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Abstract

This paper presents a new behavior of chaotic attractor. Therefore,creating
a chaotic attractor with bounded behavior is a theoretically very attractive
and yet technically a quite challenging task.It is obviously significant to cre-
ate more complicated multi chaotic attractor with bounded behavior, in both
theory and engineering application. Simulation demonstrates the validity and
feasibility of the proposed method.

Keywords: Chua attractor, Rössler attractor, bounded function with bounded sup-
port,bounded function with compact support.

1 Introduction

The behavior of chaotic attractor is very interesting nonlinear effect which has
been competently studied during the last four decades [1]. It reaches many natural
and artificial dynamic systems such as human heart, mechanical system, electronic
circuits, etc [2]. There are so many classical attractors are known until now such
us Lorenz , Rossler , Chua , Chen, and others... Our approach in this paper is to
generate a new behavior of chaotic attractor using Chua attractor and Julia Process.

2 Julia’s Process

In recent years, there have been a lot of developments in Julia sets, including qual-
itative characters, applications and controls. In this section, the use of algorithms
inspired from Julia processes, will be presented. To generate Julia processes, some
of the properties are well known:

• The Julia set is a repeller.
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• The Julia set is invariant.

• An orbit on Julia set is either periodic or chaotic.

• All unstable periodic points are on Julia set.

• The Julia set is either wholly connected or wholly disconnected.

• All sets generated only with Julia sets combination has fractal structure[5].

Real and imaginary parts of the complex numbers are separately calculated.
{
xi+1 = x2

i − y2
i + xc

yi+1 = xiyi + yc
(1)

The listing of algorithm P is as follows:

Algorithm 1 (yi+1, xi+1) = P (arctan(xi), yi)
1: if xi < 0 then
2: xi+1 =

√
(
√

((arctan(xi))2 + (yi)2) + arctan(xi)
2 )

3: yi+1 = yi
2xi+1

4: end if
5: if xi = 0 then
6: xi+1 =

√
|yi|
2

7: if xi > 0 then
8: xi+1 = yi

2yi+1
9: end if

10: if xi < 0 then
11: yi+1 = 0
12: end if
13: end if
14: if xi > 0 then
15: yi+1 =

√
(
√

((arctan(xi))2 + (yi)2)− arctan(xi)
2 )

16: xi+1 = yi
2xi+1

17: if yi < 0 then
18: yi+1 = −yi+1
19: end if
20: end if
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3 Rössler attractor

Rössler system was introduced in the 1970s as prototype equation with the mini-
mum ingredients for continuous time chaos. This system is minimal for continuous
chaos for at least three reasons: Its phase space has the minimal dimension three,
its nonlinearity is minimal because there is a single quadratic term, and it generates
a chaotic attractor with a single scroll, in contrast to the Lorenz attractor with has
two scrolls.

M





ż1 = −(z2 + z3)
ż2 = z1 + αz2
ż3 = (z1z3 − βz3 + γz1)

(2)

(a)

Figure 1: Rossler chaotic attractor

We apply the methodology cited in paper [4]. The number of scrolls are in-
creased. Figure 7 shows behavior result of implementation.
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Figure 2: Behavior of bounded chaotic attractor
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Figure 3: An other behavior of bounded chaotic attractor
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Figure 4: Chaotic attractor with scrolls bounded

4 Chua attractor

Chua’s circuits, which were introduced by Leon Ong Chua in 1983, are simplest
electric circuits operating in the mode of chaotic oscillations. different dynamic
system had inspired from Chua circuit such as:





ẋ1 = x2
ẋ2 = x3
ẋ3 = a(−x1 − x2 − x3 + f(x1))

(3)

where ẋ,ẏ and ż are the first time derivatives and a is a real parameter. Where
f(x1) is a statured function as follows :

f(x) =





k, ifx > 1
kx, if |x| < 1
−k, ifx < −1

(4)
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5 Chaotic attractor generated by FPS

Let E be the complete metric unit, Φ a fractal processes system of E in E such as:

E→ E

Φ:(f1, f2)→ (XG, YG)

The fractal processes system Φ is represented by:

Φ
{

(u1, v1) = PJ(ẋ1 + β, ẋ2 + β) (5)

Figure 5: Chaotic attractor with four scrolls

5.1 Chaotic attractor with bounded function with bounded support

5.1.1 Example 1

We treat state of axis x by mathematical function, after implementation we obtain
this results see 6.

Figure 6: Behavior of bounded chaotic attractor
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via changing the value of β the behavior of bounded chaotic attractor changed.

5.2 Chaotic attractor with bounded function with compact support

5.2.1 Example 2

We generate an other chaotic attractor by fractal processes system by the following
equation:

Φ
{

(u1, v1) = PJ(ẋ1 + β, ẋ2 + β) (6)

Simulation result illustrates in figure 7.

Figure 7: Chaotic attractor with eight scrolls
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Figure 8: Bounded function with chaotic attractor

6 Conclusion

In this paper, we have proposed a new approach to generate behavior of bounded
chaotic attractor. Numerical simulations, demonstrate the validity and feasibility of
proposed method. The procedure mentioned in this paper has practical application
in many disciplines.
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Abstract.
This paper presents a new class of hyper chaotic attractor. This hyperchaos is a set of chaotic
attractors with different number of scrolls. It has different behavior forms either separated or
not with or without other nested chaotic attractors. This class of systems is constructed by us-
ing fractal processes system (FPS). For each parameter value which is treated by process that
is presented in the FPS generates a new behavior and increases the number of scrolls. There-
fore,creating a multi chaotic attractors with nested ones is a theoretically very attractive and yet
technically a quite challenging task.It is obviously significant to create more complicated multi
chaotic attractor and multi hyper-chaotic attractor, in both theory and engineering application.
Simulation demonstrates the validity and feasibility of the proposed method.

Keywords: Multi-chaotic attractor, hyper chaotic attractor, fractal processes.

1 Introduction

Chaotic system has became a popular research area around the world after the first three-dimensional chaotic
system was discovered by Lorenz, and many new chaotic systems have been proposed (i.e., Chen system,
Lü system, Liu system)[3]

Recently, exploiting chaotic dynamics in high-tech and industrial engineering applications has attracted
much interest, wherein more attention has been focused on creating chaos effectively[4].

Compared with the simple chaotic attractors, multi chaotic attractors can provide more complex dynamic
behaviors, more adjustability and more encryption parameters. These properties indicate that multi- chaotic
attractors have a general potential applications to communications, cryptography and many other fields.

Many methods have been used to construct a hyperchaotic system and several hyper chaotic have been
discovered in high dimensional dynamics such as Hyperchaotic Rössler system [6], hyperchaotic Chua’s
circuit [7] and hyperchaotic Lorenz system [8]. Our approach is regarded as a new class of hyper chaos.

The rest of the paper is organized as follows: In section 2, We describe generation of multi chaotic
attractors separated and non separated with the same behavior. In section 3 introduce an another generation
of multi chaotic attractors with different form of behavior.

Finally ,in section 4 we conclude this paper by providing a summary of the above finding.

2 Chaos with the same form of behavior

We recall the structure of fractal processes system described in paper [10]. Here, we present a structure of a
system of fractal processes by associating multiple fractal processes in a cascading manner. This structure
starts with a set of initial conditions, a number of fractal processes, and a set of transformations.

Let E be the complete metric unit, Φ a system of fractal processes in E such as:

E→ E

Φ:(xi, yi)→ (xm, ym)
1 Corresponding author
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The fractal processes system Φ is represented by:

Φ





(x0, y0)
(xi+1, yi+1) = P1(αxi + γ, βyi + λ)
(xi+2, yi+2) = P2(xi+1, yk+1)
(xi+3, yi+3) = T1(xi+2, yi+2)
(xi+4, yi+4) = P3(xi+3, yi+3)
...
(xj+1, yj+1) = Tk(xj−1, yj−1)
...
(xm, ym) = Pm−k(xm−1, ym−1)

(1)

The dynamics of the system of fractal processes is controlled by the assignment of xi+1 to xi and of yi+1 to
yi.

{
xi ← xi+1
yi ← yi+1

(2)

The system (1) is a combination of different transformations and different processes. It consists of m
equations and k transformations, so m− k processes for n iterations where the first iteration is (x0, y0).

We give different examples using FPS to show and validate our approach.

2.1 Chaos with separated chaotic attractors

In this paper, we use two classical chaotic attractors the first one we take Lorenz attractor in the second we
choose Chua attractor. We recall the structure of the two chaotic attractors.

The Lorenz system [2]has become one of paradigms in the research of chaos, and is described by where
x1, x2 and x3 are system states and σ, ρ and β

M





ż1 = σ(z2 − z1)
ż2 = ρz1 − z2 − z1z3
ż3 = (z1z2 − βz3)

(3)

And the second is Chua’s circuits[?], which were introduced by Leon Ong Chua in 1983, are simplest
electric circuits operating in the mode of chaotic oscillations. different dynamic system had inspired from
Chua circuit such as:





ẋ1 = x2
ẋ2 = x3
ẋ3 = a(−x1 − x2 − x3 + f(x1))

(4)

where ẏ1,ẏ2 and ẏ3 are the first time derivatives and a is a real parameter. Where f(y1) is a statured function
as follows :

f(x) =





k, ifx > 1
kx, if |x| < 1
−k, ifx < −1

(5)

2.2 Chaos with same behavior of separated chaotic attractors

Consider the following Φ a fractal processes system :
Let E be the complete metric unit, Φ a fractal processes system of E in E such as:

E→ E

Φ:(f1, f2)→ (XG, YG)
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The fractal processes system Φ is represented by:

Φ





(u1, v1) = PJ(ż3 + arctan(ẋ1), ẋ1 + arctan(ż3))
(u2, v2) = PJ(ż2 + β1, ż2)
(XG, YG) = PJ(u1 − αu2, v1 − αv2)

(6)

Figure 1 shows eight chaotic attractors with the same behavior. Each chaotic attractor contains two
scrolls one from Lorenz attractor and the other from Chua attractor.

(a)

Figure 1: Chaotic attractors separated with the same form of behavior

2.3 Chaos with same behavior of non separated chaotic attractors

In this subsection, we take Rössler system were introduced in the 1970s as prototype equation with the
minimum ingredients for continuous time chaos. This system is minimal for continuous chaos for at least
three reasons: Its phase space has the minimal dimension three, its nonlinearity is minimal because there
is a single quadratic term, and it generates a chaotic attractor with a single scroll, in contrast to the Lorenz
attractor with has two scrolls. Rössler system is described as follows:

M





ẏ1 = −(y2 + y3)
ẏ2 = y1 + αy2
ẏ3 = (y1y3 − βy3 + γy1)

(7)

Let E be the complete metric unit, Φ a fractal processes system of E in E such as:

E→ E

Φ:(f1, f2)→ (XG, YG)

The fractal processes system Φ is represented by:
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Φ





(u1, v1) = PJ(ẏ1 + β1, ẏ2 + β2)
(p1, q1) = PJ(ẏ1 − β1, ẏ2 − β2)
(m1, n1) = PJ(u1 − αp1, v1 − αq1)
(m2, n2) = PJ(m1, n1)
(m3, n3) = T (m2, n2)
(m4, n4) = PJ(m3 + 4, n3)
(m5, n5) = PJ(m3 − 4, n3 + 1)
(XG, YG) = PJ(m4 − arctan(m5/3) + 2, n4 + arctan(1.5n5))

(8)

Figure 2 shows result of implementation. These behavior of chaotic attractors contain multi level of scales.

(a) 16 chaotic attractors generated by FPS using Rössler attractors

(b) Eight Chaotic attractors generated by FPS using Lorenz attractor

(c) Eight multi chaotic attractors generated by FPS using Chua attractor

Figure 2: HyperChaos Contains Eight linked chaotic attractors with same behavior
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3 Chaos with the different form of behavior

3.1 Chaos with two behavior of chaotic attractors

A new chaotic attractors with two forms of behavior is established by the following Fractal Processes Sys-
tem:

Let E be the complete metric unit, Φ a fractal processes system of E in E such as:

E→ E

Φ:(f1, f2)→ (XG, YG)

The fractal processes system Φ is represented by:

Φ





(u1, v1) = PJ(ẋ1 + arctan(ẋ1), ẋ2 + arctan(ẋ2))
(u2, v2) = (1− u1, 1− v1)
(p1, q1) = PJ(ż2 + β, ż3 − β)
(p2, q2) = (α1p1(1− p1), α2q1(1− q1))
(m1, n1) = PJ(u1 − p1, v1 − q1)
(r1, s1) = PJ(ẋ1 − β1, ẋ2 − β2)
(XG, YG) = PJ(r1 − ρm1 + λ, s1 − ρn1)

(9)

Figure 3 shows 8 chaotic attractors alternated with two forms of behavior.
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(a) 8 chaotic attractors separated

(b) First behavior chaotic attractors (c) Second behavior chaotic attractors

Figure 3: Chaos with two behavior of chaotic attractors

3.2 Chaos with three behavior of chaotic attractors with four times

Let E be the complete metric unit, Φ a fractal processes system of E in E such as:

E→ E

Φ:(f1, f2)→ (XG, YG)

The fractal processes system Φ is represented by:

Φ





(u1, v1) = PJ(ẋ1 + arctan(ẋ1), ẋ2 + arctan(ẋ2))
(u2, v2) = PJ(ż2 + β1, ż3)
(u3, v3) = PJ(u1 − 2u2 + β2, v1 − v2)
(p1, q1) = PJ(ż2 + β3, ż3)
(p2, q2) = PJ(u1 − 2p1, v1 − q1)
(XG, YG) = PJ(u3 − 2p2, v3 − 2q2)

(10)
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Fractal processes system contains two different chaotic attractors the first one we choose Chua attractor
noted with x the other Lorenz attractor noted with z. Implementation of fractal processes system shows
result in figure

Figure 4 shows the result of implementation, It contains multi chaotic attractors with fractal and multi
fractal scrolls.

(a)

Figure 4: Chaotic attractors with three forms of behavior

Figure5 illustrates the three forms of behavior of chaotic attractors with fractal scrolls.

(a) First form of behavior
(b) Second form of behavior (c) Third form of behavior

Figure 5: Three forms of behavior of chaotic attractors

3.3 Chaos with nested and three behavior of chaotic attractors

Let E be the complete metric unit, Φ a fractal processes system of E in E such as:

E→ E

Φ:(f1, f2)→ (XG, YG)

The fractal processes system Φ is represented by:
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Φ





(u1, v1) = PJ(ẋ1 + arctan(ẋ1), ẋ2 + arctan(ẋ2))
(u2, v2) = PJ(ż2 + β1, ż3 − β)
(u3, v3) = PJ(u1 − αu2 + β2, v1 − v2)
(p1, q1) = PJ(ż2 + β3, ż3)
(p2, q2) = PJ(u1 − αp1, v1 − q1)
(XG, YG) = PJ(u3 − 2p2, v3 − 2q2)

(11)

(a)

Figure 6: Chaotic attractors separated within nested chaotic attractors

3.4 Chaos with four behavior of chaotic attractors

Let E be the complete metric unit, Φ a fractal processes system of E in E such as:

E→ E

Φ:(f1, f2)→ (XG, YG)

The fractal processes system Φ is represented by:

Φ





(u1, v1) = PJ(ẋ1 + arctan(ẋ1), ẋ2 + arctan(ẋ2))
(u2, v2) = PJ(ż2 + β1, ż3)
(u3, v3) = PJ(u1 − αu2 + β2, v1 − v2)
(p1, q1) = PJ(ż2 + β3, ż3)
(p2, q2) = PJ(u1 − 2p1, v1 − q1)
(XG, YG) = PJ(u3 − 2p2 + β4, v3 − 2q2)

(12)

Figure 7shows result of implementation.
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(a)

Figure 7: Chaotic attractors with four behavior forms

4 Conclusion

In this paper, different techniques of generating a new classes of chaos attractors by Chua attractor with
fractal and multi fractal behavior. Many of them are new and interesting in both theory and engineering
application. Moreover, many of them have some novel properties, therefore deserve further investigation in
the future. Some numerical simulation results are provided to show the effectiveness of the method proposed
in this work.
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[6] E.O Rössler, Phys.Lett A 71(1979) 155.

[7] Cafagna G. Grassi Int J Biffurcation Chaos 13 (2003) 2889.

[8] EE. Mohmoud Dynamics and synchronization of a new hyperchaotic complex Lorenz system, Math
Computation Model 55(2012) 1951-1962.

[9] K.Bouallegue, A. Chaari, A. Toumi, Multi-scroll and multi-wing chaotic attractor generated with Julia
process fractal,Chaos, Solitons & Fractals 2011; 44 : 79− 85

[10] K.Bouallegue, Gallery of Chaotic Attractors Generated by Frcatal Network, Int J Biffurcation Chaos
(25)1(2015)1530002. DOI 10.1142/S0218127415300025.

569



 

570



_________________ 

8
th

 CHAOS Conference Proceedings, 26-29 May 2015, Henri Poincaré Institute, Paris France 
 

© 2015 ISAST                               
 

Statistics of Chaos 
 

David C. Ni 
 

Dept. of Mathematical Research, Direxion Technology 

9F, No. 177-1, Ho-Ping East Rd., Sec 1, Daan District, Taipei, Taiwan, R.O.C. 

 

 

Abstract. In a previous effort, we demonstrated that transition to chaos being related to 

symmetry broken of the divergent sets in fractal forms of complex momentum-and-

angular-momentum plane, which are constructed by an extended Blaschke product 

(EBP).  

 

In the recent efforts, we demonstrated root computation via iteration of EBP. Using 

newly developed algorithms, we iterate the EBP and have mapped the convergent sets in 

the domains to the disconnected solution sets in the codomains. We demonstrated that 

solution sets showing various forms of canonical distributions and found counter 

examples of Fundamental Theorem of Algebra (FTA). 

 

In this paper, we further extend the root-computation algorithms to the transition regions 

of chaos in the domains and the mapped codomains. We characterize the solution sets 

and explore the methodologies and the related theories to the modelling of physical 

phenomena, such as formation of galaxy cluster and stellar system. 

 

Keywords: Nonlinear Lorentz Transformation, Nonlinear Relativity, Blaschke Equation, 

Fractal, Iterated solutions, Chaos, Statistics, dynamical systems. 

 

1  Introduction 
 

Contemporary models for N-body systems are mainly extended from temporal, 

two-body, and mass point representation of Newtonian mechanics. Other 

mainstream models include 2D/3D Ising models constructed from the lattice 

structures. These models have been encountering on-going debates in statistics. 

We were motivated to develop a new construction directly from complex-

variable N-body systems based on the extended Blaschke functions (EBF)[1], 

which represent a non-temporal and nonlinear extension of Lorentz 

transformation on the complex plane – the normalized momentum-angular-

momentum space. A point on the complex plane represents a normalized state of 

momentum and angular momentum (or phase) observed from a reference frame 

in the context of the theory of special relativity. This nonlinear representation 

couples momentum and angular momentum through real-imaginary equation of 

complex number.  
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The limited convergent sets in the domains and the corresponding codomains 

demonstrated hierarchical structures and topological transitions depending on 

parameter space. Among the transitions, continuum-to-discreteness transitions, 

nonlinear-to-linear transitions, and phase transitions manifest this construction 

embedded with structural richness for modelling broad categories of physical 

phenomena. In addition, we have recently developed a set of new algorithms for 

solving EBF iteratively in the context of dynamical systems. The solution sets 

generally follow the Fundamental Theorem of Algebra (FTA), however, 

exceptional cases are also identified.  Through iteration, the solution sets show a 

form of σ + i [-t, t], where σ and t are the real numbers, and the [-t, t] shows 

canonical distributions. 

 

As in the previous paper [2,3,4,5,6,7], we introduce an angular momentum to 

the EBF, and for the degree of EBF, n, is greater than 2, we observed that the 

fractal patterns showing lags as shown in Fig. 9(a). As angular momentum 

increases, the divergent sets (fractal patterns) are connected to the adjacent sets 

and diffuse as shown in Fig. 9(a). As iteration further increasing, subsequently 

all convergent sets will become null set, which we define as chaotic state in this 

paper. The main effort hereby is to extend the solution iteration algorithm to the 

transition regions, where the domains and codomains becoming chaotic state. 

Particularly, we characterize the convergent sets in the codomain near the 

chaotic transition. The related theories and methodologies manifest a new 

paradigm for modeling chaos. As an example of efforts on the applications of 

modeling the physical phenomena, we apply the observations to the theories of 

formation of galaxy clusters and stellar systems. 

 

2 Construction of functions and equations 
 

2.1. Functions and Equations 

 

Given two inertial frames with different momentums, u and v, the observed 

momentum, u’, from v-frame is as follows: 

                                        

u’  =  ( u - v ) / ( 1 - vu/c
2
 )     (1) 

 

We set c
2
 = 1 and then multiply a phase connection, exp(iψ(u)), to the 

normalized complex form of the equation (1) to obtain the following: 

 

(u’/u) = exp(iψ(u))(1/u)[(u-v)/(1-uv)]   (2) 

 

We hereby define a generalized complex function as follows: 

 

fB,(z,m)= z
-1

 Π
m
Ci      

          (3) 

And Ci has the following forms:  
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Ci = exp(gi(z))[(ai-z)/( 1-āiz)]    (4) 

          

Where z is a complex variable representing the momentum u, ai is a parameter 

representing momentum v, āi is the complex conjugate of a complex number ai 

and m is an integer. The term gi(z) is a complex function assigned to Σ
p
2pπiz 

with p as an integer. The degree of fB(z,m) = P(z)/Q(z) is defined as Max{deg P, 

deg Q}. The function fB is called an extended Blaschke function (EBF). The 

extended Blaschke equation (EBE) is defined as follows: 

 

fB(z,m) – z = 0      (5) 

 

2.2. Domains and Codomains 

 

A domain can be the entire complex plane, C∞, or a set of complex numbers, 

such as z = x+yi, with (x
2 

+y
2
)
1/2 ≦ R, and R is a real number. For solving the 

EBF and EBE, a function f will be iterated as:  

 

f 
n
(z) = f ◦ f 

n-1
(z),      (6) 

 

Where n is a positive integer indicating the number of iteration. The function 

operates on a domain, called domain. The set of f 
n
(z) is called mapped 

codomain or simply a codomain. In the figures, the regions in black color 

represent stable Fatou sets containing the convergent sets of the concerned 

equations and the white (i.e., blank) regions correspond to Julia sets containing 

the divergent sets, the complementary sets of Fatou sets on C∞ in the context of 

dynamical systems. 

 

2.3. Parameter Space 

 

In order to characterize the domains and codomains, we define a set of 

parameters called parameter space. The parameter space includes six parameters: 

1) z, 2) a, 3) exp(gi(z)), 4) m, 5) iteration, and 6) degree. In the context of this 

paper we use the set {z, a, exp(gi(z)), m, iteration, degree} to represent this 

parameter space. For example, {a}, is one of the subsets of the parameter space. 

 

2.4. Domain-Codomain Mapping 

 

On the complex plane, the convergent domains of the EBFs form fractal patterns 

of with limited-layered structures (i.e., Herman rings), which demonstrate skip-

symmetry, symmetry broken, chaos, and degeneracy in conjunction with 

parameter space [7]. Fig. 1 shows a circle in the domain is mapped to a set of 

twisted figures in the codomain. We deduce that the mapping related to the tori 

structures in conjunction with EBFs. 
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Fig. 2 shows two types of fractal patterns in the domains. These patterns are 

plots at different scales. In order to demonstrate these figures, we reverse the 

color tone of Fatou and Julia sets, namely, the black areas are the divergent sets. 

 

 
 

Fig. 1. Domain-Codomain mapping of a unit circle. 

 
Fig. 2. Fractal Patterns of the divergent sets in the domains. 

 

 

3  Transitions 
 

3.1. Nonlinear to Linear Transitions 

 

Fig. 3 shows the Fatou sets of domains with different degrees and values of 

parameter {a}. Fig. 3 (a) through (d) show that the Fatou sets are quite 

topologically different for different degrees, from fB(z,1), the linear equation to 

fB(z,4). When the value of {a} increases from 0.1 to 0.8.  

 
   (a) fB(z,1), a=0.1    (b) fB(z,2), a=0.1   (c) fB(z,3), a=0.1     (d) fB(z,4), a = 0.1 

 
 (e) fB(z,1), a=0.8  (f) fB(z,2, a=0.8    (g) fB(z,3), a=0.8    (h) fB(z,4), a = 0.8 
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Fig. 3. Convergent sets of fB(z,1), fB(z,1), fB(z,1), and fB(z,1) with values of {a} at 

0.1 and 0.8 respectively. 

 

The Fatou sets show topologically similar with minor variations as shown from  

fB(z,1), the linear equation to fB(z,4) or even at higher degrees as in Fig. 3 (e) 

through (h). We call this phenomenon as nonlinear-to-linear transition. 

 

3.2. Continuum to Discrete Transitions 

 

When the value of {a} approaches to unity, the topological patterns of Fatou 

sets in the domains demonstrate an abrupt or quantum-type transition from the 

connected sets to the discrete sets. The discrete sets show Cantor-like pattern 

when mapping onto real axes on the complex plane, nevertheless, these sets are 

not Cantor sets by definition [6, 7, 8, 9]. 

 

The transition of EBF occurs between a = 1 – 10
-16 

and a = 1 – 10
-17

. Fig. 4 

shows this type of topological transition. Fig. 4(a) through 4(d) shows the 

nonlinear-to-linear degeneracy, and 4(e) shows the Cantor-like pattern at all 

degrees once the transition occurs. Here, we define Δ= 1- a. 

 

Fig. 5 shows another discreteness-to-continuum transition around a pole in 

original domains based on the parameter {degree}. Fig. 6 shows continuum-to-

discreteness transitions in mapped domain based on the parameter {iteration}. 

These transitions demonstrate a fabric tori structure of EBF.  

 

 
(a) fB(z,1)        (b) fB(z,2)         (c) fB(z,3)       (d) fB(z,10) 

All with Δ~ 10
-16 

 
(e) fB(z,m),Δ= 10

-17
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Fig. 4. Connected sets transit to discrete Cantor-like sets for all fB(z,m) 

atΔ= 10
-17

 in the domains. 

 

 

 
 

Fig. 5. Discreteness to continuum transitions around a pole of EBF as value 

{degree} increases in the domains. 

 

 

 
   

Fig. 6. Continuum to discreteness transitions as value {iteration} increases in 

the domains. 

 

 

3.3. Topological Transitions 

 

Fig. 7 shows a mapping from the convergent Fatou sets of the domain to the 

codomain. We examine the plots of three different values: absolute, real, and 

imaginary on the complex plane. The plots of absolute and real values show a 

modular pattern with 90 degree rotation. These sets are symmetrical to the y-

axis, comparing to the x-axis symmetry of the Fatou sets of the domain. The 

plots of imaginary values demonstrate conjugate symmetry to the y-axis. Fig. 8 

further shows this special feature with different values of {a}.  

 

Using the color bar (with z = 0 at center of the bar) on the right side of 

individual figures in Fig. 8, we observe the relationship of z(-x, y) = -z(x, y) , as 

so-called conjugate symmetry. From perspective of angular momentum, the 

indication of this conjugate symmetry is related to the conversation law. 
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Fig. 7. Separation of Real and Imaginary values in the Domains 

 

 

 
Fig. 8. Three patterns of conjugate symmetry at different values of {a}. 

 

3.4. Chaotic Transitions 

 

In the following, the convergent sets are colored in blue for those on the upper 

half of the complex plane, while those sets in red color are on the lower half. By 

doing so, we are able to examine the mappings in more details.  

 

When an additional angular momentum applied to EBF as equation 7 below:  

 

a = 0.1(cosθ + sinθ)      with degree = 4   (7) 
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In Fig. 9(a), each layer or level of fractals, namely, the divergent sets will be 

lagged more as the value θ increases, and subsequently connected to the 

adjacent divergent sets, and eventually diffuse and become null sets for value of 

{degree} is greater than 2 as shown in Fig. 9(a). For value of {degree} is 1 or 2, 

as shown in Fig. 9(b), this type of diffusion will not occur as shown in Fig. 9(b) 

[3, 4]. 

 

 
(a) degree = 4 

 
(b) degree = 1 or 2 

Fig. 9. Additional angular momentum applied to convergent sets 

 

 

4  EBF Solutions via Iteration 
 

4.1. Solution sets in Domain and Codomain 

 

As shown in Fig. 10, a new set of iteration algorithms are adopted for solving 

EBFs, and the discrete sets in the codomain demonstrate fixed-point-like 

solution sets.  

 
(a) Domain    (b) Codomain 
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Fig. 10. Iterated sets of  EBF for a = 0.1 and degree = 3 at scale of 10
4
 as the 

domain (10(a)) mapping to the convergent set (a), (b), (c), (d) and (e) in the 

codomain (10(b)) showing violation of FTA. 

As Fundamental Theorem of Algebra (FTA) asserts that the number of solution 

sets is equal to the degree of EBF, however, we found cases of FTA violation as 

shown in Fig. 10 [10]. 

 

For the individual convergent sets shown in Fig. 10 (b) in the codomain, we can 

examine closely which sets in the domain are mapping from as shown in Fig. 11. 

These figures demonstrate a deterministic perspective against the uncertainty of 

mapping and may fundamentally change the definition of probability in the 

context of statistics. 

 

 

 

 

 

 

 

 All sets   set (a)          set (b) 

 

 

 

 

 

 

 

   set (c)              set (d)          set (e) 

 

Fig. 11. The individual sets in domain (10(a)) corresponding to the convergent 

set (a), (b), (c), (d) and (e) in the codomain (10(b)). 

 

Fig. 12 shows solutions by iteration for 7
th

 degree and 12
th

 degree EBFs, the 

numbers of solution sets are as FTA asserts. The solution sets show that the 

individual sets with specific real values are with spread-out imaginary sets 

demonstrating various distributions. 

 

 
(a) fB(z,7)             (b) fB(z,12)) 
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Fig. 12. Two solution plots with two different values of {degree}. 

 

4.2. Distributions 

 

For the individual convergent sets as shown in Fig. 10 (b), we further plot the 

distributions of real and imaginary point sets with a designated partition as 

shown in Fig. 13.  The plot at bottom of Fig.13 shows the weights of individual 

sets, while the plot on the right side of Fig. 13 shows overall distribution along 

the imaginary part, the angular momentum or phase [8, 9]. 

 

 
 

Fig. 13. Distribution plots of convergent sets in the codomain as in Fig. 10(b). 

 

         
     All sets                set (a)               set (b) 
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       set (c)     set (d)                set (e) 

Fig. 14. Distribution plots of individual convergent sets in the codomain. 

Further, we plot the distributions of the all and individual sets in Fig. 10 and Fig. 

11 as shown Fig. 14. These distributions demonstrate 1-peak, 2-peak, and 3-

peak distributions with different peak values. These distributions demonstrate 

scaling invariant to the parameter {iteration}. 

 

At different scales of hierarchical convergent sets as same parameter space as in 

Fig. 10, the convergent sets in codomain demonstrate similar FTA violation, but 

the distributions are different. Fig. 15 shows that when scale changed from 10
4
 

to 10
-4 

, the distribution is more a quantum-mechanics distribution as in Fig. 

15(b). 

 

       
(a) Convergent sets in codomain   (b) Distribution 

 

Fig. 15. The convergent sets for a = 0.1 and degree = 3 at scale of 10
-4

 

comparing with that in Fig. 10 and Fig. 13. 

 

 

5  Pre-Chaos Sets in Domains and Codomains 

 
Applying the methods described in the section 4 to the convergent sets in 

chaotic transitions described in section 3.4, we can examine closely the 

convergent sets in the codomains. 

 

5.1. Near the chaotic transitions 

 

As described in equation (7) in section 3.4., we have the following parameters 

as in equation (8): 
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a = 0.2 (cos(75*π/180) + sin (75*π/180) )    with degree = 3 (8) 

 

As the value θ increases and the convergent sets approaching to the chaotic 

transitions, two divergent sets are both diffusing to the sub-fractal sets and 

demonstrate a balanced diffusion. Subsequently, the sets converge slowly and 

present a hierarchical structure of several layers, which are viable for the 

modelling of observed phenomena in the nature. 

Fig. 16 shows the plots the distributions of the convergent sets in the codomain 

of equation (8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. The distributions of convergent sets for a = 0.2, θ=(75*π/180) and 

degree = 3 in the codomain. 

 

Fig. 17 shows three distribution plots corresponding to the imaginary values 

(left set in Fig. 16) in details. The symmetry showing in Fig. 14 is broken. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. The distributions of imaginary values of the convergent sets for a = 0.2, 

θ=(75*π/180) and degree = 3 in the codomain. 
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Fig. 18 shows four distribution plots corresponding to real values (bottom set in 

Fig. 16) in details. Both distribution sets of the real and imaginary values are not 

symmetrical, nevertheless, they are canonical distributions.  The important ideas 

from these plots for the theoretical constructions are that in the chaotic 

transitions, the values of momentum and angular momentum are in limited 

discrete groups. This observation manifests that we can model the turbulence, 

chaos, and related phenomena more straightforward in momentum-angular-

momentum space than those in temporal space. In the following section, we will 

further extend this construction based on hierarchical structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. The distributions of real values of the convergent sets for a = 0.2, 

θ=(75*π/180) and degree = 3 in the codomain. 

 

 

5.2. Hierarchical Structures 

 

The convergent sets in Fig. 16 have more internal structures as we examine in 

details. In the following, we study another set of parameters in equation (9) as 

below: 

 

a = 0.1 (cos(120*π/180) + sin (120*π/180) )  with degree = 3 (9) 

 

The convergent sets in codomain as shown in Fig. 19(a) are further expanded in 

Fig. 19(b).  
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(a) Convergent sets in codomain        (b) Expanded the circled area in (a) 

 

Fig. 19. The distributions of the convergent sets for a = 0.1, θ=(120*π/180) and 

degree = 3 in the codomain. 

We further expand the plot the three convergent groups of Fig. 19(b) to three 

individual plots as shown in Fig. 20. Then we select one of four sub-groups in 

Group 1 as shown Fig. 20(a), and expand one more level (2
nd

 level) down to 

show the convergent sets as in Fig. 21. 

 

 
(a) Group 1  (b) Group 2  (c) Group 3 

  

Fig. 20. The 1
st 

-level expanded distributions of the convergent sets for a = 0.1, 

θ=(120*π/180) and degree = 3 in the codomain. 

 

 

 
 

Fig. 21. The 2
nd

 -level expanded distributions of the convergent sets for a = 0.1, 

θ=(120*π/180) and degree = 3 in the codomain. 

 

Although we are studying in the momentum-angular-momentum space, we can 

still see the richness of this construction for modeling physical phenomena, such 
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as formation of galaxy cluster and stellar system, statistics related to Boltzmann 

Equations and Navier-Stokes equation. 

 

As an example of modeling the formation of our stellar system, we can adopt 

the momentum-angular-momentum groups shown in Fig. 21 to the formation of 

individual planets from flattening disk of the solar nebular system. 

 

 

Conclusions 
 

In this paper, we explore the chaotic transition based on the mathematical 

construction of the extended Blaschke product (EBP), which can be claimed as 

foundation of Nonlinear Relativity. We present the domain-codomain mapping 

in the context of dynamical systems, and elaborate the convergent sets of 

solution to chaotic transition. 

 

We can summarize our study as follows: 

 

 The solution sets of chaotic transitions are discrete, simple, hierarchical, 

and slowly convergent in the momentum space comparing with those in 

temporal space. 

 The solution sets of pre-chaos demonstrate discrete distributions and 

potentially provide models for formation and structure of galaxy cluster, 

Boltzmann Equation, Navier-Stokes equations, among other studies. 

 The complex functions with conjugate forms produce root counts higher 

than that of FTA asserts. 

 

We will further investigate this mathematical construction to the modeling of 

chaos in the future. 
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From chaotic motion to Brownian motion.

A survey and some connected problems
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Abstract. In this paper we shall refer to the passing from chaotic motion to
Brownian motion. To this end a review of some aspects concerning the Markovian
nature of the Brownian path is presented. We discuss about some interesting results
regarding to the 3-dimensional Brownian motion in connection with the Markov
process in a generalized sense and the k-dimensional Brownian motion in connection
with the Dirichlet problem. Then, we shall refer to some special connected studies.

Keywords: stochastic calculus, Markov processes, Markov property, Brownian
motion, convergence.

1 Introduction

Let us imagine a chaotic motion of a particle of colloidal size immersed in a fluid.
Such a chaotic motion of a particle is called, usually, Brownian motion and the
particle which performs such a motion is referred to as a Brownian particle. Such
a chaotic perpetual motion of a Brownian particle is the result of the collisions of
particle with the molecules of the fluid in which there is.

But this particle is much bigger and also heavier than the molecules of the
fluid which it collide, and then each collision has a negligible effect, while the
superposition of many small interactions will produce an observable effect.

On the other hand, for a Brownian particle such molecular collisions appear in
a very rapid succession, their number being enormous. For a so high frequency,
evidently, the small changes in the particle’s path, caused by each single impact,
are too fine to be observable. For this reason the exact path of the particle can be
described only by statistical methods.

Used especially in Physics, Brownian motion is of ever increasing importance
not only in Probability theory but also in classical Analysis. Its fascinating proper-
ties and its far-reaching extension of the simplest normal limit theorems to func-
tional limit distributions acted, and continue to act, as a catalyst in random ana-
lysis. As some authors remarks too, the Brownian motion reflects a perfection that
seems closer to a law of nature than to a human invention.

Brownian motion was frequently explained as due to the fact that particles were
alive.

We remind that Poincaré thought that it contradicted the second law of Ther-
modynamics.
_________________ 

8
th
 CHAOS Conference Proceedings, 26-29 May 2015, Henri Poincaré Institute, Paris France 

 

© 2015 ISAST                               
 
 

 

587



Today we know that this motion is due to the bombardament of the particles
by the molecules of the medium. In a liquid, under normal conditions, the order
of magnitude of the number of these impacts is of 1020 per second. It is only in
1905 that kinetic molecular theory led Einstein to the first mathematical model
of Brownian motion. He began by deriving its possible existence and then only
learned that it had been observed.

A completely different origin of mathematical Brownian motion is a game the-
oretic model for fluctuations of stock prices due to L. Bachélier from 1900.

In the sequel we shell refer shortly to his vision. At the same time we shall
discuss some aspects regarding the Markovian nature of the Brownian path, the 3-
dimensional Brownian motion in connection with a Markov process in a generalized
sense and the extension to the k-dimensional Brownian motion. Finally, we shall
refer shortly to some special connected studies.

2 The Markovian nature of the Brownian path

In his thesis (Théorie de la spéculation, Ann. Sci. École Norm. Sup. 17, 21-86,
1900) Bachélier found some solutions of the type ψ(x). He derived the law governing
the position of a single grain performing a 1-dimensional Brownian motion starting
at a ∈ R1 at time t = 0:

Pa[x(t) ∈ db] = g(t, a, b)db (t, a, b) ∈ (0,+∞)×R2, (1)

where g is the source (Green) function

g(t, a, b) =
e−

(b−a)2

2t

√
2πt

(2)

of the problem of heat flow:

∂u

∂t
=

1
2
∂2u

∂a2
(t > 0). (3)

Bachélier also pointed out the Markovian nature of the Brownian path expressed
in

Pa[a1 ≤ x(t1) < b1, a2 ≤ x(t2) < b2, · · · , an ≤ x(tn) < bn] =

=

b1∫
a1

b2∫
a2

· · ·
bn∫
an

g(t1, a, ξ1) g(t2 − t1, ξ1, ξ2) · · ·

· · · g(tn − tn−1, ξn−1, ξn) dξ1 dξ2 · · · dξn, 0 < t1 < t2 < · · · tn (4)

and used it to establish the law of maximum displacement

P0

[
max
s≤t

x(s) ≤ b
]

= 2

b∫
0

e−
a2
2t

√
2πt

da t > 0, b ≥ 0. (5)

It is very interesting that A. Einstein, in 1905, also derived (1) from statistical
mechanical considerations and applied it to the determination of molecular diam-
eters (see his work Investigations on the theory of the Brownian movement, New
York, 1956).

The Brownian motion can be defined as follows
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Definition 2.1 A continuous-time stochastic process {Bt | 0 ≤ t ≤ T} is called a
”standard Brownian motion” on [0, T ) if it has the following four properties:

i B0 = 0.

ii The increments of Bt are independent; that is, for any finite set of times
0 ≤ t1 < t2 < · · · < tn < T, the random variables

Bt2 −Bt1 , Bt3 −Bt2 , · · · , Btn −Btn−1

are independent.

iii For any 0 ≤ s ≤ t < T the increment Bt − Bs has the normal distribution
with mean 0 and variance t− s.

iv For all ω in a set of probability one, Bt(ω) is a continuous function of t.

The Brownian motion can be represented as a random sum of integrals of ortho-
gonal functions. Such a representation satisfies the theoretician’s need to prove the
existence of a process with the four defining properties of Brownian motion, but
it also serves more concrete demands. Especially, the series representation can be
used to derive almost all of the most important analytical properties of Brownian
motion. It can also give a powerful numerical method for generating the Brownian
motion paths that are required in computer simulation.

3 In short about the Markov process in the gene-
ralized sense

A Markov process can be defined as follows:

Definition 3.1 A Markov process is a system of stochastic processes

{Xt(ω), t ∈ T, ω ∈ (Ω,K, Pa)}a∈S ,

that is for each a ∈ S, {Xt}t∈S is a stochastic process defined on the probability
space (Ω,K, Pa).

But it is not difficult to observe that a definition of a Markov process as in
Definition 3.1 not correspond to many processes that are of a real interest. For this
reason it is useful to obtain an extension of this notion. Such an extended notion
has been proposed by K. Itô ([6]) and we shall refer to it shortly.

Let E be a separable Banach space with real coefficients and norm || · || and
let also L(E,E) be the space of all bounded linear operators E −→ E. It can be
observed that L(E,E) is a linear space.

Definition 3.2 The collection of stochastic processes

X = {Xt(ω) ≡ ω(t) ∈ S, t ∈ T, ω ∈ (Ω,K, Pa)}a∈S

is called a ”Markov process” if the following conditions are satisfied:

1) the ”state space” S is a complete separable metric space and K(S) is a topolo-
gical σ-algebra on S;
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2) the ”time internal” T = [0,∞);

3) the ”space of paths” Ω is the space of all right continuous functions T −→ S
and K is the σ-algebra K[Xt : t ∈ T ] on Ω;

4) the probability law of the path starting at a, Pa(H), is a probability measure on
(Ω,K) for every a ∈ S which satisfy the following conditions:

4a) Pa(H) is K(S)-measurable in a for every H ∈ K;

4b) Pa(X0 = a) = 1;

4c) Pa(Xt1 ∈ E1, · · · , Xtn ∈ En) =∫
. . .

∫
ai∈Ei

Pa(Xt1 ∈ da1)Pa1(Xt2−t1 ∈ da2) . . .

. . . Pan−1(Xtn−tn−1 ∈ dan) for 0 < t1 < t2 < . . . < tn.

According to Definition 3.2, X will be referred as a Markov process in the
generalized sense.

Now let X be a Markov process in a generalized sense and let us denote by
B(S) the space of all bounded real K(S)-measurable functions. Also let us consider
a function f ∈ B(S).

It is supposed that

Ea

( ∞∫
0

|f(Xt)|dt
)

(6)

is bounded in a. Therefore

Uf(a) = Ea

( ∞∫
0

f(Xt)dt
)

(7)

is well-defined and is a bounded K(S)-measurable function of a ∈ S.
The Uf is called the potential of f with respect to X. Having in view that

Uf = limα↓0Rαf , it is reasonable to write R0 instead of U . Based on this fact,
Rαf will be called the potential of order α of f .

Remark 3.1 It is useful to retain that Rαf ∈ B(S) for α > 0; and generally
f ∈ B(S) while R0f(= Uf) ∈ B(S) under the condition (6).

Now the name potential is justified by the following theorem on the 3-dimensional
Brownian motion

Theorem 3.1 Let X be the 3-dimensional Brownian motion. If f ∈ B(S) has
compact support, then f satisfies (6) and

Uf(a) =
1

2π

∫
R3

f(b)db
|b− a|

=
1

2π
×Newtonian potential of t. (8)

Let us denote by D a bounded domain in Rn, n ≥ 1.
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Definition 3.3 A function g is called ”harmonic” in D if g is C∞ in D and if
∆g = 0 (where C∞ is the class of functions differentiable infinitely many times).

Now let f be a continuous function defined on the boundary ∂D and let us
denote by X a k-dimensional Brownian motion defined as follows

Definition 3.4 The k-dimensional Brownian motion is defined on S = Rk by the
equality

pt(a, db) = (2πt)−
k
2 e−

|b−a|2
2t db = Nt(b− a)db,

where |b− a| is the norm of b− a in Rk.

Given a k-dimensional Brownian motion X, if there exists a solution g for the
Dirichlet problem (D, f)1, then

g(a) = Ea(f(Xλ)), (9)

where λ ≡ λD = exit time from D (that is to say λD = inf{t > 0 : Xt 6∈ D}, the
hitting time of DC).

In this context an interesting result is given in the following theorem

Theorem 3.2 If D is a bounded domain and g is a solution of the Dirichlet problem
(D, f), then

g(a) = Ea(f(Xλ))

where a ∈ D and λ = λD.

On the other hand, the Dirichlet problem (D, f) has a solution if ∂D is smooth
as it is prooved in the following theorem

Theorem 3.3 If ∂D is smooth, then

g(a) = Ea(f(Xλ)),

where λ = λD = exit time fromD, is the solution of the Dirichlet problem (D, f).

Note 3.1 The expression ”∂D is smooth” means that ∂D has a unic tangent plane
at each point x of ∂D and the outward unit normal of the tangent plane at x moves
continously with x.

4 A general survey of some special connected
studies

Bachélier was unable to obtain a clear picture of the Brownian motion and his
ideas were unappreciated at that time. This because a precise definition of the
Brownian motion involves a measure on the path space, and it was not until 1909
when É. Borel published his classical memoir on Bernoulli trials (Les probabilités

1The Diriclet problem (D, f) is to find a continuous function g = gD,f on the closure

D ≡ D ∪ ∂D such that g is harmonic in D and g = f ◦ g ∂D.
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dénombrables et leurs applications arithmétique Rend. Circ. Mat. Palermo 27,
1909, 247-271.

As soon as the ideas of Borel, Lebesgue and Daniell appeared, it was possible to
put the Brownian motion on a firm mathematical foundation and this was achived
by N. Wiener in 1923 (Differential space, J. Math. Phis. 2,1923, 131-174).

Many researchers were fascinated by the great beauty of the theory of Brownian
motion and many results have been obtained in the last decades. As for example,
among other things, in Diffusion processes and their sample paths by K. Itô and
H.P. McKean, Jr., in Theory and applications of stochastic differential equations by
Z. Schuss, or in Stochastic approximation by M.T. Wasan as in Stochastic calculus
and its applications to some problems in finance by J.M. Steele. In this context one
can consider also our book Aspects of convergence and approximation in random
systems analysis.

As we have already emphasized a rigorous definition and study of (mathema-
tical) Brownian motion requires measure theory.

Consider the space of continuous path w : t ∈ [0,+∞)→ R1 with coordinates
x(t) = w(t) and let β be the smallest Borel algebra of subsets B of this path space
which includes all the simple events

B = (w : a ≤ x(t) < b), (t ≥ 0, a < b).

Wiener established the existence of non-negative Borel measures Pa(B), (a ∈ R1, B ∈
β) for which (4) holds. Among other things, this result attaches a precise meaning
to Bachélier’s statement that the Brownian path is continuous.

Paul Lévy (Sur certain processus stochastiques homogènes, Compositio Math.
7, 1939, pp. 283-339) found another construction of the Brownian motion
and also gave a profound description of the fine structure of the individual
Brownian path2.

Lévy’s results with several complements due to D.B. Ray (Sojourn times
of a diffusion process, IJM 7, 1963, 615-630) and K. Itô & H.P. McKean Jr.
(Diffusion processes and their Sample Path, Springer-Verlag Berlin heidel-
berg, 1956) are of a special attention to the standard Brownian local time
(la measure du voisinage of P. Lévy):

τ(t, a) = limb↓a
measure(s : a ≤ x(s) < b, s ≤ t)

2(b− a)
. (10)

Given a Sturm-Liouville operator

D(c2/2)D2 + c1D, c2 > 0

on the line, the source (Green) function p = p(t, a, b) of the problem

∂u

∂t
= Du, t > 0 (11)

share with the Gauss kernel g of (2) the properties:
(a) 0 ≤ p

2P. Lévy, Processus stochastiques et mouvement brownien, Paris, 1948
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(b)
∫
R1 p(t, a, b)db = 1

(c) p(t, a, b) =
∫
R1 p(t− s, a, c)p(s, c, b)dc, t > s > 0.

Soon after the publication of Wiener’s monograph (Generalized harmonic
ana-lysis, Acta Math. 5, 1930, 117-258), the associated stochastic motions
(diffusions) analogous to the Brownian motion (D = D2/2) made their de-
but. At a later date (1946) K. Itô (On a stochastic integral equation, Proc.
Japan acad. 22, 1946, 32-35) proved that if

|c1(b)− c1(a)|+ |
√
c2(b)−

√
c2(a)| < constant× |b− a|, (12)

then the motion associated with

D = (c2/2)D2 + c1D

is identical in law to the ”continuous” solution of

a(t) = a(0) +
∫ t

0
c1(a)ds+

∫ t

0

√
c2(a)db (13)

where b is a standard Brownian motion.
W. Feller took to lead in the next development. Given a Markovian

motion with sample paths w : t → x(t) and probabilities Pa(B) on a linear
interval Q, the operators

Ht : f →
∫
Pa[x(t) ∈ db]f(b) (14)

constitute a semi-group :

Ht = Ht−sHs, t ≥ s (15)

and as E. Hille (Represenation of one-parameter semi-groups of linear tans-
formations, PNAS 28, 1942, 175-178) and K. Yosida (On the differentiability
and the representation of one-parameter semi-group of linear operators, J.
Math. Soc. Japan 1, 1948, 15-21) proved,

Ht = etD, t > 0 (16)

with a suitable interpretation of the exponential, where D is the so-called
generator.

We mention again the name of D. Ray to emphasize that he proved
(Stationary Markov processes with continuos path, TAMS, 82, 1956, pp.
452-493) that if the motion is strict Markov (i.e. if it starts afresh at certain
stochastic (Markov) times including that passage times ma = min(t : x(t) =
a), etc.), then the so-called generator D is local if and only if the motion
has continuous sample paths, substantiating a conjecture of W. Feller.
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Then by combining this with some other Feller’s papers as

•W. Feller, The paraboloc differential equations and the associated semi-
groups of tansformaions, AM 55, 1952, 468-519;
• W. Feller, The general diffusion operator and positivity preserving

semi-groups in one dimension, AM 60, 1954, 417-436;
•W. Feller, On second order differential operators, AM 61, 1955, 90-105;
• W. Feller, Generalized second order differential operators and their

lateral conditions, IJM 1, 1957, 456-504,

it is implied that the generator of a strict Markovian motion with continuous
paths (diffusion) can be expressed as a differential operator

(Du)(a) = lim
b↓a

u+(b)− u+(a)
m(a, b)

, (17)

where m is a non-negative Borel measure positive on open intervals and,
with a change of scale

u+(a) = lim
b↓a

(b− a)−1 [u(b)− u(a)],

except of certain singular points where D degenerates to a differential oper-
ator of degreee ≤ 1.

Finally we remark that E.B. Dynkin (Continous one-dimensional Markov
processes, Dokl. Akad. Nauk SSSR, 105, 1955, 405-408) also arrived at the
idea of a stict Markov process. He derived an elegant formula for D and
used it to make a simple (proba-bilistic) proof of Feller’s expression for D.

At the same time we consider that the papers of R. Blumenthal - An
extended Markov property, TAMS 85, 1957, 52-72, and G. Hunt - Some
theorems concerning Brownian motion, TAMS 81, 1956, 294-319, as well as
the monographs of E.B. Dynkin - Principles of the theory of Markov random
processes, Moskow-Leningrad, 1959; and Markov processes, Moskow, 1963,
must also to be mentioned in such a connection.q

Remark 4.1 Many other details regarding to the topics just discussed, proofs
and some related problems can be found in [6], [5], [1], [4], [21], [10], [22],
[9], [15], [13].

References

[1] Bharucha-Reid, A.T. Elements of the Theory of Markov Processes and
Their Applications. Dover Publications, Inc., Mineola, New York, 1997.

[2] Gihman, I.I. and Skorohod, A.V. Stochastic Differential Equations.
Spriger-Verlag, Berlin, 1972.

594



[3] Gnedenko, B.V. The Theory of Probability. Mir Publisher, Moskow,
1976.
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1  Introduction 
 

Basic goal of modern cryptography is ensuring security of communication 

across an insecure medium such as Internet. In order to achieve this goal, 

modern cryptography supplies a protocol. Briefly, the modern cryptography is 

about constructing and analyzing protocols which overcome the influence of 

adversaries [1-4]. A protocol is a collection of programs. These programs tell 
each party how to behave. A protocol can be probabilistic. This means that it 

can make random choices. Therefore, pseudo random functions are central tools 

in the design of protocols. A pseudo random function is a family of functions 

with the property that the input-output behavior of a random instance of the 

family is “computationally indistinguishable” from that of a random function [1, 

2]. 

Chaos theory has been developed to model complex behavior using quite 

simple mathematical models. Chaotic systems are the highly unpredictable and 

random-looking signals [5]. In theory, there is a relationship between chaos and 

cryptography. The main characteristics of chaotic dynamics (dependency on the 

initial conditions and control parameters, ergodicity, mixing) are connected to 
the requirements of cryptography (confusion and diffusion of information) [6, 

7].  

Although there are number of chaos based cryptologic system proposals in 

the literature, it is curious that the subject is quite far from mainstream 

cryptology literature [8, 9]. This is largely because of the misinterpretation of 
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the relationship between chaos and cryptology sciences. Chief aim of the 

cryptology science is to design and analyze the protocols to provide secure 

communication. Theoretically even if it is possible to use the chaotic systems 

during protocol design stage, [10-19] when practical applications considered 

there are several deficient problems [20-27, 37].  
This study analyses the effects of chaotic system behaviors over 

cryptography systems depending on computational precision, when definite 

chaotic systems are used as pseudo random processes during cryptologic 

protocol design. As the result of analyses it is revealed that, although chaotic 

outputs successfully pass the standard statistical tests but, their randomness 

properties are worse than any standard random function. With this result, it is 

shown that neither digital chaos is suitable for cryptologic designs nor the 

statistical test packages are cryptographically adequate.   

The outline of the study is as follows. In the next section, we examine basic 

problems of chaos based cryptography. In section 3, we show that effect of 

computational precision in chaotic systems. In the section 4, we present the 

summary of the random mapping statistics. In Section 5, we demonstrate 
performance comparisons. Finally, we give concluding remarks. 

 

2  Problems of Chaos Based Cryptography 
In the cryptography, there are two development paradigms, namely 

cryptanalysis-driven design and proof-driven design [1-3]. Chaos based 

cryptography studies have been used cryptanalysis-driven design paradigm. This 
paradigm has worked something like this. 

1. A cryptographic goal is recognized. 

2. A solution is offered. 

3. One searches for an attack on the proposed solution. 

4. When one is found, if it is deemed damaging or indicative of a 

potential weakness, you go back to Step 2 and try to come up with a 

better solution. The process then continues. 

There are some difficulties with the approach of cryptanalysis-drive design. 
The obvious problem is that one never knows if things are right, nor when one is 

finished! The process should iterate until one feels “confident” that the solution 

is adequate. But one has to accept that design errors might come to light at any 

time. Despite that problem, cryptanalysis-drive design process is still 

employable. However, the main problem of chaos based cryptographic designs 

is the usage of very simple statistical tests for cryptanalysis studies.  For 

example, NPCR (number of pixels change rate), UACI (unified average 

changing intensity) and histogram analysis have been used for differential and 

linear cryptanalysis of almost all chaos based image encryption algorithms. 

In addition to the problems arising from the analysis, the fact that the chaotic 

systems are realized on digital computers is another issue to be evaluated. While 
cryptologic designs use a finite set of integers as the workspace, chaotic systems 

use a set of real numbers [20]. As a result, simulations of chaotic systems on 

digital computers suffer from truncation and round-off errors. In consequence, 
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random behavior expected from chaos is replaced with periodical behavior 

which does not meet the confusion and diffusion requirements of the cryptologic 

designs. This effect is shown in detail in next section. 

 

3  Effects of Computational Precision in Chaotic Systems 
Data representation is one of the most important theoretical problems for the 

computers which are designed to process, control and store of data. Data types 

like integers, real numbers or strings can be infinite by nature. However, since 

computers only have finite computational capacity, numerical errors will arise 

depending on computational precision. These numerical errors cause different 

data values to be perceived as representing the same value.  Pigeonhole 

principle which is one of the most powerful tools in computer science can be 
applied to show this problem theoretically. If there are more pigeons than holes 

they occupy, then at least two pigeons must be in the same hole. 

Theorem: (Pigeonhole Principle). If , then for every total 

function , there exist two different elements of  that are 

mapped by  to the same element of . 

In the interval [0, 1], there are infinitely real numbers. Let’s consider 

representing these numbers with 4 bits computational precision. In such case, 

the [0, 1] interval will be divided into 24-1=15 different intervals. The upper and 

lower limits of those 15 intervals will be as shown in Fig 1. This implies that all 

real numbers falling into same interval will be represented with a single value, 

for instance all real numbers between  0.0625 and 0.1250 will be represented as 

0,0625,  producing numerical errors in all computations. This type of numerical 

errors will affect the pseudorandom behavior of the chaotic system. To 

illustrate, a logistic map implemented on a computer with 4 bits computational 

precision and the resulting trajectories are shown in Fig. 2. Although there are 

24-1=15 different intervals and theoretically it is expected to obtain 15 different 
trajectories, only 2 different trajectories are obtained. 

 

 
Fig. 1. Computation intervals for 4 bits computational precision 

 

4  Properties of Random Mapping 

Let  be a function, , where  denote the finite domain of size  

and let  denote the collection of all functions where every function is equally 

likely to be chosen. So the sample space consists of  random mappings, in 

other words, the probability that a particular function  from  is chosen is 

. Starting from a point  and iteratively applying , the following 

sequence is obtained; 

               (1) 
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Fig 2. Trajectories of logistic map for 4 bits computational precision 

 

The  iteration of  on , where  will be 

 where .  For some  if 

 then we call , a  image of  in . For ,  

may not exist, which we will call terminal nodes, (in other words, a node may 

have no inverse image) or may not be uniquely determined. A random mapping 

 can be represented by a functional graph. A functional graph of a function 

 is a directed graph whose nodes are the elements of  and whose 

edges are the ordered pairs , for all . 

 

 
Fig. 3. Functional Graph 

 

In Figure 3, the typical behavior of an iteration operation is given. Since the 

set  is finite, after some iterations, we will encounter a point that has occurred 

before. Let  be the point that the iteration enters a 

loop. Then, ,  is the smallest positive integer 

which we call the cycle length. The path between  and  is called the 

tail length. The sum of the tail length and cycle length is defined as the -

length. 
Expected values of random mappings are widely studied in the literature. 

The results of the statistical behaviors of random mappings are summarized 

below [2, 28-31]. 
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 Number of components:  

 Number of terminal nodes:  

 Number of image nodes:  

 Average cycle length:  

 Average tail length:  

 Average length:  

 Average component size:  

 Maximum cycle length: 0.78248  

 Maximum tail length: 1.73746  

 

5  Performance Comparisons of Chaos Based Randomness 
One of the simplest and most studied chaotic system is the logistic map. In 

the many studies, logistic map has been studied as pseudo random number 

generator. The logistic map is given in Eq. (2). 

               (2)  

where  and  are the system variable and parameter, respectively, 

and  is the number of iterations. Thus, given an initial value  and a 

parameter ; the chaotic outputs are computed. For the trivial 

solution is the only fixed point. For ; we have a non-trivial fixed 

point. For , the map exhibits the phenomenon of periodic 

doubling. For , the map becomes chaotic.  

Generating a pseudo random binary sequence from the orbit of the logistic 

map essentially requires mapping the state of the system to . A simple 

way for turning a real number  to a discrete bit symbol  is simply by using a 

threshold function. 

              (3) 

The output sequences of logistic map should be statistically 

indistinguishable from truly random sequences, therefore statistical analysis of 

logistic map are crucial. Analysis of logistic map is performed by producing a 

sample sequence, and evaluating this sequence by statistical randomness tests. 

A statistical randomness test is developed to test a null hypothesis (H0) 

which states the input sequence is random. The test takes a binary sequence as 

an input and “accepts” or “rejects” the hypothesis. Randomness tests are 
probabilistic and there are two types of errors. If the data is random and H0 is 

601



rejected type I error is occurred and if the data is nonrandom and H0 is accepted 

type II error is occurred. The probability of a type I error is called the level of 

significance of the test and denoted by . A statistical test produces a real 

number between 0 and 1 which is called p-value. If p-value >  then H0 is 

accepted, otherwise rejected. 

A test suite is a collection of statistical randomness test that are designed to 

test the randomness properties of sequences. There are several test suites in the 

literature: 

 

 The first collection of randomness tests were presented by Knuth in his 

famous book [32]. 

 CRYPT-X, a test suite developed in Queensland University of 

Technology [33]. 

 DIEHARD Test Suite was developed by Marsaglia and published in 

1995 on a CDROM [34]. 

 TESTU01 is a recently designed test suite, which has two categories: 
Those that apply to a sequence of real numbers in (0, 1) and those 

designed for a sequence of bits [35]. 

 NIST Test Suite originally consisted of 16 tests [36]. The randomness 

tests in the suite are Frequency Test, Frequency Test within a Block, 

Runs Test, Test for the Longest Run of Ones in a Block, Binary Matrix 

Rank Test, Discrete Fourier Transform Test, Non-overlapping 

Template Matching Test, Overlapping Template Matching Test, 

Maurer’s Universal Statistical Test, Lempel-Ziv Compression Test, 

Linear Complexity Test, Approximate Entropy Test, Cumulative Sums 

Test, Random Excursions Test, and Random Excursions Variant Test.  

NIST Test Suite has been used in this study to assess randomness. The 

obtained results are shown in Table 1. 

Calculated and expected values of random functions, obtained by using 

chaotic logistic map, are given in Table 2 for different computation precision 

values n.  As can be seen from the table, calculated values are fewer than the 

expected values for chaos based random function. These results show that even 

though digital chaos based functions can pass the statistical tests, they are not fit 

to be used for cryptologic randomness 
 

6 Conclusions 
As a result of the analysis studies, it is determined that security of the chaos 

based cryptographic designs typically analyzed by using statistical tests alone.  

A common misconception, that the successful statistical test results are enough 

to analyze the security of a cryptologic system, is the most important problem in 

this area. To remove this misconception, the deficiencies of the statistical tests 
are investigated.  It is revealed that, although chaotic outputs successfully pass 

the standard statistical tests their randomness properties are worse than any 

standard random function. Consequently, the question - whether numerical 
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chaos is really suitable for new cryptologic designs - should be re-evaluated by 

the chaotic cryptology literature. 

 

Table 1 Results of SP 800-22 test for logistic map 

Test p-value Logistic map 

Approximate entropy 0.1554 pass 

Block Frequency 0.4968 pass 

Cumulative sums 
0.889, 

0.984 
pass 

FFT 0.1957 pass 

Frequency 0.8556 pass 

Linear complexity 0.8687 pass 

Random excursions 0.2117… pass 

Random excursions variant 0.2067… pass 

Longest runs of ones 0.6153 pass 

Overlapping template matching 0.6224 pass 

Rank 0.3430 pass 

Runs 0.8965 pass 

Serial 
0.672, 
0.948 

pass 

Universal statistical 0.6508 pass 

 

Table 2 Performance comparisons 

Computation precisions 28 210 216 223 

M
ax

im
u

m
 

p
-l

en
g

th
 Expected value 20 40 320 2896 

Computed value 30 33 264 487 

C
o

m
p

o
n
en

t 

si
ze

 

Expected value 4 5 8 11 

Computed value 4 4 6 7 
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Abstract. Many applications require random numbers. Generating high quality random 
numbers is a very serious problem. It is quite easy to design a random number generator 
that will pass the statistical tests, but it is much more difficult to know where the 
randomness comes from and how much true randomness is there. Chaotic system is 
regarded as an important entropy source in the design of random number generator. The 

relationship between random number generator and chaotic dynamical systems is studied 
in this paper. The main contribution of this paper is that it gives an analysis method for 
entropy source in random number generators. Entropy describes the unpredictability of 
random number generators. In practice, calculation of entropy is hard, so Lyapunov 
exponent has been used as an unpredictability measure of entropy source. Proposed 
analysis method has been verified on a chaos based random number generator design, 
and fits to analysis of other RNG designs. 
Keywords: Random number generator, Entropy, Lyapunov Exponent, Chaos. 
 

1  Introduction 
A random number generator (RNG) produces a sequence of random (or 

random-looking) numbers in a predetermined range, such as r_i∈{0,1} or 

r_i∈[0,1]. Random numbers have many applications: statistical physics, 

simulation, industrial testing and labeling, games, gambling, Monte Carlo 

methods, and cryptography [1, 2]. 

Generating high quality random numbers is a very serious problem. The 

random numbers should assume all admissible values with equal probability and 

should be independent from predecessors and successors. This characterizes an 

ideal RNG. In an ideal RNG, even with maximal knowhow and unlimited 

computational power an attacker has no better strategy blind guessing. Guessing 

n random bits costs 2^(n-1) trials in average. The guess work remains invariant 
in the course of the time. However, an ideal RNG is a mathematical construct. 

There are two basic categories of RNGs: True RNGs and Deterministic RNGs. 

It is quite easy to design a RNG that will pass the statistical tests, but it is much 

more difficult to know where the randomness comes from and how much true 

randomness is there [2-5]. 

The most striking feature of RNGs is the unpredictability of the past and 

future random numbers from some subsequent random numbers. 
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Unpredictability is a consequence of the inherent instability of the entropy 

source. The unpredictability is related with sensitive dependence on initial seed 

value of RNG. The tiny deviations between the seed value of generators and 

every unobserved detail of the generators are important for generated random 

numbers [2, 5]. 
Chaos theory has been developed to model complex behavior using quite 

simple mathematical models. This theory has captured the attention of the 

scientific community for explaining and predicting the behavior of systems in 

the real world. Chaos is a deterministic and random-like process operating in 

nonlinear dynamic systems. Chaotic systems are not periodical and do not 

converge to a certain value despite being finite. The most important 

characteristic of chaotic systems is that they are highly dependent on the initial 

conditions and control parameters. Orbits of chaotic signals have highly 

unpredictable and random-looking nature. Mathematically, chaos is randomness 

of a simple deterministic dynamical system [6, 7]. 

Since 1990’s many researchers have used chaotic systems as a source of 

entropy in the design of RNGs [5, 7-9, 12]. Apparently the characteristics of 
chaotic dynamics can be connected to the requirements of RNG. This work is 

focused on interaction between chaos and RNG. However, this interaction have 

been examined a different point of view. If chaotic systems can be applied to 

design of RNGs, chaos analysis methods are useful for analysis of RNGs. 

Therefore, the theory of dynamical systems can be helpful when analyzing the 

properties of RNG.  

The main contribution of this paper is the analysis of RNG. This paper 

gives an analysis method for entropy source in RNG. Tools for detecting chaos 

are used for investigation of RNG’s unpredictability. There are various methods 

for detecting chaos. In this paper, Lyapunov exponents are used to analyze of 

RNG. Proposed analysis method has been verified on a chaos based RNG 
designs, and fits to analysis of other RNG designs. 

The paper is organized as follow: In Section 2, we briefly explain central 

aspects of Lyapunov exponents. A chaos based RNG design is showed in 

Section 3. In Section 4, we describe and analyze proposed test method for 

investigation of RNG’s unpredictability. Finally, we give our concluding 

remarks. 

 

2  Chaos Analysis Tools 
A There are various methods for detecting chaos. These are time series 

analysis, phase portraits, Poincare maps, power spectrum, Lyapunov exponents, 

bifurcation diagram, Lyapunov dimension, correlation dimension, and etc. In 

this paper, we use Lyapunov exponents as tool for detecting chaos. 

Lyapunov exponent is that diverge of two adjacent orbits in the phase 

space with nearby initial conditions.  If separation of two adjacent orbits is very 

slow, then system is typical of predominantly periodic systems. If this 

separation is exponentially fast, then system has unpredictability. The properly 
averaged exponent of this increase is characteristic for the system underlying the 

data [6, 10]. 
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Calculation of the Lyapunov exponent is conceptually simple since one 

only needs to follow two initially nearby trajectories and fit the logarithm of 

their separation to a linear function of time. The slope of the fit is the Lyapunov 

exponent. Let  and  be two points in state space with distance 

. Denote by  the distance some time  ahead 

between the two trajectories emerging from these points, . 

Then λ is determined by Eq. (1) [6, 10].  

             (1) 

 

If λ is positive, this means an exponential divergence of nearby 

trajectories with nearby initial conditions. A negative maximal Lyapunov 

exponent reflects the existence of a stable fixed point. Two adjacent orbits 

which approach the fixed point also approach each other exponentially fast. If 

the motion settles down onto a limit cycle, two adjacent orbits can only separate 

or approach each other slower than exponentially. In this case the maximal 

Lyapunov exponent is zero and the motion is called marginally stable. If a 
predominantly deterministic system is perturbed by random noise, on the small 

scales it can be characterized by a diffusion process, with n growing as n. Thus 

the maximal Lyapunov exponent is infinite. General characteristics of Lyapunov 

exponent is given in Table 1 [6, 10]. 

 

Table 1. General characteristics of Lyapunov exponent 

Type of motion Maximal Lyapunov exponent 

stable fixed point  λ < 0 

stable limit cycle  λ = 0 

chaos  0 < λ < ∞ 

noise  λ=∞ 

 

3  A Chaos Based RNG 
Logistic map is one of the simplest and most studied nonlinear system in 

the design of RNGs. The logistic map is defined as Eq. (2). 

              (2) 

Structure in Eq. (3) has been used to convert the iterations of a logistic 

map into binary digits is by defining a function .  

              (3) 

where  is a threshold value taken to be 0.5 to ensure approximately equal 

distributions of 0’s and 1’s in the sequence . Furthermore, for c = 0.5, the 

generated sequences have been demonstrated to possess good statistical 

distribution properties. The most comprehensive statistical test suite, NIST test 

suite [11], was applied to test such sequences, and the results turned out to be 

very satisfactory. 
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4. Definition of Analysis Methods 
The most striking feature of chaos and RNGs is the unpredictability of 

the future despite a deterministic time evolution. The average error made when 

forecasting the outcome of a future measurement increases very rapidly with 

time, and in this system predictability is almost lost after only a few time steps. 

This unpredictability is a consequence of the inherent instability of the 

solutions, reflected by what is called sensitive dependence on initial conditions. 

The tiny deviations between the “initial conditions” of all the trajectories are 

blown up after a few time steps. A more careful investigation of this instability 

leads to two different concepts. One aspect is the loss of information related to 

unpredictability. This is quantified by the entropy. The other aspect is a simple 

geometric one, namely, that nearby trajectories separate very fast, or more 
precisely, exponentially fast over time.  

If the random numbers are unpredictable, then the RNG also meets the 

knowledge of subsequences of random numbers shall not allow to compute 

predecessors or successors practically or to guess them with non-negligibly 

larger probability than without knowledge of these subsequences. This 

requirement is fulfilled if the conditional entropy per internal random number, 

or more precisely, the conditional entropy of the underlying random variables, is 

sufficiently large. Entropy quantifies the degree of uncertainty [2]. Let  denote 

a random variable that assumes values in a finite set . The 

entropy of  is given by Eq. (4). 

           (4) 

The most general definition of entropy is the Renyi entropy given by Eq. 

(5). If  is uniformly distributed on  then  for each 

parameter .  

             (5) 

Figure 1 is shown the varying of the n-gram conditional entropy with 

respect to the word length for the logistic map. The entropy per bit of a good 
RNG should be close to 1. High entropy level guarantees that the preceding or 

succeeding values cannot be guessed with a probability different from 0.5.  

 
Fig. 1. n-gram conditional entropy with respect to the word length for the 

logistic map 

 

610



Figure 2 illustrates  time series of logistic map when the initial 

condition  and , while Figure 3 illustrates  time series of 

logistic map when the initial condition  and . In 

Figure 4, we plot . We see that for about the initial 30 

iterations  increases more or less linearly until there is essentially no 

correlation left between  and . In other words, an initial uncertainty in the 

state of the system of the order of  results after 30 time steps in a complete 

lack of knowledge of its behaviour. The rate at which uncertainty grows is given 

by the initial slope of the graph of  and corresponds to the 

largest Lyapunov exponent. 

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
logistic map

n

x
(n

)

 
Fig. 2. xn time series of logistic map when the initial condition x0=0.2 and λ=3.9 
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Fig. 3. yn time series of logistic map when the initial condition y0=x0+10-8 and 

λ=3.9. 
 

Lyapunov exponent of logistic map is shown in Figure 5. Calculated 

Lyapunov exponents confirm that Lyapunov exponent connected with entropy 

measurements. Therefore, Lyapunov exponent can be used as analysis method 

for entropy source of RNG. 
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Fig. 5. Lyapunov exponent of logistic map 

 

5. Conclusions 
Suitability of RNG depends on the level of the generator’s entropy. This 

level of entropy related to system dynamics. In this paper, we derive a relation 

between entropy and Lyapunov exponent. One can use this relation to 
determine, whether a given RNG is suitable for adequacy of entropy source or 

not. Proposed analysis method has been verified on a chaos based RNG designs, 

and fits to analysis of other RNG designs. In the future works, the theory of 

nonlinear dynamical systems can be providing new tools and quantities for the 

characterization of RNG.  
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Abstract. We propose a concrete class of discrete dynamical systems as nonlinear
matrix models to describe the multidimensional multiparameter nonlinear dynamics.
In this article we simulate the system asymptotic behavior. A two-step algorithm for
the computation of ω-limit sets of the dynamical systems is presented. In accordance
with the qualitative theory which we develop for this class of systems, we allocate
invariant subspaces of the system matrix containing cycles of rays on which ω-limit
sets of the dynamical systems are situated and introduce the dynamical parameters
by which the system behavior is described in the invariant subspaces. As the first
step of the algorithm, a cycle of rays which contains the ω-limit set of the system
trajectory, is allocated using system matrix. As the second step, the ω-limit set of the
system trajectory is computed using the analytical form of one-dimensional nonlinear
Poincare map dependent on the dynamical parameters. The proposed algorithm
simplifies calculations of ω-limit sets and therefore reduces computing time. A graphic
visualization of ω- limit sets of n- dimensional dynamical systems, n > 3 is shown.
Keywords: Computer simulation, Nonlinear dynamics, Discrete dynamical systems,
Dynamical parameters.

1 Introduction

To understand and analyse nonlinear multidimensional dynamics simple one-
dimensional semi-dynamical systems with complicated dynamics and fairly
complete qualitative description are used. These are, first of all, one-dimensional
discrete dynamical systems, i.e. iterations of real one-dimensional maps. The
first systematic results on one-dimensional discrete dynamical systems ap-
peared in the early 60’s and are linked to A.N. Sharkovskii [1]. Many properties
of the dynamical systems are the direct result of the theories developed by A.N.
Sharkovskii [2] and M. Feigenbaum [3]. A representative of this class of sys-
tems is the dynamical system generated by the one-dimensional logistic map

8thCHAOS Conference Proceedings, 26-29 May 2015, Henri Poicaré Institute,
Paris France

c© 2015 ISAST
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[4]. It was the first example of a complicated, chaotic behaviour of the system
given by a simple nonlinear equation. Even though the properties of the one-
dimensional logistic map are well studied, researchers continue referring to it
as standard to check the many nonlinear phenomena [5]–[7]. However, up until
now there is no well-developed qualitative theory available, which could be suc-
cessfully applied in order to conduct a complete study of the multidimensional
dynamical systems dependent on parameters. Therefore, it is appropriate to
select concrete classes of the dynamical systems and to develop qualitative the-
ories so as to be able to describe the properties and movements of the systems
within these theories.

We focus our research on a concrete class of dynamical systems which repre-
sent a variant of generalization of one-dimensional discrete dynamical systems
to the multidimensional multiparameter case. The systems are generated by a
map in the form of the product of scalar and vector linear functions on compact
sets of the real vector space. We propose the systems as nonlinear matrix mod-
els with limiting factors to describe the macro system dynamics, for example
the dynamics of many group biological population in the presence of limited
resources. In these models the scalar function plays a role of a limiting factor.

In recent years, the methods of computer simulation have become an essen-
tial tool in the study of the dynamical systems [8]–[10]. The modern computer
capabilities make it possible to include in the system complicated nonlinear
relationships between its variables and a large number of parameters. The
presence of nonlinear relationships and multiparameter dependence reproduces
in the model the phenomena which can be observed in actual experiments and
which cannot be produced by splitting the system into separate components
or reducing the number of parameters or variables. Thus, the improvement of
current methods and the development of new ones for the dynamical system
research are necessary and relevant [11,12]. In this case the quantitative re-
search provides a theoretical basis for the algorithm constructions, and hence
is particularly important.

We develop a qualitative theory for the class of the dynamical systems
considered (see e.g. [13] and references there). The systems possess the obvi-
ous properties which are determined by the linear vector function (the system
matix) and which do not depend on the scalar function. In particular, in vector
space we allocate invariant subspaces containing cycles of rays of the system
matrix, on which ω-limit sets of dynamical systems are situated. On the other
hand, the complicated nonlinear dynamics of the systems can occur due to
the scalar function. We study the system dynamics in the invariant subspaces
containing cycles of rays using one-dimensional nonlinear Poincare maps and
introduce the dynamical parameters by which the system behavior is described
in the invariant subspaces. In this article we show the results of the simulation
of the system asymptotic behavior and present an algorithm for the compu-
tation of ω-limit sets of the class of the dynamical systems considered. The
algorithm consists of two steps of calculations in accordance with the qualita-
tive theory. As the first step, a cycle of rays which contains the ω-limit set
of the system trajectory is allocated using system matrix. The period of the
cycle of rays, the number and values of the dynamical parameters by which the
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system dynamics is described on the cycle of rays, are calculated as well. As
the second step, the ω-limit set of the system trajectory is computed using one-
dimensional nonlinear Poincare map dependent on the dynamical parameters.
As a rule, these parameters differ from the system parameters and are unknown
or not directly defined or computable [14]. The novelty of our research lies in
the determination of the dynamical parameters and in the analytical form of
one-dimensional nonlinear Poincare maps dependent on the dynamical param-
eters. We shall see below that the number of the dynamical parameters cannot
be reduced without the loss of accuracy of the system behavior description,
even when this number is greater than the number of the system parameters,
i.e. entries of the system matrix.

2 Class of the dynamical systems

Let F be a map of the form [13]

F : Rn → Rn, Fy = Φ(y)Ay (1)

where Rn is n- dimensional real vector-space, Φ(y) is a scalar function, A is a
linear operator (a matrix of n-th order). Allocate set X ⊆ Rn invariant under
F i.e., F : X → X. Map F in general is non invertible and generates in X
a cyclic semi-group of maps {Fm}, m ∈ Z+, which is called the dynamical
system and is denoted by {Fm,X, Z+}. Set X is called phase space of the
dynamical systems and specifies a set of valid states of the dynamical system,
Z+ = N

⋃
{0} is the set of nonnegative integers. Set {Fmy} where y is fixed

and m runs over Z+, is called a trajectory of the point y. The dynamics of the
system {Fm,X, Z+} is understood as the process of transition from one state
to another.

The dynamics of the system {Fm,X, Z+} generally varies for different Φ(y).
So, the systems {Fm,X, Z+} are different too. But the systems possess similar
properties which are determined by the linear operator A and do not depend
on the function Φ(y). Therefore, the systems {Fm,X, Z+} form one class of
the dynamical systems.The elements of this class are, in particular, linear dy-
namical systems with Φ(y) = const and the dynamical system {fm,X, Z+}
generated by the map f of the form [15]

f : Rn → Rn, fy = (1− ‖y‖)Ay. (2)

Here ‖ · ‖ is a vector norm in Rn. If n = 1 then A = µ and we arrive at the
well-known logistic map mentioned above

ψµ : R1 → R1, ψµx = µ(1− x)x. (3)

3 Mathematical models with limiting factors

We propose the class of the dynamical systems {Fm,X, Z+} as mathematical
models for describing the dynamics of model and real macro systems in the
presence of limiting factors.
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Let
n be a number of macro system’s components,
y ∈ X be a vector of components’ characteristics,
A be a matrix of components’ interrelations and
Φ(y) be a limiting function (limiting factor).

Let X be a compact of the form

X = {y ∈ Rn | y ≥ 0, ‖y‖ ≤ a}, a <∞. (4)

Here y = (y1, . . . , yn)′ ≥ 0 means yi ≥ 0, i = 1, n and is called a nonnegative
vector. Note that X is invariant under F i.e., F : X→ X if and only if [13]
1) Φ(y) ≥ 0 is continuous function on X,
2) A = (aij) ≥ 0 (aij ≥ 0, i, j = 1, n),
3) ‖A‖ ≤ aC−1 where C = max

y∈X
Φ(y)‖y‖ and ‖A‖ is a subordinate matrix norm

for a matrix A based on the vector norm in Rn.
Then the dynamical system {Fm,X, Z+} describes the macro system’s state

changes over time m. For any nontrivial {Fmy} we introduce a unit vector

em(y) = ‖Fmy‖−1Fmy (5)

which is called a macro system structure and defines the ratio between compo-
nents’ characteristics at the time m. The state of macro system governed by
the dynamical system {Fm,X, Z+} (at the time m) we characterize by

Sm(y) = {Fmy, em(y)}. (6)

The limiting factor concept was first coined in biology by Libig J. and
generally, means a factor that restricts or constrains the dynamics of the system,
process or phenomena. By using limiting factors, the state of the system is
regulated.

On one hand, models given by the systems {Fm,X, Z+} generalize in n- di-
mensional case many nonlinear one- and two-dimensional models widely used
in practice. In particular, for describing the dynamics of n- group biological
population with discrete generations in the presence of limited resources we
propose the dynamical system generated by the map f of the form (2). In this
representation y is a vector of densities of population age groups so, ‖y‖ ≤ 1.
If n = 1 then y is the total population density, A ≡ µ is the reproductive coeffi-
cient. The dynamical system {ψmµ , I, Z+} in the interval I1 = [0, 1] describes a
mechanism of self-regulation of one-species biological population with limited
resources [2].

On the other hand, models given by the systems {Fm,X, Z+} generalize
many matrix models, in particular, Leslie models both linear and nonlinear
[16,17]. The last ones contain matrices A of the special form (Leslie matrix
and its generalizations) and concrete limiting functions Φ(y).

4 Qualitative theory

We develop a qualitative theory for the class of the dynamical systems {Fm,X, Z+}
and apply the results of the theory in computer simulation of their dynamics.
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Denote by ωF y ω- limit set of the trajectory {Fmy} (the set which attracts
{Fmy} when m → +∞). A ray passing through y ∈ Rn, y 6= 0 is the set
cone(y) = {αy | α ≥ 0}. By a system of p elements we mean a sequence of
these elements, p ∈ N. Then the system of distinct rays l1, ..., lp is called a cycle
of rays of a linear operator A of period p ∈ N and is denoted by Lp = (l1, ..., lp)
if

Alk = lk+1, k = 1, . . . , p− 1, Alp = l1.

As easy to see, that invariant sets of the system {Fm,X, Z+} are contained
in invariant subspaces of A. Denote kerA = {y ∈ Rn | Ay = 0} and let

P(A; p, µ) = Ap − µpE, µ ∈ C.

We call the intersection l ∩ X as a segment of ray l (ray segment). Denote by
φµ map F when n = 1,

φµx = µΦ(x)x (7)

where x ∈ Ia = [0, a]. According to the qualitative theory there exist p, q ∈ N,
µ ∈ σ(A) such that any nontrivial ( 6= {0}) ωF y is located in some invariant
subspace

kerP(A; p, µ), µp > 0,

on a cycle of rays Lq where σ(A) is a spectrum of A and q is a divisor of p,
1 ≤ q ≤ p [18]. More precisely, ωF y ⊆ Jq = Lq ∩ X ⊂ kerP(A; p, µ) ∩ X and
Jq consists of q ray segments invariant under F q. Without losing generality we
agree q = p and ωF y ⊆ Jp. Then for the map F with Φ(‖y‖) map F p represents
in Jp as a superposition

F p = φµp ◦ φµp−1 ◦ . . . ◦ φµ1 (8)

with some numbers µ1 > 0, . . . , µp > 0.
If to consider the system {Fm, kerP(A; p, µ)∩X, Z+}, then µ1, . . . , µp turns

into parameters. We call them dynamical parameters in contrast to the system
parameters i.e. entries of the matrix A. Thus, in the whole X, the system
dynamics is defined by the trajectory behavior in the sets kerP(A; p, µ) ∩ X.
So, by the parameters µ1, . . . , µp the system dynamics is described in the
whole X. Every ray segment of Jp is the one-dimensional Poincare section
for the trajectories located in Jp and F p is the one-dimensional first return
(Poincare) map for the map F in each ray segment of Jp. For the special form
Φ(‖y‖) map F p has analytical representation (8).

Denote by e1, . . . , ep the unit vectors directed along the ray segments of
Jp. We define e1, . . . , ep and µ1, . . . , µp by the recurrent formulas. Let p = 1.
Then e1 ≥ 0 is an eigen vector of the matrix A ≥ 0 and there exists an eigen
value µ > 0 such as Ae1 = µe1. So, (8) takes the form

F = φµ. (9)

Let p > 1 then e1 ≥ 0 is not an eigen vector of A, ‖e1‖ = 1 and e2, . . . , ep are
defined by the sequence

ej = ‖Aej−1‖−1Aej−1, j = 2, p. (10)
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Denote
µj = ‖Aej‖, j = 1, p. (11)

For the map F with different Φ(‖y‖), parameters µ1, . . . , µp and vectors e1,
. . . , ep are the same and their computation by the formulas (10)-(11) does not
cause difficulties.

It should be noted that the dynamical parameters, their number and val-
ues depend on the location of the sets kerP(A; p, µ) ∩ X in X and Jp in
kerP(A; p, µ) ∩ X and vary, as a rule, at the fixed entries of the matrix A.
So, the dynamical parameters differ from the system parameters and identify
the regions with different dynamics. Their number is less than or equal to p
and may be very large, in particular, when p > n2 at n ≥ 19 [18]. According
to (8) all parameters are involved in the representation of the map F p so, their
number cannot be reduced.

5 Computer simulation

We present computer simulation of multidimensional dynamics by the numeri-
cal realization of the models for the dynamics of biological population governed
by the system {fm,X, Z+}.

In the population model:
f is a map of the form (2): fy = (1− ‖y‖)Ay,
n is a number of population age groups,
y is a vector of densities of the age groups, y ∈ X,
X is of the form (4) if a = 1 i.e.,

X = {y ∈ Rn | y ≥ 0, ‖y‖ ≤ 1},

A is a matrix of intergroup relations,
Φ(‖y‖) = 1 − ‖y‖ is a population size limiting function corresponding to the
assumption of limited resources or available living space.

Let ‖y‖ =
n∑
1
yi then the condition 3) for the invariance of X is as follows:

‖A‖ = max
j

n∑
i=1

aij ≤ 4. For any nontrivial {fmy} a unit vector em(y) =

‖fmy‖−1fmy is an age structure of many-group population and defines the
ratio between densities of age groups in total population density (at the time
m). The state of the population governed by the dynamical system {fm,X, Z+}
(at the time m) is Sm(y) = {fmy, em(y)}.

According to the section 4, for any nonzero initial state S0(y), the structure
of many-group population is asymptotically stabilized as p- periodic and is
characterized by p vectors e1, . . . , ep defined by (10).

As to the population dynamics, we get that the many-group population
model given by the dynamical system {fm,X, Z+} asymptotically has the
same behavior as a family of one-species population models given by the one-
dimensional systems {(ψµp◦ψµp−1◦. . .◦ψµ1)m, I, Z+} where ψµp◦ψµp−1◦. . .◦ψµ1

is a superposition (8) with the map ψµ of the form (3) and µ1, . . . , µp defined
by (11).
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Therefore, the population governed by the system {fm,X, Z+}, has stabi-
lized p- periodic structure at its final state, p < ∞ and densities of its age
groups that change periodically or not. The same asymptotic behavior has
the macro system governed by the system {Fm,X, Z+} i.e., exactly p- peri-
odic structure, p <∞ and periodic or nonperiodic changes of its components’
characteristics.

6 Method of one-dimensional superpositions

For correct determining cyclic ω-limit sets of large periods or chaotic ω-limit
sets of the system {Fm,X, Z+}, we propose a computer method which we call
as a method of one-dimensional superpositions. Let F be the map with a
function Φ(‖y‖). The method implies calculations in two steps.

As the first step, a stable set Jp is determined for any nonzero y ∈ X using
n- dimensional linear dynamical system {Am,Rn, Z+}. At this step, period p
is obtained and the unit vectors {e1, . . . , ep} along the rays of a cycle of rays Lp
in which ωF y is located, are computed by the matrix A. The number 1 ≤ t ≤ p
and values of the dynamical parameters by which the trajectory dynamics in
Jp is described, are computed as well. Here t is a divisor of p.

As the second step, set ωF y is determined using the one-dimensional dy-
namical system {(φµp ◦ φµp−1 ◦ . . . ◦ φµ1)m, I, Z+}. At this step, the norm x of
the projection of the vector y in the set Jp is obtained and a one-dimensional ω-
limit set of the trajectory {(φµp ◦φµp−1

◦ . . .◦φµ1
)mx} is computed by the one-

dimensional nonlinear Poincare map F p with t parameters µ1 > 0, . . . , µt > 0.
The points of this ω- limit set are coordinates of vectors which compose the
part of ωF y along the vector e1.

The parts of ωF y along the other vectors e2, . . . , ep are of the same type and
structure and the vectors which compose these parts, are computed as well.

The method proposed simplifies calculations for large n and p for instance,
p > n2, p > n3 and so on. Indeed, at first we detect the stable cyclic set
Jp and later on we describe the trajectory dynamics in it. Using the method
we compute any nontrivial set ωF y, in particular, we obtain the final state
of many-group population for any nonzero initial state S0(y). The method
also provides graphic visualization of ω- limit sets of n- dimensional dynamical
systems {Fm,X, Z+} at n > 3 and for large p.

The calculation algorithm for the computation of the set ωF y and the final
macro system state by the method of one-dimensional superpositions is as
follows:
1. enter initial vector y ≥ 0 and matrix A ≥ 0 (‖y‖ < 1, ‖A‖ ≤ 4);
1’. calculate eigen values and eigen vectors of matrix A;
2. calculate period p, vectors e1, . . . , ep of the set Jp and t distinct parameters
µ1, . . . , µt of the set {µ1, . . . , µp} using (10), (11);
3. determine projection y′ of vector y in the set Jp and calculate its norm
x = ‖y′‖;
4. obtain ω- limit set of the trajectory {φµp ◦ φµp−1

◦ . . . ◦ φµ1
)mx} as some

trajectory i.e.,
ωφµp◦φµp−1

◦...◦φµ1x = {x∗i }i≥0
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where x∗i = (φµp ◦ φµp−1
◦ . . . ◦ φµ1

)ix∗. After these calculations the iteration
process stops;
5. The set ωF y is a result of calculations done in step 4 and is the following set

ωF y = {x∗e1, (φµ1x
∗)e2, (φµ2 ◦ φµ1x

∗)e3, (φµ3 ◦ φµ2 ◦ φµ1x
∗)e4, . . . ,

(φµp−1 ◦ . . . ◦ φµ1x
∗)ep, x

∗
1e1, . . .}.

So, vectors of ωF y are of the form uei where u ∈ ωφµp◦φµp−1
◦...◦φµ1x, i = 1, p.

The final macro system state is a pair

S∗(y) = {ωfy,E} where E = {e1, . . . , ep}.

7 Examples

7.1 The dynamics of the Northern Spotted Owl

The algorithm for computing of the population dynamics is implemented in
Matlab as a function with the following input data: n- dimensional initial
vector y ≥ 0 and matrix A ≥ 0 of n order. The final state of the population is
given as an output data in the form of two arrays of vectors.

Let us demonstrate this algorithm by simulating the dynamics of the North-
ern Spotted Owl. As an input data we use the real (3×3)- matrix A from article
of Lamberson R., McKelvey R., at al. [19]. We would like to take into account
limited resources for the population. For this purpose, in contrast to the linear
model considered in [19], we propose nonlinear models given by the dynamical
system {fm,X, Z+}. In the models a proportional coefficient c is introduced
as an input data to make the dynamics nontrivial.

Example 1. 1. enter a) y = (0.1, 0.1, 0.1)′,

b) A = c ·

 0 0 0.33
0.18 0 0

0 0.71 0.94

 .

The elements in the top row of matrix A are fertility rates; the sub-diagonal
elements are survival rates; nonzero diagonal element aii is the probability that
females in stage i remain in the same stage next year;

c) c = 3.1 (almost maximum available value of c to fulfil ‖A‖ ≤ 4);
2. vectors ej of the set E with accuracy ε = 10−5 and parameters µj ,

j = 1, p, are computed. As a result, after 8 iterations, a convergence of the
sequence of vectors ei(y) to E is obtained. The ultimate result is p = 1,
(n× p)- array E = {e} and array U = {µ} where e = (0.2402, 0.0440, 0.7159)′,
µ = 3.0491;

3. given x = 0.8;
4. given accuracy ε = 10−5 for the trajectory {ψmµ x} obtain ωψµx as a cycle

of period 2 per 56 iterations,

ωψµx = {x∗, ψµx∗} = {0.5909, 0.7371};
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5. for the trajectory {fmy}

ωfy = {0.5909e, 0.7371e} =

= {(0.1419, 0.0260, 0.4230)′, (0.1770, 0.0324, 0.5277)′}.

The final population state is

S∗(y) = {ωfy,E} where E = {e}

and is shown in Figure 1a.

Example 2. 1. enter a) y = (0.1, 0.1, 0.1)′,

b) A = c ·

 0 0 0.33
0.18 0 0

0 0.71 0

 . In this model we suppose that there are no

females remaining in the same stage next year;

c) c = 5 (almost maximum available value of c to fulfil ‖A‖ ≤ 4);

2. vectors ej with accuracy ε = 10−5 and parameters µj , j = 1, p, are
computed. As a result, after 3 iterations, a convergence of sequence of vectors
ej to set E is obtained. The ultimate result is p = 3, (n × p)- array E =
{e1, e2, e3} and array U = {µ1, µ2, µ3} where e1 = (0.3333, 0.3333, 0.3333)′,
e2 = (0.2705, 0.1475, 0.5820)′, e3 = (0.5559, 0.1409, 0.3032)′, µ1 = 2.0333, µ2 =
1.7275, µ3 = 1.5009;

3. as A3 = λ3I then y, {fmy} and ωfy are located in the same set J3. Here
λ = 1.7404 is the maximum eigenvalue of A ≥ 0 and I is identity matrix. So,

calculate x =
3∑
1
yi = 0.3;

4. given accuracy ε = 10−5 for the trajectory {(ψµ3
◦ψµ2

◦ψµ1
)mx} obtain

ωψµ3◦ψµ2◦ψµ1x as a fixed point per 8 iterations,

ωψµ3◦ψµ2◦ψµ1x = {x∗} where x∗ = 0.368;

5. for the trajectory {fmy}

ωfy = {x∗e1, (ψµ1x
∗)e2, (ψµ2 ◦ ψµ1x

∗)e3} = {(0.1227; 0.1227; 0.1227)′,

(0.1279; 0.0698; 0.2752)′, (0.2394; 0.0607; 0.1306)′}.

The final population state is

S∗(y) = {ωfy,E} where E = {e1, e2, e3}

and is shown in Figure 1b.
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Fig. 1. Final states S∗(y) of three-group populations with two different matrices
A ≥ 0 and the same initial vectors y

7.2 The dynamics of macro system composed of a large number of
components

In the next two examples we demonstrate the advantages of the method of one-
dimensional superposition in graphic visualization of the final macro system
state at n > 3 and p > n. We briefly summarize the results obtained by
the method. Assume that the macro system dynamics is described by the
dynamical system {fm,X, Z+}.

Example 3. Let n = 10 and A be (10 × 10)- matrix of a quasidiagonal form
{A1, A2, A3} with matrices Aj on the main diagonal,

A1 =

(
0 3.2

3.2 0

)
, A2 =

 0 2.56 0
0 0 3.2
4 0 0

 , A3 =


0 2.56 0 0 0
0 0 4 0 0
0 0 0 4 0
0 0 0 0 3.2

2.56 0 0 0 0

 .

(Matrix A is not a real matrix of the subsystems’ relations, just some model
matrix). Matrix A has 10 eigenvalues in modulus 3.2.

Enter y = (0, 0.1, 0.1, 0.1, 0.1, 0.05, 0.05, 0, 0.3, 0.05)′ and A as an input data.

As an ultimate result we get p = 15 and (10× 15)- array E consisting of 15
vectors.

Given accuracy ε = 10−10 for the trajectory {(ψµ15
◦ ψµ14

◦ . . . ◦ ψµ1
)mx}

its ω- limit set is a cycle of period 4.

For the trajectory {fmy} its ω- limit set ωfy is a cycle of period 60 = 4 ·15.

The final macro system state is S∗(y) = {ωfy,E}.
We present graphic visualization of the part of ωfy located in Jp along the

vector e1 i.e., four vectors with coordinates x∗, (ψµp ◦ . . . ◦ ψµ1
)x∗, (ψµp ◦ . . . ◦

ψµ1
)2x∗, (ψµp ◦ . . . ◦ ψµ1

)3x∗. In XY coordinate system four vectors with the
same coordinates along the unit vector of the bisector of the first coordinate
angle are drawn and their graphic image is shown in Figure 2a. The parts of
ωfy located in Jp along the vectors e2, . . . , ep, are of the same type i.e., each
of them consists of four vectors.
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Example 4. Change the initial vector to y = (0.1, 0.1, 0, 0.3, 0.1, 0, 0, 0, 0.3, 0.05)′.
The ultimate result is p = 30 (the maximum possible value at n = 10),

(10× 30)- array E now consists of 30 vectors.
Given accuracy ε = 10−10 for the trajectory {(ψµ30 ◦ ψµ29 ◦ . . . ◦ ψµ1)mx}

we get non-stop iterative process when calculating its ω- limit set. It means
that ω- limit set is irregular or a cycle of a very large period. In this case
we agreed to accept the last 200 iterations when calculating the trajectory
(ψµ30

◦ ψµ29
◦ . . . ◦ ψµ1

)mx as its ω- limit set.
Graphic visualization of 200 vectors which are the part of ωfy located in

Jp along the vector e1, is presented in XY coordinate system by 200 vectors
with the same coordinates, along the unit vector of the bisector of the first
coordinate angle. The graphic image of these vectors is shown in Figure 2b.

Fig. 2. Graphic visualization of the parts of ωfy located along the vectors e1 for two
different initial vectors y

7.3 Outcomes of examples

The examples 1-2 show that in the first model the population structure is
asymptotically stabilized and does not vary any more and population size, as
well as age group sizes change periodically every two years. In the second model
the structure of the population is stabilized and varies every three years along
with the population size and age group sizes. Examining the dynamics of the
population, one can see the mechanism of regulation or harvestable surplus of
the population size without affecting long term stability, or average population
size. Indeed, according to the second model all individuals of the third stage
may be taken away after the childbearing period (a33 = 0) every year. In spite
of the structure of the population, its size and age group sizes vary periodically,
in this case the population remains persistent.

Stabilized periodic structure of macro system is determined by its initial
structure and not its initial size. Indeed, by iterating the map F of the form
(1) m times, we write out Fmy = Φ(m)(y)Amy where

Φ(m)(y) =

m−1∏
i=0

Φ(F iy),
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y ∈ X. Hence it follows that the directions of Fmy and Amy coincide, m =
1, 2, . . . i.e., the directions of nonzero vectors of the trajectory {Fmy} asm→∞
are defined by the linear part of the map F and are independent of the form
of Φ(y).

Let all nonzero entries of the matrix A be equal to 3.2 in the examples 3-4.
Then µ1 = . . . = µp = µ = 3.2, ψµp ◦ . . . ◦ ψµ1

= ψpµ. and ωψpµx is a cycle
of period 2 for any x ∈ I [2, p. 26]. According to [20] there are more than
one periodic attractors and therefore more than one different dynamics of the
map ψµp ◦ . . . ◦ ψµ1

, p ≥ 1 at the fixed parameter values. So, if there is only
one asymptotic regime of the map ψµp ◦ . . . ◦ ψµ1

in the interval I at the fixed
µ1, . . . , µp, then macro systems with the same initial structure will have the
same final state. If there are more than one asymptotic regimes of the map
ψµp ◦ . . .◦ψµ1 in the interval I at the fixed µ1, . . . , µp, then macro systems with
the same initial structure will have the same stabilized periodic structure and
may have different sizes changed periodically (or not).

8 Conclusion

In this article we describe an approach we have developed to study multipa-
rameter nonlinear dynamics. The advantages of applying the results of the
qualitative theory and using the method of one-dimensional superpositions in
a simulation of the dynamics are as follows:

1. The dynamical systems considered are nonlinear and thus very sensitive
to the data entry errors. The proposed method simplifies computations of the
ω- limit set of the system trajectory. Firstly, a stable cycle of rays of period
p, which contains the ω- limit set, is identified using the system matrix of
the n-th order. Secondly, the ω- limit set is obtained using the non-linear one-
dimensional map. As a result, this leads to markedly reduced computing times,
especially when the order n and the periods p are large.

2. In an n- dimensional case, n > 3 it is impossible to obtain a graphic
image of ω- limit sets of the dynamical system, e.g. to realize their types.
However, we can get graphic visualization of the part of ω- limit sets consisting
of vectors along the first unit vector of the stable invariant set containing the
ω- limit set. In an XY coordinate system, vectors along the unit vector of the
bisector of the first coordinate angle which have the same coordinates can be
easily plotted.

3. Theoretical results of the qualitative theory help us to correctly interpret
the numerical results as well as to conduct an accurate computer simulation of
the system dynamics. We specify the number of iterations to detect a stable
cycle of rays containing the ω- limit set of the system as well as the number of
iterations to compute the ω- limit set.

4. The determination of the dynamical parameters and the calculation of
their number and values by the formulas provides the description of the system
dynamics in stable cycles of rays containing ω- limit sets of the system and
therefore, the identification of the regions with different dynamics. Their num-
ber may be very large, e.g. greater than the number of the system parameters.
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However, one can see that this number cannot be reduced without the loss of
accuracy of the system behavior description.
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Abstract. The nonlinear dynamics of switching power converters has been actively stud-

ied during several last decades, proving the existence of extremely complex dynamical 

scenarios and uncommon routes to chaos in this kind of circuits. The main assumption in 

the majority of researches was that the control circuitry consisted of ideal elements, dis-

carding all parasitics of feedback circuitry components. However, recently it has been 

shown that the inherently arising nonidealities, such as delays, could lead to the drastic 

changes in the overall dynamics of the system. This research is dedicated to the investi-

gation of the effects of the delays on the global nonlinear behavior of switching DC-DC 

converters on the basis of complete bifurcation analysis, providing the most comprehen-

sive information on the causes and consequences of all nonlinear phenomena in the sys-

tems under study. 

Keywords: Bifurcations, chaos, non-smooth phenomena, switching power converters   
 
 

 Introduction 
 

Active research performed during several last decades showed that the com-

monly used linearized models, describing the dynamics of switching power con-

verters (SPC) are not capable of predicting the majority of instabilities, occur-

ring in those systems [1,2]. Thus the classical models fail to provide reliable in-

formation for the feedback designers that would allow the development of stable 

control loops. The limited applicability of mentioned models has led to the de-

velopment of some alternative approaches, based on non-linear models and 

analysis methodologies. While making the study of global dynamics of these 

systems more complicated, the latter approaches allow increasing the robustness 

and reliability of designed systems as the great amount of new unstable and po-

tentially dangerous regimes could be detected. 

The vast majority of researchers, working on the analysis of non-linear 

dynamics of SPC, have focused on the development of simplified models that 

could be used within their investigations. However, it has been shown that 

ignoring some unavoidable non-idealities of the control circuitry may lead to 

erroneous results and misinterpretation of analytically obtained data [3]. One of 

the most noticeable effects, that should be taken into account during the analysis 
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of such feedback controlled systems, is the inherent delay of each component of 

the control loop. The delay of individual element in the analog feedback loop is 

not large enough to influence the global dynamics of the system. Though as all 

the delays are summed together, the time lag in the propagation of the control 

signal becomes essential.  

The current paper studies the effects of the magnitude of the overall delay on 

the dynamics of one of the most widely used SPC – boost converter under 

current-mode control. It is assumed that the analog feedback loop is 

implemented and the appropriate values of delays are introduced. The analysis 

of bifurcation patterns is based on the discrete-time model of mentioned DC-DC 

converter and the Method of Complete Bifurcation Groups (MCBG).  

 The structure of the paper is as follows. Second section describes the 

principles of operation of the boost converter as well as presents the 

corresponding model. Third section provides the complete bifurcation analysis 

of SPC, changing the most relevant circuit parameters. The last section is 

dedicated to conclusions about the results obtained in Section 3, defining some 

common points and showing the perspective of future research.  

 

2  Model of the boost converter with delays 
 

The simplified schematic of the boost type SPC under current-mode control 

including delay is shown in the Fig.1. It consists of two active elements: 

capacitor C and inductor L; two switching elements: one of them marked as S 

could be a MOSFET transistor (the state of which is controlled by the voltage 

applied to the gate), the second one – D–is the diode (that is turned ON or OFF 

in accordance to the difference of voltages between its terminals). R, Vin and Vout 

represent accordingly simple resistive load, input and output voltages. Δtd 

represents the total delay of all elements in the control loop. 

D

SVin

L

C
R

Iref

Clock

Q
R

S

iL
comp

vcontr

Δtd

CS

Vout

 

Fig.1. Simplified schematics of boost SPC under current-mode control 
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The control circuitry, shown above the main power plant, consists of current 

sensor (CS), comparator (comp), RS type flip-flop as well as clock element. 

The principle of operation is as follows.  When the switch S is in the ON 

(conducting) state, the energy is transferred to the inductor and the load is 

provided with the necessary amount of energy by the output capacitor. During 

the OFF interval the required output voltage is maintained by the input voltage 

and the energy released from the collapsing magnetic field of the inductor. 

As it could be seen from Fig.1, the position of the switching element S is 

defined by the output signal of the control circuitry vcontr. In the case of ideal 

control loop with Δtd=0, the switch is turned ON at the arrival of the next clock 

pulse and is switched OFF as the value of inductor current, obtained from the 

current sensor, reaches the reference value (see Fig. 2.a). However, real analog 

control loops include the non-zero delay, which is formed by the sum of current 

sensors’, comparator’, RS flip-flops’ as well as MOSFET drivers’ switching 

delays that are unified in the single block Δtd in the Fig.1. 
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Fig.2. Waveforms of the inductor current and control signals: a) ideal case;  

b) including delay Δtd 

 

The delay causes the switch not to turn OFF at the moment the control 

parameter reaches some reference value defining new dynamical scenarios (see 

Fig. 2.b). The maximal value of sensed inductor current in this case is not 

limited by predefined reference Iref  and becomes dependent on the delay, 

reaching the value Iref+m1*Δtd, where the slope of the rising inductor current 

m1=Vin/L. 

The dynamics of this type of energy converters could be described by systems 

of differential equations. However, the bifurcational analysis on the basis of this 

model would require great amount of computations. Another more effective 

approach is the use of discrete-time model in the form of iterative map that 

would allow obtaining exact values of inductor current and capacitor voltage 

samples at every switching instant without excessive effort [4]. The proposed 

model for the boost converter including the delay is as follows. 

First, it should be noted that the overall dynamics of the converter is governed 

by the positions of the samples of inductor current in correspondence to the two 
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borderlines shown in Fig.3. The first borderline defines the case when the 

inductor current reaches the shifted reference value exactly at the arrival of next 

clock pulse (see Fig. 3.a). The second borderline represents in value for which 

the next sample in+1 falls exactly to the Iref for the falling inductor current (see 

Fig. 3.b).  

T
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Δtd

Iref+m1*Δtd 

T

in+1

in

ton toff

Iref

Iref+m1*Δtd 

Δtd

Iborder1
Iborder2

a) b)
 

Fig. 3. Definition of borderlines and corresponding positions of inductor current 

samples: a) Iborder1; b) Iborder2 

 

Thus the borderlines are: 

)(
11

T
d

tm
ref

I
border

I  ,                               (1) 

/112 dtmborderIborderI  , (2) 

where m1=Vin/L, Δtd - the value of delay, T– switching period, Iref– reference 

current, L - value of inductance, R– load resistance; parameter α could be found 

using methodology proposed in [5] as the positive solution of this quadratic 

equation: 

drefinin tmILTVRV  1
2 3//)1(  . (3) 

Thus, taking into account (1)-(3), the discrete-time model is defined as: 

1. if in<Iborder1 : 

)/exp(1 RCTvv nn   

                                 LTinVnini /1  ; 
(4) 

2. if Iborder1<in<Iref : 

              
  inVofftKofftKoffmtnv  )sin(2)cos(1)exp(1 

 

            
RinV

offtKofftKC

mCRofftKofftK

offmtni /
))cos(2)sin(1(

)/1))(sin(2)cos(1(
)exp(1 























; 

(5) 

 

3. if  Iref<in<Iref+m1Δtd, then there are two possible scenarios, which are 

dependent on the value of the inductor current in the previous cycle: 

3.1. if Iborder1<in-1<Iborder2, than the dynamics of the system between in and in+1 

is governed by: 

  inVTKTKmTnv  )sin(4)cos(3)exp(1   

                
RinV

TKTKC

mCRTKTK
mTni /

))cos(4)sin(3(

)/1))(sin(4)cos(3(
)exp(1 

















; 

(6) 
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3.2. if in-1<Iborder1,than the dynamics of the system is governed by (5), 

where: LCp /1 ; 22 mp  ; inonn VmtvK  )2exp(1 ; 

  /))2exp((/)( 12 inonndref VmtvmCtmIK  ; inn VvK 3 ;

  /)(/4 innn VvmCiK  ; dnrefon tmiIt  1/)( , onoff tTt  ;

LVm in /1  . 

    Parameters of the system under investigation are as follows: Vin=3.3 (V); 

L=150 (µH); C=2 (µF); R=40 (Ω); Iref= 0.2…0.7 (A); T=10 (µs); 

Δtd=(0…0.2)*T (s). 

 

3 Complete bifurcation analysis 
 

The analysis of bifurcation patterns in this paper is based on the relatively 

new methodology – Method of Complete Bifurcation Groups – originally 

developed in the Institute of Mechanics of Riga Technical University for the 

analysis of complex dynamics of highly nonlinear mechanical systems [6]. This 

approach has been applied to the great variety of dynamical systems, including 

mechanical, biological and electrical ones [7-9]. The main distinctive feature of 

the MCBG is that the construction of bifurcation diagrams is not based on the 

widely used brute-force approach, when only stable periodic regimes are plotted 

using the process of simple iterations (also called natural transition). The 

mentioned brute-force method does not provide the complete information even 

about all existing stable regimes, not to mention unstable ones that are not taken 

into account in this approach. The MCBG is based on the numerical calculation 

of all stable and unstable periodic regimes (up to period of interest) in the 

system with following continuation of branches in the bifurcation diagram as 

some of the system’s parameters are varied. This approach allows the 

construction of complete bifurcation diagrams, depicting even small regions of 

periodicity as well as unfolding unambiguous interconnections between 

different periodic as well as chaotic modes of operation. 

On the basis of MCBG the complete bifurcation diagrams for the boost type 

converters with ideal feedback loop and for the system taking into account the 

delays in the control circuitry, have been constructed. The most obvious choice 

of the primary bifurcation parameter is the value of Iref that could be changed 

during the operation of the SPC in order to preserve the desired output voltage. 

The complete bifurcation diagrams obtained for the system with a various 

delays allow detection of some most distinctive changes in nonlinear dynamics 

of DC-DC converters as we vary the bifurcation parameter. 

First, the complete bifurcation diagram for Δtd=0 (i.e. in the ideal model 

without any delays) is constructed (see Fig. 4). Dark lines represent stable 

periodic regimes, light lines – numerically calculated unstable regimes, dashed  

lines depict the borderlines defined in (1) and (2), the shaded area represents the 

chaotic mode of operation. 
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Fig.4. Complete bifurcation diagram of the boost converter with ideal control 

loop 

 

The increment of reference current leads to the smooth transition from P1 to 

P2 operation through classical period-doubling bifurcation at Iref≈0.36 (A). At 

point (A) the border collision (BC) with Iborder1 and Iborder2 appears (these borders 

overlap in the case of ideal system), leading to the formation of 4-piece chaotic 

attractor, converging to the robust chaotic area. The chaos is robust in the sense 

it is not interrupted by presence of stable periodic windows within the whole 

range of increasing bifurcation parameter. The MCBG allows the verification of 

the fact that in this case the great amount of unstable periodic orbits of P4, P8, 

P16, P32 etc. appear at the point of the first BC (see Fig.4. point (A), where only 

unstable branches of P4 and P8 are shown for the sake of simplicity). Thus the 

overall classical period doubling cascade is formed within the single point in the 

bifurcation diagram without the appearance of any stable subharmonic orbits. 

All the subsequent BC do not allow the formation of any stable orbits (see e.g. 

points (B) and (C) in the Fig.4.). 

The structure of chaotic modes of operation and the mechanisms of transition 

to chaos noticeably change with the introduction of even slight delay in the 

control circuitry of DC-DC converter. 

Fig.5 shows the bifurcation diagram of boost converter for Δtd =0.05*T (s). 

As it could be seen, the presence of delay does not affect the way the main P1 

mode of operation losses its stability – the classical period doubling bifurcation 

is observed. However, the following dynamics is formed by the non-smooth 

nature of collisions with two borderlines (see (1) and (2)), crossing the branches 

of bifurcation diagram. 

Iborder2 causes the appearance of discontinuity in the stable branch of P21 

regime (see Fig. 5. point (D)) after which the next collision with the Iborder1 (see 

Fig. 5. point (E)) changes the bifurcation sequence (in comparison to Fig.4) – 

the non-smooth transition to stable P4 regime is observed. On the interval Iref = 

0.45…0.55 (A) the transition to robust chaos is defined not by the multiple piece 
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chaotic attractors, but by the sudden appearance and non-smooth transitions of 

subharmonic modes of operation caused by BC with both of the defined borders. 
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Fig.5. The complete bifurcation diagram of the boost SPC with Δtd=0.05*T (s) 

 

One distinguishing feature of the diagram, shown in the Fig. 5, is that there is 

the region of coexistence of two stable P2 regimes in the neighborhood of the 

first BC point (around Iref  = 0.4 (A)). Two different types of fixed points could 

be detected here – one is the attracting node with both characteristic multipliers 

real (P21), and the other – spiral attractor with complex conjugate characteristic 

multipliers (P22). Each of the regimes has its own basin of attraction. However, 

this bistability region is not important for practicing engineers, as it exists for 

very narrow range of bifurcation parameter, the periodicity of coexisting 

regimes is the same and the coordinates of fixed points are relatively close, so 

any excessive voltages or currents that could damage components of the 

switching power converter are not observed in this case.  

As it could be seen from Fig.5, the P22 regime after the collision with Iborder1 

at point (E) does not just lose its stability, but disappears, meaning that the 

presence of stable or unstable period-2 regimes could not be detected to the right 

of the BC point with any numerical methods. However, the unstable branch of 

this regime is later detected in the vicinity of point (F), where the P4 regime 

disappears. The P4 regime reappears at point (G). The nature of the 

disappearance and sudden appearance of such periodic regimes in non-smooth 

systems up to author’s knowledge is not yet clear and should be studied in 

details. In [10] this phenomena has been defined as “cutting border collision”, as 

just after BC point no periodic orbit of the same periodicity is observed. 

In the region between Iref = 0.5…0.6 (A), the appearance of P10 window is 

defined by both borderlines. The collision with Iborder1 leads to the non-smooth 

transition from chaotic mode of operation to P10 orbit (see Fig.5 point (H)). 

However, as the value of Iref is further increased, the periodic window does not 

form classical period doubling route to chaos – the collision with Iborder2 defines 

direct abrupt transition to chaotic mode of operation (see Fig.5 point (I)). 
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The described P10 regime is the last periodic window within the chaotic 

region and all the following periodic orbits occur to be unstable, not causing the 

interrupts of robust chaotic operation as the bifurcation parameter is varied.  

It should also be mentioned that the first relevant transition from the only 

practically acceptable stable P1 operation to P2 mode in this case appears 

almost at the same value as in the system without the delayIref≈0.36 (A). Thus, 

the introduction of relatively small delays do influence the dynamics of the 

system only after the first smooth period-doubling bifurcation. 
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Fig. 6. The bifurcation diagram of the boost converter with Δtd=0.2*T (s) 

 

The last complete bifurcation diagram (see Fig.6) depicts the case of Δtd = 

0.2*T (s), when the complete structure of the bifurcation diagram drastically 

changes in comparison to Fig. 5. For small values of Iref two coexisting regimes, 

namely P1 and P22, define the dynamics of the SPC. In this case the system 

could not reliably operate in the required stable P1 mode, as even small amount 

of noise (always present during the operation of SPC) could lead the system to 

operate in P22 regime with much higher voltages and currents. At Iref ≈ 0.32 (A) 

the smooth transition from P1 to P21 regime occurs. However, no period-

doubling route to chaos is observed for this branch of bifurcation diagram, as 

the P21 branch disappears just after the collision with Iborder2 (see Fig. 6 point 

(K)). It is interesting to note that the collision of P22 regime with the same 

borderline does not change the topological structure of this branch (see Fig.6 

point (J)). The BC at point (L) causes disappearance of P22 regime and 

transition to stable P4 mode of operation that subsequently does not lead to the 

formation of chaotic region through period-doubling cascade, as it “cut off” at 

point (N).  

The subsequent chaotization of the system is governed by the appearance of 

P6 orbit at point (M) that forms the chaotic attractor at Iref ≈ 0.53 (A) and also 

disappears after the collision with Iborder2 (see Fig.6 point (0)). The subsequent 

636



chaotic region is robust, as the two borderlines do not allow the formation of 

stable periodic orbits or coexisting attractors. 

 

4 Conclusions 

 
This paper showed that the discrete-time model of the boost type SPC under 

current-mode control could be effectively improved, including the value of total 

delay in the control loop. The results of complete bifurcation analysis confirm 

that even small values of delay may drastically change the structure of 

bifurcation diagrams, causing the appearance of highly non-smooth events and 

uncommon routes to chaos. The most distinctive phenomena include the 

appearance of coexisting attractors even in the region of P1 operation, as well as 

sudden disappearance and reappearance of stable and unstable periodic regimes 

after border collisions. The obtained results prove that it is not possible to 

provide reliable prediction of operating modes and their stability of SPC without 

taking into account time lag effects. It should be noted, that relatively small 

values of delays (up to 20% of switching period) were chosen, considering the 

analog control loops. However the typical values of delays in digital control 

circuitry could be much greater and the effects of these delays on the global 

dynamics of SPC will be addressed in the future research.  
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Abstract. We analyze a fractional order model of a network of one ring of three cells coupled
to a ‘buffer’ cell. By cell we mean a nonlinear system of ordinary differential equations. The
full network has Z3 symmetry group. We consider the Chen chaotic oscillator to model cells’
internal dynamics. We observe interesting dynamical patterns, such as steady-states, rotating
waves and chaos, for distinct values of the parameter c of the Chen oscillator and the derivative
of fractional order α . The different patterns seem to appear through a sequence of Hopf and
period-doubling bifurcations. Possible explanations for the peculiar patterns are the symmetry
of the network and the dynamical characteristics of the Chen oscillator, used to model cells’
internal dynamics.
Keywords: fractional Chen oscillators, Z3 symmetry, chaos.

1 Introduction

The theory of networks of coupled cells has taken a major breakthrough in the last
few years, mainly due to the work of Golubitsky, Stewart, and co-authors [3,5,4].
These networks appear in many areas of science, from biology, economy, ecology,
neuroscience, computation, and physics [11,1,14,6]. Particular attention has been
given to patterns of synchrony [9], phase-locking modes, resonance, and quasiperi-
odicity [1,10].

Networks of coupled cells are schematically identif ed with directed graphs, where
the nodes (cells) represent dynamical systems, and the arrows indicate the couplings
between them.

In this paper, we study the dynamical features of the coupled cell systems as-
sociated to the network in Figure 1, for variation of the fractional order derivative
α ∈ [0,1].

In Section 2, we summarize some concepts of the theory of coupled cell networks
and bifurcation theory, for symmetric dynamical systems. In Section 3, we simulate
the coupled cell system associated with the network in Figure 1. In Section 4, we state
the main conclusions of the current work and sketch some future research.

8thCHAOS Conference Proceedings, 26-29 May 2015, Henri Poincaré Institute, Paris
France

c© 2015 ISAST
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Fig. 1: Networks of one ring of cells coupled to a ‘buffer’ cell with Z3 exact (left) and interior
(right) symmetry. Each node represents a cell or a dynamical system. The arrows indicate the
couplings between them.

1.1 Summary of fractional calculus

The theory of fractional calculus (FC) had its start in 1695, when Leibniz exchanged
letters with L’Hôpital about D

1
2 f (x). In FC the concept of the derivative operator

Dα f (x) is generalized to fractional values of α , the order of the derivative. FC devel-
opment is due to relevant contributions of mathematicians, such as Euler, Liouvulle,
Riemann and Letnikov [8,12]. In the f elds of physics and engineering, FC is com-
monly associated with long term memory effects [2,7].

There are several def nitions of a fractional derivative of order α . The most
adopted def nitions are the Riemann-Liouville, Grünwald-Letnikov (GL) and Caputo
formulations. GL is def ned as:

GL
a Dα

t f (t) = lim
h→0

1
hα

[ t−a
h ]

∑
k=0

(−1)k
(

α
k

)

f (t − kh) , t > a, α > 0 (1)

where Γ (·) is Euler’s gamma function, [x] means the integer part of x, and h is the
step time increment.

The fractional derivatives capture the history of the past dynamics, as opposed to
the integer counterpart that is a ‘local’ operator.

The GL def nition inspired a discrete-time calculation algorithm, based on the
approximation of the time increment h by means of the sampling period T , yielding
the equation in the z domain:

Z {Dα f (t)}
Z { f (t)}

=
1

Tα

∞

∑
k=0

(−1)kΓ (α + 1)
k!Γ (α − k+ 1)

z−k =

(

1− z−1

T

)α

(2)

where Z denotes the Z-transform operator.
In order to apply the previous equation (2), it is considered a r-term truncated

series:
Z {Dα f (t)}
Z { f (t)}

=
1

Tα

r

∑
k=0

(−1)kΓ (α + 1)
k!Γ (α − k+ 1)

z−k (3)
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where, in order to have good approximations, is required a large r and a small value
of T . This procedure is commonly known as Power Series Expansion (PSE).

Expression (3) represents the Euler, or f rst backward difference, approximation
in the so-called s→ z conversion scheme. Another possibility, consists in the Tustin
conversion rule. The most often adopted generalization of the generalized derivative
operator consists in α ∈ R.

2 Network

A network of cells is represented as a directed graph, where the nodes represent the
cells and the arrows the couplings between them. Cells and arrows are classif ed
according to certain types [5]. Cells of the same type have the same internal dynamics,
and arrows with the same label identify equal couplings. Each cell is a dynamical
system. The input set of a cell is the set of edges directed to that cell. Figure 1 depicts
a coupled cell network, where the nodes are drawn as circles (cells in the rings) and
squares (‘buffer’ cell). There are three different types of coupling (three distinct arrow
types).

Coupled cell systems are dynamical systems consistent with the architecture or
topology of the graph representing the network. Each cell c j of the network has an
internal phase space Pj . The total phase space of the network being the direct product

of internal phases spaces of each cell, P=
n
∏
i=1

Pi . Coordinates on Pj are denoted by x j

and coordinates on P are denoted by (x1, . . . ,xn). The state of the system at time t is
(x1(t), ...,xn(t)), where x j(t) ∈ Pj is the state of cell c j at time t.

A vector f eld f on P is called admissible, for a given network, if it satisf es two
conditions [4]: (i) the domain condition - each component f j corresponding to a cell
c j is a function of the variables associated with the cells ck that have edges directed
to c j ; (ii) the pull-back condition - two components f j and fk corresponding to cells
c j and ck with isomorphic input sets are identical up to a suitable permutation of the
relevant variables.

In the current study, we consider an important class of networks, namely, the ones
that possess a group of symmetries. A symmetry of a coupled cell system is the
group of permutations of the cells (and arrows) that preserves the network structure
(including cell-labels and arrow-labels) and its action on P is by permutation of cell
coordinates. It is thus a transformation of the phase space that sends solutions to
solutions. The network in Figure 1 is an example of a network with Z3 symmetry.

3 Numerical results

In this section we simulate the coupled cell system associated with the network de-
picted in Fig. 1. We consider the Chen oscillator to model the internal dynamics of
each cell in the 3-ring and an unidimensional phase space for the ‘buffer’ cell. The
total phase space is thus tenth dimensional. The dynamics of a singular ring cell is
given by [13]:
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u̇ = a(v−u)
v̇ = (c−a)u−uw+ cv
ẇ = uv−b1w

(4)

where a= 35, b1 = 3 and c are real parameters. The unidimensional dynamics of the
‘buffer’ cell is given by [10]:

f (u) = µu−
1
10

u2−u3 (5)

where µ =−1.0 is a real parameter.
The fractional coupled cell system of equations associated with the network in

Fig. 1 is given by:

dα xj
dtα = g(x j)+ c1(x j − x j+1)+db j = 1, ...,3

dα b
dtα = f (b)

(6)

where g(u) represents the dynamics of each Chen oscillator, b is the ‘buffer’ cell,
c1 = −5, d = 0.2, and the indexing assumes x4 ≡ x1. We consider that the coupling
between all cells is linear and is done only in the f rst variable of each Chen oscillator.

We start with c= 15 and increase c till c= 24.5. Figure 2 depicts the patterns of
the network for three values of the fractional derivative α and c= 15. We observe an
equilibria for all values of α .
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Fig. 2: Dynamics of the coupled cell system (6) for c = 15 and three values of the fractional
derivative α = {0.8,0.9,1.0}.

In Figures 3- 5, are shown the dynamics of the fractional coupled system for c= 16,
andα ∈ {0.8,0.9,1.0}. It is observed a Hopf bifurcation of the system as c is increased
from c= 15. The model depicts a rotating wave state, where the cells in the three ring
are 1/3 of the period out-of-phase (Fig. 4). This rotating wave state is explained by the
symmetry of the network [1]. Moreover, one can distinguish another Hopf bifurcation
as the fractional derivative α is decreased from α = 0.9 to α = 0.8. The periodic orbit
at α = 0.9 has the same period as the one for α = 1.0 but smaller amplitude.
We increase c another time to c= 23. Figures 6- 7 show the dynamical features of the
system for α ∈ {0.8,0.9,1.0}. The motion is quasiperiodic for α = 1.0. For α = 0.9,
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Fig. 3: Dynamics of the coupled cell system (6) for c = 16 and three values of the fractional
derivative α = {0.8,0.9,1.0}.
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Fig. 4: Rotating wave of the coupled cell system (6) for c= 16 and α = 1.0. A similar wave is
observed for α = 0.9 with smaller amplitude.
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Fig. 5: Phase plot of a Chen oscillator of the coupled cell system (6) for c = 16 and α = 1.0
(left) and α = 0.9 (right).

the dynamics of system (6) is still quasiperiodic but is ‘simpler’ than for α = 1.0.
Moreover for α = 0.8 we obtain an equilibrium of the coupled system 1.

In Figure 8- 9, we depict the motions of the fractional coupled cell system (6) for
c= 24.5 and α = {0.8,0.9,1.0}. For α = 0.8 the system is at equilibrium. In addition,
we remark that the dynamics of system (6) are less ‘chaotic’ as α is decreased from 1
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Fig. 6: Dynamics of the coupled cell system (6) for c = 23 and three values of the fractional
derivative α = {0.8,0.9,1.0}.
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Fig. 7: Phase plot of a Chen oscillator of the coupled cell system (6) for c = 23 and α = 1.0
(left) and α = 0.9 (right).

(Fig. 9). For α = 1.0 the system is chaotic, and at α = 0.9 it seems to be at a periodic
orbit of long period.
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Fig. 8: Dynamics of the coupled cell system (6) for c= 24.5 and three values of the fractional
derivative α = {0.8,0.9,1.0}.

From the observation of the f gures in this section, one can conclude that there is a
variety of curious phenomena exhibited by system (6), that is attributed to the variation
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Fig. 9: Phase plot of a Chen oscillator of the coupled cell system (6) for c= 24.5 and α = 1.0
(left) and α = 0.9 (right).

of parameter c of the Chen oscillator, and is also due to the order of the fractional
derivative α . This will be further studied in future work.

4 Conclusions

We analyze curious patterns arising in a fractional order network of one ring of three
cells coupled to a ‘buffer cell. We observe a broad range of dynamical features for
increasing c and as α is decreased from 1. The exotic behaviors are explained by
the symmetry of the network, the characteristics of the Chen oscillator, used to model
cells’ internal dynamics, and the fractional order derivative. Future work will focus on
analyzing theoretically the role of the derivative of fractional order α as a bifurcation
parameter of the network.
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Abstract. Results of application of theory of fractal and chaos, scaling effects and 
fractional operators in the fundamental issues of the radar and radio physical are 
presented in this report. The key point is detection and processing of super weak signals 
against the background of non-Gaussian intensive noises and strays. An alternative – the 
radar rang is increased dramatically. The results of researches of spectrum fractal 
dimensions of lightning discharge in the middle atmosphere at attitudes from 20 to 100 
kilometres which are above the absolute of clouds are presented. The author has been 
investigating these issues 35 years equally and has obtained results of big scientific and 
practical worth. The reader is invited to look at the total of the title fundamental 
problems with the synergetic point of view of non-Markovian micro- and macro systems.  
Keywords: Fractal, Scaling, Texture, Chaos, Radar, Signals, Detectors, Fractal Radio-
Systems, Ionosphere, Elves, Jets, Sprites.  
 
 
1  Introduction 

 
The entire current radio engineering is based on the classical theory of an 
integer measure and an integer calculation. Thus an extensive area of 
mathematical analysis which name is the fractional calculation and which deals 
with derivatives and integrals of a random (real or complex) order as well as the 
fractal theory has been historically turned out "outboard" (!). At the moment the 
integer measures (integrals and derivatives with integer order), Gaussian 
statistics, Markov processes etc. are mainly and habitually used everywhere in 
the radio physics, radio electronics and processing of multidimensional signals. 
It is worth noting that the Markov processes theory has already reached its 
satiation and researches are conducted at the level of abrupt complication of 
synthesized algorithms. Radar systems should be considered with relation to 
open dynamical systems. Improvement of classical radar detectors of signals 
and its mathematical support basically reached its saturation and limit. It forces 
to look for fundamentally new ways of solving of problem of increasing of 
sensitivity or range of coverage for various radio systems. 

In the same time I'd like to point out that it often occurs in science that 
the mathematical apparatus play a part of “Procrustean bed” for an idea. The 
complicated mathematical symbolism and its meanings may conceal an 
absolutely simple idea. In particular the author put forward one of such ideas for 
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the first time in the world in the end of seventies of XX century. To be exact he 
suggested to introduce fractals, scaling and fractional calculation into the wide 
practice of radio physics, radio engineering and radio location. Now after long 
intellectual battles my idea has shown its advantages and has been positively 
perceived by the majority of the thoughtful scientific community. For the 
moment the list of the author's and pupils works counts more than 750 papers 
including 20 monographs on the given fundamental direction. Nowadays it is 
absolutely clear that the application of ideas of scale invariance - "scaling" along 
with the set theory, fractional measure theory, general topology, measure 
geometrical theory and dynamical systems theory reveals big opportunities and 
new prospects in processing of multidimensional signals in related scientific and 
engineering fields. In other words a full description of processes of modern 
signal and fields processing is impossible basing on formulas of the classical 
mathematics [1 - 11]. 

The work objective is to consider the use of the fractal theory and 
effects of physical scaling in development of new informational technologies 
using examples of solving of up-to-date basic radar problems. The author has 
been investigating these issues in V.A. Kotel’nikov IREE RAS for exactly 35 
years. 
 
2 On the Theory of Fractional Measure and Nonintegral 
Dimension  
 
The main feature of fractals is the nonintegral value of its dimension. A 
development of the dimension theory began with the Poincare, Lebesgue, 
Brauer, Urysohn and Menger works. The sets which are negligibly small and 
indistinguishable in one way or another in the sense of Lebesgue measure arise 
in different fields of mathematics. To distinguish such sets with a pathologically 
complicated structure one should use unconventional characteristics of 
smallness - for example Hausdorf's capacity, potential, measures and dimension 
and so on. Application of the fractional Hausdorf's dimension which is 
associated with entropy conceptions, fractals and strange attractors has turned 
out to be most fruitful in the dynamical systems theory [1, 3 – 7, 9 - 11]. This 
fractional dimension is determined by the p - dimensional measure with an 
arbitrary real positive number p proposed by Hausdorf in 1919. Generally the 
measure conception is related neither to metric nor to topology. However the 
Hausdorf measure can be built in an arbitrary metric space basing on its metric 
and the Hausdorf measure itself is related to the topological dimension. The 
Hausdorf-Besikovitch dimension is a metrical conception but there is its 
fundamental association with topological dimension dim E, which was 
established by L.S. Pontryagin and L.G. Shnirelman who introduced a 
conception of the metrical order in 1932: the greatest lower bound of the 
Hausdorf-Besikovitch dimension for all the metrics of compact E is equal to its 
topological dimension )(dim EE  . One of much used methods for estimation 
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of sets Hausdorf dimension known as the mass distribution principle was 
proposed by Frostman in 1935. 

Sets whose Hausdorf - Besokovitch dimension is a fractional number 
are called fractal sets or fractals. More strictly, set E is called fractal (a fractal) 
in the wide sense (in the B. Mandelbrot sense) if its topological dimension is not 
equal to the Hausdorf - Besikovich dimension, to be exact EE dim)(0  . For 

example set E of all the surd points [0; 1] is fractal in the wide sense since 
1)(0 E , 0dim E . Set E is called fractal (a fractal) in the narrow sense if 

)(0 E is not integer. A fractal set in the narrow sense is also fractal in the wide 

sense. 
 
3  Measuring of Fractal Dimension and Fractal Signatures  
 
Fractal methods can function on all signal levels: amplitude, frequency, phase 
and polarized. The absolute worth of Hausdorf-Besikovith dimension is the 
possibility of experimental determining [3 - 10]. Let's consider some set of 
points N0 in d - dimensional space. If there are N( ) - dimensional sample 
bodies (cube, sphere) needed to cover that set with typical size  , at that  

                           DN  /1)(   при 0                                            (1) 

is determined by the self-similarity law. 
The practical implementation of the method described above faces the 

difficulties related to the big volume of calculations. It is due to the fact that one 
must measure not just the ratio but the upper bound of that ratio to calculate the 
Hausdorf - Besikovith dimension. Indeed, by choosing a finite scale which is 
larger than two discretes of the temporal series or one image element we make it 
possible to "miss" some peculiarities of the fractal. Building of the fractal 
signature [4 - 7] or estimates dependence (1) on the observation scale helps to 
solve this problem. Also the fractal signature describes the spatial fractal 
cestrum of the image. In IREE RAS we developed various original methods of 
measuring the fractal dimension including methods: dispersing, singularities 
accounting, on functionals, triad, basing on the Hausdorf metric, samplings 
subtraction, basing on the operation "Exclusive OR" and so on [4 - 7]. During 
the process of adjustment and algorithms mathematical modeling our own data 
were used: air photography (AP) and radar images (RI) on millimeter waves [9]. 
Season measurements of scattering characteristics of the earth coverings were 
already naturally conducted on wavelength 8.6 mm by the author in co-
operation with representatives of Central Design Bureau "Almaz" from a 
helicopter MI-8 in the eighties of XX. 

A significant advantage of dispersing dimension is its implementation 
simplicity, processing speed and calculations efficiency. In 2000 it was 
proposed to calculate a fractal dimension using the locally dispersing method 
(ref. for example [4 – 7, 9 - 11]). In the developed algorithms they use two 
typical windows: scale and measuring. The scale window defines the necessary 
scale of measurements which the scaling is observed in. That is why the scale 
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window serves for selection of the object to be recognized and its following 
description in the framework of fractal theory. An image brightness or image 
intensity local variance is determined by the measuring window. The locally 
dispersing method of the fractal dimension D measurements is based on 
measuring a variance of the image fragments intensity/brightness for two spatial 
scales: 

                                               
12

2
1

2
2

lnln

lnln







D .                         (2) 

In formula (2) 
21, - root-mean-squares on the first 

1 and second  
2 scales of 

image fragment, respectively. Accuracy characteristics of the locally dispersing 
method were investigated in [4, 5, 7]. It is proved [7] that in the Gaussian case 
the dispersing dimension of a random sequence converges to the Hausdorf 
dimension of corresponding stochastic process. The essential problem is that 
any numerical method includes a discretization (or a discrete approximation) of 
the process or object under analysis and the discretization destroys fractal 
features. The development of special theory based on the methods of fractal 
interpolation and approximation is needed to fix this contradiction. Various 
topological and dimensional effects during the process of fractal and scaling 
detecting and multidimensional signals processing were studied in [4 - 11].  
 
4  Textural and Fractal Measures in Radio Location  
 
During the process of radio location the useful signal from target is a part of the 
general wave field which is created by all reflecting elements of observed 
fragments of the target surrounding background, that is why in practice signals 
from these elements form the interfering component. It is worthwhile to use the 
texture conception to create radio systems for the landscape real inhomogeneous 
images automatic detecting [4 – 6, 9]. A texture describes spatial properties of 
earth covering images regions with locally homogenous statistical 
characteristics. Target detecting and identification occurs in the case when the 
target shades the background region at that changing integral parameters of the 
texture. Many natural objects such as a soil, flora, clouds and so on reveal 
fractal properties in certain scales [4 - 6]. The fractal dimension D or its 
signature D(t, f, r


) in different regions of the surface image is a measure of 

texture i.e. properties of spatial correlation of radio waves scattering from the 
corresponding surface regions. At already far first steps the author initiated a 
detailed research of the texture conception during the process of radio location 
of the earth coverings and objects against its background. Further on a particular 
attention was paid to development of textural methods of objects detecting 
against the earth coverings background with low ratios of signal/background [4]. 
 
5  Fractal Signal and Image Processing in the Interference 
 
The author was the first who shows that the fractal processing excellently does 
for solving modern problems when processing the low-contrast images and 
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detecting super weak signals in high-intensity noise while the modern radars 
does not practically function [4 – 7, 9 - 11]. The author's developed fractal 
classification was approved by B. Mandelbrot during the personal meeting in 
USA in 2005. It is presented on Fig. 1 where the fractal properties are described, 
D0 - is a topological dimension of the space of embeddings.  
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оf Scales and Self -

Similarity (Scaling)

The Hausdorf
Fractal Dimension

D > D0

The Number of
Iteration

n →∞

Mathematical Physical
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D ≥ D0

Finite Number of
Iteration

n

Fractional 
Derivates

and Integrals

A Finite Number of
Scales and Self -

Similarity (Scaling)

A Piecewise
Differentiable 

Function

 
Fig. 1. The author's classification of fractal sets and signatures 

 
The textural and fractal digital methods under author's development 

(Fig. 2) allow to overcome a prior uncertainty in radar problems using the 
sampling geometry or topology (one- or multidimensional). At that topological 
peculiarities of the sampling and also the scaling hypothesis and stable laws 
with heavy "tails" get important as opposed to the average realizations which 
frequently have different behavior [4 – 7, 9 - 11].  
 
6  Development of "Fractal Ideology" in Radio Physics  
 
A critical distinction between the author's proposed fractal methods and 
classical ones is due to fundamentally different approach to the main 
components of a signal and a field. It allowed to switch over the new level of 
informational structure of the real non-Markov signals and fields. Thus this is 
the fundamentally new radio engineering. For 35 years of scientific researches 
my global fractal scaling method has justified itself in many applications - Fig. 
3. This is a challenge to time in a way. Here only the facts say! Slightly 
exaggerating one can say that the fractals formed a thin amalgam on the 
powerful framework of science of the end of XX. In the modern situation 
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attempts of underestimating its significance and basing only on the classical 
knowledge came to grief in an intellectual sense. 
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Fig. 2. Textural and fractal methods of processing low-contrast images and 

super weak signals in high-intensity non-Gaussian noise  
 

In fractal researches I always rest upon my three global theses:  
1. Processing of information distorted by non-Gaussian noise in the fractional 
measure space using scaling and stable non-Gaussian probabilistic distributions 
(1981) - Fig. 1 - 3. 
2. Application of continuous nondifferentiable functions (1990) – Fig. 1.  
3. Fractal radio systems (2005) – Fig. 3 and 4 [4 – 7, 9 - 11].  

A logic aggregation of the problems triad described above into the 
general "fractal analysis and synthesis" creates a basis of  fractal scaling method 
(2006) and a unified global idea of the fractal natural science and fractal 
paradigm (2011) which were proposed and are investigated by the author now 
[4 – 7, 9 - 11]. Basing on the matter reviewed above next we will proceed to 
description of the fractal radar conception and also issues of its scale-invariant 
principles application in other systems of radio monitoring. In fact the question 
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is about a fundamentally new type of radio location: fractal scale or scale-
invariant radio location. 
 

 
Fig. 3.  A sketch of author's new informational technologies development basing 

on fractals, fractional operators and scaling effects for nonlinear physics and 
radio electronics 

 
7  Principles of Scale-Invariant or Fractal Scaling Radio 
Location and its Applications  
 
At the moment world investigations on fractal radio location are exclusively 
conducted in V.A. Kotel’nikov IREE RAS. Almost all the application points of 
hypothetic or currently projectable fractal algorithms, elements, nodes and 
processes which can be integrated into the classical radar scheme are 
represented on Fig. 5. The ideology of proceeding to the fractal radar is based 
on the fractal radio systems conception - Fig. 4.  

  In particular a multifrequency work mode is typical for the fractal 
MIMO-system [11 - 13] proposed by the author earlier since fractal antennas 
can radiate several waves lengths at the same time. Building of a tiny fractal 
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radar with fractal elements and modern parametrons is possible for unmanned 
aerial vehicles (UAV).  

 

 
Fig. 4. The author's conception of fractal radio systems, devices and radio 

elements   
 

 
Fig. 5. The points of application of frac tals, scaling and fractional operators for 

proceeding to the fractal radar  
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At the same time the fractal processing at the point of control of UAV 
transmitted information will allow to improve sharply and automatize the 
processes of detecting, clustering and identification of targets and objects. 
Moreover UAV fractal coating will sharply reduce the probability of its 
detecting in flight.  
 
8  Fractal Detection of Objects on Images From SAR and UAV   
 
The base data for digital fractal processing of radar images were obtained by 
satellite radar with the synthetic aperture (SAR) PALSAR of L-range (Japan). 
PALSAR is a space SAR at wavelength 23 cm with spatial resolution of about 7 
m which is developed by Japanese agency JAXA and which was successfully 
working on orbit from 2006 till 2011.  

A radar image of Selenga estuary in Transbaikalia obtained in the FBS 
high resolution mode on the coherent horizontal polarization on 7 August 2006  
is presented on Fig. 6 as an example.  
 

 
 

Fig. 6. Selenga estuary on the РСА 
PALSAR photo from 7 August 

2006 

 
Fig. 7. The result of fractal 

processing of the РСА PALSAR 

 
The shooting zone of about 60 × 50 km includes the forest covered 

mountainous area Hamar - Daban (at the bottom, it is reproduced by a brighter 
tone with the typical "crumpled" structure), the flat area of Selenga estuary (in 
the middle of the top image part, it is reproduced by darker tones) and the 
smooth water surface of the lake Baikal (the black segment in the left upper 
corner of the image). The banded structures are seen in the flat part of the 
image, these are the bounds of agricultural fields. Also the clusters of bright 
objects are seen, these are the strongly reflecting elements of buildings and other 
constructions in the range of settlements. The long twisting dark lines on the 
plain are the multiple arms of Selenga. 

The fields of local values of dispersing fractal dimension D were 
measured at the first stage of radar images fractal processing by a SAR (Fig. 7). 
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Next the empiric distribution of values of the instant fractal dimension D was 
obtained Fig. 8. 
 

 
 
Fig. 8. An empiric distribution of values of the instant fractal dimension D  

 
Below the examples of fractal clustering over D are presented (Fig. 9  

and Fig. 10). The selected image fragment with fractal dimension D 2,2 
nearby the first big peak (Fig. 8) is presented on Fig. 9. The selected image 
fragment with fractal dimension D 2,5 (  Brownian surface) nearby the third 
and fourth big peak (Fig. 8) is shown on Fig. 10.  

 

 
 

Fig. 9. A fragment with D 2,2. 
 

Fig. 10. A fragment with D 2,5. 
 

Previously invisible (hidden) peculiarities (for example earth coverings 
distant probing clustering data [4 - 6]) along with a stable distribution by earth 
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coverings types are registered after fractal processing of surface images. It 
allows speaking of application of fractal recognition methods for the 
identification of image parts which are "invisible" when using classical methods 
of clusterization over the brightness field. 
 
9  Fractal Characteristics of the High-Altitude Discharges in 
Ionosphere  
 
4 million lightnings draw the sky every 24 hours and about 50 lightnings draw 
the sky every second. And over the lead thunderheads, a light show of "unreal 
lightnings" is developing in the upper atmosphere: azure jets, red-purple sprites, 
red rings of highly soaring elves. These are discharges of very high energy 
which do strike the ionosphere and not the ground! Thus high-altitude electrical 
discharges (20 - 100 km) subdivide into several basic types: elves, jets, sprites, 
halo and so on - Fig. 11 (This is the first colour image captured of one by NASA 
aircraft in 1994). A history brief: a significant event occurred in the Earth study 
history in the night of 5 to 6 July 1989. Retired professor and 73 years old 
NASA veteran John Randolph Winkler pointed an extremely sensitive camera 
recorder to thunderstorm clouds and then he detected two bright blazes during 
inspecting the record frame by frame. The blazes go up to the ionosphere in 
contrast to lightning’s which should go down to the ground. This way the sprites 
were discovered. The sprites are the biggest high-altitude discharges in the Earth 
atmosphere. After these publications NASA had not already been able to 
disregard the potential threat to space vehicles and they started a comprehensive 
research of high-altitude discharges. 
 

 
 

Fig. 11. Dynamical fractal structures in the atmosphere (copyright: Abestrobi 
(Wikipedia))   
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The most short-lived high-altitude discharges are elves. They arise in 
the lower ionosphere at altitudes 80 - 100 km. The luminescence arise in the 
center and expands to 300 - 400 km for less than a millisecond and then it goes 
out. The elves are born in 300 microseconds after a strong lightning stroke from 
a thunderstorm cloud to the ground. It gets altitude 100 km for 300 
microseconds where it "arouse" a red luminescence of nitrogen molecules. The 
most enigmatic high-altitude discharges are azure jets. These are also a 
luminescence of nitrogen molecules in the ultraviolet-blue band. They look like 
an azure narrow inverse cone which "starts" from the upper edge of a 
thunderstorm cloud. Sometimes jets reach altitude 40 km. Their propagation 
speed varies from 10 up to 100 kilometers per second. Their occurrence is not 
always due to lightning discharges. Besides azure jets they mark out "azure 
starters" (they propagate up to altitudes   25 km) and "giant jets" (they 
propagate up to altitudes of the lower ionosphere about 70 km). Sprites are very 
bright three-dimensional blazes with duration around milliseconds. They arise at 
altitude 70 - 90 km and descend down 30 - 40 km. Their width reaches tens of 
kilometers in the upper part. Sprites blaze up in the mesosphere in about one 
hundredth part of a second after the discharge of powerful lightnings "cloud - 
ground". Sometimes it occurs at a distance of several tens kilometers 
horizontally from the lightning channel. The red-purple colour of sprites as well 
as elves is due to the atmosphere nitrogen. The frequency of sprites occurrence 
is about several thousand events per 24 hours over the entire globe. The fine 
structure of the lower sprites part is characterized by dozens of luminous 
channels with cross sectional dimensions from tens to hundreds meters. Sprites 
occurrence is related with formation of high electrical dipole moment of 
uncompensated charge after especially powerful lightning discharges cloud-
ground with usually positive polarity. 

Dynamical spatial-temporal singularities and morphology of sprites can 
be particularly explained by the discharges fractal geometry and percolation 
[14]. Here we have one more example of a self-organized criticality when the 
system (a high-altitude discharge in this case) dynamics is determined by 
reaching the threshold of the so called directed percolation which characterizes a 
formation of branchy (fractal) conductive channels overlapping all the sprite 
length. A different situation arises with issues of data statistical processing. Here 
the classical methods are used by tradition. It does not allow to extract all the 
information about such newest atmospherical structures. Selected examples of 
our fractal processing of sprite profiles (Fig. 12) are presented on fig. 13, a - c. 
Examples of fractal processing of a jet (Fig. 14, a) are presented on Fig. 14, b, c.  

The fractal-scaling methodology which was used for describing the 
morphology of jets, sprites and elves can be successfully used to estimate their 
parameters and dynamics of their evolution [14]. Then the mathematical physics 
problems are solved.  
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Fig. 12. The original sprite image (USA, NASA [15])  
 

 
(a) 

 
(b) 

 
(c)  

 
Fig. 13. Results of fractal filtering of a sprite image: (a) a pattern 

of fractal dimension with the mean value D  = 2,3; (b) – 2,8;  
(c) – 3,0   

 

 
(a) (b) 

 
(c)  

 
Fig. 14. Results of fractal filtering of a giant jet image (the photos 

were taken in China August 12, 2010)  (a) - the jet image [16], 
(b) and (c) – profiles of D estimates   
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Conclusions 
 
The fractal problem in radio location, radio physics and radio engineering is 
indeed immense. Here I illustrate only fundamental initial issues. It is always 
hard and even impossible to recede from habitual standards... But the author has 
good reasons to think that the extensive and valuable material he already 
obtained and the results of further researches will be used in advanced radio 
systems. The fractal radio physics, fractal radio engineering and fractal radio 
location are peculiar radio sciences. They are suffused with a spirit and ideas of 
the classical radio physics and radio engineering but at the same time they are 
fundamentally new areas of focus. The results of conducted researches oriented 
to enhancing the interference immunity of work of radio systems on a radio 
channel with high-intensity noise and distortion showed opportunities of the 
approach on the basis of using textural and fractal-scaling methods of detecting 
and processing random signals and fields. 

The author raised these questions back in 1980, and for 35 years has 
been successfully working on their resolution [4 - 6]. Fractal methods similar to 
ones presented in this work can be applied when considering wave and 
oscillatory processes in optics, acoustics and mechanics. Results and 
conclusions obtained by the author and his pupils have great innovative 
potential. We think that its realization will resolve a number of current problems 
of radio physics, radio engineering, radio location, communication and 
operation and also will allow to provide a new quality for detecting and 
recognition systems and also development of the new informational 
technologies.  

Many important stages in fractal directions development including the 
stage of this science field formation have been already passed. However many 
problems are still to be solved. Results and specific solutions are not of so 
greatest value like the solution method and its approach are. The method is 
created by the author [4 - 14]. It is necessary to put it all into practice!  
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