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Abstract. In this paper, it is shown firstly that the one-dimensional (1-D) generalized 
logistic map obtained on the basis of a generalized logistic function for population 
growth has originally a discrete dynamical property. From the 1-D exact chaos solution, 
2-D and 3-D chaos maps including the Mandelbrot map and the Julia map in terms of 
real variables are derived, and 2-D maps related to the Henon map, the Lorenz map and 
the Helleman map are obtained. Finally, a 2-D chaos map and the fractal set constructed 
from a 1-D exact chaos solution are considered for the physical analogue of snow crystal, 
and nonlinear dynamics on the fractal set are discussed by iterating numerically the 2-D 
map. 
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1  Introduction 

 
For the study of nonlinear phenomena, it is known that simplest nonlinear 
difference equations have arisen in the field of biological, economic and social 
sciences, and possess a rich spectrum of dynamical behavior as chaos in many 
respects [1-3]. A population growth is modeled as a special example, and has 
been afforded by the nonlinear difference equation called the logistic map. 
Particularly, for one-dimensional (1-D) chaos maps, a bifurcation diagram of the 
two parameter quadratic family has been observed [4], and the self-adjusting 
logistic map with a slowly changing parameter in time have been considered [5]. 
Moreover, the logistic map with a periodically modulated parameter has been 
presented [6]. In the meantime, various chaotic sequences have been proposed 
for the generation of pseudo-random numbers, and for the application to 
cryptosystems [7-9]. 
At the same time, a family of shapes and many other irregular patterns in nature 
called fractals has been discussed for the geometric representation, as an 
irregular set consisting of parts similar to the whole [10-12]. However, since the 
Mandelbrot map is defined as a complex map, it has been pointed out that the 
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physics of fractals is a research subject to be born [13]. In addition, chaotic and 
fractal dynamics have been expanded to experimental observations with the 
mathematical models [14], and fractal compression has been presented to 
compress images using fractals [15]. Recently, a construction method of 3-D 
chaos maps has been proposed, and the fractal sets with physical analogue have 
been shown numerically [16].  
In this paper, we derive a generalized logistic map from a generalized logistic 
function for population growth, and discuss the dynamical behavior of the map 
in Section 2. Then, by introducing the 1-D exact chaos solution, we construct 2-
D and 3-D chaos maps including the Mandelbrot map and the Julia map in terms 
of real variables, and 2-D maps related to the Henon map, the Lorenz map and 
the Helleman map are obtained in Section 3. Finally, a 2-D chaos map and the 
fractal set are considered for the physical analogue of snow crystal, and 
nonlinear dynamics on the fractal set are discussed by iterating the 2-D map in 
Section 4. The last Section is devoted to conclusions.  

 
2  A Generalized Logistic Map 
 
Firstly, we introduce a generalized logistic function P(t) as 
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population growth term d. By differentiating (1), we have the first order   
differential equation; 
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and by a variable transformation; 
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with )(tXXn ≡  and the time step 0>∆t , we find 
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Then, by the variable transformation; 
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with )2)(/(1 bdaactA +∆+≡  and ),2)(/(0 bdaactB +∆≡ we arrive at a 1-D  
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generalized logistic map [16]; 
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which gives a discrete nonlinear system. If d = 0 in (8) and (9), then (7) yields 
the logistic map )1(1 nnn xAxx −=+ , and the map at A = 4.0 has an exact chaos 

solution )2(sin2 n
n Cx =  with a real constant lmC 2/π±≠  and finite positive 

integers {l, m}. We call the map )1(41 nnn xxx −=+  the kernel chaos map of (7). 

Therefore, the constant A in (7) denotes a coefficient of the nonlinear term, and  
B corresponds to the constant population growth term d of (1).  
It is interesting to note that the logistic function has been introduced for the 
population growth of city in a discussion of the discrete numerical data [17], and 
has found an application to the field of such as biology, ecology, 
biomathematics, economics, probability and statistics. Therefore, the function 
(1) has originally a discrete property for population growth, that is, a discrete 
nonlinear dynamics. 
 
3  2-D and 3-D Chaos Maps 
 
We have the following three cases to find 2-D and 3-D chaos maps from a 1-D 
exact chaos solution: 
Case 1 
From an exact chaos solution; 

                                              )2(sin2 n
n Cx =                                       (10) 

with lmC 2/π±≠  and finite positive integers {l, m} to the logistic map 
)1(41 nnn xxx −=+ , we have, by introducing a real parameter 0≠α , as  
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Therefore, we get a 2-D kernel chaos map from (10)-(12); 
 

,4)1(44 2
1 nnnn yxxx αα −−−=+                                   (13) 

,)1(16 2
1 nnn yxy −=+                                                     (14) 

 
and a generalized 2-D chaos map, according to the construction method [16], as 
 

,))1(( 1
2

11 byxxax nnnn +−−−=+ αα                           (15) 

,)1( 2
2

21 byxay nnn +−=+                                             (16) 

 
with real coefficients and constants {a1, a2, b1, b2}. Here, the first equation (15) 
has the same form as the Helleman map; 
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with a real coefficient a, which has been obtained from the motion of a proton in 
a storage ring with periodic impulses [18]. 
Moreover, from the exact chaos solution (10), we find the following 3-D map; 
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and have a 3-D kernel chaos map from (19)-(21) as 
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Therefore, we get a generalized 3-D chaos map; 
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which has been discussed in [16], where {a1, a2, a3, b1, b2, b3} are real 
coefficients and constants. 
Case 2 
For an exact chaos solution; 

),2cos( n
n Cx =                                         (28) 

we have the following derivation by introducing a real parameter 0≠α  as 
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Then, from (28)-(30), we obtain the kernel chaos map as 
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and a generalized 2-D chaos map; 
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with real coefficients and constants {a1, a2, b1, b2}, where the first equation (33) 
has the same form as the Henon map [19]; 
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with real coefficients {a, b}, which has been introduced as a simplified model of 
the Poincare section of the Lorenz model, and is known as one of the most 
studied maps for dynamical systems. 
Here, it is interesting to note that if we define )2sin( n

n Cy ≡  with 0=α  in (29),  

we find a generalized 2-D chaos map; 
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where the case of (a1, a2, b1, b2)=(1.0, 2.0, x0, y0) or (1.0, 2.0, k1, k2) with initial 
values {x0, y0} and real parameters {k1, k2} corresponds to the Mandelbrot map 
or the Julia map in terms of real variables, respectively [16]. 
Case 3 
Similarly, for another exact chaos solution; 
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we have the following derivation; 
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Then, we find a 2-D kernel chaos map from (41) and (42) as 
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and a generalized 2-D chaos map; 
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with real coefficients and constants {a1, a2, b1, b2}. It is interesting to note that 
the first equation (45) has the same form as the 2-D Lorenz map [20, 21]; 
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with real coefficients {a, b}, which is known to have chaotic dynamics. 
Thus, it is found that the 2-D chaos maps derived from 1-D exact chaos 
solutions (10), (28) and (39) include the Mandelbrot map and the Julia map, and 
are related to the Helleman map, the Henon map and the 2-D Lorenz map, 
which give chaotic behaviors and nonlinear dynamics. 
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4  Nonlinear Dynamics for Snow Crystal 
 
According to the approach presented in Section 3, we introduce a 1-D exact 
chaos solution; 
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to the kernel chaos map; 
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and find a generalized 2-D chaos map as 
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with real coefficients and constants {a1, a2, k1, k2}.  
Then, the fractal set is defined by 
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where {x0, y0} are initial values, and the fractal sets are illustrated in Figure 1, 
which depend on the constant parameters {k1, k2}. The fractal set (a) of Figure 1 
gives a circle under the condition (52), and (b)-(e) show how the fractal set (a) 
grows as a physical analogue toward a natural snow crystal (f), which is a six-
cornered dendrite-type depending on the temperature and the saturation in 
environment [22, 23]. Here, for calculating the fractal set M, we introduce an 
iteration number n=300 to obtain each element of M under the convergence 
condition 0.422 <+ nn yx  for the map (53) and (54), and the numerical calculation 

software MATLAB.  
Each fractal set illustrated in Figure 1 is a set of initial value point (x0, y0) 
defined by (55) under the condition 0.422 <+ nn yx . For nonlinear dynamics of the 

2-D chaos map (53) and (54), orbits of (xn, yn) governed by the map are 
calculated and shown on the fractal set of initial values in Figure 2, where (a); 
n=0, 1 illustrates orbits from each initial point (x0, y0) to the (x1, y1), (b); n=0, 1, 
2, 3 from (x0, y0) to (x3, y3), and (c); n=0, 1, ..., 5 from (x0, y0) to (x5, y5), for all 
the initial points. It is found that the orbits are complex, and seem like colleding 
of water molecules. Here, the orbits show that we have (x1, y1) as the case of 
n=0 from (53); x1=f(x0, y0)+k1 and (54); y1=g(x0, y0)+k2, (x2, y2) from 
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  (a) (a1, a2, k1, k2)=(1.0, 1.0, 0.0, 0.0)             (b) (a1, a2, k1, k2)=(1.0, 1.0, 0.1, 0.1) 
 
 

 
 

(c) (a1, a2, k1, k2)=(1.0, 1.0, 0.3, 0.3)             (d) (a1, a2, k1, k2)=(1.0, 1.0, 0.5, 0.5) 
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                      Fig. 1. Fractal sets of the map (53) and (54) for snow crystal. 
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               (a) Orbits for n=0, 1 and of a small framed region. 
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                                (b) Orbits for n=0, 1, 2, 3 and of a small framed region. 
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                          (c) Orbits for n=0, 1, 2, 3, 4, 5 and of a small framed region. 
 

Fig. 2. Orbits of (xn, yn) with n=0, 1, 2, 3, 4, 5 given by the map (53) and (54)  
on the fractal set (Figure 1 (e)). 
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x2=f(x1, y1)+k1 and y1=g(x0, y0)+k2, ..., and (x300, y300) from x300=f(x299, y299)+k1 
and  y300=g(x299, y299)+k2, under the condition 0.422 <+ nn yx . Then, we get  one 

element of the fractal set, and find that {(x1, y1), (x2, y2), ..., (x300, y300)} are other 
initial value points satisfying the condition 0.422 <+ nn yx  for the fractal set.  

Thus, if the orbits shown in Figure 2 correspond to the dynamics of water 
molecules colliding with other ones in natural snow crystal, the map (53) and 
(54) may present the discrete nonlinear dynamics.  
 
Conclusions 
 
We have derived firstly the 1-D generalized logistic map, and have discussed 
that the map has originally a discrete numerical property for population growth 
of city. Then, from the 1-D chaos solution, 2-D maps related to the Henon map, 
the 2-D Lorenz map and the Helleman map, which have chaotic dynamics, have 
been derived. Furthermore, the 2-D chaos map (53) and (54) gives the fractal set 
for snow crystal, and orbits of the map on the fractal set have been numerically 
calculated. As a result, it is found that the 2-D chaos maps derived from 1-D 
exact chaos solutions have discrete nonlinear dynamics, and may express 
physical analogues with chaotic property as physics. 
 
The authors would like to thank Prof. C. V. Tao for his encouragement, and Mr. 
N. A. Hao for his numerical calculation at University of Science, Ho Chi Minh 
City. 
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Sudden cardiac death and Turbulence

Guillaume Attuel1, Oriol Pont1, Binbin Xu1, and Hussein Yahia1
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Abstract. Data acquired from the electrical activity of human hearts during episodes
of atrial fibrillation, a disordered arrhythmia that is a major cause of stroke, reveals
intriguing features for an excitable media: highly skew symmetric probability dis-
tributions with heavy tails, long range correlations, and broad singularity spectra.
Interestingly, the relevant exponents extracted from these empirical laws are stable
over several minutes but not universal. Their stable values are distributed among pa-
tients and areas of the heart. The question of central clinical purpose is whether they
might characterise locally the myocardium contingent pathology. To achieve clarifi-
cation of these peculiar facts, we were led to devise a phenomenological model that
departs from the conventional approach to fibrillation. Instead of a defect mediated
spiral wave “turbulence” induced by front collisions, fibrillation is pictured here as a
highly intermittent modulation of cardiac pulse trains. It is based on the physiology
of inter-cellular ionic exchanges, which is associated with the natural degree of free-
dom of the inter-pulse duration. We infer an experimentally unknown slow dynamics
of inter-cellular coupling, that may induce an inter-pulse effective coupling. This in-
teraction creates a modulation that may lead to intermittency in various ways. The
exchange of charges occurs at small scales in the model. They are passively advected
at each interstitial junction on fast time scales and on average collectively driving
the larger scales. In fact, a dimensionless number characterising the dynamics is an
analogue of the Rayleigh number. Away from a rapidly beating source, random back
scattering and front splitting make pulses follow random hierarchical “percolating”
paths in 1D. We discuss very briefly the topological origin of these dynamics. In the
light of this model, we don’t omit to mention some important physiological aspects
of the pathology that are still not well understood and more possibilities for the case
which comes to grip with sudden cardiac death.

Keywords: Heart dynamics, Reaction-Diffusion, Driven systems, Self organized crit-
icality, Multiplicative noise, Random paths, Topological excitations, Singularities.

1 Introduction

Sudden cardiac death accounts for about 10% of all natural deaths in devel-
oped countries and for about 50% of the mortality from cardiovascular diseases.
Meanwhile, it is not really a pathology: statistical surveys have found risk fac-
tors but which fail to be individually predictive [1]. In our present understand-
ing, it can be considered more as an accident. One cause of sudden cardiac

8thCHAOS Conference Proceedings, 26-29 May 2015, Henri Poicaré Institute,
Paris France

c© 2015 ISAST
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death is fibrillation of the ventricles. Experimental studies are difficult for ob-
vious reasons. The milder case of atrial fibrillation (AF), which is however one
major cause of stroke in Europe and North America, can be monitored and
studied more easily. In this paper, we give the general scheme of an analysis of
AF that we are developing. We will shortly discuss at the end some possible
lessons we may learn from it for sudden cardiac death.

The heart muscle is an excitable tissue, long believed to be a syncytium
of myocardial cells. Models of excitability for the heart are reaction-diffusion
systems that describe the propagation of electrical pulses, called action poten-
tials. They result from ionic exchange cycles between the cytoplasm of excitable
cells and their extra-cellular medium. A typical example is an action potential
propagating through a nerve axon [2] or throughout the myocardium [3] [4]
[5] [6]. In the right atrium of a human heart, the sinus node (a pacemaker)
ensures a periodic stimulation of the tissue, from where pulses propagate reg-
ularly in normal sinus rhythm. In its abnormal states, called arrhythmias, the
myocardium is overwhelmed by rapid and irregular patterns of activation. In
part for the reasons we are exposing in the text, we consider AF the most
irregular arrhythmia, as illustrated in fig.(1).

2 mm 35 s0

50 mV

0

Fig. 1. 35 sec of paroxysmal AF at a sampling rate of 1kHz are shown recorded
from a bipolar electrode, with some peaks reaching saturation level of the recording
device. Electrodes are about 2 mm apart. A radiography of the left atrium is shown,
where the bipolar electrode is located near the superior left pulmonary vein, held by a
medical practitioner, whereas the other catheter comprising 10 electrodes runs along
the coronary sinus.

Chaos has been observed in cultures of automatic cardiac cells, through
their coupling to periodic stimulation, and also in the heart via the occurrence
of parasystoles. This can be traced to phase locking and chaos of relaxation
oscillators with periodic forcing, and could be well modelled by return maps
[7] [8] [9]. Also, period doubling, called alternans in this context, arises when
the adaptation of the action potential duration to an imposed rate becomes
unstable [10]. For this reason, alternans are thought in one hypothesis as a
route to ventricular fibrillation [11]. Moreover, fibrillation in the atria were in
some instances clinically found to follow an inadaptation of the action potential
duration [12]. However, an excitable limit cycle is very robust when it comes
down to chaos, because its saddle fixed point does not give way to a homoclinic
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tangle. This can be understood by considering the stable fixed point as an
absorbing state, or a phase resetting state. Therefore, even under periodic
forcing, no return map can be drawn. In other words, the regularity of the
triggering sources is transferred to the limit cycle.

In contrast, as propagation becomes further involved in the arrhythmia, the
usual theoretical interpretation is based on a kind of defect mediated turbu-
lence, specific to excitable oscillators. Basically, spiral waves are often found
more stable than striped or other patterns in excitable media. This stems from
the important fact that an excitable pulse with a free end meets a region in
a refractory state and starts wandering about it [13] [14] [15]. It is also more
fundamentally related to the topological charge of the spiral core [16] and to
the chiral symmetry breaking that an excitable pulse carries with itself (a Bloch
wall) [17] [18] [19]. Low dimensional aperiodicity has again been observed be-
fore the onset of fibrillation for meandering spiral cores [20]. To account for
spatio-temporal chaos a mechanism of front collisions is put forward. If in os-
cillatory media spirals may break up due to a modulational instability of the
emitted pulse train from its meandering core, in excitable media the breakup
seems to amount to direct fore front and back front collisions within the pulse
train [21] [22] [23]. Notice that when a small diffusivity of the inhibitor is
added, a curvature instability may lead to front splitting and spiral turbulence
near the Ising-Bloch transition [24].

As successful as low dimensional chaos, and spatio-temporal chaos, in ex-
citable media may look in describing these arrhythmias, we show here why this
paradigm is quite inadequate to tackle an essential property of the recorded
data, which hasn’t been noticed so far.

A crucial aspect about the pathology is the intermittency of bursty oc-
currences of the arrhythmia. Intermittent alternation of sinus rhythm with
fibrillation is what defines paroxysmal AF. This intermittency can be modu-
lated by the external drive of the autonomic nervous system, as shown by P.
Coumel and co-workers, see for instance [25]. Moreover, on the myocardium
surface, within each episode of fibrillation, the recorded signal is found to be
more or less regular: the so called “fragmentation” in clinical lingo. In fact, as
we demonstrate in section 2, the locally recorded electrical potential exhibits
many traits in common with hydrodynamic intermittency. Another poorly un-
derstood fact is a reversible process of deterioration of the myocardium during
AF called remodelling [26]. It appears that the longer the heart remains in a
fibrillatory state, the poorer its conduction properties become, and the more
stable this abnormal state gets. We believe that these features are rooted in
some underlying chemical modulation of the electrical synapses between the
cells. Our model demonstrates this possibility.

We may look for the nucleation of metastable chaotic domains to explain
such observations. This has led us to find out a physiological path to the mech-
anism described by Y. Pomeau [27]. As illustrated in [28], if a limit cycle is able
to reach its homoclinic connection, then bistability with another fixed point, or
cycle, may generate spatio-temporal intermittency. The difficulty is that an ex-
citable limit cycle is over-damped and very robust. No such saddle fixed point
connecting with another basin of attraction normally exists. Even worse would
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be to try to find a crisis bifurcation to some strange attractor. Never mind, if
the tissue is in fact capable of generating another limit cycle, then the route
devised by Y. Pomeau might be reached. For instance a modulation of pulse
trains would work. This can be indeed the case as we show. This originates in
the electrical coupling between the cells, that under some circumstances which
we describe, may grow collectively, versus diffusively. One can thus rephrase
the previous findings for oscillatory media in terms of these collective modes,
and find a variety of interesting scenarios. For simplicity, we adopt a point of
view à la Ginzgurg Landau.

We formulate therefore in section 3 a derivation from first principles of the
yet unknown dynamics of ionic currents at the gap junctions. This dynamical
coupling between cells is considered as a synaptic plasticity. The point is to
question the importance of intrinsic fluctuations and disorder. We make sure
that observing the Ginzburg region of criticality in excitable reaction-diffusion
systems is classically impossible. Then, we will find out that cardiac pulses
can be pinned where cycles of neighbouring cells become out of phase with
one another, because of interstitial plasticity. This unfortunate plasticity may
slowly contaminate the whole tissue, which is what we will relate to electrical
remodelling.

In section 4, we very briefly sketch an interpretation. Due to the intrinsic
noise, the critical Ginzburg domain extends widely, leading to self organised
criticality (SOC). This maps to multiplicative noise, describing the singularities
in the signal.

We will show throughout the text the high level of agreement between the
patients data and the model data.

2 Time series, fluctuations and limitations of excitable
models

Surface electrical potentials recorded as time series during AF are called elec-
trograms (egm), such as the one shown in fig.(1). Normal frequency f , in beats
per minute, is about f ≈ 60 bpm, whereas during AF, it is typically in the
range of 200 bpm . f . 600 bpm. At first sight, egms during AF contrast to
normal as they seem to fluctuate randomly. Their amplitude also looks locally
abnormally oscillatory, fig.(2). The auto-correlation function starts decreasing
rapidly, exponentially fast during the first 60 ms or so, and goes on oscillating
with a slow decrease of the envelop, asymptotically as a power law, see fig.(2),
where an indicative solid line ∼ t−1 is drawn. Peaks appear naturally as mul-
tiples of the average periodicity of the arrhythmia at about 300 bpm there.
The identification of the shorter time scale is expected and indicative of local
incoherent oscillations, but the algebraic correlation law of the envelop is more
suggestive of some collective phenomena with quasi long-range order. Thus,
we are led to look for some collective modulation of the pulses.

We observe that fluctuations are large and their probability density distri-
butions collapse as is seen in fig.(3). The high skewness and heavy tails are a
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Fig. 2. Left: Two instances of one egm amplitude and its envelop at two different
moments in time, where a Hilbert transform was used. Right: Two auto-correlation
functions of egm envelops, and of amplitudes in the inset, for two different locations
on the heart.

hint of underlying mechanisms. They can be cast into the form

P (A,Ac) = A−τG

(
A

Ac

)
(1)

where A is the egm varying amplitude in mV , Ac is a cut-off, τ is a scaling ex-
ponent, and a scaling function G decreasing rapidly towards zero. Very briefly
summarized, various values of τ have been found. They range roughly between
1.2 < τ < 3 among patients, and regions of the atria. To our knowledge, simi-
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Fig. 3. Normalised probability density distributions of egm amplitudes in semilog
scale, from all over the atrium of one patient (left). Shown in loglog scale is the
empirical collapse, for positive values and various exponents τ , on a scaling function
G of eq.(1) (right). Ac ≈ 30− 50mV .

lar fluctuations were not found in excitable systems, but are rather ubiquitous
in complex systems. To name a few instances, they are found in random field
Ising models [29], with the Barkhausen noise as a magnetic field is applied to a
dirty ferromagnet [30], for magnetic penetration in hard superconductors [31]
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[32] [33], during the firing activity of some neural networks [34][35][36][37], or
in the intermittent regimes of strong turbulence [38] [39].

Turning to continuous excitable media, they are modelled by reaction-
diffusion systems { ∂

∂t
Um = R(Um, Jm) + D∆ (Um)

∂
∂t
Jm = G(Um, Jm)

. (2)

Here, Um is associated with the membrane potential of a cell, and Jm is a
vector representing (non diffusing) inhibitors, associated with the many ionic
currents going through channels across the otherwise impermeable membrane
of a cardiac cell. In the limit of interest, time scales are well separated, that
is Um is a fast variable, while Jm is a slow variable. One usually denotes by
µ−1 ≈ 1 ms, the typical fast time scale, which corresponds to the time for the
insulating membrane, of thickness Λ ≈ 100 nm, to depolarise. This is possible
at such short time scales because Nernst-Planck thermal equilibrium is reached
indeed thanks to facilitated diffusion and active pumping of ions [40]. The slow
time scale, associated with repolarisation, is typically of the order of 100 ms
or greater.

Now, to be endowed with the property of excitability, the system’s null
clines, R = 0 and G = 0, basically intersect in a way as to produce locally a kind
of saddle-node configuration. Nonlinearities and dissipation (or periodic order
parameters) give rise to a limit cycle once an orbit is generated away from the
saddle fixed point. It is insightful to draw a straightforward analogy with a Van
der Waals diagram. Roughly speaking, the analogy goes as: a cycle “nucleates”
each time the “supercooled spinodal branch” is reached by a finite perturbation.
The width of the nucleation region corresponds to the degree of excitability. A
Ginzburg-Landau description of eq.(2) reads as ∂

∂tUm = − δ
δUm
F0, with a free

energy of the form

F0 =
1

2

∫
dxd

{
−µU2

m +
β

2
U4
m +D (∇Um)

2 − IUm
}

(3)

where all parameters are positive, I = J0 − Jm is a source term, and J0 is an
external input of current. Dimension d = 2 is appropriate for the atria, since
the atrial myocardium is very thin, typically of order 2mm thick, as it does
not contribute much to the pump function of the heart, while d = 3 is more
adequate for the ventricles. In fact dimension d = 1 is quite appropriate also
for the description of fast conducting fibres in both chambers.

Since the free energy has two local minima, depending on boundary con-
ditions, domain walls typically form. In source free conditions, their height is

U0 = 2
√

µ
β ≈ 100 mV and their thickness is the Ginzburg-Landau correlation

length lc ∝
√

D
µ ≈ 1 mm. They propagate at constant velocity by diffusion,

with a velocity c ∝
√
Dµ ≈ 1 ms−1. The role of the recovery current Jm

is to break the symmetry between the two minima of the energy manifold,
by favouring the return to one of them, corresponding to the rest potential.
In its most basic version, we have the Fitzhugh-Nagumo model (FhN), with
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G(Um, Jm) = γUm − σJm − η, where σ controls the repolarisation time scale,
and η is a leaking current. It defines a cell cycle.

For the sake of simplicity here, let us take η = 0, the condition of excitability
becomes µ > γ

σ . Let us admit that FhN may spontaneously evolve into locally
aperiodic states, for instance with more complicated reactions G and the spiral
breakup mechanism [41]. Then, configuration averaging leads to an effective
reparametrization µ→ µ− γ

σ , since one expects fast modes to be slaved to slow
modes and average as 〈Jm〉 = γ

σ 〈Um〉. The mean field susceptibility may then

increase to very high values χ ∼
(
γ
σ − µ

)−1 → ∞ on the verge of excitability,
thereby explaining the large fluctuations and long range correlations observed.

The argument above fails firstly because it only tells us locally that cycles
will be triggered almost with no threshold. Secondly, on a global scale, the
narrowness of the critical Ginzburg region in parameter space prevents any wild
collective effect to become observable [42]. Taking the order of magnitude of
the diffusive length of about lc ≈ 1 mm and bringing it next to the microscopic
cut-off length, the maximum between the gap junction wall thickness Λ ≈
100 nm and the Debye length, here about λD ≈ 10 nm , one obtains a very
narrow width of the parameter range, entirely unobservable in practice δχ−1 ∼
Λ2l−2

c . 10−10.
This rules out near equilibrium critical fluctuations in ordinary excitable

media. We have realized however that mean field arguments break down when
the ionic exchange current at the gap junction alters the effective potential
energy of the cell, in such a way as to restore a continuous symmetry, and
approach an effective critical region.

3 Incorporation of cell to cell dynamical coupling

The works in [43] [44] [45] show the crucial role played by the gap junctions,
since they are supposed to guarantee good coupling between the cells. However,
in excitable models it is not clear how bad conduction can be modelled. Ac-
cording to near equilibrium thermodynamics, the exchange current may simply
be written down as Je = −gs∇Um, where gs is a stationary conductance. The
point is to demonstrate that the perturbation of the opening and closing of the
gap junction channels induce some time lag in the activation of the cell.

Typical relaxation times of gap junctions are much larger than those of
membrane polarisation, but compare well with membrane repolarisation time
scales. On average they are of order & 100ms [46]. There is thus no alternative
but to consider the full kinetics of the gap junctions, at such high frequencies
as found in arrhythmias. This is a crucial aspect missing in common models
for arrhythmias. Applying common wisdom on membrane physico-chemistry to
the gap junctions, replacing Um with ∇Um, yields a kinetic relaxation equation
of the form [2]

∂

∂t
g = a(∇Um) (g0 − g)− b(∇Um)g , (4)

where the functions a(∇Um) and b(∇Um) are the respective average rates of
opening and closing of the gap junction channels. The constant g0 is a typical
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maximum resting value, essentially gs = g0
a
a+b . The gradient is the one felt at

the gap junctions. So we turn to the question of how the electrical force −∇Um
can be strong enough as to perturb a and b in order to make the current deviate
from electro-diffusion. Since a pulse front of typical width lc encompasses many
cells, the voltage difference ∼ Λ∇Um at a gap junction cannot be as strong as
the one felt across membranes. Nevertheless, gap junction channels have a very
distinctive role in inter-cellular communication. They are open at rest state,
and very long molecules permeate through. They are therefore inclined to a
modulation of their permeability, depending on the concentration levels of some
messenger molecules [47]. We explore here this possibility, letting some ions
act on the gap junction properties. This will simply arise from their naturally
slow linear response to the presence of high ionic concentration.

In that respect, there exists a point of view that allows us to characterise
the ionic flow by a dimensionless number. For certain values of this dimension-
less number, an instability will occur for the most unstable mode [48], which
eventually will develop dissipative structures [49] [50]. Upon forcing the system
to higher values, secondary instabilities may destabilise the primary structures,
leading to a broad spectrum of modes [51].

To construct our model, we basically use charge conservation and a kinetic
equation for the gap junction channel average opening under proper thermo-
dynamic forcing. As is depicted in fig.(4), we consider an excess charge sitting
at the gap junction, and its effect on the equilibrium dynamics. The force
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Fig. 4. Excess of positive charge (black) sitting next to the gap junction channels.
Arrows indicate inter-cellular flows, which are generally supposed to be diffusive.

is simply the electro-chemical gradient. In 1D, as the sketch suggests, take a
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finite volume element V spanning the gap junction, incorporating the excess
charge and extending to the membranes. Noting ρ the excess density, charge
conservation inside this volume reads ∂

∂tρ = −g̃∇Um, where the gradient is
understood as a finite difference over the closed surface. We used a perturbed
conductance g̃, which is the important assumption in our model. It states
that excess charge density variations overrate the stochastic averaging of the
opening and closing of the channels, that would otherwise set the conductance
to its equilibrium value. Therefore, we need to consider eq.(4), which we will
linearise as a(∇Um) = αρ+ a0, with α a control parameter, and b = b0 for the
sake of simplicity of the demonstration. This linearisation simply stipulates
that the excess charge amounts to Vρ ≈ C∇Um, with a gap junction effective
capacitance C. Note that the extra cellular medium is supposed to rest at a
constant potential reference.

The combined equations basically say that excess charges are swept along
the small scale gradients (excess charges will tend to average out over large
volume elements comprising many cells), while variations of the conductance
remain local. Denoting ν = a0 + b0, dropping the tilde for clarity, we get the
following system of equations


∂
∂tUm = µUm − βU3

m − Jm + D∆Um −∇ (gρ)
∂
∂tJm = γUm − σJm
∂
∂tg = αρ − νg
∂
∂tρ = −g∇Um − ν2ρ

, (5)

where we have let the capacitance and volume C ≡ 1, V ≡ 1 without loss of
generality. The locally perturbed current is gρ by construction. The evapora-
tion rate ν2 is a local simplification of charge diffusion, for a fixed length scale,
and is meant to be small. This set is not parity invariant, and by construction
one needs to take an opposite α to change directions of front propagation from
the location of a source, since the potential gradient will reverse sign.

As we described above, some important perturbations of the dynamics may
emerge at slow time scales. Indeed, this simple model is in spirit quite compara-
ble to a kind of Rayleigh instability, where α plays the role of the gravitational
pull. Because the interface is fixed at the gap junction, no convective term is
present. More precisely, when only two cells are coupled with one free bound-
ary, notice indeed how the first, third and fourth equations have the same
structure as the Lorenz system of ODE (where the opposite limit µ→ 0 holds
though). The analogue Rayleigh dimensionless number is here Ra ≡ αρ

Lνν2
,

which controls the effect of thermodynamic forcing over dissipation, where L is
an equilibrium length associated with the slow time scales. In fact, we force the
system at one end with an automatic cell (a very rapid abnormal pacemaker),
or similarly with an abnormal current leak J0. Now, since on average we will
have D

〈
ρ
L

〉
≈ J0, it is possible to rewrite

Ra ≡
αJ0
Dνν2

. (6)
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So we expect a transition point towards chaos around Ra ∼ 1, for very small
arrays, of two to a very few cells, and to turbulence in longer arrays. This
transition to high dimensional chaos is illustrated in fig.(5).
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Fig. 5. Poincaré section plots (ρ, g), from maxima of Um, for 2, 3 and 4 cells coupled
linearly, in the special case µ = 0 and σ → ∞. The section on the left is from the
famous Lorenz attractor. One notes the spreading of points revealing the increase of
the attractor dimension.

It is easy to quickly check the validity of this argument numerically. Start-
ing with parameters for which we observe regularity of beats and rhythm,
decreasing D, ν2 or ν, and raising α makes it possible to reach a domain of
turbulent dynamics of ρ and g, that strongly affect Um and Jm, see fig.(6).
Here, we provide an illustration of the turbulent domain with the same numer-

Fig. 6. Some traces of the gap current divergence, in the model in 1D, from near a
source of abnormal automaticity, cell #0, to further away. Spatio-temporal map of
action potentials showing many back-scattering and some front splitting in a hierar-
chical structure of propagation, since the ones that escape collisions rarefy. µ = 1,
β = 1, γ = 0.008, σ = 0.02, α = 0.01, ν = 0.01, ν2 = 0.0001

ical values of the parameters as in fig.(6). We do find similar properties for the
numerical data as for the experimental data. It seems indeed that long range
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auto-correlations decrease as ∼ t−1 power laws. As shown in fig.(7), probabil-
ity density distributions of the current divergence scale in the same way. We
find non universal exponents, which appear to decrease with distance from the
source. Just as strikingly, the broad singularity spectra, with a substantial

Source τ = 2.3
Close = 1.7
Distant = 1.2
More distant = 0.9

+ τ
τ
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Fig. 7. Loglog plot of the auto-correlation of cell #5, with an indicative t−1 plot (left).
Empirical collapse function G for the model (right), with non universal exponents,
decreasing with distance from the source for arbritrary cells, shown #2, #20, #80,
and #400.

contribution of negative exponents, can be superposed completely, see fig.(8).
This tends to demonstrate the presence of an identical random cascade process
underlying the dynamics.

Fig. 8. Strikingly good superposition of the broad histograms (left) and fractal di-
mension spectra (right) of the sets of singularity exponents h defined locally, for small
τ of a few ms, as

〈∫ τ
dt ∂

∂t
∇gρ

〉
∼ τh. They were obtained from the same experi-

mental data as in fig.(2) and the 1D numerical data as in the previous figures for an
average over 10 cells taken at random spanning the first 100 cells.

The transient time that the turbulent state takes to pervade the system
could be related to the electrical remodelling. We observe a typical time scale
that reads like T ∼ Lz, with z ≈ 1. For typical length of human atrial fibres,
it happens to fall in the physiologically recorded range of about a few minutes
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[52]. Finally, system size should affect the onset of turbulence as expected,
and consistently distance from the source affects scaling exponents as we have
found, see fig.(7). This basically marks the hierarchical propagation pattern.
In practice, this could be good news for a quantitative method of finding ab-
normal sources of activity in the heart, a highly valued goal pursued by medical
practitioners and physiologists.

This phenomenology holds in two dimensions with isotropic coupling as
well. Note also that the propagation of perturbing charges is like some effective
diffusion of the inhibitor. Therefore, considering the anatomical organisation of
the myocardium in fibre bundles and the anisotropy of conducting properties,
one expects fronts to split along their direction.

By chance, in three dimensions various topological arguments convey the
idea that the ventricles are better equipped to resist such onset of very irregular
patterns. Thus far, one may have in mind natural selection to understand the
Aschoff-Tawara node, which function is somehow to low-pass filter the activity
of the atria, before relaying it to the ventricles.

4 Discussion and conclusion

The large oscillations of pulses and the intermittency are quite intriguing at
first, since µ is the dominant parameter, which guarantees the stability of U0

against any spontaneous fluctuation. In fact, a phase approximation of the
dynamics is indeed relevant in this sector. Then, what is seen might signal the
restoration of a continuous symmetry for the dynamics of the phase, that finds
itself effectively at criticality.

Firstly, upon appropriate rescaling, define a complex scalar Ψ = Um+iJm =
Aeiθ. The phase θ (x, t) is a distribution of ticks recording the passage and
shape of pulses. Since µ defines the rapid time scale, it is natural to consider
a fixed amplitude of Ψ . Let us model the perturbation caused by the ionic
gap currents as some local time delay ϕ for the onset of depolarisation. The
equation for the phase then reads

∂tθ = D∆θ −H sin (θ + ϕ (x)) + F, (7)

where H and F define characteristic scales that can be made to match that
from R and G, such as the domain wall thickness lc ∼

√
H−1. Taking a

random distribution of phase in the range ϕ (x) ∈ [0, 2π], random pinning is
facilitated. This governs the behaviour of charged density waves in impure
magnetic materials [53] [54] [55] [56]. Naively, an effective critical state could
be reached from the average of random phases µeff ∼ 〈H cos (ϕ)〉, though the
model equation does not reduce to critical dynamics, model A in [57]. Basically,
one can find in the literature the anomalous scaling of the velocity jumps of the
density waves, that reads like δv ∝ F ξ with ξ 6= 1, near the forcing threshold of
the depinning transition (insulating to conducting). SOC is typically found in
those systems [58]. Counting consecutive phase slips, one finds a distribution of
avalanches that typically scales with system size, a cut-off measuring a distance
to a critical point, in a form like eq.(1), where the exponent τ is related to ξ
[59] [29].
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Hence, one notes that avalanches of phase slips, within a surrounding closed
contour, must be related to large amplitude variations of the bulk average.
Heuristically, the argument is quite suggestive of multi-scaling. From the
slowly varying random aspect of the noise term emerges a random cascade.
It is tempting to model this dynamical effect by a mean field multiplicative
noise µ 7→ µ̃ (J0,x, t) acting on top of diffusion, leading to large deviations as
captured by the observed singularity spectra [39], and percolating paths [60].
In fact, chaotic coupled map lattices are known to show desynchronisation
patterns in the universality class of the KPZ equation[61][62].

In conclusion, we have presented data, from humans with a very irregular
arrhythmia, that seem to exhibit patterns of hydrodynamic intermittency. We
showed that such fluctuations could not emerge from purely excitable dynamics,
and found out a good alternative candidate, namely intrinsic modulations. We
devised a model of ionic flows through the gap junction channels of a cardiac
tissue, that effectively modulate otherwise independent pulses. The observed
abnormal patterns finely match the ones from the model, when the flow is
intermittent. It is the first to manifest a transient related to the degradation of
pulse propagation, called electrical remodelling, and to suggest a relationship
between local exponents in the signal with the distance to an abnormal source.

In that respect, we would like to believe that our model may further illus-
trate Y. Pomeau’s conjecture, relating hydrodynamic intermittency with some
directed percolation of metastable orbits.

At any rate, these results are clear evidence of the role of the dynamical
coupling of the network of cells, which do not form a true syncytium.
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Abstract. In recent decades, the study of mechanisms of localized structures for-
mation in non-equilibrium media attracted attention of researchers. Such structures
were found in chemically active media, in granular materials, and in many numerical
experiments with model equations. In this paper we investigate theoretically and
experimentally localized patterns on sandy bottoms arising under the in�uence of
steady �ows in the vicinity of vertical obstacle. Present experiments performed in a
hydrodynamic channel show that spatially periodic quasi-stationary patterns whose
width increases downstream in the wake of an obstacle arise from a sub-critical insta-
bility of the water-sandy bottom interface. We study the dependence of the topology
of the area occupied by patterns on the �ow velocity. It is shown that the character-
istics of pattern on the bottom can be explained using the Swift-Hohenberg equation.
Experiments show that for a correct description of structures, supplemented terms
which take into account the impact of the vortices arising in the wake of an obstacle
must be added into the Swift-Hohenberg equation.

Keywords: Sand ripples, pattern formation, steady currents, vortices, Swift-Ho-
henberg equation.

1 Introduction

The interface between water �ow and sand bottom is unstable to perturba-
tions with zero phase velocity. This instability is studied in detail for over a
hundred years (Dey 2014 [2]). It was found that the development of this insta-
bility may lead to the generation of di�erent stationary patterns at the bottom:
roller structures, modulated rollers, cellular structures consisting of rhombus or
squares. These structures were studied in detail for the case of super critical in-
stability when spatially periodic pattern arose from in�nitesimal perturbations
and occupied the area substantially greater than the period of the pattern. In
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this paper, we investigate the localized patterns. These patterns appear on
the sandy bottom as a result of sub critical instability under the in�uence of
�nite-amplitude perturbations. Finite amplitude perturbations can be caused
by an obstacle in the �ow. It should be noted that around an obstacle, under
the in�uence of vortices in the sandy bottom there appears a deepening - a
localized structure, the so-called scour (Breusers et al. 1977 [1], Ho�mans and
Verheij 1997 [5], Niedorada 1982 [8], etc.). Features of the scour have been
investigated in detail, as they are essential for the design of hydraulic struc-
tures (Qi and Gao 2014 [9], Melville and Coleman 2000 [7], Sumer and Fredsøe
2002 [10], Whitehouse 1998 [12], Ettema 2011 [3], etc.). Our research concerns
sand structures appearing under the in�uence of vortices in the wake at some
distance from the obstacle. In our experimental conditions in the absence of
vortex, the boundary water - sand is stable with respect to small perturbations.
Vortices contribute to �nite perturbations and initiate development patterns
on the sandy bottom. Such a mechanism of occurrence of localized patterns is
investigated in this paper. Paper is organized as follows. First of all, we present
the hydrodynamic channel where experiments are performed, followed by re-
sults we obtained. After this, we present a theoretical model and a comparison
of these eperimental and theoretical results is exposed to �nally conclude.

2 Methods and materials

The experiments were carried out in a 0.5 m wide, 10 m long �ume in 0.2
cm water depth. This hydrodynamic channel is able to generate a current as
illustrated in Figure 1:

10 m

Ø = 0.014 m 

0.020 m 

0.07 m 

1.5 m0.3 m

Current

Pile

MWL

Camera

Sandy bedBottom Bottom

Fig. 1. Sketch of the experimental setup

We adopted a bed consisting of a 0.07 m sand layer where a cylindrical
cylinder with diameter D=0.014m is embedded. The sediments have a relative
density s = 2.7 and a median size D50 = 340µm. The experiments were
performed under current without waves in subcritical regime (θ < θc), where θ
is the Shields number:

θ =
τ0

(ρs− ρ).g.D50
(1)
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τ0 the bed shear stress, ρs the density of the sediment, ρ the density of the
�uid and g the acceleration due to gravity. Shields number is a dimensionless
number that represents the ratio between the forces which tend to move the
sediments and those which stabilize the sediments and above a critical threshold
(θc), the live-bed regime is reached. All our experiments were carried out in
the clear-water regime (θ < θc), thus, the sedimet transport is only due to the
presence of the cylinder, generating vortices responsible of particles motion. To
characterize the �ow, we use the Reynolds number de�ned as follows:

Re =
V.H

ν
(2)

where V is the mean velocity of the �ow, H the water depth and ν the kine-
matic viscosity of the �uid. To characterize regime in Karman street, another
Reynolds number is used:

Red =
V.d

ν
(3)

with d the diameter of cylinder.
In order to estimate the pressure forces acting at the soil-water interface,

we used an optical method, namely the particle image velocimetry (PIV) as
shown in Figure 2, without sediment:

Flow

Karman street

Light sheet

Cylinder

Shadow of the cylinder

FlumeLaser

Flow

Vizualisation window

Fig. 2. Sketch of the PIV

This method allows to obtain the velocity �eld near the bottom and to
deduce the hydrodynamics forces acting on the sand bed, using a horizontal
laser plane. The acquisition frequency is 15 Hz, the vizualisation window side
is 12 x 8 cm and the resolution of the camera is 4 Mega pixels.
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3 Experimental results

In the experiments, we observed sediment structures formed downstream the
cylinder. The experiments were performed during 50 hours at least to be sure
to reach the quasi-equilibrium state of formed patterns. Patterns are shown
below in Figures 3, 4 and 5 for a Reynolds number Re of 38000, 42000 and
43000, respectively:

Fig. 3. Sedimentary structures downstream the cylinder; Re=38000 (Test 1)

Fig. 4. Sedimentary structures downstream the cylinder; Re=42000 (Test 2)

A signi�cant change between the patterns is the lateral extension of sed-
iment structures (transversal width) which is function of the velocity �ow.
Indeed, this lateral extension increases with the velocity �ow. It can be ob-
served that a slight variation of the Reynolds number Re leads to an important
di�erence of width for the transversal and longitudinal extension.
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Fig. 5. Sedimentary structures downstream the cylinder; Re=43000 (Test 3)

Let us consider the velocity �uctuations �eld, shown in Figure 6 for Re=
42000:

High

Low

Fig. 6. Amplitude of velocity �uctuations in an horizontal plane 2 cm above the bed
(Re=42000)

We observe that the amplitude of velocity �uctuations is very important
right behind the cylinder; this amplitude decreases for increaing values of the
distance to the cylinder, and increases for increasing values of Red. However,
the size of the area with a high amplitude is the same regardless the value of
Red.
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4 Theoretical model

In order to modelize the observed patterns, we use the Swift-Hohenberg equa-
tion (Swift and Hohenberg [11]), a phenomenological equation:

∂u

∂t
= εu− (1 +∇2)2u+ qu2 − u3 (4)

where:

∇ = −→x0
∂

∂x
+−→y0

∂

∂y
(5)

ε corresponds to the linear instability of the system. In this equation, instability
to in�nitesimal perturbations occurs if ε > 0. If ε < 0, linear instability is
absent. q corresponds to quadratic instability.

Swift-Hohenberg equation is widely used to describe pattern formation
(Lloyd and Sandstede [6], Hilali et al. [4], etc.). With a �ow in one direc-
tion, this equation becomes:

∂u

∂t
= εu−

(
1 +

∂2

∂x2

)2

u+
∂2

∂y2
+ qu2 − u3 (6)

In our case, ε < 0 because our experiments were carried out in subcritical
regime (θ < θc), therefore patterns forms only in the wake of the cylinder
where velocity and pressure perturbations are important.

This equation can be modi�ed as follows:

∂u

∂t
= −Eu−

(
1 +

∂2

∂x2

)2

u+
∂2

∂y2
+ qu2 − u3 + f(x, y, t) (7)

E is proportional to V − Vc where V is velocity of �ow in our experiments.
It means that if V > V c (Vc is critical velocity), E < 0 instability occurs
everywhere, and if V < V c, E > 0 instability occurs in the wake of the cylin-
der, where perturbations with �nal amplitudes exist. We take into account
the in�uence of these perturbations adding force f(x,y,t) into Swift-Hohenberg
equation. We suppose that this force is proportional to V 2, where V 2 is spa-
tially modulated random �eld, because for Reynolds numbers Red of several
thousand in our experiment turbulent Karman street is observed. Amplitude
of velocity �uctuations is approximated using experimental data presented in
Figure 6. The shape of this force can be qualitatively explained as follows.

According to Bernoulli's equation, we can write along a streamline:

P + ρ
V 2

2
= constant (=) P = constant− ρV

2

2
(8)

a decrease of pressure inducing an increase of velocity, low pressure corresponds
to positive forces acting at the sand-water interface. This force introduces
perturbations on water-sand bottom interface.
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5 Comparison theory-experiments

The theoretical model allows to reproduce qualitatively the patterns observed
experimentally, test parameters are listed in Table 1. Figures 7,8 and 9 show
the superposition of theoretical and experimental results. At the bottom of
Figure 7, the perturbation (due to the cylinder) resulting in patterns formation
has a limited size, in particular with a weak lateral extension of sediments
downstream the cylinder. The corresponding theoretical result at the top of
Figure 7 displays patterns which are qualitatively in good agreement with those
observed for present experiments.

Experimental tests Theoretical tests

Test number 1 2 3 Test number 1 2 3

Test duration (h) 70 68 65 Integrations numbers 30 30 30

Re 38000 42000 43000 E 0.23 0.14 0.07

Red 2660 2940 3010 q 1.6 1.6 1.6

Table 1. Tests parameters

Fig. 7. Top: theory; Bottom: experiment (Test 1)

As far as the other tests are concerned, Figures 8 and 9 show that the
pattern width increases for increasing values of the Reynolds number Re. This
leads to a decrease of the value of the parameter E in the Swift-Hohenberg
equation to obtain a similar description of experimentals patterns. Thereby,
the patterns simulated with the present theoretical model are consistent with
our experimental results.
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Fig. 8. Top: theory; Bottom: experiment (Test 2)

Fig. 9. Top: theory; Bottom: experiment (Test 3)
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Conclusions

In this paper, we investigate theoretically and experimentally localized patterns
on sandy bottoms arising under the in�uence of steady �ows downstream of a
vertical obstacle simulating a pile. Experiments carried out in a hydrodynamic
channel show that spatially periodic quasi-stationary patterns whose width
increases downstream in the wake of a vertical cylinder arise from a sub-critical
instability of the water-sandy bottom interface. The width of these spatially
periodic quasi-stationary patterns increases for increasing values of the �ow
velocity. It is shown that the characteristics of patterns on the bottom can
be explained using the Swift-Hohenberg equation. Experiments show that
for a correct description of sand structures, the variation of the parameter
corresponding to linear instability is su�cient.
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Abstract. Double helix structure of DNA is modeled by a steric oscillator network
in a cylindrical reference system. The nonlinear nature of system allows to use of
nonlinear dynamics and chaos theory tools. By using the mean Lyapunov exponent
is chosen the best range of external parameters such as temperature and applied
electrical field. The electrical current is obtained directly via the motion equations
and then the current-voltage diagram achieved. As a result, we could report the
emerging of quasi-Ohmic and negative differential resistance (NDR) phenomena in
DNA. NDR devices are applicable in the switching circuits and electronic oscillators.
Keywords: DNA conductivity, Landauer resistance, Negative differential resistance,
Chaos theory, Lyapunov exponent.

1 Introduction

DNA has always attracted much attention from different perspectives due to its
main role in biological processes. Nevertheless in the last decade its electronic
properties turned out to be a new promising field of study due to the search
of new materials for nanotechnological aims such wires, transistors, diodes and
molecular electronics [1]. Furthermore DNA assembling spontaneously has also
revealed itself as a very useful building material to organize other higher con-
ductive nanomaterials [2]. It is a great opportunity as well as a challenge to
exploit DNA molecule as a programmable material for nanotechnology applica-
tions. A central problem of nanobioelectronics [3,4] is construction of molecular
wires. During the past two decades a DNA molecule which was demonstrated to
possess conductivity in many experiments [5,6] has been considered a promising
candidate for this role. But, the DNA conductivity measurements performed
by different research group show insulating to superconducting behavior [7–
10]. Therefore, depending how the conductivity measurements are done, differ-
ent conductivity results are obtained. So, understanding the charge transport
mechanisms in nanoscale structures is essential for the development of molec-
ular electronic devices. A number of theoretical explanations for DNA charge
transfer phenomenon have been suggested on the basis of standard solid-state-
physical approaches, like electrons or holes, polarons, solitons [11–14] but the
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situation is still far from working out a unique, non-contradictory theoretical
scheme. In this work, the double helix structure of DNA is modeled by a steric
oscillator network. In the context of the base-pair picture two different kinds of
modes representing twist motions of the base pairs and H-bond distortions are
coupled to the electron amplitude. Through the nonlinear interaction between
the electronic and the vibrational degrees of freedom localized stationary states
in the form of standing electron-vibron breathers are produced which we derive
with a stationary map method.

2 Model and Methods

The helicoidal structure of DNA is conveniently described in a cylindrical ref-
erence system where each base pair possesses two degrees of freedom, namely a
radial variable measuring the transversal displacements of the base pair (that
is, deformations of the H-bond) and the angle with a reference axis in a plane
perpendicular to the helix backbone which defines the twist of the helix [13].
The electron motion is described by a tight-binding system. The nonlinear
interaction between the electron and the vibrational modes cause the forma-
tion of polarons and electron-vibron breathers. We pay special attention to
the influence of an external field on the charge transfer in DNA. The external
field control of rate processes and biochemical reactions has become of con-
siderable interest recently [14]. Let us consider the DNA model Hamiltonian
under the influence of an external electric field whose comprises four parts as
follows [15,16]:

H = Hel +Hrad +Htwist +Hfield (1)

The electronic part is given by

Hel =
∑
n

En|cn|2 − Vn,n−1(c∗ncn−1 + cnc
∗
n−1) (2)

where n denotes the site index of DNA and cn determines the probability that
the electron occupies this site. The on-site energies En being given by

En = E0
n + krn (3)

Radial part of Hamiltonian (1) is modeled by

Hrad =
1

2

∑
n

Mn(ṙ2n +Ω2
rr

2
n) (4)

where Mn is the reduced mass of the base pair and Ωr stands for the frequency
of the stretching vibrations. The transfer matrix elements Vn,n−1 are depend on
the three dimensional distance between two consecutive bases in the following
fashion

Vn,n−1 = V0(1− αdn,n−1) (5)

The parameters k and α describe the strength of the interaction between the
electronic and vibrational variables. dn,n−1 is determined by

dn,n−1 = [a2 + (R0 + rn)2 + (R0 + rn−1)2

− 2(R0 + rn)(R0 + rn−1) cos(θ0 + θn,n−1)]1/2 − l0 (6)
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with

l0 =

√
a2 + 4R2

0 sin2(θ0/2) (7)

a is the distance between two neighboring base pair planes. θn,n−1 is the
relative angle between two adjacent base pairs measuring the displacement
from the equilibrium twist angle θ0 and R0 denotes the radius between two
adjacent base pairs at an equilibrium state. For simplicity, we expand the
distance Eq. (6) up to the first order to get

dn,n−1 ≈
R0

l0
[(1− cos(θ0))(rn + rn−1) + sin(θ0)R0θn,n−1] (8)

The Hamiltonian for the twist motion is given by

Htwist =
1

2

∑
n

Jn(θ̇2n,n−1 +Ω2
θθ

2
n,n−1) (9)

where Jn is the reduced moment of inertia.
The effect of an external electric field on the charge transfer in DNA is described
by

Hfield = −eE
∑
n

na|cn|2 (10)

where E is the electric field directed along the strands and e is the electron
charge.
Realistic parameters for DNA molecules given by Barbi et al. [17] and Stryer
[18] are following: Mn = 4.982 × 10−25 kg, a = 3.4 A◦, θ0 = 36◦, J =
4.982 × 10−45 kgm2, Ωr = 6.252 × 1012 s−1, Ωθ = [0.526 − 0.744] × 1012 s−1,
V0 = 0.1 eV .
Also, the strengths of interaction between the electronic and vibrational vari-
ables are kAT = 0.778917 eV/A, kGC = −0.090325 eV/A, αAT = 0.053835 A−1,
αGC = 0.383333 A−1 [19] where the subscripts AT and GC denote the ones of
the poly(dA)-poly(dT) polymers, respectively.
The dynamics of the N base pairs are investigated by molecular dynamics sim-
ulation using Nosé-Hoover method. The Hoover motion equations are [20,21]

r̈n = −Ω2
rrn −

k

Mn
|cn|2 −

V0
Mn

α
R0

l0
(1− cos(θ0))

× [c∗ncn−1 + c∗n−1cn + c∗ncn+1 + c∗n+1cn]− ξṙn (11)

θ̈n,n−1 = −Ω2
θθn,n−1 −

V0
Jn
α
R2

0

l0
sin(θ0)[c∗ncn−1 + c∗n−1cn] (12)

ċn = − i
~
{(E0

n + krn − eEna)cn

− V0{1− α
R0

l0
[(1− cos(θ0))(rn + rn−1) + sin(θ0)R0θn,n−1]}cn−1

− V0{1− α
R0

l0
[(1− cos(θ0))(rn+1 + rn) + sin(θ0)R0θn+1,n]}cn+1} (13)
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ξ̇ =
1

M
[
∑
n

Mnṙ
2
n −NkBT ] (14)

ξ is the thermodynamics friction coefficient which interacting with the particles
in the stretching direction, T is the temperature maintained by heat bath and
M is the constant of Nosé-Hoover thermostat that has been set to M = 1000.

2.1 Mean Lyapunove Exponent

The highly nonlinear nature of the present model implies the possibility of
applying the nonlinear dynamics concepts and chaos theory. The Lyapunov
exponent is one of the most popular concepts of the nonlinear dynamics which
describes the growth and shrinkage rates of small perturbations in different
directions of the state space. On the other hand, mean Lyapunove exponent
(MLE) could characterize the chaos in the systems described by coupled maps
[22].
In this work, the MLE theory is used to determine the effect of parameters on
the charge transfer mechanism and stability analysis of system. Therefore, the
autonomous system of first-order differential equation should be calculated as
the following form:

ṙn = un (15)

u̇n = −Ω2
rrn −

k

Mn
|cn|2 −

V0
Mn

α
R0

l0
(1− cos(θ0))

× [c∗ncn−1 + c∗n−1cn + c∗ncn+1 + c∗n+1cn]− ξun (16)

θ̇n,n−1 = vn (17)

v̇n = −Ω2
θθn,n−1 −

V0
Jn
α
R2

0

l0
sin(θ0) (18)

ċn = − i
~
{(E0

n + krn − eEna)cn

− V0{1− α
R0

l0
[(1− cos(θ0))(rn + rn−1) + sin(θ0)R0θn,n−1]}cn−1

− V0{1− α
R0

l0
[(1− cos(θ0))(rn+1 + rn) + sin(θ0)R0θn+1,n]}cn+1} (19)

ξ̇ =
1

M
[
∑
n

Mnu
2
n −NkBT ] (20)

where un and vn are the the radial and angular velocity of base pairs, respec-
tively.
Then, we could consider the linear stability of the 5N + 1× 5N + 1 Jacobian

matrix written as:

Bk,N =


RR RU RΘ RV RC Rξ
UR UU UΘ UV UC Uξ
ΘR ΘU ΘΘ ΘV ΘC Θξ
VR VU VΘ VV VC Vξ
CR CU CΘ CV CC Cξ
ξR ξU χΘ χV ξC ξξ

 (21)
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Fig. 1. Mean Lyapunov exponent with respect to the temperature (E=0.1 V/A).

The full matrix Bk,N may be considered as an 6 × 6 matrix each element of
which is itself a block RR, RU , ... that are the derivatives with respect to the
elements. As example, RR could be written as

RR =


∂rk+1

1

∂rk1
...

∂rk+1
1

∂rkN
:: ::: ::

∂rk+1
N

∂rk1
...

∂rk+1
N

∂rkN


N×N

= IN×N (22)

which is a N ×N unit matrix.
The eigenvalues of jacobian matrix (Eki ) give the Lyapunov exponents. The
Lyapunov exponents are given by

λki = ln |Eki | (i = 1, ..., 5N + 1) (23)

where |Eki | means the absolute value of Eki . Then MLE is written as

λk =
1

5N + 1

5N+1∑
i=1

λki (24)

The spatio-temporal pattern of system is order when the MLE is negative, the
more negative the exponent, the greater the stability.
Figure 1 shows the MLE with respect to the bath temperature. It is clear
that increasing the temperature corresponds to increasing of the MLE but it is
different when we are getting close to the denaturation temperature. Then, it
is interesting that the MLE changes its nature in about denaturation temper-
atures (Fig. 1). It means that the transition point in MLE versus temperature
diagram could be considered as the signature of the change in DNA nature or
denaturation.

On the other hand, we have examined the effect of external electrical field
on the DNA charge transfer stability. Figure 2 determined the MLE behavior
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in the presence of electrical field. MlE takes the small values in small field
intensity and increases by increasing the field. But, there is a critical field Ec
in which MLE changes it sign. It may indicate a transition point. It would
determine a metal-insulator transition if we consider the zero point of Lyapunov
exponent as infinite localization length. On the other hand, one the concepts
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Fig. 2. Mean Lyapunov exponent with respect to the electrical field intensity
(T=300 K).

that could be the interface between the chaos theory and electronic is Landauer
resistance. The Landauer resistance in zero temperature is expressed as follows:

ρ =
1− T
T

(25)

in units of the quantum resistance h/2e2(' 13kΩ)[23] and T is the transmission
coefficient of the system related to Lyapunov exponent via

T = exp(−2λkN) (26)

where N is the number of base pairs in DNA lattice. The variation of Landauer
resistance with respect to the electrical field in zero temperature has charac-
terized in Fig. 3. As it is clear, Landauer resistance takes ascending behavior
via the growth the electrical field intensity.

2.2 Current Operator

Electrical current flowing through DNA is another quantity to investigate the
conductivity of DNA. We could use the definition of the particle density oper-
ator in Heisenberg picture:

ni(t) = eiHtnie
−iHt (27)
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Fig. 3. Landauer resistance with respect to the electrical field intensity (T=0 K).

where ni = c+i ci is the charge density. Then, we calculate the time dependent
current operator as follows:

I(t) =
d(eni(t))

dt
=
ie

~
∑
n

Vn,n−1(c∗ncn−1 − c∗n−1cn). (28)
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Fig. 4. The electrical current time series in a) room temperature b) threshold of
denaturation temperature.

According to the obtained relation, the electrical current is dependent on
the relative position of the base pairs and probability amplitude for the charge
carriers in every time. So, the electrical current shows the oscillatory behavior
over the time and oscillates with the irregular periods (Fig. 4). For studying
the temperature effect on flowing current through DNA, specially denaturation
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temperature, we have obtained the current time series in two temperatures: a)
room temperatures, b) threshold of denaturation temperature. In both them,
the current shows the similar behavior but the current amplitude increases in
T = 350 K.

2.3 I-V Characteristic diagram
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Fig. 5. I-V characteristic diagram (T=300 K).

Measurements of electrical current as a function of the potential applied
across single DNA could indicate metallic-like behaviors and efficient conduc-
tion and conversely insulator-like behaviors [24]. For a more detailed study
of DNA conductivity, we could investigate the current-voltage characteristic of
DNA in the present model, (see Fig. 5). The obtained results based on I-V
characteristic diagram characterizes the regions with quasi-linear behavior to-
gether with negative slope properties (Fig. 5). It is worth mentioning that the
quasi-linear behavior could indicate the quasi-Ohmic properties that represents
deviation from linear behavior. On the other hand, negative slope properties
could express the negative differential resistance (NDR) phenomenon. It could
be said when the voltage continuously increases, the current through DNA in-
creases at the beginning and then decreases, resulting in a negative differential
resistance (NDR) peak. In electronic, negative differential resistance devices
are used to make bistable switching circuits and electronic oscillators [25]. Also,
it opens the possibility to develop molecular electronic switches and memory
devices [26]. Figure 6 exhibits a three-dimensional schema of I-V characteristic
at different times. It is clear that the general shape of electrical current with
respect to the applied potential do not change in time.
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Fig. 6. 3-D current-voltage diagram over the time (T=300 K).

3 Conclusion

We have studied the charge transfer mechanism in DNA molecule in a cylin-
drical reference system. Using the MLE theory, we could determine the ranges
in applied electrical field and temperature parameter in which DNA shows the
stable behavior. On the other hand, we have indicated the critical points in
parameter regions that changes the nature of DNA. Also, we could obtained
the electrical current operator directly from the evolution equations of system.
The study of the current time series expresses its unstable behavior over the
time. For a more detailed study of DNA conductivity, we have investigated
the current-voltage characteristic of DNA. The I-V diagram represent regions
with q-Ohmic behavior together with NDR phenomenon. NDR behavior has
been observed in DNA, experimentally. NDR devices are used to make bistable
switching circuits and electronic oscillators.
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A New Dynamical Control Scheme to Control
of Abnormal Synthetic ECG Signals

S. Behnia and J. Ziaei
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Abstract. Spurious coupling between pacemaker components may turn normal ECG
signals into chaotic ones. Present study introduces a new chaos control approach
known as dynamical control to retain normal signals. To this end, phase space dia-
gram method is used for comparing between before and after of control. The obtained
results confirm that the proposed method is effective in enforcing the heart to reas-
sume a limit cycle.
Keywords: Chaos, Dynamical Feedback Control, Electrocardiogram (ECG).

1 Introduction

The study of cardiac system dynamics within the framework of Chaos Theory
has found significant progress in developing new methods to overcome the real-
world challenges of heart failure [1–5]. The interest of the approach lies in the
fact that the electrical behavior of the heart may be chaotic duo to the abnor-
mal functioning of cardiac pacemakers [3,6]. On the other hand, the regularity
of cardiac signals as a result of normal functioning of the cardiac pacemakers
[3,7] demands new approaches to enforce the heart to reassume a stable limit
cycle.
The stabilization of unstable desired orbits can be performed by various meth-
ods such as discrete OGY method [8], time-delayed feedback approach (TDF)
[9] and extended time-delayed feedback (ETDF) control technique [10]. How-
ever, observer dependence is one of the main challenges of methods mentioned
in feasible implementations. So, present study introduces dynamical control as
a new control scheme for stabilization of cardiac signals [11].
Here, a system of three coupled modified delayed van der Pol oscillators [14]
is used as a mathematical model to describe heart rhythms dynamics. The
dynamical structure of the model is investigated through phase space diagrams
and then based on dynamical control approach a controller is proposed for con-
trolling chaos in the system.
The rest of the paper was organized as follows. In Sect. 2 the mathemat-
ical model used in this study is described. The proposed dynamical control
approach and one-parameter families of chaotic maps which are cornerstone

8thCHAOS Conference Proceedings, 26-29 May 2015, Henri Poicaré Institute,
Paris France
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of the proposed dynamical control method are explained in Sect. 3. Results
are discussed in Sect. 4. Finally, summary and outline are presented in Sect.
5. Furthermore, Sect. A includes a brief introduction on the heart and its
electrical activity.

2 Model Description

The model used here for simulating ECG signals is an extending of the model
proposed in Ref. [13]. First, each of the natural pacemakers of the cardiac
system (AV node, His-Purkinje fibers and SA node) is modeled by a unique
modified delayed van der Pol oscillator. Then, by suitable coupling of them,
dynamical behavior of an electrocardiogram signal is simulated. Electrocardio-
gram is a procedure for quantifying the electrical potential and so the electrical
activity of the heart and ECG recording is one of the simple clinical approaches
for investigation of the heart health and its proper functioning [15].
The proposed model is as follow [14]

ẋ1 = x2,
ẋ2 = −aSAx2(x1 − wSA1

)(x1 − wSA2
)− x1(x1 + dSA)(x1 + eSA)

+ kSA−AV (x1 − xτSA−AV

3 ) + kSA−HP (x1 − xτSA−HP

5 ),
ẋ3 = x4,
ẋ4 = −aAV x4(x3 − wAV1)(x3 − wAV2)− x3(x3 + dAV )(x3 + eAV )

+ kAV−SA(x3 − xτAV −SA

1 ) + kAV−HP (x3 − xτAV −HP

5 ),
ẋ5 = x6,
ẋ6 = −aHPx6(x5 − wHP1

)(x5 − wHP2
)− x5(x5 + dHP )(x5 + eHP )

+ kHP−SA(x5 − xτHP−SA

1 ) + kHP−AV (x5 − xτHP−AV

3 ).

(1)

where xτi = xi(t − τ), i = 1, ..., 6, τ represents time delay and k◦ symbolizes
coupling terms. Then, the ECG signal is built from the composition of these
signals as follows:

ECG = α0 + α1x1 + α3x3 + α5x5. (2)

In present study, kSA−AV was taken as a control parameter. The remaining
parameters were fixed at the values suggested by the original paper [14] as
aSA = 3, aAV = 3, aHP = 5, wSA1 = 0.2, wSA2 = −1.9, wAV1 = 0.1, wAV2 =
−0.1, wHP1

= 1, wHP2
= −1, dSA = 3, dAV = 3, dHP = 3, eSA = 4.9, eAV = 3,

eHP = 7, kSA−AV = 5, kAV−HP = 20, α0 = 1, α1 = 0.1, α3 = 0.05, α5 = 0.4,
τSA−AV = 0.8, τAV−HP = 0.1 and all other parameters vanish.

3 Control Scheme

Our idea for control is based on the fact that the control parameter can be a
variable in time through a chaotic map. In this section, first we try to explain
mathematical description of the chaotic map which we used in this paper.
Then, we expand our idea of control.
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Fig. 1. Invariant measure of Logistic map.

3.1 One-parameter families of chaotic maps

The Logistic map is one of the most familiar maps in unit interval which serves
as a prototype of chaos in classical nonlinear maps. One of the exciting features
of the Logistic map is that it has an invariant measure which provides frequency
of visits to any given interval in [0, 1].

µ(x) =
1

π
√
x(1− x)

. (3)

This density function is graphed in Fig. 1 and ensures the ergodicity of the
Logistic map.
In previous work [16] we generalized the Logistic map to a Hierarchy of one
parameter families of maps with some special properties in unit interval [0, 1]:

• They map the interval [0, 1] into itself,
• They have (N − 1) critical points,
• They have (N − 1) real roots,
• They have at most (N + 1) attracting periodic orbits [18].

The mathematical form of the proposed Hierarchy one parameter families of
maps is as follows

ΦN (k, α) =
α2(TN (

√
k ))2

1 + (α2 − 1)(TN (
√
k )2)

. (4)

where N > 1 is an integer and TN s are Chebyshev polynomials of type 1 [17].
Invariant measure of the ΦN (k, α) is defined as follows

µ(k, β) =
1

π

√
β√

k(1− k)(β + (1− β)k)
. (5)

provided that β > 0 and
α =

∑ [
(N−1)

2
]

k=0 CN
2k+1β

−k∑ [N
2

]

k=0C
N
2kβ

−k

N: odd,

α =
β
∑ [

(N)
2

]

k=0 CN
2kβ

−k

∑ [
(N−1)

2
]

k=0 CN
2k+1β

−k

N: even.

(6)
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Fig. 2. Illustration of the effect of the α variation on the Lyapunov exponent of the
Eq. 10. The positive value of the Lyapunov exponent proves the chaotic nature
of the generalized Logistic map (Eq. 10). Furthermore, the maximum value of the
Lyapunov exponent is occurred at α = 1 which was used to generate dynamical map
(Eq. 11) for control of chaos.

As an example

Φ2(k, α) =
α2(2k − 1)2

4k(1− k) + α2(2k − 1)2
, α =

2β

(1 + β)
. (7)

By the aid of the invertible map h(k) = 1−k
k which maps [0, 1] into [0,∞) one

can transform ΦN (k, α) into ΨN (k, α) as

ΨN (k, α) = h ◦ ΦN (k, α) ◦ h(−1) =
1

α2
tan2 (N arctan

√
km) (8)

which in terms of km+1 can be written as

km+1 ≡ Ψ2(k, α) =
1

α2
tan2 (2 arctan

√
km) =

4

α2

tan2 (arctan
√
km)

(1− tan2 (arctan
√
km))2

.

(9)
Finally, it can be simplified as

km+1 =
4km

α2(1− km)2
. (10)

The Lyapunov exponent diagram for this map is shown in Fig. 2. Obviously,
maximum value has been reached at α = 1. So, in the following we set α = 1.
Φ2(k) and Ψ2(k) for α = 1 are shown in Fig. 3 and Fig. 4, respectively.

3.2 Controlling Procedure

The observer dependence of previous methods [8–10] for control of chaos is
a high risk for heart health. Our previous work [11] allows one to overcome
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Fig. 4. Illustration of the Ψ2(k) for α = 1.

the risk. Flexibility and observer independence are the main features of the
method. The proposed method is based on the fact that the control parame-
ter as a variable in time is changeable by another chaotic map. We improve
the method by considering the hierarchy of one parameter families of ergodic
solvable chaotic maps with invariant measure [16]. So, the behavior of original
system may be replaced by 

ẋ = F(x, km),

km+1 = 4km
(1−km)2 .

(11)

where x ∈ Rn, k ∈ R1 denotes kHP−SA and F is the dynamical model (Eq. 1).

4 Results and Discussion

4.1 Introducing the dynamics of the master ECG

Fig. 5 depicts the phase space of the system under different situations. kSA−AV =
6.42, kSA−AV = 7.57, kSA−AV = 7.64 and kSA−AV = 10 have been chosen as
samples to reveal diverse configurations. As is evident, the system includes
a wide range of behaviors. Due to the variation of kSA−AV its response may
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Fig. 5. Phase space of ECG without applying the control process. (a) kSA−AV =
6.42, (b) kSA−AV = 7.57, (c) kSA−AV = 7.64, (d) kSA−AV = 10. (a), (b) and (d)
demonstrate non-periodic and unstable responses, and (c) represents periodic and
stable response.

be periodic and stable (see Fig. 5(c)) or non-periodic and unstable (see Fig.
5(a)-(b)-(d)).
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Fig. 6. Phase space of ECG after applying the control process. (a) kSA−AV = 6.42,
(b) kSA−AV = 7.57, (c) kSA−AV = 7.64, (d) kSA−AV = 10. In comparison with Fig.
5 it is seen that all of the responses have suppressed to 2-period orbits.

4.2 Applying the chaos control method

The results of control method have been shown in Fig. 6. In order to reveal the
control method efficiency, kSA−AV = 6.42, kSA−AV = 7.57, kSA−AV = 7.64 and
kSA−AV = 10 were chosen as samples to be subjected to the control method.
Pertinent phase spaces have been plotted in Fig. 6. Obviously, the chaotic
motion has suppressed to a 2-period orbit. The results have confirmed the
efficiency of proposed control method.
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5 Summary

The development of control methods that accurately modulate the undesirable
behavior of cardiac system is a fast growing research in interdisciplinary sci-
ences. In present study based on phase space diagrams, nonlinear behavior and
the unstable signals suppression problem were studied in an electrocardiogram
model. Here, based on one-parameter families of chaotic maps a new controller
was introduced for controlling chaos. Moreover, it was shown that the proposed
technique can modulate underlying dynamics.

A Heart and Electrical Activity

The heart is a four-chambered organ which pumping blood for circulation is its
basic function. The heart is divided into right and left parts, each part with its
own atrium and ventricle. Receiving deoxygenated blood from the rest of the
body and propelling oxygenated received blood from lungs to other organs of
the body are fulfilled through the coordinate contractions of the heart organs.
For contractions to be occurred, the conducting cells of heart must be excited
by impulses initiated at a network of pacemaker cells. There are three types of
pacemaking cells.

• The sinoatrial (SA) node which contains main pacemaking cells.
• The atrioventricular (AV) node which serves as a pacemaker should the SA

node fail.
• The bundle of His-Purkinje (HP) fibers, responsible for contracting the

ventricles, which may initiate impulses at low rates compared to the SA
and AV nodes [15].

In resting state cardiac cells are polarized electrically, i.e., the outside of the cell
membrane has a positive charge and the inside of the cell has a negative charge
instead. Depolarization is the fundamental electrical event of the heart within
it positive ions flow across the cell membrane into the cell and negative ions
to the outside of the cell membrane. Through a process namely repolarization,
polarity returns and the relaxation or resting state occurs. The waves of depo-
larization and repolarization represent electrical activity of the heart known as
ECG [15]. A schematic illustration of the heart organ has been shown in Fig.
7.
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Periodic solutions, indeterminacy and chaotic
dynamics in a model of sustainable tourism�

Giovanni Bellay

Abstract

The impact of tourism on economic growth and environmental
degradation is one of the most relevant debated issues. Despite the
huge strand of empirical literature on the topic, a formalized theoreti-
cal investigation of the link between tourism and sustainable economic
growth is unfortunetely still lacking.
To this end, and in line with the literature on the tourist life-cycle

hypothesis, we present an edogenous growth model to study the im-
pact of tourism activities and natural resource use on the long run
steady state. The aim is to use the principles of bifurcation theory to
gain hints on the global properties of the equilibrium, and show the
existence of irregular patterns, either indeterminate or chaotic, which
possibly suggest the emergence of a (low growth) poverty-environment
trapping region.
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1 Introduction

Tourism economics is characterized by an explosive growing interest. Un-
fortunately, formalized theoretical studies are still lacking in this �eld to
explore the complex relationship existing between tourism and a sustain-
able economic growth (see, Sachs and Warner, 2001).

Nowadays economies basically share the common view that productions
of goods and services, especially for �rms operating in the tourist sector,
highly depend on natural resource overuse, and no growth is therefore possi-
ble without this input. Therefore, trying to understand the way an economy
can grow along an optimal equilibrium path, without sacri�cing the available
natural resources, is one of the most debated and intriguing social claims,
and is in line with the so-called tourism-led-growth hypothesis (Brau et al.,
2007; Nowak et al., 2007; Baggio, 2008; Brida et al., 2008; Katircioglu, 2009;
Bornhost et al., 2010; Schubert et al., 2010).

Interestingly, once natural resource exploitation is taken into account, at-
tention can be immediately devoted to understand whether tourism might
a¤ect the long run dynamics towards a stable equilibrium, or if undesired
indeterminacy problems may eventually arise. Moreover, the rise of inde-
terminacy in presence of an overuse of natural resources could be the major
cause for the emergence of a vicious poverty-environment trap, where public
policies might not be able to avoid a non sustainable use of natural resources
(see, for example, Finco, 2009).

A wide strand of literature has focused on the conditions for the emer-
gence of multiple equilibrium trajectories in the vicinity of the steady state,
but only very few attempts have been made to study the conditions for
global indeterminacy and possible chaotic solutions to occur outside such
small neighborhood of the steady state, so that the perfect foresight equilib-
rium may not be unique. In this case, despite the initial conditions or other
economic fundamentals, the agents�decisions could locate the economy in a
path which is not corresponding to the lowest exploitation level of natural
resources (see, for example, Mattana and Venturi, 1999; Benhabib et al.,
2001; Bella and Mattana, 2014).

In line with this strand of literature, we propose an endogenous growth
model to study the impact of tourism activities and natural resource use
on the long run steady state. The aim is to use the principles of bifurca-
tion theory to gain hints on the global properties of the equilibrium, and
show the existence of irregular patterns due to a sensitive dependence of
our economy on the initial conditions. In particular, we study the presence
of closed orbits, to detect the rise of economic �uctuations and periodic
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solutions around the steady state, which are empirically con�rmed by the
literature on the tourist life-cycle hypothesis (Butler, 1980). The problem is
to understand the conditions under which these orbits are attracting, with
equilibrium trajectories being �captured�by the orbit itself, that �nally be-
comes a (indeterminate or maybe chaotic) limit set, which possibly suggests
the emergence of a (low growth) poverty-environment trapping region.

The rest of the paper is organized as follows. In section 2, we present
the model, derive the steady state conditions, and study the local dynamics.
In section 3, we characterize the parametric space where periodic solutions
emerge, and the equilibrium becomes indeterminate, and use the Andronov-
Hopf bifurcation theorem to study the global properties of the steady state.
Conditions for chaotic dynamics are also derived. A �nal section concludes,
and a subsequent Appendix provides all the necessary proofs.

2 The Model

We consider an optimal control problem where a representative agents aims
at maximizing the lifetime utility, U , subject to the constraints on the
accumulation of both physical capital, k, and the stock of available nat-
ural resources, E, given their positive initial values k(0) = k0 > 0 and
E(0) = E0 > 0.

Let assume a standard CES utility function, i.e. U = c1���1
1�� , where c is

per capita consumption, and � is the inverse of the intertemporal elasticity
of substitution. Assume also that the level of investment in physical capital
is given by the usual functional form _k = y� c, where output y is produced
according to the function

y = Ak�Q1�� (1)

where � 2 [0; 1] is the share of physical capital, A measures the stock of
existing technology, with physical capital, k, entering as an input along
with the total amount of tourism services, Q. The latter is additionally
speci�ed, as depending on the amount of public spending used to promote
the tourism sector, g, and the available amount of natural resources, E, in
a Cobb-Douglas evolutionary law

Q = g�E1�� (2)

being � a standard elasticity parameter (see Brida and Pulina, 2010).
Additionally, we set the dynamic evolution of the environmental sector

as represented by _E = N(E) � Z(Q), which is negatively a¤ected by the
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extractive use of natural resources employed in the production of tourism
services, Z, whereas N(E) determines the speed at which nature regener-
ates. To simplify the analysis, we propose a linear representation of these
functions, namely: N(E) = �E and Z(Q) = �Q, where � and � denote
constant parameters of scale (see also, Musu, 1995; Rosendahl, 1996; Cole,
2009).

Hence, under a constant time preference rate, �, the maximization prob-
lem explicitly becomes

Max
c(t)

Z 1

0

c1�� � 1
1� � e��tdt (P)

s:t:

_k = Ak�Q1�� � c
_E = �(E � g�E1��)

with an associated current value Hamiltonian given by

HC =
c1�� � 1
1� � + �

h
Ak�g�(1��)E(1��)(1��) � c

i
+ ��(E � g�E1��)

where � and � represent the shadow prices of physical capital and natural
resources, respectively.

Solution to this optimal control problem implies the following �rst order
necessary conditions:

c�� = � (3.1)

�(1� �)Ak� = ��g��E(1��)� (3.2)

accompanied by the equation of motion for each costate variable, that can
be derived with a bit of mathematical manipulation as

_�

�
= �� �Ak��1g�(1��)E(1��)(1��) (4.1)

_�

�
= �� (1� �)�

�
(1� �)Ak�g�(1��)E(1��)(1��)�1 � �

h
1� (1� �)g�E��

i
(4.2)

and the transversality condition

lim
t!1

e��t[�tkt + �tEt] = 0 (5)

that jointly constitute the canonical system. Since both Arrow�s su¢ ciency
theorem and the transversality condition hold, the problem is therefore
bounded and concave.
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2.1 The reduced model

The standard procedure is conducted in this section to study the transitional
dynamics of Problem P.

Proposition 1 The maximum principle associated with the decentralized
optimization problem P implies the following four-dimensional system of
�rst order di¤erential equations

_k

k
= Ak��1g�(1��)E(1��)(1��) � c

k
_E

E
= � � �g�E�� (S)

_c

c
= ��

�
+
�

�
Ak��1g�(1��)E(1��)(1��)

_g

g
= �x

�
+
� (1� �+ ��)

��
+
�

�
(1� �)g�E��

Proof. See the Appendix A.

Lemma 1 System S can be easily reduced to

_x =

�
��
�
+

�
�� �
�

�
Aq��1z(1��) + x

�
x

_q =
n
�� +Aq��1z(1��) � x+ �z

o
q (R)

_z =

�
�(1� �)

�
� x+ �z

�
z

by means of the convenient variable substitutions: x = c
k , q =

k
E , and

z =
� g
E

��.
Proof. See the Appendix A.

Remark 1 The steady state is a triplet (x�; q�; z�) which solves the reduced
system R

x� =
�(� � �) + ��

��
(6.1)

Aq�(��1)z�(1��) =
�

�
(6.2)

z� =
�� �(1� �)

��
(6.3)
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Since the Jacobian matrix associated with (R) is

J =

264 x� �(��1)
�

�
���
�

�
x�

q�
�(1��)
�

�
���
�

�
x�

z�

q� �
�(�� 1) �q� + �(1��)

�
q�

z�

�z� 0 �z�

375
let

det(�I� J) = �3 � tr(J)�2 +B(J)��Det(J)

be the characteristic polynomial of J, where I is the identity matrix and
tr(J), B(J), and Det(J), are Trace, Sum of Principal Minors of order two,
and Determinant associated with J, respectively. Algebraic computation
gives

tr(J) = 2�z� (7.1)

Det(J) =
��(1� �) (2�� 3�)

��
x�z� (7.2)

B(J) = �z�x� � (1� �) �
�
[x� + �z�] (7.3)

Conditions (7.i) may serve us to characterize the behavior of the equi-
librium trajectories wondering around the steady state. Unfortunately, this
is not an easy task, when dealing with complicate nonlinear functions. To
this end, we provide a set of theorems necessary to facilitate the study of
both local and global dynamics.

2.2 Periodic solutions

Let us �rst study the possibility that periodic solutions do emerge, which is
a �rst way to signal that the interior steady state can be indeterminate.

In detail, we apply the neat Andronov-Hopf bifurcation theorem to verify
that there exists a parameter value at which a structure of closed orbits exist
around the steady state solution. We choose � as the appropriate bifurcation
parameter. To prove this, we need to check the following expression

G(�) =
�� �(1� �)

�2
[�(1� �)� �] + (1� �)� �(� � �) + ��

2�2�2
(2�� �) (8)

where G(�) = �B(J) � tr(J) +Det(J), which vanishes at di¤erent solutions
of � (see, Fig. 1).
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Example 1 Let (�; �; �) = (0:05; 0:33; 0:25) which are standard values in
the literature. Therefore, G(�) = 0 when ��1 = 0:4538 and ��2 = 0:6368.

Fig. 1: The Hopf bifurcation curve

Multiple values of � are thus able to annihilate G(�). If this happens, we
will show that any variation of � around ��i, i 2 [1; 2] can force the variables
associated to the complex conjugate eigenvalues to oscillate around a com-
mon constant value. This means also that, an invariant cycle (a closed orbit)
may emerge around the steady state, or collapses onto it. We want to show
that parameter � plays a crucial role in the characterization of an optimal
solution to our maximization problem, and thus matters in the process of a
long run sustainable growth, giving rise to a boom and bust sustained cycle,
where tourism services lead growth but start exploiting natural resources un-
til economic indicators start a sharp and rapid contraction when resources
are depleted and mass tourism moves to di¤erent places, thus lowering hu-
man impact on the environment, which starts restoring natural capital and
thus enters a new phase of tourism attracting place, which pushes up again
the economic activities in a periodic evolution consistent with the life-cycle
hypothesis.

Unfortunately, this analysis may not be su¢ cient to provide a complete
picture of the stability properties of the economy, for more complicated
outcomes can emerge if we move slightly o¤ the vicinity of the steady state,
and may thus complicate the adequate policy actions to be implemented. A
deep investigation of this issue is provided in the next section.
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3 Periodic orbits and global indeterminacy

Studying the properties of an equilibrium outside the small neighborhood of
the steady state is not an easy task, especially when dealing with non-linear
functions that complicate the algebraic calculations behind it.

Firstly, we need to put the system (R) in an appropriate canonical form
to work with. To do this, we translate the equilibrium �xed point to the
origin, by assuming

~x = x� �x�;
~q = q � �q�

~z = z � �z�

which implies

�
~x =

�
��
�
+

�
�� �
�

�
A(�q� + ~q)��1(�z� + ~z)(1��) + (�x� + ~x)

�
(�x� + ~x)

�
~q =

n
�� +A(�q� + ~q)��1(�z� + ~z)(1��) � (�x� + ~x) + �(�z� + ~z)

o
(�q� + ~q)

�
~z =

�
�
1� �
�

� (�x� + ~x) + �(�z� + ~z)
�
(�z� + ~z) (Q)

A second order Taylor expansion of this vector �eld allows us to put (Q)
in the form 0BB@

�
~x
�
~q
�
~z

1CCA = J

0@ ~x
~q
~z

1A+
0@ ~f1(~x; ~q; ~z)

~f2(~x; ~q; ~z)
~f3(~x; ~q; ~z)

1A
where the ~fi terms represent the non linear terms (of order 2).

Proposition 2 Let T be a matrix of the eigenvectors associated with the
structure of eigenvalues of J at the bifurcation point. Then, it is possible to
put the system (Q) in the following Jordan normal form:

_w = T�1J(0)Tw + Fi

where Fi = T�1 ~fi (Tw), given the associated change in coordinates0@ ~x
~q
~z

1A = T

0@ w1
w2
w3

1A
8
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which transforms system (Q) into0@ _w1
_w2
_w3

1A =

24 0 1 0
0 0 1
"1 "2 "3

350@ w1
w2
w3

1A+
0@ F1 (w1; w2; w3;)

F2 (w1; w2; w3;)
F3 (w1; w2; w3;)

1A (10)

where "1 = Det(J), "2 = �B(J), "3 = tr(J), and Fi are the transformed
second order non linear terms.

Proof. See the procedure detailed in Algaba et al. (1999) and Gamero et
al. (1991).

We are thus able at this step to restrict the vector �eld in (10) to the
plane (w1; w2) whose eigenspace, at the bifurcation value � = ��, corresponds
to the complex pair of eigenvalues, �1;2 = �!i, which is topologically invari-
ant with respect to the original system (S).1 A center manifold reduction
of the linearized vector �eld allows us to investigate this case.

Proposition 3 A second order approximation of the center manifold which
reduces the vector �eld in (10) is given by the following equation

w3 = h(w1; w2) =
1

2
[�1w

2
1 + �2w1w2 + �3w

2
2]

where � i are coe¢ cients that satisfy the stability condition _w3 = 0.

Proof. See Appendix.
The vector �eld at the center manifold therefore reduces to�

_w1
_w2

�
=

�
0 �!
! 0

��
w1
w2

�
+

�
�F 1 (w1; w2; h(w1; w2))
�F 2 (w1; w2; h(w1; w2))

�
(11)

where �F i represent the second order non linear terms of the vector �eld at
the center manifold.

The restricted vector �eld (11) allows us to properly investigate the pres-
ence of periodic solutions in the two-dimensional phase space (w1; w2), by
computing the standard �rst Lyapunov coe¢ cient

q =
1

16!

�
�F 1w1w2(

�F 1w2w2 +
�F 1w1w1)� �F 2w1w2(

�F 2w2w2 +
�F 2w1w1)� �F 1w1w1

�F 2w1w1 +
�F 1w2w2

�F 2w2w2
�

1 If we substitute BJ � trJ = DetJ in the characteristic equation at the bifurcation
point, one eigenvalue is real and positive, and equal to the trace, �r = trJ , whilst the
other two eigenvalues are complex conjugate, �c = �!i, assuming ! =

p
BJ .
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Remark 2 If q < 0 the emerging cycle around the steady state is attracting,
i.e. a supercritical Hopf bifurcation occurs. (The statement is reversed for
q > 0.)

The value of q, at the two bifurcation points, can be either positive or
negative. Both bifurcations can therefore be supercritical or subcritical. The
�xed points are thus unstable and the orbits are attracting on the center
manifold. This is shown by means of the following numerical example.

Example 2 Assume � = 0:05, � = 0:33, � = 0:25. If � = ��1, then q =
�8:8�10�10 < 0, that is to say the bifurcation is supercritical, the steady state
is unstable and the periodic orbits are attracting on the center manifold. On
the contrary, in correspondence of � = ��2, we have q = 2:54 � 1014 > 0, that
is to say the bifurcation is subcritical, and the periodic orbits start repelling
(see, Fig. 2).

­0.6 ­0.4 ­0.2 0 0.2 0.4

­0.4

­0.3

­0.2

­0.1

0

0.1

0.2

0.3

0.4

w1

w
2

Fig. 2. Periodic orbits near the equilibrium.

We are thus able to conclude that di¤erent periodic solutions may emerge
in presence of resource depletion for tourism services, which leads conse-
quently to the rise of some indeterminacy problems, which might be able to
explain the rise and fall of di¤erent nowadays tourism-based economies that,
even though endowed with the same initial conditions, may at some point
start to perform di¤erently in growth rate terms and thus follow di¤erent
long run equilibrium paths.

4 Chaotic dynamics

As previously anticipated, the ability of intertemporal equilibrium theory to
provide indications about future economic conditions, given the initial state

10

 

                             
 
 

 

66



of the economy, has been questioned in several studies, and prediction of
future economic conditions can be completely undermined. In this case, a
chaotic regime may emerge as the model parameters are adequately set to
determine the existence of a family of homoclinic orbits doubly asymptotic
to a saddle-focus, which is commonly known as the Shilnikov homoclinic
bifurcation.

Our aim is to characterize the region of the parameters space where the
Shilnikov (1965) theorem is satis�ed. An example of chaotic dynamics is
also presented, and the economic implications of our results are discussed.

Proposition 4 Let 
 = (�; �; �; �) be the set of parameters. Choose � =
��. If �
 � f�� 2 
 : J has one real and two complex conjugate eigenvaluesg,
then system Q exhibits a saddle-focus dynamics.

Proof. For the equilibrium to be a saddle-focus, we require a pair of
eigenvalues with non-zero imaginary part. Solving the characteristic equa-
tion by Cardano�s formula, provides the following three roots �1 = � and
�2;3 = � � !i, with � = Tr(J)

3 + v + z, � = Tr(J)
3 � v+z

2 , and ! =
p
3v�z2 ,

given v = 3

q
� q
2 +

p
�, z = 3

q
� q
2 �

p
�, and being � =

�p
3

�3
+
� q
2

�2 the
discriminant. Moreover, p = 3B(J)�Tr(J)2

3 , q = �Det(J)+2Tr(J)
3

27 + Tr(J)B(J)
3 ,

and i =
p
�1 is standard notation for imaginary unit. Therefore, for �1 to

be a real negative root, and �2;3 to be complex conjugate, we need � > 0.

We can thus move to the main point of the paper.

Theorem 3 Consider the dynamical system

dY

dt
= f(Y; �), Y 2 R3, � 2 R1

with f su¢ ciently smooth. Assume f has a hyperbolic saddle-focus equi-
librium point Y0 = 0 at � = 0 implying that eigenvalues of the Jacobian
J = Df are of the form � and � � !i where �; � and ! are real constants
with �� < 0. If a homoclinic orbit �0 based at Y0 exists, then the map,
de�ned in the neighborhood of the homoclinic orbit of the system, possesses
an in�nite number of Smale horseshoes in its discrete dynamics.

We can prove the existence of a family of homoclinic orbits doubly as-
ymptotic to the �xed point P �, through the method of the undetermined
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coe¢ cients (cf., inter al., Shang et Han, 2005). This implies that the trans-
formed variables w1, w2 and w3 evolve according to the following expressions

w1 =

�
�e���t + e�2��t t � 0
e��t [& cos (�!t) +  sin (�!t)] + e2�!t [cos(2�!t)� sin(2�!t)] t � 0

�
w2 =

�
e�2��t t � 0
e��t [& cos (�!t)�  sin (�!t)] + e2�!t [cos(2�!t)� sin(2�!t)] t � 0

�
w2 =

�
e�2��t t � 0
e2�!t [cos(2�!t)� sin(2�!t)] t � 0

�
where (�;  ; &) are arbitrary parameters for convergence of the series at t = 0.

We discuss here below an example of chaotic trajectories arising from
system Q.

Example 4 Recall Example 2. Set (�; �; �; �) = (0:33; 0:25; 0:05; 0:61), with
� 2 [��1; ��2], then �1 ' �7:4821 and �2;3 ' 2:7259 � 1:864i. Let also
(�;  ; �) '

�
1
2 ;
1
2 ;
1
5

�
. Then our economy presents Shilnikov chaos, inducing

volatility bursts and large amplitude oscillations in the variables of the model,
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as clearly depicted in the following diagrams:
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5 Concluding Remarks

The raise of multiple equilibria and indeterminacy of the steady state solu-
tion has been commonly investigated in the literature to explain the diversity
of growth rates across countries. However, when the system is characterized
by highly nonlinear relationships the resulting dynamics around the steady
state can be even more complex.

To shed some light in this �eld, we presented a model, arguing that a cru-
cial aspect for the occurrence of both indeterminacy and cyclical adjustment
towards the steady state might be the presence of particular bifurcation val-
ues of the inverse of the intertemporal elasticity of substitution. Conclusions
to our analysis con�rm that such parameter matters in the transition to-
wards a long-run sustainable equilibrium, thus leaving space to other more
complicated dynamic phenomena characterized by periodic solutions and
chaotic dynamics to stuck the economy in a low level equilibrium trap.
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A Appendix

The Current value Hamiltonian associated with system P is given by:

HC =
c1�� � 1
1� � + �

h
Ak�g�(1��)E(1��)(1��) � c

i
+ �

h
�(E � g�E1��)

i
where � and � represent the shadow prices of physical and natural capital,
respectively. The �rst order condition for a maximum requires that the
discounted Hamiltonian be maximized with respect to its control variables,
which implies

c�� = � (A.1)

�(1� �)Ak� = ��g��E(1��)� (A.2)

accompanied by the law of motion of each costate variable

_�

�
= �� �Ak��1g�(1��)E(1��)(1��) (A.3)

_�

�
= �� (1� �)�

�
(1� �)Ak�g�(1��)E(1��)(1��)�1 � �

h
1� (1� �)g�E��

i
(A.4)

Taking log-derivatives of (A.1) and (A.2), we derive:

�� _c
c
=
_�

�
(A.5)

_�

�
+ �

_k

k
� �� _g

g
� (1� �)�

_E

E
=
_�

�
(A.6)
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Therefore, problem P can be de�ned by the following system of four �rst
order di¤erential equations:

_k

k
= Ak��1g�(1��)E(1��)(1��) � c

k
_c

c
= ��

�
+
�

�
Ak��1g�(1��)E(1��)(1��)

_E

E
= �(1� g�E��) (A.7)

_g

g
= � 1

�

c

k
+
� (1� �+ ��)

��
+
�

�
(1� �)g�E��

To ease the analysis, system (A.7) can be further reduced, by the follow-
ing convenient variable substitution, x = c

k , q =
k
E , and z =

� g
E

��. That is
to say,

_x

x
= ��

�
+

�
�� �
�

�
Aq��1z(1��) + x

_q

q
=

 
_k

k
�
_E

E

!
= �� +Aq��1z(1��) � x+ �z (A.8)

_z

z
= �

 
_g

g
�
_E

E

!
= �

1� �
�

� x+ �z

with the associated steady state values

x� =
�(� � �) + ��

��

q� =

�
�� �(1� �)

��

��
A�

�

�1��
(A.9)

z� =
�� �(1� �)

��

The Jacobian matrix of the reduced system (A.9) is then

J =

264 x� �(��1)
�

�
���
�

�
x�

q�
�(1��)
�

�
���
�

�
x�

z�

q� �
�(�� 1) �q� + �(1��)

�
q�

z�

�z� 0 �z�

375
with the associated Trace, Determinant and Sum of Principal Minors,

respectively given by:
trJ = 2�z� (A.10)
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DetJ =
�2(1� �) (2�� 3�)

��
x�z� (A.11)

BJ = �z�x� � (1� �) �
�
[x� + �z�] (A.12)

Translation to the origin.
Substitute ~x � x � �x�, ~q � q � �q�, ~z = z � �z� in the reduced system

(A.8).

_x =

�
��
�
+

�
�� �
�

�
A(�q� + ~q)��1(�z� + ~z)(1��) + (�x� + ~x)

�
(�x� + ~x)

_q =
n
�� +A(�q� + ~q)��1(�z� + ~z)(1��) � (�x� + ~x) + �(�z� + ~z)

o
(�q� + ~q)

_z =

�
�
1� �
�

� (�x� + ~x) + �(�z� + ~z)
�
(�z� + ~z) (A.13)

A second order Taylor expansion of (A.13) can be computed:0BB@
�
~x
�
~q
�
~z

1CCA = J

0@ ~x
~q
~z

1A+
0@ ~f1(~x; ~q; ~z)

~f2(~x; ~q; ~z)
~f3(~x; ~q; ~z)

1A (A.14)

being ~fi the nonlinear terms of the expanded vector �eld:
~f1(~x; ~q; ~z) = ~x

2+ (��1)(��2)(���)A�q���3�z�(1��)�x�
� ~q2��(1��)(���)A�q���1�z����1�x�

� ~z2�
� (1��)2(���)A�q���2�z����x�

� ~q � �~x+
h
�
�2
� �A�q���1�z�(1��)
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i
v~x+

+
h
� 2�
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+ 2�A(�q�+~q)��1(�z�+~z)(1��)
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v~q��(1��)A�q���1�z�1���x�

�2
v~z

~f2(~x; ~q; ~z) = (��1)2A�q���2�z�(1��)~q2��(1��)A�q���1�z����1�q�~z2�~x~q�
�(1� �)2A�q���1�z���~q~z

~f3(~x; ~q; ~z) = �~z2 � ~x~z
Following the detailed procedure in Algaba et al. (2003), system (A.14)

can be put in a more convenient Jordan normal form,0@ _w1
_w2
_w3

1A =

24 0 1 0
0 0 1
"1 "2 "3

350@ w1
w2
w3

1A+
0@ F1 (w1; w2; w3;)

F2 (w1; w2; w3;)
F3 (w1; w2; w3;)

1A (A.15)

via the change of coordinates0@ ~x
~q
~z

1A = T

0@ w1
w2
w3

1A
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made by the transformation matrix T = [u;v; z]T with

u =

264 � j�23
j�31

j�11j
�
23�j�13j�31
j�12j

�
31

1

375

v =

264 �1
z

x+�q+(1��)Aq�z��
qz

0

375

z =

264 �
j�33
j�31
0
1

375
and where "1 = DetJ , "2 = �BJ , "3 = TrJ , being Fi = T�1 ~fi (Tw) the
transformed second order non linear terms

To study the stability of periodic orbits around the steady state, we
consider the Andronov-Hopf bifurcation coe¢ cient:

q =
1

16!

�
�F 1w1w2(

�F 1w2w2 +
�F 1w1w1)� �F 2w1w2(
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�F 1w2w2

�F 2w2w2
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A�q���2�z����x�v2
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and
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Computation of the center manifold.
Assume w3 = h(w1; w2) with h smooth function. The properties of the
center manifold imply

_w3 � @h
@w1

_w1 � @h
@w2

_w2 = 0 (A.16)

Suppose now

w3 = h(w1; w2) =
1

2
[�1w

2
1 + �2w1w2 + �3w

2
2] (A.17)

where �1; �2 and �3 are unknown coe¢ cients. Time-di¤erentiating (A.17),
and substituting into (A.16), we obtain the following relation

w21+
�TrJ�2+2v2A03�2v1B03+2�C03�2��1

�TrJ�1+2v2A01�2v1B01+2�C01
w1w2+

�TrJ�3+2v2A02�2v1B02+2�C02���2
�TrJ�1+2v2A01�2v1B01+2�C01

w22 = 0

Finally, equating coe¢ cients to zero, we �nd

�1 =
2[�v2A01+v1B01��C01]

�TrJ ; �2 =
2TrJ[�v2A03+v1B03��C03]+4([�v2A01+v1B01��C01])

�TrJ2

�3 =
2[�v2A02+v1B02��C02]TrJ2+2TrJ�+4[�v2A01+v1B01��C01]

�TrJ3

where all other coe¢ cients are intricated combinations of the nonlinear terms
�Fi, which are not reported for the sake of simplicity, but remain available
upon request.
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Absolute Negative Mobility in a Ratchet Flow
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Abstract. This paper is motivated by the transport of suspended particles pumped
periodically through a modulated channel filled of water. The resulting flow behaves
as a ratchet potential, called ratchet flow, i.e. the particle may drift to a preferential
direction without bias. In order to find out the parameter range of the particle
transport and to understand it, we study the deterministic particle dynamics using
continuation of periodic orbits and of periodic transport solutions. We identify the
onset of transport as a widening crisis. We show that for slightly asymmetric problem,
the particle may drift in the opposite direction of the bias. By adding a small noise the
onset of transport may be trigger leading to an Absolute Negative Mobility (ANM).
Keywords: Ratchet, Absolute Negative Mobility, synchronization, Chaos, Noise,
Continuation.

1 Introduction

The transport of micro-particles through pores in a viscous fluid in absence
of mean force gradient finds its motivation in many biological applications as
the molecular motor or molecular pump. In the last decade, the literature
shows that a periodical pore lattice without the symmetry x → −x can lead
to the so-called ratchet effect allowing an transport in one direction x or −x.
A review can be found in Hänggi and Marchesoni[12]. We focus on the set-
up presented in Matthias and Müller[22] and Mathwig et al.[21] consisting in
a macroporous silicon wafer which is connected at both ends to basins. The
basins and the pore are filled with liquid with suspended particles (1− 10µm).
The experiment shows the existence of an effective transport in a certain range
of parameter values. By tuning them, the direction of the effective transport
may change and in particular the transport direction is opposite to the parti-
cle weight. These results may be interpreted as a ratchet effect by Kettner et
al.[14] and Hänggi et al.[13] where ”ratchet” refers to the noisy transport of
particle without bias (zero-bias). When the transport direction is opposite to
the bias, then it is called Absolute Negative Mobility (ANM), see e.g. Du and
Mei[9] or Spiechowicz et al.[27]. Recently, we show that inertia may induce
a directed transport Beltrame et al.[4]. In this deterministic approach where
thermal fluctuations are negligible and a small inertia is taken in to account,

8thCHAOS Conference Proceedings, 26-29 May 2015, Henri Poincaré Institute,
Paris France

c© 2015 ISAST
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the transport results from non-linear phenomena. Because of the existence of
transport without bias, we called the fluid flow in the micro-pump: ratchet
flow. Since the results of the experiment of Mathwig et al.[21] question the
relevance of small fluctuations in the transport, in this paper, we propose to
better understand the role of noise in this non-linear dynamics. And especially
to focus to a possible Absolute Negative Mobility.
We consider a one-dimensional system where the Stokes force and a small ran-
dom force due to fluctuations are the only forces acting on the particle. It
results a ODE system which is similar to inertia ratchet as found in the litera-
ture: Barbi and Salerno[3], Mateos[18,19] and Speer et al.[26]. In these latter
papers, transport solutions synchronized with the periodic forcing are found
for the deterministic case. They show that this dynamics results from a syn-
chronization transition as it occurs for periodically forced oscillator Pitkovsky
et al.[24]. This regime can be destroyed via a crisis which appears after a
period-doubling cascade. The synchronized transport regime may exist in the
symmetric case (parity symmetry x → −x), see Speer et al.[26] or Cubero
et al.[6]. Obviously, it implies the existence of an opposite transport solution
and then there is no transport in statistical sense. Now, if a small bias is
applied, the domain of existence of opposite transport solutions do not match
anymore. As consequence by varying the tuning parameter the transport direc-
tion may change and in particular the transport opposed to the bias may exist
Wickenbrock et al.[30]. The deterministic dynamics may help to understand
ANM too. For instance, in Machura et al.[16], the nonlinear analysis showed
that stable periodic solution and unstable periodic transport solution coexist.
By adding a small noise, the trajectory may escape from the bounded periodic
solution and may follow during few periods the periodic transport solution. As
consequence, a drift opposed to the bias is triggered by the noise.
Despite a plethora of study in this topic, there is still open issues as the tran-
sition from unbounded dynamics to transport dynamics which seems no to be
clearly identified. Moreover, most of study assumed the inertia large or, in con-
trary, the limit case of overdamped dynamics (Kettner et al.[14] and Lee[15]).
Here we consider moderate drag coefficient of the particle. We aim at find-
ing transport transition and possible ANM. In order to tackle this problem we
propose to study the deterministic case with inertia particle and then apply
a small Gaussian noise. In addition to the time integration, the deterministic
case is analyzed with the help of continuation method (Beltrame et al.[5] and
Dijkstra et al.[7]). This method appears seldom in the literature dealing with
ratchet (see e.g. Pototsky et al.[25]). However, we can follow periodic orbit (or
relative periodic orbit for the transport solution) and determine their stability
and bifurcation point. Thus, it is powerful to determine onsets and the kind of
bifurcation.
In the present work, we consider the physical parameters: particle drag (inverse
of the inertia), the mean flow of the fluid, the velocity contrast, the asymmetry
of the flow and the bias (resulting from the particle weight). We analyze firstly
the bounded periodic solution (symmetric and asymmetric cases), Secondly,
the onset of transport is determined. Finally, we treat the case of the small
perturbation due to a Gaussian noise.
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2 Modeling

Fig. 1. Sketch of the problem: the particle translates along the x-axis of a periodic
distribution of pores. It is dragged by a periodic motion of a viscous fluid. The
particle weight is oriented to the negative x direction.

Let us consider a L-periodic varying channel along the line (Ox) (Figure 2)
through which a viscous fluid containing suspended particles is periodically
pumped. We assume that the period of the pumping period is small enough
to consider a creeping flow. Such an assumption is relevant for periodicity for
L ' 10µm and T ≥ 1ms (Kettner et al.[14]). The particle is centered on the
x-axis then the moment of the particle is neglected and the particle does not
rotate. This creeping flow exerts a Fd drag force on the particle along the x
axis. The set-up is vertical so that the particle weight, Fw, is oriented to the
x negative and the buoyancy force, Fb, to the positive direction. Thus the
particle position x(t) is governed by the equation

mẍ(t) = Fd + Fw + Fb (1)

To simplify, we assume that Fd is approximatively given by the Stokes drag:
Fd = −γ(v(x, t) − vf (x, t)), where γ is the drag coefficient and v and vf are
the particle velocity and the fluid velocity without particle, respectively. This
expression of the drag force requires that the particle is small comparing to the
channel radius. Because, it is quasi-static problem, the fluid velocity distribu-
tion without particle is proportional to the amplitude pumping so that we may
write: v(x, t) = u0(x) sin(2πt) for a sinusoidal pumping, where u0(x) depends
on the pore profile. We obtain the adimensional governing equation

ẍ(t) = γ(u0(x(t)) sin(2πt)− ẋ(t)) + g (2)

where the length is scaled by the pore length L, the time by the pumping
period T and the drag by m/T and g = (Fw + Fb)/(mL/T

2). This equation
admits an unique solution C2 for a given position and velocity (xi, vi, ti) at a
time ti. In particular, two different solutions cannot have at a given time the
same position and velocity. Another straightforward result shows that particle
acceleration ẍ and its velocity ẋ remain bounded.
The velocity profile u0(x) gets the periodicity of the geometry. If the pore
geometry is symmetric, we consider a sinusoidal velocity profile:

u0(x) = um(1 + a cos(2πx)) (3)

where um is the mean velocity and a the velocity contrast. Otherwise for
asymmetric geometry, we consider an additional parameter d related to the
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asymmetry and then the pore profile is given by:

u0(x) = um +aum cos

(
π

x̄
1
2 + d

)
1[0; 12+d](x̄)

+aum cos

(
π
x̄− 1
1
2 − d

)
1] 12+d;1](x̄) (4)

d is the algebraic shift which ranges from − 1
2 to 1

2 , x̄ = x mod 1 and 1I is the
indicator function of the interval I (1I(x̄) = 1 if x̄ ∈ I, otherwise 1I(x̄) = 0).
Examples of the velocity profiles are shown in Figure 2. Note that, it is possible
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Fig. 2. Analytical velocity profiles of the flow u0(x) for um = 1, a = 0.65 and different
values of d.

to find out pore profiles corresponding to such analytical profiles, see Beltrame
et al.[4] and Makhoul et al.[17]. The asymmetry parameter d does not add a
bias: if g = 0, the bias remains zero even if d 6= 0.
As explained in the introduction, we employ continuation method in order to
track the periodic orbits of the Eq. (2) in the parameter space. We use the
software AUTO (Doedel et al.[8]). This latter requires an autonomous system.
In order to obtain an autonomous system and still periodic orbits, we added
an oscillator which converges asymptotically to the sinusoidal functions called
ϕ and φ:

ẋ = v (5a)

v̇ = γ (u0(x)φ− v) + g (5b)

φ̇ = 2πϕ+ φ(1− ϕ2 − φ2) (5c)

ϕ̇ = −2πφ+ ϕ(1− ϕ2 − φ2) (5d)

where the sinusoidal forcing is the asymptotical stable solution of Eqs. (5c)
and (5d), i.e. φ→ sin 2πt and ϕ→ cos(2πt) [2]. The system (5) has the same
periodic solution as Eq. (2). This four-dimensional problem can be written

ṡ = (ẋ, v̇, ϕ̇, φ̇) = F (x, v, ϕ, φ) = F (s) (6)
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The deterministic transport is only possible is u0 is not constant, then the veloc-
ity field u0(x) constitutes the ratchet flow. Considering a symmetric problem,
i.e. u0(−x) = u0(x) and g = 0, the function F is equivariant by the cen-
tral symmetry F (−s) = −F (s). As consequence, s is solution implies −s is
solution too. We called symmetric orbit, solution which are invariant by the
central symmetry. There is two symmetric solutions: one centered the pore
middle (x = 1/2), noted sm and at the second one, centered at the pore inlet
(x = 0), noted s0.
For the asymmetric case, it is no longer true. However, for small oscillation
amplitude um, the problem is similar to charged particles in a non-uniform
oscillating electromagnetic force McNeil and Thompson[23], it is possible to
prove that there exists periodic solution centered at the extrema of u0(x). At
the maximum it is unstable while it is stable at the minimum and it constitutes
the only attractor.
Therefore, the analytical results do not show existence of transport solution.
In the following we propose to track the periodic solutions in the parameter
space.

3 Transitions to transport solutions
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Fig. 3. (a) Bifurcation diagrams showing the periodic branches as a function of the
drag γ for a = 0.65, um = 9 in the symmetric case. The black color indicates the
s0 branch, red the sm branch, green the sa branch and blue the 2-periodic branch.
Dots indicate the different bifurcations: Pitchfork bifurcation (PB), Period-Doubling
(PD) and (PD2) for the second period-doubling, fold bifurcation (LP). (b) Bifurcation
diagram for the parameter but in the asymmetric case: d = 0.1 and g = −0.1. Black
indicate 1-periodic branch and blue 2-periodic branch. In both diagrams, plain lines
indicate stable orbits while dashed line correspond to unstable orbits.

We study the periodic branches for the symmetric case, i.e., the velocity
profile u0 is symmetric (d = 0) and there is no bias (g = 0). Besides the
solutions s0 and sm, we find an asymmetric branch (Figure 3(a)). This branch
is not invariant by the central symmetry and there is two branches s+a and
s−a copies by the central symmetry. Then, they have the same norm and they
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do not appear in the bifurcation diagram, we note them sa to simplify. The
sa branch results from a pitchfork bifurcation either from s0 and sm and thus
connect both branches (Figure 3a). This arises in the intervals [2.05, 6.52] and
[6, 18]. At each end of the intervals, the same scenario, described below, occurs
by varying γ away from the pitchfork bifurcation:

1. The sa branch is stable in the vicinity of the pitchfork bifurcation but it
is destabilized in the via a period doubling. We plotted the bifurcated 2-
periodic branch which displays two folds. It becomes unstable via period
doubling too. Note that the period-doubling cannot arise on a symmetric
branch according to Swift and Wiesenfeld[28].

2. A period doubling cascade follows the first period-doubling and leads to
a strange attractor. The present cascade has a behavior similar to one-
dimensional map whose the distance between two consecutive bifurcations
is divided by the universal Feigenbaum constant [10] δ ' 4.669.

3. The strange attractor is bounded till an widening crisis Grebogi et al.[11].
As consequence contiguous attractors (shifted by one spatial period) are
connected. Because of the spatial shift symmetry, the dynamics is no longer
bounded. Of course for the symmetric case no preferential direction of the
particle trajectory is observed. It is more like an anomalous diffusion Ma-
teos and Alatriste[20].
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Fig. 4. (a) Poincaré section (xn = x(n)mod1, vn = v(n)) where n ∈ N near the onset
of transport at (black dots) γ = 14.70 and (red dots) γ = 14.69, other parameters
are: um = 9, a = 0.65, d = 0.1, g = −0.1. The strange attractor in black remains in
the interval [0, 1] while the red strange attractor is no longer bounded. Its represen-
tation modulo 1 displays a sudden expansion characteristic of the widening crisis. (b)
Discrete dynamics xn = x(tn) at discrete times tn = n of the red strange attractor of
the panel (a) at γ = 14.69. An intermittent drift to positive x appears.

For the asymmetric case, similar transitions from 1-periodic orbit to the onset
of the transport are observed. Nevertheless, the pitchfork bifurcations of the
1-periodic orbits vanish and instead there is two 1-periodic branches formed,
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Fig. 5. (a) Discrete dynamics xn at entire times tn in the co-moving frame c = +1
near the onset of synchronization at (red) γ = 13.4170, (blue) γ = 13.4165 and (black)
γ = 13.4164 > γs

c . Other parameters are um = 9, a = 0.65, d = 0.1, g = −0.1. The
plateaux correspond to a near synchronized transport with c = +1. (b) Dynamics
x(t) for γ = 13.416 < γs

c : After a chaotic transition, the dynamics is the synchronized
transport with c = +1.

firstly, by the coalescence of the s0, s+a and sm and, secondly, by the coalescence
of s0, s−a and sm. An example for d = 0.1 and g = −0.1 (other parameters being
the same as for the symmetric case) is displayed in the bifurcation diagram 3b.
From each branch, a period-doubling occurs. Both 2-periodic branches present
two folds. A period-doubling cascade arises as for the symmetric case. We
focus on the period-doubling cascade which starts at the largest drag coefficient
γ ' 16.48. Indeed a drag coefficient smaller than 10 is quite unrealistic for
small particles. The period-doubling cascade leads to an asymmetric strange
attractor at γ ' 15.2. At γtc ' 14.698, we observe a widening crisis connecting
the contiguous attractors (Fig. 4a). But this time, because of the asymmetry of
the system, there is a non-zero mean drift particle (see Fig. 4b). As expected,
the dynamics after the crisis is intermittent: the dynamics spends a long time
near the ”ghost” bounded strange attractor and ”jumps” to the other ”ghost”
attractor shifted by one period length. Note that, it is quite unexpected that we
obtain a transport opposite to the bias. Now, we study the transport solutions.

4 Transport solutions

By decreasing further the drag coefficient, the drift velocity increases. In fact,
the mean duration of the bounded-like dynamics is shorter. For γ approaching
the critical value γsc ' 13.41639, the drift velocity is almost equal to one. The
epochs of bounded-like dynamics are very short comparing to the transport
events. The discrete particle position xn = x(tn) at entire times tn = n and in
the comoving frame with the speed +1 is displayed in the Fig. 5a. Thus, the
long plateaux correspond to the dynamics with drift velocity about one. When
γ tends to γsc the longer of the plateaux diverges and then the velocity tends
to one. For γ > γsc the dynamics is periodic in the comoving frame. In other
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Fig. 6. (a) Bifurcation diagram of the synchronized transport solution with c = ±1 for
the symmetric case. The solution emerges at saddle-node bifurcations. Dashed [plain]
line indicate unstable [stable] solution branch. The stable branch becomes unstable
via period-doubling (the blue branch corresponds to 2-periodic orbit), which is again
unstable by period-doubling. Other parameters are um = 9, a = 0.65. (b) Bifurcation
diagrams of the synchronized transport solution with (red) c = −1 and (black) c = +1
for the asymmetric case: d = 0.1, g = −0.1, the other parameters being the same as
in panel (a). A similar bifurcation diagram as for the symmetric case occurs for both
branches c = +1 and c = −1. However, their domains of existence are slightly shifted.

words, the particle advances of one spatial length after one period (Fig. 5b). It
is the so-called synchronized transport. In point of view of synchronization, it
is a synchronization of oscillators with forcing at moderate amplitude Vincent
et al.[29]. Then the transition is a saddle-node. Moreover, the chaotic transient
observed in Figure 5b suggests the presence of a chaotic repeller as it occurs in
this case, see e.g. Pitkovsky et al.[24].
We study the regular transport emerging from the synchronization. Since the
transport xt(t) is periodic in the comoving frame, we introduce the periodic
function xp such as

xt(t) = xp(t) + ct (7)

where c = ±1 depending on the direction of the transport. Then if xt is solution
of Eq. 2 then it is solution of the equation:

ẍp = γ [u0(xp + t)) sin(2πt)− ẋp − c] + g, (8)

It is a similar equation as Eq. (2) with an added bias −γc. We found a transport
with c = +1 and also the opposite transport c = −1 (Fig. 6b). The coexistence
of opposite transport solutions is a consequence of the existence of synchronized
transport in the symmetry case. Indeed, for the symmetric case, a similar
scenario leads to the synchronized transport (Fig. 6a). In this case, according
to the equivariance of the problem, if the solution c = +1 is found, then a
solution c = −1 exists, deduced from the central symmetry (Speer et al.[26]).
Because these solutions are no more symmetric, generically, these solutions
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Fig. 7. Discrete time evolutions xn at entire times tn for γ = 8.5, um = 9, a = 0.65
and (a) for the symmetric case and (b) the asymmetric case: d = 0.1, g = −0.1.
The dynamics display a competition between opposite transports. However in the
asymmetric case, a net drift to x negative appears.

remain for a small enough perturbation due to the asymmetry d or/and the
bias g.
All the bifurcation diagrams of synchronized transport with c = ±1 have the
same structure (Fig. 6). The solution emerges from a saddle-node leading to
the birth of a pair of saddle branches. The unstable branch remains unstable
over its existence domain. The stable branch becomes unstable via a period
doubling bifurcation. As for the bounded periodic solution, a period-doubling
cascade occurs leading to a chaotic dynamics. Note however as long as an
widening crisis does not occur, the drift velocity remains locked to c = ±1.
After the widening crisis, the strange attractor is no longer bounded in the
comoving frame. The resulting dynamics is no longer locked and it is chaotic.
Examples for the symmetric and asymmetric cases are displayed in Fig. 7. For
the symmetric case, there is a competition between opposite transport solutions
which are unstable. The trajectory is unbounded but the mean position remains
zero. It is an anomalous diffusion like. For the asymmetric case, the dynamics is
similar but the resulting drift is non-zero. For the specific example in Figure 7b,
we obtain a net transport direction to the negative direction.
In the asymmetric case, despite the negative bias, there is range where only
the upward transport exists (γ ∈ [11.8457, 13.41639]). The ’trick” to obtain
this unnatural dynamics was, firstly, to introduce the small flow asymmetry
d which shifts the existence domains of the transport solutions c = +1 and
c = −1 of the symmetric case (Fig. 6a). Then, this region persists for a small
enough negative bias g. Note, without the flow asymmetry d, this region does
not exist. In this region, we have a particle motion opposed to the bias like
the ANM. To find a upwards dynamics due to the noise, we have to study its
influence.
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Fig. 8. Discrete stochastic particle dynamics at discrete times n governed by the
Eq. (9) with the fluctuation amplitude ε = 0.1 for two different values γ near γt

c:
γ = 14.7 and γ = 15 (long plateaux). Other parameters are fixed to um = 9, a =
0.65, d = 0.1, g = −0.1.

5 Absolute negative mobility

We consider an additional random force, then the ODE system (2) becomes

ẍ(t) = γ(u0(x(t)) sin(2πt)− ẋ(t)) + g + εξ(t) (9)

where ε is the amplitude of the fluctuating force, and ξ is a Gaussian stochastic
process such as < ξ(t) >= 0 and < ξ(t)ξ(t′) >= δ(t− t′) where δ is the Dirac
delta expressing that the noise is purely Markovian. In contrast to Machura
et al.[16], the bifurcation diagrams 3 and 6 show that stable bounded periodic
solutions do not coexist with unstable transport. Then, it is not possible to
obtain the same kind of ANM as ib Machura et al.[16] where the solution may
escape from the stable periodic solution allowing trajectories in the neighbor-
hood of the transport solution leading to the drift emergence. We propose
to study the influence of the noise near the onset of unbounded dynamics at
the widening crisis. Indeed, before the crisis and in its vicinity, contiguous
strange attractors are close together then a small noise may allow to jump
from a strange attractor to another one. The simulation near the strange at-
tractor corroborates this scenario (Fig. 8). We observe a dynamics similar to
the one which occurs after the crisis. Long epochs of bounded dynamics are
interrupted by a jump to the upward pore. We do not observe jump to the
downward direction. This is due to the asymmetry of the strange attractor.
Note that the simulation in the symmetric case does not display a preferential
direction. Away from the crisis by taking larger value of γ, the duration of
the bounded dynamics events are statically longer. Indeed it is quite difficult
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to distinguish this noisy dynamics from the deterministic dynamics. The noise
triggers the crisis transition leading to the same kind of dynamics. Since the
transport is opposed to the bias and it does not exist without noise, we have
found an example of Absolute Negative Mobility in this framework.
In contrast, once the deterministic crisis occurred, the noise does not notably
modified the dynamics and the drift velocity. It seems to have a negligible influ-
ence on the onset of the synchronized dynamics too. Moreover, the small noise
does not allow to escape from the attraction basin of the periodic transport
solution so that it does not destroy the synchronized transport.

6 Conclusion

In this paper we have examined a nonlinear ODE and its perturbation by a
small gaussian noise as a model for inertia particle transport via a micro-pump
device. The equation is similar to ratchet problem where the ratchet flow u0(x)
variations play the role of the periodical potential in the ratchet literature.

The deterministic analysis showed that synchronized transport solutions
exist for inertia particles with drag coefficient about 10. Their existence is not
related to asymmetry. Indeed for the symmetric case, the symmetric solution
s0 or sm becomes unstable via a pitchfork bifurcation. This latter becomes
unstable via period-doubling cascade leading to a bounded strange attractor.
This strange attractor is destroyed via a widening crisis allowing the emergence
of an unbounded dynamics. Finally, via a synchronization transition the peri-
odic transport appears. In the symmetric case, the transports with c = +1 and
c = −1 emerge at the same onset. A similar scenario occurs in the asymmet-
ric case, but the onset of downward and upward transport no longer coincide.
When the asymmetry is small, both transport directions exist but their exis-
tence domains are shifted. Thus there is a range of the drag coefficient where
only the upward transport exists even if the bias is negative.
A weak noise does not modify the synchronized dynamics. However it may
trigger the onset of the unbounded dynamics created via an widening crisis.
We show that for subcritical parameters, a net drift may appear due to the
noise. Indeed, it allows jumps between consecutive bounded strange attrac-
tors. We obtain an Absolute Negative Mobility near the onset of the upward
transport. This mechanism differs from Machura et al.[16] and occurs in a
very small range. That shows that the study of the deterministic case and
the continuation method is powerful to understand and to find such dynamics.
The found ANM is generic of slightly biased ratchet problem. In fact, the sce-
nario involves generic non-linear phenomena: symmetric breaking and crisis in
a spatial periodic problem. The existence of an upwards-transport opposed to
the bias can be understood as a perturbation of the symmetric case where up
and down dynamics coexist. Then for a small perturbation both should exist.
Finally, it is quite known that the noise allows to escape from an attractor as
it occurs in our case. So, the ANM scenario presented in this paper has a quite
universal aspect for ratchet problem.
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Abstract. The paper is focused on the discussion of the phenomenon of transitional 
chaos in dynamic autonomous and non-autonomous systems. This phenomenon involves 
the disappearance of chaotic oscillations in specific time periods and the system 
becoming predictable. Variable dynamics of the system may be used to control the 
process. The discussed example concerns a model of a chemical reactor. 
Keywords: Chaos, Chemical Reactor, Oscillations, Time series, Lyapunov time. 

 
 
1  Introduction 

Unpredictability is characteristic for a chaos. It means, that even the 
smallest change in initial conditions causes that we are unable to predict what 
will happen in the future. The greater change, the shorter the Lyapunov time 
(predictability). However, there are completely opposite cases, that is: we are 
unable to predict what happen in a moment, but we can say what happen in 
farther future with 100% accuracy. 

It is probable that this feature is embedded in the Universe and nature. 
Due to a chaotic nature of the Universe, we are not even capable of predicting 
the weather prevailing on the Earth, or the movement of the galaxies, yet we 
forecast  that in the far future the Universe will shirk again back to the unique 
point and shall be predictable. It is similar with nature. Until an entity lives, it is 
difficult to predicts its behavior, but when it dies, its condition is explicitly 
determined within the framework of time. Thus, we may say what will happen 
to an entity/ individual in the far future, yet, we may not foresee what will 
happen to them in a moment of time. It occurs in systems with variable 
dynamics. There may be autonomous or non-autonomous systems. Under 
certain conditions the phenomenon of variable dynamics may be used to predict 
chaotic changes and to control a given process. 
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2 Autonomous system 

An example of the autonomous system can be two-dimensional discrete 

model: 
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See Fig. 1. 

 
 

Fig. 1. Two time series of  the autonomous system (1). Continuous line – first 
plot, dashed line – second plot  

 
Two trajectories start at slightly different initial conditions, and, for 

k<12 they are practically convergent. For k>12; however, the trajectories 
become distant from each other. This is a typical feature of chaos. Yet, for k>26 
both trajectories are again approaching  each other and from that moment the 
system generates stable (predictable) four-period oscillations. 
 A similar phenomenon may occur in different types of industrial 
systems and equipment. A good example of this is a chemical reactor  in which 
the so called catalyst deactivation takes place. Due to such deactivation the 
reactor slowly halts, and after some time, stops working at all. If such process is 
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considered in a mathematical model of the reactor, and described by means of 
additional differential equations, we are dealing with an autonomous model. If, 
however, the deactivation process is explicitly dependent on time, we are 
dealing with a non-autonomous model. 
 

3 Non- autonomous system 

An example of a non-autonomous model is a chemical reactor with 
mass recycle, in which the following reaction kinetics variable in time was 
assumed: 
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where: f=0.5, 3=δ , 025.0−=ΘH
, Da=0.15, n=1.5, 15=γ , 2=β , 

00025.01 =ω , 0075.01 =ω  and k is a disctrete time. See Fig. 2. 

 
 

Fig. 2. Two time series of the chemical reactor model (2). Perturbation for 
k=200. Continuous line – first plot, dashed line – second plot 
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Likewise, two trajectories start at only slightly different initial 
conditions, and, for k<250 they are practically convergent. But, for k>250 they 
are becoming divergent, which is a typical feature of chaos. For the range of 
340<k<680 the process becomes completely predictable, see Fig. 3. 

 

 
 

Fig. 3. Part of Fig. 2. 
 

 
 For 680<k<1180 chaos reappears and the resultant unpredictability 

(chaotic crisis). For k>1180 the system enters the steady state and again 
becomes predictable. In Fig.4 Poincaré section is shown for the function in Fig. 
2. This is Henon characteristic attractor, designated for a reactor with recycle- 
see [1-12 ]. 
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Fig. 4. Poincaré set of the chemical reactor model (2) 

 
It is noteworthy that for perturbation in time k<200 does not evoke 

changes in the further course of the process. See Fig. 5. 

 
Fig. 5. Two time series of the chemical reactor model (2). Perturbation for 

k=150. Continuous line – first plot, dashed line – second plot 
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 The phenomenon of variable dynamics may be used to predict chaos 
and, in consequence,  enable process control. Let us assume the following 
kinetics form of the reaction: 
 

( ) ( ) kn eeDa
ω
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βγ
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−=Θ 11,    (3) 

 
If, under normal process conditions, i.e. for 0=ω , the reactor works in 

a chaotic manner, then, assuming 0≠ω , the value of function φ  is close to 

zero for small values of time k. This means that during the first time interval, the 
reactor works in a predictable manner. During the start-up the values of the 
reactor state variables (temperature and concentration) are the same for both 
trajectories, irrespective of the difference in their initial conditions. As shown in 
Fig. 6, for 20=ω  even a significant perturbation in time k=10 does not evoke 
changes in the further course of the process. 

 
 
Fig. 6. Two time series of the chemical reaktor model (3). Perturbation for k=10. 

Continuous line – first plot, dashed line – second plot 
 

This means that such chaotic process does not react to changes in its 
initial conditions, thus, it is predictable.  

The occurrence of a disturbance in time k>10 does not lead to changes 
in the beginning for a significantly long time period. However, the changes 
appear in longer time perspective, as shown in Fig. 7. 
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Fig. 7. Two time series of the chemical reactor model (3). Perturbation for k=40. 

Continuous line – first plot, dashed line – second plot 
 
 

Accordingly, the excitation of non-chaotic operation of the reactor at 
start-up may guarantee the predictability of the process in its further course. 
This may be useful in circumstances when the reactor is required to work 
chaotically, yet at the same time, under control. 

 
 

Conclusions 

The scope of the paper is the analysis of the phenomenon of transitory 
chaos in dynamic autonomous and non-autonomous systems. In the autonomous 
system chaos occur in a transitory state and then disappears in the steady state. 
Accordingly, the state of the system is unpredictable at the beginning of the 
observations, but predictable in the longer time period. Likewise, in a non-
autonomous model explicitly dependent on time. Such case was considered on 
the example of a model of a chemical reactor. The phenomenon of variable 
dynamics may be used to predict chaotic behaviour of systems, which, in turn, 
enables their control. 

The system (2) remembers the initial conditions for k <200. The system 
(3) remembers the initial conditions for k <10. We can say that these are special 
times of Lapunov. 
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Abstract. Lagrangian data can provide relevant information on the advection and
diffusion properties of geophysical flows at different scales of motion. In this study,
the dispersion properties of an ensemble of trajectories transported by a surface ocean
flow are analyzed. The data come from a set of Lagrangian drifters released in
the South Brazilian Bight, during several oceanographic campaigns. Adopting a
dynamical systems approach, the attention is primarily focused on scale-dependent
indicators, like the finite-scale Lyapunov exponent. The relevance of mechanisms like
two-dimensional turbulence for the dispersion process is addressed. Some deviations
from the classical turbulent dispersion scenario in two-dimensions are found, likely
to be ascribed to the nonstationary and nonhomogeneous characteristics of the flow.
Relatively small-scale features (of order 1-10 km) are also considered to play a role
in determining the properties of relative dispersion as well as the shape of the kinetic
energy spectrum.
Keywords: Turbulent transport, Lagrangian dispersion, Geophysical flows, Oceanic
turbulence.

1 Introduction

Experimental campaigns involving Lagrangian drifters provide useful informa-
tion to test model and theories of geophysical fluid dynamics, as well as to
characterize the advection and diffusion properties of flows in applications. In
an oceanographic context, for instance, predicting the spreading of a pollutant
or the distribution of a biological population (e.g., phytoplankton or fish larvae)
transported by surface currents represent both a challenging scientific task and
a matter of general interest.

In the past years, an amount of Lagrangian data about the South At-
lantic Ocean (SAO) was collected thanks to the First GARP Global Exper-
iment drifters, released following the major shipping lines, and to the Southern
Ocean Studies drifters, deployed in the Brazil-Malvinas Confluence. These
data allowed estimates of eddy kinetic energy, integral time scales and diffu-
sivities [1,2]. Despite the relatively uniform coverage, the boundary currents
resulted poorly populated by buoys. Furthermore, the majority of previous
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studies about drifters in the South Atlantic have concerned one-particle statis-
tics only. While single-particle statistics give information on the advective
transport associated to the largest and most energetic scales of motion, two (or
more) particle statistics are needed to access information about the dominant
physical mechanism acting at a certain scale of motion (chaotic advection,
turbulence, diffusion). In a previous study [3], we considered both one and
two-particle statistics to investigate the advective and diffusive properties of
the surface currents explored by an ensemble of drifters released in proximity
of the coast of Brazil during a project called MONDO (Monitoring by Ocean
Drifters), for the environmental assessment on an oil drilling operation. The
analysis of trajectory pair dispersion revealed some deviations, at scales smaller
than approximately 10 km, from the behavior expected within a classical two-
dimensional (2D) turbulence scenario. Interestingly, such deviations suggest
that motions in this range of scales would be more energetic than predicted by
2D turbulence. However, due to limited statistics, the results were not con-
clusive, i.e. no clear scaling behavior of appropriate statistical indicators was
detected below 10 km.

In this study we revisit the analysis of trajectory pair dispersion in the
Southwestern Atlantic Ocean using a larger data set, corresponding to drifter
trajectories coming from environmental assessment projects of oil drilling op-
erations (including the first MONDO project) and Projeto AZUL [4], a pilot
operational oceanography program in the region. The main goal of the present
work is to attempt making a step forward in the understanding of relative dis-
persion at scales smaller than 10 km, and discuss the consistency of the data
analysis with classical turbulence theory predictions. The paper is organized as
follows. In Section 2 we recall the classical picture of turbulent dispersion and
we introduce the statistical indicators of Lagrangian dispersion that we will
consider. In Section 3 we provide a description of the data set. In Section 4
we report the results of our data analysis, and in Sec. 5 we compare it with
that issued from numerical simulations of the Lagrangian dispersion process.
Finally, in Section 6 we provide some concluding remarks.

2 Turbulence and relative dispersion

In the quasi-geostrophic (QG) approximation, valid for relative vorticities much
smaller than the ambient vorticity due to the Earth’s rotation, theoretical ar-
guments would predict that, from the scale of the forcing at which eddies
are efficiently generated by instability, e.g. the Rossby radius of deformation
δR, both a down-scale enstrophy cascade and an up-scale energy cascade take
place. The corresponding energy spectra are respectively given by E(k) ∼ k−3

(for k > kR) and E(k) ∼ k−5/3 (for k < kR) [5,6], where k is the horizontal
wavenumber and kR = 2π/δR. In the ocean, possible deviations from this ideal
double-cascade scenario may come, reasonably, from the nonhomogeneous and
nonstationary characteristics of the velocity field, e.g. in the case of boundary
currents, as well as from ageostrophic effects. At this regard, one presently
debated issue is the role of submesoscale structures [7], velocity field features
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of size ∼ (1−10) km, in determining the shape of the energy spectrum at inter-
mediate scales between the Rossby deformation radius, in the ocean typically
∼ (10−50) km, and the dissipative scales (much smaller than 1 km). It is worth
observing, here, that recent high-resolution 3D simulations of upper-ocean tur-
bulence [8,9] have shown that the direct cascade energy spectrum flattens from
k−3 to k−2 at submesoscales.

Let us now see how different transport mechanisms, like the turbulent phe-
nomenology described above, manifest in a Lagrangian framework, particularly
from a relative dispersion perspective. Relative dispersion is defined as the sec-
ond order moment of the distance R(t) = ||r(1)(t)−r(2)(t)||, at time t, between
two trajectories:

〈R2(t)〉 = 〈||r(1)(t)− r(2)(t)||2〉, (1)

where the average is over all the available trajectory pairs (r(1), r(2)). At scales
smaller than the forcing scale, δ < δR, the presence of a direct enstrophy
cascade implies that the velocity field varies smoothly in space. This means
that, for nonlinear fields, the particle pair separation typically evolves following
an exponential law:

〈R2(t)〉 ∼ e2λLt, (2)

where λL is the (Lagrangian) maximum Lyapunov exponent [10]; a value λL >
0 means Lagrangian chaos. The chaotic regime holds as long as the trajectory
separation remains sufficiently smaller than the characteristic scale δR. Under
these conditions, relative dispersion is often referred to as a nonlocal process
because it is mainly driven by the deformation field at scales much larger than
the particle separation. When δ > δR, on the other hand, the presence of an
inverse energy cascade with spectrum E(k) ∼ k−5/3 implies a rough velocity
field; in this case one expects

〈R2(t)〉 ∼ t3, (3)

that is Richardson superdiffusion [11]. This dispersion regime is said to be local,
because the growth of the distance between two particles is now controlled by
local velocity differences, i.e. mean gradients on a finite scale of the order of
the particle separation. In the limit of very large particle separations, namely
larger than any scale of motion, the two trajectories are sufficiently distant
from each other to be considered uncorrelated and the mean square relative
displacement behaves like:

〈R2(t)〉 ' 4KEt, for t→∞ (4)

where KE is the asymptotic eddy-diffusion coefficient [11]. At any time t, the
diffusivity K(t) can be defined as:

K(t) =
1

4

〈
dR2

dt
(t)

〉
=

1

2

〈
R(t)

dR

dt
(t)

〉
(5)

with K(t)→ KE for t→∞.
Relative dispersion is a fixed-time indicator. This involves averaging, at a

given time, particle separations that can be very different, which can be prob-
lematic for multiscale turbulent flows, especially in a local dispersion regime.
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Another approach, allowing to disentangle contributions to the dispersion pro-
cess from different scales, is to resort to indicators that are, instead, computed
as fixed-scale averages. The finite-scale Lyapunov exponent (FSLE) has been
formerly introduced as the generalization of the maximum Lyapunov exponent
(MLE) λ for non-infinitesimal perturbations [12]. If δ is the size of the pertur-
bation on a trajectory in the phase space of a system, and 〈τ(δ)〉 is the phase
space averaged time that δ takes to be amplified by a factor ρ > 1, then the
FSLE is defined as

λ(δ) =
1

〈τ(δ)〉
ln ρ. (6)

The quantity τ(δ) is the exit time of the perturbation size from the scale δ,
and it is defined as the first arrival time to the scale ρ · δ, with ρ ∼ O(1).
The evolution equations of Lagrangian trajectories form a dynamical system
whose phase space is the physical space spanned by the trajectories. In this
context, the analysis of relative dispersion can be treated as a problem of finite-
size perturbation evolution, with scale-dependent growth rate measured by the
FSLE. By a dimensional argument, if relative dispersion follows a 〈R2(t)〉 ∼
t2/β scaling law, then the FSLE is expected to scale as λ(δ) ∼ δ−β . For example,
in case of standard diffusion we expect β = 2; for Richardson superdiffusion,
β = 2/3; in ballistic or shear dispersion we have β = 1. Chaotic advection
means exponential separation between trajectories, which amounts to a scale-
independent FSLE λ(δ) = constant, i.e. β → 0. In the limit of infinitesimal
separation, the FSLE is nothing but the MLE, i.e. λ(δ) ' λL.

An indicator related to the FSLE is the mean square velocity difference
between two trajectories as function of their separation. Indicating with r(1),
r(2), v(1), v(2) the positions and the Lagrangian velocities of two particles 1
and 2 at a given time, we define the finite-scale relative velocity (FSRV) at
scale δ,

〈[∆V (δ)]
2〉 = 〈

[
v(1) − v(2)

]2
〉 (7)

where the average is over all trajectory pairs fulfilling the condition R(t) =
||r(1)(t) − r(2)(t)|| = δ at some time t. From the FSRV a scale-dependent

diffusivity can be formed as K(δ) = (1/2)δ〈[∆V (δ)]
2〉1/2 and compared to the

classical time-dependent diffusivity K(t) defined in (5).

3 Drifter data set

The data used in this study come from a set of 175 satellite-tracked ocean
drifters deployed at Campos and Santos Basins - Southeastern Brazil - for
environmental assessments of oil and gas activities (MONDO projects), and
from Projeto AZUL [4], a pilot operational oceanography project for the re-
gion. The period of analysis ranges from September 2007 to September 2014.
Deployments carried out during MONDO projects occurred from 2007 to 2012
(with the exception of 2008), while deployments from Projeto AZUL started in
2013. Part of the drifters were deployed in clusters of 3 to 5 units, with initial
pair separations smaller than 1 km, in order to study dispersion properties (as
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performed in [3]). Other deployments were targeted at dynamic features of
the region like eddies and meanders and consisted in releasing either a single
buoy at a time or groups with greater initial pair separations. All drifters are
of SVP (Surface Velocity Program) type [13], with an underwater drogue at-
tached to a surface buoy, an arrangement designed to minimize wind slippage
and to represent the average current of the top 20-m layer of the ocean. Each
drifter is equipped with a GPS device and iridium communication, allowing
for a 7 m accuracy of the position and a fixed 3 h acquiring rate. Data were
quality controlled as proposed by the Global Drifter Program [14] to remove
spurious values and to assure that trajectories pertain to the period when the
drifter was in the water and with the drogue attached. Resulting trajectory
durations vary from 30 to 671 days, with a mean of 180 days and a standard
deviation of 132 days. In order to remove high-frequency components, a Black-
man low-pass filter of 25 h was applied to the data. Despite the heterogeneity
of the deployment strategies and frequency, the 175 trajectories analyzed pro-
vide a rather good sampling of the southwestern corner of the South Atlantic
gyre and suffice for two-particle statistics studies. Trajectories and deployment
locations are presented in Fig. 1.

The domain explored by the drifters mainly corresponds to that of the
southward flowing Brazil Current and to the area where this meets the north-
ward flowing Malvinas Current, forming the Brazil-Malvinas Confluence, a
highly energetic zone playing an important role in weather and climate of South
America. More details about the local oceanography can be found in [3] and
references therein. Here we only recall that this is an area of intense mesoscale
activity with eddies detaching from both sides of the flow and that the first
internal Rossby radius of deformation has a meridional variation in the range
(20− 40) km, in the region.

Fig. 1. Overall view of drifter trajectories. The larger red dots indicate the La-
grangian origins of trajectories.
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4 Analysis of two-particle statistics

In this section we present the results of the data analysis on two-particle statis-
tics. Distances between two points on the ocean surface are calculated as great
circle arcs, according to the spherical geometry standard approximation. The
available statistics is limited by finite lifetime of trajectories and irregular de-
ployments of drifters in time. Hence, in order to increase the statistics, besides
the original pairs we also consider chance pairs, that is pairs that happen to
be sufficiently close to each other at an arbitrary instant of time after their
release [15].

Relative dispersion is reported in the left panel of Fig. 2 for three different
initial separations. The numbers of pairs counted in the statistics depends on
the initial threshold: 64 for R(0) ≤ 2 km, 77 for R(0) ≤ 5 km and 91 for
R(0) ≤ 10 km. The dependence of 〈R2(t)〉 on R(0) is well evident. The early
regime is shown in the right panel and it does not display any clear exponential
growth of 〈R2(t)〉. In the opposite limit of very large times, corresponding
to separations δ ≥ (250 − 300) km, some tendency towards a linear scaling,
indicating diffusive behavior, is found. In the intermediate range between these
two, the scaling of relative dispersion is not far from t3, as for Richardson
superdiffusion, but the growth is somehow smaller.
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Fig. 2. Drifter relative dispersion 〈R2(t)〉 (left panel) and its early regime (right
panel) for initial separations as in the legend. The time sampling is ∆t = 1/8 day.
Error bars are the standard deviations.

Relative diffusivity in the zonal and meridional directions, for R(0) ≤ 2 km,
is plotted in Fig. 3. In the intermediate time range between 10 and 100 days
the behavior of K(t) approaches a t2 law, as expected in the Richardson disper-
sion regime. The diffusivity in the meridional direction is found to be larger,
reflecting the anisotropy of the flow.

We now present the results obtained with fixed-scale indicators. These have
been evaluated for the same initial thresholds, R(0) ≤ 2, 5, 10 km. The density
of scales is fixed by setting ρ = 1.3 or ρ =

√
2, representing a good compromise

between the finest possible scale resolution and the largest possible number of
pairs per threshold to ensure convergence of the statistics. The results do not
strongly depend on the precise value of the amplification factor. The maximum
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Fig. 3. Drifter relative diffusivity K(t) for zonal and meridional components, for
initial separations R(0) ≤ 2 km. The t2 scaling corresponds to the Richardson regime.
The time sampling is ∆t = 1/8 day.

number of pairs considered varies with the initial threshold: 64 for R(0) ≤ 2 km,
77 for R(0) ≤ 5 km, 90 for R(0) ≤ 10 km.

The FSLE is plotted in Fig. 4; the comparison of left and right panels
(ρ = 1.3 and ρ =

√
2, respectively) clearly shows the robustness of results with

respect to the value of ρ. In the mesoscale range δ > δR above the deformation
radius, here reasonably estimated as δR ' 30 km, the FSLE exhibits a power
law scaling δ−2/3 compatible with Richardson superdiffusion and local disper-
sion. At scales of the order of the deformation radius δ ≈ δR, the FSLE is close
to a constant value λ(δ) ' 0.15 day−1, suggesting exponential separation and
a less local dispersion process. These results are in good agreement with those
previously found, in the same scale ranges, using data from the first MONDO
project [3]. In principle, they could support a classical double-cascade scenario
with k−5/3 and k−3 kinetic energy spectra in the inverse energy cascade and
in the direct enstrophy cascade, respectively. However, in the submesoscale
range δ ' (1− 10) km well below δR we find a behavior close to λ(δ) ∼ δ−1/2,
implying enhanced scale-dependent dispersion rates. We observe, furthermore,
that such a power-law scaling of the FSLE would correspond to a rather flat
kinetic energy spectrum in k−2. At the smallest sampled scales (δ < 1 km) the
FSLE tends to level off, which is more clearly seen for ρ = 1.3 (left panel of
Fig. 4). However, we remark that on these scales the resulting values are likely
affected by poorer statistics and filtering issues (the time scale 1/λ(δ) ≈ 1 day
is of the order of the filtering time window of 25 h).

The computation of the mean square finite size relative velocity is reported
in Fig. 5 (left panel). The Lagrangian velocity components are obtained from
the drifter trajectories by a standard finite differencing method. The FSRV is
consistent with Richardson dispersion for scales larger than the Rossby radius,
where it scales as δ2/3. In a rather narrow intermediate range (δ ≈ δR) it gets
closer to a δ2 behavior, suggesting exponential separation. In the submesoscale
range (1−10) km, on the other hand, it appears to scale as δ, which is consistent
with a k−2 kinetic energy spectrum and the FSLE behavior found in the same
scale range. These results support a classical double-cascade phenomenology
only at scales comparable to the Rossby radius or larger, while they suggest
more energetic submesoscales well below δR. From the FSRV an “equivalent
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Fig. 4. FSLE for different values of R(0), as in the legend, and amplification factor
ρ = 1.3 (left panel) and ρ =

√
2 (right panel). The δ−2/3 and δ−1/2 scalings respec-

tively correspond to Richardson law and a k−2 spectrum. The horizontal dashed line
corresponds to λ(δ) ' 0.15 day−1. Error bars are the standard deviations of the mean
values.

Lagrangian spectrum” EL(k) = 〈[∆V (k)]2〉/k can be dimensionally defined
replacing δ with 2π/k. This quantity returns the same picture, in k space, as
that found with the FSRV (Fig. 5, right panel).
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Fig. 5. Left: FSRV computed together with the FSLE. The scalings δ2, δ and δ2/3

correspond to k−3, k−2 and k−5/3 energy spectra, respectively. Error bars are the
standard deviations of the mean values; here ρ = 1.3. Right: Equivalent Lagrangian
spectrum defined from the FSRV. The Rossby radius δR ' 30 km corresponds to
wavenumber k ' 0.2.

Finally, in Figure 6 we compare the diffusivity computed as a fixed-time
average, Eq. (5), with that computed as a fixed-scale average from the FSRV.
Both quantities are plotted as function of the separation between two drifters:
K(δ) = (1/2)δ〈[∆V (δ)]〉1/2 with δ as the independent variable, and K(t) versus
δ = 〈R2(t)〉1/2 where the independent variable is the time t. The δ4/3 regime in
the mesoscales range and the δ2 one in the narrow intermediate range δ ≈ δR
(here less evident than with other indicators) are respectively consistent with
Richardson superdiffusion and nonlocal dispersion. Hence, they may support
the presence of an inverse cascade with E(k) ∼ k−5/3 (at scales δ > δR)
and a direct cascade with E(k) ∼ k−3 (at scales δ ≈ δR), as predicted by
QG turbulence theory. Nevertheless, the δ3/2 scaling, corresponding to a k−2

spectrum, found for δ ' (1 − 10) km confirms that dispersion is local in this
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scale range and that submesoscales are more energetic than expected in a direct
enstrophy cascade.

5 Numerical results

We now compare the results of the drifter data analysis with those issued from
numerical simulations of the Lagrangian dispersion process in the same geo-
graphical area in the period 20/9/2007-21/10/2008 (corresponding to MONDO
project). More details about the numerics can be found in [3]. Here we simply
recall that O(102) virtual trajectories are considered and that the spatial res-
olution of the model (HYCOM, see e.g. [16]) generating the advecting surface
flow is approximately 7 km.

Two numerical experiments, that we indicate with E1 and E2, were con-
ducted. In the first one (E1) the drifters are uniformly deployed in an area
of about (10× 10) km2 centered around a position corresponding to the mean
initial location of MONDO drifters. The average initial distance between syn-
thetic particle pairs is 〈R(0)〉 ' 5 km. The lifetime of trajectories is between
150 days and 200 days. In the second experiment (E2) the initial distribu-
tion of the drifters is characterized by larger separations, namely comparable
to the spacing of the numerical grid (∼ 10 km); the average initial distance
between particle pairs is 〈R(0)〉 ' 40 km and the duration of trajectories is
(250− 400) days.

For the comparison between the results obtained from real and model tra-
jectories, here we focus on the FSLE and the FSRV, Fig. 7, but a similar
picture is returned by other indicators too. To increase the statistics we now
select trajectories with a larger initial separation: R(0) < 50 km (similar results
are found for smaller values of R(0), though they are more noisy). Moreover
we set the amplification factor to ρ =

√
2. The behaviors of both FSLE and

FSRV support a double-cascade scenario on scales comparable to those found
with actual drifters. The plateau value of FSLE at scales O(δR) is very close
to the one found in the real experiments, λ(δ) ' 0.15 day−1. At larger scales,
for both numerical experiments E1 and E2 the behavior of FSLE is compatible
with λ(δ) ∼ δ−2/3, supporting Richardson dispersion and an inverse energy
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cascade process. Experiment E2, which is characterized by longer trajectories,
shows a clearer scaling, thanks to a larger number of pairs reaching this range
of large scales. Mean square velocity differences in the same range of scales dis-
play a reasonably clear δ2/3 scaling, also supporting an inverse energy cascade,
with values close to those found with actual drifters. At separations smaller
than the Rossby deformation radius, both indicators point to the presence of
a direct enstrophy cascade: the FSLE is constant and the FSRV behaves as
〈[∆V (δ)]2〉 ∼ δ2. This only partially agrees with the results found for real
drifters, namely only in the scale range 10 km < δ < 30 km. At subgrid scales,
velocity field features are not resolved and relative dispersion is necessarily a
nonlocal exponential process driven by structures of size of the order of (at
least) the Rossby radius. Correspondingly, the FSLE computed on model tra-
jectories does not display the enhanced dispersion regime (with λ(δ) ∼ δ−1/2)
at scales smaller than 10 km.
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Fig. 7. FSLE (left panel) and FSRV (right panel) for R(0) ≤ 50 km and ρ =
√

2 for
real and virtual drifters from numerical experiments E1 and E2. For virtual drifters
errors are on the order of point size. The large-scale saturation of the FSLE (E1)
depends on the value of the trajectory integration time.

6 Conclusions

In this study we considered a set of surface drifter trajectories to analyse relative
dispersion in the Southwestern Atlantic Ocean, by means of both fixed-time and
fixed-scale statistical indicators. Fixed-time indicators, like the mean square
displacement and the relative diffusivities as functions of the time lag from the
release, point to a long-time regime compatible with Richardson superdiffusion,
at least to some extent. As for the early regime of dispersion, no clear evidence
of exponential separation is detected.

Scale-dependent indicators (FSLE, FSRV and related quantities) seem to
more clearly reveal the different dispersion regimes, compatibly with the avail-
able statistics and the nonhomogeneous and nonstationary characteristics of
the flow. In the mesoscale range δ ≈ (30 − 300) km, both the FSLE and the
FRSV display scaling behaviors compatible with Richardson superdiffusion and
a 2D inverse energy cascade scenario. In a rather narrow range of scales close
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to the Rossby radius of deformation δR ' 30 km, a more nonlocal dispersion
regime is found, indicative of exponential separation and, possibly, compatible
with a 2D direct enstrophy cascade. However, at scales considerably smaller
than δR, particularly for δ ≈ (1 − 10) km, enhanced relative dispersion is ob-
served, corresponding to the scaling λ(δ) ∼ δ−1/2 of the FSLE. Such a local
dispersion regime suggests energetic submesoscale motions compatible with a
kinetic energy spectrum E(k) ∼ k−2, as found in high-resolution numerical
simulations of upper-layer ocean turbulence [8,9]. It is interesting to observe
that evidences of increased dispersion rates and energetic submesoscales have
been recently reported also in other studies based on Lagrangian drifter data,
in different regions of the world oceans [17–19].

The data analysis was compared with the results of numerical simulations
of the Lagrangian dynamics performed with a general circulation model. The
comparison shows that the characteristics of the relative dispersion process
found with real drifters are consistent with those obtained with virtual ones
for scales δ & δR ' 30 km. The model, however, fails to reproduce a local
dispersion regime in the submesoscale range (1 − 10) km, of course due to its
finite spatial resolution (which is of the order of 10 km) and does not allow to
address the dynamical role played by very small scale flow features.

We would like to conclude mentioning that further investigation on subme-
soscale processes would be extremely useful to clarify the origin of the observed
deviations from classical QG turbulence. In particular, we believe that taking
into account seasonality effects could allow to get more insight on relative dis-
persion at submesoscales in the region. This is left for future work.
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