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Abstract. The evolution of research in the field of brain study and function has had a series of stages during the 20th 

century, starting with the age of great anatomical discoveries, passing through phrenology and continuing with the 

behaviourist and new cognitivist stages. Accordingly, in the last decades neurosciences attempted to encompass the 
phenomenology of psychological reality within an interdisciplinary approach. This wide interdisciplinary necessity 

comes from the need to apply the principles of complex systems to brain activityas well. From such perspective, it is 

necessary to overcome the paradigm according to which psychological activityis an exclusive product of neuronal 

activity. The detailed understanding of the way in which the main types of neurons function, will not help us entirely 

understand the mental. The theory of complex systems comes with totally different assumptions. In the complex systems 

generated by a great number of elements, the properties of the systems cannot be found in the sum of the properties of 

constitutive elements. The emergence property is the one that creates a link between the multitude of components and 

the properties of the complex system. As a result, even if we describe all the properties of all neurons, we will not be 
closer to understanding the mental. 

In this paper we shall demonstrate that the psychological system has all the necessary elements in order to 

associate it with a complex system. That is the reason why we shall bring anatomical, neurophysiological and 

pathophysiological arguments, as well as data from the latest research in neurosciences using functional MRI. We shall 
also analyze the theories from the last century concerning the structure of the psyche in which we find elements that 

support a new theory of the mental from the perspective of the complex system theory.  

Memorizing takes place at the interface of the spectral field with the contribution of certain information 

patterns as well as new information from the complex space which represents the potential, unstructured, non-
differentiable, unpredictable parts. Such hypothesis is possible using a new vision on information according to which 

information is made up of energy patterns included in a topological dynamics.  

We shall conclude that the complex space (from mathematical view point) is a real physical space and not an 
abstract one and that the brain dynamics between the complex space and the real one represents what we call the psyche 

and consists of the information processing in neural networks. 

Keywords: Complex system theory; Brain; Fractals; Chaos; Topology; Complex space.  

 

 

 

 

1 Introduction 

The aim of this paper is to apply the theory of complex systems in order to sustain the hypothesis of the 

complex space as a physical space. Thus, the dynamics of the complex systems and especially that of the 

complex and of the real space (from the inner part of the systems) may lead to new hypotheses and theories 

about the structure of psyche and about its functioning. 

The whole collection of the analyzers manages the transfer of information from its wave form into 

corpuscular form. This allows for the information processing to be accomplished both in a corpuscular, 

material network, the neuronal network, but also in a spectral network, of the coherent field associated to 

the neuronal network. Through the waves of the spectral field the dynamical link to the complex space is 

realized, situation which allows for the occurrence of the superior psychic processes, which are specific to 

the human being, and which need multidimensional development in order to be formed, a situation which is 

only allowed by the complex space. The mental reality represents thus the permanent dynamics between the 

neuronal (material) network, the associated spectral field (the fractal potential) and the infinite dimensional 

complex space.   

The dynamics between the complex and the real space (the neuronal network) through the spectral field 

(wave field represented by the totality of the waves associated to corpuscles within the neuronal network) 

lies at the basis of the psychological system functioning. This paradigm can generate new hypotheses which 

should explain the mysteries of the psychological life, just as the old ”mind-body” duality. The new topical 
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structure of the psychism associated with the theory of complexity and simplicity applied on fractal 

geometry through which reality is structured allows for the brain to have access to the knowledge of the 

fractal in its wholeness (when the mathematical model is reduced as a number of informational bytes, or a 

symbol, to put it different). Through the analysis and synthesis ability, it can conceptualize the fractal at any 

point and at any scale, but with the price of extensive informational data. 

 

 

 

2 Complex systems from the perspective of modern physics 

 

 

Complex systems include many components which mutually interact and which have the ability to generate 

a new macroscopic collective behaviour modality, whose result is the spontaneous formation of distinct 

temporal, spatial and functional structures. Such examples of systems can be widely frequent and can be 

correlated with the climate, the coherent issuance of light by lasers, chemical systems of reaction-diffusion, 

biological cell networks, the statistics and prediction of earthquakes, the human brain etc. 

A complex system has a behaviour of an emergent type, which means that the modality in which 

the system manifests itself cannot be deducted from the behaviour of its components. Nevertheless, the 

system’s behaviour is contained in the behaviour of the components, if they are studied in the context in 

which they find themselves. From a qualitative viewpoint, in order to understand the behaviour of a 

complex system, we must understand both the behaviour of its components as well as the way in which they 

interact in order to generate the collective action. Complex systems are difficult to study because we cannot 

describe the „whole” without describing each component and because every component must be described 

through its relation with the other components. 

 From a quantitative viewpoint, the ”complexity” of a system represents the information quantity 

necessary to describe it and it depends on the details necessary to describe the respective system. In other 

words, if we have a system with several possible states and we want to determine its state precisely, then the 

number of binary numbers (bytes) which is necessary to determine the respective state is dependent on the 

number of possible states. The positions and the impulses of the particles are real numbers whose 

specification may need an infinite number of bytes. Nevertheless, the information necessary for stating the 

microstate of a system is not infinite. This fact is due to quantum physics, which attributes a unique value to 

entropy and, thus, also to the information necessary to express a state of the system. First of all, the 

microscopic states are undiscernable if their positions and impulses do not differ through a discrete quantity 

given by Planck’s constant. Secondly, quantum physics indicates the fact that particles (such as nuclei or 

atoms) found in the fundamental state are uniquely determined by this state and cannot be differed from 

each other. There is no additional information which is necessary in specifying their internal structure. 

Under normal conditions, all nuclei are, without exception, in the state of minimum energy. The relationship 

between information and entropy consists in the fact that the entropy of a physical system is maximum 

when it is in equilibrium, thus we can infer that that the most complex system is in equilibrium state. This 

assertion is in contradiction with the perception of complex systems. Systems in a state of equilibrium do 

not have a spatial structure and do not change with the lapse of time. Complex systems have a substantial 

internal structure which is permanently modified as time passes. 

Another challenge in the case of complex systems is the difficulty of predicting their behaviour 

even when the initial conditions are known, because the strength of interactions among the components of 

the systems completely screen the specific individual properties. It is not yet exactly known if this type of 

system respects some strict laws similar to the ones of the classical systems, nevertheless the development 

of some methods which allow for determining some of the dynamic properties of complex systems came to 

be possible. We should focus on representing the an-organization of complex systems which are manifested 

upon the passage from ”complicated” to ”complex” and which is based on the new paradigm of the passage 

from the classical space of the trajectories to more abstract spaces of the trajectories associated with the 

natural invariance of systems, which is characteristic to the dynamics of complex systems, which represent 

a separate class of entities with non-linear behaviour ([15]).  

A complex system cannot be analyzed in principle by fragmentation into parts, because it is made 

up of elements which make sense only in within the privacy of the system. It has an unpredictable evolution, 

it can suffer sudden transformations which can be as big as possible, without obvious external causes; it 

manifests different aspects, depending on the analysis scale. It is principially different from a complicated 

system because the difficulty of prediction is not to be found in the inability of the observer to consider all 

the variables which would influence its dynamics, but in the sensitivity of the system to initial conditions 

(initial conditions which are slightly different can lead to extremely different types of evolution), to which 

the effect of an auto-organization process is to be added (process determined by the very interactions 
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between the component subsystems and which has, as an effect, the spontaneous emergence – on principle 

unpredictable – of some order relations). 

A complex system can be shaped and studied in an equivalent topological space, called the phase 

space, in which specific notions can be defined: attractors and repulsors, attraction basin, trajectories, limit 

cycles, etc. In this context, one can talk about functional modelling, which is a lot more abstract and 

’’unleashed’’ of the constraints imposed by a concrete ’’anatomy’’ and ’’physiology’’. While classical 

modelling starts by approximating what ’’is seen’’, functional modelling involves the identification of an 

equivalent dynamical system, whose behaviour can be analyzed through specific methods, with an 

extremely hightened generalization degree.  

In systems composed of a great number of elements, the properties of the systems cannot be found 

in the sum of the properties of constituent elements. The emergence property is the one which creates a 

connection between the multitude of components and the properties of the complex system. 

 

 

 

3. An approach to psychism from the perspective of complex systems theory 

 

In complex systems structure there is a potential part with chaotic aspect and a structured, causal, 

Newtonian part, as well as different intermediate phases. From here there results a certain uncertainty in the 

structure of reality. Incertitude principle of Heisenberg [16] can also be found in Gabor [14] in 

communication theory (the information quantum); the non-linear, potential and apparently chaotic part 

corresponds to the unconscious, the structured causal part corresponds to the conscious and the intermediate 

phases, as well as the structures which process both the information from reality and from the unconscious 

are represented by what Freud was calling SuperEgo. This is not only an instance of censorship of impulses 

and wishes with only a moral significance, but we find there the processing structures of the representation 

of physical reality, such as tri-dimensional vision, the synesthesia, that is the processing which structures 

the imaginary reality according to the capacity of our analyzers to perceive reality. 

In complex systems, the chaotic part is structured through attractors according to the constraints of 

the system (for instance, the way some physiological needs generate, during the dream, some dream 

structure (thirst, hunger, sexual abstinence etc.)). These mechanisms are also highlighted in daydreaming, 

when the fantasies are much more adapted to the conditions of reality. Thus, there is no longer the breakage 

of physical laws and of causality, but only a modification of these according to subject’s wish-aspiration 

tendency. During the wakefulness state there is a dynamics with the chaotic part, potentially unconscious in 

the background and which allows accessing the information, memories, the logical links (for example, a 

speech). Recent studies linked to the role of the unconscious when awake and monitoring the cognitive and 

motric activity demonstrates that there is a permanent involvement from the unconscious through different 

ground reactions (such as reactions of defense from a potential danger or the involvement of a 

psychotrauma through the unconscious in the current activity (such as blind seeing, missed facts, slips of 

memory, compulsive-neurotic behaviours)). 

The whole cosmologic and biological evolution is resumed to a dynamical link between chance and 

necessity, between diversity (chance mutation) and selection, between chaos and structuring, as in the 

human body (permanent renewal of cells and tissues, as well as the dynamics between inflammation 

(disorder) and structuring). Thus, old age, disease, epilepsy, rhythm troubles can be interpreted as losses of 

the fractal character, through the reduction of the chaotic character. 
Information represents codified energy which is expressed under the form of patterns, structure  

patterns, initiated by attractors which activate in the phase space, between the chaotic and the structured 

part. The information is stored in the spectral space and expresses the patterns in the structure of atoms, 

molecules, macromolecules and cells. It has a potential existence which is expressed through substance and 

energy in certain conditions (of local coherence). 

The virtual projection from optics or from projective geometry can be associated, so that when the 

whole physical (Newtonian) reality to which we have access through our sense organs, through perception, 

represents a projection in the imaginary space. We could thus build a mathematical model of this space 

using imaginary numbers, complex (imaginary) geometry, imaginary time, topology etc. 

A virtual, Newtonian reality as projection of physical reality is completed by the unstructured, a-

causal, apparently chaotic component: the imagination, the dream, the failed acts, the subliminal 

mechanisms, the unconscious etc., which can be associated with the a-causal, potential, unstructured and 

non-differentiable component of complex systems, the source of inspiration, of creation and of access to 

non-euclidean realities to holospace. These potentialities can become conscious through patterns (see the 

archetypes and the collective unconscious of Jung [17]) and they can be found in logical, algorithmic, 

organized and systematic form in everything that is creation (from making a speech, conversation, 
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improvisation, to creating new musical pieces, new artistic work, new scientific work). The chaotic, 

unpredictable part does not only contain the Newtonian reality to which we all have access, but much more, 

maybe even the structure of the whole Universe, at potential informational level. The brain has access to the 

implicit part (the implicit reality of Bohm [9]), if we associate this part to what the classics called 

unconscious. From here derives the capacity for mathematical reasoning, for physics, for reasoning reality 

in n-dimensional spaces, a-temporal realities, a-spatial realities. 

The fractal geometry of reality confirms the older intuitions connected to the structuring of the 

Universe, which would have the same functioning and forming principles, irrespective of the scale. The 

physics of black holes and the astrophysics of the last years, as well as the theory of Big Bang, have brought 

arguments to support the idea that the fundamental principles of quantum mechanics can be found in the 

structure of the Universe. 

By continuing to look for elements in order to sustain the unity of the Universe, it is necessary to 

analyze the theory of complex systems and, also connected to it, (as a physical approach), the complex 

functions or the complex space from a mathematical perspective. The complex analysis is absolutely 

necessary in describing the spinning movement, including that of the magnetic vector from the 

electromagnetic wave, as well as in the fluid dynamics. 

Complex space could then describe a physical reality which integrates newtonian reality, as well as 

quantum mechanics or cosmology. For instance, Yang [21] considers the complex space as a physical 

entity, in which one can describe an entire variety of phenomena, among which one can find classical 

mechanics or relativistic mechanics. 

The unpredictable, a-causal, unstructured part, which is potential in the complex systems structure, 

can be found in the structure of the spectral field associated to the corpuscle from the structured, causal, 

newtonian, predictable part. This spectral component contains, through the imaginary component of the 

wave formula which describes the phase (the dynamics of the magnetic vector), the access towards the 

complex spaces, where the whole information is to be found, as it is structured in the topological geometry 

of the energy configurations. The infinite dimensional possibility of these complex spaces, just as the 

infinite diversity of topological transformation within these spaces, together with their scale invariance 

allows for the estimation that in this complex space which is dimensionally infinite we can have access to 

all the information in the Universe. 

Thus several theories are gathered together in a unitary approach: the theory of complex systems, 

which comes from a physical perspective in the physics of the fluids, the fractal theory, the theory of chaos 

and topology, with the complex analysis and the complex functions which use complex numbers with their 

imaginary component and which describe, in physics, the imaginary, unpredictable, potential, non-

differentiable part, which can be found in the theory of complex systems. The semantic confusion, the 

apparent different significance of the word complex within the two theories or approaches is proved to be, 

on the contrary, a coincidence which is not random, but is connected to the synchronicities of Jung. 

As in Mathematics the information can be stored or processed by algebrical equations or by 

trigonometrical functions, also in the physical reality information can be structured either algebrically or 

geometrically. The Fourier series and the Fourier transform achieve this through the interface between a 

spatial and temporal reality and a spectral reality. Because spectral reality is a-temporal, a-spatial, the 

Fourier transform and the reverse of the Fourier transform make this switch between the algebrical 

description and the geometrical one. The mathematical model for complex spaces includes the existence of 

topological transformations in an infinite dimensional space. As a result, the reality of the wave formula as 

being a-temporal, a-spatial, it represents an interface between the Newtonian reality and the complex 

’’reality”, that of complex spaces (Hilbert space). 

The dynamics between the complex space and the physical one is an expression of the 

mathematical description of reality by algebrical or trigonometrical equations. The potentiality can be 

encompassed, codified in trigonometrical equations and it expresses the information in an a-spatial, a-

temporal reality, which is specific to the wave and is algebrically transformed into a geometrical form when 

a spatio-temporal reality emerges, as it happens when the wave is collapsed into a corpuscle. In both cases, 

topological transformations are possible (and in an a-spatial, a-temporal situation which is trigonometrically 

expressed, but also in a spatial and temporal situation which is algebrically and geometrically expressed).  

The discontinuity of reality which is described by Planck as an energy quanta, by Gabor in 

information quanta, the non-differentiability which is specific to fractal dynamics, just as the property of 

complex systems together with deterministic chaos, all are due to a continuous interference between the 

physical reality and the complex one, by means of spectral field. Depending on the local field conditions, of 

force field and of scale structure, under the action of atractors, the information (patterns of qualitative 

energy, diversified through topological transformations) is taken over in order to structure the quantum or 

cosmic Euclidean space. 
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4. The imaginary space as a physical and mathematical reality, from a psychological perspective 

 

Complex systems can be identified at different scales, a method which can be applied also to the imaginary 

space. In the imaginary space, time has a spatial dimension property, which allows for movement in both senses 

of its axis. The construction of this imaginary space is made by the same methods as the ones used for the space 

of physical reality, although it has additionally elements which elude to it, that is the implicit reality of Bohm, 

such as, for example, n-dimensional spaces, fractal developments beyond what we can find in physical reality, 

plus mechanisms specific to deterministic chaos and generally speaking to complex systems. 

The complex analysis is essential for the description of physical reality, of spectral, wave, field 

phenomena, which together with the corpuscular ones contribute to building the physical reality. The 

electric field corresponds to the real part, whereas the magnetic field corresponds to the imaginary 

component. The magnetic vector has a rotation movement around its own axis, movement which is 

described by the complex systems. At a 90-degree rotation (multiplication by i ), an inversion of the 

components of the complex number occurs, event which in physics involves a Wick rotation. By 

multiplication with i , frequency and phase are mutually modulated, and their correlation is achieved by 

means of information. 

Complex analysis describes physical phenomena which take into account the spinning movement. This 

phenomenon is present first of all in the electromagnetic waves and thus it can be found in many theoretically 

and technologically described situations. If we accept that there exists, in the real world and also in the 

functioning of the brain a spectral, wave component, then the description of the phenomena at this level requires 

the use, in mathematical modelling, of complex numbers with their imaginary part, of complex plans and so of 

complex spaces. Thus, the imaginary space, which encompasses the space of psychic activity, can be described 

by complex analysis, so that the syntagm ’’imaginary space” is not only a metaphor, but a real physical space. 

All these are associated in the description of different physical realities and phenomena, which are, in 

one way or another, connected to the spectral reality of the field and wave associated to every particle. 

Surprising as that may sound, these complex spaces coexist with our Newtonian reality, as they are present in 

our every-day reality, as we are delved into a spectral, electromagnetic reality, to which we are closely-linked. 

As a consequence, a reality co-existing with us is the a-spatial and a-temporal reality, described by the wave 

formula and which is involved in the phenomenon of visual perception, in which the undertaking of spatial and 

temporal information is achieved by light through the modulation of its frequency, a phenomenon which is 

described by the Fourier transform, while the stimulation of the retina involves the collapse of the wave formula 

and the emergence of corpuscles which stimulate cells in the retina through the reverse of the Fourier transform. 

As a result, all we look at and all we see, in order for it to be seen, passes through an a-temporal and a-spatial 

phase, within the time lapse which is necessary for light to reach us, coming from that object. This lapse can be 

millions of light years for cosmic objects, or infinitely small second fractions when we look at our friends, our 

house or our garden. 

The imaginary time represents only one of the dimensions of the imaginary space, the other ones 

being spatial dimensions which can be described as imaginary dimensions of the complex space. At small 

distances, at speeds within our Newtonian space, time can be seen and represented as a size which measures 

the succession of some events or the interval between them. If we use the equations of the relativity theory 

(space-time continuum) for very long distances (the distance Sun-Earth and the light velocity), then the time 

resulted from these formulas is described by a complex number, with a significance of imaginary time. This 

would lead to the conclusion that practically speaking, we as people use only this imaginary space, or, to put 

it differently, our representations of time actually use the imaginary time in Einstein’s relativity theory. This 

imaginary time, or the time from the imaginary space is a time which, as compared to the Newtonian reality, 

does not have a single sense. In the imaginary space, time has the characteristics of a spatial dimension, as it 

can be run in both senses, in the past and in the present. 

If in the space of physical reality, time is run in only one sense, because of the dynamics towards an 

increase in entropy triggered by the Big Bang, in the imaginary space it seems that it makes an enclave, a 

break from the cosmic dynamics of the Universe expansion, as long as evidently, in our brain we can evolve 

in living and updating the past, but also construct variants of the future. Without this possibility, neither 

memory nor the conscious action oriented towards the aim would exist, there would not be psychological 

life as we know it, as the neurological studies have demonstrated that without memory neither new 

experiences could be assimilated which are based on old ones, nor coherent and focused actions could be 

achieved, if they need the experience of the past. 

For almost a century it is known about the existence, on the cortex, of projections of the sensory 

and motric structure of the body of that which is classically named sensitive and motric humunculus. 

Research on psychopathological situations such as the situation of the syndrome of the phantom limb, bring 

arguments on a spatial projection at brain level of every segment in the body. The fact that this cerebral 
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representation of the segment remains functional for a longer or shorter period of time demonstrates both 

the existence and the persistence of such representations. 

The mirror box technique applied by Ramachandran [18] for the persistent, painful and spasmodic 

phantom limb cases shows that the representations of the segments of the body have a spatial character, as 

long as they can be influenced by the illusion of topological modifications, outside the imaginary space. The 

fact that the cerebral image of the lost limb segment persists away from the normal period after an 

amputation shows that some circular reverberant circuits maintained by remembrances marked by pain, 

contraction and suffering, are involved in the persistence of this structure which is spatially cerebral. These 

experimental facts lead to the conclusion that in the imaginary space there is a projection of the spatial 

structure of our body, to which it participates along with sensoriality and motricity, with the sensory 

organites and the corresponding neuromotric plaque and the affective, positive or negative processes. In 

fact, Davidson [13] demonstrated in his research that affection is involved in all the cognitive processes, 

including in the projection of the body and of the whole reality, at the level of imaginary space.  

On the other hand, at an overview, the phenomena of suggestion and suggestibility 

from the modern theories point of view are involved in the Ramachandran [18] technique of improving the 

residual or complicated phantom limb symptom. A whole series of studies have demonstrated that we are 

willing to accept and to believe, as long as there is a motivation, be it affective-emotional or even logical, 

rational. In order to be able to reconstruct the action of a book or film, of a speech or of a lecture, it is 

necessary that, in our brain, we have a virtual reality, an imaginary one, which describes what in fact we call 

imaginary space. In the last decade the so-called mirror neurons have been highlighted and they recently 

acquired scientific validity through research with functional RMN and which brought objective proof for the 

existence of a virtual or imaginary projection of the Newtonian geometric space in which we live. 

Excitation of these neurons in the motric, sensitive or sensorial area to the actions and the behaviour of the 

others comes to sustain the previous so-called theory of the mind, which was trying to explain our ability of 

intuition, of perceiving the feelings and thoughts of the other. Mirror neurons come as objective arguments 

which sustain this theory, which was explained previously by psychologists as being a result of relationships 

with the others, communication and our specificity as social beings. They also represent a proof of the 

existence of spatial and temporal structures in our imaginary. 

 

 

 
5. An explanation of psychism from the new paradigms perspective 

 

Complex space, which is considered to be a purely mathematical, imaginary, abstract one, can actually be a 

physical space (without which quantum physics would not have any coherence any more) and which 

includes the real space which it generates and maintains through permanent dynamics. This change of 

paradigm is also important for macro reality from our Newtonian level and even cosmical, through the 

theory of scale relativity and, just as we described before, by interfering in the dynamics of complex 

systems through the scale invariance of fractality and topology. Thus, the notion of ’’complex” in the 

complex systems theory conceived in order to describe the systems with an indefinitely high number of 

elements in order to distinguish them from the complicated ones gains a significance which overlaps the one 

in the mathematics of the complex space. 

Tegmark [19] maintains that mathematical structures and the relationships between them lie at the 

basis of reality. The elementary particles themselves are mathematical structures which can be perfectly 

described only by mathematical properties; all these form something that we generically call information. 

Another argument of the physical character of the complex space is the description of the wave function and 

of the wave function equation, which impose the existence of the Hilbert space. This abstract space allows 

for the inclusion of both the real part of the wave but also the imaginary, complex part of the wave 

(Schrödinger). This space requires the inclusion of both the real part of the wave, but also of the imaginary, 

complex part. As a result, the Hilbert space has properties of the complex space (the infinite dimensional 

character), the description using complex analysis, but also the real part which includes the wave amplitude 

and the potential capacity of becoming real in the collapse of the wave formula.  

Another element which belongs to the real part is the space-time continum, which we find in the 

Minkowski space, but which we also find in the Hilbert space concentrated in the expression of 

characterizing the wave as being ’’a-spatial”, ’’a-temporal”. In our view, the Hilbert space is an interface 

between the real and the complex space and a proof that the complex space is a physical space connected 

through a permanent dynamics with the real space, as long as we accept a wave as being real, with its wave 

function and equation. 

The very notion of complexity needs also another approach. From the general theory of systems 

from the 60s conceived by Bertalanffy, in the last decades, the theory of complex systems or the complexity 

160



 

 

theory are more and more mentioned, as they include a whole series of theories which imposed in the last 

decades (the chaos theory, the fractal theory or fractal geometry with non-linear dynamics, non-

differentiability and topology).  

All these theories are trying to describe as close to reality as possible the intimacy of the systems 

functioning with a huge number of elements, which interacts with other systems (dissipative systems) and 

which in fact can be found anywhere in the physical reality. These systems have a series of properties, 

among which emergence is a property with special implications, but also the dynamic structure they 

presuppose, generally characterized by a structural, causal, Newtonian, predictable component and another 

impredictable, a-causal, non-structured, potential component. Physical experiments (the ones in the plasma 

tubes but also in the dynamics of fluids, etc.) highlighted these components as well as the dynamics between 

them, which presuppose a tendency of auto-structuring through the attractors, within a space called the 

phase space. There is still an important question related to the source of information which allows for the 

auto-structuring and thus the dynamics between the potential and the predictable component. The current 

explanation for the source of this information is that it comes from the privacy of the system. However, in 

the structure of the system (if we remain at the more simple model of the plasma tube), there are only 

particles and their attached wave component. If we consider that the information contained by the particle 

comes from the coherent wave, the obvious question is where the information at wave level comes from. 

Currently, in every day life, in the information technology era, the information is transmitted via waves, by 

means of their analogic transformation into waves which modulate a carrying wave. Modulation can be t he 

amplitude modulation (little used because it is too easily affected by noise, but anyway the amplitude is in 

inverse ratio to frequency), the generally-used way is that of angle modulation, which means modulation of 

either the frequency, or of the phase, which is transmitted in the end to the modulation of the magnetic 

vector angle. The phase is recognized as being an imaginary, complex component of the wave formula. The 

movement of the magnetic vector, described by the complex equations, generate a complex plan, which 

connects the wave to the complex space, which allows for the storage of information in the topological 

modifications from this infinite dimensional space. To put it different, the information in the complex 

systems is to be found in the complex space, which renders the potentiality, non-differentiability, a-causality 

characteristics from the description of complex systems ([1-7], [11], [12], [14]). Coming back to the plasma 

tubes, the intimacy of the system from where the information comes is represented by the coherent waves 

phase with every particle (wave corresponding to every particle from the wave-particle duality), which 

represents the connection to the complex space, where it can be found at the potential mode, as information, 

the whole physical reality. According to the constraints of the system from the complex space, through the 

wave phase, the information which reaches the particle that generates the auto-structuring pattern is 

undertaken. 

The topic of the dynamics between the two components (the structured, causal, differentiable, 

Newtonian component and the potential, unstructured, a-causal component) is to be found in the psycho-

analytic conception over the psychological system (see also [10]), which is then repeated under different 

forms in the theories of psychism, namely the unconscious (id), subconscious (superego) and the conscious 

(ego). The unconscious represents the unstructured, a-causal, potential, unpredictable part which we can 

highlight in what we can call dreams, failed acts, lapses (as Freud himself describes), and the structured, 

causal, differentiable and Newtonian part is what was called conscious. In the psycho-analytic view, the 

super-ego is considered to be partially conscious, partially unconscious and it contains (according to Freud) 

the totality of the norms, rules, social laws, moral laws, which are constructed in the psychological space 

through education, as they represent elements with a value of law, faith, the nucleus of convictions through 

which the environment information is processed. From the complexity theory viewpoint, this superego 

could be associated to the phase space, where these convictions and values help with processing the 

information in conscious mental structures. Compared to Freudian theory, the theory of complexity would 

suppose that, at this level (superego) there are not only the moral and social values and norms, but also the 

processing patterns of the Newtonian laws connected to space, time, movement, just as the other rational 

precepts which science offered to the modern man in order to help one adapt to the environment.  

The analyzers achieve, on principle, the transformation of wave information in the corpuscle, thus 

generating the tri-dimensional and spatial-temporal vision of reality, but the processing, at brain level, is 

also spectrally-made (de Valois [20]). 

From a physical viewpoint, at any scale, there is a differentiable hidro-dynamic description 

mathematically modelled through hydro-dynamic equations, but also a stochastic, potential description, 

expressed through the equation of the wave formula. If we accept that the Hilbert space presents both the 

properties of the Minkowski space as well as those of the Euclidean one, but also of the infinite dimensional 

complex space, then it results that the Hilbert space represents the interface between the real space with all 

its descriptions and the complex space with its whole potentiality. Thus, the whole psychological life can be 

considered to be developed in this Hilbertian space which allows also for a Minkowskian perspective, a 
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spatio-temporal continuum, under the form of fractal space-time, where the trigonometrically-stored 

information is a-spatial and a-temporal, thus creating the conditions of a stable memory, but also a tri-

dimensional spatial and temporal perspective which represents sections in time and space of this continuum.  

This material component of the neuronal network allows for the processing of information but for superior 

psychological processes, the processing is made in the complex space, so that the synthesis, generalization, 

abstractization and conceptualization suppose a multi-dimensional perspective, which can be achieved only 

in the complex, infinite dimensional space. 

What we find, at quantum level, described by the Hilbert space, the real component, along with the 

fractal space-time and the complex component, at the level of the brain the interface of the neuronal 

network, the spectral field and the complex space, at a cosmic level, the Euclidean and Minkowskian 

spaces, together with the Riemannian one, connected to the complex space which from now on will be 

called matter and black energy. This hypothesis follows the principles of fractal development, which 

remains scale invariant. 

On the other hand, as specialists in neurosciences sustain, just as the anthropologists, a radical 

qualitative leap for the development of the human species was the emergence of mirror neurons. They are 

present in other mammals, too, but it seems that in the case of human beings, through a genetic 

modification, they reached a degree of numerical development or maybe qualitative development which 

made this leap possible; it was expressed through a radical development of the social life, but which most of 

all permitted the transmission of information, abilities and behaviours, within the same generation and 

which, being transmitted to future generations, gradually constituted what we call today culture. The mirror-

neurons which were highlighted about 20 years ago were recognized as being present at humans in the last 

10 years, with the help of functional MRN. The study of these neurons is still ongoing, but just as the wave-

corpuscle duality of one century ago, mirror neurons also start to raise some epistemologic problems. They 

allow for a connection between the subjects in a relationship, a connection which explains, for example, 

’’the old theory of the mind”, built by the psychologists a long time ago in order to explain the empathy, 

compassion and intuition phenomena of the feelings of others. There remains a great problem, connected to 

the physical way in which mirror neurons are connected, in one person or another, especially because the 

last researches highlight the fact that the involvement of the visual sense and of other senses is not 

necessary, as long as the stimulation of mirror neurons with an individual is achieved by the intentionality 

of the action of the other individual.  It may seem that a form of communication is involved, discussed until 

now more in the sphere of parapsychology, but which could find a scientific explanation in the dynamics of 

the psychological system between the neuronal network, the spectral field (the fractal potential) and the 

complex space.  

The processing of information is made for the information supplied by the analyzers in a 

differentiable, causal, algorithmical form at the level of the neuronal network, whereas outside the 

analyzers, within a complementary network found in the complex space, mediated by the fractal potential 

from the spectral field of neurons. As a result, the qualitative leap represented by the emergence of culture 

would not be generated only by the emergence of mirror neurons which are present also with other animals, 

but by the development of genetic patterns which allowed for a better connection between the two networks. 

Not randomly, the appearance of articulate speech is associated with this qualitative leap in the development 

of humans. The speech centre seems to represent a system of information processing which allows for the 

connection to the infinite dimensional and complex space and thus the possibility of superior psychological 

processes. The study of mimic and gesture language of individuals with deafness highlighted the fact that, 

when learning this language, there is a first phase of learning of a mimic and gesture behaviour which is 

processed in the right hemisphere, specialized on spatial representations, and it becomes a real language 

only when it is undertaken by the speech center from the left emisphere. Then the mimic and gesture is 

undertaken at a level of notions and concepts and superior processes of abstractization, synthesis and 

generalization can be achieved. It results then that the centre of speech can be such a module which allows 

for the connection of the neuronal network with the corresponding one from the complex system, thus 

explaining the leap towards Homo sapiens. The centre which demonstrates the connection with the infinite 

dimensional spaces of the complex systems is the centre of speech (the deaf and dumb language), music 

processing and intuition, imagination, the ability to know some realities beyond the Euclidean space. 

In the field of knowledge, fractal theory highlighted the fact that, in spite of the apparent infinite 

complexity of reality, this is in fact built on the basis of a fractal geometry in which the iteration of an 

extremely simple structure or configuration (the generating equation) combined with the topological 

modifications at every dimensional leap can reduce this whole complexity for a fractal collection which 

could theoretically lead to a single fractal, to a single configuration, to One.  

Tegmark [19] proposes that this immeasurable complexity is generated by our approach of an 

extremely reduced sector from the scale section of a fractal. This is the aspect of reality that the positivist is 

trying to get to know through the scientific experiment. The analysis and description of this aspect of reality 
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needs an immense number of informational bytes and at this level the generalization and abstractization 

capacity of mathematics allows us to build models to approximate this reality. We started from the premise 

that science researches an extremely reduced sector of the scale section of a fractal. If we consider the 

whole fractal, all is reduced to a simple equation (Mandelbrot’s equation F(z)=z
2
+c). It seems that we have 

the possibility to represent our reality also at the level of complete fractal. It is what mystics, philosophy and 

metaphysics did for milennia. The place where the undeployed fractal can be found, where the ’’wrapped” 

reality of Bohm is, is the complex space, where there is the whole reality envelopped in potential under the 

form of mathematical structures which represent the equations of fractal generation. The first form of 

deployment of information from the complex system takes the form of the energy we find in the physical 

field under non-differentiable continuous form, but also at quantum level and at Minkowskian level. The 

next deployed form of the fractal is to be found under spatial and temporal form, under corpuscular form at 

quantum level or Euclidean form at tri-dimensional level. The representation of  knowledge - through its 

scientific theories but also the philosophical and religious concepts - consists of two complementary aspects 

which physicists of a century ago presented under the form of the wave-corpuscle duality, while those of 

current day give a differentiable description which is mathematically modelled through the equations o f 

hydrodynamics, as well as a stochastic, potential description expressed through the equation of the wave 

formula. 

 

 

 

6. Is brain a computer? 

 

The neuronal network development is made on fractal criteria, just as all the other apparatuses and 

systems of the human body. In the brain, the transmission of sense perception is spectrally and vibration-

achieved [20]. As a consequence, the spectral field formed by the waves corresponding to corpuscles from 

the neuronal network are coherent, allowing for the processing of information both in the neuronal network 

and in the spectral space (Hilbert space), where at any scale there are the two types of realities, a 

differentiable and a non-differentiable one, highlighted through the hydrodynamic model of Madelung and 

the stochastic model, respectively. The a-spatial, a-temporal component allows for memorization, whereas 

the complex component offers the possibility of multi-dimensional processing which can explain superior 

psychological processes, such as, for example, conceptualization, semantics, abstractization and 

generalization, etc. 

As opposed to the electronic computer whose hard structure is structured after some artificial 

algorithms (Barabassy [8]), the spectral component corresponding to corpuscles from the hardware has the 

same artificial character, deprived of the fractality specific to natural development, as a result there is no 

coherence between the substance corpuscle network and the spectral wave one. 

Another  essential difference between the electronic computer and the human brain is given by the 

analogical specific of the psychological processing, as opposed to digital processing. Analogical processing 

is doubled by the configurative topological character of the processing, practically speaking it is not 

numerical processing or only numerical processing, it is also a processing which belongs more to 

topological geometry. The dimensional dynamics from the 0 dimension to the infinite dimensional, which in 

our reality is achieved only up to three dimensions, can be achieved in the psychological reality in a 

multidimensional way in the complex space (through the fractal potential).  

In the structure of psychism, the access from neuronal network to spectral (fractal) field and 

through Hilbert space to complex space allows for multidimensional dynamics which is not met at the 

electronic computer and which can explain superior psychological processes such as conceptualization, 

semantics, abstractization and generalization, etc., but also what is specifically human, creativity, intuition 

and adaptability. 
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Abstract. To define information is not easy task due to the diverse forms in which it can be expressed and identified. 

The main forms that occur (data, information and knowledge) do not represent a mere structure with increasing 

complexity which implies the integration of information in knowledge and that of data within information. For data to 

represent information a processing system is necessary. For information to construct knowledge, the human psychic is 
necessary. On the other hand, Shannon’s theory which is the basis of informational phenomena implies the approach of 

information from quantitative view and less from a qualitative one. 

 We shall demonstrate that this qualitative aspect is generated by the topology of the geometrical space which, 

in its turn, organizes the informational dynamics and explains the unity of reality from the informational point of view 
due to scale invariant feature of topology. We shall argue that from the qualitative point of view, information is made up 

of energy patterns situated at different topological configurations, while according to the quantitative approach, besides 

entropic elements, information is implied in fractal dynamics, the topology of geometrical space interfering in 

dimensional change. Such hypothesis will be supported by implying topology in all scales and reality levels, using the 
string theory and quantum physics, a new perspective of wave-corpuscle duality, as well as considering the molecular, 

biochemical, biological and mental levels, i.e. those places where information is permanently retrieved within 

topological dynamics. 

We conclude regarding the hypothesis according to which topology as a mathematical discipline applied on 
information at different scales can offer a coherent perspective and an answer to the question “What is reality?” 

Keywords: Information; Topology; Complex system theory; Fractals; Chaos. 

 

 

 
1. Introduction 

 

In our paper, we want to treat the information correlated to the substance and the energy, by applying the 

theory of complex systems, of complex analysis and of topology. We aim to highlight the fact that 

information can be found in the complex space of the wave phase spectral field. As a result, this complex 

space can be found anywhere and at every level of the reality. In our view, it is infinitely dimensional, as it 

can contain all the information in the Universe. From a mathematical viewpoint, the real space is included 

in and intertwined with the complex space generated by the electromagnetic waves. At quantum level, this 

intertwining can be achieved by the collapsing of the wave formula into the complex space of the wave 

phase and it can be transmitted into the complex space of the spin rotation, by transferring the whole 

information. This phenomenon is specific to reality at the level of the whole knowable universe, as 

everywhere there are electromagnetic waves and also at every level of the reality, including the human 

brain. 

Our hypothesis is that the complex space is a physical space, which includes the real space which it 

generates and maintains through permanent dynamics. Thus, the complex space describes in fact a physical 

reality which integrates Newtonian reality, quantum mechanics and cosmology etc. 

 

 

2. Information. Definitions and concept-making 

 

In an etimological sense, the information is what gives shape to the spirit. It comes from the Latin verb 

informare, which means ”to give shape” or ”to form an idea on something”. The perception on the 

information is as heterogenous as possible, the concept of information being a subject for reflection and 

analysis in: information theory, communication theory, knowledge theory, logics, semantics, philosophy, 

theology etc. Mainly, data forms information and information constitutes knowledge. Actually, the 

phenomena is not reduced only to an inclusion of a field into another. The information needs data and 
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operation and memory systems, whereas knowledge supposes an accumulation of information, but also of 

superior psychological systems, such as generalization, abstractization, synthesis, correlation and 

significance. This diversity under which information is presented determines both the defining difficulty and 

a unitary understanding of its significance at different levels of reality. 

With quantum mechanics, the necessity emerged to define information at quantum level. In the 

theories which appeared in the second half of the twent ieth century (the theory of chaos, the theory of 

fractals and of non-linear dynamics), all united into what is called the theory of complex systems, the 

necessity to define information appears more imperatively, especially because this theory is applied 

irrespective of the scale, to all levels of reality. The science of complexity, which attempts at modelling the 

structure of matter at different scales or reality levels, needs a new approach of information as a defining 

notion along with energy and substance. This is the reason why defining information becomes even more 

complicated from the perspective of the new paradigms. Traditionally speaking, there are two meanings of 

the information notion. One with the aristotelic acception, which designates the formation and structuring of 

a specific form, of an organization within an initially non-homogenous matter, the other signifying the 

transmission of a message. Information can also be seen as a proper fact, as a relation fact, as a fact of 

action transmission. That is why we are talking about an objective information transmission which is related 

to the structure of the Universe, be it macroscopic or microscopic, but also of a subjective meaning, which 

involves human communication, not only between human beings, but also between them and the various 

information technology devices and technologies. 

The theory of information is connected to Shannon and Weaver [21], who defined, in the 50s and 

60s, information as an entity which is neither true nor false, neither significant nor insignificant, neither 

credible nor doubtful, neither accepted nor rejected. As a result, it is not worth studying anything else than a 

quantitative component of information, but not also the semantic part, which allows for the association of  

information with the second theory of thermodynamics, with entropy, the information or the quantity of 

information being in inverse ratio with it. 

Weaver connected Shannon’s mathematical theory with the second thermodynamic law and 

asserted that entropy is the one which determines the information generation ratio. The formula of 

information is identical to the one of entropy elaborated by Boltzmann, but considered with a minus sign:  

 

 
where p represents the probability of an element or event k within the system. 

Information is, thus, entropy. It is important to notice that Onicescu [17] also formulated the 

hypothesis regarding the fact that the degree of organizing a system can be ” measured” with the help of 

informational energy, thus defined:  

 
where p represents the probability of appearance of the event A. 

This quantitative approach of information is applied in the field of telecommunication and of 

information technology. Under this approach it is important to establish the quantity of information and its 

true or false character in transmitting information, to which probability notions can be connected in order to 

find, with the receptors, the source-transmitted information. Even within this technological approach, two 

aspects of information are highlighted: information as a product, which reflects a static overview, and the 

approach as a process, which highlights the genesis and the scope of information. In fact, the two aspects 

represent the information as potentiality and the information expressed and involved in the dynamics of the 

becoming and structuring of matter.  

Upon attempting to structure the multiple informational approaches, Introna [15] distinguishes two 

archetypes: the informational and the communicational one. The first was patented with the explosive 

development of informational technology and is connected to the making (development) of ”productive” 

166



informational systems. The second has its origins in the communicational frame of Shannon and Weaver 

[21], being less important in the field of informational system field, but it is more widely accepted in the 

theories of communication. Similarly, Stonier [18] is of opinion that the fundamental aspect of information 

is connected to the fact that this is not a mental construction, but a fundamental property of the Universe. 

Any general theory of information must start with the study of the physical properties of information, as it is 

manifested in the Universe. This action must be taken before attempting to understand the variants and the 

more complex forms of human information. The next step must involve the examination of the evolution of 

informational systems beyond the physical systems, first in the area of biology, then in the human, cultural 

area. 

The scientific approach of the information theory starts from the classical opinion that mathematics 

is the general language of nature. The structure of the Universe is written in the mathematical language, and 

its letters are geometrical forms, symbols and mathematical relations. Tegmark [19]  maintains that at the 

basis of reality there are mathematical structures and the relationships between them and that elementary 

particles are mathematical structures which can be perfectly described only by mathematical properties. 

Thus, these mathematical structures and the relationships between them define what we call today 

information, whereas science does not do anything else but decypher the information contained in the 

structure of the matter, by physical-mathematical modelling. According to this paradigm, information is to 

be found in nature, outside of, beyond and independently of the observer. As a consequence, information 

must have existed before the appearance of human conscience. 

To put it different, the information is the fundamental component of reality, such as matter and 

energy, as the nature is filled with information. On a larger scale, information exists before, or, in other 

words, knowledge is ”more fundamental” than its observer and interpreter. Thus, the reunited concepts of 

matter (substance and energy) and information can explain the emergence, the forming, structure and 

dynamics of mind and knowledge, but also of the whole structure of the Universe. Information has an 

objective natural existence; people absorb it in their minds and the computer memory modifies and 

multiplies it through thought and bring it to the ”middle” of society via the language.  

At the opposite end of this materialistic-objective approach of information is the belief according to 

which information is something one person communicates to another, whereas the meaning of information 

can be understood only if we take into account the presence of alive beings endowed with reason, placed 

into a socio-cultural context and analyzed from a historical perspective. 

A fundamental trait of information is connected to its subjectivity. Whatever can be information for 

a person can mean nothing to other people. Whatever is considered as information for a person can be data 

for another person. On the other hand, starting from the same set of data, different individuals, through 

different processing, can infer different information. If the data has a physical, tangible existence, the 

information exists only with the receptor, thus it is intangible. Information is the product of human or 

artificial intelligence and what constitutes information for one person can represent mere data for another 

person.No matter how difficult the definition and significance of information is, a possible modality of 

understanding what information represents in its essence is to be able to define the connection between 

energy, substance and information. 

 

 

 

3. The place of information in the wave-corpuscle duality 

 

The paradoxes highlighted by quantum mechanics in the first half of the 20
th

  century include, apart from the 

uncertainty relations of Heisenberg [14], a strange involvement of the observer in developing quantum 

phenomena. These facts suggest that the splitting into subjective and objective information is artificial and 

that they should be regarded as aspects of the same phenomenon. In order to uphold this idea, we must take 

into consideration another paradox of quantum mechanics, which is just as exciting and linked to the 

entaglement phenomenon, which, as a result of repeated experiments, highlighted a reality which is hard to 

infer, that is that all the particles which interacted at a certain point remain connected.  

All these paradoxes that quantum mechanics imposed, along with the wave-corpuscle duality, 

determined a new approach in physics, mathematics and in the scientific approach in general. If during the 

20
th

  century it was studied from the elementary particles’ point of view, of the wave component from the 

spectral viewpoint and materially under the form of substance and energy, the information was not treated at 

its true value, according to the role it has in quantum mechanics. The information technology era, as well as 

the theory of complex systems, with the chaotic aspects in which information has a potential character, but 

which explains the dynamic evolution patterns of the system which is highlighted in the phase space, have 

all imposed the comeback on the role of information at quantum level.  
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The complex systems theory imposes re-analyzing the wave-corpuscle duality from the perspective 

of fractal geometry and of non-linear dynamics, which also need the involvement of information as a third 

element in the wave-corpuscle duality. 

In Scale Relativity Theory, the dynamics of any physical system is described through dimensions 

which can be expressed through fractal functions, that is functions which are dependent both on coordinates 

and on time, but also on resolution scales. Moreover, any quantity can be written as sum between a 

differentiable part, i.e., dependent only on coordinates and time, but also on a fractal part, i.e. dependent on 

both coordinates and time, but also on resolution scales. In such a context, the differentiable part is proved 

to be compatible only with the predictable states of the physical system, while the fractal part is proved to 

be compatible only with the unpredictable states of the same physical system. 

The analysis of wave-corpuscle duality in de Broglie’s theory involves the simultaneous existence 

of two types of movements: a deterministic movement, which is predictable and associated to a continuous 

movement of hydrodynamic type along a continuous line, which is specific to the corpuscle character, and  

a zig-zag random and unpredictable movement, which is specific to the wave character. De Broglie’s model 

introduces the two types of movements only as hypotheses, but the real problem, how much it is wave, how 

much corpuscle, as well as the wave-corpuscle structural compatibility (the structure of the wave should be 

compatible with the corpuscle structure) has not been solved yet. 

A new approach modality of the problematics involved in the wave-corpuscle duality resides, in 

our view, in supposing that the movement of a particle takes place along continuous and non-differentiable 

curves. This means passing from a classical approach of movement within an euclidean space to a non-

conventional, non-standard approach, with the assumption that movement takes place within a fractal space-

time. 

Thus, de Broglie’s difficult problem can be solved, meaning that this could not justify the uniform 

movement of the particle within the wave field (incompatibility with the straight-line, uniform movement of 

the wave-corpuscle duality). The postulate through which motions are introduced on continuous and 

nondifferentiable curves solves this problem of the straight and uniform movement, meaning that on the 

new fractal manifold the movement is free (on geodesics). By accepting such a postulate, on the basis of the 

model of Scale Relativity Theory, it results that the geodesics of a fractal space-time supports a double 

representation, a stochastic, unpredictable one, described by Schrödinger type equations and specific to the 

wave character, and at the same time a deterministic, predictable representation, through the fractal 

hydrodynamic model, which is specific to the corpuscular character.  

In Schrödinger’s representation, only the modulus of the square wave function has physical 

significance, while in the second case we talk about average movements of some fluid part icles which are 

submitted to a datum force, a force which is induced by the unpredictable part (non-differentiability of the 

motion curves). Non-predictibility, described through the non-differentiability of motion curves 

can be related to a Shannon-type fractal informational entropy, which, based on a maximization principle, 

leads to an egalitarian uncertainty principle. Within this uncertainty principle, the interaction constants are 

specified on the basis of an Onicescu-type informational energy. Now, we mention the fact that only 

the constant value of the Onicescu informational energy settles the interaction constants within the 

uncertainty relations. 

Through the maximization principle, the integrally invariant functions are simultaneously 

probability density and movements on constant energy curves. Practically speaking, through the principle of 

informational maximization, the unpredictable, wave character given by the probability density is linked to 

the corpuscle character given by the energy. 

The unpredictable part must be directly correlated to non-differentiability and is manifested 

through the existence of a potential, also called fractal potential. The principle of maximization of the 

informational energy gives a concrete form to the potential and the latter, introduced in the fractal potential, 

gives complete form to the force field. As a result, the informational energy not only stores and transmits 

the information through interaction, but also connects it directly to the deterministic part through 

interaction. So, practically speaking, the owner of all ”mysteries” is the fractal potential, which imposes the 

intelligent, fractal medium and the informational energy which gives the force.  

As above-specified, on the basis of the non-predictable component, one can define a fractal entropy 

in Shannon’s sense and, starting from here, a fractal informational energy in the sense of Onicescu. By 

using a maximization principle of fractal entropy in Shannon’s sense, one can demonstrate that, if fractal 

informational energy in Onicescu’ sense is constant, then the ratio between the corpuscle energy and the 

frequency of the associated wave is a constant at any resolution scale. As a result, the wave-corpuscle 

duality is achieved through movements on curves of informational energy constant in Onicescu’s approach 

(for details, see [1-7, 11-13]). 

 

 

168



 

4. Information as an expression of topological transformations. Different levels of reality  

 

Topology studies the deformations of the space through continuous transformation, practically-speaking the 

properties of sets which remain unchanged at some transformations. Movement is a fundamental aspect of 

the real world and any elaborate study of dynamics leads to topology, as long as there is a dimensional 

space. Nevertheless, applications of the topological ideas appear in various fields, such as the theory of 

chaos, the quantum theory of fields, molecular biology, where the description and analysis of twists and 

deformations of the DNA molecule needs topological concepts. More specifically, the so-called topology of 

the knots allows for understanding the way in which the two spiral chains which make the double elicoidal 

structure of the DNA molecule can be unfolded when the genetic plan controls the development of the 

living being. 

Starting from quantum microcosm towards our Newtonian reality, we meet the information under 

the same topological forms at every scale. Atoms form molecules and macromolecules, whose spatial 

configuration suffers topological modifications which grant them some properties. Organic macromolecules 

in protein and enzyme form ‘’ship’’ the information to cellular receptors, under the form of topological 

structures. Any modified radical determines a reconfiguration of spatial structures, which generates a certain 

property necessary in the chain of metabolical transformations which in this way are topologically 

equivalent, as they are obtained through topological transformations.   

Any biochemical structure represents a graph, every cellular structure represents a network which 

forms knots and whose dynamics can be described by the network topology, which explicitly mentions the 

vicinities of every point. All this information comes from the structure of the DNA. The latter, apart from 

the succession of nitrate bases which form the genes, has a topologically-complex structure, in 

agglomerations which form the chromosomes, but which also influence the coding functions. The same 

information transmission mechanisms from DNA to RNA messenger and RNA ribosome and the 

constituting of protein and neurotransmitters we can also find within the structuring and functioning of the 

nervous system. We meet networks, knots, graphs, thus topological transformations also in this instance. All 

these represent only one part of the reality, because atoms, molecules, macromolecules, etc., are bodily 

aspects of the wave-corpuscle duality. All these structures have also a wave part, they are practically 

doubled by a spectral reality, of electromagnetic field. 

The term topology is used also for establishing the projecting manner of a network. In order to 

highlight the physical (real) and logical (virtual) inter-connections between the knots, one can distinguish 

two corresponding types of topologies: a physical and a logical one, respectively. The physical topology of 

the network refers to the configuration of the transmission environments, of computers and peripheral 

devices, whereas the logical topology represents the method used to transfer information from one computer 

to another. The theory of domains developped within lattices represents a modality of modelling the 

topological concepts in a computational form, which allows for the processing of information.  

Now, coming back to the wave-corpuscle problem, an analysis of the particle behaviour can be 

made from the perspective of fractal space-time, with the unpredictable and non-linear evolution, allowing 

that, on the basis of the informational theory of Shannon, we connect it to entropy and further, through a 

maximizing process, to the informational energy in the acception of Onicescu. There still remains an 

essential question: where can we search for and find the information in this quantum dynamics. It must be 

present both in the wave structure and in the particle properties. This connection cannot be made otherwise 

than in the phasic component of the wave, which is to be found in the spinning of the particle and which 

allows for the transfer of information from the spectral reality to the corpuscular reality, as it is 

demonstrated by the transform and the reverse of the Fourier transform. The phase is given by the magnetic 

component of the electromagnetic field and it represents the unpredictable, potential part, described by the 

complex function of Schrödinger’s wave formula, as these characteristics can be explained both through the 

fractal theory and through the topological transformations supported by the phase from the electromagnetic 

wave, respectively by the spin from the particle description. 

The spinning movement is mathematically modelled using the complex analysis. This model is 

dynamic, as it undergoes transformations at the level of topological dimensions through the successive 

passage from the topological dimension 0 (of the point) to the topological dimension 1 (of the line) etc. 

Thus, a complex, infinitely-dimensional space is made, which explains the difficulty of highlighting the 

informational component. The successive passage through Euclidean, fractal and topological dimensions 

determines a quantitative, but also qualitative dynamics of energy. The moment in which this qualitative 

diversity is expressed is given by the moment of topological transformations at every dimension. This 

diversity which is practically unlimited renders quality, apart from quantity, to energy in its dynamics. From 

the perspective of complex systems we can find, in the statements above, the main characteristics specific to 

complex systems: non-linear dynamics, fractal geometry, with a latent informational energy which is 
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potential, along with a dynamics of a practically infinite diversity, obtained by topological transformations 

in the phase complex space. 

If we accept that topological transformations are invariant as compared to the scale and that these 

topological transformations represent energy patterns, configurations through which information is 

expressed, it should happen that, irrespective of the level of reality and of scale, the information has as an 

underlayer these topological transformations. The consequence of this is the ubiquity of information, just as 

the substance and energy, both at the level of microcosm and at macrocosm level.  

Obviously, there exists structural information which, along with energy and substance, structures 

the matter at different scales and aggregation states. It is a structural information, which is achieved through 

topological transformations in fractal dynamics and even in euclidean dynamics. The topological space 

represents the place where information gains diversity, whereas energy gains a qualitative character. 

Qualitative variations of energy appear here, which constitute the informational energy or the psychological 

energy at mental level. Jung, in his research [16] over the unconscious and archetypes considers 

psychological energy to be a form of energy described through qualitative, not through quantitative ones, as 

physical energy was described. We will detail these considerations further below. 

 

 

 

5. Dynamics of the real space – complex space in the structure of reality and psychism 

 

Complex functions mathematically describe physical phenomena which assume the rotation movement 

around the own centre, including the movement of the magnetic vector of the electromagnetic wave, as well 

as from the fluid dynamics, and they sustain such hypotheses, theories and phenomena that the modern 

technology presupposes. This phenomenon is present first of all in the electromagnetic waves and thus it 

can be found in many situations which are theoretically and technologically described. The electric field 

corresponds to the real part, whereas the magnetic field corresponds to the imaginary component. The 

magnetic vector has a spinning movement, which is described by complex functions. At a 90-degree 

rotation (multiplication by i), an inversion of the components of the complex number takes place, a 

movement which in physics implies a Wick rotation. By multiplication with i , the amplitude and the phase 

are mutually modulated and their correlation is achieved by information. 

The unpredictable, a-causal, unstructured, potential part of the complex systems structure can be 

found in the structure of the spectral field, associated to the corpuscle from the structured, causal, 

Newtonian, predictable part. This spectral component contains, through the imaginary component of the 

wave formula that describes the phase (the dynamics of the magnetic vector) the access to complex spaces, 

where the whole information can be found, structured in the topological geometry of energy configurations. 

The infinitely-dimensional possibility of these complex spaces, just as the infinite diversity of topological 

transformation within these spaces, along with their scale invariance allows for the estimation that in this 

infinitely-dimensional complex space we can have access to the whole information of the Universe. Thus, in 

a unitary approach, one can find the theory of complex systems, which comes from a physical perspective 

of the fluid physics, fractal theory, chaos theory and topology, with the complex analysis and the complex 

functions which use complex numbers with their imaginary component and which describe, in physics, the 

imaginary, unpredictable, potential, non-differentiable part, which can be found in the theory of complex 

systems. 

As in mathematics information can be stored or processed by algebrical equations or by 

trigonometrical functions, in physical reality also information can be either algebrically or geometrically 

structured. The Fourier series and the Fourier transform achieve this through the interface between a spatial-

temporal reality and a spectral one. Because the spectral reality is a-temporal, a-spatial, the Fourier 

transform and the reverse of the Fourier transform make this switch between the algebrical and the 

geometrical description. The mathematical model for the complex spaces includes the existence of 

topological transformations within an infinitely-dimensional space. As a result, the reality of the wave 

formula as being a-temporal, a-spatial, represents an interface between the newtonian reality and the 

complex ’’reality’’ of the complex spaces (Hilbert space). 

The discontinuity of reality described by Planck as an energy quanta, by Gabor as information 

quanta, the non-differentiability specific to fractal dynamics, as well as the property of complex systems 

with deterministic chaos, all are due to a continuous interference between the physical and the complex 

reality through the spectral field. Depending on the local field conditions, of forces and scale structure, with 

the action of attractors, information from the complex space is absorbed (qualitative energy patterns, 

diversified through topological transformations), in order to structure the quantum or comsic Euclidean 

space.  
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The dynamics between the complex and the physical space is an expression of the mathematical 

description of reality through algebrical or trigonometric equations. The potentiality can be encompassed, 

codified in trigonometric equations and it expresses the information in an a-spatial, a-temporal reality which 

is specific to the wave and which is algebrically transformed in geometric form when a spatio-temporal 

reality appears, as it happens when the wave collapses into a corspuscle. In both cases, topological 

transformations are possible ( in an a-spatial, a-temporal situation trigonometrically expressed, but also in a 

spatial-temporal one, expressed algebrically or geometrically). 

Another argument of the physical character of the complex space is the wave function and wave 

function equation description which impose the existence of the Hilbert space. This abstract space allows 

for the description of the wave function and of the Schrödinger wave function equation. This space imposes 

the inclusion of both the real part of the wave and of its imaginary, complex one. As a result, the Hilbert 

space has properties of the complex space (the infinitely-dimensional character), the description by complex 

functions (complex analysis), but also the real part which includes the amplitude of the wave and its 

potential capacity of becoming real in the collapse of the wave formula. Another element which belongs to 

the real part is the space-time continuum character  which we can find in the Minkowski space, but which 

we also find concentrated in the Hilbert space in the characterizing expression of the wave as being ‚’’a-

spatial”, ’’a-temporal”. In our view, the Hilbert space is an interface between the real space and the complex 

space and a proof that the complex space is a physical space connected through a permanent dynamics with 

the real space, as long as we accept the wave as real, with its wave function and wave equation. 

The dynamics between the complex and the real space (the neuronal network), by way of the 

spectral field (wave field represented by the totality of the waves associated to the corpuscles in the 

neuronal network) is the basis of the psychological system functioning. This paradigm can generate new 

hypotheses which should explain the mysteries of the psychological life, just as the old ’’mind-brain” 

duality. This new topic structure of psychism, associated with the theory of complexity and simplicity, 

applied to fractal geometry, through which  reality is structured, allows the brain to have access also to the 

knowledge of the fractal as a whole, when the mathematical model is reduced as a number of informational 

bytes, to put it different as a symbol, but also, through the analysis and synthesis capacity, to be able to 

conceptualize the fractal at any point or at any scale, with the cost of an enormous informational content.  

From a physical viewpoint, at any scale, there is a differentiable hydrodynamic description 

mathematically modelled by hydrodynamic equations, but also a stochastic, potential description, expressed 

by the equation of the wave formula. If we accept that the Hilbert space presents both the properties of the 

Minkowski space and the ones of the Euclidean space, just as of the infinitely-dimensional complex space, 

then it results that the Hilbert space represents the interface between the real space with all its descriptions 

and the complex space with all its potentiality. 

Thus, the whole psychological life can be considered to take place in this Hilbert space which 

allows also for a Minkowskian perspective, a spatial-temporal continuum, under the form of the fractal 

space-time, where the information trigonometrically stored is a-spatial and a-temporal, thus creating the 

conditions of a stable memory, but also a spatial-temporal tri-dimensional perspective which represents 

sections in time and space of this continuum. This material component of the neuronal network allows for 

the processing of information, but for the superior psychological processes, the processing is achieved in the 

complex space, so that the synthesis, generalization, abstractization, conceptualization, all assume a 

multidimensional perspective, which can be made only in the infinitely dimensional complex space. More 

precisely, the dimensional dynamics from the 0 dimension to infinitely dimensional which in our reality is 

realized only up to three dimensions, can be realized multidimensionally in the psychological reality in the 

complex space (through the fractal potential). 

 

 

 

6. An approach from the perspective of the complex systems theory for the processing, storage and 

transmission of information at brain level 

 

As we already know, a complex system cannot be analyzed on principle through the part fragmenting, as it 

is made up of elements which make sense only within the privacy of the system. It has an unpredictable 

evolution (than, mostly, within a short time frame called temporal horizon), can suffer sudden 

transformations, no matter how big, without obvious external causes and it manifests different aspects 

according to the analysis scale. It is on principle different from a complicated system because the difficulty 

of prediction is not to be found in the inability of the observer to analyze all the variables which would 

influence its dynamics, but in the sensitivity of the system to initial conditions (slightly different initial 

conditions which lead to extremely different evolution possibilities), to which one can add the effect of an 
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auto-organization process (process determined by the very interactions between the component sub-systems 

and whose effect is the spontaneous emergence – principled unpredictable – of some order relations). 

A complex system can be modeled and studied within a topologically-equivalent space, called the 

phase space, in which specific notions are defined: attractors and repulsors, attraction basin, trajectories, 

limit cycles, etc. In this context, one can talk about a functional modeling, which is much more abstract and 

’’unbound’’ from the constraints imposed by a concrete ’’anatomy’’ and ’’physiology’’. While classical 

modeling starts by approximating what ’’can be seen’’, functional modeling involves the identification of an 

equivalent dynamic system, whose behavior can be analyzed through specific methods with an extremely 

high degree of generalization. 

In the systems composed by a great number of elements, the properties of the systems cannot be 

found in the total amount of the complex systems properties. The emergence property is what creates a link 

between the multitude of the components and the properties of the complex systems. 

All these theories are trying to describe, as close to the reality as possible, the privacy of the 

functioning of systems with a great number of elements, which interacts with other systems (dissipative 

systems) and which in fact are widely-met in the physical reality. These systems have a series of properties, 

among which the emergence is one with special implications, but also the dynamic structure they 

presuppose, generally characterized by a structured, causal, Newtonian, predictable component and an 

unpredictable, a-causal, unstructured, potential one. Physical experiments (the ones in the plasma tubes but 

also in the fluid dynamics, etc.) have highlighted these components just as the dynamics between them, 

which presuppose an auto-structuring tendency by means of the attractors within a certain space called the 

phase speace. However, there remains an important question connected to the source of information which 

allows for the auto-structuring and thus the dynamics between the potential component and the predictable 

one. In the plasma tubes experiments, the phenomena can be more easily observed because upon 

modification of the system constraints (modification of electrical tension to the two ends of the tube) we can 

obtain different particle organisation patterns which presuppose the interference of some informational 

structures. The current explanations for the source of this information is that it comes from the privacy of 

the system. However, in the structure of the system (if we stay with the more simple model of the plasma 

tube) there are only particles and their attached wave component. Considering that the information 

contained by the particle comes from the coherent wave, the question which arises is where the information 

comes from, at wave level. In everyday life, today, in the information technology era, the information is 

trasmitted via waves, by their analogical transformation into waves which modulate a carrying wave. 

Modulation can be the modulation of the amplitude (little employed because it is too easily affected by 

noise, but anyway the amplitude is in inverse ratio to frequency), the generally-employed modality is that of 

angle modulation, which presupposes a modulation of either the frequency or of the phase, which is finally 

transmitted to the modulation of the magnetic vector angle. The phase is recognized as being an imaginary, 

complex component of the wave formula. The movement of the magnetic wave described by complex 

equations generate a complex plan, which connects the wave to the complex space and allows for the 

storage of information in the topological modifications from this infinitely-dimensional space. To put it 

different, the information in the complex systems is to be found in the complex space, which gives the 

characteristics of potentiality, non-differentiability, a-causality from the description of complex 

systems.Coming back to the plasma tubes, the privacy of the system from which information comes is 

represented by the coherent wave phase with every particle  (the wave corresponding to every particle from 

the wave-particle duality) which represents the connection to the complex space, where the whole physical 

reality is to be found at the potential mode, under the form of information. This is the consequence of 

permanent dynamics between the complex and the real space, by means of information. Depending on the 

system constraints from the complex space through the wave phase, the information which reaches the 

particle generating the auto-structuring patterns is undertaken. 

In the structure of complex systems there is a potential part with a chaotic aspect and a structured, 

causal, newtonian part, as well as different intermediary phases. From there it results that a certain 

uncertainty exists in all the structure of reality. Moreover, we find the uncertainty principle (Heisenberg 

[14]) in Gabor’s theory of communication (the information quanta). At brain level, the non-linear, potential, 

apparently chaotic part corresponds to the unconscious, whereas the structured, causal part corresponds to 

the conscious; the intermediary parts, as well as the structures which process both the information from 

reality and from the unconscious, all are represented by what Freud called SuperEgo.  

The chaotic part is structured via attractors, depending on the constraints of the system (for 

example, the way in which some physiological needs generate, during the dream, a certain structure). 

During the wakefulness there is a dynamics with the chaotic, potentially unconscious part in the background 

and which allows accessing the information, the memories, the logical links (for example, a discourse).  

We must therefore accept that, also in the living world, including the brain functioning, there exists 

a spectral, wave component and the transmission of senses is achieved spectrally, by vibrations [9, 10]. 
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Thus, a reality which coexists with us is the a-spatial a-temporal one, described by the wave formula and 

which is involved in the visual perception phenomenon, in which the undertaking of the spatial-temporal 

information is made by light through modulation of its frequency, a phenomenon which is described by the 

Fourier transform, while the stimulation of the retina involves the collapse of the wave formula and the 

emergence of corpuscles which stimulate the retina cells by inversing the Fourier transform. As a result, all 

we look at and see, in order to be seen, goes through an a-temporal and a-spatial phase, in the interval 

necessary for the light to reach from the object to us. This interval can be million of light years for cosmic 

objects or minutely small fractions of a second when we look at our friends, our home or our garden. 

Information is codified energy which is expressed as pattern, structure templates, innitiated by 

attractors which are active in the phase space, between the chaotic part and the structured one. The 

information lies stored in the spectral space and it expresses the patterns in the structure of atoms, 

molecules, macro-molecules and cells. It has a potential existence which is expressed by substance and 

energy under certain conditions (of local coherence). 

A virtual, Newtonian reality as projection of physical reality is completed by the 

unstructured, a-causal, apparently chaotic component: the imagination, the dream, the failed acts, the 

subliminal mechanisms, the unconscious etc., which can be associated with the causal, potential, 

unstructured and non-differentiable component of complex systems, the source of inspiration, of creation 

and of access to non-Euclidean realities to holospace. These potentialities can become conscious through 

patterns (see the archetypes and the collective unconscious of Jung) and they can be found in logical, 

algorithmic, organized and systematic form in everything that is creation (from making a speech, 

conversation, improvisation, to creating new musical pieces, new artistic work, new scientific work). The 

chaotic, unpredictable part does not only contain the Newtonian reality to which we have access, but more, 

maybe even the structure of the whole Universe, at informational potential level. The brain has access to the 

implicit part (the implicit reality of Bohm [9]), if we associate this part to what the classics called 

unconscious. From here derives the capacity for mathematical reasoning, for physics, for reasoning reality 

in n dimensional spaces, a-temporal realities, a-spatial realities. 

The development of the neuronal network is made according to fractal criteria, just as all the other 

apparatuses and systems of the human body. As a result, the spectral field formed by the waves 

corresponding to corpuscles form the neuronal network are coherent, allowing for the processing of 

information both in the neuronal network and in the spectral space (the Hilbert space), where both the a-

spatial a-temporal components exist, as they allow memory to develop, but also the complex component 

which offers the possibility of a multi-dimensional processing which can explain the superior psychological 

processes (conceptualization, semantics, abstracting and generalization etc.). At any scale we can find the 

two types of realities: a differentiable one and a non-differentiable one, highlighted by the Madelung 

hydrodynamic model Madelung and respectively by the stochastic model.  

Analyzers manage on principle the transformation of wave information in the corpuscle, thus 

generating the tri-dimensional and the spatial and temporal vision upon reality, but the processing at brain 

level is also spectrally made (de Valois [20]). Because the whole of the analyzers achieve the information 

transfer from a wave form to a body form, the processing of information is achieved both within a material, 

corpuscle network, the neural network, but also in a spectral network, of the coherent field associated to the 

neuron network. Through the waves of the spectral field the dynamic link to the complex space is made, 

process which allows for the occurrence of the superior psychological processes, specific to the human 

being, which need multidimensional development in order to be formed, development which is only allowed 

by the complex space. The psychological reality represents the permanent dynamics between the neuronal 

(material) network, the associated spectral field (the fractal potential) and the complex space (infinitely-

dimensional). 

The processing of information for the information provided by analyzers is made in a 

differentiable, causal, algorithmical form at the level of the neuronal network (Barabassy [8]), whereas 

beyond the analyzers it is made within a complementary network found in the complex space, which is 

mediated by the fractal potential from the spectral potential of neurons. As a result, the qualitative leap 

represented by the appearance of culture would not have generated only the appearance of mirror neurons 

which are present also in some animals, but the development of genetic patterns which allowed for a better 

connectivity between the two networks. It is not a matter of chance that the appearance of articulate speech 

is associated to this qualitative leap in human development. The centre of speech appears to represent a 

system of processing information which allows for connecting to the infinite and complex-dimensional 

space and thus to the possibility of emergence of superior psychological processes. The study of the mimic-

gesture language of the deaf individuals highlighted the fact that, in learning this language, there is a first 

phase of learning of a mimic-gesture behaviour which is processed in the right hemisphere, which is 

specialized in spatial representations and becomes truely language only when it is undertaken by the speech 

centre from the left hemisphere. Then the mimic-gesture is processed at the level of notions and concepts 
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and superior processes can be achieved, such as abstractization, synthesis and generalization. The result is 

that the centre of speech can be such a module which allows for the connection of the neuronal network 

with the one corresponding in the complex system and thus the leap towards Homo sapiens can be 

explained. 

 

 

Concluding remarks 

 

The complex systems dynamics and especially that of the complex and of the real space (from the inner part 

of the systems) may lead to new hypotheses and theories about the structure of psyche and about its 

functioning. 

The whole collection of the analyzers manages the transfer of information from its wave form into 

corpuscular form. This allows for the information processing to be accomplished both in a corpuscular, 

material network, the neuronal network, but also in a spectral network, of the coherent field associated to 

the neuronal network. Through the waves of the spectral field the dynamical link to the complex space is 

realized, situation which allows for the occurrence of the superior psychic processes, which are specific to 

the human being, and which need multidimensional development in order to be formed, a situation which is 

only allowed by the complex space. The mental reality represents thus the permanent dynamics between the 

neuronal (material) network, the associated spectral field (the fractal potential) and the infinite dimensional 

complex space.   

The aim of this paper is to apply the theory of complex systems in order to sustain the hypothesis of the 

complex space as a physical space. We want to treat the information correlated to the substance and the 

energy, by applying the theory of complex systems, of complex analysis and of topology. We aim to 

highlight the fact that information can be found in the complex space of the wave phase spectral field. As a 

result, this complex space can be found anywhere and at every level of the realit y. In our view, it is infinite 

dimensional, as it can contain all the information in the Universe. From a mathematical viewpoint, the real 

space is included in and intertwined with the complex space generated by the electromagnetic waves. At 

quantum level, this intertwining can be achieved by the collapsing of the wave formula into the complex 

space of the wave phase and it can be transmitted into the complex space of the spin rotation, by transferring 

the whole information. This phenomenon is specific to reality at the level of the whole knowable universe, 

as everywhere there are electromagnetic waves and also at every level of the reality, including the human 

brain. 
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Measuring quasiperiodicity

Suddhasattwa Das∗, Yoshitaka Saiki�, Evelyn Sander§, James A Yorke�
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Abstract

A map on a torus is called “quasiperiodic” if there is a change of variables which converts it into a

pure rotation in each coordinate of the torus. We develop a numerical method for finding this change

of variables, a method that can be used effectively to determine how smooth (i.e., differentiable) the

change of variables is, even in cases with large nonlinearities. Our method relies on fast and accurate

estimates of limits of ergodic averages. Instead of uniform averages that assign equal weights to points

along the trajectory of N points, we consider averages with a non-uniform distribution of weights,

weighing the early and late points of the trajectory much less than those near the midpoint N/2.

We provide a one-dimensional quasiperiodic map as an example and show that our weighted averages

converge far faster than the usual rate of O(1/N), provided f is sufficiently differentiable. We use

this method to efficiently numerically compute rotation numbers, invariant densities, conjugacies of

quasiperiodic systems, and to provide evidence that the changes of variables are (real) analytic.

1 Introduction

Let X a topological space with a probability measure µ and T ∶X →X be a measure preserving map. Let

f ∶X → E be an integrable function, where E is a finite-dimensional real vector space. Given a point x in

X, we will refer to the long-time average of the function f along the trajectory at x

1

N

N−1

∑

n=0

f(T n(x)), (1)

as a Birkhoff average. The Birkhoff Ergodic Theorem (see Theorem 4.5.5. in [1]) states that if f ∈

L1
(X,µ), then (1) converges to the integral ∫X fdµ for µ-a.e. point x ∈ X. The Birkhoff average (1) can
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be interpreted as an approximation to an integral, but convergence is very slow, as given below.

∣
1

N
∑

N

n=1
f(T n(x)) − ∫

X
fdµ∣ ≤ CN−1,

and even this slow rate will occur only under special circumstances such as when (T n(x)) is a quasiperiodic

trajectory. In general, the rate of convergence of these sums can be arbitrarily slow, as shown in [2].

The speed of convergence is often important for numerical computations. Instead of weighing the terms

f(T n(x)) in the average equally, we weigh the early and late terms of the set 1,⋯,N much less than the

terms with n ∼ N/2 in the middle . We insert a weighting function w into the Birkhoff average, which in

our case is the following C∞ function that we will call the exponential weighting

w(t) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

exp (
1

t(t−1)) for t ∈ (0,1)

0 for t ∉ (0,1).
(2)

Let Td denote a d-dimensional torus. For X = Td and a continuous f and for φ ∈ Td, we define what we

call a Weighted Birkhoff (WBN) average

WBN(f)(x) ∶=
1

AN

N−1

∑

n=0

w (
n

N
) f(T nx), where AN ∶=

N−1

∑

n=0

w (
n

N
) . (3)

Note that the sum of the terms w(n/N)/AN is 1, that w and all of its derivatives are 0 at both 0 and 1,

and that ∫
1

0 w(x)dx > 0.

Quasiperiodicity. Each ρ⃗ ∈ (0,1)d defines a rotation, i.e. a map Tρ⃗ on the d-dimensional torus Td,

defined as

Tρ⃗ ∶ θ ↦ θ + ρ⃗ mod 1 in each coordinate. (4)

This map acts on each coordinate θj by rotating it by some angle ρj. We call the ρj values “rotation

numbers.”

A vector ρ⃗ = (ρ1, . . . , ρd) ∈ Rd is said to be irrational if there are no integers kj for which k1ρ1+⋯+knρn ∈

Z, except when all kj are zero. In particular, this implies that each ρj must be irrational. The rotation

numbers depend on the choice of the coordinate system. In any other coordinates in which the system

is also a rotation, the rotation vector ρ⃗ is Aρ⃗, for some matrix A whose entries are integers such that

the determinant of A is ±1. Conversely, any such matrix corresponds to a coordinate change which also

changes ρ⃗ to Aρ⃗.

A map T ∶ X → X is said to be d-dimensionally Cm quasiperiodic on a set X0 ⊆ X for some d ∈ N
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iff there is a Cm-diffeomorphism h ∶ Td →X0, such that,

T (h(θ)) = h(Tρ⃗(θ)). (5)

where Tρ⃗ is an irrational rotation. In this case, h is a conjugacy of T to Tρ⃗. In particular, a (pure)

irrational rotation, (a rotation by an irrational vector ρ⃗) is a quasiperiodic map.

Invariant measure for quasiperiodic maps. An irrational rotation Tρ⃗ ∶ Td → Td on the torus has

a unique invariant measure, which is the Lebesgue probability measure. This measure also turns out to

be the unique ergodic measure. It follows that if a dynamical system T ∶ X0 → X0 is d-dimensionally C1

quasiperiodic, there is a unique T -invariant measure on X0 which, under change of variables, becomes the

Lebesgue probability measure on Td.

Diophantine rotations. An irrational vector ρ⃗ ∈ Rd is said to be Diophantine if for some β > 0 it

is Diophantine of class β (see [3], Definition 3.1), which means there exists Cρ > 0 such that for every

k⃗ ∈ Zd, k⃗ ≠ 0 and every p ∈ Z,

∣k⃗ ⋅ ρ⃗ − p∣ ≥
Cρ

∥k∥d+β.
(6)

For every β > 0 the set of Diophantine vectors of class β have full Lebesgue measure in Rd (see [3], 4.1).

The Diophantine class is crucial in the study of quasiperiodic behavior, for example in [4] and [5].

Continued fractions. Every irrational number α0 ∈ (0,1) has a representation known as its continued

fraction expansion [n1, n2, n3, . . .], where n1, n2, n3, . . . are positive integers. It can be defined inductively

as follows

n1 = ⌊
1

α0

⌋;α1 ∶=
1

α0

− n1;

nk+1 ∶= ⌊
1

αk
⌋;αk+1 ∶=

1

αk
− nk+1.

Continued fractions as approximations. The k-th convergent of an irrational α0 ∈ (0,1) is the

number pk/qk defined as follows.
pk
qk

= [n1, . . . , nk] ∶=
1

n1 +
1

...+ 1
ak

. (7)

Then for every integers q, k ≥ 0, integer p, if qα−p is strictly between qkα−pk and qk+1α−pk+1, then either

q ≥ qk + qk+1 or both p, q must be zero. In other words, the best approximation of α by a fraction p/q

with q not exceeding qk, is the k-th convergent pk/qk. We rely on the continued fraction expansion of a

number to decide whether it is rational or not. Every rational number has a finite number of terms in its

continued fraction expansion. If α is irrational, then the sequence continues forever, while if it is rational,

it stops when some αk is zero.

The Diophantine class β of an irrational number is a measure of how closely it can be approximated
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by a rational number. The Diophantine class of an irrational number can be deduced from its continued

fractions. This is because the k-th convergent pk/qk provides the best rational approximation among all

rational numbers whose denominator is ≤ qk.

We will now state our main theorem about fast convergence of weighted Birkhoff sums (3). We will

first define a notion of fast convergence called super-convergence.

Definition. Let (zN)
∞
N=0 be a sequence in a normed vector space such that zN → z as N → ∞. We

say (zN) has super-polynomial convergence to z or super converges to z if for each integer m > 0

there is a constant Cm > 0 such that

∣zN − z∣ ≤ CmN
−m for all m.

Theorem 1.1 Let X be a C∞ manifold and T ∶ X → X be a d-dimensional C∞ quasiperiodic map on

X0 ⊆X, with invariant probability measure µ. Assume T has a Diophantine rotation vector. Let f ∶X → E

be C∞, where E is a finite-dimensional, real vector space. Assume w is the exponential weighting (see Eqn.

(2)). Then for each x0 ∈X0, the weighted Birkhoff average WBNf(x0) has super convergence to ∫X0
fdµ.

Other studies on weighted averages. The convergence of weighted ergodic sums has been discussed,

for example, [6] , [7] and [8]), but without any conclusions on the rate of convergence. In [9], a convergence

rate of O(N−α
), (0 < α < 1), was obtained for functionals in L2+ε for a certain choice of weights. A series

of our applications of the method discussed in this paper appear in [10], and the details of the proof of

our theorem appears in [11].

The use of a temporal weight in ergodic averages has been a subject of study for several decades,

usually using more generic weighting sequences in the form of

TN(f) ∶=
∞

∑

n=0

νN(n)Un
(f), where νN is a probability distribution on N. (8)

In our theorem, the probability measure νN are the values of the weight function w sampled at the points

{n/N ∶ 0 ≤ n < N} and divided by the normalizing contant AN , as defined in (3). In [6], sufficient conditions

were derived for (8) to converge in weighting sequences of a similar kind. Equations (3) and (8) arise from

the study of functionals on the Hilbert Space L2. On the other hand, [12] considered the convergence of

(8) for invertible operators on Banach spaces. It was shown that for a particular choice for (νN)N∈N, the

operators converge in the strong operator topology to an idempotent operator.

Remark. Our results apply to Cm or smooth functions, which are L2, and carry the assumption that

the underlying dynamics is quasiperiodic. We are interested in exploring the applicability of the theorem

to other dynamical systems, while keeping in mind that various counter-examples exist in which weighted

ergodic averages do not converge. For example, in [13], the authors derived a property called strong
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Figure 1: Invariant circles in the cylinder map (9), for values of (σ, δ, ε) equal to a)(0.1, 0.1, 0.1), b)
(0.2, 0.8, 0.8) and c) (1.0, 0.1, 0.1). Points in the region on the right of the curves diverge to x = +∞,
while points on the left diverge to x = −∞. Therefore, these circles are quasiperiodic repellors and we are
interested in the classification of the dynamics on these curves as periodic or quasiperiodic.

sweeping property for the operators in (8), under the assumption that each νN is a dissipative probability

measure and certain other conditions on the underlying dynamical system (X,T ). The strong sweeping

out property implies that the limits do not converge but attain values over an interval of numbers. In

[14] similar results are obtained to prove the lack of convergence of (8) for a dense set of L1 characteristic

functions, in the context of ergodic rotations of the unit circle.

2 Application I of Theorem 1.1 - Rotation numbers

To illustrate some applications of Theorem 1.1, we will work with the following dynamical system for the

rest of the paper.

A cylinder-map. Consider the infinitely long cylinder R × S1, where S1 is the standard topological

circle. Consider the following map on this cylinder, first studied in [15].

xn+1 =3xn + σ(xn, yn)

yn+1 =yn − δ sin(yn) + ε(1 − cos(xn)) mod 2π.
(9)

Here σ is a small perturbation term, δ and ε are parameters satisfying 0 < 2δ < ε. It turns out that

for every such parameter value, if σ is sufficiently small, then there exists an invariant topological circle.

Note that if σ ≡ 0, then this is the circle whose points are {(π, y) ∶ y ∈ S1
}. Though the map is C∞, the

invariant circle may not be smooth. We are however interested in demonstrating that the dynamics on it

is C∞-conjugate to a rotation. See Fig. 1 for some of these curves.
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2.1 Rotation Number as a weighted Birkhoff sum.

Rotation number. Let F̄ ∶ Rd
→ Rd be the lift of a quasiperiodic map F ∶ Td → Td. It is well known

(see for example, [16]) that the following limit exists and is a constant independent of z⃗ ∈ Rd.

ρ⃗(F ) ∶= lim
n→∞

F̄ n
(z) − z⃗

n
. (10)

This limit is called the rotation number of F . The limit in (10) is a means of approximating ρ, but

its convergence is bounded by the O(1/N), where N is the number of iterates taken into account. We

propose a better method based on the weighting factor w.

Note that in the example under discussion, X0 is a one-dimensional quasiperiodic curve embedded in

X = R2. Let X0 be given the coordinates θ of a circle S1 (in this case, θ could be the Y -coordinate of

each point on the invariant curve divided by 2π). Given two angles θ1, θ2 ∈ [0,1), θ2 − θ1 denotes the

positive angle difference between these two angles, i.e., with value in [0,1). We are interested in the limit

ρ ∶= lim
N→∞

1
N

N−1

∑
n=0

[θn+1 − θn], which can be obtained as the super-convergent limit of

WBN((θn+1 − θn)) ∶=
1

AN

N−1

∑

n=0

w (
n

N
) [θn+1 − θn].

More generally, let X0 be a quasiperiodic curve embedded in X = R2. Let C ∶= CB ∪ CU be the

complement of X0 in R2, where CB and CU are the bounded and unbounded components of C respectively.

For p ∈ R2, define φ(θ) = (θ − p)/∥θ − p∥. Therefore φ(θ) ∈ S1. Let φ̄ ∶ R → R be the lift of φ. If p ∈ CB,

then φ̄ is of the form

φ̄(θ̄) = ±θ̄ + ḡ(θ̄),

where θ̄ ∈ R is a lift of θ ∈ C. Notice that the real valued function ḡ ∶ R→ R is period one and hence factors

into a smooth function g ∶X0 → R. Define a limit ρφ as follows.

ρφ ∶= WBN(g(θ)) =
1

AN

N−1

∑

n=0

w (
n

N
) [(θn+1 − θn) + g(θn)].

Then ρφ is ρ or 1 − ρ, depending on the orientation of θ, both being legitimate representations of ρ. We

have illustrated this construction in Fig. 2. If p ∈ CU , then ρφ = 0.

2.2 Error bound for the unweighted method.

Given a one-dimensional quasiperiodic trajectory (xn) on the circle S1
= [0,1), one can define a trajectory

on the real line x̄n for n = 0,⋯,N , where x̄0 = x0, x̄n is a lift of xn and x̄n+1− x̄n ∈ (0,1). It therefore follows
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Figure 2: Rotation number on a quasiperiodic curve. The numbers φn = φ(θn) can be used to
calculate the rotation number, as stated in Application 1.

that x̄n+1 = F̄ (x̄n). Let

kn ∶= x̄n − xn (11)

be the winding number of the n-th iterate. Let the (xn) iterates be sorted in increasing order as

xn0 = 0 < xn1 < . . . < xnN
< 1.

If ρ is the true rotation number, then the iterates θn = nρ mod 1, for n = 0, . . . ,N have the same cyclic

order as the x-orbit. In other words, 0 = θn0 < θn1 < . . . < θnN
. We can determine the interval of ρ values

for which that is true. First note that

0 < xn1 so ρ < kn1/n1

xnN
< 1 so ρ > (knN

+ 1)/nN .

Suppose ni < ni+1, then (ni+1 − ni)ρ = kni+1
− kni

+ εni
, for some εni

∈ [0,1). Similarly, if ni > ni+1, then

(ni − ni+1)ρ = kni
− kni+1

− εni
. These two identities give the following two inequalities respectively.

ρ >
kni+1

− kni

ni+1 − ni
, (12)

ρ <
kni

− kni+1

ni − ni+1
. (13)

For each of the N − 1 consecutive pairs (xni
, xni+1

), we get such an inequality and they combine to give

the possible range of values of ρ. Note that instead of consecutive x-s from the sorted list, we could have

taken distant x-s, but the following inequality shows that that would not have yielded a sharper bound.

If a1, a2, b1, b2 > 0, then
a1 + a2
b1 + b2

lies in-between
a1
b1

and
a2
b2
. (14)
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2.3 Another calculation of the rotation number using unweighted Birkhoff

sums

Let F ∶ Td → Td be a homeomorphism, where Td is the n-torus, obtained from the n-cube [0,1)d by taking

each coordinate modulo 1. Using the weighting methods, an initial estimate ρ⃗′ of the rotation number ρ⃗

of F , by analysing a dense trajectory z⃗0, . . . , ⃗zN−1. This section describes how to obtain a better estimate

ρ⃗′′ of ρ⃗ from ρ⃗′.

Let z⃗n1 , z⃗n2 , . . . , z⃗nd+1
be d+1 points on the trajectory which are close to the origin O and whose convex

hull contains O. Then there are constants αi ∈ (0,1), for i = 1, . . . , n+1 such that O is a convex combination

of the points z⃗ni
, i.e.,

0⃗ = Σ
i=1...,d+1

αiz⃗ni
. (15)

Since the map is quasiperiodic, there is a homeomorphism G ∶ Td → Td such that for every k = 0, . . . , d+ 1,

z⃗k = G(kρ⃗ mod 1). If the points z⃗n1 , z⃗n2 , . . . , z⃗nd+1
are very close to the origin, G can be considered to

be linear in a neighborhood containing these points. for every i = 1, . . . , n + 1. Therefore, z⃗ni
= G(niρ⃗

mod 1) ≈ dG(0)(niρ⃗ mod 1). If both sides are multiplied by dG(0)−1 then, (15) becomes

0⃗ ≈ Σ
i=1...,d+1

αidG(0)(niρ⃗ mod 1). (16)

Now let the integral part of niρ⃗ be k⃗i, i.e., niρ⃗ = k⃗i + ε⃗i, where k⃗i is a vector with integer entries and the

entries of ε⃗i lie in (−0.5,0.5)d and are very small. Therefore niρ⃗ mod (2π) = ε⃗i. Therefore (16) becomes

0⃗ = Σ
i=1...,d+1

[αi(niρ⃗ − k⃗i)]. (17)

Therefore, the equation can be solved to ρ as

ρ⃗ =
Σ

i=1,...,d+1
αik⃗i

Σ
i=1,...,d+1

αini
. (18)

Note that for every i = 1, . . . , d + 1, k⃗i/ni is a close approximation to ρ, so the sum (18) is an optimal

combination of these optimizations.

2.4 Fine tuning the rotation number.

Let (xn) be a quasiperiodic trajectory on a circle S1
= [0,1). If we attempt to graph the conjugacy map

h(θ) from (5), we have only N points and they are not equally spaced. We can compute the slopes between

successive points and choose ρ̂ so as to minimize the fluctuations in the derivatives of successive slopes.
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Define points θn = nρ̂ mod 1. As before, let the (xn) iterates be sorted in increasing order as

xn0 = 0 < xn1 < . . . < xnN
< 1.

This ordering will be the same (cyclically) as that of θ0, . . . , θN−1. Therefore, if consider the graph of h,

the successive points of the graph are pj ∶= (θj, xnj
). The slope from pj to pj+1 is:

Si =
∆x

∆θ
∶=

xni+1
− xni

ni+1ρ̂ mod 1 − niρ̂ mod 1
.

From each estimate ρ̂ of ρ, a circle map h ∶ S1
→ S1 be constructed which maps nρ̂↦ yn. From h, one can

construct the map h ∶ S1
→ S1 defined as g(θ) = h(θ) − θ. When the function h is lifted to R it becomes

a function with period one. The closer ρ̂ is to the true rotation number ρ, the smoother h is going to be.

The following is used as a measure of smoothness of the h.

σ(ρ̂) ∶= Σ
i=0,...,N

[(
∆x

∆θ
)

i

− (
∆x

∆θ
)

i−1

]

2

, (19)

where the indices −1 refers to the index N . The sequence of quantities (∆x/∆θ)i is defined as,

(
∆x

∆θ
)

i

∶=
[xni

+ kni
− niρ̂] − [xni−1

+ kni−1
− ni−1ρ̂]

[niρ̂ mod 1] − [ni−1ρ̂ mod 1]
, (20)

where the sequence (kn) is as in (11). Equation (19) is a measure of the smoothness of h in terms of the

sum of the squares of the difference between successive slopes of the map h. If h is smooth, the slope

changes slowly and the sum is expected to be small. We can change ρ to minimize the quantity σ(ρ)/ρ.

3 Other applications of Theorem 1.1.

We will now describe a computationally efficient method of determining whether invariant tori show

quasiperiodic behavior, and we will numerically estimate the analyticity of the conjugacy to a pure rotation.

There is a large volume of literature about determining invariant periodic or quasiperiodic sets, these

being two of the three types of typical recurrent behavior. An algorithm was introduced in [17], which

uses the Newton’s method to determine all periodic orbits up to a fixed period along with their basins of

attraction. Variants of the Newton’s method have been employed to determine quasiperiodic trajectories

in various other settings. For example, [18] used the monodromy variant of Newton[U+2019]s method

to locate periodic or quasi-periodic relative satellite motion. In [17], a quantity called local Lyapunov

exponent distribution was defined and used to locate basins of small period/quasiperiodic trajectories

which lie in the vicinity of larger quasiperiodic trajectories. This step is followed by an application of the
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Newton method. They used this method to locate co-existing quasiperiodic and periodic trajectories in

the standard map. In [19], the authors defined an invariance equation involving partial derivatives. The

invariant tori are then computed using finite element methods of PDE-s. See Chapter 2, [19] for more

references on the numerical computation of invariant tori.

The analysis is based on the use of Theorem 1.1 for performing fast integration of smooth, periodic

functions on the torus.

Application II, computing the integral of a periodic C∞ function. A C∞ periodic map

f ∶ Rd
→ E can be integrated with respect to the Lebesgue measure quickly and accurately in the following

manner. We first rescale coordinates so that its domain is a d-dimensional torus Td = [0,1]d mod 1. We

next choose any ρ⃗ = (ρ1,⋯, ρd) ∈ (0,1)d of Diophantine class β ≥ 0. For example, a good choice for the case

d = 1 is ρ =
√
5−1
2 , the golden ratio, for which β = 0. Let T = Tρ⃗ be the rotation by the Diophantine vector

ρ on Td. Let w be the exponential weighting function Eq. (2). Then by Theorem 1.1, for every θ ∈ Td,

WBN(f)(θ) has super convergence to ∫Td fdµ and convergence is uniform in θ.

3.1 Application III, Fourier Series of the embedding.

After computing the rotation number ρ by the method explained in Application 1, we can construct the

parameterization φ = h(θ), where h ∶ S1
→ R, for which xn+1 = T (xn) is conjugate to the pure rotation

θn+1 = θn + ρ. The map h is not known explicitly, but its values (xn ∶= h(nρ⃗ mod 1))n=0,1,2,... are known.

Let h̄ ∶ R→ R be a lift of the map h. Consider the following function g ∶ R→ R defined as

g(θ) ∶= h̄(θ) − θ. (21)

The continuity and the degree of differentiability of h is the same as that of g, and the latter can be

non-rigorously estimated by observing the rate of decay of the Fourier series coefficients of the function g.

For every k ∈ Z, the k-th Fourier coefficient of g is described below.

ak(h) ∶= ∫
S1
h(θ)e−i2πkθdθ.

For every θ ∈ S1, h has the Fourier series representation

h(θ) = Σ
k∈Z
ake

i2πkθ.

To study the decay rate of the coefficients ak with ∣k∣, we need to accurately calculate each term ak. By

Theorem 1.1 , ak(h) can be approximated by a weighted Birkhoff sum that has super convergence to
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ak(h),

ak(h) = lim
N→∞

WBN[h(θ)e−i2πkθ] = lim
N→∞

N−1

∑

n=0

w (
n

N
)xne

−i2πnkρ.

Instead of computing the complex-valued Fourier coefficients, we will compute the Fourier sine and

cosine series. Given a periodic map f ∶ S1
→ R, the Fourier sine and cosine representation of f is the

following. For every t ∈ S1,

f(t) =
a0
2
+ Σ
n=1,2,...

an cos(2nπt) + Σ
n=0,1,2,...

bn sin(2nπt), (22)

where the coefficients an and bn are given by the following formulas.

an = 2∫
θ∈S1

f(θ) cos(2nπθ)dθ, (23)

bn = 2∫
θ∈S1

f(θ) sin(2nπθ)dθ. (24)

See Fig. 4 for the decay of the Fourier sine and cosine coefficients with k.

Role of length of trajectory. Using a higher number of iterates enables a more accurate computation

of the higher order Fourier terms (up to 400 terms), up to the accuracy limit which is possible with the

precision being used. Fig. 3 shows that the sine and cosine series decay exponentially, as expected in an

analytic conjugation.

Figure 3: Accuracy of Fourier series, orbit length and computer arithmetic. In all these figures,
the Fourier sine and cosine terms of the map h(θ)−θ were calculated up to 400 terms, with ε = 0.8, δ = 0.8,
σ = 0.2. In Figs (a) and (b), 104 and 2 × 105 iterates respectively were used along with double precision.
The earlier Figure 4 shows the highest accuracy, as it used 2× 105 iterates and quadruple precision. From
these results, it becomes apparent that increasing the number of iterates leads to an accurate calculation
of higher order Fourier terms. Use of double precision limits the accuracy of the results to 10−16 while the
accuracy limit for quadruple precision is around 10−32, as seen is Fig. 4.
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3.2 Smoothness of conjugacies

In [20], Denjoy proved that if a C2, orientation-preserving circle diffeomorphism has an irrational rotation

number α, then it is topologically conjugate to the pure rotation Tα ∶ z ↦ z +α, via some continuous map

h. We are interested in inferring more about the smoothness class of h. The question of smoothness of

conjugacy to a pure rotation is an old problem. While we have described here a non-rigorous method, the

papers [3], [21], [22] and [23] arrive at rigorous conclusions on the differentiability of f by making various

assumptions on the smoothness of the quasiperiodic map T and the Diophantine class of its rotation

number ρ. We will give a brief summary of some of the classical results before describing our approach.

The Arnold family is a commonly studied in the context of existence of quasiperiodic trajectories. In

this seminal work ([16]), Arnold studied the following 2-parameter family of circle diffeomorphisms where

φ is a T -periodic real analytic function with period one, meaning φ(y + 1) ≡ φ(y):

Aω,ε ∶ y ↦ y + ω + εφ(y) mod 1 for y ∈ [0,1] and ε in [0,1). (25)

One of the main theorems about this generic family of maps is that was that for ω belonging to a certain,

full-measure set of irrational numbers, for all small values of the parameter ε, the map (25) will be

analytically conjugate to the pure rotation Tρ (4). By “small” ε, we mean all ε which are less in magnitude

than a positive constant ε0 which depends on ω. Subsequently, several other conjugacy results have been

established. They differ in their claims on the degree of smoothness of the conjugacy (C0,C1,C2, . . ., or

C∞ or Cω); as well as in their assumptions on f .

Consider the following four assumptions on the circle map F which will serve as the hypothesis of some

of the known results we are going to cite. The subscripted variables, namely r and ν denote parameters

which are a part of their respective assumptions.

(A1)r F is Cr.

(A2)ν ρ(F ) is irrational and there is some ν > 0 such that the continued fraction expansion k1, k2, . . . of

the rotation number satisfies : {knn−ν ∶ n ∈ N} is bounded.

(A3)β There is β ≥ 0 and a c > 0 such that for every n ∈ Z − {0}, ∣e2πιnρ − 1∣ > c∣n∣−β−1. Equivalently, ρ is

Diophantine with Diophantine class β.

(A4) lim
B→∞

lim sup
N→∞

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σ

1 ≤ i ≤ N

ai ≥ B

ln(1 + ai)/ Σ
1≤i≤N

ln(1 + ai)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0. A4 is a full-measure condition.

In [3], Herman proves that F is C1-conjugate to a pure rotation if it satisfies (A1)r for some r > 2. By

[21], if F satisfies (A1)r for some r > 2 and (A3)0, then h is absolutely continuous. According to [22] if F
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Figure 4: Exponential decay of Fourier coefficients for the cylinder-map (9). The figure shows
the magnitude of the Fourier coefficients of the periodic function g in (21). The first 400 Fourier sine
and cosine terms were calculated and the magnitude of the n-th sine and cosine terms was plotted as
a function of n, in a log( base 10)-linear scale. All calculations were carried out in quadruple precision
computer arithmetic. The graph shows that the Fourier coefficients decay according to the law in (26),
with c = −0.25. The tail of the graph appears flat because the higher order Fourier coefficients could not
be calculated to values with magnitude less than the limits of quadruple precision.

satisfies more generally (A1)r for some r > 2 and (A3)τ , then h is Cr−1−τ−ε for every ε > 0.

In [24], the following smoothness result is derived for rotation numbers belonging to a full measure

subset of R. There exists ε > 0 and C > 0 such that for ∀β > 0, if F satisfies (A1)5, (A3)β and if

∥f −Rα∥C5 ≤ εγ, then h is C3 and satisfies

∥D3h∥L2 ≤
C

γ
∥f −Rα∥C5 .

In [23], it is shown that if F satisfies (A3)β for some β ≥ 0 and (A1)r, for r ≥ 3 and r > 2β + 1. Then h

is Cr−1−β−ε for every ε > 0. As a corollary, it follows that under the same hypothesis, if F is C∞, then so

is h.

In [25], the following conclusions are made about h:

� If F satisfies (A1)r for some r ≥ 3 and α satisfies (A4), then h is Cr−1−ε, for every ε > 0.

� F is conjugate to a rotation if and only if the sequence (F n
)n∈N is bounded in the C1-topology.

In our case, we conclude that h is real analytic if ∥ak∥ decreases exponentially fast, i.e.,

log ∥ak∥ ≤ A +B∣k∣ (26)

for some A and B, to the extent checkable with a given computer precision. In this section, F ∶ S1
→ S1

is a circle diffeomorphism and α ∶= ρ(F ) is its rotation number.
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Analytical results in type I, II and III
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Abstract. The concept of intermittency has been introduced by Pomeau and Maneville
and are usually classified in three classes called I, II, and III. The main attribute of
intermittency is a global reinjection mechanism described by the corresponding rein-
jection probability density (RPD), that maps trajectories of the system from the
chaotic region back into the local laminar phase. We generalize the classical RPD for
Type-I, II, or III intermittency. As a consequence, the classical intermittency theory
is a particular case of the new one. We present an analytical approach to the noise
reinjection probability density. It is also important to note that the RPD, obtained
from noisy data, provides also a complete description of the noiseless system.
Keywords: Intermittency, chaos, one dimensional map, noise.

1 Introduction

Intermittency is a particular route to the deterministic chaos characterized
by spontaneous transitions between laminar and chaotic dynamics. For the
first time this concept has been introduced by Pomeau and Maneville in the
context of the Lorenz system Manneville[1], Pomeau and Manneville[2]. Later
intermittency has been found in a variety of different systems including, for
example, periodically forced nonlinear oscillators, Rayleigh-Bénard convection,
derivative nonlinear Schrödinger (DNLS) equation, and the development of
turbulence in hydrodynamics (see e.g. Refs.Dubois et al.[3], del Rio et al.[4],
Stavrinides et al.[5], Krause et al.[6], Sanchez-Arriaga et al.[7]).

Beside this, there are other types of intermittencies such as type V, X, on-
off, eyelet and ring Kaplan[8], Price and Mullin[9], Platt et al.[10], Pikovsky et
al.[11], Lee et al.[12], Hramov et al.[13]. A more general case of on-off inter-
mitency is the so-called in-out intermitency. A complete review of on-off and
in-out intermittencies can be found in Stavrinides and Anagnostopoulos[14].

Proper qualitative and quantitative characterizations of intermittency based
on experimental data are especially useful for studying problems with partial

8thCHAOS Conference Proceedings, 26-29 May 2015, Henri Poicaré Institute,
Paris France

c© 2015 ISAST
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or complete lack of knowledge on exact governing equations, as it frequently
happens e.g. in Economics, Biology, and Medicine (see e.g. Refs. Zebrowski
and Baranowski[15], Chian [16]).

It is interesting to note that the most of the above cited references are
devoted to system having more than one dimension. Spite of this, they can
be described by one dimensional map. This phenomenon is typical of systems
that contract volumen in phase space Ott[17].

All cases of Pomeau and Maneville intermittency has been classified in three
types called I, II, and III Schuster and Just[18]. The local laminar dynamics
of type-I intermittency evolves in a narrow channel, whereas the laminar be-
haviour of type-II and type-III intermittencies develops around a fixed point of
its generalized Poincare maps.

Another characteristic attribute of intermittency is the global reinjection
mechanism that maps trajectories of the system from the chaotic region back
into the local laminar phase. The reinjection mechanism from the chaotic phase
into laminar region dependent on the chaotic phase behaviour, so it is a global
property, hence the probability density of reinjection (RPD) of the system back
from chaotic burst into points in laminar zone is determined by the dynamics
in the chaotic region. Only in a few case it is possible to get an analytical
expression for PRD, let say φ(x). It is also difficult to get PRD experimentally
or numerically, because the large number of data needed to cover each small
subset of length ∆x which belong to the reinjection zone. Because of all this,
different approximations have been used in literature to study the intermittency
phenomenon. The most commun approximation is to consider PRD uniform
and thus independent of the reinjection point Manneville[19], Dubois et al.[3],
Pikovsky[20], Kim et al.[21], Kim et al.[22], Kim et al.[23], Cho et al.[24],
Schuster and Just[18].

We described here an overview of a recent theory on the intermittency
phenomenon based on a new two-parameter class of PRDs appearing in many
maps with intermittency (see for instance: del Rio and Elaskar[25], Elaskar et
al.[26], del Rio et al.[27] and del Rio et al.[28]) and the noise effect on this
PRD. For a specific values of the parameters, we recover the classical theory
developed for uniform PRD.

Firstly let us briefly describe the theoretical framework that accounts for
a wide class of dynamical systems exhibiting intermittency. We consider a
general 1-D map

xn+1 = G(xn), G : R→ R (1)

which exhibits intermittency. Note that the map (1) can be coming, for in-
stance, from a Poincare map of a continuous dynamical system. Let us intro-
duce the dynamics corresponding to the three types of intermittencies around
the unstable fixed point. The local laminar dynamics of type-I intermittency
determined by the Poincare map in the form:

xn+1 = ε+ xn + a xpn (2)

where a > 0 accounts for the weight of the nonlinear component and ε is a
controlling parameter (ε � 1). The laminar behavior of type-II and type-III
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intermittencies develops around a fixed point of generalized Poincare maps:

xn+1 = (1 + ε)xn + axpn Type-II (3)

xn+1 = −(1 + ε)xn − axpn Type-III (4)

where a > 0 accounts for the weight of the nonlinear component and ε is a
controlling parameter (|ε| � 1). For ε & 0, the fixed point x0 = 0 becomes
unstable, and hence trajectories slowly escape from the origin preserving and
reversing orientation for type-II and type-III intermittencies. In some pioneer
papers devoted to type-I intermittency, the nonlinear component in Eq. (2) is
quadratic, (i.e. p = 2) and cubic for type-II and type-III, i.e. p = 3 in Eq. (3)
and Eq. (4) but actually this restriction is not necessary. In any case, for ε > 0,
there is a unstable fixed point at x = 0 for type-II and type-III and there is not
a fixed point at x = 0 for type-I, and hence, the trajectories slowly move along
the narrow channel formed with the bisecting line as illustrates Fig. 1 where
there are indicated two LBR corresponding with two reinjected mechanisms
according with the values of γ of Eq. (6).
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0

0.2

0.4

0.6

0.8

1

xn+1

xnxr

γ>1

LBR

γ<
1

Fig. 1. Map having type-I in-
termittency
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0.2
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Xn+1

Xn

γ =1

Xr

γ >1

γ <1

Fig. 2. Map having type-II
intermittency

Figure 2 illustrates a map having type-II intermittency given by the equa-
tion

xn+1 = G(xn) ≡
{
F (xn) xn ≤ xr
(F (xn)− 1)γ xn > xr

(5)

Here F (x) = (1 + ε)x+ a xp with a = 1− ε and xr is the root of the equation
F (xr) = 1. Note that the map (5) is a generalisation of the map used by
Manneville[19], that is, for γ = 1 the map (5) can be write as xn+1 = (F (xn)
mod 1) and if p = 2 we recover the Manneville map. Three reinjected mech-
anisms are also indicated in Fig. 2 depending on the values of the parameter
γ. For ε > 0, an iterated points xn of a starting point x0 closed to the ori-
gin, increases in a process driven by parameters ε and p as it is indicated in
Fig. 2. When xn becomes larger than xr, a chaotic burst occurs that will be
interrutted when xn is again mapped into the laminar region, from the region
labelled with heavy black segments. This reinjection process is indicated by a
big arrow in Fig. 2.
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The next modification of the map 5 illustrates the type I intermittency(see
Fig. 1 )

xn+1 = G(xn) =

{
ε+ xn + a|xn|p if xn < xr

(1− x̂)
(
xn−xr

1−xr

)γ
+ x̂ otherwise

(6)

where xr is the root of the equation ε + xn + xpn = 1 and the parameter
γ > 1 driven the nonlinear term of the reinjection mechanism. The parameter
x̂ correspond with the so called lower boundary reinjection point (LBR) and
it indicates the limit value for the reinjection form the chaotic region into the
laminar one.

Note that ε and p modified the duration of the laminar phase where the
dynamics of the system look like periodic and xn is less than some value, let
said c. Note that the function PRD will strongly depend on parameter γ, that
determines the curvature of the map in region marked by heavy black segment
in Fig. 2. Only points in that region will be mapped inside of the laminar
region. Note that when γ increases, also increases the number of points that
will be mapped around the unstable fixed point x = 0, hence we expect that the
classical hypothesis of uniform RPD used to develop the classical intermittency
theory does not work. In the next section we study a more general RPD.

2 Assessment of reinjection probability distribution
function from data series

The RPD function, determines the statistical distribution of trajectories leav-
ing chaotic region. The key point to solve the problem of model-fitting is to
introduce the following integral characteristic:

M(x) =

{ ∫ x
xs
τ φ(τ) dτ∫ x

xs
φ(τ) dτ

if
∫ x
xs
φ(τ)dτ 6= 0

0 otherwise
(7)

where xs is some “starting” point. The interesting property of the function
M(x) is that it is a linear function for a wide class of maps, hence the function
M(x) is an useful tool to find the parameters determining the RPD. Setting a
constant c > 0 that limits the laminar region we define the domain of M , i.e.
M : [x0 − c, x0 + c]→ R, where x0 is the fixed point of the map.

As M(x) is an integral characteristic, its numerical estimation is more ro-
bust than direct evaluation of φ(x). This allows reducing statistical fluctuations
even for a relatively small data set or data with high level of noise.

2.1 Fitting linear model to data series

To approximate numerically M(x), we notice that it is an average over reinjec-
tion points in the interval (xs, x), hence we can write

M(x) ≈Mj ≡
1

j

j∑
k=1

xk, xj−1 < x ≤ xj (8)
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where the data set (N reinjection points) {xj}Nj=1 has been previously ordered,
i.e. xj ≤ xj+1.

For a wide class of maps exhibiting type-I, type-II or type-III intermittency
the numerical and experimental data show that M(x) follows the linear law

M(x) =

{
m(x− x̂) + x̂ if x ≥ x̂
0 otherwise

(9)

where m ∈ (0, 1) is a free parameter and x̂ is the lower boundary of reinjections
(LBR), i.e. x̂ ≈ inf{xj}. Then using (7) we obtain the corresponding RPD:

φ(x) = b(α)(x− x̂)α, with α =
2m− 1

1−m
(10)

where b(α) is a constant chosen to satisfy
∫∞
−∞ φ(x) dx = 1. At this point, we

note that the linear approximation (9) for the numerical or experimental data
determines the RPD given by 10. Figure (3) displays different RPD depending
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(x)φ α>1

m=1/2

m=2/3

x

m=1
m(x)

m=7/12

m=3/4

m=0.1

Fig. 3. RPD for different values of α showing decreasing and non-decreasing functions.
It is sketched the corresponding slope for the function M(x). Dashes line represents
the limit value m = 1.

on the exponent α for x̂ = 0 and c = 0.5. It is also shown how the free
parameter α depends on the slope m according with Eq. (10). For m = 1/2
we recover the most common approach with uniform RPD, i.e. φ(x) = cnst,
widely considered in the literature. For m < 1/2 we have α < 0 and the RPD
increases without bound for x → 0 as it is shown in Fig. (3). In the oposite
case m > 1/2 we have φ(0) = 0. In this last case, the two possibilities for the
RPD, concave or convex are separated by the slope m = 2/3 (see Fig. 3). The
RPD (10) has two limit cases:

φ0(x) = lim
m→0

φ(x) = δ(x− x̂) (11)

φ1(x) = lim
m→1

φ(x) = δ(x− c) (12)

(note that b(α)→ 0 in these cases).
From the mathematical RPD shape it is possible to analytically estimate

the fundamental characteristic of the intermittency, that is the probability
density of the length of laminar phase ψ(l), depending on l, that approximates
the number of iterations in the laminar region, i.e. the length of the laminar
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phase. Note that the function ψ(l) can be estimated from time series, as it
is usual to characterize the intermittency type. The characteristic exponent
β, depending on ψ(l), defined through the relation l̄ → ε−β , is also a good
indicator of the intermittency behavior.

The next section is devoted to evaluate the RPD, that is the key point to
determite the rest of the properties associated with a specific intermittency.

3 Length of laminar phase and characteristic exponent

The probability of finding a laminar phase of length between l and l + dl
is dlψ(l), where the ψ(l) is the duration probability density of the laminar
phase. It is usefull to characterise the type of intermittency to compare the
analytical prediction for ψ(l) with numerical or experimental evaluation of it.
We explain how the RPD of Eq.(10) can modified the classical result about ψ(l).
The method used is similar for the three types of intermittencies study here,
however, whereas for type-II and type-III it is possible to find the analytical
solution, for type-I it is not possible in the general case.

Firsly we study type-II. To do this, we introduce the next continuous dif-
ferential equation to approximate the dynamics of the local map (3) in the
laminar region

dx

dl
= εx+ a xp (13)

where l approximates the number of iterations in the laminar region, i.e. the
length of the laminar phase. After integration it yields

l(x, c) =
1

ε

[
ln
( c
x

)
− 1

p− 1
ln

(
ac(p−1) + ε

ax(p−1) + ε

)]
. (14)

Note that Eq. (14) refer to a local behaviour of the map in the laminar region
and it determines the length of laminar period, however, the length statistic of
the laminar phases, ψ(l), is also affected by the density φ(x), which is a global
propertie as

ψ(l) = φ(X(l))

∣∣∣∣dX(l)

dl

∣∣∣∣ = φ(X(l)) |εX(l) + aX(l)p| (15)

where X(l) is the inverse function of l(x, c) and we have used the Eq. (16)
Note that ψ(l) depends on the local parameters ε and p, and on the global

parameters α and x̂ determined by the linear function M(x) according with
Eq. (10).

Concerning with type-III intermittency, in the laminar region the sign xn
change in each mapping. However, |x| can be approximated by Eq. 16, con-
sequently the previous values of β reported for type-II intermittency can be
applied also in the case of type-III.

Let us consider now the case of type-I intermittency. In this case, the
equivalent to Eq. (16) for type-I is

dx

dl
= ε+ a xp, (16)
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from which we obtain l = L(x, c) as a function of x

L(x, c) =
c

ε
2F1(

1

p
, 1; 1 +

1

p
;−a c

ε
)− x

ε
2F1(

1

p
, 1; 1 +

1

p
;−a x

ε
) (17)

in terms of the Gauss hypergeometric function 2F1(a, b; c; z) Abramowitz and
Stegun[29]. In the case of p = 2, L(x, c) can be given by

L(x, c) =
1√
a ε

[
tan−1

(√
a

ε
c

)
− tan−1

(√
a

ε
x

)]
. (18)

In the case of type-I intermittency, the Eq. 15 transforms into the follow

ψ(l) = φ(X(l, c))

∣∣∣∣dX(l, c)

dl

∣∣∣∣ = φ(X(l, c)) |aX(l, c)p + ε| (19)

It is interesting to observe that if α > 0 we have ψ(lmax) = 0 and the graphs of
ψ(l) given by Eq.(19) are very different from the obtained for the classical ψ(l)
that can be seen in Schuster and Just[18] and Hirsch et al.[30], for instance.
The reader can find all possible shapes for the ψ(l) in del Rio et al.[28]. Two
of this graphs are displayed in Figs. (4) and (5). Note that ψ(l) in Fig. (4) has
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Fig. 4. ψ(l) from Eq.(19) for α > 0 and
x̂ < 0
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Fig. 5. ψ(l) from Eq.(19) for α < 0 and
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a local maximum, what is a remarkable characteristic does not given by the
classical theory on type-I intermittency. We will come back to this point in the
noise section.

3.1 Characteristic relations

Let us described the how the characteristic exponent is affected by the RPD of
Eq. (10). This exponent, β, defined by the characteristic relation

l ∝ 1

ε β
(20)

describes, for small values of ε, how fast the length of the laminar phase grows
while ε decreases. Traditionally is admitted a single value depending on the
intermittiency type Schuster and Just[18]. The mean value of l is defined by

l =

∫ ∞
0

sψ(s) ds. (21)
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Taking into account the function ψ, depending on the parameter x̂ and α, (or
m) we found that the characteristic exponent β is not a single value as it is
usually established. According with Eq. (21), intermittencies type-II and type-
III have the same characteristic exponent that are summarized in table 1. In

x̂ m β

x̂ ≈ x0 m ∈ (0, 1− 1
p
) β = α+2−p

1−p = 1+p(m−1)
(1−p)(1−m)

x̂ ≈ x0 m ∈ [1− 1
p
, 1) β = 0

x̂ > x0 m ∈ (0, 1) β = 0

x̂ < x0 m ∈ (0, 1) β = p−2
p−1

Table 1. The characteristic exponent β for types II and III.

a similar way, for type-I intermittency we find the cases described in table 2

x̂ m β

x̂ ≈ x0 m ∈ (0, 1− 1
p
) β = β = p−α−2

p
= 1− 1

(1−m)p

x̂ ≈ x0 m ∈ [1− 1
p
, 1) β = 0

x̂ > x0 m ∈ (0, 1) β = 0

x̂ < x0 m ∈ ( 1
2
, 1) β = p−2

p

x̂ < x0 m ∈ (0, 1
2
) β = p−1

p

Table 2. The characteristic exponent β for types I.

4 Effect of noise on the RPD

In previous section we have used the function M(x) as a useful tool to study
the RPD. In the noisy case, we also use this function to investigate the new
noisy RPD, let say NRPD, in systems with intermittency. Figure 6 shows the
noise effect on a point near the maximun for the next map having type-III
intermittency,

xn+1 = −(1 + ε) xn − a x3n + d x6n sin(xn) + σξn, (22)

where −(1 + ε) xn − a x3n (a > 0) is the standard local map for type-III
intermittency, whereas the term d x6n sin(xn) (d > 0) provides the reinjection
mechanism into the laminar region around the critical point x0 = 0. In the map
(22) ξn is a noise with < ξm, ξn >= δ(m−n) and < ξn >= 0 and σ is the noise
strength. As Fig. 6 illustrates, the RPD corresponding to the noiseless map
is generated around the maximum and minimum of the map by a mechanism
that is robust against noise. Following this argument we can obtain the NRPD,
let say Φ(x), from the noiseless RPD according to the convolution

Φ(x) =

∫
φ(y)g(x− y, σ)dy, (23)
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where g(x, σ) is the probability density of the noise term σξn in Eq.(22) (see
del Rio et al.[27]).

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

xn

xn+1

0

0−1

−1

1

1 Noise effect
l

K·l

Fig. 6. Noisy map with type-III intermittency. Dashed line between the two solid
lines indicate the effect of the noiseless map on a point near the maximum. These
solid lines indicate the effect of the noisy map on the same point, that will be mapped
on the region shows by a heavy line on the graph of the map. The dashed circle with
radius c indicates the laminar region.

In the case of uniform distributed noise, after some algebraic manipulation
we get the NRPD as

Φ(x) =
1

c1+α
(|x|+K σ)1+α − S(|x| −K σ)||x| −K σ|1+α

2K σ
. (24)

where we denote by S(x) the sign function that extracts the sign from its
argument. In Eq. (24), the factor K is due to the length amplification indicates
in Fig. 6 where the interval of length equal to l is mapped into a new interval of
length K l. We emphasize that, according with Eq. (24), the factor K produces
an amplification of the effect of the noise. Note that K should be equal to one
in the case on direct reinjection from the maximum o minimum point, as in
the case on type-I and II shown in Fig. 1 and Fig. 2. Figure 7 shows in dashed
lines a typical noiseless RPD (with α < 0) for map of Eq. (22)) with σ = 0,
whereas the solid line corresponds with noisy case according with Eq. (24).
Some consequences can be derived from the NRPD of Eq. (24). Firstly, for
|x| >> K σ the NRPD approaches to the noiseless RPD and second, for x ≈ x0
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Fig. 7. Comparison between nosily and noiseless case for the RPD and M(x). Dashes
arrows connect different regions of the nosily RPD with the corresponding zone of
the M(x).)

(note that in this example we set x0 = 0) we have a constant function, that
is uniform reinjection. The described consequences of Eq. (24) for the NRPD
can be better investigated by using the M(x). Figure 7 shows typical shapes of
M(x) for noiseless and nosily cases as indicates. The uniform reinjection case
with m = 1/2 is indicate by dots line. In this figure, dashed line correspond
with dashed RPD. Note that now, the noisy M(x) look like a piece linear
function with two slopes. The first one corresponding to the noiseless RPD is
observed far from the x0, that is, on the right side a given value χ in Fig. 7.
The second slope approaches to 1/2 corresponding to uniform reinjection and
is observed on the left side of χ. This means that, by the analysis of the noisy
data, we can predict the RPD function for the noiseless case. To do this, we
proceed like in the noiseless case already explained in the previous sections,
but considering only the data on the right side of χ in Fig. 7. That is, by least
mean square analysis we can calculate the slope m in Eq.(10), that determines
the reinjection function in the noiseless case. Note that now, Kσ is the single
free parameter in Eq. (24).

It is important to note that whereas the noise is applied to the whole map,
the function M(x) evidences that, on the right side of χ, the reinjection function
is robust against the noise but on the left side of χ, the noise changes the RPD
approaching it to the uniform reinjection, at least locally around x = 0.

Concerning with the uniform RPD, note that in this case the piece linear
function approximation ofM(x) shows in Fig. 7 becomes a linear approximation
because the two slopes meet in a single one. This meas that the effect of noise
on the RPD is not too important for uniform reinjection. Due to this fact, many
researches devoted to the noise on the local Poincar map have been published
so far, there are only a few study focused on the effect of noise on the RPD.
We will find a similar scenario type-II intermittencies.

The case of type-I can be investigated in a similar way, but this type of
intermittency presents a different behavior Krause et al.[31]. To illustrate this
case, let us consider the map of Eq.(6) with p = 2 and a noise perturbation,
that is

xn+1 = G(xn) =

{
ε+ xn + ax2n + σξn if xn < xr

(1− x̂)
(
xn−xr

1−xr

)γ
+ x̂+ σξn otherwise

(25)
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An important difference with Eq. (22), now the reinjection is not symmetric
hence the effect of the noise is to shift the LBR from x̂ to x̂−σ. Other important
consequence of the no-symmetric reinjection is that the convolution (23) gives
a different results depending on depending on the relation between reinjection
parameters. For the simplest case, we have

Φ(x) =
b

2σ(α+ 1)

(
[x− (x̂− σ)]α+1 −Θ[x− (x̂+ σ)][x+ (x̂+ σ)]α+1

)
(26)

where Θ[·] represent the Heaviside step function.
Note that in Eq. (14) the position of the LBR is shifted to a new position

given by x̂ − σ In view of this, we split our analysis in two cases according to
x̂ − σ > −c or x̂ − σ < −c. In the first case all points are reinjected directly
into the laminar zone and the function M(x) can be approximated by linear
function as Fig. 7 shows. This shape is a consequence of Eq.(26). Note that
for x < x̂− σ the Heaviside function is zero and we recover for Φ(x) the same
power law that for φ(x(x) but the parameters are shifted from x to x̂− σ and
from α to α+ 1, consequently, the Eq. (9) now can be written as

M(x) = m1(x− x̂1) + x̂1 (27)

On the other hand, for x > x+σ, and for small values of σ we can approximate
Φ(x) in Eq. (26) by

Φ(x) ≈ b d

dx
(x− x̂)α+1 (28)

hence in that region the exponent of Φ(x) approximates to the exponent of the
noiseless density. Note that according to Eq. (10), the two slopes of M(x), m1

and m2, corresponding to the regions with exponents α+ 1 and α respectively,
are related by

m1 =
1

2−m2
. (29)

5 Conclusions and discussion

In this work an overview of type-I, II and III intermittecies and a recent method
to investigate it are reported.

The main point to described the intermittecy behavior is to determine the
probability density of reinjection (RPD). Through the use of M studied in
section 2, we have set a way to obtain an analytical description for the RPD,
the density of laminar length and the characteristic relations.

The quantity M(x) has a more reliable numerical and experimental access
than φ(x). In a number of cases the linear approximation M(x) ≈ m(x− x̂)+ x̂
fits very well the numerical or experimental data. According with this approxi-
mation we have φ(x) = b(x−x̂)α, hence we have found a rich variety of possible
profiles for the function ψ(l). Note that the new RPD is a generalization of
the usual uniform reinjection approximation which correspond to α = 0 or
m = 1/2.

203



Because the probability density of the length of laminar phase ψ(l) depends
on the RPD, the ψ(l) shapes are qualitatively different from the classical one.

Also it is extended the characteristic relation for type-I, II and III intermit-
tencies. Now, the critical exponent β is determined, through the quantities m,
x̂ and p as is reported in section 3.1, hence very different RPDs can lead to the
same characteristic exponent β.

It is worthy to recall that for m = 0.5, the classical uniform reinjection is
recovered, together with its corresponding characteristic relation.

Even though, there is certainly many papers devoted to the analysis of
the effect of noise on the laminar region, the effect of noise on the reinjection
probability density has not been fully considered. Note that the noise effect on
the uniform RPD can be neglected if does not change the uniform distribution,
however it is not the case for a more general RPD. In section 4, we propose
an analytical description of the noisy RPD (NRPD) valid for type-I, II and
type-III intermittency. We start making a numerical evaluation of the function
M(x). From this knowledge, we obtain the reinjection probability density
corresponding to the noiseless map, that is generated around the maximum and
minimum of the map. It is also important to note that from the RPD, obtained
from noisy data, we have a complete description of the noiseless system.
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Abstract. The axisymmetric stability of a straight jet in electrospinning process is

examined for a Newtonian fluid using the leaky dielectric model. While the previous

studies consider cylindrical jet of uniform radius as the base-state, in the present

study the thinning jet profile obtained as the steady-state solution of the 1D slender

filament model is treated as the base-state. The linear stability of the thinning jet is

analyzed for axisymmetric disturbances, which are believed to be responsible for the

bead formation. The eigen-spectrum of the disturbance growth rate is constructed

from the governing equations discretized using the Chebyshev collocation method.

The most unstable growth rate for thinning jet is significantly different from that for

the uniform jet. For the same electrospinning conditions, the thinning jet is found

to be stable whereas the uniform radius cylindrical jet is unstable to capillary mode

driven by surface tension. The dominant mode for the thinning jet is believed to be

an oscillatory conductive mode driven by the accumulation of the surface charge on

the perturbed jet. The role of various material and process parameters in the stability

behavior is also investigated.

Keywords: Electrospinning, Electrohydrodynamic instability, Linear stability the-

ory.

1 Introduction

In electrospinning process, nano fibers are produced by subjecting fluid to a

very high potential difference. The external electric field acting on the charges

located at the fluid surface generates a tangential force leading to an electrified

jet with strong thinning. The solid fibers, so produced, present tremendous

potential for technological applications leading to strong interest in the elec-

trospinning process. Many efforts to produce very thin fibers of size below 100

8thCHAOS Conference Proceedings, 26-29 May 2015, Henri Poicaré Institute,

Paris France
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nm suffer from the jet breakup due to surface tension driven capillary insta-

bility. In real electrospinning, this instability manifests in the form of bead

formation along the fibers. The stability analysis of the electrified jet provides

insightful understanding of the conditions under which the instability can be

observed.

The early analyses of stability of an electrified cylinder consider either an

uncharged jet in an axial electric field [1] or a perfectly conducting jet with a

uniform surface charge density but in the absence of an external electric field [2].

In electrospinning, the jet possesses both the surface charge and the tangential

electric field which significantly alters the dynamics of the jet due to tangential

electric stress on the jet surface. Hohman et al. [3] showed that a new mode

of instability attributed to the field-charge coupling is introduced for a charged

cylinder in the presence of a tangential electric field. This mode, referred

to as the conductive mode, is qualitatively different from the surface tension

driven Rayleigh-Plateau mode modified by the presence of an electric field.

In particular, while increasing the strength of electric field tends to stabilize

the capillary mode of instability, it render the conductive mode unstable. The

dominant mode depends strongly on the applied field, surface charge density,

jet radius as well as the rheology of the fluid.

Carroll and Joo [4, 5] carried out theoretical and experimental investigation

of the axisymmetric instability of an electrically driven viscoelastic jet. Using

an Oldroyd-B model to describe the fluid viscoelasticity, linear stability analy-

sis was carried out to obtain growth rate for the axisymmetric instability. The

stabilizing role of fluid elasticity has been observed, much in agreement with

experiments. However, in all previous studies, the stability is analyzed for a

charged cylinder of uniform radius, whereas in electrospinning the charged jet

undergoes significant stretching and thinning. While cylindrical jet as base-

state simplifies the calculation of the disturbance growth rate, as imposed per-

turbations can be assumed periodic in axial direction, this simple base-state

ignores the variation in radius, and hence the extensional strain rate developed

in the fluid. The strong extensional flow in the jet is believed to influence the

stability behavior due to the viscous stresses. In the present analysis, we con-

sider the actual thinning jet as the base-state, taking into account the variation

in jet radius, velocity, electric field as well as surface charge density along the

axial direction. The nonlinear coupling of these jet variable with the distur-

bance can alter the stability behavior of, an otherwise, cylindrical jet.
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2 Problem formulation

We analyze the straight jet emanating from the nozzle in the presence of an

axial electric field. The jet is modeled as 1D slender filament. The variables

are radius, R, velocity, v, surface change density, σ and electric field within

the jet, E, made non-dimensionalized using nozzle radius, R0, velocity at the

nozzle, v0 = Q/
(

πR2
0

)

, σ0 = ǭE0, and E0 = I/
(

πR2
0K

)

. Here, Q is the

volumetric flow rate, I is the current passing through the jet, ǭ is the air per-

mittivity, and K is the electrical conductivity of the fluid. Additionally, time is

non-dimensionalized by R0/v0 and stress in the fluid by ρv20 , ρ being the fluid

density. In real electrospinning, there exists a non-zero charge density on the

surface of the jet, and also the axial-electric field, leading to a strong electric

tangential shear force which is responsible for thinning of the jet. The electrical

forces in the fluid with finite conductivity is described using the leaky dielectric

model. The dimensionless governing equations describing the electrohydrody-

namics of the jet are [3, 6]:

2R
∂R

∂t
+

∂R2v

∂z
= 0, (1)

∂v

∂t
+ v

∂v

∂z
=

3

Re

1

R2

∂

∂z

(

R2 ∂v

∂z

)

+
1

We

(

1

R2

∂R

∂z
+

∂3R

∂z3

)

+
1

Fr
+

α

(

σ
∂σ

∂z
+ βǫ

∂E

∂z
+

2Eσ

R

)

, (2)

∂(Rσ)

∂t
+

∂

∂z

(

ER2 + PeRvσ
)

= 0, (3)

E = E∞ − ln(χ)

(

d(σR)

dz
−

β

2

d2(ER2)

dz2

)

. (4)

Here, equation (1) is the mass conservation equation; equation (2) represents

the conservation of momentum; equation (3) is the conservation equation for

the electrical charge; and equation(4) is the governing equation for the axial-

electric field within the jet. The definitions of various dimensionless numbers

are given in Table 1.

The electric forces due to Maxwell stresses on the slender filament are ob-

tained using the jump conditions:

||ǫEn|| = ǭĒn − ǫEn = σ, (5)

||ǫEt|| = Ēt − Et = 0, (6)

where the overbar signifies the parameter for the ambient air outside the jet.
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Table 1. List of dimensionless groups

Parameter Dimensionless number Definition

Pe Electric Peclet No. 2ǫv0
KR0

Fr Froude No.
v2

0

gR0

Re Reynolds No. ρv0R0

η

We Weber No.
ρv2

0
R0

γ

E0 Initial electric field I

(πR2

0
K)

α Alpha
ǭE2

0

ρv2

0

β Relative permittivity ǫ
ǭ
− 1

E∞ Imposed potential difference (∆V/d)
E0

χ Jet aspect ratio d/R0

2.1 Base-state

In previous studies [3], the base-state has been considered to be a cylindrical jet

of uniform radius. However, in the present study, we perform linear stability

analysis of the thinning jet, representing the actual profile during electrospin-

ning. Therefore, the base-state for the stability analysis is the steady-state

solution of the governing equations (1-4), which are solved numerically to ob-

tain the steady profile. The governing equations are supplemented with the

following boundary conditions at the top (z = 0):

R(0) = 1, v(0) = 1. (7)

The surface charge density at the nozzle-exit, generally, depends upon the

geometry of the top electrode. The simple 1D model employed cannot capture

the details of the charge distribution near the electrode. We assume that near

the nozzle the free charges are distributed within the bulk of the fluid and hence

following boundary condition is enforced [6]:

σ(0) = 0. (8)

As the jet travels towards the bottom electrode, the free charges migrate to the

surface of the jet (fluid-air interface) and σ(z) becomes non-zero short distance

from the nozzle.

In real electrospinning the straight jet undergoes whipping motion after cer-

tain distance. Since, we examine only the straight jet, the boundary conditions

at the end of the straight jet are naturally unknown. However, far away from
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Fig. 1. Steady-state jet profiles: (a) Radius; (b) Velocity; (c) Surface charge density;

(d) Electric field. Parameters: χ = 75, β = 50 ,Re = 10−3,We = 10−3, Fr = 10−3,

Pe = 10−5, α = 0.01, and E∞ = 50.

the electrode, the electric field may be assumed to reach its imposed value:

E(χ) = E∞. (9)

[7] derived the asymptotic thinning condition considering that the radius of the

jet in the exit condition is very small and the electric forces are comparable to

the inertial forces, giving rise to following condition to be imposed at z = χ:

R + 4 z
dR

dz
= 0. (10)

The steady-sate solution of the nonlinear governing equations (1-4) is ob-

tained using the relaxation method. Figure 1 shows the profiles of jet radius

(R̄(z)), velocity (v̄(z)), charge density (σ̄(z)) and electric field (Ē(Z)) for a set

of dimensionless parameters corresponding to a Newtonian jet of glycerol.

3 Linear stability analysis

3.1 Stability analysis of a uniform jet

For stability analysis, the disturbance can be imposed on a cylindrical jet of

uniform radius, as done by [3] and others. In this case, the normal mode dis-

turbance of the following form is superimposed on the steady-state jet variable:

φ(z, t) = φ̄ + ǫφǫ e
i k z+ωt, (11)
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where φ represents the generic jet variable φ = [R, v, σ, E]T , and φ̄ denotes

its steady-state value. k is the axial wavenumber of the disturbance and ω is

the temporal growth/decay rate of the imposed disturbance. The steady-state

jet radius R̄ may be taken as unity, representing jet radius near the capillary

or the radius of the thinned jet near the bottom collector plate. For stability

analysis of a jet of uniform property, we consider the steady-state variables

φ̄ = [R̄, v̄, σ̄, Ē]T corresponding to the thinned jet, i.e. φ̄ = φ|z=χ, as shown in

Figure 1. After substituting the superposition equation (11) in the governing

equations (1) - (4) and linearizing about the base-state, using ǫ as a small

parameter, the algebraic equations for the disturbance dynamics are obtained.

The non-trivial solution for disturbance variables φǫ results into a dispersion

relation for the disturbance growth rate, ω = ω(k).

For the perturbations imposed on a cylindrical jet, the base-state profile

φ̄(z) is taken as φ̄(χ), a uniform value corresponding to the end-value of the

jet variable φ. For the steady-state profiles shown in Section 2.1, the base-

state variables are R̄ = 1.65 × 10−2, Ē = 50, and σ̄ = 1630. Considering

the reference frame moving with the cylindrical jet, we take v̄ = 0. For this

jet profile, the dispersion relation provides the growth-rate as a function of

disturbance wavenumber, as shown in Figure 2. The cylindrical electrified

jet is predicted to be unstable with maximum growth rate corresponding to

wavenumber k ≈ 0.05, made non-dimensionalized with capillary radius, R0.

3.2 Stability analysis for a thinning jet

Considering the base-state as a cylindrical jet of uniform radius is not appro-

priate as the jet undergoes strong thinning during the electrospinning. The

uniform radius jet ignores the stretching and hence the axial strain rate that is

developed in the electrified jet. Since the viscous stresses are important in the

jet dynamics, the oversimplification of uniform jet neglects the role of the vis-

cous stresses on the jet instability. The nonlinear coupling of the steady-state

extension rate and the disturbance of jet radius is believed to play an important

role in the stability behavior. In the present study, we consider the thinning

profile φ̄(z) as the base-state for the linear stability analysis. The generic vari-

able is expanded as steady-state profile superposed with infinitesimal amplitude

non-periodic disturbance as follows:

φ(z, t) = φ̄(z) + ǫ φ̃(z) eωt, (12)
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Fig. 2. Real part of the growth rate against disturbance wavenumber for uniform jet

superimposed with periodic perturbations. Parameters: χ = 75, β = 50, Re = 10−3,

We = 10−3, Fr = 10−3, Pe = 10−5, α = 0.01, and E∞ = 50.

where φ̄(z) is the steady-state jet profile and φ̃z denotes the disturbance profile.

Upon substituting above superposition in the conservation equations and lin-

earizing to O(ǫ) terms result into the disturbance governing equations. For the

form of non-periodic disturbance imposed, φ̃(z), we need to identify boundary

conditions for the disturbance variables. The boundary conditions are:

R̃(0) = 0, ṽ(0) = 0, (13)

Ẽ(0) = 0, σ̃(0) = 0. (14)

At lower end of the jet, z = χ, we consider following conditions:

R̃(χ) = 0 Ẽ(χ) = 0. (15)

The disturbance equations are discretized using the Chebyshev collocation tech-

nique resulting into a generalized eigenvalue problem of the form:

Aφ̃ = ω Bφ̃, (16)

where A and B are matrices of size 4N × 4N , with N being the number of col-

location points in the domain z = (0, χ). The spectrum of complex eigenvalues

is obtain using LAPACK numerical libraries.

213



−1 0 1 2 3 4 5 6 7 8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ω
r

ω
i

 

 
N=400
N=500
N=600

Fig. 3. Eigenspectrum of disturbance growth rate: real part against imaginary part

of the growth rate for uniform jet superimposed with non-periodic perturbations.

Parameters: χ = 75, β = 50, Re = 10−3, We = 10−3, Fr = 10−3, Pe = 10−5,

α = 0.01, and E∞ = 50.

In order to validate the numerical scheme, we first obtain the eigenspectrum

for the jet of uniform radius, studied in previous section. Figure 3 plots the

eigenspectrum showing the real and imaginary parts of the discrete eigenval-

ues, ωr and ωi respectively. As seen, the eigenspectrum is unaffected by the

number of Chebyshev collocation points, N , thus eliminating the possibility

of any spurious eigenvalues. The most unstable eigenvalue has growth rate

ωr ≈ 6.04, which is similar to the maximum ωr obtained earlier using periodic

perturbations as shown in Figure 2. Thus, the discretization technique which

constructs the full eigenspectrum has been validated.

So far, we have used the end-values of the jet profile when the jet has suf-

ficiently thinned far away from the capillary, as the base-state upon which the

infinitesimal amplitude disturbances are imposed. Thus, considering φ̄(z) =

φ̄(χ) in equation (12) ignores the entire thinning profile of the steady-state jet.

Next, the disturbances are superimposed on the thinning profile φ̄(z) taking

into account the role of extensional rate in stability behavior. Figure 4 shows

the eigenspectrum for the thinning jet using the same set of parameters as

used for the cylindrical jet. The eigenspectrum is found to be independent of
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Fig. 4. Eigenspectrum of disturbance growth rate: real part against imaginary part

of the growth rate for a thinning jet superimposed with non-periodic perturbations.

Parameters: χ = 75 ,β = 50, Re = 10−3, We = 10−3, Fr = 10−3, Pe = 10−5,

α = 0.01, and E∞ = 50.

the discretization points, N . Comparing with Figure 3 for the cylindrical jet,

the thinning jet is found to be stable as the real part of the growth rate ωr is

negative, ωr ≈ −2.1, for the leading eigenvalue. Therefore, the viscous stresses

as well as the variation in the surface charge density along the fiber render

stability to the jet.

The effect of various parameters on the leading growth rate is shown in

Figure 5. On decreasing the surface tension, i.e. increasing Weber number, the

real part of the leading growth rate is found to be nearly unaffected, as shown

in Figure 5(a). The insensitivity of surface tension to the disturbance growth

rate indicates that the leading eigenvalue corresponds to the conductive mode

of instability. This instability is driven by the electric field in the presence

of non-zero charge density on the jet surface [3]. To further confirm the type

of instability mode, the influence of external electric field, E∞, is shown in

Figure 5(b). As the strength of external field increases, the leading growth

rate, ωr, increases, even though remaining negative. Thus, the electric field

tends to weaken the stability of the jet. For the set of parameters employed,
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Fig. 6. Effect of electrical conductivity of the fluid on the leading growth rate. Pa-

rameters: χ = 75, β = 50, Re = 10−3, We = 10−3, Fr = 10−3, α = 0.01, and

E∞ = 50.

the growth rate of the leading disturbance remains negative for a range of

electric field strength studied.

Finally, we examine the effect of electrical conductivity of the fluid on the

leading growth rate. As seen in Table 1, the conductivity, K, appears in the

electric Péclet number, Pe and the definition of initial electric field E0, which

in turn, affects dimensionless numbers α and E∞. Hence, to study the effect
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of variation in fluid conductivity, three dimensionless parameters, viz. Pe, α

and E∞ are varied, in accordance with their definitions. Figure 6 shows the

influence of electrical conductivity of the fluid on the leading growth rate. It

should be noted that in addition to Péclet number, α and E∞ are also varied so

that the variation in K is captured keeping other parameters unchanged. With

decrease in conductivity (increase in Pe), the surface charge density decreases.

Since the leading mode is conductive mode, its growth rate is significantly

affected by the surface charge density. Thus, the leading growth rate is found

to decrease with increase in Péclet number.

4 Conclusion

The stability of a charged fluid jet under axial electric field is analyzed to

understand the bead formation during electrospinning process. Contrary to

previous studies in which the jet has been considered cylindrical with uniform

radius, the present analysis considers the actual thinning jet as the base-state

for stability analysis. Taking into consideration, the gradient of jet radius and

other variables along the axial-direction is found to significantly influence the

stability behavior of the jet. In particular, we find the thinning profile renders

the flow stable to axisymmetric disturbances. Under the same operating and

material parameters, while the uniform jet has positive growth rate, the thin-

ning jet is found to be stable with negative growth rate. The leading growth

rate appears to be a conductive mode, such that an increase in applied voltage

or increase in current tends to have destabilizing effect. However, the growth

rate remains negative for the range of parameters studied.
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Abstract. It is known that wrong clinical diagnosis of Parkinson’ disease is about 20 % 
among patients suffering from pathological tremor. That is why the search of new 
possibilities to improve the diagnostics has high priority. The aim of the work is to 
answer the question whether the methods of nonlinear dynamics can be used for the 
guaranteed differential diagnostics of two main types of pathological tremor 
(parkinsonian and essential ones). We have analyzed tremor determined as fast 
involuntary shaking and arising during the performance of the motor task by healthy 
subjects and two groups of patients with parkinsonian syndrome. The first group has the 
primary Parkinson’s disease and the second group has the essential tremor as finger’s 
shaking during the some movements as the main symptom. Using the wavelet transform 
modulus maxima method, the calculation of the Hölder exponents as well as the 
detection of unstable periodic orbits and surrogate data we demonstrate the statistically 
confirmed differences in dynamical complexity, multifractality degree and number of 
unstable periodic orbits for the two groups of patients. The results give the positive 
answer the question rose in the work. 
Keywords: Dynamical Complexity, Unstable Periodic Orbits, Multifractality, 
Parkinson’s disease, Essential Tremor. 

 
 
1  Introduction 

 
In spite of enormous number of works [1, 2] devoted to the study of 
pathological tremor the topic is of immediate interest because of large number 
of clinical errors connected with wrong administration of antiparkinsonian drugs 
for subjects having tremor symptoms but not having Parkinson’ disease. For 
example, parkinsonian tremor and so called essential tremor (or action tremor) 
when the body parts are involved into involuntary shaking   during the 
movement performance differ by frequency. The frequency in essential tremor, 
however, declines with age in the side of the parkinsonian tremor frequency [3] 
so that oldest patients can be objects of clinical errors. 
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The aim of the work is to answer the question whether the methods of nonlinear 
dynamics can be used for the guaranteed differential diagnostics of two main 
types of pathological tremor (parkinsonian and essential ones).  
We studied involuntary shaking (tremor) of fingers accompanied the 
performance of the motor task such as sustaining the given effort of human 
hands under isometric conditions (without finger movement in space). For 
estimating the tremor features we used the methods of nonlinear dynamics such 
as the wavelet transform and multifractal analysis as well as recurrence plot 
technique for detecting unstable periodic orbits and surrogate data. We 
demonstrate the use of these methods for a diagnostics of the human motor 
dysfunction.  
 
2  The experimental procedure 
We used the results of testing 10 healthy subjects aged 47-54 years, 6 
parkinsonian patients with bilateral akinesis and tremor aged 45–62 years and 7 
subjects with syndrome of essential tremor and without other symptoms of 
Parkinson’ disease. The motor task was to control the isometric muscle effort 
with the strength of muscle contraction shown by the positions of marks on a 
monitor. The subjects sat in front of a monitor standing on a table and pressed 
on platforms containing stress sensors with their fingers. The sensors 
transformed the pressure strength of the fingers of each hand into an electric 
signal. The rigidity of the platforms made it possible to record the effort in the 
isometric mode, i.e., without noticeable movement of fingers at the points of 
contact with the sensors. The isometric effort was recorded for 50 s. The 
subject’s fingers sustained an upward muscle effort, with the back of each hand 
pressing against the base of the platform. 

The patients with Parkinson’s disease did not take any drugs before the test on 
the day of testing. Usually, these patients received nakom, an antiparkinsonian 
preparation three times a day to compensate for dopamine deficiency. The 
subjects with syndrome of essential tremor did not have tremor medication.  

The recorded trajectory of isometric effort consisted of a slow trend and a fast 
involuntary component (tremor), which was isolated from the recorded 
trajectory using the MATLAB software. 
 
3  Wavelet transform and multifractality 

3.1 Estimation the global wavelet spectrum of the tremor 
 
To evaluate the difference between physiological and pathological tremors, we 
used the wavelet transform modulus maxima (WTMM) method [4] based on the 
continuous wavelet transform of a time series describing the examined tremor 
x(t): 
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where a and t0  are the scale and space parameters, ψ((t- t0)/a) is the wavelet 
function obtained from the basic wavelet ψ(t) by scaling and shifting along the 
time, symbol * means the complex conjugate. As the basic wavelet we use the 
complex Morlet wavelet:  
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where the second component in brackets can be neglected at w0=2p>0, the 
multiplier factor exp(iw0t) is a complex form of a harmonic function modulated 
by the Gaussian ),5.0exp( 2t−  the coefficient 4/1−π  is necessary to normalize the 
wavelet energy. The value ω0=2π gives the simple relation    f=1/a   between the 
scale a and the frequency f of the Fourier spectrum. Then expression has the 
form: 
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The modulus of the wavelet spectrum  |W(f, t0)|  characterizes the presence and 
intensity of the frequency f at the moment t0 in the signal and |W(f, t0)|2

   

describes the instantaneous distribution of the tremor energy over frequencies, 
that is, the local spectrum of the signal energy at the time t0.. 
The value   

∫=
2

1

0

2

0 ),()(
t

t

dttfWfE  

determines the global wavelet spectrum, i.e., the integral distribution of the 
wavelet spectrum energy over frequency range on the time interval [t1 , t2 ].  
 
3.2 Estimation the tremor multifractality 
 
Information about possible multifractal feature of the signal and its localization 
t0 reflects in the asymptotic behavior of coefficients |W(a, t0)|  at small a values 
and large f values, respectively. Abnormal small decrease of the wavelet 
coefficients at a→0   in a neighborhood of the point t0   testifies about 
singularity of the signal at the point. Thus, the rate of the change of the modulus 
of the wavelet coefficients enables to analyze the presence or absence of 
singularities of the signal.  
The degree of singularity of the signal x(t) at the point t0 is described by the 
Hölder exponent, h(t0),  the largest exponent such that the analyzed signal in a 
neighborhood of the point t0 can be represented as the sum of the regular 
component (a polynomial Pn(t) of order n < h(t0)) and a member describing a 
non - regular behavior [4]:  
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The value h(t0) is the measure of singularity of the signal at the point  t0  since 
the smaller  h(t0) value, the more singular the signal. The Holder exponents 
characterize the presence of correlations of different types in the analyzed 
process, e.g., anti-correlated (h < 0.5) or correlated (h > 0.5) dynamics or 
absence of correlations (h = 0.5).  
The Hölder exponents are found on the basis of statistical description of local 
singularities by partition functions [5].  The algorithm consists of the following 
procedures.  
1) The continuous wavelet transform of the time series is used. 
2) A set L(a) of lines of local modulus maxima of the wavelet coefficients is 
found at each scale  a 
3) The partition functions are calculated by the sum of q  powers of the modulus 
maxima of the wavelet coefficients along the each line at the scales smaller the 
given value a: 
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, 

tl(a*) determines the position of the maximum corresponding to the line l at this 
scale 
4) The partition function is )(~),( qaaqZ τ at a→0 [5], therefore, the scaling 
exponent can be extracted as  

.log),(log~)( 1010 aaqZqτ  
5) Choosing different values of the power q one can obtain a linear dependence 
τ(q) with a constant value of the Hölder exponent  

constdqqdqh == )()( τ  
for monofractal signals and nonlinear dependence )()()( hDqqhq −=τ with 
large number of the Hölder exponents for multifractal signals. 
6) The singularity spectrum (distribution of the local Hölder exponents) is 
calculated from the Legendre transform [5]:  

).()()( qqqhhD τ−=  
 
Using the global wavelet spectra and the WWTM algorithm for the different 
tremor recordings we obtain the maximum of the global tremor energy (Emax) 
and two multifractal parameters: a) the width of the singularity spectrum    

∆h = hmax – hmin , 
where hmax and hmin  are the maximal and minimal values of the Holder exponent 
corresponding to minimal and maximal tremor fluctuation, respectively; b) the 
asymmetry of the singularity spectrum  

∆ = | ∆2 – ∆1 |, 
where    ∆1 = hmax – h0    and  ∆2 = h0 – hmin ,      h0 = h (q = 0).  
Smaller Δh indicates that the time series tends to be monofractal and larger Δh 
testifies the enhancement of multifractality. The asymmetry parameter ∆ 
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characterizes where, in the region of strong singularities  (q > 0) or in the region 
of weak singularities (q < 0), the singularity spectrum is more concentrated. 
To compare the mean values in each of the examined group of subjects the 
Student criterion was applied. 
 
4  Recurrence plot and localization of unstable periodic orbits 
The set of unstable periodic orbits (UPOs) which form the skeleton of the 
chaotic attractor can be found by the recurrence quantification analysis (RQA) 
[6]. The calculation for the RQA was performed using the CRP Toolbox, 
available at tocsy.pik-potsdam.de/crp.php.  
A recurrence plot (RP) is a graphical representation of a matrix defined as  

( ),),(, jiji yymR −−Θ= εε  
where e is an error (threshold distance for RP computation), q (·) is the 
Heaviside function, symbol || .|| denotes a norm and y is a  phase space trajectory 
in a  m-dimension phase space [7]. The trajectory can be reconstructed from a 
time series by using the delay coordinate embedding method [8]. 
The values Ri,j =1 and Ri,j =0 are plotted as gray and white dots, reflecting  
events that are termed as recurrence and nonrecurrence, respectively. 
The recurrence time is defined as the time needed for a trajectory of a dynamical 
system to return into a previously visited neighborhood [9]. 
The pattern corresponding to periodic oscillations (periodic orbits) is reflected 
in the RP by noninterrupted equally spaced diagonal lines. The vertical distance 
between these lines corresponds to the period of the oscillations. The chaotic 
pattern leads to the emergence of diagonals which are seemingly shorter. The 
vertical distances become irregular. When the trajectory of the system comes 
close to an unstable periodic orbit (UPO), it stays in its vicinity for a certain 
time interval, whose length depends on how unstable the UPO is [9, 10]. Hence, 
UPOs can be localized by identifying such windows inside the RP, where the 
patterns correspond to a periodic movement. If the distance between the 
diagonal lines varies from one chosen window to the other then various UPOs 
coexist with  different periods.  
The period of UPO can be estimated by the vertical distances between the 
recurrence points in the periodic window multiplied by the sampling time of the 
data series [9, 11].   
The algorithm for finding UPOs consists of the following procedures.  
1. A phase space trajectory y(t) is reconstructed from a measured time series 
{x(t)} by the delay coordinate embedding method: 

 
y(t)=(x(t), x(t+d),…, x(t+(m-1)d), 

 
where m is the embedding dimension and d is the delay time. Parameters m=5 
and d =2 were chosen on the basis of first minimum of the mutual information 
function and the false nearest neighbor method [12]. 
2. To identify unstable periodic orbits a recurrence  plot  
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is constructed with the threshold distance e equal to 1% of the standard 
deviation of the data series. 
3. The recurrence times of second type [10] are found for the recurrence 
neighbourhood of radius e. The values of   recurrence periods are determined as 
recurrence times multiplied by the sampling time of the data series. The values 
are  recorded in a histogram. The periods of UPOs are the maxima of the 
histogram of the recurrence periods.  
4. To exclude the noise influence the obtained UPOs are tested for statistical 
accuracy. For this purpose the procedure is repeated for 30 surrogates obtained 
as randomized versions of the original data. In the surrogate data the time 
interval sequences are destroyed by randomly shuffling the locations of the time 
intervals of original data [13]. 
The statistical measure of the presence of statistically significant UPOs in the 
original time series is given by the ratio  

,/)(
_

σAAk −=  

where A is the value of maximum of the histogram, 
_

A   is the mean of A for 
surrogates and σ  is a standard deviation. The value of k characterizes the 
existence of statistically significant UPOs in the original data in comparison 
with its surrogate (noisy) version. The value k>2 means the detection of UPOs 
with a greater than 95% confidence level. 
 
 
5 Results and discussion 
 
Examples of fast component of the isometric force trajectory of the human hand 
(tremor) for the healthy subject, the patient with Parkinson disease and for the 
subject with essential tremor as well as their global wavelet spectra are given in 
Fig.1.The healthy and pathological tremors differ by spectra maxima. The 
maximum (Emax) of the physiological tremor spectrum is in the frequency range 
of the alpha rhythm [8, 14] Hz. For the pathological tremor Emax   is shifted in 
the theta range [4, 7.5] Hz and it increases in ten times in the parkinsonian 
tremor and in five times in the essential one as compared with the healthy 
tremor. The essential tremor spectrum has two peaks as opposed to the 
parkinsonian tremor but the values of the peaks do not differ significantly. 
Figure 2 illustrates the differences in the singularity spectra D(h) for the same 
subjects. The form of spectrum testifies the multifractality of both physiological 
and parkinsonian tremor but the spectra differ for the three examples.  
 
 
 

 

224



0 5 10-1

0

1
healthy

ef
fo

rt(
N

)

25 30 35 40 45-1

0

1
parkinsonian

ef
fo

rt(
N

)

30 35 40 45 50-1

0

1
essential

time (s)

ef
fo

rt(
N

)

8 160

0.02

0.04
healthy

E
(f)

4 8 160

0.2

0.4
parkinsonian

E
(f)

4 8 160

0.1

0.2
essential 

f(Hz)

E
(f)

 
 

Fig.1 Examples of healthy, parkinsonian and essential  tremors (left column)   and their 
global wavelet spectra  E(f) (right column) 
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Fig. 2 Examples of the singularity spectra D(h) for the different tremors (left column)   
and intervals between local maxima of the tremor data (right column) 
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The healthy tremor is characterized by the largest width ∆h of the singularity 
spectrum and, therefore, by the significant degree of multifractality. The decline 
in the width of the spectrum shows a fall in the multifractality degree. It means a 
reduction of nonuniformity of the pathological tremors. We illustrate it in the 
right column of Figure 2 where intervals between local maxima of the tremor 
data are depicted. 
The parkinsonian tremor is characterized by the smallest width of the  
singularity spectrum and its smallest asymmetry (∆). The values of ∆h and ∆ for 
the essential tremor are larger than for the parkinsonian one but they do not 
exceed the values for healthy tremor. 
The decrease of the both parameters in pathological tremor is due to decreasing 
contribution of weak fluctuations (for q < 0). These fluctuations lead to the 
expansion of the singularity spectrum and emergence of both anticorrelated (for 
h < 0.5) and correlated (for h > 0.5) dynamics of sequent intervals between local 
maxima of the tremor data. 
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Fig. 3.  Examples of recurrence plots for the different tremors (left column)   and 
histograms of recurrence periods for tremor data and their surrogates (right column, solid 
and dash-and-dot lines, respectively). 
Parameters: the embedding dimension m=5, the delay time d =2, the threshold distance e 
=1% of the standard deviation of the data series. 
 
The recurrence plots depicted in Figure 3 exhibit non-homogeneous but  
quasi-periodic recurrent structures reflecting in that the distances between the 
diagonal lines vary in all the three considered tremors. The RP of the healthy 
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tremor is characterized by small black rectangles, whereas the RPs from the 
pathological tremors show larger rectangles. These rectangles may reflect time 
intervals when the trajectory is travelling near the corresponding UPOs [10].  
The recurrence times obtained from the RP given in the Figure 3 are clustered in 
the intervals around the value i=24 for the healthy tremor, around i=36 and 72 
for the parkinsonian one and around  i=28,  84  and 168 for the essential tremor. 
Taking into account the value of the sampling rate value dt=0.005(s) the 
recurrence periods are equal to 0.12 (s) for the healthy data, 0.18 (s) and 0.36 (s) 
for the parkinsonian data and 0.14 (s), 0.42 (s) and 0.84 (s) for the essential data. 
These recurrence periods were extracted as peaks of the histograms given in the 
right column of Figure 3 (solid lines). The periods obtained can be used for 
localization of UPOs. 
Testing surrogate data we excluded the values 0.12 (s) and 0.36 (s) since  the  
statistical measure k<1  in both cases. For other recurrence periods extracted 
from Figure 3 the value k>2 that supports the detection of UPOs with a greater 
than 95% confidence level. Thus, for the healthy tremor data represented in 
Figure 3 there are no statistically significant UPOs. By contrast, the UPO of 
period 1 (0,18 s) is found  for the parkinsonian tremor and the UPOs of periods 
1, 3 and 6 are obtained  for the essential tremor (0.42/0.14=3,  0.84/0.14=6). 
The similar dynamics of the wavelet and multifractal parameters as well as 
UPOs localization is observed for all the examined subjects. It enables us to use 
the common practice of averaging the recordings of all subjects for testing 
significant variations among the groups.  
The values of Emax, ∆h, ∆ and statistical measures k  for UPOs of various periods 
averaged by subjects in every group are given in Table 1.  
 

tremor hand healthy parkinsonian essential 
left 0.029≤0.001 0.45≤0.02 0.25≤0.01 Emax 

right 0.037≤0.003 0.56≤0.04 0.31≤0.02 
left 0.83≤0.08 0.22≤0.02 0.49≤0.05 ∆h 

right 0.76≤0.09 0.27≤0.02 0.42≤0.04 
left 0.46≤0.04 0.09≤0.01 0.27≤0.03 ∆ 

right 0.38≤0.03 0.12≤0.01 0.20≤0.02 
left <1 4.9≤0.8 5.7≤0.9 k (p1) 

right <1 3.8≤0.6 4.5≤0.8 
left <1 <1 <1 k (p2) 

right <1 2.1≤0.6 <1 
left <1 <1 2.1≤0.3 k (p3) 

right <1 <1 2.7≤0.3 
left <1 <1 3.8≤0.4 k (p6) 

right <1 <1 4.1≤0.4 
 

Table 1. Comparison of the mean values of wavelet and singularity spectra 
characteristics and statistical measure of UPOs (averaging over subjects inside the every 

examined group).  
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The significant distinctions between the states (pathological or physiological 
tremor) are identified by all the parameters (p<0.03). The values for the 
essential and parkinsonian tremors also differ (p<0.05). 
The results serve one more verification for the decline of dynamical complexity 
of time intervals in pathological tremor. It exhibits in the decrease of the 
multifractality degree, disappearance of long–range correlations and transitions 
to strongly periodic dynamics including the emergence of unstable periodic 
orbits in involuntary oscillations of the human hand. 
Conclusions 
Our study of differences in involuntary oscillations arising during the 
maintenance of isometric force by the human hand of a subject suffering from 
Parkinson’ disease and a subject having tremor symptoms but not having the 
disease demonstrates that the multifractal characteristics and number of UPOs 
can serve useful indicators of a dysfunctional network in the central nervous 
system.  
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Abstract. This paper deals with the study of chaotic spectral wave properties of
a cavity sphere layered central-symmetric dielectric resonator. The analytical and
numerical research was carried out. It is determined that resonant frequencies of a
given layered resonator accurately coincide with the resonant frequencies of inhomo-
geneous resonator with specified oscillation indices if the radius of inner sphere is
much less than the outer resonator radius. Increasing the radius of inner sphere these
resonant frequencies shift to smaller values and new additional resonances appear,
which cannot be identified by the same oscillation indices and it can be considered as
possible chaotic presentation. The probability of inter-frequency interval distribution
has signs of spectral chaos in studied structure.
Keywords: Sphere dielectric central-symmetric resonator, spectral wave properties,
resonant frequencies, oscillation indices, signs of spectral chaos, probability of in-
ter-frequency interval distribution.

1 Introduction

Our aim is to study the chaotic properties of a layered spherical dielectric cavity
resonator with a inner centered spherical dielectric sphere. Dielectric resonators
are known to be widely used in optics, laser technology, solid-state electronics
(see, for example, Refs. [1,2]). The change of the oscillation spectrum of such
resonators strongly depends on both inhomogeneities in the dielectric filling
and the resonator shape. For practical applications it is extremely important
to know the degree of regularity or randomness of the frequency spectrum.
The detailed analysis of the spectrum chaotic properties for different resonant
systems can be found, for instance, in [3].

The resonators with electromagnetic wave oscillations are often similar to
classical dynamic billiards. Spectral properties of classical dynamical billiards
have been thoroughly studied to date (see, e. g., the book [4]). The spectral
properties of wave billiard systems are the subject of study by the relatively
young field of physics, called “quantum (or wave) chaos” [5,6]. Using the
terminology given in paper [7], such systems can be called composite billiards.

8thCHAOS Conference Proceedings, 26-29 May 2015, Henri Poicaré Institute,
Paris France
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It is necessary to underline that the presence of additional spatial scale in wave
billiards — the wavelength λ — results in serious limitations when trying to
describe the chaotic properties of their spectra using the ray approach. In
particular, there exist the ray splitting on the interface of different edges in the
composite billiards [8,9], which cannot be captured by the classical dynamics.
Thus, the ray approach is not well-suited to wave billiard-type systems, so their
chaotic properties have to be studied, in general, applying of wave equations.

Statistic analysis of the wave system spectrum is mainly based on the meth-
ods used in the classical chaos dynamics, for instance, on the study of inter-
frequency interval distribution, spectral rigidity and so on [5,6,10]. The goal
of the present work is to investigate spectral properties of layered cavity res-
onators starting from electromagnetic wave approach. To reach this objective
we apply the calculation technique consisting of rigorous splitting of oscillation
modes by means of the operational method. This technique was used previously
for inhomogeneous waveguides and resonators with bulk and surface inhomo-
geneities [11–14]. The result of the mode splitting in such complicate and
conventionally non-integrable systems is the appearance of specific potentials
of operator nature in the wave equation. The structure of these potentials gives
rise to the possibility of studying the oscillation spectrum both numerically and
analytically.

The spectrum of spherical resonator with homogeneous dielectric inside is
strongly degenerate due to the central symmetry. The degeneracy leads to the
clustering of the probability distribution maximum for inter-frequency intervals
near zero value. It is quite natural to expect that when the spherical resonator
becomes layered due to the spherical inner dielectric the spectrum degeneracy is
removed. This is strongly expected to be so at least in the case of the symmetry
violation.

In the present work we attempt to answer the following questions. What
is the type of the probability distribution for inter-frequency intervals in the
case of composite (layered) spherical resonator with and without the spatial
symmetry? What is the qualitative nature of deformation of the probability
distribution when spatial symmetry is violated? What are the signatures of
classical chaos in this distribution?

2 Problem statement and basic relationships

We are interested in eigen-oscillations of an electromagnetic resonator taken
in the form of ideal conducting sphere of radius Rout filled with homogeneous
dielectric of permittivity εout, in which a centered inner dielectric sphere of
smaller radius Rin is placed, whose permittivity is εin (see Fig. 1).

The electromagnetic field inside the resonator can be expressed through
electrical and magnetic Hertz functions, U(r) and V (r) [15]. Using these
functions, we can go over to Debye potentials ΨU,V (r) ΨU (r) = r−1U(r) and
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Fig. 1. Composite double-spherical dielectric cavity resonator.

ΨV (r) = r−1V (r) [15,16] both obeying the same Helmholtz equation,

[
∆+ k2ε(r)

]
Ψ(r) =

1

r2
∂

∂r

(
r2
∂Ψ

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sin θ

∂Ψ

∂ϑ

)
+

1

r2 sin2 θ

∂2Ψ

∂ϕ2
+ k2ε(r)Ψ = 0 (1)

(ϑ and ϕ are polar and azimuthal angle variables), but different independent
boundary conditions,

∂

∂r
(rΨU )

∣∣∣∣∣
r=Rout

= 0 , (2a)

ΨV

∣∣∣∣
r=Rout

= 0 . (2b)

The first condition belongs to the class of so-called Robin’s boundary conditions
(see, e. g., Ref. [17]), the second one is the well-known Dirichlet condition.
The conditions (2) for the electrical and magnetic Debye potentials allows to
find these potentials independently from each other, which may be interpreted
as the possibility to separate electrical and magnetic-type oscillation in the
inhomogeneous spherical resonator.

We will consider the resonator inhomogeneity according to quantum-mechanical
perturbation approach. If we take the inhomogeneity as a potential in Schrodinger
equation we can write the permittivity in the equation (1) as a ”weighted” sum
of permittivities of inner and outer dielectric spheres,

ε(r) = εinΘ
(
r ∈ Ωin

)
+ εoutΘ

(
r ∈ Ωout \Ωin

)
. (3)
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Here Θ(A) stands for the logical theta-function determined as

Θ(A) =

{
1 , if A = true

0 , if A = false
, (4)

Ωin and Ωout are the portions of spatial points belonging to inner and outer
spheres, respectively. It is convenient to present function (3) as a sum of its
spatially averaged part

ε =
εinVin + εout(Vout − Vin)

Vout
, (5)

with Vin/out = (4π/3)R3
in/out being the volumes of inner and outer spheres, and

the summand ∆ε(r), the integral of which over the whole resonator volume is
equal to zero. The solution to Eq. (1) with exact permittivity value instead of
its average one given by (5) will be the starting point to build the constructive
perturbation theory.

Equation (1) with coordinate-independent permittivity can be solved by
the method described in a number of textbooks (see, e. g., Ref. [18]). The
general solution can be presented as an expansion in complete orthogonal
eigenfunctions of the Laplace operator, which in spherical coordinates have
the form [19,20]

|r;µ〉 =
D

(l)
n

R

√
2

r
Jl+ 1

2

(
λ(l)n r/R

)
Y ml (ϑ, ϕ) (6)(

n = 1, 2, . . . ,∞ ; l = 0, 1, 2, . . . ,∞ ; m = −l,−l + 1, . . . l − 1, l
)
.

Here, to simplify the equations we introduce the vector mode index µ =
{n, l,m}, Jp

(
u) is the Bessel function of the first kind, Y ml (ϑ, ϕ) is the spherical

function,

Y ml (ϑ, ϕ) = (−1)m
[

(2l + 1)

2
· (l −m)!

(l +m)!

]1/2
Pml (cosϑ) · eimϕ√

2π
, (7)

Pml (t) is the Legendre function. The coefficients λ
(l)
n in the equation (6) are the

positive zeros of either the sum uJ ′
l+ 1

2

(u)+(1/2)Jl+ 1
2
(u) (if boundary conditions

(BC) (2a) is applied), or the function Jl+ 1
2
(u) (in the case of BC (2b)), which

are numbered by natural index n in ascending order. Normalization coefficient

D
(l)
n in relation (6) depends on the particular boundary condition,

D(l)
n =

{
J ′2l+ 1

2

(
λ(l)n
)

+

[
1−

(
l + 1/2

λ
(l)
n

)2
]
J2
l+ 1

2

(
λ(l)n
)}− 1

2

for BC (2a), (8a)

D(l)
n = J−1

l+ 3
2

(
λ(l)n
)

for BC (2b). (8b)
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The eigenvalue of the Laplace operator, that corresponds to eigenfunction (6),
is degenerated over azimuthal index m,

Eµ = −k2µ = −

(
λ
(l)
n

R

)2

. (9)

with the degeneracy equal to 2l + 1.

The spectrum of the resonator with nonuniform permittivity (3) can be
found through the calculation of density of states ν(k) (see, e. g., Ref. [21]).
Function ν(k) can be expressed through the Green function of wave equation
(1) with complex-valued frequency account for dissipation in the resonator,

ν(k) = π−1Im
{

Tr Ĝ(−)
}
. (10)

Here Ĝ(−) is the advanced Green operator corresponding the equation (1) with
negative imaginary part in the complex frequency plane. The Green func-
tion (considered as the coordinate matrix element of operator Ĝ(−)) obeys the
equation [

∆+ εk2 − i/τd − V (r)
]
G(r, r′) = δ(r− r′) , (11)

where the term V (r) = −k2∆ε(r) will be interpreted as the effective poten-
tial (in the quantum-mechanical terminology). In comparison with Eq. (1),
equation (11) is supplied with imaginary term i/τd which takes phenomenolog-
ically into account the dissipation processes in the bulk and on the surface of
the resonator. Strictly speaking, the dielectric loss in the resonator depend on
the frequency in the general case. Yet now we will neglect this dependence to
simplify further investigations.

For the numerical calculation purposes it is suitable to go over from the
coordinate representation of Eq. (11) to the momentum representation. Equa-
tion (11) then takes the form of an infinite set of coupled algebraic equations,

(
εk2 − k2µ − i/τd − Vµ

)
Gµµ′ −

∑
ν 6=µ

UµνGνµ′ = δµµ′ . (12)

Here the quantities Vµ and Uµν , which we will term the intramode and the
intermode potentials, are the matrix elements of potential V (r) taken in the
basis of functions (6),

Uµν =

∫
Ω

dr 〈r;µ|V (r) |r;ν〉 = −k2(εin − εout)Iµν , (13a)

Vµ = Uµµ = −k2(εin − εout)
[
Iµµ − Vin/Vout

]
, (13b)

Iµν =

∫
Ωin

dr〈r;µ|r;ν〉 .
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In the case of strictly centered outer and inner dielectric spheres the integrals
in the relationships (13) are calculated rigorously, and the result is as follows,

Iµν(Ωin) =2Qδlµlν δmµmν

D
(lµ)
nµ D

(lµ)
nν

λ
(lµ)2
nµ − λ(lµ)2

nν

[
λ(lµ)
nµ

Jlµ+ 3
2

(
λ(lµ)
nµ
Q
)
Jlµ+ 1

2

(
λ(lµ)
nν
Q
)

−λ(lµ)
nν

Jlµ+ 1
2

(
λ(lµ)
nµ
Q
)
Jlµ+ 3

2

(
λ(lµ)
nν
Q
)]

(µ 6= ν) , (14a)

Iµµ(Ωin) =Q2
[
D(lµ)
nµ

]2 [
J2
lµ+ 1

2

(
λ(lµ)
nµ
Q
)
− Jlµ− 1

2

(
λ(lµ)
nµ
Q
)
Jlµ+ 3

2

(
λ(lµ)
nµ
Q
)]
.

(14b)

Here we have introduced the scale parameter Q = Rin/Rout 6 1 that describes
the degree of the resonator geometric inhomogeneity.

3 Numerical results and discussion

The set of basic equations (12) can, in principle, be solved analytically using
the operator technique of mode separation [14]. Yet, in view of the tediousness
of that technique, in this study we examine equations (12) numerically. To ob-
tain the solution we have elaborated programming software that calculate the
resonator Green function, determine its maxima locations, and also build the
inter-frequency distribution function. It is necessary to accentuate that such
a calculation task is quite resource-intensive, and it leads to rigid constraint
for the number N of oscillation modes taken into account. The computational
complexity grows much faster than N3. Such a dependence on the number
of analyzed oscillations can be explained by the complexity of numerical inte-
gration of oscillating functions (Bessel functions, spherical Legendre functions)
with the growing number of their zeros on the interval of integration. The
main numerical calculations were carried out on the computing cluster at the
Institute for Radiophysics and Electronics of National Academy of Sciences of
Ukraine, which is a part of the infrastructure of the Ukrainian National Grid
(UNG). Based on the available computation resources (CPU clock speed 2.5
GHz, RAM 1.5 Gb/core), we were compelled to limit the number of harmonics
by 10,000 and no more than 2000 harmonics for an arbitrary value of hetero-
geneity. The calculation of each harmonics takes from a few seconds for the
long-wavelength modes to tens of minutes for short ones. To speed up the cal-
culations and the possibility to operate with a greater number of harmonics,
the parallelization of computational algorithm with the use of MPI technology
was implemented. Note that the task under consideration is highly scalable.
Thus, the parallel computation provides a performance increase. It is almost
proportional to the number of computing nodes involved. All calculations were
performed in the standard representation for double-precision real numbers.
Relative error of calculation does not exceed 106, and the main source of error
was the accuracy of numerical integration and calculation of special functions.

From Eqs. (12) we have calculated all diagonal elements of the Green func-
tion matrix ‖Gµµ′‖. In Fig. 2, the density of states (DoS) of the resonator is
presented, which is calculated using the definition (10). It can be seen that the
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Fig. 2. The whole frequency spectrum as the frequency dependence of the imaginary
part of the sum of diagonal Green functions for the composite cavity resonator with
centered dielectric spheres: A — Q=0; B — Q=0.583; C — Q=0.897; D — Q=0.998.
The permittivities of the inner and outer spheres are εin= 2.08, εout = 1.0. The
dissipation value corresponds to τd = 1000.

DoS graph becomes thicker with growing the radius of inner dielectric sphere.
When the inner radius value goes to the outer one, the DoS is getting thinner.
In this case the resonator filling tends to become homogenous with the effective
permittivity εout. Thus, the average DoS maximal value is observed at Q → 1.

To analyze the oscillation spectrum we examine the probability of the inter-
frequency intervals (nearest-neighbor spacings, NNS) between adjacent reso-
nances, P (S). Conventionally, the spectrum unfolding is used for this purpose,
implying the normalized mean inter-frequency distance to be equal to unity.
Fig. 3 demonstrates distribution P (S) for different inner radii and dissipation
values. For τd= 100000 (the loss is practically neglected) and Q=0 we have
convention with Poisson distribution, Pp(S) = exp(−S). This suggests the
resonance frequencies to be completely uncorrelated. With the increase in the
dissipation value (for example, τd =100) we obtain the distribution function

that tends to Wigner form, Pw(S) = 0.5πS exp(−πS
2

4 ). Thus, we are led to
conclude that the presence of dissipation in the resonator results in the chaotic
behavior of oscillation modes.

The essential difference between NNS distribution of the chaotic spectrum
and the regular one is the presence of mode “repulsion” (the downfall of P (S)
at low values of S). The repulsion of modes with close frequencies in the
chaotic spectrum can be explained as follows. When the resonator infill is
homogeneous, different oscillation modes are independent of each other and
do not interact with each other even if their own frequencies coincide, i. e. if
they are in a degenerate state. Any heterogeneity lifts the degeneracy, and the
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Fig. 3. The probability of inter-frequency interval distribution at different dissipation
values and inner radii : A — τd = 100000, Q=0; B — τd = 100, Q=0.67.

natural frequencies of different modes change in different ways, depending on
the degree of heterogeneity influence. That is, there is a kind of “repulsion” of
oscillations modes. The larger the impact of heterogeneity be, the greater is
the repulsion effect.

In Fig. 4, the intensity of a partial Green function Gµµ from Eq. (12) on
wave number is shown for the particular polar and radial indices and different
inner sphere radii Rin. At Rin=0 we observe one oscillation mode only. We will
call it the main resonance for the selected Green function. With the increase
in the inner radius Rin, additional resonances appear at the frequencies that
coincide with main resonances of the rest of radial modes with the definite
polar index.

In Fig. 5, the frequency dependence of the imaginary part of the sum of
diagonal Green functions for the oscillations with two different polar indices.
As the radius Rin increases, we observe that the resonances 1 and 2 interchange
their relative position. Thus, we see the occasional and unpredictable oscilla-
tions moving. We explain this behavior of resonances as a signature of wave
chaos arisen due to inhomogeneity of the resonator.

Thus, we have developed the statistical spectral theory of the centrally sym-
metric layered cavity resonator with homogeneous and inhomogeneous infill.
Numerical investigation of the resonator frequency spectrum was also carried
out. The signature of chaotic behavior of the resonator spectrum is demon-
strated. We have found out that the homogeneous resonator has inter-frequency
interval distribution similar to the Poisson distribution typical for the spectrum
with uncorrelated inter-frequency intervals. In the presence of dissipation in
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Fig. 4. Frequency dependence of the logarithm of partial normalized Green function
for different inner radii: 1 — Q=0, 2 — Q=0.448, 3 — Q=0.672, 4 — Q=0.8968, 5 —
Q=0.9977, 6 — Q=0.9997. Polar index is 3, radial index is 1. The permittivities of
the inner and outer spheres are εin=2.08, εout=1.0. The dissipation value corresponds
to τd = 100000.

the resonator, the NNS distribution tents to the distribution of Wigner form,
which clearly demonstrates the effect of “mode repulsion”.
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Abstract. We consider the problem of estimating reachable sets of nonlinear dy-
namical control systems with uncertainty in initial states when we assume that we
know only the bounding set for initial system positions and any additional statisti-
cal information is not available. We study the case when the system nonlinearity is
generated by the combination of two types of functions in related differential equa-
tions, one of which is bilinear and the other one is quadratic. The problem may be
reformulated as the problem of describing the motion of set-valued states in the state
space under nonlinear dynamics with state velocities having bilinear-quadratic kind.
Using results of the theory of trajectory tubes of control systems and techniques of
differential inclusions theory we find set-valued estimates of related reachable sets of
such nonlinear uncertain control system. The algorithms of constructing the ellip-
soidal estimates for studied nonlinear systems are given.
Keywords: Nonlinear control systems, Bilinear nonlinearity, Quadratic nonlinearity,
Set-membership uncertainty, Ellipsoidal calculus, Funnel equations, Trajectory tubes.

1 Introduction

The problem of parameter estimation for control problems and of the evalua-
tion of related estimating sets describing uncertainty is considered in the paper
in the case when a probabilistic description of noise and errors is not available,
but only a bound on them is known (Bertsekas and Rhodes[1], Kurzhanski and
Valyi[14], Milanese et al.[18], Schweppe[20], Walter and Pronzato[22]). Such
models may be found in many applied areas ranged from engineering problems
in physics to economics as well as to biological and ecological modeling when it
occurs that a stochastic nature of the errors is questionable because of limited
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data or because of nonlinearity of the model. Unlike the classical estimation
approach, set-membership estimation is not concerned with minimizing any
objective function and instead of finding a single optimal parameter vector, a
set of feasible parameters vectors, consistent with the model structure, mea-
surements and bounded uncertainty characterization, should usually be found.

The solution of many control and estimation problems under uncertainty
involves constructing reachable sets and their analogs. For models with linear
dynamics under such set-membership uncertainty there are several constructive
approaches which allow finding effective estimates of reachable sets. We note
here two of the most developed approaches to research in this area. The first
one is based on ellipsoidal calculus (Chernousko[3], Kurzhanski and Valyi[14])
and the second one uses the interval analysis (Walter and Pronzato[22]).

Many applied problems are mostly nonlinear in their parameters and the
set of feasible system states is usually non-convex or even non-connected. The
key issue in nonlinear set-membership estimation is to find suitable techniques,
which produce related bounds for the set of unknown system states without
being too computationally demanding. Some approaches to the nonlinear set-
membership estimation problems and discrete approximation techniques for dif-
ferential inclusions through a set-valued analogy of well-known Euler’s method
were developed in Kurzhanski and Varaiya[15], Kurzhanski and Filippova[13],
Dontchev and Lempio[6], Veliov[21].

In this paper the modified state estimation approaches which use the special
quadratic structure of nonlinearity of studied control system and use also the
advantages of ellipsoidal calculus (Kurzhanski and Valyi[14], Chernousko[3]) are
presented. We study here more complicated case than in Filippova and Matviy-
chuk[12] and we assume now that the system nonlinearity is generated by the
combination of two types of functions in related differential equations, one of
which is bilinear and the other one is quadratic. The problem may be reformu-
lated as the problem of describing the motion of set-valued states in the state
space under nonlinear dynamics with state velocities having bilinear-quadratic
kind. Using results of the theory of trajectory tubes of control systems and tech-
niques of differential inclusions theory we find set-valued estimates of related
reachable sets of such nonlinear uncertain control system. The algorithms of
constructing the ellipsoidal estimates for studied nonlinear systems are given.
Numerical simulation results related to the proposed techniques and to the
presented algorithms are also included.

2 Problem formulation

Let us introduce the following basic notations. Let Rn be the n–dimensional
Euclidean space, compRn is the set of all compact subsets of Rn, Rn×n stands
for the set of all n×n–matrices and x′y = (x, y) =

∑n
i=1 xiyi be the usual inner

product of x, y ∈ Rn with prime as a transpose, ‖x‖ = (x′x)1/2. We denote
as B(a, r) the ball in Rn, B(a, r) = {x ∈ Rn : ‖x − a‖ ≤ r}, I is the identity
n × n-matrix. Denote by E(a,Q) = {x ∈ Rn : (Q−1(x − a), (x − a)) ≤ 1}
the ellipsoid in Rn with a center a ∈ Rn and a symmetric positive definite
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n × n–matrix Q, Tr(Y ) denotes the trace of n × n–matrix Y (the sum of its
diagonal elements). Consider the following system

ẋ = A(t)x+ f(x)d+ u(t), x0 ∈ X0, t0 ≤ t ≤ T, (1)

where x, d ∈ Rn, ‖x‖ ≤ K (K > 0), f(x) is the nonlinear function, which is
quadratic in x,

f(x) = x′Bx,

with a given symmetric and positive definite n × n-matrix B. Control func-
tions u(t) in (1) are assumed Lebesgue measurable on [t0, T ] and satisfying the
constraint

u(t) ∈ U, for a.e. t ∈ [t0, T ],

(here U is a given set, U ∈ compRm). The n × n–matrix function A(t) in (1)
has the form

A(t) = A0 +A1(t), (2)

where the n × n–matrix A0 is given and the measurable n × n–matrix A1(t)

with elements {a(1)ij (t)} (i, j = 1, . . . , n) is unknown but bounded

A1(t) ∈ A =
{
A = {aij} ∈ Rn×n : |aij | ≤ cij , i, j = 1, . . . n

}
, t ∈ [t0, T ], (3)

where cij ≥ 0 (i, j = 1, . . . n) are given.

We will assume that X0 in (1) is an ellipsoid, X0 = E(a0, Q0), with a
symmetric and positive definite matrix Q0 and with a center a0.

Let the absolutely continuous function x(t) = x(t; u(·), A1(·), x0) be a so-
lution to dynamical system (1)–(3) with initial state x0 ∈ X0, with admissible
control u(·) and with a matrix A1(·) satisfying (2)–(3). The reachable set X(t)
at time t (t0 < t ≤ T ) of system (1)–(3) is defined as the following set

X(t) = { x ∈ Rn : ∃ x0 ∈ X0, ∃ u(·) ∈ U, ∃ A1(·) ∈ A such that

x = x(t) = x(t; u(·), A1(·), x0) }, t0 < t ≤ T.

The main problem of the paper is to find the external ellipsoidal estimate
E(a+(t), Q+(t)) (with respect to the inclusion of sets) of the reachable set X(t)
(t0 < t ≤ T ) by using the analysis of a special type of nonlinear control systems
with uncertain initial data.

3 Preliminaries

In this section we present some auxiliary results on the properties of reachable
sets for different types of dynamical systems which we will need in the sequel.
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3.1 Bilinear system

Bilinear dynamic systems are a special kind of nonlinear systems representing
a variety of important physical processes. A great number of results related
to control problems for such systems has been developed over past decades,
among them we mention here Brockett[2], Chernousko[4,5], Polyak et al.[19],
Kurzhanski and Varaiya[15], Kurzhanski and Filippova[13], Mazurenko[17], Fil-
ippova[7,11]. Reachable sets of bilinear systems in general are not convex, but
have special properties (for example, are star-shaped). We, however, consider
here the guaranteed state estimation problem and use ellipsoidal calculus for
the construction of external estimates of reachable sets of such systems.

Consider the bilinear system

ẋ = A(t)x, t0 ≤ t ≤ T, (4)

x0 ∈ X0 = E(a0, Q0), (5)

where x, a0 ∈ Rn, Q0 is symmetric and positive definite. The unknown matrix
function A(t) ∈ Rn×n is assumed to be of the form (2) with the assumption
(3).

The external ellipsoidal estimate of reachable set X(T ) of the system (4)-(5)
can be found by applying the following theorem.

Theorem 1 (Chernousko[4]). Let a+(t) and Q+(t) be the solutions of the
following system of nonlinear differential equations

ȧ+ = A0a+, a+(t0) = a0, t0 ≤ t ≤ T, (6)

Q̇+ = A0Q+ +Q+A0′ + qQ+ + q−1G, Q+(t0) = Q0, t0 ≤ t ≤ T, (7)

where
q =

(
n−1 Tr ((Q+)−1G)

)1/2
, (8)

G = diag
{

(n− v)
[ n∑
i=1

cji|a+i |+
(

max
σ={σij}

n∑
p,q=1

Q+
pqcjpcjqσjpσjq

)1/2]2}
, (9)

the maximum in (9) is taken over all σij = ±1, i, j = 1, . . . , n, such that
cij 6= 0 and v is a number of such indices i for which we have: cij = 0 for all
j = 1, . . . , n. Then the following external estimate for the reachable set X(t)
of the system (4)-(5) is true

X(t) ⊆ E(a+(t), Q+(t)), t0 ≤ t ≤ T. (10)

Corollary 1. Under conditions of the Theorem 1 the following inclusion holds

X(t0 + σ) ⊆ (I + σA)X0 + o1(σ)B(0, 1) ⊆

E(a+(t0 + σ), Q+(t0 + σ)) + o2(σ)B(0, 1),
(11)

where σ−1oi(σ)→ 0 for σ → +0 (i = 1, 2) and

(I + σA)X0 =
⋃
x∈X0

⋃
A∈A
{x+ σAx}.
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Proof. The inclusion (11) follows directly from (10) and presents a special case
of the inclusion related to the discrete version of the integral funnel equation for
the system (4)-(5) (Kurzhanski and Varaiya[15], Kurzhanski and Filippova[13]).

The following example illustrates the result of Theorem 1.
Example 1. Consider the following system{

ẋ1 = x2,
ẋ2 = (c(t)− 1)x1,

0 ≤ t ≤ 1, x0 ∈ X0 = B(0, 1) (12)

where c(t) is an unknown but bounded measurable function with |c(t)| ≤ 0.8
(0 ≤ t ≤ 1). The trajectory tube X(t) and its external ellipsoidal estimate
E(a+(t), Q+(t)) found by Theorem 1 are shown in Figure 1.

Fig. 1. Trajectory tube X(t) and its ellipsoidal estimating tube E(a+(t), Q+(t)) for
the bilinear control system with uncertain initial states.

We see here that the trajectory tube X(t) of bilinear system (12), issued
from the convex set X0 = B(0, 1), loses the convexity over time. External
ellipsoidal tube E(a+(t), Q+(t)) contains the reachable set X(t) and in some
points is enough accurate (it touches the boundary of X(t)).

3.2 Systems with quadratic nonlinearity

Consider the control system of type (1) but with a known matrix A = A0

ẋ = A0x+ f(x)d+ u(t), x0 ∈ X0 = E(a0, Q0), t0 ≤ t ≤ T. (13)
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We assume here that u(t) ∈ U = E(â, Q̂), vectors d, a0, â are given, a scalar
function f(x) has a form f(x) = x′Bx, matrices B, Q0, Q̂ are symmetric and
positive definite.

Denote the maximal eigenvalue of the matrix B1/2Q0B
1/2 by k2, it is easy

to see this k2 is the smallest number for which the inclusion X0 ⊆ E(a0, k
2B−1)

is true. The following result describes the external ellipsoidal estimate of the
reachable set X(t) = X(t; t0, X0) (t0 ≤ t ≤ T ).

Theorem 2 (Filippova[10]). The inclusion is true for any t ∈ [t0, T ]

X(t; t0, X0) ⊆ E(a+(t), r+(t)B−1), (14)

where functions a+(t), r+(t) are the solutions of the following system of ordi-
nary differential equations

ȧ+(t) = A0a+(t) + ((a+(t))′Ba+(t) + r+(t))d+ â, t0 ≤ t ≤ T, (15)

ṙ+(t) = max
‖l‖=1

{
l′
(
2r+(t)B1/2(A0 + 2d · (a+(t))′B)B−1/2+

q−1(r+(t))B1/2Q̂B1/2)
)
l
}

+ q(r+(t))r+(t),

q(r) = ((nr)−1Tr(BQ̂))1/2,

(16)

with initial state
a+(t0) = a0, r+(t0) = k2.

Corollary 2 (Filippova[8]). The following upper estimate for X(t0 + σ) =
X(t0 + σ; t0, X0) (σ > 0) holds

X(t0 + σ) ⊆ E(a+(σ), Q+(σ)) + o(σ)B(0, 1), (17)

where σ−1o(σ)→ 0 when σ → +0 and

a+(σ) = a(σ) + σâ, a(σ) = a0 + σ(A0a0 + a′0Ba0d+ k2d), (18)

Q+(σ) = (p−1 + 1)Q(σ) + (p+ 1)σ2Q̂,

Q(σ) = k2(I + σR)B−1(I + σR)′, R = A0 + 2d · a′0B
(19)

and p is the unique positive root of the equation

n∑
i=1

1

p+ αi
=

n

p(p+ 1)

with αi ≥ 0 (i = 1, ..., n) being the roots of the following equation |Q(σ) −
ασ2Q̂| = 0.

Numerical algorithms basing on Theorem 2 and producing the discrete-time
external ellipsoidal tube estimating the reachable set of the system (13) (to-
gether with related examples) are given in Filippova[10], Filippova and Matviy-
chuk[12].
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4 Main results

Consider the general case

ẋ = A(t)x+ x′Bx · d+ u(t), t0 ≤ t ≤ T, (20)

with initial state

x0 ∈ X0 = E(a0, Q0) (21)

and control constraints

u(t) ∈ U = E(â, Q̂), (22)

and with the uncertain matrix

A(t) = A0 +A1(t), A1(t) ∈ A, (23)

where the set A is defined in (3). As before we assume that matrices B, Q̂ and
Q0 are symmetric and positive definite.

The next theorem describes discrete external ellipsoidal estimates of reach-
able sets X(t) of the uncertain control system (20)–(23), containing both bi-
linear and quadratic nonlinearities.

Theorem 3. The following external ellipsoidal estimate holds

X(t0 + σ) ⊆ E(a∗(t0 + σ), Q∗(t0 + σ)) + o(σ)B(0, 1) (24)

where σ−1o(σ)→ 0 for σ → +0 and where

a∗(t0 + σ) = ã(t0 + σ) + σ(â+ a′0Ba0 · d+ k2d), (25)

Q∗(t0 + σ) = (p−1 + 1)Q̃(t0 + σ) + (p+ 1)σ2Q̂, (26)

with functions ã(t), Q̃(t) calculated as a+(t), Q+(t) in Theorem 1 but when we
replace matrices Q0 and A0 in (6)-(9) by

Q̃0 = k2B−1, Ã0 = A0 + 2d · a′0B (27)

respectively, and p is the unique positive root of the equation

n∑
i=1

1

p+ αi
=

n

p(p+ 1)
(28)

with αi ≥ 0 (i = 1, ..., n) being the roots of the following equation |Q(t0 + σ)−
ασ2Q̂| = 0.

Proof. Analyzing both results of Theorem 1 and Theorem 2 and of their corol-
laries and using the general scheme of the proof of Theorem 2 in Filippova[8]
(see also techniques in Filippova[9]) we obtain the formulas (24)-(28) of the
Theorem.
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The following iterative algorithm basing on Theorem 3 may be used to
produce the external ellipsoidal tube estimating the reachable set X(t) on the
whole time interval t ∈ [t0, T ].

Algorithm. Subdivide the time segment [t0, T ] into subsegments [ti, ti+1]
where ti = t0 + ih (i = 1, . . . ,m), h = (T − t0)/m, tm = T .

• Given X0 = E(a0, Q0), find the smallest k = k0 > 0 such that

E(a0, Q0) ⊆ E(a0, k
2B−1)

(k2 is the maximal eigenvalue of the matrix B1/2Q0B
1/2).

• Take σ = h and define by Theorem 3 the external ellipsoid E(a1, Q1) such
that

X(t1) ⊆ E(a1, Q1) = E(a∗(t0 + σ), Q∗(t0 + σ)).

• Consider the system on the next subsegment [t1, t2] with E(a1, Q1) as the
initial ellipsoid at instant t1.
• Next steps continue iterations 1-3. At the end of the process we will get

the external estimate E(a(t), Q(t)) of the tube X(t) with accuracy tending
to zero when m→∞.

Example 2. Consider the following control system{
ẋ1 = x2 + u1,
ẋ2 = −x1 + c(t)x1 + x21 + x22 + u2,

x0 ∈ X0, t0 ≤ t ≤ T. (29)

Here we take t0 = 0, T = 0.35, X0 = B(0, 1) and U = B(0, 0.1), the uncer-
tain but bounded measurable function c(t) satisfies the inequality |c(t)| ≤ 0.8
(t0 ≤ t ≤ T ). The trajectory tube X(t) and its external ellipsoidal estimating
tube E(a∗(t), Q∗(t)) calculated by the Algorithm are given in Figure 2.

5 Conclusions

The paper deals with the problems of state estimation for uncertain dynam-
ical control systems for which we assume that the initial state is unknown
but bounded with given constraints and the matrix in the linear part of state
velocities is also unknown but bounded.

We study here the case when the system nonlinearity is generated by the
combination of two types of functions in related differential equations, one
of which is bilinear and the other one is quadratic. The problem may be
reformulated as the problem of describing the motion of set-valued states in
the state space under nonlinear dynamics with state velocities having bilinear-
quadratic type.

Basing on results of ellipsoidal calculus developed earlier for some classes
of uncertain systems we present the modified state estimation approach which
uses the special structure of nonlinearity and uncertainty in the control system
and allows constructing the external ellipsoidal estimates of reachable sets.
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Fig. 2. Trajectory tube X(t) and its ellipsoidal estimating tube E(a∗(t), Q∗(t)) for
the system with bilinear and quadratic nonlinearities.
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