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Abstract. We live in a dynamic world that is most often described as being 

“chaotic” and unpredictable.  From our human perspective, we do not see the greater 

framework of the system that we live in, and can only try to approximate its 

boundaries.  However, with technological advances and continued adaptability, this 

does not limit our progression, because humans are complex creatures that seek to 

control chaos.  It follows that we function in organizations that become complex 

systems, or systems that provide a balance between rigid order and random chaos.  

This realization defines a new paradigm for “emergent” leadership and management 

based on chaos theory, where emergent leaders become “strange attractors”; this 

means they are leaders that are flexible and have the skill set to accept 

unpredictability to enable the organization to adapt accordingly.     

Keywords: Control, Non-linear systems, Uncertainty, Unpredictability, Attractors, 

Leadership, Emergent leader, Positive motivators. 

 
1   Introduction 

 
When we think of the word “chaos”, the prominent meanings that come to mind are 

confusion, disorder, and lack of control.  However, these definitions represent the 

modern English meaning of the word.  Chaos was first conceptualized and defined 

through mythology, which described the origins (or birth) of humankind.  “Myth is 

as logical as philosophy and science, although the logic of myth is that of 

unconscious thought” (Caldwell[3]).  The word itself is rooted in Greek origins, its 

authentic form being Χάος (Khaos).  In Greek mythology, Chaos is “the 

embodiment of the primeval Void which existed before Order had been imposed on 

the universe” (Grimal and Kershaw[4]).  In this definition it is evident how 

humankind had tried to contain a vastness that was (and is) difficult to comprehend 

in its natural form.  Hesiod’s Theogony agrees with the undefinable origin concept, 

as “first of all, the Void came into being, next broad-bosomed Earth, the solid and 

eternal home of all… Out of Void came Darkness and black Night” (Brown [1]).  

249



The synonymy of “void” and “chaos”, and the birth of darkness from the 

“embodiment of the primeval void”, implies that chaos is an “impenetrable darkness 

and unmeasurable totality, of an immense opacity in which order is nonexistent or at 

least unperceived” (Caldwell[3]); that chaos describes the collection of everything 

that humankind cannot grasp and cannot control.  Now, there is the duality of the 

controllable and uncontrollable; an unspoken demarcation of what the human mind 

is capable of elucidating.   

However, the characterization of chaos is incomplete without the following 

line, as “Earth, the solid and eternal home of all” is formed, born as a separate entity 

and representative as “the primordial maternal symbol” (Caldwell[3]).  The key to 

this is to note the synonymy of the “maternal symbol” and the “solid and eternal 

home of all”, the implication being that “solidity” and order is established so that the 

lineage of humankind can be traced back to something tangible.  Again, there is a 

polarity of order and non-order, which can be seen in the chronologic succession of 

chaos, then the formation of earth.  This sequence becomes significant in implying 

“that Chaos, a state prior to perception, represents the situation of the child in the 

symbiotic state” and “may be regarded as a representation of the symbiotic phase as 

un-differentiation and imperception, as a formless totality” (Caldwell[3]).  Through 

this implication, chaos is better defined as being everything before perception, rather 

than confusion or disorder; chaos is what is unknown or intangible.   
 

2 Control in Chaos 

 
For decades we have repressed this unknown through systems and controls of 

mathematical equations and patterns.  The reduction of chaos began with Sir Isaac 

Newton, in his attempt to mechanize reality through linearization of (what was later 

accepted as) a nonlinear, dynamic system.  The theory had been based on the idea 

that with a linear reality, predictions could be made and phenomena could be 

controlled simply by deconstruction of the universe into its most “basic parts” and 

“logically” putting them back together (Burns[2]).  In truth, this type of linearized 

reality has helped to advance humankind not only technologically, but also socially.  

“The social sciences have always attempted to model physical science paradigms” 

(Burns[2]).  This is evident in the early formation of the field of Psychology, where 

Freud’s developmental stages build upon each other.  It was assumed that if one 

stage is (or becomes) dysfunctional, problems in the human psyche occur.  Other 

human systems, such as the development and function of political parties, economic 

systems, and the development of children’s concept learning strategies, are also built 

under the assumption of Newton’s linear reality (Burns[2]).  With the help of 

quantum physicists, and theoretical meteorologist, Edward Lorenz, the way actual 

reality functions became easier to accept: the reality that the universe is chaotic and 
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cannot be linearized and deconstructed into simpler mathematics.  The realization 

that social systems could no longer be defined as linear. 

Finally, the study of reality no longer models the constrained limitations of 

a linear way of thinking, and instead begins to model non-linear, dynamic chaos.  By 

extension, because organizations exist in reality, it can be assumed that social 

systems develop within a chaotic system.  Therefore, “organizations are nonlinear, 

dynamic systems” (Otten and Chen[10]) that make it imperative for leadership, and 

leadership practices, to be constructed through chaotic-system thinking.  “In chaos 

theory leadership is not reduced to the ‘leadership’ behavior of a key position holder 

or team of ‘top’ people.  Leadership is conducted throughout the organization, 

through all agents… Leadership is broadly conducted precisely because in chaotic 

systems, all agents have potential access to vital information from the environment” 

(Burns[2]).   

The very definition of an organization is a body of people who share a 

purpose, vision, or mission.  The primary functions of leadership within the 

organization are to: a) ensure that the agents of the organization keep the purpose 

and core values in mind, and b) ensure that the primary mission and values adapt 

(continuously) with environmental demands.  By empowering all levels of the 

organization, the environment is monitored constantly and the overall mission is 

clarified because it is continuously evaluated and defined from different 

perspectives (Burns[2]).  The acceptance of chaos in social systems is the basis that 

leaders must begin with.  The assumption that outcomes are predictable is parallel to 

the assumption that chaos can be predicted.  However, if chaos is defined as the 

unknown, the assumption that chaos is predictable is illogical.  Therefore, it is the 

prerogative of leaders to influence the perspectives of the agents to accept 

unpredictability, so as to allow them to develop the capability to receive information 

and adapt accordingly.  Leaders must have the skill set to shift thought processes in 

order to focus on the possibilities of outcomes and choose which ones are 

“desirable” to the organization, rather than fixate on a single possibility and try to 

control and direct chaos to produce this outcome.   

 

3 Chaos Theory and Complex Systems Defined   

        
Chaos theory states that the behavior of complex systems are highly sensitive to the 

slightest changes in conditions, which results in small changes to giving rise to more 

unpredictable, prominent effects on the system.  With the introduction of quantum 

mechanics came a better understanding of how chaos theory applies to the real 

world.  “Chaos theory, in essence, is an attempt to remove some of the darkness and 

mystery which permeates the classical concept of chaos by explaining, at least in 

some dynamic systems, how the system exhibits chaotic behavior” (Hite[7]).  Chaos 

theory emphasizes that the conditions and state of change are no longer simple linear 
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cause-and-effect relations; instead it assumes that both the cause and effect can 

originate and result from a multitude of variables that could come from various 

directions.  This implies that a chaotic system is a flexible macro-structure that is 

vulnerable to the slightest disturbances on the micro level, although these changes 

are bounded by a pre-established framework.   

Within the framework of an organization, chaos theory implies (but is not 

limited to) six critical points: 1) organizational life is predictable and unpredictable; 

2) it is virtually impossible to define a single cause for any reactions; 3) diversity 

provides a more productive base; 4) self-organization will reduce concern for 

anarchy prevailing over chaos; 5) individual action in combination with a multiplier 

effect will focus responsibility on the individual; and 6) “scale-invariant properties 

and irreversibility are components of all chaotic organizations” (Grint[5]).   

Organizational life may be predictable on the macro-level, as there will 

appear to be repetitive behaviors or patterns that appear aperiodically.  On the other 

hand, at the micro-level of an organization, it will seem unpredictable because 

humans, as individuals, will appear to be random and to express unconnected, 

chaotic tendencies.  One example found in nature is seen in the actions of ants; the 

activities of a single ant will appear random and disconnected, but the greater 

picture shows that it is a part of a larger social organization that has a single value.  

Because of this type of reasoning, the second critical point holds true: to define a 

single cause to explain an effect is impossible, as there could be many causes that 

occur simultaneously to produce an outcome.  Every individual agent of the 

organization will establish multiple links, or connections, with other agents and 

various sources of information from the environment.  Therefore, multiple reasons 

behind following directives or strategies will develop over time or simultaneously.  

Each unique link and motive must be taken into account when trying to align the 

goals of the organization with that of the individual.  The strategies that are 

established should be aimed towards the acceptance of unpredictability and 

uncertainty, so as to give the impression “that they have control over something 

which is inherently uncontrollable” (Grint[5]). 

The acceptance of uncertainty and unpredictably will help agents to 

recognize the value of dissenting voices and contrary cultures.  The idea behind this 

is to shift the organization from a hierarchical top-down structure to a self-

organizing structure, where the environment is defined by fundamental, interactive 

guidelines that allow for the flexibility in handling each situation uniquely.  This 

idea is akin to giving an organization a set of standards and regulations that suggest 

how to handle general issues, instead of stating rigorous rules on how things should 

and should not be.  It would be ideal to just hint at the overall culture and let each 

experimental, self-organizing group within the structure contribute to the definition 

of organizational life by facilitating their own resolutions (because it would be 

unique to each group) instead of following orders.  The allowance of this kind of 

problem solving will enable the agents to voice their opinions and implement 
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actions without reprimand, unlike positive- and negative-reinforcement managerial 

styles that may dissolve the organization into anarchy.  Agents who do not feel 

constrained by rules and regulations feel that they are contributing to the overall 

system, and are less likely to cause destructive disorder.  From this point, it is up to 

the leader or manager to be able to allow the loss of total control, and to allow for 

the birth and decay of motivational schemes in order to become effectively adaptive. 

With the loss of control, it usually follows that there is a loss of 

responsibility placed solely on the leader of an organization.  This happens because 

the agents create and form the culture, and therefore have the obligation to uphold 

the culture.  The leader or manager, and even the individual agents, must also 

understand the irreversibility of individual actions; the multiple connections that 

form between various agents will contribute greatly to the multiplier effect, and 

propel smaller-scale decisions and strategies into larger arrangements.  A component 

of chaotic structures that this is commonly compared to is called a fractal, where 

similar ordering properties can be seen at different levels of the organization, and be 

recognizable to all levels.  And, like a fractal, these similar patterns will build upon 

each other to create a complex structure. 

 

4 The “Strange” Attractor 

 
The development of Lorenz’s mathematical model of a chaotic system emphasized 

the idea that dynamic, complex systems are highly dependent on initial conditions; 

his model of the system demonstrated that a slight change in the input values 

produced very different outputs.  However, no matter what changes were made, the 

visual pattern that computers generated based on Lorenz’s model reflected that of 

butterfly wings.  “The resulting figure displays a curve that weaves itself into a 

circular pattern, but never repeats itself exactly.  Because it never returns to the 

initial state, though it may come arbitrarily close, the system is aperiodic” (Singh 

and Singh[12]).  An embedded circular shape within the “wings” forms as the model 

continues; however, it is almost like a void space – the pathways never cross 

through this space.  This void space is an “attractor” that will draw “point 

trajectories into its orbit, yet two arbitrarily close points may diverge away from 

each other and still remain within the attractor” (Burns[2]).   

  “Conventional theory asserts that the world is predictable and stable, and 

able to be explained by causal links that can be measured and monitored.  Chaos 

theory implies that in the short term anything can happen, but that in the long term 

patterns, or ‘strange attractors’, are discernible” (Grint[5]).  These strange attractors 

represent a key concept in this definition of chaos theory.  “A system attractor, in 

essence, operates like a magnet in a system.  It is the point or locus around which 

dynamical system activity coalesces… It is the attractor that provides the system 

with some sense of unity, if not uniformity.  The attractor may be strong and 
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definite, as with a fixed point, or it may be weak and indefinite, as with strange 

attractors” (Hite[7]).  The strange attractor is not “weak” as in the classical sense of 

the definition.  It is weak in the sense that it is flexible in its structure and has the 

ability to adapt infinitely.  The strange attractor is better conceptualized as the 

pinpoint where the basis of the new or current dynamic system begins; this is similar 

to agents and how they interact within an organization.  The difference between the 

agent and the attractor is that the attractor is an individual who possesses innate 

qualities that other agents may eventually gravitate towards.    

In essence, the strange attractors of the organization are the values and 

vision that is shared, and “attractor” agents will exemplify these values and vision; 

but it is unlikely that individual agents will “orbit” the vision and values in the same 

way.  This will result in the creation of multiple pathways to achieve the same 

overall mission of the organization.  The “Butterfly Effect” theory was named after 

complexity science “where a butterfly flapping its wings in one location gives rise to 

a tornado or similar event occurring in another remote part of the world… the 

butterfly effect is nonlinear and amplifies the condition upon each iteration” (Osborn 

et al. [9]).  And, as the butterfly effect explains, because these paths differ, these 

small changes in trajectories will result in larger changes to the overall system, 

though it will still be within the same framework.  However, the timeframe of these 

changes, and to what extent the changes will have an effect, will be unknown; 

something small can begin a chain of events that will cause something relatively 

larger or smaller, in another part of the world or in close vicinity; but how quickly or 

slowly that happens will be unpredictable.  At this point the difference between a 

complex system and chaotic system becomes difficult to define.   

 

5 The Line between Chaotic and Complex Systems 

 
“Where chaos theory addresses systems that appear to have high degrees of 

randomness and are sensitive to initial conditions, complexity theory has to do with 

systems that operate just at the line of separating coherence from chaos” (Hite[7]).  

Returning to the definition that chaos is everything unknown to humankind, it was 

also seen that the state of chaos thrives within the condition of symbiosis, by un-

differentiating or non-delineating the self from the total.  Now, instead of chaos 

being the unknown, as in uncertainty or ambiguity, it is transformed into being the 

unknown, as in the unawareness of individuality; there is no self or other, there is 

only totality; there is only interdependence in oneness (Singh [11]).  Complex 

systems operate between order and chaos, where the state of symbiosis exists, but 

the conditions surrounding the symbiotic relationship are defined.   

By extension of this thought, the theory of the “Butterfly Effect” is 

emphasized.  The initial conditions put into the system are known, which is 

representative of imposing a type of order into the system.  However, the outcome 
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will always be unpredictable in the short-term.  Nevertheless, in the long-term, there 

will be aperiodic behaviors that a complex system will adapt to.  Thus, if new initial 

conditions based upon these behaviors are inputted into the system, no matter how 

unpredictable the outcomes, the system will iterate and adapt to try to return to a 

flexible state of equilibrium, even if the speed of this change is unknown.  It must 

also be accepted that this state of equilibrium is fleeting, as there will be another 

change in the system occurring somewhere else at any given point in time, giving 

credence to the idea that complex systems are dynamic in nature.  And, because the 

system will always be in flux and dynamic, it is logical to say that how leadership is 

defined and how management is applied also need to be continuously dynamic.   

 

6 Leadership Actualized 

 
There is no universal explanation for what leadership is, or how to define it -- only 

contextual examples of what leadership accomplishes.  Through the understanding 

of chaos and complexity, it becomes easier to digest that a solid definition for 

leadership may never be found; the essence of leadership is continuously adapted 

and remolded to fit what the organization needs.  There are a few reasons behind 

why leadership is so difficult to define.  Like the Butterfly Effect, the extent, speed, 

and actual dimensions of the response(s) to leadership will never be clearly known, 

and so cannot be clearly defined.  However, the connotations of leadership are 

known to be adaptable to the culture of the organization.   

Therefore, defining the culture would mean determining the style of 

leadership that is needed.  Because culture varies from organization to organization, 

what defines a leader will also differ, as they will need to adapt to specific and 

unique organizational needs.  And, as a leader, it is important to note that leadership 

is not delivered by a single individual, but rather, is dependent on the interaction 

between an agent and its organization and is constructed from social recognition 

(Osborn et al. [9]).  “The point of leadership is to initiate change and make it feel 

like progress… Leadership is what takes us and other people into a better world.  

Leadership insists that things must be done differently.  Leadership rides the forces 

that are pulling individuals, groups, organizations, markets, economies, and societies 

in different directions, and lends a coherence that will enable us to benefit from the 

change around us.  Leadership says, ‘We cannot just carry on doing what we have 

done before.  See all these forces of change around us; they are not just threats, they 

are also opportunities.  But we must do this rather than that’” (Yudelowitz et al. 

[13]).  Leadership seems to represent the “space between” what a leader does and 

how the organization responds; leadership manifests itself in the interaction, and 

what makes someone a leader is the leader’s awareness of this fact and to what 

extent his or her influence can be recognized.    
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7 Organizations are Complex Adaptive Systems 

 
In an adaptive organization, leaders monitor the overall well-being of the system, 

both internally and externally.  Attractors influence the organization’s culture and 

dynamics, while agents drive the system.  A relatively new understanding of an 

organization is that it follows a “complex adaptive system” theory [CAST] -- a 

framework for explaining the emergence of system-level order that arises through 

the interactions of the system’s interdependent components (agents)” (Lichtenstein 

and Plowman[8]).  Because these interactions and influences can begin from 

anywhere within an organization, the model of an organization that seems to emerge 

is a decentralized structure that allows change to originate from anywhere, at any 

time.  However, this does not mean that the unity and cohesiveness of the structure 

will become affected.  What a complex adaptive system offers is a flexible structure 

that allows for the input of all the variables from the environment to influence the 

system, then adapts accordingly by beginning with individual agents.  This is very 

reflective of the Butterfly Effect; “when an agent adjusts to new information, the 

agent expands his/her own behavioral repertoire, which, in effect, expands the 

behavioral repertoire of the system itself” (Lichtenstein and Plowman[8]).   

In an empirical study, B.B. Lichtenstein and D.A. Plowmen found that 

there are four sequential conditions that form an element termed “emergence”.  

Multiple cases were examined, where each case exemplified an organization 

undergoing the process of adaptation and how they “emerged” to be able to survive 

within the present environmental conditions.  The four prevailing, sequential 

conditions found in each case are: dis-equilibrium, amplification of actions, 

recombination or self-organization, and stabilizing feedback.   

Dis-equilibrium describes the system when it is in a state of dynamism and 

is usually initiated by the occurrence of an incongruity or change.  This disruption 

can be caused by external or internal influences, such as, competition or new 

opportunities, and can be volatile enough to push the system beyond the existing 

perceptions of the norm.  The study found that this state must be sustained for a long 

period of time in order to be considered a precursor to an emergent ordered system.    

  The second condition, amplifying actions, is when the dis-equilibrium 

caused by small actions and events begins to fluctuate and amplify throughout the 

system, seemingly to move toward a “new attractor”, and grows until a threshold is 

reached.  And, as learned from chaos theory, these actions and alterations will not 

follow a linear path throughout the organization; the change will easily “jump 

channels” (because all the agents are interconnected in some way) and can escalate 

in unpredictable, and unexpected ways (Lichtenstein and Plowman[8]).   

The recombination, or self-organization, is the third (and most defining) 

condition that must be reached, as this is where a new order is established that 

increases the efficiency and capacity of the entire system.  Once the organization has 
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crossed the aforementioned threshold, it “emerges” as a “new entity with qualities 

that are not [yet] reflected in the interactions of each agent within the system” 

(Lichtenstein and Plowman[8]).  The hope of this self-organization is that the system 

will recombine in such a way that new patterns of interaction between agents will 

improve the functions and capacity of the organization.  In truth, this critical step 

will determine the survivability of the organization because, instead of restructuring 

progressively, the system could collapse or self-disorganize.  This could be due to a) 

the lack of innovative ideas, b) poor assessment of the environment (because the 

reconstruction is dependent on reform), c) an inadequate “strategic fit” or core 

competency to handle the changes made, or d) a resistance to change (which is 

characteristic of a stable system) (Yukl and Lepsinger [14]). 

The final condition of this emergent ordered system is the stabilizing 

feedback (“damping feedback”), or the anchors that keep the change in place and 

slow the amplification that produced the emergence in the initial stages.  This 

anchoring is important, as it is reflective of how the interactions between agents 

sustain the change successfully and solidify legitimacy to the new paradigm.  The 

new emergent order will dramatically increase “the capacity of the system to 

achieve its goals” (Lichtenstein and Plowman[8]).  The study also surmised that 

leaders with certain characteristics will enable this emergence in an organization.   

 

8 Characteristics of Leaders of Emergence 

 
Leaders of emergence will generate or “enable” circumstances that will purposefully 

create the conditions needed to bring about the new emergent order.  Lichtenstein 

and Plowmen noticed that certain characteristics were prominent and recognizable 

within each case used in the study.  To achieve the dis-equilibrium condition, a 

leader will need to disrupt existing patterns and rally support for the uncertainty in 

the disturbance.  Most importantly, a leader will need to acknowledge these conflicts 

and controversies with the intention that the farther the “ripple” spreads, the more 

perspective and diverse solutions will be generated.  In this case, it is not the “people 

at the top” of the formal hierarchy that will brainstorm and decide what solution to 

take.  Instead, the role of the leader becomes distributed through all branches of the 

organizations, where conflict and diversity are acknowledged, and can be accepted, 

equally.  Next, it becomes the role of these emerging leaders to “amplify” the 

perspectives and conflict through the rest of the organization by encouraging 

innovative ideas and solutions, in order to instigate the second condition.  By 

allowing experimental procedures, for example, to be enacted in a certain part of the 

organization, new ideas can be tested instead of just talked about; the belief or 

disbelief in the success of an experiment is only truly forged when the results are 

attainable.  And, by encouraging the expression of innovation, “new attractors” may 

be birthed, and a type of “relational space” can be created, where “a certain high 
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quality of interactions, reflecting a shared context of mutual respect, trust, and 

psychological safety in the relationship” is created (Lichtenstein and Plowman[8]).  

And, “as predicted by complexity theory (and managerial psychology), these rich 

interactions strengthened interpersonal networks, which helped to amplify the 

changes as they emerged” (Lichtenstein and Plowman[8]).   

A leader who seeks the creation of a new emergent structure will assess the 

feasibility of the new structure that this attractor presents and not blindly following 

the new internal trend.  Some points that a leader may ask about the proposed 

system are a) if it is attainable, b) if it will fit within the environment, and c) if it is 

progressive or retrogressive to the organization’s values and vision.  If the leader is 

fairly sure that the new regime is “better” for the organization, he or she will need to 

begin to rally other agents to support it, so that collective action can contribute to a 

solidified installment of the changes made.  

The final condition of this complex adaptive system depends on the ability 

of the leaders to re-stabilize the structure.  To do this, the leaders must remind the 

organization of the values and vision of the organization, and promote awareness of 

the cultural and environmental constraints that will affect the new emergent 

structure.  It is the leader’s job to keep the structure grounded in reality while 

allowing it to thrive at the increased capacity that was achieved.  And, while it is 

true that these four sequential conditions and characteristics were founded upon a 

limited number of case studies, this model for understanding the functions and 

reactions of a complex adaptive system are relevant and supported by aspects 

grounded in chaos theory, presenting an “underlying order in chaos” (Otten and 

Chen[10]).  
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9 Possible Motivators for an Emergent System 

 
Both models have only scratched the surface of the new order of leadership and 

management in an organization.  They very clearly express that leaders are no 

longer the apex of the organization, but, instead, are more effective when they are 

“orbited” and “in-plane” with the agents.  However, in order for the agents to begin 

to collect around a supported attractor, they must be motivated to do so.  The leader 

will need to give purpose and meaning to the new attractor that will make sense to 

the emerging paradigm.  The empirical study of the emergent system found that the 

creation of correlated language and symbols helped to initiate recombination or 

“self-organization”.  These symbols resonated the most when performed through 

symbolic actions that legitimize the change, while the language used helps to relate 

emotionally on a personal level with each agent.  Another way to inspire meaning 

and connection to the new structure is to consolidate or recombine important 

resources, such as, capital, space, or skills, so as to give the impression that the 

system is expanding towards a “better” paradigm.  The idea is that self-organization 

will be supported, and, thus, gain favor throughout the system.  And, because there 

is not only a centralized leader within the structure of this complex system, the 

multiple leaders who emerge become symbols (Lichtenstein and Plowman[8]). 

Hamel [6], discusses a management style called “Management 2.0” that 

humanizes the structure of an organization, acknowledges the autonomy of the 

individual, and sets a complex system motivated by humanistic, not materialistic, 

ideals:  it redefines the language of the system, supporting ideals such as justice, 

community, and collaboration, as opposed to corruption, profit, and rivalry.  The 

motivators behind this foundation are unique and requires a distinct leadership style 

to achieve it.  One technique to increase motivation to uphold these ideals is to 

“reduce fear and increase trust”.  To reduce fear means to eliminate positive-

negative reinforcement of actions, and encourage risk-taking innovations.  With 

autonomy, now, comes an inherent trust between the leader and agents, where a 

leader trusts the agents of the organization to function within the values and 

boundaries established, and the agents trust the leader to provide stability and 

dynamism, without erasure of the individuality of the agent.  And, democratization 

of information allows agents to act independently, thus preserving autonomy.  

 

Summary and Conclusions 

 
Empowering the agents allows them to have the capability to drive the system.  

However, without the presence of the attractors to influence the culture, the system  
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may not emerge according to values of the organization.  Ultimately, the obligation 

of the leader is to bridge the values with the vision and mission of the entity, and 

give purpose to the organization.  Leaders will also need to monitor the internal and 

external influences to the system.  The use of complex adaptive systems theory will 

enable the leaders to guide the adaptation of a system by creating an emergent 

structure that reconfigures the organization into new patterns that improve the 

function and capacity of the system, while still aligning with its core competency.  

Although it is fundamentally impossible to control chaos, it is possible to increase 

the survivability of an organization to adapt to the chaotic environment through 

complex adaptive systems theory.   
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Abstract. We use Lyapunov spectrum analysis to characterize the dynamics of a
single convection roll between two differentially heated plates. 3D numerical simu-
lation is carried out in a highly confined periodic domain. As the Rayleigh number
increases, the intensity of the convection roll displays chaotic features while the roll
remains stationary. For still higher values of the Rayleigh number, the roll intermit-
tently moves between two positions separated by half a wavelength. We use Lyapunov
spectrum analysis to help determine the characteristics of the flow in both regimes.
We show that although the largest Lyapunov exponent is positive on average, the
most probable value of the short-time Lyapunov exponent is negative. We compute
the flow eigenvectors associated with the strongest variations in the exponent in the
chaotic and the intermittent case and identify the corresponding hydrodynamic modes
of instability.
Keywords: Natural convection, Period-doubling bifurcations, crisis-induced inter-
mittency, Lyapunov spectrum.

1 Introduction

Natural convection between two vertical plates maintained at different tem-
peratures is an important prototype to model heat transfer in industrial ap-
plications, such as plate heat exchangers or solar panels. The properties of
heat transfer are deeply influenced by the nature of the flow, which is typically
turbulent. It is therefore of interest to study the onset of chaotic dynamics
in these flows. The development of instabilities in a differentially heated cavi-
ties with adiabatic walls has been studied numerically for a few decades [1,2].
Earlier studies are mostly limited to 2D geometries and relatively low Rayleigh
numbers regimes (steady, periodis, quasi-periodic) with a focus on primary in-
stabilities. Recent studies focus on the fully turbulent nature of the natural

8thCHAOS Conference Proceedings, 26-29 May 2015, Henri Poicaré Institute,
Paris France
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convection flow at high Rayleigh numbers [3], which remains a challenge owing
to the double kinetic and thermal origin of the fluctuations.

Our studies attempt to bridge the gap between the relatively ordered flow
observed at low Rayleigh numbers and the fully turbulent flow at high Rayleigh
numbers. To this end, we carried out the three-dimensional direct numerical
simulation (DNS) of a fluid layer between two vertical, infinite, differentially
heated plates and determined the different stages leading to chaos [4]. The flow
is characterized by co-rotating convection rolls which grow and shrink over time
and interact with each other in a complex fashion. Similar rolls have also been
observed in tall cavities of high aspect ratio [5]. A useful model of the problem
can be obtained by limiting the dimensions of the plates in order to study the
dynamics of a single convection roll. A cascade of period-doubling bifurcations
and a crisis-induced intermittency have been observed in the vertically confined
domain [6]. The goal of this paper is examine how Lyanunov exponent analysis
can help characterize the chaotic dynamics of the flow in such a configuration.

2 Configuration

We consider the flow of air between two infinite vertical plates maintained
at different temperatures. The configuration is represented in Figure 1. The
distance between the two plates is D, and the periodic height and depth of the
plates are Lz and Ly respectively. The temperature difference between the two
plates is ∆T . The direction x is normal to the plates, the transverse direction
is y, and the gravity g is opposite to the vertical direction z.

Fig. 1. (Color online) The simulation domain is constituted by two vertical plates,
separated by a distance D and maintained at different temperatures. Periodic bound-
ary conditions for the plates are enforced in both transverse and vertical directions
(y and z). The aspect ratios of the periodic dimensions are Ay = Ly/D = 1 and
Az = Lz/D = 2.5. The temperature of the back plate at x = 0 (in red) is ∆T

2
, while

that of the front plate at x = 1 (in blue) is −∆T
2

. The distance between the plates is
D.

The fluid properties of air, such as the kinetic viscosity ν, thermal diffusivity
κ, and thermal expansion coefficient β, are supposed to be constant. Four
nondimensional parameters characterizing the flow are chosen in the following
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way: the Prandtl number Pr =
ν

κ
, the Rayleigh number based on the width of

the gap between the two plates Ra = gβ∆TD3

νκ , and the transverse and vertical
aspect ratio Ay = Ly/D and Az = Lz/D, respectively. Only the Rayleigh
number is varied in the present study. The Prandtl number of air is taken
equal to 0.71. The transverse aspect ratio is set to be Ay = 1, the vertical
aspect ratio is set to Az = 2.5, which corresponds to the critical wavelength
λzc = 2.513 obtained by the stability analysis [4].

The flow is governed by the Navier-Stokes equations within the Boussinesq
approximation. The nondimensional equations are:

∇ · −→u = 0 (1)

∂−→u
∂t

+−→u · ∇−→u = −∇p+
Pr√
Ra

∆−→u + Prθ−→z (2)

∂θ

∂t
+−→u · ∇θ =

1√
Ra

∆θ (3)

with Dirichlet boundary conditions at the plates

−→u (0, y, z, t) = −→u (1, y, z, t) = 0, θ(0, y, z, t) = 0.5, θ(1, y, z, t) = −0.5 (4)

and periodic conditions in the y and z directions. The equations (1)-(4) admit
an O(2)×O(2) symmetry. One O(2) symmetry corresponds to the translation
in the transverse direction y and the reflection y → −y, while the other corre-
sponds to the translations in the vertical direction z and a reflection that com-
bines centrosymmetry and Boussinesq symmetry: (x, z, θ)→ (1− x,−z,−θ).

A spectral code [7] developed at LIMSI is used to carry out the simulations.
The spatial domain is discretized by the Chebyshev-Fourier collocation method.
The projection-correction method is used to enforce the incompressibility of the
flow. The equations are integrated in time with a second-order mixed explicit-
implicit scheme. A Chebyshev discretization with 40 modes is applied in the
direction x, while the Fourier discretization is used in the transverse and vertical
directions. 30 Fourier modes are used in the transverse direction y for Ay = 1,
while 60 Fourier modes are used in the vertical direction z for Az = 2.5.

2.1 Description

For low Rayleigh numbers, the flow solution is laminar. A cubic velocity and
linear temperature profile, which depend only on the normal distance from
the plates are observed. The flow presents similar features to those of a con-
fined mixing layer [9,4]. As the Rayleigh number Ra is increased, steady two-
dimensional convection rolls appear at Ra = 5708, which then at Ra = 9980 be-
come steady three-dimensional convection rolls linked together through braids
of vorticity (see Figure 2). For still higher Rayleigh numbers, the flow becomes
periodic at Ra = 11500. The convection roll essentially grows and shrinks with
a characteristic period of T = 28 convective time units, which is in good agree-
ment with the natural excitation frequency of a mixing layer [9].
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As the Rayleigh number increases, a series of period-doubling bifurcations
appears, as illustrated in Figure 3. More details can be found in [6]. The onset
of chaos was predicted to occur at Ra ∼ 12320, in agreement with numerical
observations. The variations of the roll size become more disorganized and in-
tense, but the position of the roll remains quasi-stationary. When Ra = 12546,
the variations in the intensity of the roll become so large that the roll breaks
down and reforms at another location, separated by half a vertical wavelength
from the original one. In terms of dynamics this corresponds to crisis-induced
intermittency, which can be seen in Figure 3(b). The difference between the
chaotic and the intermittent regimes in terms of phase portraits is illustrated
in Figure 4 for two Rayleigh numbers taken in each regime.

Fig. 2. (Color online) Q-criterion visualization of flow structures colored by the verti-
cal vorticityΩz. Bi-periodic domain at Ra = 12380, Q = 0.25 in the present numerical
configuration from Figure 1, i.e. with periodic boundary conditions in both y and z
directions (Ay = Az = 1);

3 Lyapunov spectrum

3.1 Definition

Several methods exist to distinguish between regular and chaotic dynamics
in a deterministic system. The largest Lyapunov exponent, which measures
the divergence rate of two nearby trajectories, is considered as a useful in-
dicator to answer this question. Similarly, the n first Lyapunov exponents
λ1 > λ2 > λ3 > ... > λn characterize the deformation rates of a n-sphere
of nearby initial conditions. We applied the numerical technique proposed by
Benettin et al. [8] to compute the Lyapunov spectrum of our fluid system, by
parallelizing the DNS code described above with MPI library. On each proces-
sor, the flows are advanced independently in time. The flow on the processor-0
is the reference solution, which is obtained by numerical integration of the non-
linear equations. On the other processors, the randomly initiated perturbations
δX are integrated in time by solving the linearized DNS code. The modified
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Fig. 3. (Color online) Bifurcation diagram obtained by using the local maxima θn of
the temperature time series at the point (0.038 0.097 0.983).Note: the vertical line
in the figure corresponds the largest Rayleigh number in Figure 3 (a) 12000 < Ra <
12500 (b) 12400 < Ra < 12600.
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Fig. 4. (Color online) Phase portraits. Abscissa: real part of the the Fourier
transform (in y and z) of the vertical velocity ŵ01(x) calculated on vertical plane
x = 0.0381; ordinate: real part of the Fourier transform of the vertical velocity ŵ10.
(a) Ra = 12380, (b) Ra = 12600.

Gram-Schmidt procedure is applied every 20 time-steps of dt to renormalize
the perturbations. At each renormalisation step, the instantaneous Lyapunov
exponents were computed as

λinsti =
1

∆t
ln
‖δX(j∆t)‖i
‖δX(0)‖i

(5)

Their asymptotic mean values form the long-time Lyapunov spectrum:

λi = lim
N→+∞

1

N∆t

∑
j∈N

ln
‖δX(j∆t)‖i
‖δX(0)‖i

(6)

where λi is the i-th Lyapunov exponent and the norm mesuring the distance be-

tween two nearby trajectories is chosen as ‖δX(t)‖ =
√∫

V
[δ−→u (t)2 + δθ(t)2]dV .
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3.2 Long-time Lyapunov exponents

The computation of Lyapunov spectrum for our fluid system was carried out
at different Rayleigh numbers between Ra = 12360 and Ra = 12900. Errorbars
for the Lyapunov exponent are estimated from the standard error of the mean
assuming a Gaussian distribution and a 95% confidence interval. We note that
the error on the exponent may be somewhat underestimated, as we do not take
into account other sources of error, such as the distance to the attractor.

In all that follows, we focus on two Rayleigh numbers: one corresponds
to the chaotic, non-intermittent system Ra = 12380. The other Ra = 12600
corresponds to a chaotic, intermittent case. Convergence tests were run for
these two Rayleigh numbers Ra = 12380 and Ra = 12600 and two different
time-discretizations dt = 1×10−3 and dt = 1×10−2. The 15 leading Lyapunov
exponents are computed, among which the first 8 ones are listed in Table 1.
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Fig. 5. (Color online) (a) The largest Lyapunov exponent λ1 for different Rayleigh
numbers; Error bars are 1.96 times the standard error. (b) Fractal dimension obtained
by application of the Kaplan-Yorke formula as a function of the Rayleigh number.
The position of the solid line spanning each figure represents the value of the Rayleigh
number at the onset of the crisis.

As shown in Figure 3.2, the largest asymptotic Lyapunov exponent is posi-
tive for Ra ≥ 12360, and increases quasi-linearly for 12400 < Ra < 12546. This
suggests that temporal chaos has been reached. For all Rayleigh numbers con-
sidered, only one single positive Lyapunov exponent is found and is on the order
of 0.01. The test 0− 1 for chaos proposed by Gottwald and Melbourne [12,13]
was applied to an appropriately sampled temperature time series, and returned
a value close to 1, which confirms that our flow is chaotic. The Lyapunov ex-
ponent is considerably larger for the intermittent case Ra = 12600 than for the
chaotic case Ra = 12380.

We find that the asymptotic value of exponents 2 to 4 is close to zero.
We observe that the temporal oscillations of the short-time exponents 2 to 4
decrease with the time step, as can be expected. As shown by Sirovich and
Deane [10] for Rayleigh-Bénard convection, three exponents should be zero:
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Table 1. First 8 Lyapunov exponents at two different Rayleigh numbers for two
different time steps.

Ra = 12380 Ra = 12600

λi dt = 1 × 10−3 dt = 1 × 10−2 dt = 1 × 10−3 dt = 1 × 10−2

1 0.0094 ± 0.0004 0.0078 ± 0.0002 0.0199 ± 0.0005 0.0140 ± 0.0005

2 −0.00047 ± 0.00067 −0.00027 ± 0.00043 −0.0001 ± 0.0008 −0.0002 ± 0.0005

3 0.00075 ± 0.00048 0.00031 ± 0.00026 0.0036 ± 0.0006 0.0009 ± 0.0006

4 0.00010 ± 0.00053 −0.00090 ± 0.00031 0.00011 ± 0.00062 0.00047 ± 0.00066

5 −0.0579 ± 0.00020 −0.0220 ± 0.0001 −0.0594 ± 0.00017 −0.0230 ± 0.0001

6 −0.0726 ± 0.0006 −0.0485 ± 0.0004 −0.0696 ± 0.0006 −0.0464 ± 0.0006

7 −0.0709 ± 0.0006 −0.0318 ± 0.0004 −0.0732 ± 0.0006 −0.0328 ± 0.0006

8 −0.0843 ± 0.0006 −0.0571 ± 0.0004 −0.0919 ± 0.0006 −0.0594 ± 0.0006

one comes from the fact that the time derivative
∂X

∂t
of the reference solution

X satisfies the linearized equation, since the system is autonomous. The other

two zero exponents reflect the fact that
∂X

∂y
,
∂X

∂z
also satisfy the linearized

equation on account of the homogeneous boundary conditions.
All exponents of order n ≥ 5 were found to be negative. Convergence was

more difficult to reach for these higher-order exponents. However even if some
uncertainty is present, this does not affect significantly the value of the fractal
dimension.

The Lyapunov dimension was estimated using the Kaplan-Yorke formula [11]:

DL = K +
SK
|λK+1|

(7)

where K is the largest n for which Sn =
∑n
i=1 λi > 0. It was found to be

between 4.2 and 4.6, as can be seen in Figure 3.2 (b). An inflection point, cor-
responding to a sharp increase in the largest exponent, is observed at the onset
of intermittency for both the largest exponent and the Lyapunov dimension.

4 Short-time Lyapunov exponent

As pointed out by Vastano and Moser [15], examination of the short-time Lya-
punov exponent provides additional information about the flow. Figure 6 and 7
shows the distribution of the first Lyapunov exponent for the two Rayleigh num-
bers and the two time resolutions. We can see that the distributions are very
similar for both time intervals, which shows the convergence of the computa-
tions. Corresponding time series of the largest Lyapunov exponent and their
Fourier spectrum are represented in Figure 8. The fundamental excitation fre-
quency f = 0.22 is dominant in the chaotic case. Lower frequencies become
important in the chaotic case.

A striking fact is that for both Rayleigh numbers, although the mean value
of the exponent is positive, the maximum value of probability distribution
function (p.d.f.) is actually negative. This is markedly different from the
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results reported by Kapitaniak [14] for quasi-periodically forced systems, where
the mean value of the exponent appeared to correspond to the maximum of the
distribution. We note that no external forcing is imposed in our configuration,
which is characterized by self-sustained oscillations. The distributions at Ra =
12380 and Ra = 12600 present many similarities. The main difference is that in
the intermittent case the local maximum of the distribution for small positive
values in Figure 6 disappears, while a band of significantly higher positive
values (larger than 0.2) is created in Figure 7.

We computed the vector associated with local extrema of the short-time
Lyapunov exponent which were identified in the time series. This gives us
insight into the perturbations most likely to disorganize the flow. We checked
that observations made at a particular time held for other times.

Results are presented in Figure 9 for the chaotic case. For the chaotic case,
we have identified two types of relative extrema: (i) relatively small excursions,
associated with the local maximum and the local minimum in the histogram
from Figure 6 corresponding to positions marked with filled circles in Figure 8
(a). We find that the perturbation associated with a local maximum consists
of almost 2D rolls (Figure 9 (a)), while the minimum corresponds to a strongly
3D flow and a relatively weaker convection roll (Figure 9 (b)). (ii) stronger
excursions, where both extrema are associated with an essentially 2D flow
(positions marked with filled squares in Figure 9 (c)(d)). 2D convection rolls
correspond to the most unstable linear modes. However the convection rolls
associated with maxima seem to be stronger than those associated with minima.

In the intermittent case, we focus exclusively on largest extrema. Figure 10
(a) shows that the maxima in time corresponds to a flow which is in fact almost
1-D (note the much lower value for the criterion Q = 0.05), while the minima
in time corresponds to a 2D flow (see Figure 10 (b)). These two states can be
associated with the break-up and formation of the roll.
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Fig. 6. (Color online) Probability distribution function (p.d.f.) of instantaneous 1st
Lyapunov exponent λinst1 at Ra = 12380.
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Fig. 7. (Color online) Probability distribution function (p.d.f.) of instantaneous 1st
Lyapunov exponent λinst1 at Ra = 12600.
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Fig. 8. (Color online) (a) (b) Evolution of the largest short-time Lyanunov exponent
λinst1 at (a) Ra = 12380 (b) Ra = 12600; (c) (d) Temporal Fourier spectrum of the
largest short-time exponent λinst1 at (c) Ra = 12380 (d) Ra = 12600.
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(a) (b)

(c) (d)

Fig. 9. (Color online) Eigenvector associated with a local extremum of the short-
time exponent at Ra = 12380 at the positions indicated in Figure 8 (a). Value of
the Q isosurface Q = 0.3 (a) t=469 (maximum) (b) t=479 (minimum) (c) t=552
(maximum) (d) t=726 (minimum)

5 Conclusion

We have considered the numerical simulation of a convection roll between two
differentially heated plates of small periodic dimensions. As the Rayleigh num-
ber increases, the convection roll shrinks and grows in a periodic, then quasi-
periodic, then chaotic. For still higher values, the convection roll breaks down
and reforms intermittently at another location. Lyapunov spectrum analysis
was used to characterize the dynamical features of the flow. Two cases in the
purely chaotic and intermittent regime were examined in detail. We found
that although the asymptotic value of the largest exponent is positive, its most
probable value is negative. We showed that intermittency corresponds to the
occurence of higher positive values in the Lyapunov exponent corresponding
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(a) (b)

Fig. 10. (Color online) Eigenvector associated with a local extremum of the short-
time exponent at Ra = 12600 at the positions indicated in Figure 8 (b). Value of the
Q isosurface (a) t=954 (maximum) Q = 0.05 (b) t=968 (minimum) Q = 0.3

to the break-up and reformation of the convection roll. The perturbations
associated with the extremal values of the short-time largest exponent were
identified. In the chaotic case, the perturbations associated with the largest
extrema are 2D convection rolls. Maxima are associated with larger rolls, while
minima are associated with less intense rolls. In the intermittent case, maxima
were associated with a quasi 1-D flow, which corresponds to the break-up of
the roll, while minima corresponded to 2D convection rolls and therefore the
roll formation stage. These results confirm that the analysis of short-time Lya-
punov exponents provides insight into the physics of the flow and suggests that
it could be useful for low-order modelling of its complex dynamics.
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From Nonlinear Oscillations to Chaos Theory

Jean-Marc Ginoux
Archives Henri Poincaré, CNRS, UMR 7117, France

Abstract

In this work we propose to reconstruct the historical road leading
from nonlinear oscillations to chaos theory by analyzing the research
performed on the following three devices: the series-dynamo machine,
the singing arc and the triode, over a period ranging from the end of
the XIXth century till the end of the Second World War.

Thus, it will be shown that the series-dynamo machine, i.e. an
electromechanical device designed in 1880 for experiments, enabled to
highlight the existence of sustained oscillations caused by the presence
in the circuit of a component analogous to a “negative resistance”.

The singing arc, i.e. a spark-gap transmitter used in Wireless
Telegraphy to produce oscillations and so to send messages, allowed
to prove that, contrary to what has been stated by the historiography
till recently, Poincaré made application of his mathematical concept
of limit cycle in order to state the existence of sustained oscillations
representing a stable regime of sustained waves necessary for radio
communication.

During the First World War, the singing arc was progressively re-
placed by the triode and in 1919, an analogy between series-dynamo
machine, singing arc and triode was highlighted. Then, in the following
decade, many scientists such as André Blondel, Jean-Baptiste Pomey,
Élie and Henri Cartan, Balthasar Van der Pol and Alfred Liénard pro-
vided fundamental results concerning these three devices. However, the
study of these research has shown that if they made use of Poincaré’s
methods, they did not make any connection with his works.

In the beginning of the twenties, Van der Pol started to study the
oscillations of two coupled triodes and then, the forced oscillations
of a triode. This led him to highlight some oscillatory phenomena
which have never been observed previously. It will be then recalled
that this new kind of behavior considered as “bizarre” at the end of
the Second World War by Mary Cartwright and John Littlewood was
later identified as “chaotic”.

_________________ 
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1 Introduction

The aim of this work is to trace the history of the foundations of Chaos
theory through the analysis of the works performed on the following three
devices: the series-dynamo machine, the singing arc and the triode, over a
period ranging from the end of the XIXth century till the end of the Second
World War.

In 1880, by sending the current produced by a dynamoelectrical into
a magnetoelectrical machine forming thus a series-dynamo machine, the
French engineer Jean-Marie Gérard Anatole Lescuyer highlighted a nonlin-
ear phenomenon that will be later considered by Paul Janet as sustained
oscillations and by Balthasar Van der Pol as relaxation oscillations1. If the
cause of this phenomenon was rapidly identified as being the presence in the
circuit of a component analogous to a “negative resistance”, its mathemat-
ical modeling was out of reach at that time.

A quarter of a century later, at the time of the emergence of Wireless
Telegraphy, it became of tremendous need to find the condition for which
the oscillations produced by a spark-gap transmitter called singing arc were
sustained. Actually, this condition representing a stable regime of sustained
waves necessary for radio communication was established by Henri Poincaré
in 1908 during a series of “forgotten lectures” he gave at the École Supérieure
des Postes et Télécommunications (today Telecom ParisTech). Contrary to
what was stated by the historiography till recently, Poincaré made thus the
first correspondence between the existence of sustained oscillations and the
concept of limit cycle that he had introduced in his second memoir “On
the curves defined by differential equations”. In other words, he proved
that the periodic solution of the nonlinear ordinary differential equation
characterizing the oscillations of the singing arc corresponds in the phase
plane to an attractive closed curve, i.e. a stable limit cycle.

During the First World War, the singing arc was progressively replaced
by the triode which was also able to sustain oscillations but even more
importantly to amplify the electric signal.

In 1919, the French engineer Paul Janet established an analogy between
the series-dynamo machine, the singing arc and the triode and stated thus
that their sustained oscillations belong to the same nonlinear phenomenon.
Then, in the following decade, many scientists such as André Blondel, Jean-

1A brief history of relaxation oscillations can be found in Ginoux and Letellier [15].
However, let’s notice that this article has been entirely republished by M. Letellier in the
chapter 2 of his last book while omitting to make correct reference to this work. For a
detailed history of relaxation oscillations, see Ginoux [13, 18, 19].
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Baptiste Pomey, Élie and Henri Cartan, Balthasar Van der Pol and Alfred
Liénard provided fundamental results concerning these three devices. How-
ever, it appears that if they made use of Poincaré’s methods, they did not
make any connection with his works.

In the beginning of the twenties, Van der Pol started to study the oscil-
lations of two coupled triodes and then, the forced oscillations of a triode.
This led him to highlight new oscillatory phenomena that he called oscil-
lation hysteresis, automatic synchronization and frequency demultiplication.
Nevertheless, in this case, if the oscillations are still sustained, the solution
is no more periodic but exhibits a new kind of behavior that will be called
“bizarre” at the end of the Second World War by Mary Cartwright and John
Littlewood and that will be later identified as “chaotic”.

2 The series-dynamo machine:
the expression of nonlinearity

At the end of the nineteenth century, magneto- or dynamo-electric machines
were used in order to turn mechanical work into electrical work and vice
versa. With the former type of machine, the magnetic field is induced by
a permanent magnet, whereas the latter uses an electromagnet. These ma-
chines produced either alternating or direct current indifferently. Thus, in
1880, a French engineer named Jean-Marie-Anatole Gérard-Lescuyer made
an experiment by associating a dynamo-electric machine used as a generator
with a magneto-electric machine, which in this case can be considered as the
motor (Fig. 1).

Figure 1: The Gérard-Lescuyer’s paradoxical experiment [25].
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Gérard-Lescuyer [20, 21] reports on the found effects in a note published
in the Comptes rendus de l’Académie des Sciences de Paris and in the Philo-
sophical Magazine in the following way:

“As soon as the circuit is closed the magnetoelectrical machine
begins to move; it tends to take a regulated velocity in accor-
dance with the intensity of the current by which it is excited;
but suddenly it slackens its speed, stops, and start again in the
opposite direction, to stop again and rotate in the same direction
as before. In a word, it receives a regular reciprocating motion
which lasts as long as the current that produces it.”

While observing the periodical reversal of the magneto-electric machine’s
circular motion, despite the direct current, he wondered about the causes
of this oscillatory phenomenon that he was unfortunately unable to isolate.
Gérard-Lescuyer [20, 21] wrote in his conclusion:

“What are we to conclude from this? Nothing, except that we
are confronted by a scientific paradox, the explanation of which
will come, but which does not cease to be interesting.”

It was actually proven by the count Théodose du Moncel [28] a few weeks
later, then by Aimé Witz [50, 51], and by Paul Janet [23], that the gap sit-
uated between the brushes of the dynamo is the source of an electromotive
force (e.m.f.), i.e. a potential difference at its terminals symbolized by a
nonlinear function of the intensity that flows through there. However, the
mathematical modeling of this e.m.f. was out of reach at that time. There-
fore the essence of Gérard-Lescuyer’s paradox is the presence of an e.m.f,
which has a nonlinear current-voltage characteristic acting as a a negative
resistance and leading to sustained oscillations.

Half a century later, the famous Dutch physicist Balthasar Van der Pol
[46] noted:

“Relaxation oscillations produced by a motor powered by a D.C.
series-dynamo. The fact that such a system is able to produce
relaxation oscillations was already briefly discussed. In an article
written by Mr. Janet (we find a reference to Gérard Lescuyer
(CR 91, 226, 1880) where this phenomenon had already been
described.”
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3 The singing arc:
Poincaré’s forgotten lectures

At the end of the nineteenth century a forerunner to the incandescent light
bulb called electric arc was used for lighthouses and street lights. Regard-
less of its weak glow it had a major drawback: the noise generated by the
electrical discharge which inconvenienced the population. In London, physi-
cist William Du Bois Duddell (1872-1917) was commissioned in 1899 by the
British authorities to solve this problem. He thought up the association of
an oscillating circuit made with an inductor L and a capacitor C (F on Fig.
2) with the electrical arc to stop the noise (see Fig. 2). Duddell [10, 11]
created a device that he named singing arc.

Figure 2: Diagram of the singing arc’s circuit, from Duddell [10, 11].

Duddell had actually created an oscillating circuit capable of producing
not only sounds (hence its name) but especially electromagnetic waves. This
device would therefore be used as an emitter for wireless telegraphy until the
triode replaced it. The singing arc or Duddell’s arc was indeed a “spark gap”
device meaning that it produced sparks which generated the propagation
of electromagnetic waves shown by Hertz’s experiments as pointed out by
Poincaré [30, p. 79]:

“If an electric arc is powered by direct current and if we put
a self-inductor and a capacitor in a parallel circuit, the result
is comparable to Hertz’s oscillator. . . These oscillations are sus-
tained exactly like those of the pendulum of a clock. We have
genuinely an electrical escapement.”
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On July 4th 1902, Henri Poincaré became Professor of Theoretical Elec-
tricity at the École Supérieure des Postes et Télégraphes (Telecom Paris-
Tech) in Paris where he taught until 1910. The director of this school,
Édouard Éstaunié (1862-1942), then asked him to give a series of conferences
every two years in May-June from 1904 to 1912. He told about Poincaré’s
first lecture of 1904:

“From the first words it became apparent that we were go-
ing to attend the research work of this extraordinary and awe-
some mathematician. . . Each obstacle encountered, a short break
marked embarrassment, then a blow of shoulder, Poincaré seemed
to defy the annoying function.”

In 1908, Poincaré chose as the subject: Wireless Telegraphy. The text of
his lectures was first published weekly in the journal La Lumière Électrique
[31] before being edited as a book the year after [32]. In the fifth and last
part of these lectures entitled: Télégraphie dirigée : oscillations entretenues
(Directive telegraphy: sustained oscillations) Poincaré stated a necessary
condition for the establishment of a stable regime of sustained oscillations
in the singing arc. More precisely, he demonstrated the existence, in the
phase plane, of a stable limit cycle.

To this aim Poincaré [31] studied Duddell’s circuit that he represented
by the following diagram (Fig. 3) consisting of an electromotive force (e.m.f.)
of direct current E, a resistance R and a self-induction, and in parallel, a
singing arc and another self-induction L and a capacitor.

Figure 3: Circuit diagram of the singing arc, from Poincaré [31, p. 390].

Then, he called x the capacitor charge, x′ the current intensity in the
branch including the capacitor, ρx′ the term corresponding to the internal
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resistance of the self and various damping and θ (x′) the term representing
the e.m.f. of the arc the mathematical modeling of which was also out of
reach for Poincaré at that time. Nevertheless, Poincaré was able to establish
the singing arc equation, i.e. the second order nonlinear differential equation
(1) for the sustained oscillations in the singing arc:

Lx′′ + ρx′ + θ
(
x′
)

+Hx = 0 (1)

Then, by using the qualitative theory of differential equations that he
developed in his famous memoirs [33, 37], he stated that:

“One can construct curves satisfying this differential equation,
provided that function θ is known. Sustained oscillations corre-
spond to closed curves, if there exist any. But every closed curve
is not appropriate, it must fulfill certain conditions of stability
that we will investigate.”

Thus, he plotted a representation of the solution of equation (1):

Figure 4: Closed curve solution of the sing arc equation,
from Poincaré [31, p. 390].

Let’s notice that this closed curve is only a metaphor of the solution since
Poincaré does not use any graphical integration method such as isoclines.
This representation led him to state the following stability condition:

“Stability condition. – Let’s consider another non-closed curve
satisfying the differential equation, it will be a kind of spiral
curve approaching indefinitely near the closed curve. If the closed
curve represents a stable regime, by following the spiral in the
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direction of the arrow one should be brought back to the closed
curve, and provided that this condition is fulfilled the closed
curve will represent a stable regime of sustained waves and will
give rise to a solution of this problem.”

Then, it clearly appears that the closed curve which represents a stable
regime of sustained oscillations is nothing else but a limit cycle as Poincaré
[34, p. 261] has introduced it in his own famous memoir “On the curves
defined by differential equations” and as Poincaré [35, p. 25] has later defined
it in the notice on his own scientific works [35]. But this, first giant step is
not sufficient to prove the stability of the oscillating regime. Poincaré had
to demonstrate now that the periodic solution of equation (1) (the closed
curve) corresponds to a stable limit cycle. So, in the next part of his lectures,
Poincaré gave what he calls a “condition de possibilité du problème”. In fact,
he established a stability condition of the periodic solution of equation (1),
i.e. a stability condition of the limit cycle under the form of the following
inequality. ∫

θ
(
x′
)
x′dt < 0 (2)

It has been proved by Ginoux [12, 13, 16, 18, 19] that this stability
condition (2) flows from a fundamental result introduced by Poincaré in the
chapter titled “Exposants caractristiques” (“Characteristics exponents”) of
his “New Methods of Celestial Mechanics” [38, Vol. I, p. 180].

Until recently the historiography considered that Poincaré did not make
any connection between sustained oscillations and the concept of limit cy-
cle he had introduced and credited the Russian mathematician Aleksandr’
Andronov [1, 2] for having been the “first” to establish this correspondence
between periodic solution and limit cycle.

Concerning the singing arc, Van der Pol [49] also noted in the beginning
of the thirties:

“In the electric field we have some very nice examples of relax-
ation oscillations, some are very old, such as spark discharge of
a plate machine, the oscillation of the electric arc studied by
Mr. Blondel in a famous memoir (1) or the experience of Mr.
JANET, and other more recent. . . ”

(1) BLONDEL, Eclair. Elec., 44, 41, 81, 1905. See also J. de Phys., 8, 153,
1919.
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4 The triode:
from periodic solution to limit cycle

In 1907, the American electrical engineer Lee de Forest (1873-1961) invented
the audion. It was actually the first triode developed as a radio receiver
detector. Curiously, it found little use until its amplifying ability was rec-
ognized around 1912 by several researchers. Then, it progressively replaced
the singing arc in the wireless telegraphy devices and underwent a consider-
able development during the First World War. Thus, in October 1914, a few
months after the beginning of the conflict, the French General Gustave Ferrié
(1868-1932), director of the Radiotélégraphie Militaire department, gathered
a team of specialists whose mission was to develop a French audion, which
should be sturdy, have regular characteristics, and be easy to produce indus-
trially. Ferrié asked to the French physicist Henri Abraham (1868-1943) to
recreate Lee de Forests’ audions. However, their fragile structure and lack of
stability made them unsuitable for military use. After several unsuccessful
attempts, Abraham created a fourth structure in December 1914, which was
put in operation from February to October 1915 (Fig. 5).

Figure 5: Picture of the original lamp T.M. made by Abraham (1915).
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The original of this valve called “Abraham lamp” is still in the Arts et
Métiers museum to this day (Fig. 5). It has a cylindrical structure, which
appears to have been designed by Abraham. In November 1917, Abraham
consequently invented with his colleague Eugene Bloch (1878-1944) a de-
vice able to measure wireless telegraphy emitter frequencies: the so-called
multivibrator (see Ginoux [13, 16, 18, 19]).

Wireless telegraphy development, spurred by war effort, went from craft
to full industrialization. The triode valves were then marketed on a larger
scale. More reliable and stable than the singing arc, the consistency of the
various components used in the triode allowed for exact reproduction of
experiments, which facilitated research on sustained oscillations.

4.1 Janet’s analogy

In April 1919, the French scientist Paul Janet (1863-1937) published an arti-
cle entitled “Sur une analogie électrotechnique des oscillations entretenues”
[24] which was of considerable importance on several levels. Firstly, it un-
derscored the technology transfer taking place, consisting in replacing an
electromechanical component (singing arc) with what would later be called
an electronic tube. This represented a true revolution since the singing arc,
because of its structure it made experiments complex and tricky, making it
almost impossible to recreate. Secondly, it revealed “technological analogy”
between sustained oscillations produced by a series dynamo machine like
the one used by Gérard-Lescuyer [20, 21] and the oscillations of the singing
arc or a three-electrode valve (triode). Janet [24, p. 764] wrote:

“It seemed to me interesting to mention the unexpected analo-
gies of this experiment with the sustained oscillations so widely
used to-day in wireless telegraphy, for example, those produced
in Duddell’s arc or in the lamp with three-electrodes lamps used
as oscillators. . . Producing and sustaining oscillations in these
systems mostly depends on the presence, in the oscillating cir-
cuit, of something comparable to a negative resistance. The
dynamo-series acts as a negative resistance, and the engine with
separated excitation acts as a capacity.”

Thus, Janet considered that in order to have analogies in the effects, i.e.
in order to see the same type of oscillations in the series-dynamo machine,
the triode and the singing arc, there must be an analogy in the causes.
Therefore, since the series-dynamo machine acts as a negative resistance,
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responsible for the oscillations, there is indeed an analogy. Consequently,
only one equation must correspond to these devices. In this article, Janet
provided the nonlinear differential equation characterizing the oscillations
noted during Gérard-Lescuyer’s experiment:

L
d2i

dt2
+
[
R− f ′ (i)

] di
dt

+
k2

K
i = 0 (3)

where R corresponds to the resistance of the series dynamo machine, L
is the self-induction of the circuit and K/k2 is analogous to a capacitor and
f(i) is the electromotive force of the series-dynamo machine. However, as
recalled by Janet [24, p. 765], its mathematical modeling was also out of
reach at that time.

“But the phenomenon is limited by the characteristic’s curva-
ture, and regular, non-sinusoidal equations actually occur. They
are governed by the equation (3), which could only be integrated
if we knew the explicit for of the function f(i).”

By replacing in Eq. (3) i with x, R with ρ, f ′(i) with θ(x), and k2/K
with H, one find again Poincaré’s singing arc equation (2). Thus, both
ordinary differential equations are analogous but are not of the same order.
Nevertheless, it appeared that Janet did make no connection with Poincaré’s
works.

4.2 Blondel’s triode equation

According to the historiography, it is common knowledge the Dutch physicist
Balathasar Van der Pol is credited for having stated the differential equation
of the triode in his famous publication entitled “On relaxation oscillations”
published in 1926 [45]. However, it was proved by Ginoux [13, 16, 17] on
the one hand that the triode equation was actually stated by Van der Pol in
1920 in a publication entitled: “A theory of the amplitude of free and forced
triode vibrations,” [40] and on the other that the French engineer André
Blondel sated the triode equation one year before him.

As previously pointed out, the main problem of these three devices was
the mathematical modeling of their oscillation characteristics, i.e., the e.m.f.
of the series-dynamo machine, of the singing arc and of the triode.

Thus, in a note published in the Comptes Rendus of the Académie des
Sciences on the 17th of November 1919, Blondel proposed to model the
oscillation characteristic of the triode as follows [3]:
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i = b1 (u+ kν) − b3 (u+ kν)3 − b5 (u+ kν)5 ... (4)

Then, substituting i by its expression in the triode equation, neglecting
the internal resistors and integrating once with respect to time, he obtained

C
d2u

dt2
−
(
b1h− 3b3h

3u2 − ...
) du

dt
+
u

L
= 0 (5)

Let’s notice that this equation is perfectly equivalent to those obtained
by Poincaré and Janet. Nevertheless, if Blondel solved the problem of the
mathematical modeling of the oscillation characteristic of the triode he did
make no connection with Poincaré’s works despite of the fact that he knew
him personally.

4.3 Pomey’s contribution

Less than on year later, the French engineer Jean-Baptiste Pomey (1861-
1943) proposed a mathematical modeling of the e.m.f. of the singing arc in
his entitled: “ Introduction à la théorie des courants téléphoniques et de la
radiotélégraphie ” and published on June 28th 1920 (this detail would be of
great importance in the following). Pomey [39, p. 375] wrote:

“For the oscillations to be sustained it is not enough to have a
periodic motion, it is necessary to have a stable motion.”

Then, he proposed the following “law” for the e.m.f. of the singing arc:

E = E0 + ai− bi3 (6)

and posing i = x′ (like Poincaré) he provided the nonlinear differential
equation of the singing arc:

Lx′′ +Rx′ +
1

C
x = E0 + ax′ − bx′3 (7)

By posing H = 1/C, ρ = R and θ (x′) = −E0 − ax′ + bx′3 it is obvious
that Eq. (1) and Eq. (7) are completely identical2. Moreover, it is striking
to observe that Pomey has used exactly the same variable x′ as Poincaré to
represent the current intensity. Here again, there is no reference to Poincaré.
This is very surprising since Pomey was present during the last lecture of
Poincaré at the École Supérieure des Postes et Télégraphes in 1912 whose

2For more details see Ginoux [16, 17, 18, 19].
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he had written the introduction. So, one can imagine that he could have
attended the lecture of 1908.

At the same time, Van der Pol [40] proposed the following mathematical
modeling of the oscillation characteristic of the triode in an article published
on July 17, 1920:

i = ψ (kv) = αv + βv2 + γv3 (8)

Van der Pol [40, p. 704] precised that, by symmetry consideration, one
can choose β = 0 and provided the triode equation:

C
d2v

dt2
−
(
α− 3γv2

) dv
dt

+
1

L
v = 0 (9)

Taking into account that β can be chosen as equal to zero, one finds
no difference between the Eq. (6) and the Eq. (8). Nevertheless, nothing
proves that Van der Pol had read Pomey’s book.

Five years later, on September 28th 1925, Pomey wrote a letter to the
mathematician Élie Cartan (1869-1951) in which he asked him to provide
a condition for which the oscillations of an electrotechnics device analogous
to the singing arc and to the triode whose equation is exactly that of Janet
(3) are sustained. Within ten days, Élie Cartan and his son Henri sent an
article entitled: “Note sur la génération des oscillations entretenues” [4] in
which they proved the existence of a periodic solution for Janet’s equation
(3). In fact, their proof was based on a diagram which corresponds exactly
to a “first return map” diagram introduced by Poincaré in his memoir “Sur
les Courbes définies par une équation différentielle” [34, p. 251].

4.4 Van der Pol’s relaxation oscillations

Van der Pol’s most famous publication is probably that entitled “On re-
laxation oscillations” [45]. However, what is least well-known is that he
published four different versions of this paper in 1926 in the following order:

1. Over Relaxatietrillingen [42] (in Dutch);

2. Over Relaxatie-trillingen [43] (in Dutch);

3. Über Relaxationsschwingungen [44] (in German);

4. On relaxation-oscillations [45] (in English).

285



In these four articles, Van der Pol presents the following generic dimen-
sionless nonlinear differential equation for relaxation oscillations which is
neither attached to the triode, nor to any other device (series-dynamo ma-
chine or singing arc):

v̈ − ε(1 − v2)v̇ + v = 0. (10)

Early on, Van der Pol [40, p. 179] realized that the equation (10) was
not analytically integrable:

“It has been found to be impossible to obtain an approximate
analytical solution for (10) with the supplementing condition
(ε� 1), but a graphical solution may be found in the following
way.”

So, he used the isoclynes method to graphically integrate the nonlinear
differential equation (10) for the relaxation oscillations.

Figure 6: Graphical integration of equation (10)

Obviously, the solution plotted on this figure is nothing else but a limit
cycle of Poincaré. Nevertheless, contrary to a widespread view, Van der
Pol didn’t recognize this signature of a periodic solution and did make no
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connection with Poincaré’s works till 1930! On the occasion of a series of
lectures that he made at the École supérieure d’Électricité on March 10th

and 11th 1930, Van der Pol wrote [49]:

“Note on each of these three figures a closed integral curve, which
is an example of what Poincaré called a limit cycle, because the
neighboring integral curves are approaching asymptotically.”

Moreover, let’s notice that he didn’t make any reference to Poincaré’s
works but to Andronov’s article [2].

4.5 Liénard’s riddle

On May 1928, the French engineer Alfred Liénard (1869-1958) published an
article entitled “Étude des oscillations entretenues” in which he studied the
solution of the following nonlinear differential equation:

d2x

dt2
+ ωf (x)

dx

dt
+ ω2x = 0 (11)

Such an equation is a generalization of the well-known Van der Pol’s
equation and of course of Janet’s equation (4). Under certain assumptions
on the function F (x) =

∫ x
0 f (x) dx less restrictive than those chosen by

Cartan [4] and Van der Pol [45], Liénard [26] proved the existence and
uniqueness of a periodic solution of Eq. (11). Then, Liénard [26, p. 906]
plotted this solution (Fig. 7) and wrote:

“All integral curves, interior or exterior, traveled in the direction
of increasing time, tend asymptotically to the curve D, we say
that the corresponding periodic motion is a stable motion.”

Then, Liénard [26, p. 906] explained that the condition for which the
“periodic motion” is stable is given by the following inequality:∫

Γ

F (x) dy > 0 (12)

By considering that the trajectory curve describes the closed curve clock-
wise in the case of Poincaré and counter clockwise in the case of Liénard, it is
easy to show that both conditions (2) and (12) are completely identical3 and
represents an analogue of what is now called “orbital stability”. Again, one

3For more details see Ginoux [13, 16, 17, 18, 19].
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Figure 7: Closed curve solution of Eq. (10), Liénard [26].

can find no reference to Poincaré’s works in Liénard’s paper. Moreover, it is
very surprising to observe that he didn’t used the terminology “limit cycle”
to describe its periodic solution. All these facts constitutes the Liénard’s
riddle.

4.6 Andronov’s note at the Comptes Rendus

On Monday 14 October 1929, the French mathematician Jacques Hadamard
(1865-1963) presented to the Académie des Sciences de Paris a note which
was sent to him by Aleksandr Andronov and entitled “Poincaré’s limit cycles
and the theory of self-sustained oscillation”. In this work, Andronov [2] pro-
posed to transform the second order nonlinear differential equation modeling
the sustained oscillations by the series-dynamo machine, the singing arc or
the triode into the following set of two first order differential equations:

dx

dt
= P (x, y) ;

dy

dt
= Q (x, y) (13)

Then, he explained that the periodic solution of this system (13) is ex-
pressed in terms of Poincaré’s limit cycles:

“This results in self-oscillations which emerge in the systems
characterized by the equation of type (13) corresponding math-
ematically to Poincaré’s stable limit cycles.”
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It is important to notice that due to the imposed format of the Comptes
Rendus (limited to four pages), Andronov did not provide any demonstra-
tion. He just claimed that the periodic solution of a non-linear second order
differential equation defined by (13) “corresponds” to Poincaré’s stable limit
cycles. Then, Andronov provided a stability condition for the stability of
the limit cycle:

∫ 2π

0
[fx (R cos ξ,−R sin ξ; 0) cos ξ + gy (R cos ξ,−R sin ξ; 0) sin ξ] dξ < 0

(14)
In fact, this condition is based on the use of characteristic exponents

introduced by Poincaré in his so-called New Methods on Celestial Mechanics
[38, Vol. I, p. 161] and after by Lyapounov in his famous textbook General
Problem of Stability of the Motion [27]. That’s the reason why Andronov will
call later the stability condition (14): stability in the sense of Lyapounov or
Lyapounov stability. It has been stated by Ginoux [12, 13, 16, 18, 19] that
both stability condition of Poincaré (2) and of Andronov (14) are totally
identical. Thus by comparing Andronov’s previous sentence with that of
Poincaré (see above), it clearly appears that Andronov has stated the same
correspondence as Poincaré twenty years after him. Nevertheless, it seems
that Andronov may not have read Poincaré’s article since at that time even
if the first volume of his complete works had been already published it didn’t
contained Poincaré’s lectures on Wireless Telegraphy.

4.7 The first “lost” International Conference on Nonlinear
Oscillations

From 28 to 30 January 1933 the first International Conference of Nonlinear
Oscillations was held at the Institut Henri Poincaré (Paris) organized at the
initiative of the Dutch physicist Balthasar Van der Pol and of the Russian
mathematician Nikoläı Dmitrievich Papaleksi. This event, of which virtually
no trace remains, was reported in an article written in Russian by Papaleksi
at his return in USSR. This document, recently rediscovered by Ginoux [14],
has revealed, on the one hand, the list of participants who included French
mathematicians: Alfred Liénard, Élie and Henri Cartan, Henri Abraham,
Eugène Bloch, Léon Brillouin, Yves Rocard . . . and, on the other hand the
content of presentations and discussions. The analysis of the minutes of
this conference highlights the role and involvement of the French scientific
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community in the development of the theory of nonlinear oscillations4.
According to Papaleksi [29, p. 211], during his talk, Liénard recalled the

main results of his study on sustained oscillations:

“Starting from its graphical method for constructing integral
curves of differential equations, he deduced the conditions that
must satisfy the nonlinear characteristic of the system in order
to have periodic oscillations, that is to say for that the integral
curve to be a closed curve, i.e. a limit cycle.”

This statement on Liénard must be considered with great caution. In-
deed, one must keep in mind that Papaleksi had an excellent understanding
of the work of Andronov [2] and that his report was also intended for mem-
bers of the Academy of the USSR to which he must justified his presence
in France at this conference in order to show the important diffusion of the
Soviet work in Europe. Despite the presence of MM. Cartan, Lienard, Le
Corbeiller and Rocard it does not appear that this conference has gener-
ated, for these scientists, a renewed interest in the problem of sustained
oscillations and limit cycles.

5 The triode:
from limit cycle to “bizarre” solutions

At the end of the First World War, the development of wireless telegraphy
led the engineers and scientists to turn to the study of self-sustained os-
cillations in a three-electrode lamp subjected to a periodic “forcing” or a
“coupling‘”. According to Mrs. Mary Lucy Cartwright [9]:

“The non-linearity [in the Van der Pol equation] may be said to
control the amplitude in the sense that it allows it to increase
when it is small but prevents it becoming too large. The general
solution cannot be obtained by the combination of two linearly
independent solutions and similar difficulties arise when we add a
forcing term to this equation. This was brought out very clearly
by the work of van der Pol and Appleton, partly in collabora-
tion, and partly independently, in a series of papers on radio
oscillations published between 1920 and 1927. To me the work
of the radio engineers is much more interesting and suggestive

4For more details see Ginoux [13, 16, 14, 18, 19].
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than that of the mechanical engineers. The radio engineers want
their systems to oscillate, and to oscillate in a very orderly way,
and therefore they want to know not only whether the system
has a periodic solution, but whether it is stable, what its period
and amplitude and harmonic content are, and how these vary
with the parameters of the equation, and they sometimes want
the period to be determined with a very small error. In the early
days they wanted to explain why the amplitude was limited in
a certain way and why in some cases the period lengthened as
the harmonic content increased and not in others. The desire
to know why and the insistence on how the various quantities
such as amplitude and frequency vary with the parameters of
the equation over fairly wide ranges meant that numerical and
graphical solutions either failed to provide the answer or were far
too cumbersome. Further, unless one knows something about the
general behavior of the solutions, the numerical work, which is
only approximate, may be misleading.”

Thus, in the beginning of the 1920s, Van der Pol [40] studied the oscil-
lations of a forced triode, i.e. a triode powered by a voltage generator with
an f.e.m. of type v (t) = Esin (ω1t) the equation of which reads then:

v̈ − α
(
1 − v2

)
v̇ + ω2

0v = ω2
1Esin (nω1t) with ε =

α

ω0
� 1 (15)

Four years later, while using the method of “slowly-varying amplitude”
that he had developed, Van der Pol [41] was thus able on the one hand to
obtain more directly the various approximations of the amplitude of this
forced system, and on the other hand, to construct a solution to the equa-
tion more easily than by using the classical Poincar-Lindstedt or Fourier
methods5. In this paper, Van der Pol [47] highlights the fact that when
the difference in frequency of the two signals is inferior to this value an
automatic synchronization phenomenon occurs and the two circuits oscil-
late with the same frequency. This led him to evidence the phenomenon of
frequency entrainment, which he defined thus:

“Hence the free frequency undergoes a correction in the direc-
tion of the forced frequency, giving the impression as if the free
frequency were being attracted by the forced frequency.”

5The English version of this article was published in 1927. See Van der Pol [47].
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In 1927, Van der Pol and his colleague Jan Van der Mark [48] published
an article titled “Frequency Demultiplication,” in which they again studied
the forced oscillations of a triode, but in the field of relaxation oscillations.
Then, they explained that the automatic synchronization phenomenon, ob-
served in the case of the forced oscillations of a triode, can also occur for
a range of the parameter corresponding to the relaxation oscillations, i.e.
for ε � 1, but in a much wider frequency field. They also reported that
the resonance phenomenon is almost non-existent in forced relaxation os-
cillations, and that consequently, the sinusoidal e.m.f. inducing the forcing
influences the period (or frequency) of the oscillations more than it does
their amplitude, and added:

“It is found that the system is only capable of oscillating with dis-
crete frequencies, these being determined by whole sub-multiples
of the applied frequency.”

In their article, Van der Pol and Van der Mark [48] proposed, in order
to evidence the frequency demultiplication phenomenon, the following con-
struction (see Fig. 8) on which we can see a “jump” of the period for each
increase in the value of the capacitor’s capacitance.

Figure 8: Representation of the phenomenon of frequency demultiplication,
from Van der Pol et Van der Mark [48, p. 364].
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In order to evidence this frequency demultiplication phenomenon, Van
der Pol and Van der Mark used a phone. They then described the phe-
nomenon what they heard in the receiver:

“Often an irregular noise is heard in the telephone receivers be-
fore the frequency jumps to the next lower value. However, this
is a subsidiary phenomenon, the main effect being the regular
frequency multiplication.”

This irregular noise they heard was actually the sound manifestation
of the transition which was taking place. Indeed, as the frequency varied,
the solution to the differential equation (15), which had been until now
represented by a limit cycle, i.e. by a periodic attractor, would draw a
“strange attractor” transcribing the chaotic behavior of the solution. Van
der Pol seemed to have reached the limits of deterministic physics with how
far he went in the exploration of nonlinear and non-autonomous systems. He
“flirted”, as Mary Lucy Cartwright and John Edensor Littlewood [5, 6, 7, 8]
did twenty years later with the first signs of chaos, when they called “bizarre”
the behavior of the solution to the differential equation (15) for specific
values of the parameters. Indeed, according to Guckenheimer et al. [22]:

“Van der Pol’s work on nonlinear oscillations and circuit the-
ory provided motivation for the seminal work of Cartwright and
Littlewood. In 1938, just prior to World War II, the British
Radio Research Board issued a request for mathematicians to
consider the differential equations that arise in radio engineer-
ing. Responding to this request, Cartwright and Littlewood be-
gan studying the forced van der Pol equation and showed that it
does indeed have bistable parameter regimes. In addition, they
showed that there does not exist a smooth boundary between the
basins of attraction of the stable periodic orbits. They discovered
what is now called chaotic dynamics by detailed investigation of
this system.”

6 Conclusion

Thus, the analysis of the research performed on the following three devices:
the series-dynamo machine, the singing arc and the triode, over a period
ranging from the end of the XIXth century till the end of the Second World
War, has enabled to reconstruct the historical road leading from nonlinear
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oscillations to chaos theory. The series-dynamo machine has highlighted a
new kind of oscillations generated by the presence of a nonlinear component
in the circuit, i.e. a negative resistance. Poincaré’s work on the singing arc
has provided an analytical condition for the sustaining of these oscillations,
i.e. for the existence of a stable limit cycle. Moreover, this has proved that
Poincaré has established twenty years before Andronov the correspondence
between periodic solution and stable limit cycle. In his research on the tri-
ode, Blondel has solved the question of the mathematical modeling of its
oscillation characteristic, i.e. of its negative resistance and stated thus, one
year before Van der Pol, the triode’s equation. Then, Janet highlighted an
analogy between the oscillations sustained by the series-dynamo machine,
the singing arc and the triode and Van der Pol deduced that they were
belonging to the same oscillatory phenomenon that he called relaxation os-
cillations. Though he plotted the solution of the equation that now bears
his name, he didn’t recognize that it was obviously a Poincaré’s limit cycle.
Thereafter, Cartan and then Liénard proved the existence and uniqueness of
this periodic solution but did not make either a connection with Poincaré’s
works. Immediately after Andronov established this connection, Van der
Pol and Papaleksi organized the first International Conference on Nonlin-
ear Oscillations in Paris. Nevertheless, this meeting did not lead to any
development or research in this field. At the same time, Van der Pol and
Van der Mark highlighted that the forced triode was the source of a strange
phenomenon that they called frequency demultiplication. At the end of the
Second World War, Cartwright and Littlewood investigated this system and
considered its oscillations as “bizarre”. Many years later, it appeared that
they had actually observed the first chaotic behavior.
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wireless telegraphy, International Journal of Bifurcation & Chaos, 20,
11, 3617-3626 (2010).
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télégraphie sans fil, Gauthier-Villars, 3e éd., (Paris), 1907.
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259-266, 291-297, 323-327, 355-359 & 387-393 (1908).
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Abstract. We study the dynamics shown by the discrete time Diamond overlapping-
generations model with the VES production function in the form given by Revankar[10]
and compare our results with those obtained by Brianzoni et al.[2] in the Solow model.
We prove that, as in Brianzoni et al.[2], unbounded endogenous growth can emerge if
the elasticity of substitution is greater than one; moreover, differently from Brianzoni
et al.[2], the Diamond model can admit two positive steady states. We also prove that
complex dynamics occur if the elasticity of substitution between production factors
is less than one, confirming the results obtained by Brianzoni et al.[2]. Numerical
simulations support the analysis.
Keywords: Variable Elasticity of Substitution, Diamond Growth Model, Fluctua-
tions and Chaos, Bifurcation in Piecewise Smooth Dynamical Systems.

1 Introduction

The elasticity of substitution between production factors plays a crucial role in
the theory of economic growth, it being one of the determinants of the economic
growth level (see Klump and de La Grandville[6]).

Within the Solow model (see Solow[11], and Swan[12]) it was found that a
country exhibiting a higher elasticity of substitution experiences greater capital
(and output) per capita levels in the equilibrium state (see Klump and de La
Grandville[6], Klump and Preissler[7], and Masanjala and Papageorgiou[8]).
More recently, the role of the elasticity of substitution between production
factors in the long run dynamics of the Solow model was investigated both
considering the Constant Elasticity of Substitution production function (CES)
(see Brianzoni et al.[1]) and the Variable Elasticity of Substitution production
function (VES) (see Brianzoni et al.[2]). The results obtained demonstrate
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that fluctuations may arise if the elasticity of substitution between production
factors falls below one.

Miyagiwa and Papageorgiou[9] moved the attention to the Diamond over-
lapping-generations model (Diamond[4]) while proving that, differently from
the Solow setup, “if capital and labor are relatively substitutable, a country
with a greater elasticity of substitution exhibits lower per capita output growth
in both transient and steady state”. To reach this conclusion they considered
the normalized CES production function.

In the present work we consider the Diamond overlapping-generations model
with the VES production function in the form given by Revankar[10] (see also
Karagiannis et al.[5]). Our main goal is to study the local and global dynamics
of the model to verify if the main result obtained by Brianzoni et al.[2] in the
Solow model, i.e. cycles and complex dynamics may emerge if the elasticity
of substitution between production factors is sufficiently low, still holds in the
Diamond framework.

To summarize, the qualitative and quantitative long run dynamics of the
Diamond growth model with VES production function are studied, to show that
complex features can be observed and to compare the results obtained with the
ones reached while considering the CES technology or the Solow framework.

2 The economic setup

Consider a discrete time setup, t ∈ N, and let yt = f(kt) be the produc-
tion function in intensive form, mapping capital per worker kt into output per
worker yt. Following Karagiannis et al.[5] we consider the Variable Elasticity of
Substitution (VES) production function in intensive form with constant return
to scale, as given by Revankar[10]:

yt = f(kt) = Akat [1 + bakt]
(1−a), kt ≥ 0 (1)

where A > 0, 0 < a < 1, b ≥ −1; furthermore 1/kt ≥ −b, in order to assure
that f(kt) > 0, f ′(kt) > 0 and f ′′(kt) < 0, ∀kt > 0, where

f ′(kt) = Aakat (1 + abkt)
1−a[k−1t + (1− a)b(1 + abkt)

−1]

and

f ′′(kt) = A
a(a− 1)(1 + abkt)

−a−1

k2−at

.

The elasticity of substitution between production factors is then given by

σ(kt) = 1 + bkt

hence σ ≥ (<)1 iff b ≥ (<)0. Thus the elasticity of substitution varies with
the level of capital per capita, representing an index of economic development.
Observe that, while the elasticity of substitution for the CES is constant along
an isoquant, in the case of the VES it is constant only along a ray through the
origin.
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In the Diamond[4] overlapping-generations model a new generation is born
at the beginning of every period. Agents are identical and live for two periods.
In the first period each agent supplies a unit of labor inelastically and receives
a competitive wage:

wt = f(kt)− ktf ′(kt),

thus, taking into account the specification of the production function in (1),
we obtain

wt = Akat
(1 + 2abkt)(1− a)

(1 + abkt)a
. (2)

As in Miyagiwa and Papageorgiou[9] we assume that agents save a fixed
proportion s ∈ (0, 1) of the wage income to finance consumption in the second
period of their lives. All savings are invested as capital to be used in the next
period’s production, so that the evolution of capital per capita is described by
the following map

kt+1 = φ(kt) =
s

1 + n
wt =

sA

1 + n
kat

(1 + 2abkt)(1− a)

(1 + abkt)a
, (3)

where n > 0 is the exogenous labor growth rate and capital depreciates fully.
As in Brianzoni et al.[2] we distinguish between the following two cases.
(a) If b > 0 the elasticity of substitution between production factors is

greater than one and the standard properties of the production function are
verified ∀kt > 0; in this case kt evolves according to (3).We do not consider the
case b = 0 as σ(kt) becomes constant and equal to one, ∀kt ≥ 0, thus obtaining
a particular case of the CES production function.

(b) If b ∈ [−1, 0) the elasticity of substitution between production factors is
less than one and the standard properties of the production function are verified
for all 0 < kt < − 1

b ; in this case kt evolves according to (3) iff kt ∈ [0,−1/b]
while, following Karagiannis et al.[5] and Brianzoni et al.[2], if kt > −1/b then
kt = φ(−1/b).

3 Local and Global Dynamics

3.1 Elasticity of Substitution Greater than One

Let b > 0. Then the discrete time evolution of the capital per capita kt is
described by the continuous and differentiable map (3).

The establishment of the number of steady states is not trivial to solve,
considering the high variety of parameters. As a generale result, the map φ
always admits one fixed point characterized by zero capital per capita, i.e.
k = 0 is a fixed point for any choice of parameter values. Anyway steady states
which are economically interesting are those characterized by positive capital
per worker. In order to determine the positive fixed points of φ, let us define
the following function:

G(k) =
1− a
k1−a

1 + 2abk

(1 + abk)a
, k > 0 (4)
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where

G′(k) =
(1− a)

k2−a(1 + abk)1+a
[(a− 1) + (2a− 1)abk], (5)

then solutions of G(k) = 1+n
sA are positive fixed points of φ.

The following proposition establishes the number of fixed points of map φ.

Proposition 1 Let φ given by (3).

(i) Assume b > 0 and a ≤ 1
2 . Then:

(a) if 1+n
sA > (ab)1−a2(1 − a), φ has two fixed points given by kt = 0 and

kt = k∗ > 0;
(b) if 0 < 1+n

sA ≤ (ab)1−a2(1 − a), φ has a unique fixed point given by
kt = 0.

(ii) Assume b > 0 and a > 1
2 and let km = 1−a

ab(2a−1) . Then:

(a) if 1+n
sA < ( a2b

1−a )1−a( 1−a
a ), φ has a unique fixed point given by kt = 0;

(b) if 1+n
sA = ( a2b

1−a )1−a( 1−a
a ), φ has two fixed points given by kt = 0 and

k∗ = km;

(c) if ( a2b
1−a )1−a( 1−a

a ) < 1+n
sA < (ab)1−a2(1 − a), φ has three fixed points

given by kt = 0, kt = k1 and kt = k2, where 0 < k1 < km < k2;
(d) if 1+n

sA ≥ (ab)1−a2(1 − a), φ has two fixed points given by kt = 0 and
k∗ > 0, where 0 < k∗ < km.

Proof. kt = 0 is a solution of equation kt = φ(kt) for all parameter values
hence it is a fixed point. Function (4) is such that G(kt) > 0 for all kt > 0,
furthermore limkt→0+ G(kt) = +∞ while limkt→+∞G(kt) = (ab)1−a2(1− a).

(i) Observe that if b > 0 and a ≤ 1
2 , G(k) is strictly decreasing ∀kt > 0

since G′(k) < 0. Hence G(kt) intersects the positive and constant function
g = 1+n

sA in a unique positive value kt = k∗ iff 1+n
sA > (ab)1−a2(1− a).

(ii) Assume a > 1
2 and b > 0 then G has a unique minimum point km =

1−a
ab(2a−1) where G(km) = ( a2b

1−a )1−a( 1−a
a ). Hence, if ( a2b

1−a )1−a( 1−a
a ) < 1+n

sA <

(ab)1−a2(1 − a), then equation G(kt) = 1+n
sA admits two positive solu-

tions. Similarly, it can be observed that if 1+n
sA = ( a2b

1−a )1−a( 1−a
a ) or

1+n
sA ≥ (ab)1−a2(1 − a) then φ(kt) admits a unique positive fixed point.

Trivially, for the other parameter values, equation G(kt) = 1+n
sA has no

positive solutions.

For what it concerns the local stability of the steady states the following
proposition holds.

Proposition 2 Let φ be as given in (3).

(i) The equilibrium kt = 0 is locally unstable for all parameter values.
(ii) If φ admits two fixed points then the equilibrium kt = k∗ > 0 is locally

stable.
(iii) If φ admits three fixed points, then the equilibrium kt = k1 is locally stable

while the equilibrium kt = k2 is locally unstable.
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Proof. Firstly notice that function φ may be written in terms of function G
being:

φ(k) =
sA

1 + n
kG(k) (6)

hence φ′(k) = sA
1+n [G(k) + kG′(k)].

(i) Since limkt→0+ G(kt) = +∞ and limkt→0+ kG
′(kt) = +∞, then φ′(0) =

+∞ and consequently the origin is a locally unstable fixed point for map
φ.

(ii) Assume that φ admits two fixed points. After some algebra it can be
noticed that

φ′(k) =
a(1 + a)sA

1 + n

(1 + abk)−1−a

k1−a
[2ab2k2 + 2b(1 + a)k+ 1] > 0 ∀k > 0

(7)
hence φ(k) is strictly increasing and consequently k∗ is locally stable. In

the particular case in which 1+n
sA = ( a2b

1−a )1−a( 1−a
a ) then k∗ = km is a non

hyperbolic fixed point: a tangent bifurcation occurs at which k∗ is locally
stable.

(iii) Assume that φ has three equilibria. Since φ′(k) > 0 ∀k > 0 then point (iii)
is easily proved.

The results concernig the existence and number of fixed points and their
local stability when the elasticity of substitution between production factors is
greater than one, are resumed in Fig. 1. We fix all the parameters but s and
we show that, as s is increased, we pass from two to three and, finally, to one
fixed point. Hence it can be observed that unbounded growth can emerge if
the propensity to save in sufficiently high.

As in Brianzoni et al.[2], if the elasticity of substitution between the two
factors is greater than one (b > 0), then unbounded endogenous growth can be
observed but only simple dynamics can be produced. Anyway, differently from
Brianzoni et al.[2], the growth model can exhibit two positive steady states so
that the final outcome of the economy depends on the initial condition (in fact
if k0 ∈ (0, k2) then the convergence toward k1 is observed while if k0 > k2 then
unbounded endogenous growth is exhibited).

3.2 Elasticity of Substitution Less than One

Let b ∈ [−1, 0). Then the discrete time evolution of the capital per capita kt is
described by the following continuous and piecewise smooth map:

kt+1 = F (kt) =

{
φ(kt) ∀kt ∈

[
0,− 1

b

]
φ
(
− 1

b

)
∀kt > − 1

b

. (8)

As it is easy to verify, F is non-differentiable in the point kt = − 1
b , which

separates the state space into two regions R1 = {(k) : 0 ≤ k < − 1
b} and

R2 = {(k) : k > − 1
b}. Furthermore, the map F is constant for kt > − 1

b and
non-linear for 0 ≤ kt ≤ − 1

b . The following proposition describes the number of
fixed points when b ∈ [−1, 0).
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Fig. 1. Map φ, its fixed points and their stability for b = 1, a = 0.7, A = 3 and
n = 0.1. (a) s = 0.8, (b) s = 0.7 and (c) s = 0.6.

Proposition 3 Let F be as given in (8) and b ∈ [−1, 0).

(i) Assume a > 1
2 . Then F has two fixed points given by k = 0 and k∗ ∈

(0,− 1
2ab ).

(ii) Assume a ≤ 1
2 and M = (−b)1−a(1−2a)

(1−a)a−1 . Then:

(a) if 1+n
sA ≥M there exist two fixed points given by k = 0 and k∗ ∈ (0,− 1

b ];
(b) if 1+n

sA < M there exist two fixed points given by k = 0 and k∗ = F (− 1
b ).

Proof. It is easy to see that k = 0 is a fixed point for any choice of the parameter
values.

(i) Firstly notice that φ ≥ 0 iff k ∈ [0,− 1
2ab ] and φ(0) = φ(− 1

2ab ) = 0, so
values of k > − 1

2ab are not economically significant. Moreover φ has

a unique maximum point given by kM = −1−a+
√
1+a2

2ab with φ(kM ) =

sA
1+n

( √
1+a2−1−a

ab
√
1+a2+1−a

)a

(1 − a)(
√

1 + a2 − a). Finally limk→0+ φ
′(k) = ∞.

Hence equation φ(k) = k has always a unique positive solution given by
k∗ ∈ (0,− 1

2ab ).
(ii) The positive fixed points of F such that k ≤ − 1

b are given by the solutions
of equation G(k) = 1+n

sA with G(k) as given in (4) and G > 0 defined in

(0,− 1
b ]. Being G′(k) = (1−a)

k2−a(1+abk)1+a [(a − 1) + (2a − 1)abk], G is strictly

decreasing ∀k ∈ (0,− 1
b ] with minimum point in km = − 1

b and G(km) =

G(− 1
b ) = (−b)1−a(1−2a)

(1−a)a−1 = M . Hence G(k) = 1+n
sA has a unique positive
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solution k∗ ∈ (0,− 1
b ] iff 1+n

sA ≥
(−b)1−a(1−2a)

(1−a)a−1 . Differently, the unique fixed

point of F such that k > − 1
b is defined by k∗ = F (− 1

b ) = φ(− 1
b ) and it

exists iff F (− 1
b ) > − 1

b , which is equivalent to require 1+n
sA < (−b)1−a(1−2a)

(1−a)a−1 .

Let us move to the study of the local stability of the fixed points. Since

φ′(k) =
a(1 + a)sA

1 + n

(1 + abk)−1−a

k1−a
[2ab2k2 + 2b(1 + a)k + 1]

then limk→0+ φ
′(k) = +∞, so that the equilibrium characterized by zero capital-

per capita is always locally unstable.

We firstly focus on the case with a > 1
2 . As it has been discussed, the related

one dimensional map is continuous and differentiable in its domain [0,− 1
2ab ].

Furthermore, φ(0) = φ(− 1
2ab ) = 0 and φ′′(k) < 0 ∀k ∈ (0,− 1

2ab ), i.e. it is
strictly concave. As a consequence map φ behaves as the logistic map, that is
it exhibits the standard period doubling bifurcation cascade as one parameter
is moved (see Devaney[3]).

The period doubling bifurcation cascade is observed, for instance, if A is
increased. In fact it can be easily observed that φ(kM ) increases as A increases
so that ∃Ā such that φ(kM ) > − 1

2ab ∀A > Ā, i.e. almost all trajectories are
unfeasible. At A = Ā a final bifurcation occurs (the origin is a pre-periodic fixed
point and φ is chaotic in a Cantor set) while ∀A ∈ (0, Ā) the period doubling
bifurcation cascade is observed (see Fig. 2 (a),(b) and (e)). Notice also that
the situation presented in panel (b) becomes simpler if a greater value of b is
considered (see Fig. 2 (c)), proving that in order to have complex dynamics b
must be sufficiently low (as also showed in panel (d)).

In order to study the local stability of the positive fixed point when a ≤ 1
2

and b ∈ [−1, 0) we observe that function F has a non differentiable point given
by

P =

(
−1

b
, F (−1

b
)

)
, (9)

where F (− 1
b ) = sA

1+n (−b)−a(1− a)1−a(1− 2a).
Notice that if P is above the main diagonal, the fixed point k∗ is superstable

being F ′(k∗) = 0 and no complex dynamics can be exhibited. This case occurs,
for instance, if A is great enough and the related situation is presented in Fig.

3 (a). If (−b)1−a(1−2a)
(1−a)a−1 = 1+n

sA we get that k∗ = − 1
b , then a border collision of

the superstable fixed point occurs.
If P is below the main diagonal then k∗ may be locally stable or unstable

and complex dynamics may arise.

The following Proposition states a sufficient condition for the existence of
a stable 2-period cycle {k1, k2} such that ki ∈ Ri, (i = 1, 2).

Proposition 4 Let b ∈ [−1, 0). For all b in the region defined as

Ω =

{
b : F 2(−1

b
) > −1

b
∩ (−b)1−a(1− 2a)

(1− a)a−1
<

1 + n

sA

}
(10)
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Fig. 2. a = 0.6, n = 0.1, s = 0.7. (a) If b = −0.7 and A = 9 a stable two period cycle
is presented, while (b) if A = 10 complexity emerges. (c) Locally stable fixed point
for A = 10 and b = −0.3. (d) Bifurcation diagram w.r.t. b. (e) Bifurcation diagram
w.r.t. A.

map F admits a superstable 2-period cycle defined as C2 = {F (− 1
b ), F 2(− 1

b )}.

Proof. A 2-cycle for map F is given by {k1, k2} with F (k1) = k2 and F (k2) =
k1. Let k0 > − 1

b with k0 ∈ R2, then k1 = F (− 1
b ) belongs to R1 (being the

point P below the main diagonal) and k2 = F (k1) = F (F (− 1
b )) = F 2(− 1

b ). If
F 2(− 1

b ) > − 1
b , then F 2(− 1

b ) ∈ R2 and consequently F (F 2(− 1
b )) = F (k2) =

F (− 1
b ) = k1. This proves the existence of a two period cycle. Moreover, the

eigenvalue of such cycle is zero, since F ′(k2) = 0, therefore it is a superstable
two period cycle.
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Notice that in F 2(− 1
b ) = − 1

b a border collision bifurcation of the superstable
2-period cycle occurs. The superstable two period cycle is depicted in Fig. 3
(b).
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k t+
1

k
t

(b)

Fig. 3. a = 0.4, n = 0.1, s = 0.7. (a) If b = −0.3 and A = 30 the positive steady
state is superstable. (b) The superstable two period cycle for b = −0.3 and A = 15.

In order to describe how complex dynamics may emerge if a ≤ 1
2 , we recall

that F is unimodal and kM = −1−a+
√
1+a2

2ab is its maximum point.
If k∗ ∈ (0, kM ) (i.e. point (kM , F (kM )) is below the main diagonal), then

k∗ is globally stable ∀k0 6= 0. On the contrary, if F (kM ) > kM (i.e. point
(kM , F (kM )) is above the main diagonal), then its eigenvalue is negative and k∗

may lose stability only via a period-doubling bifurcation. Therefore, a necessary
condition for a flip bifurcation is that that point (kM , F (kM )) is above the main
diagonal.

To recap, as in Brianzoni et al.[2], our model can exhibit cycles or more
complex dynamics iff P is below the main diagonal while the maximum point
kM is above the main diagonal. In this case all positive initial conditions
produce trajectories converging to an attractor belonging to a trapping interval
J defined in the following proposition.

Proposition 5 Let (−b)1−a(1−2a)
(1−a)a−1 < 1+n

sA and F (kM ) > kM . Then the one-

dimensional map F admits a trapping interval J , where J is defined as follows:

1. J = [F (− 1
b ), F (kM )] if F (kM ) ≥ − 1

b ,
2. J = [F 2(kM ), F (kM )] if F (kM ) < − 1

b .

Proof. If the one-dimensional map F has a maximum point kM above the
main diagonal and point P is below the main diagonal, then through the
graphical analysis it is possible to see that when the image of kM belongs
to R2 ∪ {− 1

b}, then J = [F (− 1
b ), F (kM )] is mapped into itself; otherwise

J = [F 2(kM ), F (kM )] is mapped into itself by F .

Since every initial condition k0 6= 0 creates bounded trajectories converging
to an attractor included into the trapping interval J , it can be noticed that
if F (kM ) ≥ − 1

b , the flat branch of map F is involved. Moreover, since all
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the points mapped in R2 have the same trajectory of point F (− 1
b ), then the

attractor will be a cycle. The transition from F (kM ) ≥ − 1
b to F (kM ) < − 1

b
corresponds to a border collision bifurcation.

In order to describe the qualitative dynamics occurring on set J , we con-
sider the situation in which k∗ ∈ R1 is locally stable (as in Fig. 4 (a)), for
instance b is close to zero. Then, as b decreases, k∗ becomes unstable via flip
bifurcation and a period doubling route to chaos occurs till a border collision
bifurcation emerges at F (kM ) = − 1

b . This bifurcation occurs at b = bc and a
point of the attractor of F collides with point P . In Fig. 4 (b) and (c) the sit-
uations immediately before and after the border collision bifurcation occurring
at bc ' −0.315 are presented. Notice that after this bifurcation the qualitative
dynamics drastically changes, passing from a complex attractor to a locally
stable 5-period cycle. The related bifurcation diagram is presented in Fig. 4
(d).
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Fig. 4. A = 10, a = 0.49, n = 0.1, s = 0.9. (a) If b = −0.15 the fixed point is
locally stable. (b) Situation before the border collision bifurcation, i.e. b = −0.314.
(c) Situation immediately after the border collision bifurcation, i.e. b = −0.316. (d)
Bifurcation diagram w.r.t. b.

As in Brianzoni et al.[2] if elasticity of substitution between production
factors in less then one, then the system becomes more complex as b decreases
since cycles or more complex features may be exhibited.
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4 Conclusions

In this paper we considered the Diamond overlapping-generations model with
the VES production function in the form given by Revankar[10]. We examined
existence and stability conditions for steady state and the results of our analysis
show that fluctuation or even chaotic patterns can be exhibited. As in Brianzoni
et al.[2], cycles or complex dynamics can emerge if the elasticity of substitution
between production factors is low enough. Moreover, unbounded endogenous
growth can be observed. A new feature is due to the fact that, if elasticity of
substitution is greater then one, then up to three fixed point can be exhibited.
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Abstract. Within a mathematical model, the process of interaction of the metabolic 

processes such as glycolysis and gluconeogenesis is studied. As a result of the running of 

two opposite processes in a cell, the conditions for their interaction and the self-
organization in a single dissipative system are created. The reasons for the appearance of 

autocatalysis in the given system and autocatalytic oscillations are studied. With the help 

of a phase-parametric diagram, the scenario of their appearance is analyzed. The 

bifurcations of the doubling of a period and the transition to chaotic oscillations 
according to the Feigenbaum scenario and the intermittence are determined. The obtained 

strange attractors are created as a result of the formation of a mixing funnel. Their 

complete spectra of Lyapunov indices, KS-entropies, “horizons of predictability,” and 

the Lyapunov dimensions of strange attractors are calculated. The conclusions about the 
reasons for variations of the cyclicity in the given metabolic process, its stability, and the 

physiological state of a cell are made. 
Keywords: Gluconeogenesis, glycolysis, metabolic process, self-organization, fractality, 

strange attractor, Feigenbaum scenario. 
        

1  Introduction 
Gluconeogenesis is a biochemical process of formation of glucose from 

hydrocarbonless predecessors such as pyruvates, aminoacids, and glycerin. The 

biosynthesis of glucose runs analogously to glycolysis, but in the reverse 

direction. Gluconeogenesis is realized by means of the inversion of seven 

invertible stages of glycolysis. Three remaining stages of glycolysis are 

exergenous and, therefore, irreversible. They are replaced by three “by-pass 

reactions” that are thermodynamically gained for the synthesis of glucose. Since 

gluconeogenesis uses the same invertible reactions, as glycolysis does, its 

biochemical evolution occurred, apparently, jointly with glycolysis. Maybe, the 

symbiosis of these biochemical processes arose else in protobionts 3.5 bln years 

in Earth’s oxygenless atmosphere. It can be considered as one of the primary 

open nonlinear biochemical systems, being far from the equilibrium. The self-

organization of the given biochemical system resulted in the appearance of a 

stable dissipative system independent of other biochemical processes of a 

primary broth. The directedness of the running of a reaction in it was 

determined by the energy-gained balance. The organic molecule ATP , which 

was formed as a result of glycolysis, became the principal carrier of the energy 

consumed in all other biochemical processes. This created the conditions of self-
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organization of other biochemical processes that used ATP  as the input product 

of a reaction. But if the need in glucose arose in other biochemical processes, 

the directedness of biochemical reactions in the system was changed by the 

opposite one. In the course of the subsequent biochemical evolution, the given 

dissipative system is conserved and is present in cells of all types, which 

indicates their common prehistory. 

Thus, the studies of the reactions of gluconeogenesis are determined in 

many aspects by the results of studies of glycolysis. The direct sequence of 

reactions with the known input and output products is studied easier than the 

reverse one. 

The experimental studies of glycolysis discovered autooscillations [1]. In 

order to explain their origin, a number of mathematical models were developed 

[2-4]. Sel’kov explained the appearance of those oscillations by the activation of 

phosphofructokinase by its product. In the Goldbeter--Lefever model, the origin 

of autooscillations was explained by the allosteric nature of the enzyme. Some 

other models are available in [5-7]. 

The present work is based on the mathematical model of glycolysis and 

gluconeogenesis, which was developed by Professor V.P. Gachok and his 

coauthors [8-10]. The peculiarity of his model consists in the consideration of 

the influence of the adeninenucleotide cycle and gluconeogenesis on the 

phosphofructokinase complex of the given allosteric enzyme. This allowed one 

to study the effect of these factors as the reason for the appearance of 

oscillations in glycolysis. 

At the present time, this model is improved and studied with the purpose to 

investigate gluconeogenesis. Some equations were added, and some equations 

were modified in order to describe the complete closed chain of the metabolic 

process of glycolysis-gluconeogenesis under anaerobic conditions. The 

developed complete model allows us to consider glycolysis-gluconeogenesis as 

a united integral dissipative structure with a positive feedback formed by the 

transfer of charges with the help of NAD . Glycolysis with gluconeogenesis is 

considered as an open section of the biosystem, which is self-organized by itself 

at the expense of input and output products of the reaction in a cell, which is a 

condition of its survival and the evolution. The appearance of an autocatalytic 

process in the given dissipative structure can be a cause of oscillatory modes in 

the metabolic process of the whole cell. 

Gluconeogenesis occurs in animals, plants, fungi, and microorganisms. Its 

reactions are identical in all tissues and biological species. Phototrophs 

transform the products of the own photosynthesis in glucose with the help of 

gluconeogenesis. Many microorganisms use this process for the production of 

glucose from a medium, where they live. 

The conditions modeled in the present work are established in muscles after 

an intense physical load and the formation of a large amount of lactic acid in 

them. As a result of the running of the reverse reaction of gluconeogenesis, it is 

transformed again in glucose. 
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2  Mathematical Model 
 

The given mathematical model describes glycolysis-gluconeogenesis under 

anaerobic conditions, whose output product is lactate. At a sufficient level of 

glucose, the process runs in the direct way. At the deficit of glucose, it runs in 

the reverse one: lactate is transformed in glucose. 

The general scheme of the process of glycolysis-gluconeogenesis is 

presented in Fig.1. According to it, the mathematical model (1) - (16) is 

constructed with regard for the mass balance and the enzymatic kinetics. 

The equations describe variations in the concentrations of the 

corresponding metabolites: (1) – lactate L ; (2) – pyruvate P ; (3) - 2-

phosphoglycerate 3 ; (4) – 3-phosphoglycerate 2 ; (5) - 1,3-

diphosphoglycerate ( 1 ); (6) - fructose-1,6-diphosphate ( 2F ); (7) – fructose-6-

phosphate ( 1F ) ; (8) – glucose G ; (9), (10), and (11) - ATP , ADP , and 

AMP , respectively, form the adeninenucleotide cycle at the phosphorylation; 

(12) - 1R  and (13) - 2R  (two active forms of the allosteric enzyme 

phosphofructokinase; (14) - 1T   and (15) - 2T  (two inactive forms of the 

allosteric enzyme phosphofructokinase; (16) - HNAD  (where 

MtNADtHNAD   )()( ). 

Variations of the concentrations of omitted metabolites have no significant 

influence on the self-organization of the system and are taken into account in the 

equations generically. Since glycolysis and gluconeogenesis on seven sections 

of the metabolic chain are mutually reverse processes, only the coefficients are 

changed, whereas the system of equations describing glycolysis is conserved [8-

10]. The model involves the running of gluconeogenesis on the section: glucose 

- glucose-6-phosphate. Here in the direct way with the help of the enzyme 

hexokinase, the catabolism of glucose to glucose-6-phosphate occurs. In the 

reverse direction with the help of the enzyme glucose-6-phosphatase, glucose is 

synthesized from glucose-6-phosphate. Thus, the positive feedback is formed on 

this section. 
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Fig.1. General scheme of the metabolic process of glycolysis-gluconeogenesis. 
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Here, )1/()( XXXV   is the function that describes the adsorption of the 

enzyme in the region of a local coupling. The variables of the system are 

dimensionless [8-10]. We take 

;046.02 l  ;0017.03 l  ;01334.04 l  ;3.05 l  ;001.06 l  ;01.07 l  

;0535.08 l  ;001.09 l  ;07.01 k  ;01.02 k  ;0015.03 k  ;0005.04 k  

;05.05 k  ;005.06 k  ;03.07 k  ;005.08 k  ;3.01 m  ;15.02 m  ;6.13 m  

;0005.04 m  ;007.05 m  ;106 m  ;0001.07 m  ;0000171.08 m  ;5.09 m  

;4.180 G  ;005.0L  ;1000S  ;6779.0A  ;005.0M  ;1501 S  

;5.184  ;250  ;3.0  .7.79  

In the study of the given mathematical model (1)-(16), we have applied the 

theories of dissipative structures [11] and nonlinear differential equations 

[12,13], as well as the methods of mathematical modeling used in author’s 

works [14-34]. In the numerical solution, we applied the Runge--Kutta--Merson 

method. The accuracy of calculations is 810 . The duration for the system to 

asymptotically approach an attractor is 610 . 

 

3  The Results of Studies 
 

The mathematical model includes a system of nonlinear differential 

equations (1)-(16) and describes the open nonlinear biochemical system 

involving glycolysis and gluconeogenesis. In it, the input and output flows are 

glucose and lactate. Namely the concentrations of these substances form the 

direct or reverse way of the dynamics of the metabolic process. Both processes 

are irreversible and are running in the open nonlinear system, being far from the 

equilibrium. The presence of the reverse way of gluconeogenesis in the 

glycolytic system is the reason for the autocatalysis in it. In addition, the whole 

metabolic process of glycolysis is enveloped by the feedback formed by redox 
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reactions with the transfer of electrons with the help of NAD  (16) and the 

presence of the adeninenucleotide cycle (9) – (11) (Fig.1). 

We now study the dependence of the dynamics of the metabolic process of 

glycolysis-gluconeogenesis on the value of parameter 5l  characterizing the 

activity of gluconeogenesis. The calculations indicate that, as the value of this 

parameter increases to 0.234, the system passes to the stationary state. As this 

parameter increases further, the autooscillations of a 1-fold periodic cycle 021  

arise and then, at  2369.05 l , transit to chaotic ones - x2 . The analogous 

behavior of the system is observed at larger values of 5l . As the parameter 

decreases to 0.43, the system stays in a stationary state. If the parameter 5l  

decreases further, the system gradually transits in a 1-fold periodic cycle 021 , 

and the region of oscillatory dynamics arises. 

Let us consider the oscillatory dynamics of this process. We constructed the 

phase-parametric diagrams, while 5l  varies in the intervals 0.235 – 0.28 and 

0.25 – 0.266 (Fig.2,a,b). The diagrams are presented for fructose-6-phosphate 

1F . We emphasize that the choice of a diagram for the namely given variable is 

arbitrary. The diagrams of other components are analogous by bifurcations. We 

want to show that the oscillations on the section fructose-6-phosphate – 

fructose-1,6-biphosphate can be explained by the oscillations of fructose-6-

phosphate caused by gluconeogenesis, rather than the allosteric property of the 

enzyme phosphofructokinase. 

 
Fig. 2. Phase-parametric diagram of the system for the variable )(1 tF : 

a - )28.0,235.0(5 l ; b - )266.0,25.0(5 l . 

The phase-parametric diagrams were constructed with the help of the 

cutting method. In the phase space, we took the cutting plane at 0.12 R . This 

choice is explained by the symmetry of oscillations )(1 tF  relative to this point. 

At the cross of this plane by the trajectory, we fix the value of each variable. If a 

multiple periodic limiting cycle arises, we will observe a number of points on 

the plane, which coincide in the period. If a deterministic chaos arises, the 

points, where the trajectory crosses the plane, are located chaotically. 
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Considering the diagram from right to left, we may indicate that, at 

278.05 jl , the first bifurcation of the period doubling arises. Then at 

265.01
5 jl  and 262215.02

5 jl , we see the second and third bifurcations, 

respectively. Further, the autooscillations transit in the chaotic mode due to the 

intermittence. The obtained sequence of bifurcations satisfies the relation  

668.4lim
1

5
2

5

5
1

5 







 jj

jj

t ll

ll
. 

This number is very close to the universal Feigenbaum constant. The 

transition to the chaos has happened by the Feigenbaum scenario [35]. 

It is seen from Fig.2,a,b that, for 25612.05 l  and 2451.05 l , the 

periodicity windows appear. Instead of the chaotic modes, the periodic and 

quasiperiodic modes are established. The same periodicity windows are 

observed on smaller scales of the diagram. The similarity of diagrams on small 

and large scales means the fractal nature of the obtained cascade of bifurcations 

in the metabolic process created by gluconeogenesis. 

As examples of the sequential doubling of a period of autoperiodic modes 

of the system by the Feigenbaum scenario, we present projections of the phase 

portraits of the corresponding regular attractors in Fig.3,a-c. In Fig.3,d-f, we 

show some regular attractors arising in the periodicity windows. For 256.05 l , 

the 3-fold periodic mode 023   is formed. For 2556.05 l , we observe the 5-

fold mode. Then, as 245.05 l , the 3-fold periodic cycle is formed again. 

 

 
Fig.3. Projections of phase portraits of the regular attractors of the system: 

a - 121 , for 268,05 l ; b - 221 , for 264.05 l ; c - 421 , for 262.05 l ; 

d - 
023  , for 256.05 l ; e - 

025  , for 2556.05 l ; and f - 
023  , for 

245.05 l . 
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In Fig. 4,a,b, we give projections of the strange attractor x2  for 25.05 l . 

The obtained chaotic mode is a strange attractor. It appears as a result of the 

formation of a funnel. In the funnel, there occurs the mixing of trajectories. At 

an arbitrarily small fluctuation, the periodic process becomes unstable, and the 

deterministic chaos arises. 

 

 

Fig.4. Projections of the phase portrait of the strange attractor x2  for 25.05 l : 

a – in the plane ),( 2 PT , b – in the plane ),( 11 FR . 

 

In Fig.5,a,b, we present, as an example, the kinetics of autooscillations of 

some components of the metabolic process in a 1-fold mode for 3.05 l  and in 

the chaotic mode for 25.05 l . The synchronous autooscillations of fructose-6-

phosphate and the inactive form 2T  of the allosteric enzyme 

phosphofructokinase are replaced by chaotic ones. 

 

 
Fig.5. Kinetic curves of the variables: )(1 tF  - a and )(2 tT - b in the 1-fold 

periodic mode for 3.05 l  (1) and in the chaotic mode for 25.05 l  (2). 

 

While studying the phase-parametric diagrams in Fig.2,a,b, it is impossible 

beforehand to determine, for which values of parameter 5l  a multiple stable 

(quasistable) autoperiodic cycle or a strange attractor is formed. 

For the unique identification of the type of the obtained attractors and for 

the determination of their stability, we calculated the complete spectra of 
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Lyapunov indices 1621 ,...,   for chosen points and their sum jj 16
1 . 

The calculation was carried out by Benettin’s algorithm with the 

orthogonalization of the perturbation vectors by the Gram--Schmidt method 

[13]. 

As a specific feature of the calculation of these indices, we mention the 

difficulty to calculate the perturbation vectors represented by 1616  matrices 

on a personal computer. 

Below in Table 1, we give several results of calculations of the complete 

spectrum of Lyapunov indices, as an example. For the purpose of clearness, we 

show only three first indices 31   . The values of 164    and    are 

omitted, since their values are not essential in this case. The numbers are 

rounded to the fifth decimal digit. For the strange attractors, we calculated the 

following indices, by using the data from Table 1. With the use of the Pesin 

theorem [36], we calculated the KS-entropy (Kolmogorov-Sinai entropy) and 

the Lyapunov index of a “horizon of predictability” [37]. The Lyapunov 

dimension of the fractality of strange attractors was found by the Kaplan--Yorke 

formula [38,39]: 

By the calculated indices, we may judge about the difference in the 

geometric structures of the given strange attractors. For 25.05 l , the KS-

entropy takes the largest value 00014.0h . In Fig.4,a, we present the 

projection of the given strange attractor. For comparison, we constructed the 

strange attractors for 26.05 l  (Fig.6,a) and 237.05 l  (Fig.6,b). Their KS-

entropies are, respectively, 0.00008 and 0.00005. The comparison of the plots of 

the given strange attractors is supported by calculations. The trajectory of a 

strange attractor (Fig.4,a) is the most chaotic. It fills uniformly the whole 

projecton plane of the attractor. Two other attractors (Fig.6,a,b) have the own 

relevant regions of attraction of trajectories. The phase space is divided into the 

regions, which are visited by the trajectory more or less. 

 

Fig.6. Projections of the phase portraits of the strange attractors x2  in the 

plane ),( 2 PT : a  –  for 26.05 l  and b – for 237.05 l . 

Table 1. Lyapunov indices, KS-entropy, “horizon of predictability,” and the 

Lyapunov dimension of the fractality of strange attractors calculated for various 

modes 
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5l  Attrac

tor 
1  2  3  h  

mint  
rFD  

0.28 021  .00000 -.00008 -.00010 - - - 

0.264 121  .00000 -.00005 -.00008 - - - 

0.262 221  .00000 -.00005 -.00009 - - - 

0.26 x2  .00008 .00000 -.00008 .00008 12500 4 

0.257 x2  .00007 .00000 -.00008 .00007 14285.7 3.9 

0.256 023   .00000 -.00006 -.00007 - - - 

0.2556 025  . .00000 -.00005 -.00009 - - - 

0.254 x2  .00009 .00000 -.00009 .00009 11111.1 4 

0.252 x2  .00012 .00000 -.00010 .00012 8333.3 4.2 

0.25 x2  .00014 .00000 -.00009 .00014 7142.9 4.6 

0.248 x2  .00009 .00000 -.00007 .00009 11111.1 4.3 

0.247 x2  .00013 .00000 -.00010 .00013 7692.2 4.3 

0.2463 x2  .00008 .00000 -.00011 .00008 12500 3.7 

0.245 023   .00000 -.00011 -.00011 - - - 

0.242 x2  .00010 .00000 -.00008 .00010 10000 4.25 

0.24 x2  .00006 .00000 -.00009 .00006 16666.7 3.7 

0.239 x2  .00006 .00000 -.00010 .00006 16666.7 3.6 

0.238 x2 . .00011 .00000 -.00010 .00011 9090.9 4.1 

0.237 x2  .00005 .00000 -.00008 .00005 20000 3.6 

 

The Lyapunov dimensions of the given strange attractors are changed 

analogously. We have, respectively: 4.6, 4, and 3.6. These values characterize 

generally the fractal dimension of the given attractors. If we separate small 

rectangular area on one of the phase curves in each of the given plots and 

increase them, we will see the geometric structures of the given strange 

attractors on small and large scales. Each arisen curve of the projection of a 

chaotic attractor is a source of formation of new curves. Moreover, the 

geometric regularity of construction of trajectories in the phase space is repeated 

for each strange attractor. In the given case, the best geometric self-similarity 

conserves in the presented strange attractors in the following sequence: Fig.4,a, 

Fig.6,a, and Fig.6,b. 

 

The value of “horizon of predictability” mint  for the modes presented in the 

table is the largest for 237.05 l  (Fig.6,b). The narrow regions of attraction of 

the projection of the strange attractor correspond to the most predictable kinetics 

of the running metabolic process. From all metabolic chaotic modes, this mode 

is the mostly functionally stable for a cell. 
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The above-described study of the process of glycolysis-gluconeogenesis 

with the help of a change of the coefficient of positive feedback 5l  indicates 

that, in the given metabolic process under definite conditions, the autocatalysis 

arises. The value of 5l  determines the activity of gluconeogenesis on the section 

of the transformation of glucose-6-phosphate in glucose. This reaction is 

catalyzed by the enzyme glucose-6-phosphatase. This phosphatase is 

magnesium-dependent. If the magnesium balance is violated or some other 

factors come in play, the rate of this reaction varies. In addition, the absence of 

some coenzymes in a cell affects essentially also the rates of other enzymatic 

reactions, which can lead to the desynchronization of metabolic processes. As a 

result, the autooscillations arise in the metabolic process of glycolysis-

gluconeogenesis. The autooscillations can be autoperiodic with various 

multiplicities or chaotic. Their appearance can influence the kinetics of the 

metabolic process in the whole cell and its physiological state. 

 

Conclusions 
 

With the help of a mathematical model, we have studied the influence of 

gluconeogenesis on the metabolic process of glycolysis.  The metabolic chain of 

glycolysis-gluconeogenesis is considered as a single dissipative system arisen as 

a result of the self-organization, i.e., as a product of the biochemical evolution in 

protobionts. The reasons for the appearance of autocatalysis in it are 

investigated. A phase-parametric diagram of autooscillatory modes depending 

on the activity of gluconeogenesis is constructed. We have determined the 

bifurcations of the doubling of a cycle according to the Feigenbaum scenario 

and have shown that, as a result of the intermittence, the aperiodic modes of 

strange attractors arise. The fractal nature of the calculated cascade of 

bifurcations is demonstrated. The strange attractors arising as a result of the 

formation of a mixing funnel are found. The complete spectra of Lyapunov 

indices for various modes are calculated. For strange attractors, we have 

calculated the KS-entropies, “horizons of predictability,” and the Lyapunov 

dimensions of the fractality of attractors. The structure of a chaos of the given 

attractors and its influence on the stability of the metabolic process, adaptation, 

and functionality of a cell are studied. It is shown that a change of the cyclicity 

in the metabolic process in a cell can be caused by the violation of the 

magnesium balance in it or the absence of some coenzymes. The obtained 

results allow one to study the influence of gluconeogenesis on the self-

organization of the metabolic process in a cell and to find the reasons for a 

change of its physiological state. 
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Abstract. The structured population LPA model describes flour beetle population
dynamics of four stage populations: eggs, larvae, pupae, and adults with cannibalism
between these stages. The case of non-zero cannibalistic rates of adults on eggs and
adults on pupae and no cannibalism of larvae on eggs. This assumption is necessary
to make at least some calculations analytically. It is shown that the behavior can
be continued to the generic model with non-zero cannibalistic rate of larvae on eggs.
In the model exist both supercritical and subcritical strong 1:2 resonance. The bi-
furcation responsible for the change of topological type of the strong 1:2 resonance
is study. This bifurcation is accompanied by the origination of the Chenciner bifur-
cation. The destabilization of the system is caused by two parametric bifurcation is
study together with its biological consequences.

Keywords: Two parametric bifurcation; LPA model; Tribolium model; strong 1:2
resonance; Chenciner bifurcation.

1 Introduction

This article is based on original work of Robert F. Costantino, Ph.D., Jim
Cushing, Ph.D., Brian Dennis, Ph.D., Robert A. Desharnais, Ph.D. and Shan-
delle Henson, Ph.D. about LPA model (Tribolium model). LPA model is a
structured population model that describes flour beetle population dynamics
of four stage populations: eggs, larvae, pupae, adults with cannibalism between
these stages. Main results of the research were published from the year 1995
to nowadays. In published articles authors concentrate mainly on the chaotic
behavior in the system. The nonlinear dynamics of the system associated with
the LPA model is rich, there is a lot of studies that deal with basic analysis of
equilibria and their stability (e.g. Cushing[6], Cushing[4] or Kuang and Cush-
ing[10]), some works are devoted to one-parameter bifurcations (as Dennis et
al.[7]) and its route to chaotic dynamics (e.g. Cushing[6], Constantino et al.[2],
Cushing et al.[5], Cushing et al.[3]). To our best knowledge, there is not any

8thCHAOS Conference Proceedings, 26-29 May 2015, Henri Poicaré Institute,
Paris France

c© 2015 ISAST
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published work about two-parameter bifurcation analysis by far. The origi-
nal analysis of Chenciner bifurcation and subcritical strong 1:2 resonance were
done in our article which is under review in Journal of theoretical biology.

In this article we concentrate on the both supercritical a subcritical strong
resonance 1:2 and the bifurcation responsible for the change of topological type
of the strong 1:2 resonance, which is accompanied with Chenciner bifurcations.
The mathematical background for these bifurcations, their normal forms and
analysis can be found in Kuznetsov[11].

The structured population LPA model consists of three stages: larvae L,
pupae P and adults A, while the population of eggs as a function of the adult
population is not included into the state space. We assume cannibalism between
the stages. We have to point out that we concentrate on LPA model with
non-zero cannibalistic rates of adults on eggs and adults on pupae and no
cannibalism of larvae on eggs. Here this assumption of no cannibalism of larvae
on eggs is used only to make the mathematical calculations more easy and clear
(a lot of them may be done analytically in this case) and this case was also
examined in e.g. Dennis et al.[7].

2 Model description and basic analysis

The dynamic of LPA model is (see e.g. Cushing[6] or Cushing[4]):

L (t+ 1) = bA (t) e−cELL(t)−cEAA(t)

P (t+ 1) = (1− µL)L (t) (1)

A (t+ 1) = P (t) e−cPAA(t) + (1− µA)A (t) ,

where state variables L,P,A represent number of larvae, pupae and adults in
population. Parameter b > 0 represents natality. Parameters µL and µA repre-
sent mortality of larvae and adults. We assume natural inequalities 0 < µL < 1,
0 < µA < 1 to be satisfied. Parameters cEL, cEA, cPA denote cannibalistic
rates. Namely, cEL is the cannibalistic rate of larvae on eggs, cEA is the can-
nibalistic rate of adults on eggs and cPA is the cannibalistic rate of adults on
pupae. We assume cEA ≥ 0, cPA ≥ 0 and cEL ≥ 0, in this article we consider
a special case cEL = 0.

There can be two fixed points of the system (1). The trivial fixed point cor-
responds to extinction of the population, the non-trivial fixed point [L∗, P ∗, A∗]
satisfies formulas

L∗ =
b ln

(
b(1−µL)
µA

)
e
−cEA ln

(
b(1−µL)
µA

)

(cPA + cEA)

P ∗ =
b (1− µL) ln

(
b(1−µL)
µA)

)
e
−cEA ln

(
b(1−µL)
µA

)

(cPA + cEA)
(2)

A∗ =
ln
(
b(1−µL)
µA

)
(cPA + cEA)

.
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We introduce the basic reproduction number R0 = b(1−µL)
µA

. The non-trivial

fixed point exists for R0 > 0, but for R0 ∈ (0, 1) it has no biological meaning.
It can be easily shown that the trivial fixed point is stable for R0 < 1, for
R0 = 1 [L∗, P ∗, A∗] = [0, 0, 0] and is unstable for R0 > 1, while the fixed point
[L∗, P ∗, A∗] is not stable for all values of parameters. In the words of biology,
population will extinct for R0 ≤ 1 and can survive for R0 > 1. In the words of
the bifurcation theory, R0 = 1 is a critical value of the transcritical bifurcation.
The manifold of the transcritical bifurcation is included in b = µA

1−µL of the
parameter space. It’s good to mention that the transcritical bifurcation does
not depend on cannibalistic rates.

The one-parameter bifurcations are already already described in Dennis et
al.[7]. From the presented work it’s clear that the flip bifurcation curve (called
there 2-cycles) and Neimark-Sacker bifurcation curve (called there loops) can
intersect (see the figure 1 in Dennis et al.[7]). In next sections of this paper we
will go on with deeper two-parameter bifurcation analysis. All our results are
in agreement with the results presented in the paper Dennis et al.[7] as well as
with sufficient conditions for stability of the non-trivial fixed point that can be
found in Kuang and Cushing[10].

3 Routes to two-parameter bifurcations

There are two ways how we receive two-parameter local bifurcations of the
fixed point. One of them is that the non-degeneracy conditions of the one-
parameter bifurcation is violated. For example the Neimark-Sacker bifurcation
non-degeneracy condition is violated in the Chenciner critical points. Qualita-
tive changes in dynamics near the Chenciner bifurcation have globally desta-
bilizing effect to the population and this will be discussed in the next separate
section. The other way is that two eigenvalues reach the unit circle. Let’s con-
sider this case now. Obviously, the two-parameter bifurcation manifold covers
the intersection of one-parameter bifurcation manifolds. In our system there
exists thee different one-parameter bifurcation manifolds: transcritical, flip and
Neimark-Sacker bifurcation. There are two types of intersections of the flip and
the Neimark-Sacker bifurcation manifolds:

(i) b = µAe
2
µA

1−µL , cEA = (µA+1)cPA
1−µA and

(ii) b = µAe
2
µA

1−µL , cEA = (2µA−1)cPA
5−2µA

.

The manifold (i) exists for all allowed values of parameters. On the other
hand the manifold (ii) exists for µA >

1
2 only.

In this paper we will focus on manifold (ii). The manifold (ii) corresponds
to the strong 1:2 resonance with associated eigenvalues are −1,−1, 12 .

For arbitrarily fixed parameters µL, µA, cPA, the two-parameter bifurcation
manifolds correspond to points of intersection of one-parameter bifurcation
curves in the two-parameter space cEA versus b. The parameters µL, µA, cPA
are fixed to common values (see e.g. Dennis et al.[8]).
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4 Strong 1:2 resonance in LPA model

Strong 1:2 resonance is a two-parameter bifurcation that lies in the intersection
of flip bifurcation manifold and the Neimark-Sacker bifurcation manifold. In
our model two topological types of the strong 1:2 resonance exists: subcritical
bifurcations of a node or a focus, supercritical bifurcation of a node or a focus.
Then normal form for the supercritical bifurcation is similar to the subcritical,
but the time variable has an opposite sign (see e.g. Kuznetsov[11]). Therefore
the phase portraits of subcritical and supercritical bifurcations has an opposite
stability.
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3 4

5

6

N-S
+

F

F
+

N-S
-

2

P

LCP

N-S
0

1

2

3

Fig. 1. Subcritical strong 1:2 resonance diagram in a two-parameter space. The N-S+

denotes the subcritical branch of the Neimark-Sacker curve, N-S0 denotes the neutral
saddles, F+, F− denote the flip bifurcation curves, LPC denotes the fold bifurcation
of the invariant loop curve, P denotes the saddle separatrix loop curve. The phase
portraits in each domain 1© - 6© are topologically generic. Similarly to the Chenciner
bifurcation, a special heteroclinic structure of orbits appears in the neighbourhood of
LPC and P . For more details see Kuznetsov[11].

Strong 1:2 resonance points lie in the intersection of Neimark-Sacker and flip
manifolds, therefore we expect birth of the limit loop from a fixed point due to
N-S bifurcation and split of the fixed point into a 2-cycle nearby the strong 1:2
resonance point. The figure 1 displays the generic transversal two-parameter
space section of a canonical subcritical strong 1:2 resonance bifurcation man-
ifold at zero with one-parameter N-S and flip manifolds at the horizontal and
vertical axes.

As we move around the strong 1:2 resonance point, the topological structure
of the state space change the way that is presented for the canonical form at
the figure 1.
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5 Chenciner bifurcation in LPA model

Transversal crossing of the Neimark-Sacker bifurcation manifold give rise to an
invariant loop around a fixed point that changes its stability. There are two
topological types of the Neimark-Sacker bifurcation: supercritical and subcrit-
ical. The supercritical type give rise to a stable invariant loop, reversely, the
subcritical bring about an unstable loop. The Chenciner bifurcation is a critical
change of these two types. There exists an accompanying bifurcation manifold
of the Chenciner bifurcation. It is called the fold bifurcation of the invariant
loop or the limit point bifurcation of the invariant loop and it gives a birth to
the stable and unstable invariant loop around.

The Chenciner bifurcation is found strictly on the one branch of Neimark-
Sacker bifurcation near the strong 1:2 resonance. We found even parameter
values for which the Chenciner and strong 1:2 resonance bifurcations collide.
This collision is responsible for change of topological type of strong 1:2 reso-
nance.

6 Change of topological type of strong 1:2 resonance in
LPA model

Both Chenciner bifurcation and subcritical strong 1:2 resonance occur for µA
sufficiently close to 1 in LPA model (remember that the necessary condition for
the strong 1:2 resonance is µA >

1
2 ). For µA sufficiently close to 1

2 there exists
only supercritical strong 1:2 resonance. The critical change of subcritical and
supercritical strong 1:2 resonance gives a birth to the Chenciner bifurcation.
Here we present our original analysis of the phenomenon of changing topological
type of the strong 1:2 resonance. We will describe the structure by equivalence
classes of structurally stable domains with topologically equivalent state spaces
for both topological types of the strong 1:2 resonance. The borders of these
domains are the one-parameter bifurcation.

The transversal two-dimensional section b versus cEA of supercritical strong
1:2 resonance is taken for fixed parameters µL = 0.1613;µA = 0.75; cPA =
0.004348 (which is shown in the picture 2). The dynamic classes I. - VI. are
displayed at the figures 3.

The topological structure of the parameter space near Chenciner bifurca-
tion and subcritical strong 1:2 resonance give rise to a complicated state space
dynamics with coexistence of different types of invariant sets. The transver-
sal two-dimensional section b versus cEA of both two-parameter manifolds
(Chenciner and subcritical strong 1:2 resonance) is taken for fixed parame-
ters µL = 0.1613;µA = 0.96; cPA = 0.004348. Striped and shadowed domains
belong to the basins of attraction corresponding to weak and huge oscillations
respectively. White domains belong to a stable fixed point basins of attrac-
tion. The two different branches of LPC (fold bifurcation of the invariant loop)
collide in a typical V-shape in the cusp point, that is a two-parameter bifurca-
tion point. The cusp point is typically connected with another phenomenon of
hysteresis. The parameter space is divided into nine domains where the state
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separatrix saddle loop 
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I. II.

III.

IV.
V. VI. VI.

0.0007

Fig. 2. Strong 1:2 resonance and Chenciner bifurcation diagram. Bifurcation curves
in parametric space with free parameters cEA and b for fixed µL = 0.1613;µA =
0.75; cPA = 0.004348.

spaces stay topologically equivalent. All dynamic classes I. - IX. are displayed
at the figures 6. We omit the stripe underneath the transcritical bifurcation
curve, where the population is dying out. Here the only fixed point is the trivial
equilibrium that is globally stable and so the population extincts. For values
of b above the transcritical bifurcation curve, the trivial equilibrium is unstable
and the orbits can tend to another attractors.

For parameter values near the change of topological type of strong 1:2 reso-
nance the system is locally topologically equivalent to the system displayed in
the picture 4. The global behavior is shown in the picture 5.
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(a) I: stable invariant loop, e.g. cEA =
0.0013, b = 6
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(b) II: stable fixed point, e.g. cEA =
0.002, b = 8
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(c) III: stable fixed point, stable invari-
ant loop, e.g. cEA = 0.0014, b = 6
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(d) IV: stable 2-cycle, stable invariant
loop, e.g. cEA = 0.0015, b = 9.2
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(e) V: two stable symmetric coupled
loops, stable invariant loop, e.g. cEA =
0.00154, b = 9.6

10 000

1 0000

P

A

(f) VI: two stable invariant loops, e.g.
cEA = 0.00172, b = 10.05

Fig. 3. Phase portraits near the strong resonance 1:2 and Chenciner bifurcation in
LPA model with parameters µL = 0.1613;µA = 0.96; cPA = 0.004348 and free pa-
rameters cEA a b. In the left column, there are schematic phase portrait for each
domain according to the figure 2. In the right column, there are computed stable sets
at adults and pupae state variables.
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Fig. 4. Strong 1:2 resonance and Chenciner bifurcation diagram. Bifurcation curves
in parametric space with free parameters cEA and b for fixed µL = 0.1613;µA =
0.96; cPA = 0.004348.
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Fig. 5. Strong 1:2 resonance and Chenciner bifurcation diagram. Bifurcation curves
in parametric space with free parameters cEA and b for fixed µL = 0.1613;µA =
0.87; cPA = 0.004348.
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(a) I: stable invariant loop, e.g. cEA =
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(b) II: stable fixed point, e.g. cEA =
0.002, b = 8
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(c) III: stable fixed point, stable invari-
ant loop, e.g. cEA = 0.0014, b = 6
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(d) IV: stable 2-cycle, stable invariant
loop, e.g. cEA = 0.0015, b = 9.2
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(e) V: two stable symmetric coupled
loops, stable invariant loop, e.g. cEA =
0.00154, b = 9.6
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(f) VI: two stable invariant loops, e.g.
cEA = 0.00172, b = 10.05
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(g) VII: stable 2-cycle, e.g. cEA =
0.002, b = 10

2 000

1 0000

P

A

(h) VIII: stable symmetric coupled
loops, e.g. cEA = 0.00185, b = 10.2
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(i) IX: stable invariant loop, e.g.
cEA = 0.0016, b = 9.9

Fig. 6. Phase portraits near the strong resonance 1:2 and Chenciner bifurcation in
LPA model with parameters µL = 0.1613;µA = 0.96; cPA = 0.004348 and free pa-
rameters cEA a b. In the left column, there are schematic phase portrait for each
domain according to the figure 4. In the right column, there are computed stable sets
at adults and pupae state variables.
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In our opinion, this complicated structure near the strong resonance 1:2
and the Chenciner bifurcation in LPA model has a very troublesome conse-
quence, since in this quite a big area of parameters it’s very hard to compare
the simulated and real data. In real experiments, the natality b and the can-
nibalistic rate cEA as parameters are not strict constants and they can vary
during time due to temperature or attainability of other sources of food and
other random events, there can be some measure errors also. The real data and
simulations may become totally different even in the case of a proper model
usage. Even the simulated data may be considered to be chaotic or random by
mistake. Imagine parameters b and cEA that vary slowly in their parameter
domain near the described phenomenon. The simulated data look as chaotic or
random, since they are very sensitive to the parameter changes, see the figure
7.

0 300

8

13

time

b

300

0.001

0.002

time

c

0

EA

(a) Parameter changes

300

0

5000

time

a
d
u
lt
s

0

(b) ”Chaos-like” simulated time series.

Fig. 7. Simulated time series with slowly varying parameters b and cEA for parameters
µL = 0.1613;µA = 0.96; cPA = 0.004348.

7 Conclusion

We presented a two-parameter bifurcation analysis of LPA model (for parame-
ters cEA, b and µA) with zero cPA cannibalistic rate to show complex dynamics
in the model of the tribolium population. Here we mention that we did not con-
cerned to the period doubling and chaos, since there is a lot of papers devoted
to this topic, but we focused on another bifurcations that were overlooked so
far and their destabilization effects were not mentioned yet.
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We found strong 1:2 resonance of node or a focus in LPA model and we
explained its topological structure. We explained the importance of the bi-
furcation type of the strong 1:2 resonance bifurcation, because both of the
types (subcritical and supercritical) are present. The topological change of the
strong 1:2 resonance gives a birth to the Chenciner bifurcation. We expressed
the Chenciner bifurcation.

As the most important part of our paper we consider to be the finding of
connection between the Chenciner bifurcation and strong 1:2 resonance and
setting of the complete two-parameter bifurcation diagram of these manifolds
connection (together with the nearby non-local bifurcation manifolds).
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