence of reflections. 

 

 

 
Fig. 4. Image of a curved kaleidoscopes using multiple Christmas balls. 
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Fig. 5. How to construct the Poincaré hyperbolic disc? From (a) to (d) we present four 

steps to obtain some reflections and the multiple reflections of an object at the center of 

the disc.  
 
 

3 The Poincaré Hyperbolic Disc  
 

According to Needham[2], the Poincaré Disc model is a model for hyperbolic 

geometry in which a line is represented as an arc of a circle whose ends are 

perpendicular to disc boundary. What is the definition of parallel rays in this 

disc? Two arcs which do not meet correspond to parallel rays. In that geometry 

arcs which meet orthogonally correspond to perpendicular lines, and arcs which 

meet on the boundary are a pair of limit rays. 

 The Poincaré disc is a conformal map of the hyperbolic plane 

constructed by Beltrami in 1868 and rediscovered fourteen years later by 

Poincaré, which is now universally known as the Poincaré disc. 

 Using kaleidoscopes, we can see the reflections of the kaleidoscopes 

with plane mirrors of Figure 6(a) and (b) in the realm of the Euclidean 

geometry, while the kaleidoscope with reflective spheres in the realm of 

hyperbolic geometry, with the reflections representing Möbius transformations. 

Considering the red disc at the center of the Poincaré disc in Fig. 6(c), we can 

follow its respective reflections and understand the concept of a new kind of 

reflective system, known as hyperbolic kaleidoscope, similar to the 

kaleidoscopes of Figure 3 and Figure 4. 

 The complex pattern observed in the Poincaré disc represents a self-

similar pattern, in which there is a fine structure at the border of the disc. This 

fractal pattern can be observed in the simulation of Figure 7(a) and in the image 

of the experiment of a hyperbolic kaleidoscope in Figure 7(b), in which a small 

sphere is placed at the center of the hyperbolic kaleidoscope. In this way, many 

physical properties of this system can be elucidated by the analysis of its 

geometry, using our sensory experience to guide us in more abstract concepts, 

such as symmetry groups or the tilling properties. 
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Fig. 6. Comparison between a kaleidoscope with three plane mirrors and the Poincaré 

disc model. 

 

Besides the connection between geometry and physics, from the point 

of view of tilling, we can explore the association of the hyperbolic geometry 
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with some features of architecture. For example, Kaplan[3] applied the concepts 

of non-euclidean geometry to understand and create ornaments. In this study, 

patterns with the same properties of the hyperbolic kaleidoscopes are related to 

polyhedral models, and he presents a geometry-agnostic construction technique 

to be applied seamlessly to produce Islamic star patterns in the Euclidean plane, 

hyperbolic plane, and on the sphere. 

 

 
Fig. 7. In (a) the simulation of a hyperbolic kaleidoscope. In (b) there is an image of the 

hyperbolic kaleidoscope. 

 

 
Fig. 8. Experiment and simulation of light scattering of an array of spheres. 
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Fig. 9. Image of a foam showing some properties resembling self-similarity. 

 

 The array of spheres of Figure 8 is made with opaque objects. What 

happen if we use transparent objects like bubbles in a foam? The pattern can be 

observed in Figure 9(a). The zoom of Figure 9(b) shows the multiple reflections 

and refractions creating a more complex pattern than the case of the pure 

reflective spheres, with the first image of bubble represented by I, and inside 

this bubble we can see the image of other bubbles in II. The process is recurrent, 

and we can observe the image of three small bubbles in III, in which each 

bubble acts as a diverging lens and the bubble layers recursively image the 

optical patterns generated by the bubbles underneath, creating fractal-like 

patterns. Additional images and computational simulations of this phenomenon 

can be found in the paper of van der Net et al.[4], in which are presented some 

beautiful fractal-like patterns of bubble layers arranged a crystal ordering. 

 

 

4  Chaotic scattering 
 

The introduction of the study of chaotic systems in different areas of knowledge 

represented a paradigm shift, with the change in the perception of events which 

were already known. In this way, even though the scattering of light in foams is 

in the realm of classical optics, the approach using dynamical systems revealed 

some interesting features. For example, we can find the evidence of the butterfly 

effect in the light scattering in foams, with the sensitivity of initial conditions in 

the scattering of light in the interface of bubbles for reflection and refraction (for 

example, see Figure 13 of the paper of van der Net et al.[4]. In Figure 10, we 

present a simulation of the geometrical optics in the Plateau border, with the 

illustration of some incident light rays (R1) with their refractions (R2) and 

reflections (R3 and R4). The Plateau border is one of the structures found in 

foams, and this optical element can present some features observed in chaotic 

systems because this optical element shares some common features of the 
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hyperbolic kaleidoscopes. In Figure 11, we present an image of light scattering 

of a red laser beam in two bubbles in water. 

 
Figure 10. Light scattering in a plateau border. 

 

 
Figure 11. The butterfly effect in the light scattering with two bubbles.  
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 In this system with just two bubbles, the light scattering presents more 

possibilities to diverge due to the presence of reflection and refraction at same 

time, changing the power of light scattering. In this situation a light ray can split 

in two distinct rays: a reflected one and a refracted one, affecting the sensitivity 

to initial conditions. Analyzing the chaotization mechanisms of light in foams 

retains some properties of pure reflective systems, but the dynamics of rays 

passing from one medium to another can acquire unusual properties. According 

to Baryakhtar[5], the law of ray motion itself becomes deterministically chaotic. 

 Based in these assumptions, we have looked for the answer of the 

following question: how to quantify the chaos of light scattering in foams? To 

answer this question, we have used the concept of Komolgorov-Sinai entropy, 

which is related to the sum of the positive Lyapunov exponents of the 

system[1]. The Lyapunov exponent quantifies the separation of infinitesimally 

close trajectories of light rays. We have obtained an empirical formula for the 

light scattering in foams for the values of Komolgorov-Sinai entropy in 

reference Tufaile et al. [1]. According to our computations, for the case of pure 

reflective systems the Komolgorov-Sinai entropy is 1.98, and for the case of 

foams, the Komolgorov-Sinai entropy is 1.82. These values indicate that the 

both systems have the same degree of chaotization. 

  

 
Fig. 12. The cavity hyperbolic prism reflecting the light following the pattern of the 

Poincaré disc. The inset is the observation of a fractal tree[6]. 

 
 In order to represent the conection between the light scattering in 

foams and the Poincaré disc, we have made a hyperbolic prism and obtained 

some images with the features of self-similar systems related to the Poincaré 

disc. In Figure 12, we are presenting the cavity of the hyperbolic prism [6, 7] 

with some self-similar structures related to the Poincaré disc. 
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Conclusions 
 

The observation of light scattering in foams suggested the existence of some 

dynamics represented by hyperbolic geometry. Motivated by this representation, 

due to refraction and reflection at the interfaces, the direction of the rays leaving 

the interfaces between bubbles can considerably vary for the same incident 

angle and a small positional offset. A close look at some configurations of the 

liquid bridges reveals the existence of some triangular patterns surrounded by a 

complex structure, which bear a resemblance to those observed in some systems 

involving chaotic scattering and multiple light reflections between spheres. 

Provided the optical and geometrical properties of the bubbles or spheres 

surfaces are chosen appropriately, self-similarity is a consequence of multiple 

scattering of light rays in these cavities. Inspired by the observation of light 

scattering in foams, we have constructed a hyperbolic prism. The cavity acts as 

a hyperbolic prism multiplying the scattering of light rays generating patterns 

related to Poincaré discs. 
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Abstract. The propagation of light in foams creates patterns which are explained by the 

Geometrical Theory of Diffraction, and some of these patterns are known as Parhelic-like 

circle or Parlaseric circle. We also present the analogy between the atmospheric 

phenomena known as Parhelic circle, Sun dogs and Sun pillars and the patterns obtained 

from light scattering in foams. 

Keywords: Parlaseric circle, Parhelic circle, Plateau borders, Geometrical Theory of 

Diffraction. 
 

1  Introduction 

 
Scattering problems are at very heart of Physics, from Celestial to Quantum 

Mechanics, with particles or waves, we are always looking for a target. In our 

experiment, we are observing the light scattering in foams, and the results can 

be applied in Acoustics, Optics and Spectroscopy. Light through foams presents 

a complex behavior, for example, though the laws of ray reflection and 

refraction are simple, the boundary conditions for the light scattering are very 

difficult to be determined precisely due to many awkward technical aspects, 

such as nonlinearities, or if the thickness of the liquid films is sufficiently close 

to the wave length of visible light, there is light interference and thus produce 

the iridescent colors of soap bubbles. 

In this paper we discuss the chaotic scattering, diffusion and some 

aspects of the interface between wave and geometric optics. We have observed 

that the light scattering dynamics in foams can present two main process: a 

diffusive one related to Gaussian process and another one related to chaotic 

dynamics, similar to those observed in chaotic saddles, with some rays of light 

bouncing back and forth for a certain time, and leaving it through one of several 

exits. In addition to those behaviors, between geometrics and wave optics, we 

also have observed the phenomena of the theory of geometrical refraction, with 

the parlaseric circle. 

 

2  The experimental apparatus 

 
This experiment involves light scattering in foam. The foam is obtained by 

shaking a liquid inside a transparent box consisting of two parallel Plexiglas 
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plates separated by a gap (19.0 x 19.0 x 2.0 cm
3
). We can inspect the profiles of 

light scattered inside the foam and we have used a photographic camera to 

detect the resulting light patterns. The box contains air and an amount of 

dishwashing liquid diluted in water (V = 115 cm
3
). The surfactant is Lynear 

Alkylbenzene Sulfonate (LAS), with surface tension around 25 dyne/cm and 

refractive indices equal to 1.333 for the liquid and 1.0 for the air. The light 

sources used when photographing the light scattered by the foam were laser 

diodes with colors red (635 nm), green (532 nm), and blue (405 nm). 

 

 
Fig.1. In (a) is shown the cross section of a Plateau border. The example of ray tracing in 

a Plateau border (b). The diagram of the experiment is shown in (c). 

 

 

 
Fig. 2. Image of the laser beam in a Plateau border. 
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We use foams composed of bubbles in a network of surfactant solution 

and some single structures of foams known as Plateau borders and vertex. The 

Plateau border is an edge of foam in a junction of three soap films, while the 

vertex is a place where four Plateau borders meet. 

 

3  Diffusion and Chaotic scattering 
 

Using experiments involving the transport of light in foams, we have observed 

two main processes of light transport [1]: a diffusive one related to a Gaussian 

function, and another one related to a chaotic dynamics, similar to those 

observed in chaotic saddles, in which a ray of light bounces back and forth for a 

certain time in the scattering region, and leaves it through one of several exits, 

as it is shown in Figure 3 which represents a slice of the profile of light 

scattering. In this figure, we present the result obtained from the experiment 

involving light scattering in foams, in which a laser beam is injected in liquid 

foam inside a box.  

 
Fig. 3. Light intensity plot of the light scattering in foam. 

 

The scattering process spreads the light and limits the depth of light 

penetration, creating a center glow located just above the interface of the box 

and the foam. We can represent the overall behavior of the light scattering g(x,y) 

in foams with the following model: 
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in which the first term represent the diffusive process present in all places, while 

the effects of the chaotic dynamics f(x,y) are present mainly at the center of the 

foam, around the laser beam direction. 

 
Fig. 4. Chaotic and diffusive light scattering. 

 

 

4  The Parlaseric Circle 
 

Besides these phenomena, we also observed the formation of some caustics. 

One of these caustics is the light pattern involving the parlaseric circle [2], 

explained by the Theory of Geometrical Diffraction [3]. 

The parlaseric circle is a luminous ring generated by light scattering in 

foams or soap bubbles. In analogy to the atmospheric phenomena known as 

parhelic circle, sun dogs, and sun pillars, we have named the features of the 

patterns observed as parlaseric circle, laser dogs, and laser pillars. The triangular 

symmetry of the Plateau borders is analogous to the hexagonal symmetry of ice 

crystals which produce these atmospheric phenomena. Working with one 

Plateau border at a time, we have observed wave optics phenomena that are not 

used in the explanation of the atmospheric phenomena, such as diffraction and 

interference. 
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Fig. 5. The parlaseric circle, laser dogs and laser pillars obtained with green light. 

 

 

 
Fig. 6. The parlaseric circle, two laser dogs and laser pillars obtained with blue light. 
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The main features of these patterns are the following: the laser spot and 

the laser dogs are always inscribed at the circumference of the parlaseric circle, 

and they are explained by the laws of geometrical optics. The lines crossing the 

laser spot are explained by the wave optics, and they represent the typical 

Fraunhofer diffraction of a triangle. The parlaseric circle is explained by the 

Theory of Geometrical Diffraction [3]. 

According to the Geometrical Theory of Diffraction suggested by 

Keller [3], when a light beam hits a straight edge obliquely, there is a cone of 

diffracted rays  ue and the cross section of this cone is a circle given by: 

ikr

ie erDuu 2
1

 ,                                                  (2) 

where D is a diffraction coefficient, ui is the incident field, r is the distance 

between the edge and the screen, and k=2/ is the wave number of the incident 

field with wavelength . This is the case when a laser light hits some structures 

of foams known as Plateau border, as previously observed by Tufaile and 

Tufaile [4]. 

 

 
Fig. 7. According to the Geometrical Theory of Diffraction, when a light beam hits a 

straight edge obliquely, there is a cone of diffracted rays.  is the semi angle of the 

diffraction cone that is equal to the incident angle measured from the laser beam 

direction. 
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 The diagram of Figure 8 shows some important aspects of the 

parlaseric circle pattern, in which LS represent the laser spot, LD1 and LD2 are 

the laser dogs and the laser pillars are represented by the lines of diffraction and 

interference 1, 2 and 3. Depending on the angle of incidence of light we can 

observe two or four laser dogs. 

 
Fig. 8. Laser pillars and the parhelic circle pattern diagram. LS is the laser spot, LDs are 

the laser dogs, n are the laser pillars. 

 

5  Vertex Diffraction 
 

In addition to the previous case, we have inspected the case known as vertex 

diffracted ray, when light hits a vertex formed by a junction of four Plateau 

borders, in which the corresponding diffracted waves are spherical with vertex 

at their center. Keller suggested that the field on the diffracted ray for this case 

is given by: 











r

e
Cuu

ikr

i .                                                   (3) 

The images in Figure 9 and Figure 10 obtained in our experiment show 

concentric fringes, could be the vertex diffraction, and in this case the amplitude 

varies as r
-1

 since the cross sectional area of a tube of diffracted rays is 

proportional to r
2
, according to Keller.  
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Fig. 9. Vertex diffraction with concentric 

circles. 

Fig. 10. Vertex diffraction with concentric 

circles in a lager incident angle. 

 
However, when we have moved the screen where the images were 

obtained, the interference pattern remained the same and the width of the fringes 

change, indicating that this is spherical wave of diffraction, resembling the 

interference patterns observed in the case of Newton rings or some patterns 

obtained in the Michelson interferometer. Increasing the angle of laser beam 

incidence and the axis of the Plateau border, the size of the fringes decrease. 

 

 
Fig. 11. Another image of the circular fringes at the center of the parlaseric circle. 
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By inspection of the patterns like those in Figures 9, 10 and 11, we are 

exploring the aspects of thin-film interference which occurs in a curved thin 

liquid film and, trying to associate with the case of Pohl interferometer, that is a 

device based in the amplitude splitting interference [5]. 

 

Conclusions 
 

We are proposing the combination of two main processes of the light transport 

in foams: a diffusive one related to Gaussian function, and another one related 

to chaotic dynamics. Just considering the aspects of the geometrical optics, the 

curvature of soap film structures cause incident light to be scattered in different 

directions, because the direction of the rays leaving the soap film boundaries can 

vary greatly for the same incident angle with a small positional offset. Besides 

this, we have obtained some interesting patterns of light diffraction and 

compared them with the theory of geometrical diffraction suggested by Keller.  

The classification of the optical phenomena somehow involves the 

scale of the scatterer, and the Plateau border is not just a regular prism. The 

pattern of the parlaseric circle present some features of the geometrical optics, 

wave optics and the theory of geometrical diffraction. All these phenomena are 

related to the nonlinear effects of light transport in foams, with applications in 

image processing, construction of new optical elements to generate halos or 

spherical waves, and with the possibility of improvements in the studies of 

atmospheric optics. Because all these phenomena can be observed with a table 

top experiment, they can be performed in order to get a better understanding of 

some concepts of optics, such as the Huygens principle. 
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Abstract. Recently, Jafari and Sprott (2013) have found nine simple chaotic flows with 

quadratic nonlinearities which include the unusual feature of having a line equilibrium. 

This study investigates the control of a simple chaotic system having a line equilibrium 

by means of the passive control method. Lyapunov function is used to realize that the 

passive controller ensures the global asymptotic stability of the system. In order to 

validate all the theoretical analyses, numerical simulations are demonstrated. Owing to 

the single passive controller, the chaotic flow stabilizes towards its line equilibrium in the 

state space effectively. 

Keywords: Simple Chaotic Flow, Line Equilibrium, Passive Control, Chaos Control. 
 

1  Introduction 
 

Lorenz introduced the first chaotic attractor in 1963 [1]. It is an interesting 

nonlinear phenomenon, therefore chaos generation has received a great deal of 

attention from researchers. Rössler proposed a simple three-dimensional chaotic 

system in 1976 [2]. A double-scroll attractor was shown from Chua’s circuit in 

1984 [3]. Sprott focused on simpler chaotic systems in 1994 and uncovered 19 

distinct chaotic flows which have either five terms and two nonlinearities or six 

terms and one nonlinearity [4]. In 1999, Chen and Ueta found a novel chaotic 

attractor called Chen chaotic system [5]. Lü et al. developed a new chaotic 

system, which represents the transition between the Lorenz and Chen systems in 

2002 [6]. Then, Lü et al. proposed a generalized form of the Lorenz, Chen and 

Lü systems called unified chaotic system in 2002 [7]. In recent years, several 

new chaotic attractors have been revealed [8–10], and many more will be 

discovered on account of their potential applications especially in cryptology 

and secure communication [11, 12]. Recently, Jafari and Sprott have focused on 

the chaotic systems that have a line equilibrium and found nine simple chaotic 

flows [13]. They are three-dimensional continuous autonomous chaotic 

attractors and consist of six terms and two parameters [13]. 
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In addition to searching for new chaotic systems, chaos control has become an 

important task. Its goal is to eliminate the chaotic trajectories and stabilize 

towards an equilibrium point of the system. At first, it was believed that 

controlling chaos cannot be done because chaotic systems are very sensitive to 

initial conditions. However, Ott, Grebogi, and Yorke applied the control of a 

chaotic system successfully in 1990 [14]. Afterwards, the chaos control has also 

received extensive attention. Many effective control methods such as linear 

feedback control [15], nonlinear feedback control [16], adaptive control [17], 

sliding mode control [18], passive control [19-25], impulsive control [26], and 

backstepping design [27] have been proposed for the control of chaos. Among 

them, the passive control method has been gaining significance due to using 

only one state controller which provides considerable benefits in reducing the 

complexity and cost. In this method, the main idea is to keep the system 

internally stable by using a controller which renders the closed loop system 

passive upon the properties of the system. In recent years, the passive control 

method has been applied for the control of Lorenz [19], Chen [20], unified [21], 

Rabinovich [22], Rucklidge [23] and some other chaotic systems [24, 25]. 

 

According to the literature review, the control of a chaotic system having a line 

equilibrium has not been investigated. Motivated by the chaos control studies, in 

this paper, the control of a chaotic flow having a line equilibrium has been 

implemented with a single state passive controller. The rest of this paper is 

organized as follows. In Section 2, a chaotic system which has a line 

equilibrium is described. In Section 3, a single passive controller is designed for 

the control. In Section 4, numerical simulations are demonstrated to validate the 

control. Finally, concluding remarks are given in Section 5. 

 

2  A Simple Chaotic Flow having a Line Equilibrium 

Jafari and Sprott [13] were inspired by the structure of the conservative Sprott 

case A system: 
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 (1) 

and they searched for chaotic flows with a line equilibrium. They considered a 

general parametric form of Eq. (1) with quadratic nonlinearities of the form 
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where the system has a line equilibrium in (0, 0, z) with no other equilibria. An 

exhaustive computer search has been done and nine simple cases are found 
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which have only six terms. The ninth chaotic flow is given in the following 

equation: 

 

,

,

,

2 xybzzz

xzayy

zx













 (3) 

where a and b are the system parameters [13, 28]. When they are selected as a = 

1.62 and b = 0.2, the Lyapunov exponents become 0.0642, 0, and -0.6842 [13]. 

Thus, system (3) is chaotic for these parameters. Its Kaplan–Yorke dimension is 

2.0939 [13]. 
 

 
      (a) 

 
      (b) 

 
      (c) 

Fig. 1. Time series of the chaotic system having a line equilibrium for (a) x signals, (b) y 

signals, and (c) z signals. 
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The equilibria of the chaotic system (3) can be found by getting ,0x  ,0y  

and 0z  as follows: 

 

,0

,0

,0

2 





xybzz

xzay

z

 (4) 

Hence, the chaotic system (3) has a line equilibrium point: (x, 0, 0). Under the 

initial conditions x(0) = 0, y(0) = 1, and z(0) = 0.8, the time series, the 2D phase 

plots, and the 3D phase plane of chaotic system (3) are demonstrated in Fig. 1, 

Fig. 2, and Fig. 3, respectively. 

 

 
      (a) 

 
      (b) 

 
      (c) 

Fig. 2. Phase plots of the chaotic system having a line equilibrium for (a) x–y phase plot, 

(b) x–z phase plot, and (c) y–z phase plot. 
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Fig. 3. Phase plane of the chaotic system having a line equilibrium. 

3  Control with a Passive Controller 
 

The passive control method is applied to system (3) in order to control the 

chaotic system having a line equilibrium to its equilibrium point. The controlled 

system is considered as follows: 

 

,
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,

2 uxybzzz

xzayy

zx













 (5) 

where u is the passive controller to be designed. By assuming that the state 

variable z is the output of the system and supposing that z1 = x, z2 = y, Y = z, and 

Z = [z1 z2]T, the system (5) can be denoted by normal form: 
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The passive control theory has the following generalized form 
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and according to system (6), 
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The storage function is chosen as 
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where 
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is the Lyapunov function of )(0 Zf  with )0(W = 0. According to the Eq. (8), 

the derivative of )(ZW  is 
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Since 0)( ZW  and 0)( ZW , it can be concluded that )(ZW is the Lyapunov 

function of )(0 Zf  and that )(0 Zf  is globally asymptotically stable [21]. 

 

According to the passivity definition, the controlled system can be equivalent to 

a passive system and globally asymptotically stabilized at its zero equilibrium 

by the following controller [19]: 

 .),(
)(

),(),( 1














  vYYZp

Z

ZW
YZbYZau T   (15) 

From the Eq. (15), the passive control function is 

 ,21121
2 vYzzzzzbYYu    (16) 

where  is a positive constant and v is an external input signal. By taking back 

z1 = x, z2 = y, and Y = z conversions, the passive controller u becomes 

 .2 vzxyxxybzzu    (17) 

Substituting the Eq. (17) into system (3) yields 
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The equivalent system (18) is a passive system of the chaotic system (3) which 

has a line equilibrium. 

 

The passive controlled system can stabilize towards its any equilibrium point 

( zyx ,, ). Let 0,0,0  zyx  and then system (18) yields 
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This implies 
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 (20) 

The conditions in Eq. (20) maintain the global asymptotical stability of chaotic 

system (5) towards its E(x, 0, 0) equilibrium point. 

 

4  Numerical Simulations 
 

The third-order Runge-Kutta method with variable time step is used in all 

numerical simulations of controlling the chaotic system having a line 

equilibrium. The same parameter values and initial conditions mentioned in 

Section 2 are considered to ensure the chaotic behaviour of the system. The 

controller is activated at t = 50 in all simulations. The passive control gain is 

taken as α = 1. Simulation results for the control of this chaotic system towards 

(1, 0, 0), (0, 0, 0), and (-1, 0, 0) equilibrium points with a passive controller by 

setting v = 1, v = 0, and v = -1 are shown in Fig. 4, Fig. 5, and Fig. 6, 

respectively. 
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      (a) 

 
      (b) 

 
      (c) 

Fig. 4. Time responses of controlled chaotic system having a line equilibrium to (1, 0, 0) 

equilibrium point when the passive controller is activated at t = 50 for (a) x signals, (b) y 

signals, and (c) z signals. 
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      (a) 

 
      (b) 

 
      (c) 

Fig. 5. Time responses of controlled chaotic system having a line equilibrium to (0, 0, 0) 

equilibrium point when the passive controller is activated at t = 50 for (a) x signals, (b) y 

signals, and (c) z signals. 
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      (a) 

 
      (b) 

 
      (c) 

Fig. 6. Time responses of controlled chaotic system having a line equilibrium to (-1, 0, 0) 

equilibrium point when the passive controller is activated at t = 50 for (a) x signals, (b) y 

signals, and (c) z signals. 

As seen in Figs. 4–6, the outputs of chaotic system converge to the (1, 0, 0), (0, 

0, 0), and (-1, 0, 0) equilibrium points after the passive controller is activated. 

Therefore, the simulation results validate all the theoretical analyses. As seen in 

Fig. 4, when the passive controller is activated at t = 50, the control is provided 

at t ≥ 58. Also, the control is observed after 8 time period in Fig. 5 and Fig. 6. 

Hence, the simulation results confirm the effectiveness of proposed passive 

control method. 
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5  Conclusions 
 

In this paper, the control of a chaotic system having a line equilibrium is applied 

with a single state passive controller. The conditions of the asymptotic stability 

of the steady states of the controlled system are ensured with a Lyapunov 

function. Numerical simulations show that this three-dimensional continues time 

chaotic system can be controlled to its line equilibrium point in an appropriate 

amount of time with a passive controller. Hence, computer simulations have 

validated the effectiveness of passive control method in the control of the 

chaotic system having a line equilibrium. 
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Abstract. The new inversive congruential method for generating uniform pseudo-
random numbers is a particularly attractive alternative to linear congruential genera-
tors which have many undesirable regularities. In the present paper, a new inversive
congruential generator of the second order for the sequence of PRN’s is introduced.
Exponential sums on inversive congruential pseudorandom numbers are estimated.
The results show that these inversive congruential pseudorandom numbers pass the
s-dimensional serial tests for the statistical independency.
Keywords: inversive congruential pseudorandom numbers, exponential sum, dis-
crepancy.

1 Introduction

The uniform pseudorandom numbers (abbrev., PRN’s) in the interval [0, 1]
are basic ingredients of any stochastic simulation. Its quality is of fundamental
importance for the success of the simulation, since the typical stochastic simu-
lation essentially depends on the structural and statistical properties of the pro-
ducing pseudorandom number generators. In the cryptographical applications
of pseudorandom numbers the significant importance is of the availability of
property of the unpredictability to generated sequence of pseudorandom num-
bers. The classical and most frequently used method for generation of PRN’s
still is the linear congruential method. Unfortunately, its simple linear nature
implies several undesirable regularities. Therefore, a variety of nonlinear meth-
ods for the generation of PRN’s have been introduced as alternatives to linear
methods. It is particularly interesting the nonlinear generators for producing
the uniform PRN’s, such as the inversive generators and its generalizations.
Such generators were introduced and studied in [2], [6], [7]. These generators
have several attractive properties such as an uniformity, unpredictability (sta-
tistical independence), pretty large period and simple calculative complexity.
The most common types of the inversive generators define by the following
congruential recursions.

8thCHAOS Conference Proceedings, 26-29 May 2015, Henri Poicaré Institute,
Paris France
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Let Fq be a finite field with q elements and let y0, a, b belong Fq. Put

y−1 =

{
0 if y = 0,
multiplicative inverse to y in F∗q if y 6= 0.

Then the recursion

yn+1 = ay−1n + b, n = 0, 1, 2, . . . . (1)

produces the inversive congruential generator over Fq.
The generator (1) was introduced in [2], [?], [7], [11].

Other inversive generators consider over the ring Zpm .
Let p be a prime number, m > 1 be a positive integer. Consider the

following recursion

yn+1 ≡ ayn + b (mod pm), (a, b ∈ Z), (2)

where yn is a multiplicative inversive modulo pm for yn if (yn, p) = 1. The pa-
rameters a, b, y0 we called the multiplier, shift and initial value, respectively.

In the works of Eichenauer, Lehn, Topuzoǧlu[3]; Niederreiter, Shparlin-
ski[10]; Eichenauer, Grothe[5] etc. were proved that the inversive congruential
generator (2) produces the sequence {xn}, xn = yn

pm , n = 0, 1, 2, . . ., which
passes s-dimensional serial tests on equidistribution and statistical indepen-
dence for s = 1, 2, 3, 4 if the defined conditions on relative parameters a, b, y0
are accomplishable.

It was proved that this generator is extremely useful for Quasi-Monte Carlo
type application (see, [9],[12]). The sequences of PRN’s can be used for the
cryptographic applications. Now the initial value y0 and the constants a and b
are assumed to be secret key, and then we use the output of the generator (2)
as a stream cipher. At the last time it has been shown that we must be careful
in the time of using the generator (2).

We call the generator (2) the inversive generator with constant shift.
In [14] we have given two generalization for the generator (2). The first

generalization connects with the recurrence relation

yn+1 ≡ ayn + b+ cF (n+ 1)y0 (mod pm) (3)

under conditions

(a, p) = (y0, p) = 1, b ≡ c ≡ 0 (mod p), F (u) is a polynomial over Z[u].

We call the generator (3) the inversive congruential generator with a variable
shift b + cF (n + 1)y0. The computational complexity of generator (3) is the
same as for the generator (2), but the reconstruction of parameters a, b, c, y0, n
and polynomial F (n) is a tricky problem even if the several consecutive values
yn, yn+1, . . . , yn+N will be revealed (for example, even the reconstruction of
three-term polynomial F (u) of large unknown degree is a very hard problem).
Thus the generator (3) can be used in the cryptographical applications. Notice
that the conditions (a, p) = (y0, p) = 1, b ≡ c ≡ 0 (mod p) guarantee that the
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recursion (3) produces the infinite sequence {yn}.
The second congruential recursion has the form

yn+1 ≡ ayn + b+ cyn (mod pm) (4)

with (a, p) = 1, b ≡ c ≡ 0 (mod p).
We call the generator (4) the linear-inversive congruential generator.
We must notice that the conditions a ≡ b ≡ 0 (mod p), (y0, p) = (c, p) = 1

also give to generate the sequence of PRN’s with appropriate properties for
PRN’s {xn}. However, the conditions a ≡ c ≡ 0 (mod p), (y0, p) > (b, p) = 1
don’t permit to construct the required sequence of PRN’s.

For the case p = 2, Kato, Wu, Yanagihara[7] studied the generator (4).
These authors proved that the appropriate sequence of PRN’s {xn} has a period
τ = 2m−1 if and only if a+ c ≡ 1 (mod 4) and b ≡ 3 (mod 4).

The present paper deals with the congruential inversive generator of second
order determined by the recursion

yn+1 ≡ a(yn−1yn)−1 + b (mod pm), (5)

where (a, p) = 1, b ≡ 0 (mod p), (y0, p) = (y1, p) = 1.
Notice that the superimposed requirements on a, b, y0, y1 permit to define

every value yn, n = 2, 3, . . ..
Our purpose in this work is to show passing the test on equidistribution

and statistical independence for the sequence {xn}, xn = yn
pm , and hence, the

main point to be shown is the possibility for such sequences to be used in the
problem of real processes modeling and in the cryptography.

In the sequel we will use the following notation.

2 Notation and auxiliary results

Variables of summation automatically range over all integers satisfying the
condition indicated. The letter p denotes a prime number, p ≥ 3. For m ∈
N the notation Zpm (respectively, Z∗pm) denotes the complete (respectively,
reduced) system of residues modulo pm.For z ∈ Z, (z, p) = 1 let z−1 be the
multiplicative inverse of z modulo pm. We write νp(A) = α if pα|A, pα+1 6 |A.

For integer t, the abbreviation em(t) = e
2πit
pm is used.

We need the following simple statements.
Let f(x) be a periodic function with a period τ . For any N ∈ N, 1 ≤ N ≤ τ ,

we denote

SN (f) :=

N∑
x=1

e2πif(x)

Lemma 1. The following estimate

|SN (f)| ≤ max
1≤n≤τ

∣∣∣∣∣
τ∑
x=1

e2πi(f(x)+
nx
τ )

∣∣∣∣∣ log τ

holds.
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This statement is well-known lemma about an estimate of uncomplete expo-
nential sum by means of the complete exponential sum.

Lemma 2. Let h1, h2, k, ` be positive integers and let νp(h1 + h2) = α,
νp(h1k + h2`) = β, δ −min (α, β). Then for every j = 2, 3, . . . we have

νp(h1k
j−1 + h2`

j−1) ≥ δ.

Proof. By the equality

h1k
j + h2`

j = (h1k
j−1 + h2`

j−1)(k + `)− k`(hkj−2 + h2`
j−2),

applying the method of mathematical induction, we obtain at once νp(h1k
j +

h2`
j) ≥ δ, j = 2, 3, . . . ut

Lemma 3. Let p > 2 be a prime number, f(x), g(x) be polynomials over Z

f(x) = A1x+A2x
2 + · · · , g(x) = B1x+B2x

2 + · · · ,

νp(Aj) = λj , νp(Bj) = µj , j = 1, 2, 3, . . .

and, moreover, α = λ2 ≤ λ3 ≤ · · · , 0 = µ1 < µ2 ≤ µ3 ≤ · · · .
Then for m ≥ 2 the following bounds occur∣∣∣∣∣∣

∑
x∈Zpm

em(f(x))

∣∣∣∣∣∣ ≤
{

2p
m+α

2 if νp(A1) ≥ α,
0 if νp(A1) < α;∣∣∣∣∣∣

∑
x∈Z∗

pm

em(f(x) + g(x−1))

∣∣∣∣∣∣ ≤ I(pm)p
m
2

where I(pm) is a solution of the congruence

f ′(y) ≡ g(y−1) · y−1 (mod pm−m0).

Proof. Putting x = y(1 + pm0z), y ∈ Z∗pm0 , z ∈ Zpm−m0 , we have modulo pm

xk = yk + kpm0ykz, (x−1)k = yk − kpm0ykz.

And then we obtain modulo pm

f(x) + g(x−1) = f(y) + g(y) + pm0(f ′(y)− y−1g′(y−1))z.

Hence, ∑
x∈Z∗

pm

em(f(x) + g(x−1)) =

=
∑

y∈Z∗
pm0

em(f(y) + g(y−1))
∑

z∈Z
pm−m0

em((f ′(y)− y−1g′(y−1))z) =

= pm−m0
∑

y∈Z∗
pm0

f ′(y)≡y−1g′(y−1) (mod pm−m0 )

em(f(y) + g(y−1)).
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Now, if m = 2m0, we obtain∣∣∣∣∣∣
∑

x∈Z∗
pm

em(f(x) + g(x−1))

∣∣∣∣∣∣ = p
m
2 I(pm).

For m = 2m0 + 1 we put y = yj + pm−m0t, t ∈ Zp, yj runs all solutions of
the congruence f ′(y) ≡ y−1g′(y−1) (mod pm−m0) over Z∗

pm−m0
. Then setting

y = yj(1 + pt), t ∈ Zp, we obtain∑
y∈Z∗

pm0

f ′(y)≡y−1g′(y−1) (mod pm−m0 )

em(f(y) + g(y−1)) =

=
I(pm)∑
j=1

em(f(yj) + g(y−1j ))
∑
t∈Zp em−2m0

(
f ′(yj)−y−1

j g′(y−1
j )

pm0
t+B1y

−2
j t2

)
.

The inner sum in right side of last equality is the Gaussian sum. Consequently,
we finally have ∣∣∣∣∣∣

∑
x∈Z∗

pm

em(f(x)g(x
−1))

∣∣∣∣∣∣ ≤ pm2 · I(pm).

ut

For N arbitrary points t0, t1, . . . , tN−1 ∈ [0, 1)d, the discrepancy is defined
by

D(t0, t1, . . . , tN−1) = sup
I

∣∣∣∣AN (I)

N
− |I|

∣∣∣∣ , (5.1)

where the supremum is extended over all subintervals I of [0, 1)d, AN (I) is
the number of points among t0, t1, . . . , tN−1 falling into I, and |I| denotes the
d-dimensional volume I.

For study the discrepancy of points usually use the following lemmas.
For integers q ≥ 2 and d ≥ 1, let Cq(d) denote the set of all nonzero lattice

points (h1, . . . , hd) ∈ Zd with − q2 < hj ≤ q
2 , 1 ≤ j ≤ d. We define

r(h, q) =

{
q sin π|h|

q if h ∈ C1(q),

1 if h = 0

and

r(h, q) =

d∏
j=1

r(hj , q) for h = (h1, . . . , hq) ∈ Cd(q).

Lemma 4 (Niederreiter,[9]). Let N ≥ 1 and q ≥ 2 be integers. For N
arbitrary points t0, t1, . . . , tN−1 ∈ [0, 1)d, the discrepancy D(t0, t1, . . . , tN−1)
satisfies

DN (t0, t1, . . . , tN−1) ≤ d

q
+

1

N

∑
h∈Cd(q)

1

r(h, q)

∣∣∣∣∣
N−1∑
n=0

e(h · tn)

∣∣∣∣∣ .
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Lemma 5. Let {yk}, yk ∈ {0, 1, . . . , q − 1}d, is a purely periodic sequence
with a period τ . Then for the discrepancy of the points tk = yk

q ∈ [0, 1)d,
k = 0, 1, . . . , N − 1; N ≤ τ , the following estimate

DN (t0, t1, . . . , tN−1) ≤ d

q
+

1

N

∑
h∈Cd(q)

∑
h0∈(− τ2 ,

τ
2 ]

r−1(h, q)r−1(h0, τ) · |S|

holds,

where S :=
τ−1∑
k=0

e(h · tk + kh0

τ ).

This assertion follows from Lemma 4 and from an estimate of uncomplete
exponential sum through complete exponential sum (see, Lemma 1).

3 Preparations

We will obtain the representation of yn in the form of rational function on y0.
Denote νp(b) = ν0. A straightforward computation by recursion (5) shows

that modulo p3ν0 we have

y2 =
a+ by0y1
y0y1

, y3 =
ay0 + ab+ b2y0y1
ay0y1 + aby0 + ab2

, y4 =
ay0y1 + aby0 + ab2

ay0 + ab+ b2y0y1
,

y5 =
2a2b+ a2y0 + 3ab2y0y1
a2 + 2aby0y1 + ab2y0

, y6 =
2a2b+ a2y0 + 3ab2y0y1
a2 + 2aby0y1 + ab2y0

.

These relations give rise to proposal that representation of yn will be found
in the form of

yn =
A

(n)
0 +A

(n)
1 y0 +A

(n)
2 y0y1

B
(n)
0 +B

(n)
1 y0 +B

(n)
2 y0y1

, (6)

where A
(n)
j , B

(n)
j are the polynomials from Z[n]. From the above, for yn we

involve

yn+2 =
(aB

(n)
0 + bA

(n+1)
0 ) + (aB

(n)
1 + bA

(n+1)
1 )y0 + (aB

(n)
2 + bA

(n+1)
2 )y0y0

A
(n+1)
0 +A

(n+1)
1 y0 +A

(n+1)
2 y0y1

(7)
Now, a straightforward computation suggest that modulo p3ν0 we have

A
(3k−1)
0 ≡ ak, A(3k−1)

1 ≡ (k2 − 3k + 3)ak−1b2,

A
(3k−1)
2 ≡ kak−1b+ 6(k − 3)ak−2b2;

B
(3k−1)
0 =

k(k − 1)

2
ak−1b2, B

(3k−1)
1 = (3k − 1)− 2(k − 2)ak−1b,

B
(3k−1)
2 = ak−1 + 6ak−2b;

(8)


A

(3k)
0 ≡ kakb, A(3k)

1 ≡ 2ak;A
(3k)
2 ≡ k(k + 1)

2
ak−1b2;

B
(3k)
0 ≡ ak, B(3k)

1 ≡ (k2 − 3k + 3)ak−1b2;

B
(3k)
2 ≡ kak−1b+ 6(k − 3)ak−1b2;

(9)
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
A

(3k+1)
0 = ak+1 + kakb2, A

(3k+1)
1 = (k2 − 3k + 3)akb2 + 2akb;

A
(3k+1)
2 = kakb+ 6(k − 3)ak−1b2;

B
(3k+1)
0 = ka2b, B

(3k+1)
1 = 2ak; B

(3k+1)
2 = ak−1b2.

(10)

The validity of the formulas (8), (9) is not difficult establishes by the method
of mathematical induction. The formula (10) follows by recursion (5). Other
summands of Anj , j = 0, 1, 2; n = {3k − 1 or 3k or 3k + 1}, which modulo p3ν0

are equal to 0, be represented the polynomials from Z[n] (it comes from formula
(7)). So, we may write

A
(3k−1)
0 = ak + p3ν0F0(k), . . . , B3k−1

2 = ak−1 + 6(k − 3)ak−2b2 + p3ν0G2(k).

The number summands in any Fj(k) or Gj(k), j = 0, 1, 2 be less than 4m0,

where m0 =
[
m+1
ν0

]
by virtue when passing from k to k + 2 ”old” coefficients

gets multiplier divisible to a ·b.Therefore, appearance of the polynomials Fj(k),
Gj(k) rallies, moreover, all summands in the polynomials Fj(k), Gj(k) contains
factor a`, k −m0 ≤ ` ≤ k.

The relation (6) shows that for every k = 0, 1, 2, . . . the numerator and de-
nominator contain a summand that is coprime to p, and every such summand
contains the factor ak. Multiply out numerator and denominator on multiplica-
tive inverse modpm to the respective summand of denominator and applying
the expanding (1 + pu)−1 = 1− pu+ p2u2− · · ·+ (−1)m−1(pu)m−1 (mod pm),
we obtain the representation of yk power expansion of k with coefficients which
depend only on y0, y1 and (a−1)j , 0 ≤ j ≤ m, where a · a−1 ≡ 1 (mod pm).

So, after simple calculations we deduce modulo pm

y3k−1 = y−10 y−11 · S1 · S2

where

S1 =

[
a+ (k2 − 3k + 3)b2y0+

+ (b+ 6(k − 3)a−1b2)y0y1 + p3ν0G(k, y0, y1)

]

S2 =

[
1− 6a−1by0y1 −

k(k − 1)

2
b2 − (2k − 4)b2−

− (2k − 4)by0 + 36a−2b2(y0y1)2 + (2k − 4)2b2y20+

+ 12(2k − 4)a−1b2y20y1 + p3ν0F (k, y0, y1)

]
From where we have

y3k−1 = y−10 y−11

{
(a+ bc0) + kb(1− 2ay−11 )+

+ k2b2(y0 −
1

2
ay−11 + 4ay−11 ) + b3H(k, y0, y1)

} (11)

883



where c0 = −6a−1by0y1 +b2(3y0 +8a+36a−1(y0y1)2 +16ay20−48y20y1)+4by0a.

Next, by analogy, we infer

y3k = [2y0 − 3a−1b2y0(1− ba−1y1)] + kb(1 + bh(k))+

+ k2b2(−1

2
a−1y0y1 − 2a−1y20) + p3ν0L(k, y0, y1),

(12)

where h(k) = 6a−1by20 − 12a−1by20y1,

y3k+1 = 2−1y−10 [a+ 2by0 + 3b2y0(1− 6a−1y1)]+

+ kb(y0y1 − 2−1ay−10 + p3ν0b(−3y0))+

+ k2b2(y0 + 2−1ay−20 − 2−2y−10 − 2−1y−11 ) + p3ν0M(k, y0, y1)y−10 .

(13)

From (11)-(13) we infer the following statement.

Proposition 1. Let the sequence {yn} be produced by the recursion (5) with
(a, p) = (y0, p) = (y1, p) = 1, νp(b) = ν0 > 0. There exist the polynomials
F−1(x), F0(x), F1(x) ∈ Z[x] with the coefficient depending on y0, y1, such that

y3k−1 = y−10 y−11 ((a+ b(−6a−1y0y1) + b2B0(y0, y1))+

+ kb(1− 2ay−11 + bB1(y0, y1))+

+ k2b2(y0 −
7

2
ay−11 + bB2(y0, y1))) + p3ν0F−1(k)

(14)

y3k = (2y0 + b2C0(y0, y1)) + kb(1 + bC1(y0, y1))+

+ k2b2(−1

2
a−1y0y1 − 2a−1y20) + p3ν0F0(k)

(15)

y3k+1 = 2−1y−10 (a+ 2by0 + 3b2y0(1− ba−1y1)) + kb(y0y1 − 2−1ay−10 )+

+ k2b2(y0 + 2−1ay−20 − (2−1)2y−10 − 2−1y−11 ) + p3ν0F1(k).
(16)

In process of proof the Proposition 1 we obtain also the following corollaries.

Corollary 1. For k = 2, 3, . . ., we have

y3k−1 = (a+ kb+ 8ab2)y−10 y−11 + (−2akb+
7

2
ak2b2)y−10 y−21 +

+ (4ab+ 3b2 + k2b2)y−11 + 16ab2y0y
−1
1 +

+ 48b2y0 − 6a−1b+ p3ν0f−1(y0, y1)

(17)

y3k = kb+ (2− 3a−1b2)y0 + (18a−2b2)y0y1 + (6a−1b2k − 2a−1b2k2)y20−
− 12a−1kb2y0y1 + p3ν0f0(y0, y1)

(18)

y3k+1 = 2−1ay−10 + (b+ 2−1k2b+ 3b2) + (−3a−1b2 + kb)y1+

+ (−2−2abk − 2−2k2b2)y−20 + (−2−3k2b2)y−30 − 2−2y−10 y−11 +

+ p3ν0f1(y0, y1),

(19)

where f−1, f0, f1 are homographic (rational) functions at y0, y1.
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This Corollary at once follows from (11)-(13).

Corollary 2. Let τ be a period length of the sequence {yn} generated by re-
cursion (5); y0, y1 be initial values, and let νp(b) = ν0 > 0. Then we have

(A) τ = 3pm−ν0 if only one congruence 4y20 ≡ a (mod p)
or y1 ≡ 2 (mod p) violates;

(B) τ = 3pm−ν0−δ if min (νp(4y
2
0 − a), νp(y1 − 2)) = δ < m− ν0;

(C) τ ≤ 3pm−ν0−δ otherwise.

Proof. Let 4y20 ≡ a (mod p). Then, assuming y3k ≡ y3`+1 (mod pm), we ob-
tain 2y0 ≡ 2−1ay−10 (mod p). This gives a contradiction.

Similarly, from y3k−1 ≡ y3`+1 (mod pm) and y3k ≡ y3`+1 (mod pm) we
infer y−10 y−11 a ≡ 2−1ay−10 (mod p) and 2y0 ≡ 2−1ay−10 (mod p), i.e. y1 ≡ 2
(mod p) and 4y20 ≡ a (mod p).

Let n1 ≡ n2 (mod 3). Then from Corollary 1 we deduce that yn1 ≡ yn2

(mod pm) if and only if n1 ≡ n2 (mod pm−ν0). Hence, τ = 3pm−ν0 . the second
and third parts of Corollary 3 are also clear. ut

4 Exponential sums over the sequence of PRN’s

In this section we prove the theorems 1-3 on the estimates of exponential
sums on the sequence of pseudorandom numbers {yn} which are generated by
recursion (5).

Let

σk,`(h1, h2; pm) :=
∑

y0∈Z∗pm

e

(
h1yk + h2y`

pm

)
, (h1, h2 ∈ Z).

Here we consider yk, y` as a functions of initial values y0, y1 generated by (5).

Theorem 1. Let (h1, h2, p) = 1, νp(h1 + h2) = µ1, νp(h1k + h2`) = µ2, k, ` ∈
Z≥0 and let {yn} produced by (5). The following estimates

|σk,`(h1, h2; pm)| ≤


0 if k 6≡ ` (mod 3), νp(h2) > 0,
4pm+ν0 if νp(h2) = 0, k 6≡ ` (mod 3),
0 if µ1 = 0, k ≡ ` (mod 3),
4pm+ν0 if min (µ1, µ2) ≥ ν0, k ≡ ` (mod 3).

hold.

Proof. Without restricting the generality it may be assumed that (h1, h2, p) =
1, (h1, p) = 1. We considerate two cases:

(I) Let k and ` be nonnegative integers with k 6≡ ` (mod 3), i.e. k = 3k1 ± 1,
` = 3`1 or k = 3k1 − 1, ` = 3`1 + 1.
For k = 3k1, ` = 3`1 + 1, by Corollary 1 we have

h1y3k1+h2y3`1+1 = A0+A1y0+A2y
−1
0 +bg1(y−10 )+bB1y

−1
1 +B2y

−1
1 +bg2(y−11 ),
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where modulo pν0

A1 = 2h1, A2 = 2−1h2, B1 = h2k, B2 = −2−2y−10 .

Thus, by Lemma 3, we easily infer

|σ3k1−1,3`(h1, h2)| ≤
{

0 if νp(h2) > 0,
4pm+1 if νp(h2) = 0.

Such result gives the case k = 3k1, ` = 3`1 + 1 or k = 3k1 − 1, ` = 3`1 + 1.
(II) Let k ≡ ` (mod 3). For definiteness we will consider only the case k ≡ ` ≡ 0

(mod 3). Then we have from Corollary 1

h1y3k + h2y3` = (h1k + h2`)b+ (h1 + h2)(2− 3a−1b2)y0+

+ (h1 + h2)18a−2b2y0y1 + 6a−1b2(h1k + h2`)−
− 2a−1b2(h1k

2 + e2`
2)y20 − 12a−1b2(h1k + h2`)y0y1+

+ p3ν0
m0∑
j=0

aj(h1k
j + h2`

j)fj(y0, y1).

Again, by Lemmas 2 and 3, we obtain

|σ3k,3`(h1, h2)| ≤
{

0 if µ1 = 0, k ≡ ` (mod 3),
4pm+1 if min (µ1, µ2) ≥ ν0, k ≡ ` (mod 3).

In the cases (I) and (II) we take into account that I(pm) (see, the notation in
Lemma 3) are zero or 2. ut

Let the least length of period for {yn} is equal to τ .

Theorem 2. Let the linear-inversive congruential sequence generated by the
recursion (5) has the period τ , and let νp(b) = ν0 and 4y20 6≡ a (mod p) or
y1 6≡ 2 (mod p). Then the following bounds

|Sτ (h, y0)| ≤


O(m) if δ > ν0, np(h) < m− 2ν0 − δ,
4p

m+νp(h)

2 if δ ≥ ν0, νp(h) < m− 2ν0,
τ otherwise.

hold,
with the constant implied by the O-symbol is absolute.

Proof. Let we have the sequence produced by recursion (5). Without lose the
generality, we cas assume that the sequence {yn} has a period τ = 3pm−ν0 . By
Corollary 2 we have

|Sτ (h, y0, y1)| =

∣∣∣∣∣
τ−1∑
n=0

em(hyn)

∣∣∣∣∣ =

∣∣∣∣∣∣
3pm−ν−1∑
n=0

em(hyn)

∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣
pm1∑
k=1

em(hy3k−1)

∣∣∣∣∣ =

∣∣∣∣∣
pm1∑
k=1

em(hy3k+1)

∣∣∣∣∣+O(m),

(20)
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where m1 = m− ν0, and

y3k−1 = F−1(k) := A0 +A1k +A2k
2 + · · ·

y3k = F0(k) := B0 +B1k +B2k
2 + · · ·

y3k+1 = F1(k) := C0 + C1k + C2k
2 + · · ·

with Ai, Bi, Ci defined by Proposition 1.
The summand O(m) in (20) appears in virtue of the fact that the represen-

tation yn as a polynomial on k holds only k ≥ 2m0 + 1.
Thus, by Lemma 3 we easily obtain

|Sτ ()| ≤


O(m) if δ < ν0, νp(h) < m− ν0 − δ,
4p

m+νp(h)

2 if δ ≥ ν0, νp(h) < m− 2ν0,
τ otherwise.

with the constant implied by the O-symbol is absolute. ut

Theorem 3. Let the sequence {yn} be produced by (5) with parameters a, b,
y0, y1, (a, p) = (y0y1, p) = 1, νp(b) = pν0 , ν0 ≥ 1. Then for every h ∈ Z,
(h, pm) = µ ≤ m, we have

SN (h) =
1

(ϕ(pm))2

∑
y0,y1∈Z∗pm

|SN (h, y0, y1)| ≤ 12N
1
2 + 12Np−

m−ν0
2 .

Proof. Let νp(h) = 0, i.e. (h, p) = 1. By the Cauchy-Schwarz inequality we get

∣∣SN (h)
∣∣2 =

1

(ϕ(pm))2

∣∣∣∣∣∣
∑

y0,y1∈Z∗pm

N−1∑
n=0

em(hyn)

∣∣∣∣∣∣
2

=

=
1

(ϕ(pm))2

∑
y0,y1∈Z∗pm

N−1∑
k,`=0

em(h(yk − y`)) ≤

≤ 1

(ϕ(pm))2

N−1∑
k,`=0

|σk,`(h,−h)| = 1

(ϕ(pm))2

∞∑
r=0

N−1∑
k,`=0

νp(k−`)=r

|σk,`(h,−h)| =

=
1

(ϕ(pm))2

m−1∑
t=0

N−1∑
k,`=0

νp(k−`)=t

|σk,`(h,−h)|+ 1

(ϕ(pm))2

N−1∑
k=0

|σk,k(h,−h)| =

= N +
1

(ϕ(pm))2

m−1∑
t=0

N−1∑
k,`=0

νp(k−`)=t

|σk,`(h,−h)|.

Using Theorem 1, we obtain∣∣SN (h)
∣∣2 ≤ N +

1

(ϕ(pm))2
×

887



×
m−1∑
r=0


N−1∑
k,`=0

k 6≡` (mod 3)
νp(k−`)=r

|σk,`(h,−h)|+
N−1∑
k,`=0

k≡` (mod 3)
νp(k−`)=r

|σk,k(h,−h)|

 ≤

≤ N +
1

(ϕ(pm))2
×

×

4pm
m−1∑
r=0

N2

pr
+

 ∑
r<m−ν0

+
∑

m−ν0≤r≤m−1

 N−1∑
k,`=0

k≡` (mod 3)

|σk,`(h,−h)|

 ≤
≤ N +

N

(ϕ(p(m))2
×

×

4Npm +
∑

r<m−ν0

N

pr
pm+ν0+r + pm

∑
r≥m−ν0

N

pr

 ≤
≤ N +N2p−m · 11pν0(m− ν0).

Hence, for (h, p) = 1 we obtain∣∣SN (h)
∣∣ ≤ N 1

2 + 12Np−
m−ν0

2 .
ut

Theorems 1-3 and Lemmas 4-5 permit to obtain the following bound for

discrepancy pf the sequence of point { ynpm } ∈ [0, 1) and points X
(s)
n ∈ [0, 1)s,

X
(s)
n =

(
yn
pm ,

yn+1

pm , . . . , yn+s−1

pm

)
, where {yn} is generated by the recursion (5).

Theorem 4. Let p > 2 be a prime number, y0, y1, a, b,m ∈ N, m ≥ 3,
(ay0y1, p) = 1, νp(b) = ν0 ≥ 1. Then for the sequence {xn}, xn = yn

pm ,

n = 0, 1, . . ., with the period τ , generated by recursion (5), we have for any
1 ≤ N ≤ τ ,

DN (x0, x1, . . . , xN−1) ≤ 1

pm
+ 3N−1p

m−ν0
2

(
1

p

(
2

π
log pm +

7

5

)2

+ 1

)
.

Theorem 5. Let the sequence {X(s)
n } with the period τ = 3pm−ν0 be produced

by recursion (5). Then its discrepancy

D
(s)
N (X

(s)
0 , . . . , X

(s)
τ−s) ≤ 2p−

m
2 +ν0

(
1

π
log pm−ν0 +

3

5

)s
+ 2p−m+ν0

for every s = 1, 2, 3, 4.

The assertions of Theorems 4 and 5 are the simple conclusions of Theorems 2
and 3 and Lemmas 4 and 5.

From Theorems 4 and 5 we conclude that the sequence of PRN’s {yn}
produced by generater (5) passes the s-dimensional serial test on the equidis-
tribution and statistical independency.
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Sunspot in Endogenous Growth Two-Sector
Models

Beatrice Venturi, Alessandro Pirisinu�

July 30, 2015

Abstract
In this paper we consider a class of endogenous growth two-sector

models.The system possesses stochastic characteristics which arise from
indeterminate equilibrium and cycles (Hopf cycles, closed to the steady
state) (see Chiappori and Guesnerie, 1991, Benhabib, Nishimura, and
Shigoka, 2006, Slobodyan 2009 ). As applications of our analysis, we
compare the dynamical behaviour of the following well-known models:
the Lucas Model, the Modi�ed Romer Model, the natural resource model
(see Bella 2010). For each of them, we show the existence of indeterminacy
and sunspot equilibria close to a Hopf cycle. We show that the stochastic
approach suggests a way out to the poverty enviroment trap only for the
natural disposal resource model.
Keywords : multiple steady states, sunspots, indeterminacy, Hopf Bifur-
cations,
JEL classi�cation : C61, C62, E32

1 Introduction

The problem of the indeterminacy and sunspot equilibrium in economic �nan-
cial models has been analysed by many authors in recent times: among them,
Nishimura, Shigoka, Yano (2006), and Benhabib, Nishimura, Shigoka (2008),
Slobodyan (2009).
Many papers reported the occurrence of the stochastic behaviour (sunspots)

also in presence of individual optimization, self-ful�lling expectations and com-
pensations of competitive markets. We remember that a phenomenon is called
sunspot when the fundamental characteristics of an economy are determinis-
tic but the economic agents believe nevertheless that equilibrium dynamics is
a¤ected by random factors apparently irrelevant to the fundamental character-
istics (Nishimura, Shigoka, Yano 2006).
In this paper, we consider the mechanism that leads to the existence of

sunspots close to the indeterminate equilibrium (the Hopf orbit) in a class of
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endogenous growth two-sector-models with externality. Nishimura, and Shigoka
(2006) consider the reduced form of the Lucas and Romer models, as a conti-
nous deterministic three-dimensional non linear di¤erential system, with one
pre-determined variable (a combination of the state variables) and two non-
predetermined variables (related with the control variables). They constructed
a stationary sunspot equilibrium near the stable Hopf cycle that emerges from
the unique equilibrium point adding a Wiener variable to the non-predetermined
variables, in their formulation, the cycle represents a compact solution of the
stochastic process associated with the deterministic model.
Benhabib, Nishimura, Shigoka (2008) prove the existence of a sunspot equi-

librium that comes from a Hopf cycle or a homoclinic orbit in a continuous time
model of economic growth with positive externalities and with variable capacity
utilization; the model has one only predetermined variable (the state variable)
and one non-predetermined variable (the control variable). In their model, the
positive externality produces the existence of multiple equilibria. Through dy-
namical analysis they show that the equilibrium is globally indeterminate in
the periodic orbit; moreover, there exists a sunspot equilibrium with a support
located in the bounded region enclosed by either a homoclinic orbit or a peri-
odic orbit, such that each sample path does not converge to any speci�c point
and continues to �uctuate without decaying asymptotically. As in the previ-
ous model, the stochastic formulation comes from adding a white noise to the
non-predetermined variable.
Slobodyan (1999) treated the indeterminacy in a deterministic continuous-

time model with in�nitely lived agents, one predetermined variable (the state
variable) and one non-predetermined variable (the control variable); the model
is characterized by increasing social returns to scale due to externality in the
production function of which the agents are assumed to be unaware. There are
two steady states: one has zero capital and zero consumption (the origin), while
the other is characterized by positive levels of both capital and consumption.
For some parameter values, both steady states are indeterminate, and the whole
state space is separated into two regions of attraction of the steady states. The
region of attraction in the origin can be regarded as a development trap. Also in
this case, the indeterminacy allows for the existence of sunspot equilibria related
with the non-predetermined variable. Slobodyan (2009) studied the possibility
of �rescuing�an economy from a development trap through sunspot-driven self-
ful�lling expectations.
In this work, we construct sunspot equilibria in a deterministic general class

of endogenous growth two sector models with externalities in the line of Mul-
ligan and Sala-i-Martin (1993), Venturi (2014) and we compare the dynamical
situations arising from the di¤erent applications: the Lucas model, the Romer
model and a resource disposable endogenous growth two-sector model (Bella
2010).
Following Mulligan and Sala-i-Martin (1993), we put the endogeneous growth

two-sector model in the reduced form; it means that we consider a three dimen-
sional deterministic continous non linear di¤erential system, whose solution is
called a Balanced Growth Path (BGP) if it entails a set of functions of time
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solving the optimal control problem, that is all variables grow at a constant
rate.
Starting from a three-dimensional standard reduced deterministic model that

admits stable cycles (with one predetermined variable and two non-predetermined
variables), the model can be reformulated adding a stochastic term to the non-
predetermined variables (as a white noise) and transforming it into a stochastic
model that leads to indeterminacy, multiple steady stades and bifurcations. If
for a given endogenous growth model, there exists a continuum of equilibria in
a small neighborhood of a BGP that continues to stay in this neighborhood, it
is said that equilibrium is locally indeterminate. If there exists a continuum of
equilibria outside a small neighborhood of a BGP, it is said that equilibrium
is globally indeterminate (i.e. Hopf cycle or homoclinic orbit; see Mattana,
Nishimura, Shigoka 2008).
Following Slobodyan 2009, in our formulation, the stochastic approch sug-

gests a way out from the cycle trap only for disposable resource application (the
model has multiple equilibrium points); in the other examples (Lucas, Romer)
the model has one only equilibrium point and we have no way out when the ini-
tial conditions start inside the stable bounded cycle: this is the so-called poverty
development trap.
The paper is organized as follows. The second Section analyze the general

economic model.and introduces stochastic dynamics related with the existence
of sunspots in the economic model. The third Section compares Lucas, Romer
and the Resource model (Bella 2010). In the last we show the results and the
economic implications of existence of sunspot equilibrium in a natural resource
system with externalities.

2 The Economic General Model

We consider the deterministic economic general model (Mulligan, Sala-i-Martin
1993, Venturi 2014) that deals with the maximization of an objective function

Max
c(t); u(t)

Z 1

0

U(c)e��tdt (2.1)

subject to :
:

k = A((r(t)�hu(t)�u)(�(t)��k(t)�k)
^
r(t)

�
r̂ k(t)

�^
k � �kk(t)� c(t)

:
r = B((r(t)�r (1� u(t)�u))((1� �(t)��k(t)�k)^r(t)� r̂ k(t)�^k � � rr(t)

k(0) = k0

r(0) = r0

where

U(c) =
c1�� � 1
1� � (2.2)

is a standard utility function, c is per-capita consumption, � is a positive
discount factor and � is the inverse of the intertemporal elasticity of substitution.
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The constraints are two equations related with the growth process of the
analyzed economic system .
Notation is as follows c is per-capita consumption, k is a physical capital and

r could be the human capital (see the Lucas model 1998), the knowledge (the
Romer model, 199) or a natural resource (see Bella, 2010). Individuals have
a �xed endowment of time, normalized to unity at each point in time, which
is allocated to physical and to the other capital sector (respectively: human,
knowledge or natural resource), �kand �rbeing the private share of physical and
the other capital sector in the output sector, �k and �r being the corresponding
shares share in the second sector, u and v are the fraction of aggrega other
sector and physical capital used in the �nal output sector at instant t ( and
conversely, (1 � u) and (1 � v) are the fractions used in the second sector), A
and B are the level of the technology in each sector, � is a discount factor, �^

k
is a positive externality parameter in the production of physical capital, �^

r
is

a positive externality parameter in the production of the second sector
The equalities �k + �r = 1 and �k + �r = 1 ensure that there are constant

returns to scale at the private level. At the social level, however, there may
be increasing, constant or decreasing returns depending on the signs of the
externality parameters.
All other parameters � = (�k, �^

k
; �r, �^r ; �k,�^k

; �r ,�^r , �; 
; �; �) live inside

the following set �� (0, 1)�(0, 1)�(0, 1)�(0,1)�(0,1)�(0,1)�(0,1)�(0, 1)�R4+.
The representative agent�s problem (1.1)-(1.2) is solved by
de�ning the current value Hamiltonian.

H =
c1�� � 1
1� � + �1(A((r(t)

�ru(t)�u)(�(t)��k(t)�k)
^
r(t)

�
r̂ k(t)

�^
k � �kk(t)� c(t)) +

+�2(B((r(t)
�r (1� u(t)�u))((1� �(t)��k(t)�k)^r(t)� r̂ k(t)�^k � � rr(t)) (2.3)

where �1 and �2 are co-state variables which can be interpreted as shadow prices
of the accumulation. The solution candidate comes from the �rst-order neces-
sary conditions (for an interior solution) obtained by means of the Pontryagin
Maximum Principle with the usual transversality condition

lim
t!1

�
e��t (�1k + �2r)

�
= 0 (2.4)

We consider only the competitive equilibrium solution (as well known, it
follows from the presence of the externality that the competitive solution di¤ers
from the planner�s solution1).

1The planner�s solution involves a choice of k; r; c; u, and ra which maximizes the control
optimal model (2.1) and to r = ra for all t.
In the other hand the path for r coincides with the given path ra in the competive solution

then the system is in equilibrium (see Lucas 1990, Mattana and Venturi, 1999).

The equilibrium solution taking ra as exogenously determined.
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After eliminating v(t) the rest of the �rst order conditions and accumula-
tion constraints entail four �rst order non linear di¤erential equations in four
variables: two controls (c and u) and two states (k and r). The solution of this
autonomous system is called a Balanced Growth Path (BGP) if it entails a set
of functions of time solving the optimal control problem (2:1)-(2:4) such that k,
r and c grow at a constant rate and u is constant.
With a change of variable. in standard way, (since k, r and c grow at a

constant rate and u is a constant in the BGP), we transforme a system of four
�rst orderordinary di¤erential equations in c, u, k and r into a system of three
�rst order ordinary di¤erential equations with two non-predetermined variables
(the control variables) and one predetermined (a linear combination of the state
variables)
Setting A = B = 1 and

x
1
= kr

�
r̂

(�
r̂
�1)

; x
2
= u; x

3
=
c

k
(2.5)

we get:

_x1 = �1(x1; x2; x3)
_x2 = �2(x1; x2; x3)
_x3 = �3(x1; x2; x3)

(2.6)

in vectorial form

( _x1; _x2; _x3)
T = �i(x1; x2; x3) (2.7)

where the �i 2 R3, are countinuos and derivable complicated nonlinear func-
tions,which depend of the parameters (�k; �^

k
; �r; �^r ; �k; �^k

; �r; �^r ; �; 
; �; �) of

the model, and �i : UxR
3 �! R3 with U � R, an open subset, and i = 1; 2; 3.

3 The Emergence of a Hopf Orbit in the general
Model.

As well known a stationary (equilibrium) point of system (2.6) is any solution
of

_x1 = �1(x1; x2; x3) = 0
_x2 = �2(x1; x2; x3) = 0
_x3 = �3(x1; x2; x3) = 0

(3.1)

Assuming the existence, at least of one solution, at some point P �(x�1; x
�
2; x

�
3)

the local dynamical properties of (2:6) are described in terms of the Jaco-
bian (see P. Mattana, and B. Venturi (1999), U. Neri and B. Venturi (2007)
matrix of (2:6), J(P );with J(P �) = J� for brevity.
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Lemma 1 Let �
^

2 � � � be. In
^
� where is at least one value � = �c, (�

is the bifurcation parameter2 ) such that the Jacobian matrix J� has a pair of
purely imaginary roots and a real root di¤erent from zero.

Proof. By Routh-Hurvitz�s criterion we can state that J� can have one (real)
eigenvalue �1 = r and two complex conjugate roots �2=3 = p � qi whose real
parts can be either positive or negative. The real part of the two complex
conjugate roots is a countinous function (a four order polinomial) G(�):

G(�) = �B(J�)Tr(J�) +Det(J�) (3.2)

that change sign in
^
� when the parameter � is varied.

In fact, since the real parts of the complex conjugate roots vary continuously
with respect to �, there must exist at least one value �=�c such that G(�) = 0.
When this occurs, by Vieta�s theorem, J� has a simple pair of purely imaginary
eigenvalues.
The solutions of characteristic polinomial
��3 + Tr(J�)�2 �B(J�)�+Det(J�) = 0.
for �=�c became:
�1 = Tr(J�) and �2=3 = � 2

p
B(J)i

cvd.

Lemma 2 If � 2
^
� the derivative of the real part of the complex conjugate

eigenvalues with respect to �, evaluated at �=�c, is always di¤erent from zero.

Proof. We have only to verify that the following derivative d
d�G(�) 6= 0 is

di¤erent from zero in
^
� :

Theorem 1 The system (2.6) undergoes at hopf bifurcations in
^
� for �=�c:

Proof. It follows directly from lemma 1 and lemma 2 that the assumptions of
Hopf Bifurcations Theorem are satis�ed.

As well known the study of the stability of the emerging orbits on the center
manifold3 , can be performed by calculating the sign of a coe¢ cient q depending
on second and third order derivatives of the non-linear part of the system written
in normal form.
If q > 0 (q < 0) then the closed orbits Hopf-bifurcating from the steady

state P �c (x
�
1; x

�
2; x

�
3) are attracting (super-critical) (repelling (sub-critical)) on

the center manifold.
2The dynamical characteristic of the Jacobian matrix evalueted in the the steady state

point suggest which bifurcation parameter choosen.

3 It is a manifold associated with the complex conjugate roots with real part zero
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4 Stochastic Dynamic

We build a stochastic system that has sunspot equilibria as solutions, the
costruction is very similar to that reported in T. Shigoka (1994) and J. Ben-
habib, K. Nishimura, and T. Shigoka (2006), J. Benhabib, K. Nishimura and Y.
Mitra, (2008).
Our system (2.7) includes one predetermined variable x

1
and two non-

predetermined variables x
2
and x

3
, in vectorial form :

( _x1; _x2; _x3)
T = �i (x1; x2; x3) (4.1)

with �i : UxR
3 �! R3, U � R, i = 1; 2; 3.

If the deterministic dynamic given by (2.7) satis�es the hypothesis of the

theorem 1, in other words the parameters set of the model belongs to
^
�, then

(2.7) has a period solution � 4 .
The equilibrium is globally indeterminate in the interior of the bounded

region enclosed by �.
We remember that a probability space is a triple (
, BR3 , PR3) where:


 denotes the space of events, B is the set of possible outcomes of a random
process; B is a family of subsets of 
 that, from a mathematical point of view,
represents a �-algebra5 .
The �-algebra can be interpreted as information (on the properties of the

events)6 .
We add a�noise�(a Wiener process) in the equations related with the control

variables of the optimal choice problem.
Let st(!) = (!; t) be a random variable irrelevant to fundamental character-

istic of the optimal economy, it means that doesn�t a¤ect preferences , technol-
ogy and endowment (i.e. sunspot). We assume that a set of sunspot variable
fst(!)gt �0 is generated by a two-state continuous-time Markov process with
stationary transition probabilities and that st : 
 �! f1; 2g for each t � 0. Let
[fst(!)gt�0; (
; BR3 ; PR3)] be a continuous time stochastic process 7 , where
! 2 
, B
 is a �-�eld in 
, and P
 is a probability measure.The probability
space is a complete measure space and the stochastic process is separable.
Let (R3+++; BR3

+++
; PR3

+++
) be a probability space on the open subset R3+++

of R3 where BR3
+++

denotes the Borel �-�eld in R3++. Let (�; B; P ) be the

product probability space of (R3+++; BR3
+++

; PR3
+++

) and (
; B
; P
), that is

(R3+++ � 
; BR3
+++

�B
; PR3
+++

� P
). Let (�; B�; P �) be the completion of
4The Hopf cycle is an invariant set inside a two dimensional manifold: the center manifold.
5A � - algebra di¤ers from an algebra, for the property that the union of in�nite elements

of the family must belong to the set.

6The smallest �- algebra that can be built with subsets of real numbers is represented by
open intervals that are called Borel sets and indicated with B. So, it can be concluded that a
probability space is a triple (
, F , Pr) where 
 denotes the space of events and F a family
of subsets of 
.

7A stochastic process is a family of random variables
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(�; B; P ). Let (x10; x
2
0; x

3
0) be the value of our model at the time t = 0. We

denote a point (x10; x
2
0; x

3
0; !) in � as ': in other words, ' = (x10; x

2
0; x

3
0; !).

Let Bt = B(x10; x
2
0; x

3
0; ss; s � t) the smallest �-�eld of ' respect to which (x10;

x20; x
3
0) ss; s � t are measurable.
Let B�t = B�(x10; x

2
0; x

3
0; ss; s � t) be the �-�eld of ' sets which are either

Bt sets or which di¤er from Bt sets by sets of probability zero.
Let Et the conditional expectation operator relative to B

�
t .

The following equation is a �rst order condition of some intertemporal opti-
mization problem with market equilibrium conditions incorporated:

( _x1; Et(d _x2=dt); Et(d _x3=dt) = �i(x1('); x2('); x3(')) (4.2)

where (x10('); x
2
0('); x

3
0(')) = (x

1
0; x

2
0; x

3
0) and

dx1t
dt ;

dx2t
dt ;

dx3t
dt are de�ned as:

dxit
dt = lim

h!0+

(xit+h�x
i
t)

h (i = 1; 2; 3)

if the limit exists.

De�nition 2 Suppose that f(x1t('); x2t('); x3t('))gt �0 is a solution of the
stochastic di¤erential equation (4.2) with (x1t('); x2t('); x3t(')) 2 R3+++ . If
for any pair (t > s � 0),(x1t('); x2t('); x3t(')) is B�t -measurable but non
B�s -measurable it constitutes a sunspot equilibrium.

Theorem 3 If the deterministic system (4.1) has a Hopf solution or a homo-
clinic orbit (a cycle), then a sunspot equilibrium (SE) is a solution of the sto-
chastic process f(x10('); x20('); x30('))gt �0 with a compact support.
Proof. It follows directly from the de�nition of sunspot and the construction of
the stochastic system.

4.1 The Lucas Model

As an application of the general model we indicated above, we consider now the
Lucas model. In the original optimal control model, the state variables are: k,
the physical capital and r = h, the human capital; the control variables are: u,
the non-leisure time and c, the consumption.
The deterministic reduced form of this model is given by:

_x1 = Ax�1x
1��
2 + �(1��+
)

� (1� x2)x1 � x3x1 (4.3)

_x2 = �(��
)
� x22 +

�(1��+
)
� x2 � x3x2

_x3 = � �
�x3 +A

���
� x��11 x1��2 x3 + x

2
3

where:x1 = h

�
1��+

��1

�
k ; x2 = u ; x3 =

c
k ; 
 = �^h

. x1 is a pre-determined

variable (it is a combination of the state variables), while x3 and x2 are the non
pre-determined variables.
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The three dimensional deterministic system (4.3) undergoes a stable Hopf
bifurcation in a parameter set (see Mattana Venturi 1999; Nishimura Shigoka
Yano 2006). In line with Nishimura Shigoka Yano, we can re-write the model
in the form of a stochastic system and we can apply the theorem 3. Then
the system has a compact sunspot equilibrium as a solution of the stochastic
process.
The model has one only equilibrium point and there is no way out when

the initial conditions start inside the stable bounded cycle or very close to the
boundary.

4.2 The Modi�ed Romer Model

We consider now the modi�ed Romer model. In the original optimal control
model, the state variables are: k, the physical capital and r = A;where A
is the level of knowledge currently available, the human capital (Romer 1990,
Slobodyan 2007); the control variables are: HY , is the human capital, the skilled
labour employed in the �nal sector; c, the consumption.
The deterministic reduced form of this model is given by:

_x1 = x
1x
�
2 � ��


1�
 �(1� x2)x1 � x3x1 (4.3)

_x2 = 
(��
)
�(1��)x


�1
1 x�+12 + �(��
�1)

1�� x2 � �
1�� (1� � + 
 +



�� (� � 
))x

2
2 � 


1��x2x3

_x3 = x23 + (

2

�� � 1)x

�1
1 x�2 x3 � �

�x3

where:x1 = A

�
�+�+

�+�

�
k ; x2 = HY ; x3 =

c
k ; 
 = �^h

.

x1 is a pre-determined variable (it is a combination of the state variables),
while x3 and x2 are the non pre-determined variables; the parameters �+�+
 =
1. and � � 1 is a parameter that captures the degree of complementarity
between the inputs (the case � = 1 corresponds to non complementarity).
The three dimensional deterministic system (4.3) undergoes a stable Hopf

bifurcation in a parameter set (see Mattana Venturi 1999; Nishimura Shigoka
Yano 2006). In line with Nishimura Shigoka Yano, we can re-write the model
in the form of a stochastic system and we can apply the theorem 3. Then
the system has a compact sunspot equilibrium as a solution of the stochastic
process.
The model has one only equilibrium point and there is no way out when

the initial conditions start inside the stable bounded cycle or very close to the
boundary.

4.3 The Natural Resource System

Our natural disposal resource system (5.3) includes two non-predetermined vari-
ables x

1
and x

2
and one, predetermined variable x

3
.:
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_x1 = (� �
� )x1 + (

���
� )x1 � x21

_x2 = (

�
� )(1� x2)x2 + x1x2

_x3 = (

�
� )((1� x2)x3 + (� � 1)x

2
3

(4.4)

where x
1
= c

k ;x2 = nr;x3 =
y
k .

We can build a stochastic process considering the following equation:

(Et(d _x1=dt); Et(d _x2=dt); _x3) = �i(x1('); x2('); x3(')) (4.5)

where (x10('); x
2
0('); x

3
0(')) = (x

1
0; x

2
0; x

3
0) and

dx1t
dt ;

dx2t
dt ;

dx3t
dt are de�ned as

dxit
dt = lim

h!0+

(xit+h�x
i
t)

h (i = 1; 2; 3) if the limit exists. It can be demonstrated

that the theorem 3 applies also to this model
The deterministic equilibrium dynamic (5.3) has a family of periodic orbits

��c emerging from one steady state , with ��c in the center manifold (a two-
dimensional invariant manifold in R3+++). For some set of parameters in the
model (see Bella 2010), there exists a sunspot equilibrium whose support is
located in the bounded region enclosed by the periodic orbit ��c . Each sample
path of the sunspot equilibrium does not converge to any speci�c point and
continues to �uctuate without decaying asymptotically.
For some parameter value, due to pessimistic self-ful�lling expectations,

sunspot equilibria exist in some neighbourhood of a steady-state. If the pe-
riodic orbit emerging from a steady state is super-critical , there is no way out
(Slobodyan, 2007). If the periodic solution is repelling, then there is a possibility
of a way out of the orbit (in fact the growth rate of economy � becames positive
for low level of the externality 
) and the optimal path can reach another steady
state. Such situation can be understood as a poverty or development trap.

5 Conclusions

In the applicative examples here proposed, we analyzed di¤erent aspects.
In Lucas model, there are two main causes of endogeneous growth: the �rst is

the accumulation of human capital: in other words, this endogeneous growth is
due to the fact that the factors determining human capital accumulation remain
unchanged; the second is the presence of the externality: it is not necessary to
have endogenous growth but it works as an incentive to accumulate human
capital and not to let it decrease as time passes by .
In his models, Romer (1986) describes capital that has decreasing returns to

scale on the microeconomic level but increasing returns on the macroeconomic
level, due to spillovers; so it predicts positive sustained per capita growth. On
the other hand, Romer (1990) puts knowledge (and the technological change
that is its fruit) at the heart of economic growth: it provides the incentive for
capital accumulation and accounts for much of the increase in output per hour
worked. In this line, authors like Sala-i-Martin (1997) have shown that the
investment share is a robust variable in explaining economic growth.
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In the model of natural resource, the endogeneous growth and the chance
to escape the development trap are strictly bounded to the expectations: pos-
itive or negative outlook can crucially determinate the growth of the economic
system.
This positive and statistically signi�cant e¤ect of investment on the growth

rate of countries suggests that investment not only a¤ects the stock of physical
capital but also increases intangible capital (for example, knowledge) in a way
such that the social return to investment is larger than the private return.
For real-world economies, it�s important to underline that, in case of en-

dogenous growth, the balanced growth rate crucially depends on the marginal
product of physical capital, which varies positively with the stock of knowledge
capital. Thus, when the level of knowledge capital plays its important role,
economies with a large stock of knowledge may compensate for a large stock of
physical capital. Consequently, the growth rate will be higher in those countries
in which the stock of knowledge capital is relatively large: this fact can explain
high growth rates of Germany and Japan after World War II, for example.
More generally, economies may be both globally and locally indeterminate.

Global indeterminacy refers to the balanced growth rate that is obtained in the
long run and states that the initial value of consumption crucially determines
to which BGP the economy converges and, thus, the long-run balanced growth
rate.
Moreover, local indeterminacy around the BGP with the lower growth rate,

can be observed if the parameter constellation is such that the trace of the
Jacobian matrix is smaller than zero, so that both eigenvalues have negative real
parts. If in that situation a certain parameter is varied, two purely imaginary
eigenvalues may be observed that generate a Hopf bifurcation, which leads to
stable limit cycles.
Some other authors have studies both development and poverty traps: it is

indicated that poverty traps and indeterminacy in macroeconomic models may
be caused by the same set of reasons, like externalities or increasing returns to
scale. Among many, Slobodyan (1999) tried to understand, in this framework,
how important sunspot-driven �uctuations could be for the economy�s escape
from the poverty trap: for a chosen level of the noise intensity (approximately
14% SD of the log consumption), the probability of escaping the trap is not
negligible, only when the initial condition is very close to the trap boundary.
The set of those initial conditions is not very large and is restricted to initial
level of consumption, within 85% of the level necessary to put the system right
on the boundary between the poverty trap and the region of attraction of the
positive steady state.
The probability of escape, as expected, increases as expectations become

more optimistic: for very optimistic expectations (i.e., initial consumption very
close to the boundary) absolute majority of escapes happens very fast. So the
economy that starts with a very low initial capital and very pessimistic expecta-
tions of future interest rates and wages gets trapped. It will probably continue
the downward spiral (the change from "pessimistic" level of consumption to
the "optimistic" one may constitute hundreds and thousands percent of the
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"pessimistic" level). The escape happens if it chosen a random variable with
bounded support, as the sunspot variable. The sunspot variable has a natural
interpretation of a change in perceived present discounted wealth.
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6 Appendix

The application 3 (natural resource model)
1. The reduction form

x =
c

k
; q = nr;m =

y

k
_k
k = Ak

��1 (nr)
1��

r
a � c
:

r
r = �(1� n):
Y 0

y = �(1� n)
n0

n =

y=Ak� (nr)1�� r
a
d
dt log y =

d
dt (logAk

� (nr)
1��

r
a) =

=A� k
��1(t)
k�(t)

k0(t)+(1��)n
1���1(t)
n1��

n0(t)+(1��) r
1���1(t)
r1��

r0(t)+

r
�1a (t)
r
a

r0a(t) =

=A� k
0(t)
k(t) + (1� �)

n0(t)
n(t) + (1� �)

r0(t)
r(t) + 


r0a(t)
ra(t)

logm = log yk = log y � log k
d
dt (logm) =

d
dt (log y � log k) =

y0(t)
y(t) �

k0(t)
k(t)

d
dt (

c(t)
k(t) ) =

c0(t)k(t)�c(t)k0(t)
k(t)2 = c0(t)k(t)�c(t)k0(t)

k(t) = c0(t)
k(t) �

c(t)
k(t)

k0(t)
k(t)

d
dt (nr) = n

0(t)r(t) + n(t)r0(t) =

d

dt
(
c(t)

k(t)
) =

c0(t)k(t)� c(t)k0(t)
k(t)2

=
c0(t)k(t)� c(t)k0(t)

k(t)2
(A.1)

=
c0(t)

k(t)
� c(t)

k(t)

k0(t)

k(t)
=
c(t)

k(t)
[
c0(t)

c(t)
� k

0(t)

k(t)
] (1)

d

dt
(
y(t)

k(t)
) =

y0(t)k(t)� y(t)k0(t)
k(t)2

=
y0(t)k(t)� y(t)k0(t)

k(t)
=
y0(t)

k(t)
� y(t)

k(t)

k0(t)

k(t)
(A.2)

G(�) = �B(J�)Tr(J�) +Det(J�)
� = 0:002 � = 0:04
�� = 0:66 ��� = 0:975
� = 0:66

 = 2

�� = � �� = �
��(1��)
�


� = � �
���
+�2 .

The Jacobian matrix associated with the system (4.4) is given by

J(P ) =

24 1
� (��+ 2�x1 + (� � �)x3) 0 1

�x1 (� � �)
�x2 1

� (
�(1� 2x2) + �x1) 0

0 1
� 
�x3

1
� 
� (1� x2) + 2(� � 1)x3

35
(A.3)
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The invariant of the Jacobian matrix J(P ) a evaluated in P �(x�1; x
�
2:x

�
3) :

J(P ) = J� are:
Let us consider the Jacobian matrix of the system (2.6) in steady states

Trace: Tr(J) = x1 � 3
�� x2 +
�
�
� + 2� � 3

�
x3 + 2


�
� �

�
� ;

Determinant
Det(J�) =

�
� �
� +

���
� x3 + 2x1

�
�
�

�
� (1� 2x2)� x1

�
�
�
2(� � 1)x3 + 
�

� (1� x2)
�
+

x2

�

�
� x3 �

���
� x1

�
� �
� +

���
� x3 + 2x1

��
;

The sum of the principals minors of J(P ):

B(J�) =
�

�
� (1� 2x2)� x1

�
�
h
2(� � 1)x3 + 
�

� (1� x2)
i
+
�
� �
� +

���
� x3 + 2x1

� h
2(� � 1)x3 + 
�

� (1� x2)
i
+�

� �
� +

���
� x3 + 2x1

�
�
�

�
� (1� 2x2)� x1

�
;

The expression of the characteristic polynomial of J�in term of Jacobian
invariants is given by:
��3 + Tr(J)�2 �B(J)�+Det(J) = 0:

A stationary (equilibrium) point of the system is any solution of

( �� )x1 + (
���
� )x1 � x21 = 0

(
�� )(1� x2)x2 + x1x2 = 0
�(
�� )((1� x2)x3 + (�� 1)x

2
3 = 0

(A.4)

We found eight steady states values:
1)P �1 (0; 0; 0);
2)P �2 (0; 0; (


�
�(1��) ));

3)P �3 (0; 1; 0) (It is a double solution);
4)P �4 (

�
� ; 0; 0);

5)P �5 (
1
� [��


�(���)
�(1��) ]; 0; (


�
�(1��) ));

6)P �6 (
�
� ; 1�

(��)
�
� ; 0);

7)P �7 (
�(1��)
�(1��) ; 1�

�(1��)

�(1��) ;

�
�(1��) ).

It is well-known that many theoretical result relating to the system depend
upon the eigenvalues of the Jacobian matrix evaluated at the stationary point
P �i with i = 1; 2; 3; 4; 5; 6; 7 in some values of the parameters.
The local bifurcation analysis permits to determine the structurally unstable

solution of the model.

6.1 Hopf Bifurcations

Theorem 4 Lemma 3 There is a parameter � = �c such that in the steady
state P �7 the Jacobian Matrix J(P

�
7 ) possesses two complex conjugated roots with

real part equal to zero and the real root di¤erent from zero.
Proof. We consider the function:
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G(�) = �B(JP�
7
)Tr(JP�

7
) +Det(JP�

7
) (A.5)

We evalute the invariant elements of the Jacobian and we get:
Tr(JP�

7
) = �(1��)

�(1��) �

�
� ;

B(JP�
7
) = �

�
�(1��)
�(1��)

�
;

Det(JP�
7
) = �2
�(1��)

�2�(1��)

�
1� �(1��)


�(1��)

�
;

We determine two solutions in which the function G(�) vanishes: ��c = �

and ���c = 
���(1��)

� .

Lemma 4 The derivative of the real part of the complex conjugate eigenvalues
of (JP�

7
) evaluated at � = ��c and � = �

��
c , is always di¤erent from zero.

The proof follows from direct calculation.

Theorem 5 A family of Hopf bifurcations emerges around the steady state P �7
of the system (5.3), for � = ��c and � = �

��
c .

Proof. It follows directly from the assumptions of the Hopf bifurcation Theorem.
Q.E.D.

We consider some numerical simulations: in particular, we consider the fol-
lowing two sets of parameters (Bella, 2010):
a)
� = 0:002
� = 0:66

 = 2
� = 0:04
��c = 0:66
b)
� = 0:002
� = 0:66

 = 2
� = 0:04
���c = 0:975
We evaluate the growth rate of an economy (appendix 1) and we get � =

� �
���
+�2 .
In a �rst simulation, we �x 
 = 2, � = 0:66.
We consider � as a function of � :
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� = f(�) = � 0:002
��2�0:66+0:662 :

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

­0.03

­0.02

­0.01

0.00

0.01

0.02

0.03

x

y

Figure 1. � = f(�)

We �nd that the growth rate is positive for � < 0:8844.
For the �rst set of parameters we have:
��c = 0:0089
For the second set of parameters it is:
���c = �0:022
In another simulation we consider �� as a function of � :�xing the value of

��c = 0:66
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� = f(�) = � 0:002
0:66�2�+�2

0.2 0.4 0.6 0.8 1.0 1.2 1.4

­0.10

­0.05

0.00

x

y

Figure 2. � = f(�) with ��c = 0:66

This time, growth rate is positive for 0:41 < � < 1:58.
A third simulation has been conducted �xing the value of ���c = 0:975,
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� = f(�) = � 0:002
0:975�2�+�2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
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­0.04

­0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

x

y

Figure 3. � = f(�) with ���c = 0:975

The growth rate is positive for 0:84 < � < 1:15.
Another simulation shows the function of the growth rate as function of �

and � :
� = f(�; �) = 0:002

2���2+� ; the graphic is:
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Figure 4. � = f(�; �)

The last simulation shows the function of the growth rate as function of 

and � :
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� = f(�; 
) = 0:002
0:66
���0:4356 ; the graphic is:

­4
­2
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0.0

y 2
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0

2 x
4

­2
­4

z
0.1

0.2

0.3

Figure 5. � = f(�; 
)

The calculation of the stability coe¢ cient q (Bella, 2010) gives some results
for our parameter sets; for the set a) :
� = 0:002
� = 0:66

 = 2
� = 0:04
�� = 0:66
we have q = �2:40 � 1012 < 0; it means that bifurcation is super-critical,

the steady state is unstable and the periodic orbits are attracting on the center
manifold.
For the set b) :
� = 0:002
� = 0:66

 = 2
� = 0:04
�� = 0:975
we have q = 8:37 � 1014 > 0; it means that bifurcation is sub-critical and the

periodic orbits start repelling.
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The dynamics of Hamiltonians with
non-integrable normal form

Ferdinand Verhulst

Mathematisch Instituut, University of Utrecht, The Netherlands
(E-mail: f.verhulst@uu.nl)

Abstract. In general Hamiltonian systems are non-integrable but their dynamics
varies considerably depending on the question whether the corresponding normal
form is integrable or not. We will explore this issue for two and three degrees of
freedom systems; additional remarks on Hamiltonian chains can be found in [9]. A
special device, the quadratic part of the Hamiltonian H2(p, q) is used to illustrate the
results.
Keywords: Hamiltonian Chaos, normal forms, Hamiltonian time series.

1 Integrability versus non-integrability

We will consider time-independent Hamiltonian systems, Hamiltonian H(p, q),
p, q ∈ Rn with n ≥ 2 degrees of freedom (DOF). A more detailed study is found
in [9]. Regarding mechanics, or more generally dynamical systems, Hamilto-
nian systems are non-generic.
In addition we have that the existence of an extra independent integral besides
the energy for two or more degrees of freedom is again non-generic for Hamil-
tonian systems (shown by Poincaré in 1892, [4] vol. 1).
So the following question is relevant: why would we bother about the integra-
bility of Hamiltonian systems?
We give a few reasons, leaving out the esthetic arguments:

• Symmetries play a large part in mathematical physics models. Symme-
tries may sometimes induce integrability but more often integrability of
the normal forms. An example is discrete (or mirror) symmetry.

• Near-integrability plays a part in many models of mathematical physics
where the integrability, although degenerate , can be a good starting point
to analyze the dynamics. Integrals of normal forms may help.

• Non-integrability is too crude a category, it takes many different forms.
A first crude characterization is to distinguish non-integrable Hamiltonian
systems with integrable or non-integrable normal form.

8thCHAOS Conference Proceedings, 26-29 May 2015, Henri Poincaré Institute,
Paris France

c© 2015 ISAST
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2 How to pinpoint (non-)integrability?

Looking for a smoking gun indicating integrability there are a few approaches:

1. Poincaré [4] vol. 1:
A periodic solution of a time-independent Hamiltonian system has two
characteristic exponents zero. A second integral adds two characteristic
exponents zero except in singular cases. This can be observed (for an
explicit Hamiltonian system) as a continuous family of periodic solutions
on the energy manifold. Finding such a continuous family can be either
a special degeneration of the system or a sign of the existence of an extra
integral.

2. Symmetries of course; strong symmetries like spherical or axial symme-
try induce extra integrals. Weaker symmetries may or may not induce
an integral. An example is studied in [6] where discrete symmetry is ex-
plored in two degrees of freedom systems. It is shown for instance that the
spring-pendulum displays many degenerations depending on the resonance
studied.

3. Degenerations in variational equations or bifurcations are degenerations
that often suggest the presence of integrals.

3 Normal forms

There are many papers and books on normalization. A rather complete intro-
duction is [5]. One considers k-jets of Hamiltonians:

H(p, q) = H2 + H3 + . . . + Hk,

usually in the neighbourhood of stable equilibrium (p, q) = (0, 0). The Hm are
homogeneous polynomials in the p, q variables.

An important feature is that H2(p, q)(t) is an independent normal form
integral, see [5]; its physical interpretation is that H2 is the energy of the lin-
earized equations of motion. The implication of the existence of this integral
is that near stable equilibrium, for two DOF, the normal form is for all reso-
nance ratios integrable so that chaos has for two DOF near stable equilibrium
generally a smaller than algebraic measure. This explains a lot of analytic and
numerical results in the literature (see again [5]).

In general, for more than two DOF, integrability of the normal form can
not be expected without additional assumptions. If we find integrability, it
restricts the amount of chaos and also of Arnold diffusion.

Example: Braun’s parameter family
Two DOF normal forms are integrable but it is still instructive to consider
them. An exampe is Braun’s family of Hamiltonians:

H(p, q) =
1

2
(p21 + p22 + q21 + ω2q22)− a1

3
q31 − a2q1q

2
2 .
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Fig. 1. Periodic solutions obtained from the normal form to cubic terms of Braun’s
family of discrete-symmetric Hamiltonians. The horizontal lines correspond with
isolated periodic solutions on the energy manifold, dots at −1/3 (the Hénon-Heiles
case) and at 1/3 correspond with continuous families of periodic solutions.

The analysis is given in [8] and summarized in [5]; consider for instance
ω = 1, a1 and a2 6= 0 are parameters. The normal form to cubic terms
produces two normal modes and, depending on the parameters, two families
of in-phase periodic solutions, two families of out-phase periodic solutions and
for specific parameter values two continuous families of periodic solutions on
the energy manifold; see fig. 1. Normalizing to quartic terms the continuous
family at a1/(3a2) = −1/3 (the Hénon-Heiles Hamiltonian) breaks up into
separate periodic solutions; the continuous family at a1/(3a2) = 1/3 persists,
this Hamiltonian before normalization is already integrable.

4 Three degrees of freedom

Genuine first-order resonances are characterized by its normal form. Apart
from the three actions, this contains at least two independent combination
angles. We have for three DOF:

• 1 : 2 : 1 resonance
• 1 : 2 : 2 resonance
• 1 : 2 : 3 resonance
• 1 : 2 : 4 resonance

A basic analysis of the normal forms to cubic order H̄ = H2 + H̄3 yields
short-periodic solutions and integrals. The use of integrals gives insight in the
geometry of the flow, enables possible application of the KAM-theorem and
may produce measure-theoretic restrictions on chaos.

5 Integrability of normal forms

The normal form has two integrals, H2 and H̄ (or H̄3). Is there a third integral?
To establish (non-)integrability we have:
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• Ingenious inspection of the normal form or obvious signs of integrability,
see van der Aa and F.V. [7].

• Extension into the complex domain and analysis of singularities, see Duis-
termaat [2].

• Applying Shilnikov-Devaney theory to establish the existence of a trans-
verse homoclinic orbit on the energy manifold, see Hoveijn and F.V. [3].

• Using Ziglin-Morales-Ramis theory to study the monodromy group of a
particular nontrivial solution; this study may lead to non-integrability. This
involves the variational equation and the characteristic exponents in the
spirit of Poincaré. In an extension one introduces the differential Galois
group associated with a particular solution; if it is non-commutative, the
system is non-integrable. See Christov [1].

5.1 The genuine first-order resonances

A remarkable result is that the normal form to cubic terms of the 1 : 2 : 2
resonance is integrable with quadratic third integral, see [7]. We have that
p1 = q1 = 0 corresponds with an invariant manifold of the normal form; the
manifold consists of a continuous set of periodic solutions and is a degeneration
according to Poincaré with 4 characteristic exponents zero. The calculation of
the normal form to quartic terms produces a break-up of this continuous set
into six periodic solutions on the energy manifold.

It was shown in [2] that the normal form to cubic terms of the 1 : 2 : 1
resonance is non-integrable. This was shown by singularity analysis in the
complex domain. A different approach was used in [1] where it was shown that
for a particular solution the monodromy group is not Abelian; this precludes
that the normal form is integrable by meromorphic integrals.

Non-integrability was shown in [1] for the 1 : 2 : 4 resonance in a similar
way. One identifies a particular solution in the (p1, q1) = (0, 0) submanifold;
the local monodromy group is not Abelian which precludes integrability.

The case of the 1 : 2 : 3 resonance is different. The analysis in [3] shows
that a complex unstable normal mode (p2, q2) is present. The normal form
contains an invariant manifold N defined by H2 = E0, H̄3 = 0. N contains an
invariant ellipsoid, also homoclinic and heteroclinic solutions. They are forming
an organizing center producing a horseshoe map and chaos in H2 + H̄3 + H̄4.
So, the normal form contains only two integrals.

Later, Christov [1] showed by algebraic methods that H2+H̄3 is already non-
integrable, but the consequences for the dynamics are not yet clear. Technically,
this is his most complicated case.

6 Discussion and consequences

In two DOF the Hamiltonian normal form is integrable to any order; this
restricts the chaos near stable equilibrium to exponentially small sets between
the invariant tori.
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For three and more DOF, the situation is more complicated. If the nor-
mal form is integrable, chaos is restricted to sets that are algebraically small
with respect to the small parameter that scales the energy with respect to
stable equilibrium. We would like to distinguish between various kinds of non-
integrability near equilibrium. The chaos is usually localized near homoclinic
intersections of stable and unstable manifolds.
The phenomenon is most striking after a Hamiltonian-Hopf bifurcation of a
periodic solution has taken place, see for the bifurcation diagram fig. 2.

Hamiltonian−Hopf bifurcation

EE EE

double eigenvalues

C

Fig. 2. As a parameter varies, eigenvalues on the imaginary axis become coincident
and then move into the complex plane.

Consider the following explicit examples of the 1 : 2 : 3 resonance:

H(p, q) =
1

2
(p21 + q21) + (p22 + q22) +

3

2
(p23 + q23) + H3(p, q),

H3(p, q) = −q21(a2q2 + a3q3)− q22(c1q1 + c3q3)− bq1q2q3.

We will consider two cases. If a2 > b, analysis of the normal form shows that
the (p2, q2) normal mode is unstable of type HH (hyperbolic-hyperbolic or 4 real
eigenvalues). If a2 < b the (p2, q2) normal mode is unstable of type C (complex
eigenvalues). The H2(p, q)(t) time series is shown in figs. 3 and fig 4. Both
time series display chaotic behavior, but the case of instability C involves the
Devaney-Shilnikov bifurcation producing strong chaotic behaviour; for more
information see [3].

References

1. O. Christov, Non-integrability of first order resonances in Hamiltonian systems in
three degrees of freedom, Celest. Mech. Dyn. Astron. 112 pp. 149-167, (2012).

2. J.J. Duistermaat, Non-integrability of the 1 : 2 : 1 resoannce, Ergod. Theory Dyn.
Syst. 4 pp. 553-568, (1984).

3. I. Hoveijn and F. Verhulst, Chaos in the 1 : 2 : 3 Hamiltonian normal form, Physica
D 44 pp. 397-406, (1990).

4. Henri Poincaré, Les Méthodes Nouvelles de la Mécanique Céèste, 3 vols., Gauthier-
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Abstract 

 In this paper, the nonlinear dynamics of simply supported pipe conveying pulsating fluid is investigated, by 

introducing the effect of distributed motion constraint along the pipe axis modeled as trilinear springs. The internal 

fluid is assumed to be a harmonic component of flow velocity superposed on a constant mean value. Attention is 

concentrated on the possible motions of the system with various mean values of flow velocity, pulsating amplitude 

and frequency. As for the impact force term, the damping effect during impacting process is considered in 

analyzing. The partial differential equations are then transformed into a set of ordinary differential equations 

(ODEs) using the Galerkin’s method. The nonlinear dynamical responses are presented in the form of bifurcation 

diagrams, time histories, phase portraits and power spectrums. Some interesting results have been observed with 

different parameters.  

Keywords 

Nonlinear dynamics; chaotic motion; pipe conveying pulsating fluid; distributed motion constraints; bifurcation 

 

1. Introduction 

 The dynamics of pipes conveying fluid is an important academic topic with broad industrial 

application, e.g., pump discharge lines, oil pipelines, propellant lines, reactor system components and 

so forth. They were also the most troublesome elements in these fields. These industries utilize high 

thermal efficiency shell and heat exchanger designs to avoid failure. Performance requirements often 

require the devices to be able to work under high coolant velocities and to be flexible tubes, which in 

turn would cause pipes to experience excessive flow-induced vibrations. A large number of studies 

have been made on flow-induced vibrations due to the corresponding significance [1-4]. Focuses of 

flow-induced vibrations were put on these fields in understanding the mechanisms of pipes conveying 

fluid. Works on this topic appear to have started in the 1960s. Many studies have investigated the 

stabilities and nonlinear dynamics of pipes conveying fluid both theoretically and experimentally. A 

very comprehensive introduction to vibrations induced by fluid flow and the associated linear stability 

problems can be found in the work of Chen [5]. The nonlinear behavior of slender structures subjected 

to axial fluid flows was discussed in detail in the monograph by Paidoussis [6]. The system exhibits a 

wide range of interesting dynamical behavior under different boundary conditions and motion 

constraints. These conditions cover a number of factors, such as parametric excitation in the form of 

flow fluctuation, external excitations, various support conditions, articulated or continuous 
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configuration, additional system configurations like lumped mass, attached nozzles, elastic foundations, 

elastic constraints, and different forms of nonlinearities in the system arising from various sources. 

In a survey of this subject, many researches were conducted either with pulsating fluid flow or 

motion constraint on one or finite number of locations on the pipe. Paidoussis and Sundararajan [7] 

explored the dynamics of a pipe conveying fluid when the flow velocity is harmonically perturbed 

about a mean value. Cantilevered pipe and clamped-clamped pipe models are investigated and 

parametric and combination resonances are analyzed. Namchchivaya [8] and Chen S S [9] examined 

the nonlinear dynamics of supported pipes conveying pulsating fluid in the vicinity of subharmonic 

resonances using the method of averaging. Some other detailed investigations based on linear analytical 

models of these parametric instability problems for simply supported pipes were conducted [10, 11, 12]. 

They have studied the parametric and combination resonances and evaluated instability regions using 

Bolotin’s method and numerical Floquet analysis. Various other authors considered nonlinear pipes 

conveying pulsating fluid referring to Sri Namchchivaya N et al. [13], Jayaraman et al. [14], Chang et 

al. [15], YOSHIZAWA et al. [16]. From these and several other studies, it is clear that the basic system 

of a pipe conveying pulsating fluid can lose stability when flow velocity becomes sufficiently high. 

Thus, the analysis of subharmonic and combination resonances was the main interest for simply 

supported pipes conveying pulsating fluid, yielding the stability boundaries in the parameter space. For 

a perspective on the whole field of pipes conveying pulsating fluid, the reader is referred to the book by 

Paidoussis [6]. 

In several recent papers, a simply supported pipe conveying pulsating fluid were analyzed, in 

which a non-linear force considered is associated with the axial extension of the pipe [17, 18]. The 

combination and principal parametric and internal resonances of a supported pipe were investigated. 

Paidoussis et al. [19] conducted a nonlinear analysis of a cantilevered pipe conveying fluid with a 

motion constraint on the pipe under steady flow velocity. Two contact models, cubic springs and 

trilinear springs, were introduced in the nonlinear equations of motion and results were obtained 

numerically. Another study performed by Hassan et al. [20] provided a means of representing contact 

as a combination of edge and segmental contact. The contact segment was unknown and determined 

artificially according to the researcher’s interests. The selection of the location of the segment could 

affect the performance of the system. Wang L. [21] further studied the nonlinear dynamics of a simply 

supported pipe conveying pulsating fluid by considering the effect of motion constraints modeled as 

cubic springs. Quasi-periodic and chaotic motions are obtained by using the Galerkin method with N=2. 

W. Xia et al. [22] developed an improved model with the consideration of the nonlinearity associated 

with the mean axial extension of the tube array. Cross flow and motion constraints are the main points 

of this study. The restraining forces were modeled cubic and trilinear springs too. Tang M. et al. [23] 

developed an improved model aimed at analyzing the fluidelastic vibration of a single flexible curved 

pipe that is surrounded by rigid cylinders and subjected to cross-flow and loose support. 

In this study, it is investigated with both internal pulsating fluid flow and motion constraints 

imposed on the fluid conveying simply supported pipe systems. The simply supported pipe would 

impact the constraints once the motion becomes sufficiently large. The constraints are modeled as 

trilinear springs and further improved as distributed constraints acting on the pipe along its axis. 

Damping effects during impacting process are considered. The internal flow has a time-dependent 

harmonic component superposed on steady flow, such that u = u0 (1+sin), where  is generally 

small and u0 is called the mean flow velocity;  is defined as the pulsating frequency of the pulsating 

fluid flow. Attention is concentrated on the possible behaviors of the system with various values of 
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pulsating amplitude and frequency associated with the unsteady internal fluid. Some interesting results 

will be represented. Thus, bifurcation diagram, phase portraits and power spectral density diagrams will 

be constructed to represent the dynamical motions of the pipe system.  

 

2. Equations of Motion 

In the current work, the simply supported pipe conveying pulsating fluid interacting with 

distributed motion constraints is of length L, cross section of the pipe wall A, flexural rigidity EI, 

density p, mass per unit length m and coefficient of viscoelastic damping E
*
. The internal flowing fluid 

is of density f and mass per unit length M, with flow velocity U. The impacting component is modeled 

as trilinear springs distributed along the pipe axis, as depicted in Fig. 1. The equation for unconstrained 

motions without taking into account the effect of motion constraints has been obtained before [17, 18, 

24]. The equation of motions without motion constraints are modified here to describe this impacting 

oscillation with pulsating fluid. The equation of motion is given by 

U

 ,w x t

x f w
O

 

Fig. 1 Schematic of the simply supported pipe conveying pulsating fluid with distributed motion 

constraints. 

 

   
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*
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2 2
2 *
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0
2

l

w w w w
EI E I MU M m

x t x t x t

U A w w
MU M l x E E dx F w

t t l x x
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   

     

       
          

        


  (1) 

in which, F() represents the effect of the nonlinear motion constraint on the pipe. Here in this paper, 

impacting force Fspr and damping force Fdmp are included in calculation. Description of the nonlinear 

force is depicted by [19, 25] 

  spr dmpF w F F           (2) 

Where, 

 
3

0 0

1

2
spr sprF K w w w w w

 
     

 
      (3) 

 
3

0 0

1
1.5 1.5

2
dam dmp spr dmp spr

w w
F C F C K w w w w w

t t

   
         

 (4) 

In which, w0 is the gap between the pipe axis and the edge of the motion constraints; Kspr and Cdmp are 

the trilinear spring stiffness and material damping coefficient, respectively. The nonlinear spring force 

Fspr agrees with experimental test well according to Paidoussis et al. [19]. The damping force Fdmp 

illustrated the opposite direction of the force and velocity. Introducing next the non-dimensional 

quantities 
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Eq. (1) can be rewritten in a dimensionless form as follows: 

 

 

5 4 2 2 2
2

4 4 2 2

22 2 2
1 1

2 20 0

1 2

2 0

u u u

d d f

    
   

      

    
    

     

    
      
       

     
    

      
 

   (5) 

Nondimensional impact force is expressed as follows: 

     
3 3

1 3 1

2 2 2
f k d d ck d d


      



   
               

 (6) 

The non-dimensional pulsating fluid velocity is described by a sinusoidal fluctuation depend on , 

 0 1 sinu u            (7) 

In Eq. (7), u0 is the mean flow velocity and σ and ω is the pulsating magnitude and pulsating 

frequency, respectively. 

The infinite dimensional modal can be discretized by the Galerkin’s technique, with the simply 

supported beam eigenfunctions j(). These eigenfunctions are used as a suitable set of base functions 

with qj() being the corresponding generalized coordinates; thus, 

     
1

,
N

j j

j

q     


         (8) 

where, N is the number of modes taken into calculations. Substituting Eq. (8) into Eq. (5), multiplying 

by i() and integrating from 0 to 1 leads to 

               , 0q C q K q f q g q q         (9) 

[C], [K], {f( )} and {g( )} represent the stationary damping, stiffness matrices, nonlinear constraint 

force vector and nonlinear vector, respectively. The elements of [C], [K], {f( )} and {g( )} are given 

by 

 1 2

02 1 sinij ij ijC c u c       

 
21 2 2 3

0 01 sin cosij ij ij ijK k u k u k         

   
1

0
1

N

i i j j

j

f f q d    


 
  

 
  

1 2

i ijkl j k l ijkl j k lg g q q q g q q q         (10) 
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Where, the coefficients in these quantities can be written in the following form: 

1
1 4 2

0
,ij i ij ij i jc c d       

 
1

1 2 2 3

0
, , 1ij i ij ij i ij ij i jk k k d           

1 1
1 2

0 0
ijkl ijkl i j k lg g d d                (11) 

For the purpose of numerical computation, define {p} = { }
 
and {z} = [{q}; {p}]; Eq. (9) is then 

reduced to its first-order form: 

          z A z F z G z         (12) 

Where, 

  
   
   

0

- -

I
A

K C

 
  
 

,  
 

 

0
G

g

 
  

 
, 

 

 

0
F

f

 
  

 
  

They are 2N2N, 2N1 and 2N1 matrixes, respectively. Solutions of {q} and {p} consist of the 

displacement and velocity at any point  along the pipe. 

 

3. Results and Discussion 

In the current work, the dynamical behaviors of the simply supported pipe conveying pulsating 

fluid with distributed motion constraints will be investigated numerically. To the author's knowledge, it 

is found that the non-linear responses in supported pipes conveying pulsating fluid with reasonably 

high mean flow velocity and for the case with distributed motion constraints have not yet been explored 

so far. Therefore, we analyze the non-linear vibrations of hinged–hinged pipes conveying fluid on the 

two topics. As it is well known that, for a simply-supported pipe conveying fluid with steady flow 

velocity, divergence in the first mode occurs at a dimensionless critical flow velocity uc= [6]. The 

main aim of this paper is to explore the effect of the pulsating amplitude  and frequency  with higher 

mean flow velocity u0 and distributed motion constraints on the dynamics of this pipe system. For that 

reason, solutions of Eq. (10) are obtained by using the fourth order Runge-Kutta method, with the 

following initial conditions employed, z(1) =  = z(N) = - 0.001 and z(N+1) =  = z(2N) = 0.  

In this project, the results to be presented have been obtained with N = 4 since reasonably 

converged frequencies are accomplished and identical to the theoretical results presented by Ni Q et al. 

[26], when N = 4. Some of the physical parameters are chosen to be 

60.005, 0.2, 5000, 5.6 10 , 0.2, 0.044k c d            (13) 

 

3.1 Responses for various mean flow velocity 

 In this subsection, we consider the case of u0 = 6 and u0 = 8, respectively. The purpose is to 

explore how the responses of the pipe conveying pulsating fluid with distributed motion constraints 

would appear under low, middle and high mean flow velocities. In the calculations to construct the 

bifurcation diagram, whenever the midpoint velocity was zero, the midpoint displacement (0.5, ) was 

recorded. The bifurcation diagrams for the midpoint displacement of the pipe are shown in Fig. 2, as 

forcing frequency  is varied.  
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It is obviously found that a great change takes place on the dynamical behavior of the simply 

supported pipe when mean flow velocity is under consideration, as seen in Figs. 2-6. As shown in Fig 2 

(a) and (b), for mean flow velocity is at u0 = 8, a large region of chaotic motion exists for 33.6<<70. 

However, when the pulsating frequency is in this region at u0 = 6, the pipe exhibits chaotic motions and 

periodic motions, respectively. At the case of low pulsating frequencies (0<<12.2 for u0 = 6 and 

0<<18.3 for u0 = 8), dynamical behaviors of the two cases present periodic oscillations. As the forcing 

frequency increases, the pipe undergoes periodic motions, quasi periodic motions and chaotic motions. 

From Fig. 2 (a) and (b), both of the two systems exhibit chaotic motions and regain stability oscillating 

periodically. For example, for system of u0 = 6, in the regions of 0<<7.7, 9<<11.8 and 20.8<<27.9, 

period-1 motion occurs; in the region of 7.8<<8.9, period-3 motion occurs; in the regions of 

12<<14.3, 17.7<<20.7 and 28<<34, the system exhibits chaotic motions and transitions to chaotic 

motions. The system undergoes loosing stability and regaining stability as the forcing frequency 

increases.  

 

Fig. 2 Bifurcation diagrams of the midpoint displacement of the pipe. (a) u0 = 6; (b) u0 = 8  

Fig. 3 Phase portraits of the motions of the midpoint of the simply supported system at u0 = 6; 
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(a)  = 8.6 (period-2 motion); (b)  = 14.5 (phase transition); 

 (c)  = 15.3 (period-3 motion); (d)  = 23 (period-1 motion);  

 Changing our view to the system of u0 = 8, the pipe oscillates periodically at low pulsating 

frequencies and experiences chaotic motions and regains stability as the frequency takes a proper range 

of values. The regaining stability process is similar to a Hopf bifurcation to some extent.  

Phase portraits and power spectral diagrams for u0 = 6 and u0 = 8 with several pulsating 

frequencies are shown in Figs. 3-6. It can be seen from the power spectral diagrams that period 

oscillations present several peaks and is a smooth curve. For transitions to chaotic motion, the PSD 

curve exhibits broadband characteristics with several peaks in it. While for chaotic motions, the PSD 

curve displays broadband characteristics only.  

Fig. 4 Power spectral diagram of the midpoint of the simply supported system at u0 = 6; 

(a)  = 8.6 (period-2 motion); (b)  = 14.5 (phase transition); 

 (c)  = 15.3 (period-3 motion); (d)  = 23 (period-1 motion); 
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Fig. 5 Phase portraits of the motions of the midpoint of the simply supported system at u0 = 8; 

(a)  = 15 (period-1 motion); (b)  = 18.3 (phase transition);  

(c)  = 20.8 (multi-period motion); (d)  = 25.8 (chaotic motion); 

Fig. 6 Power spectral diagram of the midpoint of the simply supported system at u0 = 8; 

(a)  = 15 (period-1 motion); (b)  = 18.3 (phase transition);  

(c)  = 20.8 (multi-period motion); (d)  = 25.8 (chaotic motion); 

 

3.2 Responses for various pulsating amplitude 

 In this subsection, the effects of the pulsating amplitude to the dynamic behavior of the simply 

supported pipe with distributed motion constraints are studied. The pulsating amplitude is chosen to be 

 = 0.4, compared to that in last subsection used as  = 0.2. Interesting results have come out in this 

project. The bifurcation diagrams for the midpoint displacement of the pipe are shown in Fig. 7, as 

forcing frequency  is varied. Compared to the bifurcations in Fig. 2, it can be seen from Fig. 7 (a) that 

the pipe become more stable for the case of  = 0.4 when the mean flow velocity takes the value of u0 
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= 6, and regions of periodic motion is enlarged to a wide range of 0<<44.2. From Fig. 7 (b), we can 

see that  = 0.4 also expands the stable region of the system of u0 = 8. This may be explained by the 

fact that, with large pulsating amplitude, the flowing fluid plays an important role of exciting to the 

system. The pulsating effect becomes more remarkable during the oscillating.

Fig. 7 Bifurcation diagrams of the midpoint displacement of the pipe. (a) u0 = 6; (b) u0 = 8 

 

4. Conclusions 

 In this paper, the nonlinear dynamics of simply supported pipe conveying pulsating fluid is 

investigated numerically, by introducing the effect of distributed motion constraint along the pipe axis 

modeled as trilinear springs. The distributed motion constraint’s parameters adopted here are in 

agreement with experiments. The internal pulsating fluid is assumed to be a harmonic component of 

flow velocity superposed on a constant mean value. The effects of the pulsating amplitude, forcing 

frequency and mean flow velocity to the dynamical behavior of the pipe are studied in this project. 

Interesting results have been obtained by exploring these parameters. It has been shown that the pipe is 

capable of displaying chaotic motions with various pulsating amplitudes and frequencies under the 

existing of distributed motion constraints. It ought to be remarked that, all the results obtained in the 

foregoing are based on the Galerkin method with N = 4. It has been proved effective for relatively low 

pulsating frequencies by Ni Q et al. [26]. However, it is expected that some such results for higher flow 

velocities and pulsating frequencies, especially for chaos, would also exist in different ranges of the 

parameter space if higher values of N had been used. 
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Abstract 

This work reports the first numerical evidence of existence of pseudo or quasi-chaos 

in a loss modulated EDFRL true Additive Chaos Modulation (ACM) scheme, thus possibly 

adding fifth region of operation in non-autonomous nonlinear systems. Quasi-chaos 

apparently looks like chaos but actually converges to same time and physical phase space 

trajectory, even with widely separated initial conditions, behaviour exactly opposite to the 

basic essence of chaos i.e. sensitive dependence on initial conditions (SDIC). Subject quasi-

chaos was earlier believed to be pure chaos since the output passed qualitative visual tests of 

chaos like aperiodicity in time domain, rich spectral content in frequency domain, direct 

observation test in phase space, and fast decreasing autocorrelation function. Even quasi-

chaos gives positive Lyapunov Exponent (LE), using TISEAN, in time delayed pseudo phase 

space built by time delaying lasing E field. Thus a complete knowledge of numerical model 

and driving conditions is a must to validate existence of a pure or quasi-chaos. EDFRL Chaos 

Message Masking(CMS) configuration is also shown here producing a pure chaos, for 

comparison, with desired sensitivity to initial conditions, besides passing all above mentioned 

visual tests of chaos and a positive LE spectrum. Emergence of quasi-chaos will have far 

reaching implications in chaos applications.  

 

I Introduction 

 

 Chaos is the third most important discovery of 21
st
 century being actively researched 

in multiple disciplines in theoretical and applied contexts and new aspects of chaos are still 

forthcoming [1]. An improved knowledge of chaos will help better understanding of various 

important phenomenon including heartbeat and neuron signals which are inherently chaotic. 

Optical chaos produced by different types of lasers is a well-researched field which met 

successful experimental demonstration in Athens [2]. EDFRL shows rich dynamical 

behaviour and have proven to be a useful platform to study nonlinear dynamics and chaos [3-

10] in addition to other practical applications. There are three main schemes for generation of 

chaos in EDFRL i.e. loop nonlinearities [3], cavity loss modulation [4-9] and pump 

modulation [10]. The detailed study of chaos generation dynamics of EDFRL with five key 

parameters i.e. cavity loss, cavity gain, modulation index, pump power and modulating 

frequency variation was done earlier [4,6], showing how EDFRL switches, with the change 

of above mentioned control parameters, between four possible regions of operation i.e. 

periodic, quasi-periodic, stable and chaotic. It was next shown [7] that using square and other 

complex loss modulating signals the LE of EDFRL chaos increases thereby raising the degree 

of unpredictability and security. Later [8] it was found that pulsed chaos gives better LE than 

non-pulsed chaotic oscillations in EDFRL. It was pointed out later [9] that the original 

EDFRL model with chaos message masking (CMA/CMS) as proposed by Luo [4] and later 

studied in detail [6] has message signal also being added into the loop which makes it true 

ACM scheme instead of reported CMA / CMS. The detailed study of effect of message 
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parameters i.e. message frequency, amplitude and phase on EDFRL chaos dynamics therefore 

became necessary which was carried out in next work [9]. It was shown there [9] that chaos is 

produced only once the modulating and message frequencies are not integral multiple of each 

other which shows that the two frequencies interplay with each other to give shown results.  

 The detailed study carried out in this work was triggered by an unusual observation 

during simulations that different initial conditions did not produce different chaos as expected 

but all chaos seemed to be forced to single trajectory. This is a violation of SDIC which is 

main defining attribute of chaos and therefore this output needs to be termed as something 

other than chaos, say quasi-chaos, because apparently it behaves like chaos unless 

numerically subjected to different initial conditions. Negating SDIC in turn negates long term 

unpredictability. Previously, it was believed and reported [4-9] to be pure chaos because it 

mimicked all behaviour of chaos and qualifies qualitative tests as well as LE test in time 

delayed pseudo phase space using TISEAN routines [11]. Once message signal is removed 

from the loop, EDFRL starts producing pure chaos for same set of parameters and 

modulating signal.  

The paper is organised as follows. Section I is introduction and literature review, 

followed by Section II which gives mathematical models and optical circuits of both 

configurations studied in this paper. Section III on simulations shows convergence of quasi-

chaos of ACM to same trajectory irrespective of IC and divergence of trajectories in CMS 

configuration even for small IC deviations. Section IV discusses these simulation results and 

Section V concludes the results and indicates their implications.  

 

II Mathematical model 

 

 In this section the optical circuits and corresponding mathematical models of loss 

modulated EDFRL true ACM and true CMA/CMS schemes respectively in Fig.1 and Eq. (1) 

and (2), ‘true’ emphasizing their corrected versions [9]. It is obvious from figures and 

equations that ACM has message sine wave being added into the loop modifying chaos 

dynamics, as studied in detail [6,9] while CMS is devoid of message and its effects on chaos 

dynamics.  

 

 

LAALAainaLAaLA DEgScEkE  )(   (1a) 

]1)1[(
1 2  PAALAPAA IDEID


   (1b) 

))sin(1(0 tmkk aaaa       (1c) 

))sin(1(0 tmSS ssin      (1d) 

 

LAALAaLAaLA DEgEkE     (2a) 

]1)1[(
1 2  PAALAPAA IDEID


   (2b) 

))sin(1(0 tmkk aaaa       (2c) 

 

 

 where “.” denotes time derivative, ELA is the lasing field strength, DA is population 

inversion density, τ is the of Erbium meta-stable state decay time, ξLA is the spontaneous 

emission factor, IPA is the pump power, ka0 is the cavity loss (decay rate), ga is the cavity 

gain,, ma is the modulation index, ωa is the angular loss modulating frequency, S0 is the 
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message amplitude and ωs is the message frequency. The various sets of parameters for 

which chaos is produced is extensively discussed earlier [6]. 

 

 

  
Fig.1 Cavity loss modulation in EDFRL 

(a) True ACM producing quasi-chaos 

(b) True CMA/CMS producing pure chaos 

 

The values of model parameters used in simulations in following section are same as early [6] 

and given in Table.1 below. The only difference is there is no message S0 in CMS model. 

 

Table 1 EDFRL parameters-default values and range of variation 

Parameter Symbol Value 

Pump power IPA 10 mw 

Modulation index ma 0.03 

Decay rate ka0 3.3x10
7
 

Gain ga 6.6 x10
7
 

Message amplitude S0 1 

Modulating frequency ωa 3.5x10
5
 

Message frequency ωs 3.14x10
5
 

Message Coupling strength ca 0.01 
 

 

III Simulations results 

Fig.2 shows the convergence to same trajectory of differently starting chaotic 

trajectories in time and phase plots for same set of EDFRL parameters as given in Table.1 as 

well as driving conditions in loss modulated ACM model. It may be noted that one set of 

initial conditions i.e. ELA0=0 and DA0=0.47 is taken as a reference to compare the 

convergence time of other initial conditions to the reference trajectory. It can be observed in 

time domain plots of Fig. 2(a) where the initial conditions are ELA0=12 and DA0=0.496 that it 

converges to the defined reference trajectory in approx. 0.75 msec. The arrows in time 

domain mark significantly different amplitudes in the chaotic pulses initially. However, it can 

be observed that amplitude difference is very small in next pulses after which the two chaotic 

trajectories converge to same value exactly overlapping in time and phase plots. In Fig. 2(b) 

once the initial conditions are ELA0=5 and DA0=0.496, resulting chaos converge to the 

reference trajectory in about 1.75 msec. It is to be noted that the distance of initial conditions 

from reference initial conditions is more in Fig. 2(a) than in Fig. 2(b), yet convergence time is 
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smaller in first figure than the second. Thus the convergence time is not proportional to the 

distance of initial conditions from the reference initial condition. The arrows in phase plots 

indicate that the initial conditions for the two waveforms are taken far away from each other 

yet the red phase plot converges to the green one after few turns in phase plot. 

 

 
 

  
 

Fig.2 ACM Quasi-chaos convergence for different initial conditions. 

(a) ELA=0, DA=0.47 (green) and ELA=12, DA=0.496 (red) 

(b) ELA=0, DA=0.47 (green) and ELA=5 , DA=0.496 (red) 
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Once convergence of quasi-chaos to same trajectory is established above simulations 

of the ACM model, the CMS model is simulated next, using Table.1 parameter values again, 

with different initial conditions to dig for either converging or diverging behaviour with 

different initial conditions but same parameters eliminating message sine wave. It is found 

that even slightly varying initial conditions as labelled in Fig.3 time domain plots make the 

pure chaos diverge in longer run. Also the time of start of divergence of trajectories as 

marked by arrow in Fig.3 increases with the decrease in difference in initial conditions. The 

later behaviour is quite as expected for a pure chaos which is SDIC as well as long-term 

unpredictable. 

  

  

  
Fig.3 CMS Pure chaos showing SDIC for different initial conditions. 

(a) ELA0=0.1, DA0=0.4 (red) and ELA0=0.11, DA0=0.4 (blue) 

(b) ELA0=0.1, DA0=0.4 (blue) and ELA0=0.101, DA0=0.4 (red) 

(c) ELA0=0.1, DA0=0.4 (blue) and ELA0=0.1001, DA0=0.4 (red) 

(d) ELA0=0.1, DA0=0.4 (blue) and ELA0=0.10001, DA0=0.4 (red) 

(e) ELA0=0.1, DA0=0.4 (blue) and ELA0=0.100001, DA0=0.4 (red) 
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(f) ELA0=0.1, DA0=0.4 (red) and ELA0=0.1000001, DA0=0.4 (blue) 

The various plots (time, phase space, frequency, and autocorrelation) are shown in 

Fig.4 to compare quasi and pure chaos, in left and right coloums, as produced by ACM and 

CMS configurations respectively with system parameters kept same except elimination of 

messge in later. The quasi-chaos time plots in Fig.4(a) (left) has pulse time period equal to 

time period of modulating sine wave while pure chaos plot (on right) is chaotic in time 

interval as well as pulses amplitude. The pulses in quasi-chaos are bunched while pure chaos 

has no bunching, while the dynamic range of pure chaos appears better than its counterpart. 

Fig.4(b) shows the phase space of both chaos and it can be seen that both phase space plots 

are strange attractors indicating chaos as per direct observation method [6]. The apparent 

crossing of phase space lines will not be there if time is added as third dimension because the 

third assumed differential eqaution will be simply t’=1. It can be seen in Fig4.(c) that the 

phase space of quasi-chaos is less fractal as compared to that of pure chaos. Also quasi-chaos 

is denser at lower pulse amplitudes while pure chaos is denser at higher pulse amplitudes 

making phase space plots denser on inner and outer sides respectively. Fig.4(c) shows 

frequency spectrum  of quasi and pure chaos with latter being richer and more random in 

spectral lines as compared to former. Also the modulating frequency and its harmonics are 

visible only in the case of quasi-chaos frequecny spectrum because here the pulse repetition 

time is being decided by modulating signal itself as reported earlier [6] also.The 

autocorrelation diagrams of both chaos are compared in Fig.4(d) and it is found that pure 

chaos has a sharper decay of autocorrelation than its counterpart while the autocorrelation 

function has nonzero lower values in quasi-chaos due to humps beneath pulses in time 

domain. But above all the most important observation is that quasi-chaos is in fact difficult to 

detect from the diagrams as shown in Fig.4 till it is discovered by actually testing initial 

conditions as in this work. Now once it is discovered the clues of quasi-chaos can be outlined, 

the most important being the fixed time period instead of chaotic time period and visibility of 

modulating frequency and harmonics in frequency domain. 
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Fig.4 Comparison of quasi-chaos(left) with pure chaos(right) for loss modulation EDFRL 

(a) Time domain  (b) Phase space (c) Frequency domain (d) Autocorrelation 
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The LE spectrums of quasi chaos generated from ACM and reported earlier for sine[6] 

and square [7] modulating signals were based on time series analysis of pseudo phase space 

generated by time delaying ELA lasing. The reason why quasi-chaos also showed positive LE 

there, is that SDIC is not violated in pseudo time delayed phase space of lasing field. This 

fact is shown here in Fig. 5 for two such values of time delay (in samples) i.e. tau=2 and 

tau=5 samples, that these attractors are fractal in nature. Fractal nature of phase space means 

a strange attractor which shall give positive LE result with TISEAN. It implies that LE 

calculation using TISEAN is not a sufficient test to differentiate pure chaos from quasi-chaos 

and subjecting the system to different initial conditions numerically or experimentally is a 

must. 

 

 

 
(a) 

 
(b) 

Fig.5 Time delayed (tau) pseudo phase plots of quasi-chaos 

(a) tau=2  (b) tau=5 

 

IV. Discussion 

The simulations were carried out to establish the presence of quasi-chaos in ACM and 

pure chaos in CMS. First it is shown that ACM loss modulated EDFRL produces an apparent 

chaos which converges to single trajectory making it a quasi- instead of a pure chaos. It is 

also observed for quasi-chaos that convergence time is not strictly dependent on deviation of 

initial conditions. As soon as the message is removed to reconfigure it as CMS, keeping all 

other parameters same including loss modulating sine wave, the convergence is immediately 

replaced by divergence of pure chaos trajectories. This divergence of trajectories is observed 

even for very small deviations in initial conditions as is expected for a pure chaos. It is noted 

that the time for the start of this divergence decreases with the increase in deviation of initial 

conditions, also as expected. Hence it is indicated that message signal is adding an extra 

periodic perturbation in the cavity which is interacting with the multiplicative perturbation of 

loss modulating sine wave, thus producing quasi instead of pure chaos. Next the LE 

spectrums of quasi and pure chaos are calculated using time series analysis with well-known 

TISEAN routines and plotted side by side. Most surprisingly, quasi-chaos gives positive LE 

since TISEAN uses time delayed pseudo phase space of lasing E field. The time delayed 

phase space is found fractal for two time delays. Thus LE calculation using time series 

analysis by TISEAN is not a sufficient test to identify pure chaos as shown in this study, 

because it misjudges quasi-chaos in EDFRL also as pure chaos. The most valid test of chaos 

is physically subjecting the system or its numerical model to different initial conditions and 

look for either convergence or divergence of trajectories for quasi and pure chaos 

respectively. This observation of pseudo or quasi chaos adds fifth region of operation in 
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nonlinear systems; the other well-known four regions being periodic, quasi-periodic, stable 

and chaotic already reported and studied in detail for loss modulated EDFRL [6]. 

 

V. Conclusions 

This work was motivated by an unusual observation of converging behaviour in 

temporal and physical phase space of apparently chaotic trajectories, for different initial 

conditions, in ACM loss modulated EDFRL. Such behaviour is totally new and cannot be 

categorised as any of four known modes of operation in nonlinear systems i.e. periodic, 

quasi-periodic, stable and chaos. Therefore, it is termed as quasi-chaos, as it looks like chaos, 

but violates the basic definition of chaos i.e. sensitive dependence on initial conditions. The 

findings here confirm the presence of convergence to same quasi-chaotic trajectories even for 

very widely separated initial conditions. Previously, this output from this EDFRL 

configuration was considered to be pure chaos since the output passed all qualitative visual 

tests of chaos; like aperiodicity in time domain, rich spectral content in frequency domain, 

direct observation test in phase space, and fast decreasing autocorrelation function. In this 

work all above plots are placed side by side for making comparisons between pure and quasi-

chaos. However, EDFRL quasi-chaos surprisingly gives positive lyapunov exponents with 

TISEAN; as TISEAN routines are based on time delayed pseudo phase space of observed 

time series data, which is found fractal in this work, for the lasing E field. At the same time, it 

in no case implies that loss modulation scheme in EDFRL is not capable of producing a pure 

chaos. For comparison purposes, EDFRL is also shown to be able to produce a pure chaos, 

just by eliminating the message from the loop (CMS scheme), exhibiting desired sensitivity 

to minute changes in initial conditions. Pure chaos, as expected, passes all above mentioned 

visual tests of chaos and also giving positive LE using TISEAN. The only main test of quasi-

chaos is thus numerically subjecting the system model to different initial conditions.  

This is an important discovery which has five main implications on chaos theory and 

its engineering applications. Firstly, a complete knowledge of numerical model and driving 

conditions is a must to validate existence of either pure or quasi-chaos. Secondly, finding 

quasi-chaos would not be possible in an experimental work on EDFRL, because of 

inaccessibility of population inversion initial condition. Secondly, fractal nature of time 

delayed pseudo phase space is responsible for positive lyapunov exponent calculations, using 

TISEAN, misinterpreting quasi-chaos as pure chaos in earlier works. Fourth, chaos 

synchronisation of quasi-chaotic systems is also artificial i.e. ACM EDFRL receiver is in fact 

not synchronised to corresponding transmitter because of any seed being fed, since both 

outputs readily get converged to same trajectory, independent of their initial conditions, in 

reality, due to their quasi-chaotic nature. Fifth, pure chaos will always prove as chaos in 

qualitative and quantitative tests, but quasi-chaos will spoof itself as pure chaos until 

complete model is available for trying different initial conditions; output time series shall not 

be the only thing available. Other possible implications of this discovery are presently under 

study and will be reported shortly. 
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Abstract 

This numerical investigation is motivated by the exciting recent discovery of quasi-

chaos, in loss modulated erbium doped fiber ring laser (EDFRL), which looks like chaos but 

converges to single trajectory for widely separate initial conditions in physical phase space. 

Both pure and quasi-chaos are generated in pump modulated EDFRL using chaos message 

masking and additive chaos modulation configurations respectively, for comparison in 

different domains. Quasi-chaos has chaotic amplitude in time domain, rich spectral content in 

frequency domain, fractal physical phase space, and fast decreasing autocorrelation function. 

Sensitive dependence on initial conditions is numerically tested for both these chaos, with 

pure chaos diverging even for minute deviations while quasi-chaos converging even for 

extreme values of initial conditions. Lyapunov exponent of quasi-chaos, calculated with 

TISEAN, however, are still positive, as TISEAN works on time delay embedded phase space 

of single variable, which is shown fractal here. Quasi-chaotic pulses are periodic in time and 

chaotic in amplitude, with bunching of sub-pulses into super pulses with respective fixed 

periods. Quasi-chaos cannot be used for secure communication and experimental outputs in 

forced chaotic oscillators under noisy conditions need careful analysis. This evidence marks 

the confirmation of existence of fifth region of operation in nonlinear systems. 

 

 

Keywords:  

 Quasi-chaos, Nonlinear dynamics of fiber laser, Pump modulation. 

 

I Introduction 

 

Chaos, quantum mechanics and theory of relativity are widely accepted as the three 

most important discoveries of 21
st
 century. Chaos, which is mainly identified by its sensitive 

dependence on initial conditions, is a ubiquitous phenomenon in many nonlinear systems 

fulfilling Poincare Bendixon’s criteria. The application of optical chaos in secure optical 

communication has reached successful results in Athens experiment [1] and yet new exciting 

aspects of optical chaos are being discovered [2, 3]. Optical chaos in EDFRL can be 

produced both in autonomous manner [4] and by periodic perturbations as in loss modulation 

[5-6] and pump modulation [7-14]. Recently quasi-chaos was discovered [3] in loss 

modulated EDFRL, which looked like chaos in time, frequency, phase space and 

autocorrelation signatures but violated the basic criteria of chaos i.e. sensitive dependence on 

initial conditions (SDIC) once the system, is numerically subjected to different initial 

conditions. Until first discovery [3] of quasi-chaos, nonlinear systems were earlier known to 

exhibit only four regions of operation i.e. chaos, periodic, stable and quasi-periodic with 

switching of regions being determined by the tuning of parameters and driving conditions.  

 

There are three message encoding configurations possible in each of three mentioned 

schemes in EDFRL i.e. additive chaos modulation (ACM) where message gets entered into 
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laser rate equations, chaos message masking (CMS) where message is not part of rate 

equations and is added in the last and chaos shift keying (CSK) where one parameter is 

switched with data. The message encoding scheme of loss modulated EDFRL reported earlier 

[5] as chaos message masking (CMS) was latter [6] corrected to be additive chaos modulation 

(ACM) scheme. The effect of message parameters (message frequency, amplitude and phase) 

on EDFRL chaos dynamics was studied in detail [6] and it was shown that one necessary 

condition of chaos generation is that message and modulating sine waves frequencies are not 

integral multiples of each other. However, the recent paper [3] has proven that the behaviour 

earlier identified as pure chaos in EDFRL ACM scheme [5,6], was in fact quasi-chaos, 

because it straightaway violates sensitive dependence on initial conditions. However, 

surprisingly it still looks like chaos in several domains and even renders positive lyapunov 

exponent using TISEAN [15]. The reason for this anomaly was identified [3] was the fractal 

nature of time-delayed embedded phase space of lasing field intensity. It was also shown [3] 

that in order to produce pure chaos, message had to be completely eliminated from EDFRL. 

Therefore, the factor responsible for generation of quasi chaos was the interplay of message 

and loss modulating frequencies within the laser cavity.  

 

EDFRL pump modulation scheme shall be the next logical candidate for tracing the 

signs of quasi-chaos, because it is the next forced configuration of EDFRL which produces 

chaos. We will investigate both message encoding schemes i.e. chaos message masking and 

additive chaos modulation for generation of pure and quasi-chaos respectively, in the same 

stepwise manner as done earlier [3] in loss modulation scheme. We will specifically inspect 

the convergence of trajectories to same path in quasi-chaos for widely separated initial 

conditions. We shall also carry out all qualitative tests and quantitative test of lyapunov 

exponent calculation on both chaos and evaluate the results. Once quasi-chaos is proven 

discovered second time here, it will be safe to assume that it is a ubiquitous phenomenon in 

all forced chaotic generators under similar conditions as identified earlier [3] and revalidated 

here. The paper is organised as follows. Section I provides introduction and literature review, 

followed by Section II mentioning the mathematical models and optical circuits of both 

configurations studied in this paper. Section III shows simulations and section IV discusses 

these results. Section V concludes the results and indicates their implications in research.  
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II Mathematical model 

 

 In this section the optical circuits and corresponding mathematical models of pump 

modulated EDFRL CMS and ACM schemes in Fig.1 (a)-(b) and Eq. 1(a)-(c) and Eq. 2 (a)-(d) 

respectively, the basic model adapted from Luo[14]. It is obvious from Fig.1 (a) and Eq.(1) 

that message is not part of loop dynamics and is added in the last to the chaos generated by 

loop in CMS. However, it can be seen in Fig. 1(a) and Eq.(2) that ACM has message sine 

wave is being added into the loop thus modifying chaos dynamics.  

 

 

LAALAaLAaLA DEgEkE  0
    (1a) 

]1)1[(
1 2  PAALAPAA IDEID


   (1b) 

))sin(1(
0 aaaPAPA tmII       (1c) 

 

LAALAainaLAaLA DEgScEkE  )(   (2a) 

]1)1[(
1 2  PAALAPAA IDEID


   (2b) 

))sin(1(
0 aaaPAPA tmII       (2c) 

))sin(1(0 tmSS ssin      (2d) 

 

 where “.” denotes time derivative, ELA is the lasing field strength, DA is population 

inversion density, τ is the of Erbium meta-stable state decay time, ξLA is the spontaneous 

emission factor, IPA is the pump power, ka0 is the cavity loss (decay rate), ga is the cavity 

gain,, ma is the modulation index, ωa is the angular loss modulating frequency, S0 is the 

message amplitude, ac  is the coupling strength of message and ωs is the message frequency.  

  
Fig.1 Pump modulation in EDFRL 

(a) Chaos message Masking 

(b) Additive Chaos Modulation 
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The values of model parameters used in simulations in following section are given in 

Table.1 below are same for CMS and ACM configurations except the last two are present in 

latter only. The numerical integration is performed using fourth order Runge-Kutta method 

with a step size of 10 nsec, in all simulations here, to ensure best accuracy of results. It may 

also be mentioned here that ELA0 and DA0 are the initial conditions for lasing field intensity 

and population inversion density here. The dynamic range is 0 to 150 a.u. for ELA0 and -1 to 1 

for DA0. 

 

Table 1 Pump modulated EDFRL parameters for ACM and CMS 

Parameter Symbol Value 

Decay time metastable state Τ 10 ms 

Spontaneous emission factor ξLA 10
-4

 

Pump power IPA0 20 mW 

Modulation index ma 0.94 

Cavity loss / Decay rate ka0 6.46x10
6
 

Pump Modulation frequency ωa 2π x 9 x10
3
 

Message frequency ωs 2π x 3.1919 x10
3
 

Message Amplitude S0 1 

Coupling ratio ca 0.02 

 

III Simulations results 

 

Initially the CMS model of Eq.1(a)-(c) is simulated using parameters as given in 

Table.1. The results are plotted in Fig. 2 for minutely varying initial conditions with Fig.2 (a) 

taken as reference i.e.  ELA0=0 and DA0=0.47. ELA0 is kept at zero and DA0 is varied to 

0.470001, 0.47001 and 0.4701 in Fig.2 (b)-(d) and the point of change in chaos signature with 

reference to Fig.2 (a) is marked by an arrow in last three diagrams. There are two important 

observations made here Firstly, the chaos outputs are different in all figures, even for the 

smallest change of 10
-6

 in DA0 in Fig.2 (b) which is quite in line with SDIC and is as expected 

for a pure chaos. Secondly, the starting time of change in chaos as marked by arrow shifts to 

right with the gradual increase in difference of DA0 from value of 0.47 which is again as 

expected. Both of these observations are well known for a pure chaos and are responsible for 

its long-term unpredictability. 
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Fig.2 Pure chaos sensitivity to initial conditions. 

(a) ELA0=0, DA0=0.47 

(b) ELA0=0, DA0=0.470001 

(c) ELA0=0, DA0=0.47001 

(d) ELA0=0, DA0=0.4701 

 

The ACM model as given in Eq.2(a)-(d) is simulated using same parameters as for 

CMS except for the addition of message signal in the loop as per Table.1 Quasi-chaos is 

observed this time with different chaos like time domain plots converging to single trajectory 

for  largely varied values of both ELA0 and DA0. DA0 is kept at 0.5 and ELA0 is changed at four 

different values i.e. 0, 40, 80 and 120 and result plotted at two time scales in Fig.3 (a) and (b). 

ELA0 is kept at 0 and DA0 is changed at four different values i.e. 0.5, 1,-0.5 and -1 and results 

plotted at two time scales in Fig.3 (c) and (d). It can be observed in all these four figures that 

the output converges to same trajectory for all these values which is exactly opposite to pure 

chaos behaviour, which is well known and just seen in CMS simulation. It is to be noted here 

that chaos outputs are observed here to be more sensitive to DA0 changes as compared to ELA0 

because latter has a smaller scale of variation. However, the output still converges despite 

using extreme possible values of both ELA0 and DA0 which proves convergence for all smaller 

values of initial conditions. Moreover, the results are shown till 2msec only for clarity of 

diagrams but the convergence is tested to persist till 20 msec once it is achieved. It is believed 

that convergence will persist forever once achieved. The time of convergence is maximum 

for ELA0 = 80 in Fig. 2(a) and (b) ; not for ELA0 = 120 as could be speculated. However, it 

increases with absolute increase in deviation of DA0 from reference DA0=0.5, with DA0=-1 

taking longest convergence time of 0.55 msec in Fig. 2(c) and (d).  
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Fig.3 Convergence of quasi-chaos trajectories for different initial conditions. 

(a) ELA0=0, ELA0=40, ELA0=80, ELA0=120 and  DA0=0.5 (2msec)  

(b) ELA0=0, ELA0=40, ELA0=80, ELA0=120 and  DA0=0.5 (1msec) 

(c) DA0=0.5, DA0=1 DA0=-1 DA0=-0.5 and ELA0=0 (2msec) 

(d) DA0=0.5, DA0=1 DA0=-1 DA0=-0.5 and ELA0=0 (1msec) 

 

The time, phase space, frequency, and autocorrelation plots are shown  in Fig.4 (a) to 

(d) for quasi and pure chaos, with system parameters kept same in ACM and CMS, except 

addition of messge in former. The time domain plot of quasi-chaos here is having super 

pulses with bunches of sub pulses, both being Gaussian, with super pulses being periodic in 

time but chaotic in amplitude. The time period of sub-pulses is decided by the pump 

modulating frequency i.e. 9 kHz and there are three to four sub-pulses in every super pulse. 

Another way of looking at this chaos is considering them as periodic bunches of chaotic 

Gaussian pulses with humps underneath as reported earlier for loss modulation [5]. The pure 

chaos has independent Gaussian pulses with no humps underneath and sometimes two or 

three pulses seem getting merged together due to chaotic timing of pulses themselves. One 

important indicator of pure pulsed chaos is that it is chaotic in time as well as amplitude 

while quasi-chaos is chaotic in amplitude only and super and sub pulses are not chaotic in 

their respective time periods. Each loop in phase space corresponds to a gaussian pulse in 

time domain. The phase space of quasi-chaos is almost uniformly distributed as the pulses 

amplitude spreads over a bigger dynamic range. The phase space of pure chaos is spread 

uniformly on lower amplitudes and then on higher apmplitudes with a gap owing to its 

tiemporal signature. Also the DC component and the modulating frequency of 9 kHz are 

prominent lines in both frequency spectrums, but harmonics of 9kHz are more prominent in 

quasi-chaos frequecny spectrum, since the pulse repetition time of quasi-chaos sub-pulses is 

fixed and is being determined by modulating signal as reported earlier also [6]. The 

frequency of super pulse and its harmonics is also visble in quasi-chaos spectrum. The pure 

chaos spectrum is otherwise relatively flatter and richer due to variable chaotic time of 

pulses. The pure chaos autocorrelation diagrams of both chaos are has a sharper decay like 

early while the quasi-chaos autocorrelation function has nonzero lower values in due time 

domain. The fixed time period of chaotic pulses, super and subpulses or bunching and humps 

and visibility of modulating frequency harmonics in frequency domain are some clues of 

quasi-chaos revalidated here. There is no fixed linear relationship between delta of initial 

conditions and time of convergence of trajectories to same trajectory in quasi-chaos. 
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Fig.4 Quasi-chaos (left) vs pure chaos (right) plots 

(a) Time domain  (b) Phase space (c) Frequency domain (d) Autocorrelation 

 

The time delayed embedded plots of ELA(t) vs ELA(t-τ) are shown for different values of 

time delay τ for quasi-chaos and pure chaos in Fig.5 and 6 respectively with two important 

observations to be made. Firstly, both of these plots are fractal in nature and the degree of 

correlation between ELA(t) and ELA(t-τ) decreases with the increase in τ in both figures. 

Secondly, the degree of correlation is lesser in pure chaos as compared to quasi-chaos for 

corresponding values of τ because randomness and degree of unpredictability is higher in 

pure chaos. The latter observation is further validated by LE spectrum calculation of both 

chaos using TISEAN, a well-known routines pack available. We get positive LE for both 

these types of chaos as shown in Fig.7 (a) and (b) with LE for pure chaos being significantly 

higher than quasi-chaos which is as expected. This proves that time delayed method of LE 

calculation will not differentiate between quasi and pure chaos. The only way to identify 

quasi-chaos is numerically simulating the system with different initial conditions and seeing 

the time domain plots or physical phase space or physically subjecting the system to different 

initial conditions if these are accessible in experimental works. 

  

  
Fig.5 Pure chaos time delayed phase plots 

(a) τ = 0.5 usec (b) τ = 1 usec (c) τ = 2 usec (d) τ = 4 usec 
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Fig.6 Quasi-chaos time delayed phase plots 

(a) τ = 0.5 usec (b) τ = 1 usec (c) τ = 2 usec (d) τ = 4 usec 

 

  
 

Fig.7 Lyapunov exponent spectrum  (a) Pure chaos (b) Quasi-chaos 

947



 

IV. Discussion 

This numerical investigation is done step-wise on same lines as done earlier [3] for 

loss modulation scheme and the results are also corresponding, proving the second 

appearance of quasi-chaos. In order to test the SDIC of pure chaos, the initial condition DA0 is 

varied by very minute differences and the output is still found to diverge even for the slightest 

of the difference as expected for pure chaos. However, the time of start of divergence of 

trajectories increases with decrease in difference of DA0 which is also anticipated behaviour. 

On the other hand, quasi-chaos proclaimed to converge instead of diverging, is tested with 

ELA0 and DA0 taken to their extreme limits. However, the differently starting trajectories still 

converge to same single trajectory instead of diverging with the time of convergence 

increasing this time with the deviation of initial conditions. The message signal adds an extra 

perturbation in the cavity which is interacting with the loss modulating sine wave, thus 

producing quasi instead of pure chaos. 

The time, frequency, phase space and autocorrelation plots of quasi-chaos once seen 

independently give an impression of chaos. However, once pure and quasi-chaos plots are 

observed critically, some differences are observed in respective domains. One major 

difference is that quasi-chaos has periodic bunches of super pulses while pure chaos pulses, 

however, are chaotic both in time and in amplitude. Each super pulse has further four sub 

pulses and the frequency of sub-pulses is fixed at 9 kHz i.e. the modulating frequency. The 

frequency spectrum of quasi-chaos has all harmonics of both sub and super pulse frequencies 

while pure chaos spectrum is flatter and richer with better message masking capabilities. The 

pump modulating frequency is visible in both the spectrums but its harmonics are more vivid 

in quasi-chaos. The autocorrelation diagram of pure chaos is depicting more randomness due 

to chaotic timing of pulses. The LE of quasi-chaos calculated using TISEAN are still positive 

although the physical phase space converges to single trajectory. The reason of this anomaly 

is the fact that TISEAN calculates LE by creating a pseudo phase space by time delayed 

embedding of time series data of one physical variable i.e. ELA(t) and ELA(t-τ) in this case. This 

pseudo phase space gives positive LE if it is fractal in nature; and it has been found to be 

fractal in this work not only for pure chaos but also for quasi-chaos. However, the LE values 

of pure chaos are order of magnitude higher than quasi-chaos. ELA(t) vs ELA(t-τ) plotted for 

different values of τ i.e. 0.5 to 4 usec, give fractal plots whose correlation decreases with the 

increase of τ. The correlation is however, higher in quasi-chaos than pure chaos as the pulses 

timing is chaotic in latter only. 
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V. Conclusions 

Rediscovery of quasi-chaos in pump modulation scheme in this research, after its first 

discovery in loss modulation of EDFRL proves that quasi-chaos is also a ubiquitous 

phenomenon and is the fifth region of operation in nonlinear systems. This work proves that 

this phenomenon can be traced in all forced chaotic oscillators once the requisite conditions 

shown here are tuned i.e. one additional sine wave perturbation with frequency not integral 

multiple of forcing sine wave is added into the system dynamics. Quasi-chaos in this work 

spoofs itself as a pure chaos by passing all qualitative and visual tests i.e. it has rich spectral 

content and fast decreasing autocorrelation function and a strange attractor in pseudo phase 

space. The only visual indicator observed in this work is that pulses are chaotic in amplitude 

and not in time for quasi-chaos with bunching of pulses into super pulses. The most 

surprising result in this work is that quasi-chaos gives positive LEs’ spectrum using time 

delayed pseudo phase space analysis of lasing field intensity using TISEAN, a well-known 

package of LE calculation. Therefore, qualitative visual tests and LE calculations on time 

delayed series have proven to be a weak test of pure chaos and we need to find stronger 

quantitative measures of distinguishing pure chaos from quasi-chaos and be cautious with 

experimental results in forced chaotic systems. The strangely deceptive behaviour of quasi-

chaos observed in this work raises many questions from application point of view e.g can 

quasi-chaos be used for secure chaotic communication and whether to believe experimental 

data from forced chaotic systems to be pure chaos. Briefly, pure chaos is sensitively 

dependent on initial conditions both in physical phase space of all dynamic variables and time 

delayed pseudo phase space of any one physical variable while quasi-chaos is converging in 

physical phase space and sensitively dependent on initial conditions only in time delayed 

pseudo phase space. 
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Abstract. On a base of a previous two-component model of population growth for one 

country the new striation model of population growth of the entire Earth is proposed. The 

obvious advantages compared with other models are studied. The methodological rules 

for finding the parameters included in the model are discussed as well as the possible 

application of the proposed model to international organizations such as UNESCO or the 

United Nations. Some results of numerical simulation are presented, socio-economic 

aspects of the model are discussed: the ability to control population size by adjusting the 

flow of people from the city to the countryside, and the trends in the urban and rural 

population 
 

Keywords: population growth, chaotic simulation, modeling of socio-economic 

processes, striation model. 
 

In this work we discuss several related problems: the problem of 

constructing a model of population growth, the problem of predicting population 

growth, and the problem of numerical simulation of population dynamics. Those 

issues attract a lot of attention in both natural and social sciences. Initially it was 

caused by simplest modeling of such dynamics when constant increase of 

population was inevitably shown as leading to overpopulation of the planet 

(Malthusian crisis). Later, a precise date of overpopulation was esteemed as 

2004. By now a number of theoretical works arose, clarifying model 

representation of such dynamics. Along with Malthus classic work, one should 

mention Verhulst model [1], Kapitsa model [2], Forrester world-system model 

[3] and many others. As it turned out, the rate of population growth crucially 

determines the growth rate of GDP, and this fact has largely spurred interest in 

the subject [4,5]. The most interesting dynamics is connected with so called 

“demographic transition point” when population growth sharply decreases and 

number of people achieves stable value. However, at the same time, all 

proposed model are unlikely to describe the entire dynamics of the population: 

the explosive growth of the initial time, saturation stage (demographic transition 

point) and almost stable behavior on later stage. 

In our previous work [6] we proposed new approach to modeling the 

dynamics of population growth. We consider the population dynamics from the 
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physical viewpoint: in particular, we believe that the population should be 

considered as two-phase system – “rural population” and “urban population”, 

with each phase to behave under its own laws of growth, with having, however, 

a flow between two phases. This view of the population dynamics growth can 

decrease the number of arbitrary parameters in the model, and also give 

additional arguments and levers to control the pace of population growth that is 

important for countries experiencing problems with overcrowding and/or 

depopulation challenges. In our current work we outline the contours of the 

model of population growth throughout the Earth.  

We assume that the entire population can be divided into two relatively 

independent groups (phases), focused respectively on the intensive and 

extensive ways of development - urban and rural areas. Note that these concepts 

are not geographical, and probably reflect the attitude of the population to the 

production of wealth and investing in future generations and lifestyles. The most 

important characteristic that allows extracting these two groups, apparently, is 

the population density per square kilometer. The problem to calculate/evaluate 

this value would be another interesting task that we will not consider in our 

work.  

On a base of a previous two-component model of population growth 

for one country the new striation model of population growth of the entire Earth 

is proposed. 
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Here i = 1,2,3, ..... N denotes the total number of countries in the world 

and xi  denote urban population, yi  denotes the rural population in the country i. 

Totally this system consists of 2N differential equations. The Earth's population 

will be calculated as a simple sum of all (xi +yi ). Analysis of the system can be 

carried out numerically in the same way as it was done for the analysis of the 

model for a single country (see [6]).  

We should mention that in our model there can be the difference in the 

behavior of various parts of the planet, and the whole planet is not considered as 

one large country. This approach could also work for a vast territories and/or 

countries.  

In our opinion the socio-economic consequences of proposed strata 

model are of great interest. This mostly refers to GDP growth (so-called world-

dynamics or the world-system dynamics). It is known that in such models 

economic growth is critically dependent on the rate of population growth. For 

example, in the Solow-Swan model [5,7] economy enters the steady growth of 

the national income at a constant rate equal to the rate of growth of the labor 

force. The stratification (or "splitting") of the population into two phases allows 

us to explain the economic growth in the country, even in the case where the 
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total population growth is missing or insufficient. The most striking examples of 

this growth is an economic growth in the USSR in the period of industrialization 

and economic growth of China under strict birth control nowadays. Thus in such 

models the economic growth  becomes endogenous. Modelling of growth of the 

Russian economy on the basis of population stratification in eight groups was 

undertaken in [8,9], but it was done without reference to the modeling of 

population growth, which, of course, reduces the value of this approach.  

The proposed model of the Earth's population growth has obvious 

advantages compared with other models and can be a good basis for the 

calculation of the realistic medium-term and long-term forecast population 

growth of the Earth, which is important to many international organizations 

such as UNESCO or the United Nations. It should be understood, however, that 

work on compiling such a forecast is very labor-intensive because of the need to 

analyze a large amount of statistical data on population growth in the countries 

and on this basis to determine the model parameters, such as the rate of flow of 

the villagers in the city and residents of one country to another. However, we 

hope that this work can be very useful and will provide, along with the forecast 

population growth, and long-term economic growth forecasts. 
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