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Abstract. The maximum Lyapunov exponent characterizes the degree of exponential 

divergence of close trajectories. The presence of a positive Lyapunov exponent in the 
system indicates a rapid divergence over time of any two close trajectories and sensitivity 

to the values of the initial conditions. Therefore, the determination of the Lyapunov 

exponent makes it possible to identify a dynamical system as a system with chaotic 

dynamics in it. When studying the output signals of dynamic systems, it is often necessary 
to quantify the degree of randomness of the output signal when equations of the system are 

unknown. In this paper, the possibilities of accuracy improvement of the numerical 

algorithms of Benettin and Wolf for estimating the maximum Lyapunov exponents of an 

attractor of a dissipative dynamical system are shown. Under these procedures a system 
itself can be specified both analytically (by a system of differential equations) and only by 

output signal. 

Keywords: Maximum Lyapunov exponent, Algorithms of Benettin, Algorithms of  Wolf, 

Initial conditions, Chaotic modeling. 
 

1 Introduction 
 

As is known, one of the necessary conditions for the randomness of the dynamic 

behavior of the system is sensitivity to the values of the initial conditions (G. 

Benettin, L. Galgani and J.M. Strelcyn [1], G. Benettin et al. [2], A. Wolf et al. 

[3], S. P. Kuznetsov [4], J. Laskar, K. Froschle and A. Celletti [5], V. A. Golovko 

[6] F. Moon [7]). As a quantitative criterion for this concept, the senior Lyapunov 

exponent (Lyapunov exponent) is usually used. Let a dynamical system be given 

analytically by a system of differential equations in the Cauchy form: 

 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓(𝑥(𝑡), 𝑡),                                          (1) 

 

where 𝑥 ∈ ℝ𝑛 , ℝ𝑛 – is the phase space of the system, the initial conditions 

𝑥(𝑡0) = 𝑥0, 𝑓: ℝ𝑛+1 → ℝ𝑛– are a continuous vector - function satisfying the 

Lipschitz conditions for all arguments, except for time 𝑡. Then a solution to 

system (1) exists and is unique. Let us denote by 𝑥𝑖 a point in the phase space 

 ℝ𝑛 of the dynamical system corresponding to the radius vector of the state 

 x(𝑡𝑖). If in the course of time the solution of system (1) approaches a certain 

manifold 𝐴 when time goes to infinity, then we call  𝐴  the attractor of system (1). 

There can be one or several attractors in the phase space, hidden, large, etc., 
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depending on the properties of the system itself (1). In this case, the most 

important characteristics of the system are (S. P. Kuznetsov [4], V. A. Golovko 

[6], P. Berger, I. Pomo and K. Vidal. [8], D. P. Crutchfield [9]): 

 

• chaos or regularity (presence or absence of chaotic dynamics); 

• dissipation or conservatism (presence or absence of energy dissipation); 

• topological invariants of the attractor (for example, fractal dimension). 

 

Depending on these characteristics, the behavior of the solution of the system in 

the phase space changes significantly. Let the solution of the system be obtained 

for some initial conditions and, after the transient process, a certain attractor is 

found. To find out whether the attractor has a sensitivity to the values of the initial 

conditions, which is characteristic of a strange (chaotic) attractor, let us calculate 

the maximum Lyapunov exponent (MLE). 

 

  
 

Fig. 1. Evolution of two close points on the attractor 

dynamic system 

 

Consider a point 𝑥0 on the attractor of a dynamical system (Fig. 1.) at the initial 

moment of time 𝑡0. Having given some small value 𝜀0, we choose one more 

point 𝑥̃0 on the attractor that satisfies the condition 

 

|𝑥0̃ − 𝑥0| = 𝜀0. 

 

It should be noted here that for correct operation it is a point on the attractor that 

is needed, and not close to the attractor (S. P. Kuznetsov [4], V. A. Golovko [6], 

P. Berger, I. Pomo and K. Vidal. [8], D. P. Crutchfield [9]). Otherwise, the obtained 

result will characterize not the behavior of the trajectory on the attractor, but near 

it, which is the main source of errors in calculating the MLE for non-conservative 

systems. 
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Through a period of time Δ 𝑡, the points 𝑥0 and 𝑥̃0 evolve into points 𝑥(𝑡)  and 

𝑥̃(𝑡). The Distance between them is denoted by 𝜀(𝑡), here 𝑡 = 𝑡0 + Δ𝑡. The value 

𝜀(𝑡) depends on the initial position of the points 𝑥0 and 𝑥̃0, as well as the time 

interval Δ𝑡 and the dynamic system as a whole. However, approximately, we can 

assume that 

 

𝜀(𝑡) ≈ 𝜀0𝑒𝜆Δ𝑡 , 
 

where 𝜆 is the MLE. Thus, the parameter characterizing the dynamics of the 

representing point on the attractor is (G. Benettin, L. Galgani and J.M. Strelcyn 

[1], G. Benettin et al. [2], A. Wolf et al. [3], S. P. Kuznetsov [4]) 

 

 

𝜆 ≈
1

Δ𝑡
ln

𝜀(𝑡)

𝜀0
.                                                    (2) 

 

Here it is necessary to take into account the fact that the boundedness of the 

attractor implies boundedness 𝜀(𝑡) and, therefore, Δ𝑡 should increase until 𝜀(𝑡) 

is significantly less than the size of the attractor, otherwise 𝜆 will be equal to 

zero at Δ𝑡 → ∞. The value 𝜆 obtained in accordance with (2) should be 

considered as averaged over all the initial points 𝑥0 of the attractor. Therefore, 

 

 

𝜆 = lim
Δ𝑡→∞

1

Δ𝑡
ln

𝜀(𝑡)

𝜀0
, 

 

where 𝜀(𝑡) is much smaller as the size of the attractor. This approach is based on 

the Oseledts ergodic theorem, see V. I. Oseledets [10], according to which the 

exponential divergence of two randomly selected points on the attractor 

characterizes the maximum Lyapunov exponent with probability equals 1. 

In practice, the Benettin algorithm is used to find the values of the maximum 

Lyapunov exponent. Proposed by a team of authors in 1976 for the conservative 

Hénon-Heiles system (G. Benettin, L. Galgani and J.M. Strelcyn [1]), this 

calculation method works well and is suitable, first of all, for conservative 

systems. In their 1980 work G. Benettin et al. [2], the same authors used their 

results for smooth Hamiltonian dynamical systems. Due to the lack of 

alternatives, it is often used for dissipative systems, but in this case errors 

inevitably arise due to the fact that the dimension of the attractor of such a system 

is lower than the dimension of the phase space. 

And the application of the classical Benettin's algorithm in the case of the 

existence of several attractors in the system and, moreover, hidden attractors, is 

generally incorrect. In this paper, we propose methods to improve the accuracy 

of this algorithm for the case of a dissipative dynamical system. 
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2 Procedure for improving the accuracy of Benettin's algorithm. 
 

Let us denote by 𝑥0 a point 𝑥(𝑡0) on the attractor of the dynamical system (1) at 

the initial moment 𝑡0,  after the transient process. We choose a positive value   𝜀 

- much less than the linear dimensions of the attractor and a point 𝑥0̃ satisfying 

the equality 

 

|𝑥0̃ − 𝑥0| = 𝜀.                                             (3) 

 

Let's track the evolution of points 𝑥0 and 𝑥0̃ after a short period of time 𝑇. The 

resulting values will be denoted by 𝑥1 and 𝑥1̃ (Fig. 2). 

 

 

 
Fig. 2. Benettin's algorithm for computation 

the maximum Lyapunov exponent 

 

The vector 𝛥𝑥1 =  𝑥1̃ − 𝑥1 is called the vector of disturbance, and its absolute 

value |𝛥𝑥1| is called the amplitude of the disturbance. The MLE value for this 

stage is estimated by the formula: 

 

𝜆1 =
1

𝑇
ln

|𝑥1̃ − 𝑥1|

𝜀
=

1

𝑇
ln

|Δ𝑥1|

𝜀
. 

 

Then the following renormalization is performed: 

 

𝛥𝑥1
′ =

𝛥𝑥1

|𝛥𝑥1|
 𝜀, 
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and the described procedure is repeated for points 𝑥1
′̃ = 𝑥1 + 𝛥𝑥1

′  and 𝑥1, instead 

of  𝑥0̃  and 𝑥0 (Fig. 2). After 𝑀 repetitions, we find the MLE as the arithmetic 

mean of the values obtained at each stage 

 

𝜆 ≈
1

𝑀
∑ 𝜆𝑘

𝑀

𝑘=0

=
1

𝑀
∑

1

𝑇

𝑀

𝑘=0

ln
|Δ𝑥𝑘|

𝜀
=

1

𝑀𝑇
∑ ln

|Δ𝑥𝑘|

𝜀
.

𝑀

𝑘=0

 

 

It is clear that the algorithm works well in conservative models, where the volume 

of the phase space does not change over time. For example, in problems of mixing 

liquids in a tank, where the result obtained in this way directly characterizes the 

degree of mixing of the points of the medium (T. S. Krasnopolskaya et al. [11], 

V. V. Meleshko et al. [12]), where, however, it is shown that the maximum value 

of the maximum Lyapunov exponent does not guarantee the best mixing quality. 

 

The main problem of this method in the case of a dissipative system is the fact 

that the points 𝑥1
′ ,̃ 𝑥2

′ ,̃ …, generally speaking, do not lie on the attractor. The 

dimension of the attractor is lower than the dimension of the phase space; 

therefore, the probability of a randomly taken point hitting it is zero. So, for 

example, if the only attractor of the system is the limit cycle, then as a result of 

the application of Benettin's algorithm, the MLE will be negative, but should be 

zero. The following hitting options for a point are possible 𝑥𝑘
′ : 

 

• on the investigated attractor (probability zero); 

• on another, possibly hidden attractor (probability zero); 

• into the basin of attraction of the investigated attractor (the probability is 

positive); 

• into the basin of attraction of another attractor (the probability is positive). 

 

In the last two most probable cases, the value 𝜆𝑘 will characterize not the MLE 

value of the attractor, but the behavior of the trajectory close to it and introduce 

an error into the calculation result. To avoid this and increase the calculation 

accuracy, you need to select points 𝑥0̃, 𝑥1
′ ,̃ 𝑥2

′ ,̃... on the investigated attractor. With 

the known right-hand sides of system (1), the solution can be obtained 

numerically, and the algorithm can look as follows. After the transient process, 

we select points  𝑥0 and 𝑥0̃ on the solution of the system of equations (1) so that 

condition (3) is satisfied for some small one  𝜀. Solving the system further, after 

𝑇 we get points 𝑥1 and 𝑥1̃, respectively. Find the first value 

 

𝜆1 =
1

𝑇
ln

|𝑥1̃ − 𝑥1|

𝜀
. 

 

Next, we fix one of the obtained points, for example 𝑥1, and we find  𝑥1
′  ̃ by 

solving the system further from the point 𝑥1̃ until the condition 0 < |𝑥1
′  ̃ − 𝑥1| ≤
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𝜀. is fulfilled. Repeating this procedure 𝑀 once, we find the MLE as the arithmetic 

mean of the values obtained at each stage: 

 

 

𝜆 ≈
1

𝑀
∑ 𝜆𝑘 .

𝑀

𝑘=0

 

 

The obtained value, according to the ergodic theorem of Oseledts (see V. I. 

Oseledets [10]), characterizes the maximum Lyapunov exponent of the attractor 

under study with a probability of 1. 

 

 

3  The method of applying the Wolf's algorithm. 
 

When studying the output signals of dynamic systems, it is often necessary to 

quantify the degree of randomness of the output signal, with unknown equations 

of the system. In this case, the method proposed by A. Wolf et al. [3] in 1985 for 

calculating the Lyapunov exponent from the chaotic time realization of the system 

under study is usually used. It is based on the classical Benettin’s algorithm and 

Takens theorem, see F. Takens [13]. According to this theorem, having an one-

dimensional time realization 𝑎(𝑡) of a dynamical system belonging to a smooth 

manifold - an attractor of dimension 𝑑,, the delay method can be used to 

reconstruct the original attractor as a 𝑛- dimensional set of state vectors 𝑥(𝑡) ∈
ℝ𝑛, for  𝑛 ≥ 2𝑑 + 1 

 

𝑥(𝑡) = (𝑎(𝑡), 𝑎(𝑡 + 𝜏), … , 𝑎(𝑡 + (𝑛 − 1)𝜏)). 
 

The method for calculating the maximum Lyapunov exponent is as follows. Let 

the time realization 𝑎(𝑡) be given over a finite time interval at the moments 

 

𝑡𝑖 = 𝑖Δ𝑡,  𝑖 = 0, … , 𝑁. 
 

Let us denote by a 𝑥𝑖 point in space ℝ𝑛 corresponding to the radius – vector  of 

the state 𝑥(𝑡𝑖). Then, as a result of reconstruction, we obtain the attractor of the 

system as a sequence of points in space ℝ𝑛: 
 

𝑥𝑖 = (𝑎(𝑖Δ𝑡), 𝑎(𝑖Δ𝑡 + 𝜏), … , 𝑎(𝑖Δ𝑡 + (𝑛 − 1)𝜏)),             (4) 

 

here  𝜏 = 𝑚Δ𝑡, 𝑖 = 0, … , 𝑁 − (𝑛 − 1)𝑚.  
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Fig. 3. Wolf's algorithm for computing 

the maximum Lyapunov exponent from the output signals set 

 

Take an arbitrary point from the sequence (4) and denote it an 𝑥0. Further, passing 

through the sequence (4), we find on it a point 𝑥0̃, satisfying the inequality 

 

|𝑥0̃ − 𝑥0| = 𝜀0 ≤ 𝜀, 
 

where 𝜀 is some constant significantly less than the linear dimensions of the 

reconstructed attractor. In this case, the points 𝑥0 and 𝑥0̃ must be separated in 

time. After that, we track their evolution in time on the attractor until the distance 

between them exceeds a given value 𝜀𝑚𝑎𝑥 .. Let's designate this time interval as 

𝑇1. Then, again going through the sequence (4), we find a point 𝑥1
′̃  close to 𝑥1, 

that the inequality 

 

|𝑥1
′̃ − 𝑥1| = 𝜀1 ≤ 𝜀, 

 

realized and vectors 𝑥1̃ − 𝑥1 and 𝑥1
′̃ − 𝑥1 have the closest direction. The 

procedure is repeated again, only instead of points 𝑥0 and 𝑥0̃ are taken already 𝑥1 

and 𝑥1
′̃ . After 𝑀 repetitions, the maximum Lyapunov exponent is estimated as 

follows: 

𝜆 ≈
1

𝑀
∑

ln(𝜀𝑘
′ /𝜀𝑘)

𝑇𝑘+1

𝑀−1

𝑘=0

. 

 

The considered Wolf algorithm is applicable only for a chaotic output signals set 

implementation (with a positive Lyapunov exponent), which somewhat reduces 

the universality of its practical application. In this paper, a modification of this 

algorithm is considered, which makes it possible to obtain both positive and 

negative values of MLE. The difference is as follows. The evolution of the 

selected starting points 𝑥0 and 𝑥0̃ is tracked over an interval 𝑇, of a fixed length, 
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and the distance 𝜀0
′  between the points 𝑥1 and 𝑥1̃ obtained in this case is used to 

evaluate the MLE. The same is repeated for points 𝑥1 and 𝑥1
′̃ . After 𝑀 such length 

𝑇 steps, the value of the Lyapunov exponent can be estimated: 

 

𝜆 ≈
1

𝑀𝑇
∑ ln(𝜀𝑘

′ /𝜀𝑘)

𝑀−1

𝑘=0

. 

 

In the study the interaction in the human cardiorespiratory system (T. P. 

Konovalyuk et al. [14]), chaotic modes generated by the interaction of the 

respiratory and cardio subsystems were found. The classical Benettin’s algorithm 

did not allow identifying the differences between quasiperiodic and chaotic 

dynamics. The use of the above upgrades made it possible to increase the accuracy 

of calculation the maximum Lyapunov exponent by an order of magnitude. For 

example, in the system of discrete maps describing the cardiorespiratory system, 

quasiperiodic and chaotic modes were found (Fig. 4 and Fig. 5). After the 

application of the classical Benettin’s algorithm for the quasiperiodic regime λ1 ≈
0.008, and for the chaotic regime were obtained λ2 ≈ 0.01. As a result of the 

application of the modified algorithm, the values were obtained as following λ1 ≈
0.001 and λ2 ≈ 0.01, that made it possible to more accurately characterize the 

dynamics of the model. 

 

  
Fig. 4. Quasiperiodic mode in the system 

of discrete maps of the cardiorespiratory 

system model 

Fig. 5. Chaotic mode in the system of 

discrete maps of the cardiorespiratory 

system model 

 

 quasiperiodic regime chaotic regime 

Benettin’s algorithm  

0.008365 

 

 

0.009623 

modified algorithm  

0.001224 

 

 

0.010334 
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Conclusions 
 

Numerical calculation of the maximum Lyapunov exponent based on the classical 

Benettin’s algorithm does not always give a good result if there is energy 

dissipation in the dynamic system. The article discusses modifications that 

improve the accuracy of calculations and expand the scope of the well-known 

algorithms of Benettin and Wolf. The use of the proposed modifications for the 

model of the human cardiorespiratory system made it possible to more accurately 

identify the differences between quasiperiodic and chaotic dynamics generated 

by the interaction of the respiratory and cardio subsystems. 
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Abstract. Significantly increased resolution of image formation systems (down to a few 

centimetres) causes a possibility of more effective using of objects textural features and 

signs in case of thematic processing of radar and optical images. The existing methods of 

image fractal features measurement allows to evaluate numerically the following topologi-

cal characteristics of image texture: fractal dimension FD; directional FD in the analysis di-

rections (DFD); multifractal dimension MFD (a widespread case – the spectrum of Renyi 

dimensions (SRD)); morphological multifractal exponent (MME); fractal signature FS and 

directional FS (DFS); morphological MFS (MMFS) and lacunarity. However today there 

are no complex methods allowing to measure at the same time parameters of the scaling, 

multifractal and anisotropic properties of a texture possessing reciprocal relationships. In 

this work the specificities of new Directional Multifractal Blanket method (morphological) 

(DMBMM) for fractal features measurement of an image textures synthesized on the basis 

of two best ABRG and MBMM methods in the groups, are considered. Simultaneous ac-

counting of multifractal, singular and anisotropic properties of the image texture with lim-

ited scaling character allowed to increase measuring accuracy both FD, and FS at each 

analysis scale. This feature is the most representative on comparing with all features con-

sidered in this work as the functional correlation of the derived features. The increased in-

formativeness of the developed feature in case of image processing is caused by additional 

determination, along with multifractal and singular properties, anisotropic properties and 

their joint account and implied the possibility of its using for the properties description of 

different images textures and also in images clustering and segmentation tasks. 

Keywords: Fractal dimension, Multifractal signature, Directional features, Anisotropic tex-

tures. 
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Abbreviations 
 

ABRG  – augmented iterative covering blanket method with rotating 

grid. 

AFS  – anisotropic fractal surface. 

DFD  – directional fractal dimension. 

DFS  – directional fractal signature. 

DMBMM – directional multifractal blanket method (morphological). 

DMFS  – directional multifractal signature. 

DMMFS  – directional morphological multifractal signature. 

FD  – fractal dimension. 

FS  – fractal signature. 

L  – lacunarity. 

LFD  – local fractal dimension. 

LMME  – local morphological multifractal exponent. 

MBMM  – morphological multifractal iterative covering blanket method. 

MFD  – multifractal dimension. 

MFS  – multifractal signature. 

MME  – morphological multifractal exponent. 

MMFS  – morphological multifractal signature. 

SRD  – spectrum of Renyi dimensions. 
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1  Introduction 

 
The modern air- and space-based monitoring systems of Earth pro-vides 

formation of high resolution optical and radar images for the wide range solutions 

of remote sensing, reconnaissance and special tasks. Significantly increased reso-

lution of image formation systems (down to a few centimeters) causes a possibility 

of more effective using of objects textural features and signs in case of thematic 

processing of radar and optical images [1, 2]. Textural approach [3] is based on 

the fact, that in most cases spatial configurations of high resolution images bright-

ness units within boundaries of heterogeneous classes of objects have essential 

differences. Specific numerical values of textural features decide on the help of 

different mathematical apparatuses among which it is possible to select the wave-

let-analysis, Fourier analysis, variance analysis and also a number of the modern 

methods, based on the fractal theory [1, 2].  

In fundamental research in the fractal theory field [1, 4], and also related 

practical applications of digital image processing [5–10], formulated and proved 

statements about presence of fractal properties and the characteristic features cor-

responding to them at images of natural objects. The most distinctive properties of 

fractal sets are the scale invariance (scaling), the continuity and nondifferentiabil-

ity described within the mathematical theory of the fractional integro-differential 

equations [1, 4]. 

Fractal processing implies receiving numerical evaluations of scale invari-

ance indices of the image texture, by means of a research of local and global topo-

logical features of spatial structure of its intensity field, and the subsequent image 

differentiation on homogeneous areas on the basis of the measured values [1, 10]. 

Now the methods of the automatic analysis and thematic processing of images 

based on separate using of the estimated values of different fractal features are de-

veloped. Such widely used features include the fractal and the multifractal dimen-

sions (FD and MFD), the fractal and the multifractal signatures (FS and MFS), al-

lowing to find areas of textural homogeneity on images with different efficiency. 

Both in foreign, and in domestic scientific publications there was a many 

results describing researches of new methods of measurement of scaling, spatial, 

statistical and other parameters of fractal sets taking into account textural images 

formation features (see, for example, [1, 2, 10–14]). At the same time such proper-

ties of images as multifractality, singularity (in a broad sense – the local non-

uniformity), limited scaling feature and anisotropic are taken into account. How-

ever today there are no complex methods allowing to measure at the same time pa-

rameters of the scaling, multifractal and anisotropic properties of a texture pos-

sessing reciprocal relationships. 

The purpose of this work is to synthesize of a new directional morphological 

multifractal signature computation method for image texture, a research of its func-

tional capabilities, assessment of measuring accuracy of some fractal features by the 

developed method when processing of the test synthesized and real images both fit-

ting, and not meeting a self-similarity condition and also determination of new tex-

tural-fractal features informativeness in tasks of the images textural analysis. 
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2  Description of images texture fractal features 

 
The existing methods of the image fractal features measurement al-lows to 

evaluate numerically the following topological characteristics of image texture: 

the FD; the directional FD in the analysis directions (DFD); the MFD (in the wide 

sense – the spectrum of Renyi dimensions (SRD)); the morphological multifractal 

exponent (MME); the FS and the directional FS (DFS); the morphological MFS 

(MMFS) and lacunarity (L) [1, 2, 15]. These fractal features are systematized in 

Table 1. The main properties of these features are characterized as follows. 

 

Table 1 – Fractal features of an images texture 

Sign Symbol Mathematical formulations

 
FD D  

 

 0

log
lim

log 1/

N
D






  

MFD qD     
  

 
1

0

log
1 lim

log 1/
q

I
D q










   

DFD  nD      
 

 0

log ,
lim

log 1/

n

n

N
D



 



  

FS  D    S   
 

 

1
1

log log
1

A
D

A




 


 

  
 

 

DFS  ,n nD     S   
 

 

1
1,

, log log
1 ,

n

n

n

A
D

A

 
 

  


 

  
 

 

MME qL    
  
 0

log ,1
lim

log 1/
q

Z q
L

q 




  

MFS  q qL    S   
 

 

1
, 1

log log
1 ,

q

Z q
L

Z q




 


 

  
 

 

L 
               

2 22M M M       

 C                C M N M N        

DMFS 

 , ,q n q nL     S   
 

 

1
, 1,

, log log
1 ,

n

q n

Z q
L

Z q

 
 

 


 

  
 

 

  opt

, optq n q nL   
  

S  
    ,

optq n q nL L        , 

  1

opt 2 ,n q         
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In geometry terms, the FD D characterizes a level of the isotropic surface 

texture «roughness» (in case of D = 2 the surface formed by a combination of the 

image brightness units is absolutely smooth, and in case of D = 2 – infinitely 

«wrinkled»).  

The Renyi dimensions Dq are sensitive to the inhomogeneities of the 

analyzable surface which is characterized by combining of areas with different the 

FD’s and allow to describe the global and local topological features of the texture. 

The DFD components collection D(φn) allows to define correctly a level of the 

anisotropic fractal surface (AFS) «roughness» which is characterized by the 

different values of the FD along the analysis different angular directions nmax. 

In [2, 16, 17] it is marked that in case the FD computation D of the images 

texture loss of information on its singularities can happen by the known methods. 

This negative aspect is caused by the fact that the image I self-similarity remains 

only within some limited range of degree dependence of the evaluated image 

measure on the analysis scale ε constructed in double logarithmic scale and 

approximated by linear dependence. At the same time the great value is acquired 

by the «personal» topological features of the image texture, but not average 

implementations having often absolutely other character [1, 2, 9, 14, 18]. 

For successful permission of this mismatch in the above-mentioned articles 

the signature approach consisting in finding of the local fractal dimensions (LFD) 

D(ε) calculated for the adjacent analysis scales ε and ε + 1 is offered and 

reasonable and with their subsequent combining in an ordered set – the FS 

S = {D(ε)}, where max1, 1   , and εmax is the maximum number of analyzable 

scales. 

The FS distinctive feature of the images having strictly scale and invariant 

properties is the persistence of the LFD values in all range of the analyzable 

scales. Computation of the FS allows to reveal the images texture singularities 

even in that case when they have no the fractal properties. Thus, the FS S 

characterizes the scaling ratio of a measure variation of the researched surface and 

existence of the scale singularities of its texture. 

It is necessary to mark a number of articles [19–26] devoted to the 

description of the anisotropic properties of a texture in the case of measurement of 

the DFS Sn in the tasks of automated processing of X-ray images of a human bone 

tissue and microsamples of the constructional materials. This sign is closely 

related to the parameterization of the texture directional properties taking into 

account scale singularities. 

The sign qL    is the SRD qD    alternative in the case of the MME 

spectrum calculation with using the image morphological processing. 

The applying of the MMFS Sq is intended for assessment of the local MME 

variation measure (LMME) Lq(ε) and allows to consider at the same time both the 

singular and multifractal texture properties. 
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The lacunarities      and  C     respectively allow to obtain the 

average information on (filling) of the fractal surface «mass» distribution at the 

big and small analysis scales. 

Arguments of the features shown in Table 1 are provided by the following 

parameters: N(ε) is the number of cubes with the side (scale) ε in the case of 

cellular partition completely covering the researched image surface; I(q,ε) is the 

generalized statistical amount (a probability multifractal measure of the image 

surface area distribution) with number of the scaling moments orders q; Z(q,ε) is 

the generalized statistical amount evaluated in the case of morphological 

computation I(q,ε) with use of the structural elements set which value w 

corresponds to the analyzable scale, where w = 2ε + 1; A(ε) is the image surface 

area evaluated at the scale ε; M2(ε) is the fractal set mass; (M(ε))2 is the fractal set 

expected mass; n is the analysis angular direction number; Δφ is the elementary 

angular direction; ℤ is the set of integer numbers; [·] is the array of values;   is 

the existential quantifier at least the one element from the definition range. 

The high resolution optical and radar images with the significantly 

heterogeneous texture are characterized by the both scale singularities, and the 

anisotropic and multifractal properties therefore the productive applying of the 

known fractal features in the case of image processing of the similar character 

encounters a restrictions number. This is because, on the one hand, the fractal 

features describes preferentially separated aspects of the texture properties, 

without its complex, integrative character, and on the other hand, in the case of 

their sharing, the correlations existence accounting between the texture elements 

components is not carried out, i.e. the signs components connected, in essence, in 

fact are calculated «separately» (independent) from each other. Finally, the 

characteristics measured in this way lose the image texture specified properties 

description integrity. 

The peculiarities discussed in terms of the high resolution images fractal 

theory and the also limited information pithiness of the listed fractal features point 

to need for the complex morphological method development allowing to derive at 

the same time scaling, multifractal and anisotropic properties of the image texture 

with measurement of the most relevant of them that is taking into account their 

reciprocal relationships. 

 

3  Synthesis of the directional morphological multifractal 

signature measurement method 

 
Basis of the new method allowing to reveal not only multifractal and 

singular, but also anisotropic properties of processed images, the morphological 

implementation of the augmented iterative covering blanket method with rotating 

grid (ABRG) [24] with the modified choice procedures of the rotating grid size 

and formation of the horizontally oriented structural elements set makes. The 

choice in favor of morphological processing is because the morphological 
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extension (dilatation) and the morphological corrupting (erosion) of the processed 

image surface by the structural element allows to consider all surface irregularities 

which extent we will commensurate with the size of the structural element, and, 

thus, to make the image analysis at the given scale ε. Besides, the FD and the FS 

measurement methods by means of the morphological implementation have the 

high accuracy. For accounting of the multifractal properties of an image texture in 

this work the morphological multifractal iterative covering blanket method 

(MBMM) is used [17]. 

The entity of the developed method consists in computation of the upper 

and lower coverings set by means of the ABRG method [24] rotating grid 

modified by authors, the LMME Lq(ε,φn) used in the computation case (see a line 

9 of Table 1) for the required number of the analysis angular directions of the 

processed image by the MBMM method and formation of the directional 

morphological multifractal signature (DMMFS) in the «direction-scale» 

coordinates for each order q of the scaling moment. 

The procedure of the image I texture DMMFS Sq,n computation can be 

presented in a general view by the linear and non-linear operators set 

 

 
 

where RL  is the set  
n

I  formation function of turned on the required number 

angular provisions of source image I copies; UL  and BL  is the calculation 

functions according to the dilatation and the  erosion  
n

I  with use of the 

horizontally oriented structural elements set Yε; ZL  is the calculation function of 

the generalized statistical amount Z(q,ε,φn); LL  is the LMME  ,q nL      array 

calculation function; 1SL  is the Sq,n formation operator; 2SL  is the realizing the 

LMME   optq nL    choice operator which is corresponding to the prevailing 

direction of a texture elements orientation for each scale of the analysis from a set 

 ,q nL      and the 
opt

,q nS  formation, where nopt is the image turn number (the 

analysis direction) corresponding to the prevailing direction of a texture elements 

orientation.  

As the input, intermediate and output variables serve:  ( , )I i jI , 

1

, 0,2v

i jI  , 1,i M , 1,j N   is the digital grayscale image containing M lines 

and N columns, presented in the matrix form with the quantized brightness levels 

in the appropriate image pixel; ν is the brightness quantization level;  
n

I  is the 
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array (set) of the source image I turned copies, where max1,n n , maxn      is 

the number of turns (the image analysis directions); , n U  and , n B  is the 

«upper» and «lower» surfaces set created as a result of morphological processing 

 
n

I , where  ,U i j    U  and  ,B i j    Β ; 
max1 2, ,...,Y Y Y 

   Y  is the 

«plane» structural elements set in the horizontally oriented lines form of pixels 

which length w  corresponds to the analyzable scale w = 2ε + 1; Z(q,ε,φn)  is the 

 generalized statistical amount with number of the scaling moments orders –

∞ < q < ∞, q ≠ 0; L(ε,φn) is the LMME created for n analysis directions; Sq,n is 

the directional morphological multifractal signature; opt

,q nS  is the directional 

morphological multifractal signature with the reduced dimensionality which 

formation method explicitly was considered in the work [26], considering only the 

prevailing directions of a texture elements orientation at the different spatial 

scales. 

Computation according to the source image I with size by M×N pixels of 

the upper and lower coverings is made for the nmax copies 
n

I  of the image 

turned on the angle ,
180 2

 
   of the size M M   using of the dilatation and 

the erosion operations by the modified set of the structural elements Yε, where 

2 2( 1) ( 1) 1М M N      
 

;     is the rounding operator to the nearest 

whole to the big side. At the same time the upper , n U  and lower , n B  coverings 

values for scale ε = 0 are equal to the source images on an output of the turn 

operator RL  

 0, 0,n n n   U B I , (1) 

and for the scales ε > 1 are defined by the expressions 

  , , max
n n

U i j  
 I ;  , , min

n n
B i j  

 I , 
n 
 I X , (2) 

where   ,
n

I i j 
X , ( 1) 2j j w       is the definition range of a structural 

element at the scale ε. 

The surface area of the turned image 
n

I  sequentially is calculated for each 

scale on the basis of calculated the upper , n U  and lower , n B  coverings 

   , , 2n nS V     , where       , ,

1 1

, , ,
n n

W W

n

i j

V U i j B i j    
 

   is the 
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image surface «volume» in the W×W window concluded between the lower and 

upper coverings. 

The generalized statistical amount Z(q,ε,φn) as a distribution function of a 

multifractal q-order set measure of at each analyzable scale ε for each turned 

image 
n

I  is determined by the equation 

          1

, ,

1 1

, , , , , ,
n n

W W
q

n n n

i j

Z q S U i j B i j V        

 

  , (3) 

where the scaling moment order q lies in value range , 0q q  ,  is the 

integral numbers set. Here the S(ε,φn) provides computation of the morphological 

FD, entered in [27] (the similarity dimensionality analog 0q qD   determined by 

the multifractal cellular method by means of the Renyi dimension spectrum 

finding), in the case of   1,q n qZ    . 

The MFS formation is carried out by the generalized statistical amount 

Z(q,ε,φn) behavior determination between the adjacent analysis scales. The LMME 

calculation Lq(ε,φn) according to expression is for this purpose made: 

  
 

 

1
, 1,

, , log log
1 ,

n

n

Z q
L q

Z q

 
 

 


 

  
 

. (4) 

The DMMFS array Sq,n values registers in the look 

 

     

     

     

     

1 2 max

1 1 1 2 1 max

,

1 1 1 2 1 max

1 2 max

1

1

1

1

q n

  

  

  

  

  

  

  

  
 
 
 

  
 

 
 

  

L L L

L L L
S

L L L

L L L

, (5) 

where        
max

T

1 2, , ,q q q q nL L L       
 

L  is the column vector 

LMME of dimensionality nmax of an order q of the given analysis scale ε,  
T

 is 

the transposing operator. 

In the work [26] for lowering of the DMMFS dimensionality and 

accounting only of the significant anisotropic properties of the analyzable image 

the procedure of the texture elements prevailing orientation directions 

determination based on approximations by the LMME values set ellipses 
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 ,q nL      in the case of the given indices q and ε in a polar coordinate system 

and determination of the ellipticity coefficient kec(q,ε) and the ellipse slope angle 

ψ(q,ε) with the subsequent formation of the DMMFS with the reduced 

dimensionality opt

,q nS  is offered. The accounting of the prevailing orientation 

direction of a texture elements in the DMMFS Sq,n is carried out by a choice from 

the LMME array  ,q nL      for each q and ε the measure value   optq nL    in 

the turn number case   1

opt 2 ,n q         provided that there kec(q,ε) is 

the less threshold value ktr, where     is the rounding operator to the nearest 

whole to the smaller side. 

As a result of the LMME Lq(ε,φn) choice by the criterion of the texture 

elements prevailing (optimum) orientation direction, the DMMFS takes the form 

 

     

     
     

     

min 1 min max 1

1 1 1 max 1
opt

,

1 1 1 max 1

max 1 max max 1

opt opt

opt opt

opt opt

opt opt

q n q n

n n

q n

n n

q n q n

L L

L L

L L

L L

   

   

   

   



  





 
 
 
 
 
 

  
 
 
 
 
 
 

S . (6) 

Thus, the DMMFS and the DMMFS with reduced dimensionality receiving 

numerical evaluations peculiar properties by using the directional morphological 

multifractal blanket method (DMBMM) by the fractal signatures computation 

means for the given scaling moments orders q taking into account the prevailing 

orientation directions of the image texture elements are considered. 

 

Conclusions 
 
In this work the specificities of the new DMBMM method for fractal 

features measurement of an image textures synthesized on the basis of two best 

the ABRG and the MBMM methods in their groups, are considered. Simultaneous 

accounting of the multifractal, singular and anisotropic properties of the image 

texture with limited scaling character allowed to increase measuring accuracy both 

the FD, and he LFD at each analysis scale. 
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The role of the angular momentum in shaping collective effects 
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 Abstract.   The main goal of the work is to clarify the consequences arising from the disregard of the law of  the angular momentum 

as an independent law. As a result, some of the collective effects in mechanics are not taken into account but they are essential. 

The main laws in physics and mechanics are the laws of conservation of mass, momentum, energy, angular momentum, charge, 

and some others. In the article it is shown that the sum of the forces is insufficient for a complete description of the interacting 
particles. Any redistribution of particles is accompanied by the emergence of collective effects, which is associated with the action 

of the angular momentum and, consequently, with the action of an additional force. The effect always manifests itself, regardless 

of the branch of science: the formation of fluctuations, structures, quantum mechanics and some others.  When constructing a 

theory, it is impossible to restrict oneself to potential forces that depend only on the distance between particles, since when the 
particles move, the center of inertia shifts, forming a moment. In continuum mechanics, for example, the stress tensor loses its 

symmetry for this reason. 

Keywords: Conference, CHAOS, Chaotic Modeling, CMSIM Style  

1. Introduction. 

Classical mechanics deals with material points and, as a rule, with closed systems. The definition of material points 

in mathematics and physics is different. The main equation in theoretical mechanics is the Liouville equation, which 

describes the motion of a system of material points of a closed system. Collective interactions occur through an 

external force, but the main interaction is the binary interaction of particles. The initial and boundary conditions are 

not considered, although the impossibility of considering them is stipulated due to the huge number of particles. 

However, Hamilton's formalism is legitimate to use in the case of a no dissipative system, when there is no dependence 

on the velocity, which is not observed in the presence of disturbing surfaces or under conditions of large gradients of 

velocities, temperatures, densities, or other characteristics. Using the formalism of N.N. Bogolyubov [1],  for certain 

conditions the Boltzmann equation is derived. When deriving the Boltzmann equation and other kinetic equations, the 

assumption is made that the process is “Markov”, that is, there is no dependence on the “past”. In reality, however, it 

is partially manifested through flows at the border. The effect of the boundary is essentially visible in the calculations 

by the molecular dynamics method and in the numerical solution of the Boltzmann equation [2]. 

The solutions coincide if a large number of particles are taken and there are no flows across the border. Thus, the 

Boltzmann equation takes into account the change in state only within the elementary volume. Therefore, it is only 

suitable for small gradients. In addition, the Boltzmann equation does not fulfill the law of conservation of angular 

momentum. In the same work, the validity of Hilbert's hypothesis is proved about the dependence of the distribution 

function on time only through the dependence on macroparameters. The Navier-Stokes (Barnett, etc.) equations are 

derived from the Boltzmann equation by the Chapman - Enskiy method or by some other method, and the continuity 

equation is determined, which coincides in form with the Liouville equation. Thus, the consistency of the whole theory 

is proved. The concepts of “closed” and “open” systems are introduced on the example of systems of “particles”, the 

motion of which is described by the reversible Hamilton equations. These include, for example, the "Boltzmann" gas 

- a system of "structureless atoms" [3]. However, the "mathematical" and "physical" points are very different. While 

we are considering a “mathematical point" we are not very interested in whether it rotates or not. For a physical 

"point", both its rotation and the structure of the "point" under consideration are important. It is known that the moment 

of force (angular momentum) is responsible for rotation. The role of the angular momentum is manifested in all 

processes associated with the uneven distribution of particles or their physical parameters. The magnitude of the 

additional force is determined by the value of the gradient of physical quantities (density, speed, momentum, 

temperature). The action of the angular momentum, i.e. moment of forces essentially depends on the position of the 

axis of inertia (center of inertia). The angular momentum is a vector quantity. Additive schemes for calculating 

intermolecular interactions, in which non-additivity is included in the parameters of atom-atomic potentials, does not 

take into account the entire variety of conditions. 

 

Analysis of the parameters included in the description of the rarefied gas flow showed that for the equilibrium 

distribution function the ratio of the gas mean free path l to the characteristic macro length d [4]: 

for 37% of trajectories l / d> 1.0, 

for 90% of trajectories l / d> 0.1, 

for 99% of trajectories l / d> 0.01, etc. 

The commonly used criterion l / d> 1.0, indicated above, takes the form Kn> 1; Kn = 1.0 means that l / d> 1.0 for 

only 37% of the trajectories, which does not satisfy the condition l / d> 1.0, while Kn = 10 satisfies the condition l / 

d> 1.0 for 90% of the trajectories, and Kn = 100 - for 99%. 

The theory originally proposed for the solution of relaxation problems is extrapolated to the solution of problems 

associated with gas dynamics, including for solving problems of gas flow near the surface. Limitations of the scheme 

N.N. Bogolyubov stipulated by the author himself and is associated with the fulfillment of the conditions for the 

weakening of correlations, the existence of four characteristic time scales (respectively, spatial scales), a particular 
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class of solutions for the s-particle distribution function as a function that depends on time through a single-particle 

distribution function 𝑓𝑠(𝑡) =  𝑓𝑠  (𝑓), binary central interactions providing the law preserving the angular momentum 

in collision integral, the potential 𝑈 rapidly falling with distance, the dominance of volume effects and neglect borders.  

Potential of interaction of molecules Ф = Ф|𝒓 − 𝒓0|. An additional implicit assumption is the weak deviation of the 

distribution function from the equilibrium state. For relaxation problems and elastic collisions, all assumptions are 

satisfied. The case is excluded when the characteristic relaxation times of the single-particle 𝐹1 and the two-particle 

𝐹2are commensurable. It should be noted that for molecules with a more complex interaction potential depending on 

the angle, averaging over the angle is performed before calculating the collision cross section (potential averaging). 

There are no studies concerning the influence of the permutation of the operations of averaging the collision cross 

section and the potential. Here 𝑓 is the distribution function in the phase γ-space. When deriving the modified equation, 

the designations will remain generally accepted, that is, 𝑟 is the radius vector; 𝑥 - point coordinate; 𝜉 is the velocity 

of the point, m is the molecular weight, and, according to the definition of the distribution function 𝑓𝑁, the probability 

of finding the system at the points  (𝑥𝑖, 𝜉𝑖 ) in the intervals 𝑑𝑥𝑖𝑑𝜉𝑖 is  𝑓𝑁  (𝑡, 𝑥1, … , 𝑥𝑁, 𝜉1, … , 𝜉𝑁)𝑑𝑥1, … , 𝑑𝜉1, … , 𝑑 𝜉𝑁).   
When calculating macroparameters through the distribution function and projecting values on the coordinate axis, the 

symmetry of some quantities may be violated. This can happen when calculating the pressure and the pressure tensor: 

𝑃𝑖𝑗 = 𝑚 ∫ 𝐜𝒊 𝑐𝑗𝑓(t,x,ξ)  dξ.   The symmetry of the stress tensor is postulated on the basis of this form. 

In aeromechanics, the projections of the calculated values are used, and not the indices of the velocities included in 

the formula. Therefore, there is no way to speak unambiguously about symmetry. Symmetry will be observed provided 

that the rotation of the elementary volume is canceled. The Navier-Stokes equations are obtained under the indicated 

condition. 

 

An important difference between the interaction of gas and plasma molecules is the long-range nature of the interaction 

of plasma molecules. A distinctive feature of plasma is a combination of properties characteristic of both a continuous 

medium (long-range nature of the Coulomb interaction) and systems of individual particles. Therefore, the kinetic 

theory of plasma differs from the kinetic theory for gas. As we have already noted, there are significant differences in 

the definitions of mathematical and physical points. Hence, it became necessary to develop a generalized kinetic 

theory. The need for general definitions of physically infinitesimal scales has matured and is currently given, for example, in [3]. 

Fluctuations of particles in a liquid play a separate and important role. Their behavior is also determined by collective interactions. 
The nature of the interaction differs from the interaction of molecules in a gas and from the interaction in a plasma. It should be 

noted that the generally accepted kinetic equations, by virtue of considering only the translational motion of the medium, without 
taking into account rotation and fluxes through the boundary, do not take into account the action of the moment of force and 

diffusion fluxes through the boundaries. The need to take into account certain effects depends on the specific task. For example, 

when considering waves in a "cold" isotropic plasma, it is not necessary to take into account the angular momentum and diffusion. 

In any case, the absence of motion of heavy particles also does not require taking into account the moment and diffusion. The 
movement of electrons alone does not create a change in the position of the center of inertia (due to the difference in masses) if 

there is no movement of the ions. When considering the Landau collision integral (the kinetic equation for a weakly interacting 

gas, including a Coulomb plasma), it is necessary to take into account the influence of the moment. The question of Landau 

damping, which consists in the damping of a perturbation in a plasma as it propagates from the point of origin, despite the 
collisionless (without binary collisions) nature of the interaction of molecules, requires additional research. This work is devoted 

to the study of the influence of the angular momentum in collective interactions.  

 

2. Kinetic equations 
 

The classical derivation of the Boltzmann equation is to write the particle balance in terms of the relation for the one-

particle distribution function 

𝑓(𝑡 + 𝑑𝑡, 𝒓 + 𝝃𝒊 𝑑𝑡, 𝝃𝒊 + 𝑭𝒊 𝑑𝑡 ) 𝑑𝒓 𝑑𝝃𝒊 = 𝑓( 𝑡, 𝒓, 𝝃𝒊)𝒅𝒓 𝒅𝝃𝒊+(
𝝏𝒇

𝝏𝒕
)𝒄𝒐𝒍𝒍 𝑑𝑡       

The latter is often written in the form 

𝒇(𝒕 + 𝒅𝒕, 𝒓 +  𝝃𝒊 𝒅𝒕, 𝝃𝒊+𝑭𝒊 𝒅𝒕)  =  𝒇(𝒕, 𝒓, 𝝃𝒊) +  (
𝝏𝒇

𝝏𝒕
)𝒄𝒐𝒍𝒍

̃
 𝒅𝒕 .                   

where   (
𝜕𝑓

𝜕𝑡
)𝑐𝑜𝑙𝑙, (

𝜕𝑓

𝜕𝑡
)𝑐𝑜𝑙𝑙 - are the collision integrals written in different phase spaces. Outwardly, these equalities are 

identical, however, the second relation is fulfilled at the times of interaction of molecules and all interactions are 

correlated. For gas-dynamic problems, the characteristic length of the elementary volume, for which equality (2) is 

written, equal to cm is small and the requirement for a large number of particles in the elementary volume is not 

fulfilled for altitudes of 120-300 km in the earth's atmosphere. Indeed, the required minimum size is 10−3cm. Since, 

𝑁 = 𝜋𝑅2 ∙ 𝝃 ∙ 𝝉 ∙ 𝒏,  here 𝑅 is the radius of the cylinder of the elementary volume; 𝜏 is the mean time of free path, 

then for statistical independence the number of particles 𝑁 must be at least 100. Then, i.e. see. In addition, the 

possibility of reducing the characteristic size is limited not only by the limited computer memory, but also by the 

limits of applicability of the model [5,6], as well as by the growth of computational errors. In this equation, it is 

assumed that the elementary volume does not rotate and there are no incoming particles through the side surfaces.  

When working with a physical elementary volume, it is necessary to take into account the action of the angular 

momentum responsible for rotation, and due to the finite value of the radius, it is necessary to take into account the 

arrival of molecules with a selected speed due to diffusion. We consider the hydrodynamic approximation, assuming 

the definition of a point in terms of the mean free path. 
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 The usual transition to the Boltzmann equation involves expanding the function in a series and obtaining the following 

equation 

(
𝝏

𝝏𝒕
 + 𝝃𝒊𝛁𝒓 +  𝑭𝒊𝛁𝒊)  𝒇( 𝒕, 𝒓, 𝝃𝒊) = (

𝝏𝒇

𝝏𝒕
)𝒄𝒐𝒍𝒍 𝒅𝒕 = I                   

 

Taking into account rotation and diffusion, the equation () has the form 

𝑓(𝑡 + 𝑑𝑡, 𝒓 + 𝝃𝒊 𝑑𝑡 + 𝑟 ×  𝜔, 𝝃𝒊 + 𝑭𝒊 𝑑𝑡 +
∂M

∂r
𝑑𝑡) 𝑑𝒓 𝑑𝝃𝒊 + 𝐺2 (𝑡 + 𝑑𝑡, 𝒓 + 𝝃𝒊 𝑑𝑡 + 𝑟 ×  𝜔, 𝝃𝒊 + 𝑭𝒊 𝑑𝑡 +

∂M

∂r
𝑑𝑡) = 

𝑓( 𝑡, 𝒓, 𝝃𝒊)𝒅𝒓 𝒅𝝃𝒊+ 𝐺1(𝑡, 𝒓, 𝝃𝒊) +  (
𝝏𝒇

𝝏𝒕
)𝒄𝒐𝒍𝒍 𝑑𝑡.        

𝑀 is the moment associated with the collective action of all particles on each other as a result of the displacement of 

the center of inertia, which is the result of the movement of particles with different speeds. 𝐺1  and  𝐺2   - flows 

through the boundaries of the considered elementary volume. Let's calculate these values. 

𝐺1 = 𝑚𝝃𝒊 
𝜕 𝑓

𝜕𝐫
. 

  Accounting for flows across the border𝐺1, 𝐺2 )  leads to the equations of S.V. Vallander [7,8] 

Here 𝐸 is the internal energy, 𝐸 = с𝑣𝑇,  where  𝑐𝑣  is the heat capacity coefficient 

  𝑄𝑥  =  𝐷1
𝜕𝜌

𝜕𝑥
+  𝐷2

𝑑𝑇

𝑑𝑥
 ,       𝑄𝑦 =  𝐷1

𝑑𝜌

𝑑𝑦
+ 𝐷2

𝑑𝑇

𝑑𝑦
 ,    𝑄𝑧 =  𝐷1

𝑑𝜌

𝑑𝑧
+ 𝐷2

𝑑𝑇

𝑑𝑧
 ,                      

𝑡𝑥 = 𝑘1
𝑑𝜌

𝑑𝑥
+ 𝑘2

𝑑𝑇

𝑑𝑥
 ,  𝑡𝑦 = 𝑘1

𝑑𝜌

𝑑𝑦
+ 𝑘2

𝑑𝑇

𝑑𝑦
 , 𝑡𝑧 = 𝑘1

𝑑𝜌

𝑑𝑧
+ 𝑘2

𝑑𝑇

𝑑𝑧
  

𝐷1 =  
𝜇

𝜌
𝛼1,   𝐷2 =  

𝜇

𝑇
𝛼2,    𝑘1 = 

𝜇𝑐𝑣𝑇

𝜌
, 𝑘2 = 𝜇𝑐𝑣 𝛽2,     𝜆 = 𝛼𝜇, 

Where 𝛼1,  𝛼 2, 𝑘1,  𝑘2 are numerical constants depending on the type of gas. 

𝑄𝑥  , 𝑄𝑦, 𝑄𝑧  are the mass fluxes across the face perpendicular to the coordinate axes of the moving gas with the 

velocity 𝑉, 𝜌 -density, 𝐷1,  𝐷2 are the coefficients of self-diffusion and thermal diffusion,𝑘1, 𝑘2 are the thermal 

conductivity coefficients, and 𝑅 is the gas constant.  

 Here I consider it necessary to add to these equations a term related to the velocity gradient (bulk viscosity  𝐷3, so 

that 𝑄𝑥  =  𝐷1
𝜕𝜌

𝜕𝑥
+  𝐷2

𝑑𝑇

𝑑𝑥
 +𝐷3

𝜕𝑢

𝜕𝑥
.  The rest of the values change in the same way. Let us recall the difference 

between the values obtained through the distribution function and by the molecular dynamics method [9-12]. 

The general formula for the distribution function (dependence on r). 

𝑓 = 𝑓 (𝑡, 𝒓(𝑡), 𝝃(𝑡)) 
𝜕𝑓

𝜕𝑡
|𝑟=𝑐𝑜𝑛𝑠𝑡  =

𝜕

𝜕𝑡
 
∑ 𝛿(𝒓𝒊 –𝒓)    𝑛

𝑖=1

∑ 𝛿(𝒓𝒊 –𝒓)𝑁
𝑖=1

 .  

 By construction 𝛿(𝒓𝒊 – 𝒓) –  depends on 𝑡 only through the 𝒓𝒊 (𝒕) – 𝒓(𝒕).  Here n is number molecules in elementary 

volume, N − in full volume. 

A more complex option when there are time-dependent flows across the border  

1.Without flow across the border  

 𝐹1

𝐹3 
−

 𝐹2

𝐹4
=

∑ 𝛿(𝒓𝒊 – 𝒓) +  ∑ ∆𝑡
𝜕𝛿(𝒓𝒊 – 𝒓)

𝜕𝑡
𝑛
𝑖   + ⋯ 𝑛

𝑖=1

∑ 𝛿(𝒓𝑖 – 𝒓)𝑁
𝑖=1 + ∑ ∆𝑡

𝜕𝛿(𝒓𝑖 – 𝒓)
𝜕𝑡

𝑁
𝑖 + ⋯

 −  
∑ 𝛿(𝒓𝒊 – 𝒓)    𝑛

𝑖=1

∑ 𝛿(𝒓𝒊 – 𝒓)𝑁
𝑖=1

≈ 

 

≈
∑ 𝛿(𝒓𝒊 – 𝒓) +  ∑ ∆𝑡

𝜕𝛿(𝒓𝒊 – 𝒓)
𝜕𝑡

𝑛
𝑖   + ⋯ 𝑛

𝑖=1

∑ 𝛿(𝑟𝑖 – 𝑟)𝑁
𝑖=1

 ( 1 −
∑ ∆𝑡

𝜕𝛿(𝒓𝒊 – 𝒓) 
𝜕𝑡  + ⋯    𝑁

𝑖

∑ 𝛿(𝒓𝒊 – 𝒓)𝑁
𝑖=1

 ) −  
∑ 𝛿(𝒓𝒊 – 𝒓)    𝑛

𝑖=1

∑ 𝛿(𝑟𝑖 – 𝒓)𝑁
𝑖=1

≈  
∑ ∆𝑡

𝜕𝛿(𝒓𝒊 – 𝒓)
𝜕𝑡

𝑛
𝑖 +  𝑂 ((∆𝑡)2

∑ 𝛿(𝒓𝒊 – 𝒓)𝑁
𝑖=1

 . 

𝜕𝛿(𝒓𝒊 –𝒓)

𝜕𝑡
− thus, when solving the Boltzmann equation, the time derivative of distribution function will indeed be 

determined by the dependence through the macro parameters. This approximation, which is made in the theory of 

rarefied gas in the construction of the Enskog-Chapman solution 

  2. If there is a flow across the border, depending only on time. The force is not. 

 𝐹1

𝐹3 
−

 𝐹2

𝐹4
= 

∑ 𝛿(𝒓𝒊 –𝒓)+∑ ∆𝑡
𝜕𝛿( 𝒓𝒊 –𝒓)

𝜕𝑡
𝑛
𝑖 +∑

𝑝𝑗∆𝑡

𝑚  𝑗 𝛿 (𝑟𝑗  – 𝑟)+∑
𝑝𝑗

𝑚𝑗 ∆𝑡2
𝜕𝛿 (𝑟𝑗  –𝑟)

𝜕𝑡
+⋯ 𝑛

𝑖=1

∑ 𝛿(𝒓𝑖 –𝒓)𝑁
𝑖=1 +∑ ∆𝑡

𝜕𝛿(𝒓𝑖 –𝒓)

𝜕𝑡
𝑁
𝑖 +∑

𝑝𝑗

𝑚𝑗 𝛿 (𝑟𝑗 –𝑟)+∑
𝑝𝑗

𝑚𝑗 ∆𝑡
𝜕𝛿 (𝑟𝑗  –𝑟)

𝜕𝑡
+⋯

−
∑ 𝛿(𝒓𝒊 –𝒓)    𝑛

𝑖=1

∑ 𝛿(𝑟𝑖 –𝒓)𝑁
𝑖=1

. 

∑
𝑝𝑗

𝑚𝑗 𝛿 (𝑟𝑗  – 𝑟) =  𝐽2 −  𝐽1 − is a flow of fast molecules from neighboring cells. The first two terms correspond to 

the number of molecules in the volume and their motion.Thus, for large gradients the role of flows across the border 

is increasing. The distribution function can no give a correct contribution to the distribution of molecules.  We need 
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in large number particles in elementary volume. There remains the method of molecular dynamics with a very small 

time step. 

Most often, the kinetic Boltzmann equation is taken as the initial one, and one of the variants of the perturbation theory 

in a small parameter is used to pass to the aeromechanical equations. As we can see, the Boltzmann equation, 

depending on the problem, requires modifications, since it does not fulfill one of the laws of theoretical mechanics, 

the conservation law of angular momentum. For the obtained equations, for example, for Navier-Stokes, additional 

assumptions are made: discarding the rotational velocity component and using Pascal's law obtained for the 

equilibrium case to nonequilibrium flows. As a result, the pressure becomes a scalar. Using the Boltzmann equation, 

we obtain an equation for the internal stress tensor. Here, the gas-dynamic functions 𝜌, 𝑢, 𝑇 are the moments of the 

velocity 𝑣 or the deviation of the velocity from its mean value: 𝛿𝑣 =  𝑣 − 𝑢. 
𝑃𝑖𝑗(𝑟, 𝑡) = 𝑚𝑛 ∫ 𝛿𝑣𝑖 𝛿𝑣𝑗𝑓(𝑟, 𝑝, 𝑡)𝑑𝑝,                        

 ( 
𝜕𝑝

𝜕𝑡
+  𝑢𝑘

𝜕𝑝

𝜕𝑟𝑘
+

5

3
 
𝜕𝑢𝑘

𝜕𝑟𝑘
 ) 𝛿𝑖𝑗 + 𝑝 (

𝜕𝑢𝑖

𝜕𝑟𝑗
+

𝜕𝑢𝑗

𝜕𝑟𝑖
−

2

3
𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑟𝑘
 ) = 𝑚𝑛 ∫ 𝛿𝑣𝑖 𝛿𝑣𝑗𝐼𝐵(𝑟, 𝑝, 𝑡)𝑑𝑝, 

𝑃𝑖𝑗(𝑟, 𝑡) =  𝛿𝑖𝑗𝑝(𝑟, 𝑡) + 𝜋𝑖𝑗    

Pascal's formula does not follow from the formula and pressure is not defined as 1/3 of the sum of the pressures 

on the coordinate pads.    An interesting feature of the all research is the emphasis on the openness of the considered 

elementary volumes and, despite the "openness", the use of conservation laws for closed volumes. For example, the 

law of conservation of energy. We have already shown that the distribution function gives an idea of a probabilistic 

state in an elementary volume without the influence of boundaries and, therefore, information about flows across the 

boundary is lost. In addition, information about the "rearrangement" of the arrangement of molecules due to the 

influence of the motion of the center of inertia is lost. These collective effects should be taken into account when 

writing kinetic equations and for equations of a continuous medium. "A unified description of kinetic and 

hydrodynamic processes" [3] requires the same correction. In this case, there is no contradiction between the kinetic 

equations, the equations for fluctuations, the Fokker-Planck equation, and the Landau damping in plasma. It is 

essential that these terms are not included in the collision integral. Formally, the equation is without dissipation and 

is reversible, but in fact the diffusion flows have dissipative properties. It should be recalled that to satisfy Hilbert's 

hypothesis, one should take the macroparameters of the modified Navier-Stokes equation in the solution for the locally 

equilibrium function, but not Euler to match the orders of approximation in the Chapman-Enskiy solution. In addition, 

the definition of pressure must be changed and a torque gradient must be entered. Then the nonequilibrium  

Chapman-Enskiy solution implies the existence of a vector distribution function, which is observed in numerical 

calculations when solving the Boltzmann equation [10], the proof of this is the different temperature values along the 

coordinate axes 

Recall that the stress tensor is not symmetric and the symmetry condition for the stress tensor is one of the 

conditions for closing the problem; to fulfill the condition, it is required to discard the rotation of the elementary 

volume. For numerical calculation, the latter simplifies programming only slightly. The classic Chapman-Ensky 

solution is given below. 

𝑛𝑓(𝑟, 𝑝, 𝑡) =
𝜌/𝑚

(2𝜋𝑚𝑘𝑏𝑇)3/2  𝑒𝑥𝑝 [−
(𝑝−𝑚𝑢)2

2𝜋𝑚𝑘𝑏𝑇
] × [1 +  

𝜋𝑖𝑗

2𝑝
  

𝑚𝛿𝑣𝑖𝛿𝑣𝑗

3𝑘𝑏𝑇
 +  

𝑚(𝛿𝑣𝑖𝑞)

𝑝𝑘𝑏𝑇
(

𝑚(𝛿𝑣)2

3𝑘𝑏𝑇
− 1)].  

 

Changes in the values will be in the macroparameters of the local equilibrium distribution function, the collision 

integral will not change. In kinetic theory, when considering the role of delay for rarefied gas, one must understand 

the question of what is measured in the experiment: instantaneous values or averages. If the experiment deals with 

average values, then it is important to choose the time and scale of averaging. At the agreed times, in this case, it is 

not necessary to take into account the delay, except for the cases of commensurability of the relaxation and retardation 

times. 

 

3. Damping of longitudinal oscillations of an electron plasma (Landau damping), kinetic 

equations of Langevin and Fokker-Planck 

 
Let us consider oscillations in a plasma without collisions, that is, let us proceed to the study of waves propagating in 

a plasma, the frequency of which is high in comparison with the frequency of pair collisions of electrons and ions. In 

this case, there are several options to consider. Landau collisional damping for large Knudsen numbers; for small 

Knudsen numbers in unbounded plasma; for small Knudsen numbers in a confined plasma. They differ from each 

other. When studying oscillations, we will consider small deviations from equilibrium [3,13-18]. 

Since we are interested in wave attenuation, we need to consider the plasma dielectric constant ε, which is determined 

by the attenuation coefficient γ.  First, let's trace the waves in the "cold" isotropic plasma. The variant corresponds to 

the "collisionless" wave approximation. In this case, the Maxwell distribution functions 

𝑓𝑒
(0)

=  
1

(2𝜋𝑚𝑒𝑘𝑏𝑇)3/2 𝑒𝑥𝑝 (−
𝑝2

2𝑚𝑒𝑘𝑏𝑇
),   𝑓𝑖  (𝑝) =  𝛿(𝑝).  

𝑟𝐷

𝑙
≪

𝜆

𝑙
≪ 1, 

 

the damping is determined by diffusion, but not by the Landau damping. The influence of the thermal motion of 

plasma particles on such oscillations is always small [3]. 
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Here𝑓𝑒
(0)

 is the equilibrium distribution function, 𝑙 is the mean free path 𝑟𝐷 is the Debye radius, λ is the wavelength, 

the rest of the notation is generally accepted. Consider an unbounded plasma for small Knudsen numbers 𝑙 ≪ 𝜆.  
Diffusion works here as well. Let us consider the dispersion and damping of longitudinal oscillations of an electron 

plasma under the influence of the thermal motion of plasma particles. Let us investigate a variant of a limited plasma, 

a free-molecular flow with a region of wavelengths (values of wave numbers) for which the contribution 

corresponding to Landau damping is the main one. 

𝑙 → 𝐿 (𝑙 ≫ 𝐿),   𝑟𝐷 ≪ 𝛾 ≪ √𝑟𝐷𝐿  (𝑟𝐷 ≪ 𝐿 ≪ 𝑙) 

 

We must use the Vlasov kinetic equations [18] with a self-consistent field. Since we are interested in high-frequency 

oscillations, for which 𝜔𝜏 ≫ 1, where 𝜏 is the average time between pair collisions of particles, we can ignore the 

integrals of particle collisions in the kinetic equations. Longitudinal oscillations of an electron plasma in the 

classical case are described by the following two equations (collisionless case, Vlasov equation) 

 
𝜕𝛿𝑓

𝜕𝑡
+ 𝑣

𝜕𝛿𝑓

𝜕𝑟
+ 𝑒𝛿𝐸

𝜕𝑓0

𝜕𝑝
= 0, 

𝑑𝑖𝑣 𝛿𝐸 = 4𝜋 ∫ 𝑑𝑝𝛿𝑓 . 

𝜀𝑙(𝜔, 𝑘)𝑒 ∫ 𝑑𝑝𝛿𝑓(𝑝, 𝑘, 𝜔) = 𝑖 ∫ 𝑑𝑟𝑒−𝑖𝑘𝑟𝑒 ∫ 𝑑𝑝
𝛿𝑓(𝑝, 𝑟, 𝑡0)

𝜔 − 𝑘𝑣
. 

 Suggested variant is 

 
𝜕𝛿𝑓

𝜕𝑡
+ 𝑣

𝜕𝛿𝑓

𝜕𝑟
+ 𝑒𝛿𝐸

𝜕𝑓0

𝜕𝑝
+  

𝜕𝛿𝑀

𝜕𝑟

𝜕𝑓0

𝜕𝑝
+  

𝜕

𝜕𝑟
𝐷

𝜕𝛿𝑓

𝜕𝑟
= 0, 

𝑑𝑖𝑣 𝛿𝐸 = 4𝜋 ∫ 𝑑𝑝𝛿𝑓 . 

 

𝜀𝑙(𝜔, 𝑘)𝑒 ∫ 𝑑𝑝𝛿𝑓(𝑝, 𝑘, 𝜔) = 𝑖 ∫ 𝑑𝑟𝑒−𝑖𝑘𝑟𝑒 ∫ 𝑑𝑝
𝛿𝑓(𝑝,𝑟,𝑡0)

𝜔−𝑘𝑣
+ 𝑖 ∫ 𝑑𝑟𝑒−𝑖𝑘𝑟 ∫ 𝑑𝑝

𝛿𝑀(𝑝,𝑟,𝑡)

𝜔−𝑘𝑣

𝜕𝑓0

𝜕𝑝
.  

 

Qualitatively, we can say that for this case, diffusion plays a small role and, since part of the energy is converted into 

rotational motions (the action of the moment), the reversible operator will act as a dissipative one. Note that at the 

initial moment, the distributed moment of force also exists and concentrates a certain amount of energy. For 

monochromatic waves of large amplitude, the action can lead to the formation of a vertical velocity component, 

forming complex plane flows. Despite the collisionless nature of the movement binary collisions exist, as follows 

from the table of mean free paths presented in the introduction. They create additional dissipation. It should be noted 

that the generalized equation for a unified description of kinetic and gas-dynamic processes is suitable for "weak" 

interactions. As before, the contribution of the angular momentums in the motion of molecules is not taken into 

account. Most likely, the difference between the most probable and average values is due precisely to the lack of 

taking into account the rotational movements for which the moment is responsible. Similar effects will be essential 

for Brownian motion. The theory of Brownian motion is one of the main branches of the statistical theory of open 

systems. Fluctuation (from Latin fluctuatio - fluctuation) - any random deviation of any value. In mechanics, a 

deviation from the mean value of a random variable characterizing a system of a large number of chaotically 

interacting particles. In the theory of Brownian motion elementary objects are small particles, while in kinetic theory, 

the main objects are molecules. Both models are macromodels, but the level of description of the structure of the 

environment is different. Fluctuations exist both in nonequilibrium states and in unsteady processes; in their absence, 

relaxation would be a "smooth" process and they could be described by single-valued functions of time. The presence 

of thermal fluctuations causes random deviations of real processes from such a "smooth" flow. The kinetic equation 

corresponds to a more detailed description. We believe that the environment is in equilibrium. We will consider two 

approaches to solving problems: the equation for a single particle and for an ensemble of particles (the Fokker-Planck 

equation) To take into account the atomic structure of a liquid, Langevin introduced an additional force into the 

equations of motion  

  𝐹𝐿 = 𝑀𝑦(𝑡),   𝐹 =  −𝑀𝛾𝑣,   𝛾 =  
6𝜋𝑎

𝑀
 𝜂, 𝜂 =  𝜌𝜈. 

Equations 

 
𝑑𝑟

𝑑𝑡
 = 𝑣,

𝑑𝑝

𝑑𝑡
+  𝛾𝑝 =  𝐹0 + 𝑀𝑦(𝑡),   𝐹0 =  −𝑔𝑟𝑎𝑑𝑈.  𝐹0 − external force. 

 

 < 𝑦𝑖(𝑡) >, < 𝑦𝑖(𝑡), 𝑦𝑖(𝑡′) > = 2𝐷𝛿𝑖𝑗(𝑡 − 𝑡′),  the coefficient 𝐷 was determined by Einstein. 

  First, about a single particle.  Let us repeat the reasoning performed in [3,19], but replace y (t) with the moment of 

force 𝑀𝑖 calculated for a given period of time. It can be calculated using the  operation algorithm. As before, we 

assume that the characteristic correlation time of the values of the Langevin force is 𝜏𝑐𝑜𝑟
𝐿 ≪ 𝜏𝑟𝑒𝑙 =

1

𝛾
.   As a result, we 

arrive at an expression for two  time moments:                                                     

< 𝑀𝑖(𝑡) > = 0, < 𝑀𝑖(𝑡)𝑀𝑗(𝑡′) > = 2𝐷𝛿𝑖𝑗(𝑡 − 𝑡′). 
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𝐷 = 𝛾
𝑘𝑏𝑇

𝑚
 – - Einstein's coefficient, parenthesis means a function from a function (functional) 

When using the kinetic description of Brownian motion, it is necessary to introduce an ensemble of noninteracting 

Brownian particles — the corresponding Gibbs ensemble. In this case, we represent the ensemble of Brownian 

particles as a continuous medium. However, the difference lies in the use of the "Hamiltonian" formalism for moving 

particles; for a continuous medium, in this case, the Langevin equation is used. The kinetic classical Fokker-Planck 

equation has the form [18,19] 

𝜕𝑓

𝜕𝑡
+ 𝑣

𝜕𝑓

𝜕𝑟
−

1

𝑀
 
𝜕𝑈

𝜕𝑟

𝜕𝑓

𝜕𝑣
= 𝐷

𝜕2𝑦

𝜕𝑣2
+  

𝜕

𝜕𝑣
 (𝛾𝑣𝑓). 

 

The equation of A. Vlasova 

 

{
𝜕𝑓

𝜕𝑡
+ 𝑣

𝜕𝑓

𝜕𝑟
+ 𝑒 (𝐸 +

1

𝑐
 [𝑣𝐵])

𝜕

𝜕𝑝
} 𝐹(𝑟, 𝑝, 𝑡) = 0. 

 

Here 𝐸, 𝐵 are the total electric and magnetic fields, which are composed of external and self-consistent fields 

generated by plasma particles. They satisfy Maxwell's equations. 

 In the classical case, equilibrium is possible between Brownian particles and the medium; the particles can be 

distributed evenly [20]. However, such an assumption can be considered unlikely due to the distribution of particles 

over velocities and the formation of new moments for individual particles due to the motion of the center of inertia. 

The fact is that in this case the action of the moment creates a force that distributes the particles not only in terms of 

velocities, but also in coordinates. The proposed modified Fokker-Planck equation has the form: 

 

𝜕𝑓

𝜕𝑡
+ 𝑣

𝜕𝑓

𝜕𝑟
−

1

𝑀
 
𝜕𝑈

𝜕𝑟

𝜕𝑓

𝜕𝑣
+

1

𝑀
 
𝜕𝑀

𝜕𝑟

𝜕𝑓

𝜕𝑣
 = 𝐷

𝜕2𝑦

𝜕𝑣2
+  

𝜕

𝜕𝑣
 (𝛾𝑣𝑓). 

 

Thus, in the kinetic theory for a gas, for the Landau damping and the motion of Brownian particles, the nonuniform 

distribution of particles in velocities and coordinates is supported by the angular momentum and creates fluctuations 

in physical quantities that must be taken into account. Consider the consequences associated with taking into account 

the moment in the mechanics of a continuous medium. 

  

4.The influence of the angular momentum in the equations of continuum mechanics.  
 

Conservation laws were obtained experimentally and therefore were originally written in integral form. 

Differential laws are obtained in two ways: using the finite volume method for an elementary volume and using the 

Ostrogradsky Gauss theorem   by replacing the surface integral   to the volume integral, that is, taking the integral by 

parts with further use of the theorems on the conditions Integral turning in zero. Usually the derivation of conservation 

laws is analyzed using the Ostrogradsky-Gauss theorem for a fixed volume without moving. The theorem is a 

consequence of the application of the integration in parts at the spatial case. In reality, in mechanics and physics gas 

and liquid move and not only progressively, but also rotate. Let us consider the consequences that arise from the 

generally accepted conservation laws in the mechanics of a continuous medium and which do not correspond to 

classical theoretical mechanics and mathematics. The speeds of various processes at the time of writing the equations 

were relatively small compared to modern ones. In further studies, the scope of the theory developed for potential 

flows to flows with significant gradients of physical parameters was expanded. It was based on the laws of balance of 

forces, the law of conservation of moment was considered as a consequence of the fulfillment of the law of balance 

of forces. Allocating the rotational velocity component and ignoring it leads to a symmetric stress tensor. The 

symmetric tensor is obtained only if the rotational velocity component is neglected. However, this variant of closing 

the problem is one of the possible variants of solving the system of three equations in the plane case for four unknowns 

[9-11]. A similar conclusion can be made for the three-dimensional case. For modern computer technology, it is 

possible to solve the complete equations of fluid mechanics, rather than truncated ones (like Navier-Stokes). From the 

definition of pressure, both from the classical Boltzmann equation and the modified one, it does not follow that the 

hydrostatic pressure is one third of the sum of the pressures on the coordinate areas. Using Pascal's law for equilibrium, 

the pressure is chosen equal to one third of the pressure on the coordinate pads. However, the theory remains the same 

when determining the different pressure on each of the sites, i.e. px, py, pz. The use of one pressure is possible under 

equilibrium conditions (Pascal's law), but for nonequilibrium conditions the fact is not obvious. Neglecting outside 

the integral term when taking integrals by parts (the Ostrogradsky-Gauss theorem) is possible only for slow laminar 

flows. Writing out separately the law of equilibrium for forces and separately for moments of forces without taking 

into account the mutual influence, although the moment creates an additional force, we come to the conclusion about 

the symmetry of the stress tensor. If we consider different pressures in different directions, we lose a moment of force, 

but the pressure gradient is a force. The proposed modified equations of continuum mechanics include the action of 

the moment and are given in [9-11] and new equations: 
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𝜌( 
𝜕𝑢

𝜕𝑡 
+ 𝑢

𝜕𝑢

𝜕𝑥
+  𝜈   𝜕𝑢

𝜕𝑦  
+ 𝑤

𝜕𝑢

𝜕𝑧
 ) =  𝜌𝑓1

 + 𝜕𝜎𝑥𝑥

𝜕𝑥
  + 𝜕𝜎𝑦𝑥

𝜕𝑦
+

𝜕𝜎𝑧𝑥

𝜕𝑧
+ 𝜌 𝑓𝑀𝑥

, 

 

 𝜌( 
𝜕𝜈

𝜕𝑡 
+ 𝑢

𝜕𝜈

𝜕𝑥
+  𝜈   𝜕𝜈

𝜕𝑦  
+ 𝑤

𝜕𝜈

𝜕𝑧
 ) = 𝜌𝑓2 +  

𝜕𝜎𝑥𝑦

𝜕𝑥
  + 𝜕𝜎𝑦𝑦

𝜕𝑦
+

𝜕𝜎𝑧𝑦

𝜕𝑧
   + 𝜌 𝑓𝑀𝑦

 ,                                                    

  

 𝜌( 
𝜕𝑤

𝜕𝑡 
+ 𝑢

𝜕𝑤

𝜕𝑥
+  𝜈   𝜕𝑤

𝜕𝑦  
+ 𝑤

𝜕𝑤

𝜕𝑧
 ) =  𝜌𝑓3 +   𝜕𝜎

𝜕𝑥
  + 𝜕𝑃𝜎𝑦𝑧

𝜕𝑦
+

𝜕𝜎𝑧𝑧

𝜕𝑧
  +𝜌 𝑓𝑀𝑧

, 

 

 𝑦 ( 
𝜕𝜎𝑥𝑧

𝜕𝑥
 +  

𝜕𝜎𝑦𝑧

𝜕𝑦
+  

𝜕𝜎𝑧𝑧

𝜕𝑧
+ 𝜌𝑓3) −  𝑧( 

𝜕𝜎𝑥𝑦

𝜕𝑥
+  𝜕𝜎𝑦𝑦

 𝜕𝑦
+  

𝜕𝜎𝑧𝑦

𝜕𝑧
+  𝜌𝑓2) +  𝜎𝑧𝑦 −  𝜎𝑧𝑦 +  + 𝑀𝑥 = 0, 

 

  𝑥 ( 
𝜕𝜎𝑥𝑦

𝜕𝑥
+ 𝜕𝜎𝑦𝑦

𝜕𝑦
+  

𝜕𝜎𝑧𝑦

𝜕𝑧
 + 𝜌𝑓2 ) −  𝑦( 

𝜕𝜎𝑥𝑥

𝜕𝑥
 +

𝜕𝜎𝑦𝑥

 𝜕𝑦
+  

𝜕𝜎𝑧𝑥

𝜕𝑧
+ 𝜌𝑓1) + 𝜎𝑦𝑥 − 𝜎𝑥𝑦 +  + 𝑀𝑦 = 0,        

                 

  𝑥 ( 
𝜕𝜎𝑥𝑧

𝜕𝑥
+ 𝜕𝜎𝑦𝑧

𝜕𝑦
+  

𝜕𝜎𝑧𝑧

𝜕𝑧
+ 𝜌𝑓1) − 𝑧 ( 

𝜕𝜎𝑥𝑥

𝜕𝑥
 +   𝜕𝜎𝑦𝑥

 𝜕𝑦
+  

𝜕𝜎𝑧𝑥

𝜕𝑧
+  𝜌𝑓2) +  𝜎𝑧𝑥 − 𝜎𝑥𝑧 + +  𝑀𝑧 = 0. 

Here all designations are standard, 𝑓𝑀𝑥
, 𝑓𝑀𝑦

, 𝑓𝑀𝑧
 forces created by the moment,    𝑀𝑥, 𝑀𝑦 , 𝑀𝑧 are 

external moments. 

 

5. Conclusion 

 
The paper proposes to take into account the influence of the angular momentum (force) in kinetic equations and in 

stochastic processes. The definitions of a material point in mathematics and physics are different. As a result, some of 

the collective effects in mechanics are not taken into account. The main laws in physics and mechanics are the laws 

of conservation of mass, momentum, energy, angular momentum, charge, and some others. In the article it is shown 

that  not all of the forces are enter  for a complete description of the interacting particles. Any redistribution of particles 

is accompanied by the emergence of collective effects, which is associated with the action of the angular momentum 

and, consequently, with the action of an additional force. The effect always manifests itself, regardless of the branch 

of science: the formation of fluctuations, structures, quantum mechanics and some others.  When constructing a theory, 

it is impossible to restrict oneself to potential forces that depend only on the distance between particles, since when 

the particles move, the center of inertia shifts, forming an angular momentum. In continuum mechanics, for example, 

the stress tensor loses its symmetry for this reason. Some modification of the theory is suggested.  
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Abstract. Circuit of the non-autonomous two channel chaotic generator that contains two 
operational amplifiers, four capacitors, two resistors and two sinusoidal voltage sources 

is presented. Regimes of chaotic behavior was modeled by using NI’s software 

MultiSim. Analysis of chaotic attractor, time series and spectra are shown. The layout 

and 3D model of realization of the non-autonomous two channel chaotic generator was 
designed by using software Proteus 8. 

Keywords: Non-autonomous, Chaotic Generator, Two-Channel, MultiSim, Proteus. 
 

1  Introduction 
 

Chaos has great potential and useful in many different engineering areas, such 

as computer and information sciences, biomedical systems, optics, power 

systems, robotics, memristors, telecommunications, and cyber security [1-16]. 

Nonlinear theory is the most interdisciplinary areas; it includes nonlinear 

phenomena and complex analysis that have been intensively studied and regard 

in many different areas ranging from mathematics and engineering to natural 

sciences (biology, ecology, economy) [17-22]. 

Some nonlinear systems were realized using Arduino and FPGA boards [23-26]. 

There are many different scheme-technical realizations of chaotic generators 

[27-32]. Great interest are non-autonomous generators that demonstrate chaotic 

behavior. 

In this paper, we present a new non-autonomous chaotic generator that was built 

as two channel generator. Chaotic behavior was detected due to the frequency 

ratio of the two sinusoidal generators. 

The paper is organized as follows. In Sect. 2, computer modelling of the circuit, 

main information properties such as chaotic attractor, time series and spectrum 

using software MultiSim are presented. In the following section, the practical 

realization, i.e. layout and 3D model using Proteus 8 are presented. The 

conclusionsare summarized in the last section. 
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2  Computer Modelling of the Non-Autonomous Chaotic 

Generator 
 

Figure 1 shows proposed electrical scheme that realize non-autonomous two 

channel chaotic generator. This circuit was realized around two operational 

amplifiers, namely TL082. The elements used and their values were: capacitors 

C1 = C2 = 1 uF, C3 = C4 = 100 nF, resistors R1 = R2 = 100 Ω. The circuit was 

powered by a symmetrical power source of ± 9 V. Also, for realize chaotic 

behavior was used two sinusoidal generators with next parameters: GB1 

(amplitude U1 = 5 V, frequency f = 500 Hz) and GB2 (amplitude U2 = 5 V, 

frequency f = 1000 Hz). 

Simulations of the circuit behavior were carried out by using NI’s MultiSim 

platform. 

 

 
Fig. 1. Non-autonomous two channel chaotic generator 

 

In Figure 2 the generated phase portrait namely “heart scroll” based on the 

circuit’s chaotic signals is presented on the platform’s virtual oscilloscope. The 

x-axis corresponds to the voltage of capacitor C3 (UC3), which will be called the 

x-signal; while the y-axis corresponds to the voltage of capacitor C4 (UC4), 

which will be called the y-signal. It is noted that the channels’ settings were for 

channel A, 5 V/div and channel B, U2 = 5 V/div. The chaotic nature of the 

produced attractor, as this comes out of the its complex structure, is evident. 
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Fig. 2. The simulated chaotic attractor of the new non-autonomous chaotic 

oscillator 

 

In Figure 3 the timeseries of both x- and y-signals appear. Their non-periodic 

nature is evident. Fig. 3 shows time dependences of the coordinates X (top) and 

Y (bottom) respectively (the channels’ settings were for channel A, 10 V/div 

and for channel B, 10 V/div. Timescale 2 ms/div. 

 
Fig. 3. The x-signal (upper) and the y-signal (lower) timeseries 
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Finally, in Figure 4 and Figure 5 the power spectrum for each of the two signals 

appears. Apparently, the power spectra of the produced signals are broadband, 

typical of chaotic signals. They span to a frequency range that goes beyond 

5 kHz. The peak of the frequency spectrum was measured to be at 0.6 kHz, and 

it corresponds to a prevailing frequency of the implementing oscillating loop. 

 

 
Fig. 4. The spectral distribution of the x-signal, typical of chaotic signals 
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Fig. 5. The spectral distribution of the y-signal, typical of chaotic signals 

 

3  Practical Realization of the New Non-autonomous Chaotic 

Generator 
 

For engineers is important a practical realization. In this Section we present 

designed layout (Figure 6) and 3D model (Figure 7) using Proteus 8. Layout 

sizes are 45*30 mm. 
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Fig. 6. The designed layout of the new non-autonomous chaotic generator 
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Fig. 7. 3D model of the new non-autonomous chaotic generator 

 

 

Conclusions 
 

Designed new two channel non-autonomous chaotic generator is presented. 

Computer modelling results of the circuit realization and main information properties 

are shown. For demonstrate of these properties was using MultiSim software. Also, 

layout and 3D model of the new two channel non-autonomous chaotic generator 

using software Proteus are presented. This non-autonomous generator can be used as 
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a one of the main portable part of the modern communication system for masking and 
decrypt of the information. 
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Abstract. We perform numerical simulation of the dynamics of a multiplex network
consisting of two unidirectionally coupled rings of FitzHugh-Nagumo neurons with
nonlocal interaction. When uncoupled, one ring demonstrates solitary state regimes
and the other one exhibits chimera states. We explore in detail how the synchro-
nization degree between the layers depends on the type of unidirectional interlayer
coupling (via fast or slow variables) and on the structures in the driver layer. It is
shown that the structure in the response layer can be suppressed and is replaced by
the driver layer structure. However, the degree of external synchronization is higher
in the case when the driver layer demonstrates solitary states and when the unidirec-
tional coupling is executed via the fast variables. In the case of coupling via the slow
variables, external synchronization of neither solitary states nor chimeras cannot be
achieved in the considered network.
Keywords: synchronization, FitzHugh-Nagumo neuron, multiplex network, chimera
state, solitary state.

1 Introduction

Exploring various properties of cooperative dynamics of multicomponent sys-
tems, as well as the effects observing in such systems and synchronization
between their elements is one of the main part of nonlinear dynamics [1–6].
This is inextricably linked to the fact that most systems in the world are com-
plex networks with various individual elements and types of coupling between
them. There is a plenty of works devoted to synchronization phenomena in sys-
tems of completely different nature, such as physics [7–10], chemistry [11,12],
neuroscience [13–18], sociology [19–21], etc., as well as in real-world systems,
for instance, communication systems [22], power grids [23,24], transportation
networks [25].

Dynamics of ensembles of nonlocally coupled elements, when each node is
coupled with a finite number of its nearest neighbors, has recently attracted
much interest due to the discovery of a new spatiotemporal structure, later
called ”chimera state” [26,27]. This structure is a striking example of clus-
ter synchronization when a network dynamics spontaneously splits into coher-
ent (synchronous behavior) and incoherent (desynchronized dynamics) clusters
with well-defined boundaries in the network space. Although these structures
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have been found in networks with different individual elements [26–32], with
different types of coupling between them [28,33–37], as well as in real exper-
iments [7–11,38,39], greater interest in these structures was caused by their
connection with natural and man-made dynamics [14,17,22–25].

Solitary states are another example of partial synchronization [40]. With
this type of synchronization, solitary nodes appear on the coherent profile of
the system and are evenly distributed over the entire ensemble. Oscillators
in the solitary state regime fundamentally differ in their dynamics from the
other oscillators of the network. This kind of pattern has been observed in
networks of the Kuramoto models [40–42], the discrete-time systems [43], the
FitzHugh-Nagumo systems [44–46], and others. They have also been detected
in experiments with mechanical pendulums [39]. Later, solitary state chimeras
were revealed when an incoherent cluster includes several solitary states and
coexists with coherent clusters [46,47].

Studying interaction between different spatiotemporal structures is an im-
porant task in the numerical simulation of collective dynamics of complex sys-
tems. It was shown in [30] that chimera states can be observed in a ring of
nonlocally coupled FitzHugh-Nagumo oscillators. Later, these studies were
expanded in [46] and it was found out that this network can also demon-
strate solitary states. The interaction between chimeras and solitary states
was explored for the first time in [48] where two rings of nonlocally coupled
FitzHugh-Nagumo oscillators were bidirectionally coupled either via fast or
slow variables. The objective of the present paper is to study the peculiari-
ties of external synchronization of chimeras and solitary states in a two-layer
network of unidirectionally coupled rings of FitzHugh-Nagumo oscillators de-
pending on the type of interlayer coupling (via activators or inhibitors) and of
the spatiotemporal structures in a driver and a response layer. The identity of
synchronous structures in the considered network is quantified using a global
interlayer synchronization error.

2 Model under study

The model under study represents a multiplex network consisting of two unidi-
rectionally coupled layers. Each layer is given by a ring of nonlocally coupled
FitzHugh-Nagumo oscillators [49,50]. The network is governed by the following
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system of equations:

ε
du1i
dt

= u1i −
u31i
3
− v1i +

σ

2P

i+P∑
j=i−P

[buu(u1j − u1i) + buv(v1j − v1i)] + cu(u2i − u1i),(1)

dv1i
dt

= u1i + a+
σ

2P

i+P∑
j=i−P

[bvu(u1j − u1i) + bvv(v1j − v1i)] + cv(v2i − v1i),

ε
du2i
dt

= u2i −
u32i
3
− v2i +

σ

2P

i+P∑
j=i−P

[buu(u2j − u2i) + buv(v2j − v2i)] + su(u1i − u2i),

dv2i
dt

= u2i + a+
σ

2P

i+P∑
j=i−P

[bvu(u2j − u2i) + bvv(v2j − v2i)] + sv(v1i − v2i).

Dynamical variables uli correspond to the activators or the fast variables, and
vli are the inhibitors or the slow variables in each ring, where l = 1, 2 is the layer
number, and i = 1, 2, . . . , N = 300 is the node number in each ring (all indices
are modulo N). Individual FitzHugh-Nagumo oscillators can demonstrate ei-
ther excitable (|a| > 1) or oscillatory (|a| < 1) regimes, which depend on the
excitability threshold parameter a. In the present study, all the FitzHugh-
Nagumo oscillators in the network (1) operate in the oscillatory regime at
a = 0.5 and the time-scale separation parameter is also fixed ε = 0.05 for all
the network nodes.

The nonlocal intralayer coupling in each layer is given by the coupling
strength σ and the coupling range P which denotes the number of nearest
neighbors of the ith node from both sides in each layer. In our numerical
simulation we choose σ = 0.3 and P = 105 in both rings. The intralayer inter-
action of the FitzHugh-Nagumo neurons in the system (1) has not only direct
couplings between activator (u) and inhibitor (v) variables but also cross ones
which are executed according to a rotational coupling matrix:

B =

(
buu buv
bvu bvv

)
=

(
cosφ sinφ
− sinφ cosφ

)
, (2)

where φ ∈ [−π;π). In the work [30] this type of coupling was used for the
first time and it has been shown that chimera states can be observed in the
ring of nonlocally coupled FitzHugh-Nagumo neurons at φ = π/2 − 0.1. This
research was expanded in the paper [46] where the effect of parameter φ on the
regimes observed in the FitzHugh-Nagumo ring was explored in detail. It was
particularly shown that this ensemble can demonstrate not only chimera states
but also solitary states. In the present research the parameter φl (l = 1, 2)
values are set in such a way to observe a solitary state regime in the first ring
and chimera states in the second one.

The interlayer coupling in the network (1) is organized to be unidirectional
with coefficients cu, cv, su, and sv. Therefore, when the first layer affects the
second one (solitary states affect chimeras) we have cu = 0, cv = 0, su 6=
0, sv 6= 0, where the superscripts correspond to the coupling via the fast (u)

431



or the slow (v) variables. Vice versa, when the first layer is subjected to the
second one (chimeras affect solitary states), the interlayer coupling is defined
by cu 6= 0, cv 6= 0, su = 0, sv = 0. In our simulations, initial conditions
are chosen to be randomly distributed on circle u2 + v2 6 22. The layers are
coupled from the initial time t = 0, and the equations (1) are integrated using
the Runge–Kutta–Fehlberg method with step h = 0.02.

Fig. 1. Dynamics of uncoupled rings (cu = 0, cv = 0, su = 0, sv = 0): the solitary
states in the first ring (a)-(c) and the chimera state in the second ring (d)-(f). Snap-
shots of variables u1i and u2i (upper row), mean phase velocity profiles (middle row,
ω1i, ω2i) and phase portraits for all elements of the rings (lower row, (u1, v1) and
(u2, v2)). Black lines on the phase portraits correspond to elements in the coherent
mode, red curves to the solitary nodes, and green ones to the incoherent cluster of
the chimera state. Parameters: σ = 0.3, P = 105, φ1 = π/2 − 0.2, φ2 = π/2 − 0.04,
ε = 0.05, a = 0.5, and N = 300. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Figure 1 shows typical spatiotemporal structures which can be observed in
uncoupled FitzHugh-Nagumo rings for the chosen intralayer coupling param-
eter values. The first layer demonstrates the solitary states (Fig. 1,a-c), and
the second layer exhibits the chimera state (Fig. 1,d-f). As can be seen from
Fig. 1,a, the solitary nodes are evenly distributed along the coherent profile,
while the mean phase velocity profile is rather flat (Fig. 1,b) (this parameter is
calculated with the formula ωli = 2πMi

∆T , where Mi is the number of complete
rotations around the origin performed by the ith oscillator during the time
interval ∆T [30], l = 1, 2 is the layer number). Differences in the dynamics of
the solitary nodes and the oscillators from the coherent part can be observed in
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the (u1, v1) phase plane (Fig. 1,c), where the attracting set with a large radius
(black dots) corresponds to the oscillators from the coherent region, and the
small cycle (red dots) to the solitary nodes. In the case of chimera states, the
snapshot of the second ring dynamics splits into two clusters (Fig. 1,d): one
includes elements 150 6 i 6 250 with coherent dynamics, and the other one
consists of nodes 1 6 i 6 149 and 251 6 i 6 300 which behave incoherently.
In the mean phase velocity profile (Fig. 1,e), the coherent domain is charac-
terized by a smooth distribution, while an arc-like dependence is characteristic
for the nodes from the incoherent cluster. There are also two intersecting sets
in the (u2, v2) phase plane (Fig.1,f): the green attractor reflects the dynamics
of the elements from the incoherent cluster of the chimera state and the black
set refers to the nodes from the coherent domain. As can be seen from the
phase portraits, the green attracting set is essentially thick if compared with a
limit cycle for a single FitzHugh-Nagumo system [49,50], and unlike the solitary
states, these sets are overlapping.

To analyze the degree of synchronous behavior (or identity of synchronous
structures) of the coupled layers we apply a global interlayer synchronization
error:

δ =
1

N

N∑
i=1

(
1

t2 − t1

∫ t2

t1

(u1i − u2i)dt
)
, (3)

where N = 300. Since the coupled FitzHugh-Nagumo rings (1) are not iden-
tical, the external interlayer synchronization can be considered in its effective
sense. In our numerical studies, imposing certain quantitative conditions for
the global interlayer synchronization error we can distinguish effective external
synchronization if 0.001 < δ < 0.01 and full (complete) external synchroniza-
tion when δ < 0.001.

3 Unidirectional interlayer coupling via fast variables

We study numerically the case when the FitzHugh-Nagumo rings (1) are unidi-
rectionally coupled via the fast variables, i.e., cu 6= 0, su 6= 0 and cv = 0, sv =
0. It was shown in [48] that in the presence of this type of the interlayer cou-
pling in a system of two symmetrically coupled rings, first chimera states are
formed in both rings, then with an increase in the coupling strength, the rings
are completely synchronized and their dynamics correspond to coherent spa-
tial profiles. However, at certain values of the interlayer coupling strength, the
regime of solitary states can also be observed in both rings.

3.1 Impact of solitary states on chimera

Let us first consider the possibility of suppressing the chimera structure in the
second ring and the establishment of solitary states under the unidirectional
influence of the first ring which demonstrates the solitary states. In this case
the first FitzHugh-Nagumo ring is a driver (cu = 0, cv = 0), while the second
one is a response (su 6= 0, sv = 0). Figure 2 illustrates the dependence of
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Fig. 2. Unidirectional impact of the first ring (solitary states) on the second one
(chimera) via the fast variables: su 6= 0, sv = 0, cu = 0, cv = 0 in the network
(1). (a) Dependence of δ (3) on the interlayer coupling strength su plotted for 5
different sets of random initial conditions in each ring (marked by different colors).
(b-g) Dynamics of the second ring for increasing su: 0.035 (b,c), 0.13 (d,e), 0.35
(f,g). (b,d,f) Snapshots of variables u2i, (c,e,g) mean phase velocity profiles w2i and
phase portraits for all ring elements (insets (u2, v2)): black lines indicate the coherent
dynamics, red curves correspond to the solitary nodes. Other parameters: σ = 0.3,
P = 105, φ1 = π/2 − 0.2, φ2 = π/2 − 0.04, ε = 0.05, a = 0.5, and N = 300. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

the global interlayer synchronization error and the evolution of the second ring
dynamics when the interlayer coupling strength su grows. As can see from
Fig. 2,b, already for a sufficiently weak coupling, the chimera state in the
second ring completely disappears and is replaced by the regime of solitary
states. However, the observed structure is not synchronous with that one in
the driver (see Fig. 1,a and Fig. 2,b): the frequency of the solitary nodes is
not equal to that of the elements from the coherent part of the ring (Fig.2,c),
and the corresponding attracting set (red points) in the phase plane (inset in
Fig.2,c) is wider than that shown in Fig. 1,c. As follows from Fig. 2,a, when the
interlayer coupling is sufficiently weak (su < 0.15), the synchronization error δ
does not satisfy the effective synchronization condition.

Even when su slightly increases, the observed solitary state regime in the
second ring is still not synchronous to the mode in the first ring (Fig. 2,d,e).
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However, as can be seen from the phase portrait in Fig. 2,e, the set correspond-
ing to the solitary nodes (red points) is separated from the oscillators from the
coherent profile (black line). Starting from the region where the dependence
δ(su) becomes smooth (su > 0.33 in Fig. 2,a), the solitary nodes in the second
ring begin to correspond to the solitary nodes in the first ring (Fig. 1,c). In
this case we have a smooth frequency profile and two phase portraits clearly
separated in the phase space (Fig. 2,f,g). On the other hand, already starting
from su > [0.15; 0.28] (the exact value depends on the initial conditions) the
global interlayer synchronization error becomes less than 0.01 and we can talk
about effective synchronization. Only when su > 0.67 (Fig. 2,a), complete
external synchronization (δ < 0.001) occurs in the network (1).

Fig. 3. Unidirectional impact of the second ring (chimera) on the first ring (solitary
states) via the fast variables: cu 6= 0, su = 0, sv = 0, cv = 0 in the network (1). (a)
Dependence of δ (3) on the interlayer coupling strength cu plotted for 5 different sets
of random initial conditions in each ring (marked by different colors). (b-g) Dynamics
of the first ring in (1) for increasing cu: 0.014 (b,c), 0.06 (d,c), 0.235 (f,g). (b,d,f)
Snapshots of variables u1i, (c,e,g) mean phase velocity profiles w1i and phase portraits
for all ring elements (insets (u1, v1)): black lines indicate the coherent dynamics, red
curves correspond to the solitary nodes. Other parameters are as in Fig. 2. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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3.2 Impact of chimera on solitary states

When the second ring exhibiting the chimera state is the driver, the global
synchronization error δ demonstrates a smooth dependence on the interlayer
coupling strength cu over the entire interval of its variation (Fig. 3,a). This can
be explained by the fact that there is no need to synchronize individual elements
(solitary nodes) which introduce deviations into dependence δ(cu). In this case,
the solitary states in the first ring also quickly disappear, and the snapshot
splits into coherent and incoherent clusters (Fig. 3,c). However, the arc-like
dependence does not immediately appear on the frequency profile (Fig. 3,c).
Increasing cu leads to the appearance of the arc in the frequency profile, which
at first looks a bit noisy (Fig. 3,e). Only when cu grows ( cu > 0.1), the
frequency profile becomes smooth (Fig. 3,g). As follows from the snapshots
(Fig. 3,d and f) and the phase portraits (insets in Fig .3,e and g), already at
a very weak interlayer coupling cu, the first ring (response) starts behaving
similarly to the second ring (driver) (see Fig. 1,d,f and Fig. 3,d,e).

In contrast to the previously considered case, in this situation the global
interlayer synchronization error does not fall below the 0.001 level even for a
rather strong unidirectional interlayer coupling (Fig.3,a). This means that only
effective external synchronization of the chimera state takes place.

4 Unidirectional interlayer coupling via slow variables

We now turn to the case when the two rings (1) are unidirectionally coupled
via the slow variables, i.e., cv 6= 0, sv 6= 0, while there is no coupling via the
fast variables, cu = 0, su = 0. Our previous studies [48] showed that with
this type of coupling in a system of two bidirectionally coupled rings, firstly
the chimera states in the second ring disappear and are replaced by uniformly
distributed solitary nodes, but they are not synchronous with the solitary nodes
in the first ring. At the same time, the solitary nodes in the first ring gradually
disappear. A further increase of the coupling strength between the layers leads
to a coherent regime in the first ring and the solitary state chimera in the second
ring. By increasing the coupling strength, we can observe the classical chimera
states in both rings, which behave quite synchronously. With a further increase
in the coupling strength the dynamics of the two-layer network is similar to
the dynamics of the rings which are coupled through the fast variables. The
rings are completely synchronized and their behavior corresponds to coherent
spatial profiles. Moreover, at certain values of the interlayer coupling strength
(more than 1.0), the solitary state mode can be observed in both rings.

4.1 Impact of solitary states on chimera

Consider the case when the second ring in the chimera state is driven via the
slow variables by the first ring in the solitary state regime. In this case the
chimera state also quickly disappears and is replaced by the solitary nodes
(Fig. 4,b-e). However, the solitary nodes are distributed throughout the whole
ring and their location does not coincide with that in the driver layer (see
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Fig. 4. Numerical results for the case when the first ring (solitary states) is unidirec-
tionally coupled with the second one (chimera state) via the slow variables: sv 6= 0,
su = 0, cu = 0, cv = 0. (a) Dependence of δ (3) on the interlayer coupling strength
sv plotted for 5 different sets of random initial conditions in each ring (marked by
different colors). (b-g) Dynamics of the second ring for increasing sv: 0.025 (b,c),
0.062 (d,c), 0.5 (f,g). (b,d,f) Snapshots of variables u2i, (c,e,g) mean phase velocity
profiles w2i and phase portraits for all ring elements (insets (u2, v2)): black lines
indicate the coherent dynamics, red curves correspond to the solitary nodes. Other
parameters: σ = 0.3, P = 105, φ1 = π/2 − 0.2, φ2 = π/2 − 0.04, ε = 0.05, a = 0.5,
and N = 300. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. Dynamics of the second ring under the unidirectional impact from the first
ring at sv = 1.446 (su = 0, cu = 0, cv = 0). (a) Snapshots of variables u2i, (b)
mean phase velocity profiles w2i and phase portraits for all ring elements (insets (u2,
v2)): black lines indicate the coherent dynamics, red curves correspond to the solitary
nodes. Other parameters are as in Fig. 4. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 1,a and Fig. 4,d). It is also evident that the frequencies of several solitary
nodes are not equal to the frequency of the other oscillators, as it should be
(Fig. 4,e). Moreover, in the phase portrait, the trajectories of some solitary
nodes do not lie separately from the phase portrait of the oscillators from the
coherent domain, i.e., there is an intersection of the red and black sets (inset
in Fig. 4,e). When the interlayer coupling increases, the most part of the
solitary nodes disappears but the remaining nodes are not synchronized with
those in the first ring (Fig. 4,f,g). A further increase in sv does not lead to the
observation of a more synchronous mode of oscillations of the second ring with
the first one, but, on the contrary, leads to the fact that the phase portraits of
the elements change greatly and the rings are never synchronized (for example,
Fig. 5).

Let us pay attention to the change in the global interlayer synchroniza-
tion error δ as sv increases (Fig. 4,a). Within the interval sv ∈ [0; 0.2], the
dependence has several minima and maxima and does not smoothly decrease
when sv grows. This is due to the fact that initially, under the influence of
the first ring, the chimera state in the second ring is gradually destroyed (the
first minimum is at sv ≈ 0.04). Then a lot of solitary nodes appear in the
second ring, which do not correspond to the solitary nodes in the first ring and
are not synchronized with them (maximum is at sv ≈ 0.055) (see Fig.1,a and
Fig.4,d). Afterwards, the solitary nodes gradually disappear with increasing
coupling strength (minimum is at sv ≈ 0.11). Finally, the solitary nodes in the
second ring correspond to the same oscillators as in the first ring (maximum
is at sv ≈ 0.2) (see Fig. 1,a and Fig. 4,f), and the rings are partially synchro-
nized with a further increase of the coupling strength sv. However, even for
a rather strong coupling strength sv, even effective external synchronization is
not observed in the network (1) since δ > 0.01.

4.2 Impact of chimera on solitary states

Finally, we explore the network (1) dynamics when the driver layer (the second
ring) exhibits the chimera state. In this case, the network dynamics is similar
to that which is observed when the unidirectional coupling is executed via the
fast variables. The solitary nodes in the first ring gradually disappear as the
coupling strength cv increases (Fig. 6,b,c), and the snapshots of the first ring
dynamics (Fig.6,d,e) consist of incoherent and coherent parts, that is related
to the chimera state. However, even with a strong coupling, in the presence of
a well-developed chimera state in the first layer, the frequency profile demon-
strates only a barely noticeable arc-like structure (Fig. 6,f,g). Synchronization
between the rings is not achieved even for a very strong interlayer coupling:
the global interlayer synchronization error never goes below 0.1 (see Fig. 6,a).
However, for certain sets of random initial conditions in each ring, the values
of δ can be lower than for the other sets (see the blue line in Fig. 6,a).
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Fig. 6. Numerical results for the case when the first ring (solitary states) in the
network (1) is driven by the second ring (chimera) via the slow variables: cv 6= 0,
sv = 0, su = 0, cu = 0. (a) Dependence of δ (3) on the interlayer coupling strength
cu plotted for 5 different sets of random initial conditions in each ring (marked by
different colors). (b-g) Dynamics of the first ring in (1) for increasing cv: 0.025 (b,c),
0.223 (d,c), 1.6 (f,g). (b,d,f) Snapshots of variables u1i, (c,e,g) mean phase velocity
profiles w1i and phase portraits for all ring elements (insets (u1, v1)): black lines
indicate the coherent dynamics, red curves correspond to the solitary nodes. Other
parameters are as in Fig. 4. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

5 Conclusion

In this paper we have presented results of numerical simulation of a two-layer
multiplex network of unidirectionally coupled rings of FitzHugh-Nagumo oscil-
lators. Our studies have shown that in the case of unidirectional coupling via
the fast variables (activators), it is possible to suppress both chimera states
and solitary states and establish a different spatiotemporal regime. However,
with external synchronization of solitary states, the global interlayer synchro-
nization error shows a stronger similarity between the rings than in the case of
synchronization of chimera states. This fact is easily explained by the structure
of these states. Since the oscillators in the coherent cluster are synchronized
more easily, it is natural to assume that the solitary states will demonstrate a
higher degree of synchronization.

In the case of unidirectional coupling between the FitzHugh-Nagumo rings
via the slow variables (inhibitors), although the initial structure of the ring is
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rapidly destroyed under external influence, the structure of the driver layer can
be only partially reproduced in the response layer. This fact is confirmed by
the global interlayer synchronization error which does not fall below 0.01.

Thus, our studies have shown that both solitary states and chimera states
can be suppressed when the two layers are unidirectionally coupled via both the
fast and the slow variables. The response layer reproduces the structure of the
driver layer instead of its own. However, the effect of external synchronization
(both effective and complete) is observed only when the layers are coupled via
the activators. These studies can be useful in practical applications when it is
needed to suppress one of the structures and establish another one. Thus, one
can control the dynamics of multilayer networks.
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Abstract. In this article, the authors investigate the dynamics of an oligopoly game in 
which, they consider a nonlinear Cournot-type duopoly game with homogeneous goods 

and heterogeneous expectations. The authors investigate the case, where managers have a 

variety of attitudes toward relative performance that are indexed by their type. In this 

game they suppose a linear demand and quadratic cost functions. The game is modeled 
with a system of two difference equations. Existence and stability of equilibriua of the 

system are studied. The authors show that the models gives more complex, chaotic and 

unpredictable trajectories, as a consequence of change in the parameter k of speed of the 

player’s adjustment, the parameter d of the horizontal product differentiation and the 
relative profit parameter μ. The chaotic features are justified numerically via computing 

Lyapunov numbers and sensitive dependence on initial conditions. 

Keywords: Cournot duopoly game; Relative profit maximization; Discrete dynamical 

system; Nash equilibrium; Stability; Bifurcation diagrams; Lyapunov numbers; Strange 
attractors; Chaotic Behavior. 

 
 

 

1.  Introduction 
 

Oligopoly is a market structure between monopoly and perfect competition in 

which there are only a few number of firms producing homogeneous products. 

The dynamic of an oligopoly game is more complex because the players 

(sellers) must consider not only the consumers’ behavior but also, the 

competitors’ reactions, i.e., their expectations concerned in how their rivals will 

act. In 1838 Antoine Augustin Cournot was the first that introduced a formal 

theory of oligopoly. Joseph Louis Francois Bertrand, the French mathematician 

in 1883 modified Cournot’s game suggesting that the players (sellers) actually 

choose prices rather the quantities. Cournot and Bertrand models originally were 

based on the premise that all players take decisions by naïve way, so that in 

every step, each player assumes the last values were taken by the competitors 

without an estimation of their future reactions. However, under the conditions of 

real market, such an assumption is very unlikely since not all players share 

naïve beliefs. Different approaches to firm behavior were proposed. Some of the 

authors considered duopolies under homogeneous expectations and found a 

variety of complex dynamics in their games, such as appearance of strange 

attractors (Agiza 1999; Agiza et al. 2002; Agliari et al. 2005, 2006; Bischi and 
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Kopel 2001; Kopel 1996; Puu 1998, 2005; Sarafopoulos 2015a,b; Zhang et al. 

2009). Also, models with heterogeneous agents were studied (Agiza and 

Elsadany 2003, 2004; Agiza et al. 2002; Den Haan 2001; Hommes 2006; Fanti 

and Gori 2012; Gao 2009; Sarafopoulos and Papadopoulos 2017, 2019, 2020; 

Tramontana 2010; Zhang et al. 2007; Wu et al. 2010). 

In real market, producers do not know the entire demand function, though it is 

possible that they have a perfect knowledge of technology, represented by the 

cost function. Here it is more likely that firms employ some local estimate of the 

demand. This issue has been previously analyzed (Baumol and Quandt 1964; 

Singh Vives 1984; Puu 1991, 1995; Westerhoff 2006; Naimzada and Ricchiuti 

2008; Askar 2013, 2014). Bounded rational players (sellers) update their 

strategies based on discrete time periods and by using a local estimate of the 

marginal profit. With such local adjustment mechanism, the players are not 

requested to have a complete knowledge of the demand and the cost functions 

(Agiza and Elsadany 2004; Elsadany 2017; Naimzada and Sbragia 2006; Zhang 

et al. 2007; Askar 2014). 

In this paper the concept of generalized relative profit in a Cournot – type 

duopoly game with homogeneous goods, linear demand and quadratic cost 

functions is introduced. The paper is organized as follows: In Section 2, the 

dynamics of the Cournot duopoly game with homogeneous goods and 

generalized relative profit maximization for two players are analyzed. 

Heterogeneous expectations, linear demand and quadratic cost functions are 

supposed. The existence and local stability of the equilibrium points are also 

analyzed. In Section 3 numerical simulations are used to show complex 

dynamics via computing Lyapunov numbers, bifurcations diagrams, strange 

attractors and sensitive dependence on initial conditions. Finally, the paper is 

concluded in Section 4. 

 

 

2.  The game 

 

2.1 The construction of the game 

 
Two firms offer their products at discrete-time periods (t = 0, 1, 2…) on a 

common market. A simple Cournot-type duopoly market where firms (players) 

produce homogeneous goods and their production decisions are taken at 

discrete-time periods is considered. This study contains heterogeneous players 

and more specifically, the first firm chooses its production quantity in a rational 

way following an adjustment mechanism (bounded rational player) and the 

second firm decides by naïve way choosing this production quantity that 

maximizes its utility function (naïve player). At each period t, every firm must 

form an expectation of the rival’s output in the next time period in order to 

determine the corresponding profit-maximizing quantities for period t+1. The 

variables 1q , 2q  are the production quantities of each firm, and the inverse 
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demand function (as a function of quantities) for each i firm is given by the 

following equation: 

ip Q    , with    i = 1, 2                                      (1) 

where ip  is the product price of firm i, 1 2Q q q   and α is a positive 

parameter which expresses the market size. 

Specifically, for each firm the inverse demand functions are given by the 

following equations: 

1 1 2p q q          and            2 2 1p q q                   (2) 

In this duopoly game quadratic cost functions are supposed: 

  2

i iC q c q ,              with   i 1,2                             (3) 

where c > 0,  is the same cost parameter for two firms. 

With these assumptions the profits of the firms are given by: 

     2 2

1 1 2 1 1 1 1 1 1 1 2 1 1q ,q p q C q p q cq q q q cq                    (4) 

and 

     2 2

2 1 2 2 2 2 2 2 2 1 2 2 1q ,q p q C q p q cq q q q cq                  (5) 

Potential managers take on a continuum of attitudes toward relative 

performance which is captured by their type μi.  The utility function of a 

manager of type μi puts weight of (1- μi) on own profits and a weight μi on the 

difference between own profits and the profits of the firm’s rival. This is 

equivalent to putting unit weight on own profits and weight - μi on the rival’s 

profit. Hence we can write the objective function of a type μi manager working 

for firm i as: 

i i i i i j

i i j

U (1 ) ( ) 

=   ,        i, j 1,2   ,       i j

      

    
                           (6) 

The parameter  i 0,1   is formed by the profile of each player i and the higher 

(lower) value of μi, the more (less) the player i takes into account the profit of 

player j. To make our calculations easier it supposed that μ = μi, which means 

that the two player have the same profile in their utility function. 

 

Then the marginal utilities are given by: 

 

   1
1 2

1

U
2 1 c q 1 q

q


     


                                    (7) 

 

and 

   2
2 1

2

U
2 1 c q 1 q

q


     


                                     (8) 

 

It is supposed that the first firm decides to increase its level of adaptation if it 

has a positive marginal utility, or decreases its level if the marginal utility is 
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negative (bounded rational player). If k > 0 the dynamical equation of player i 

is: 

   

 
1 1 1

1 1

q t 1 q t U
k

q t q

  
 


                                     (9) 

k > 0 the speed of adjustment of player 1, it is a positive parameter which gives 

the extent of production variation of the firm following a given profit signal. 

Moreover it captures the fact that relative effort variations are proportional to 

the marginal utility. 

 

On the other hand the second firm decides by naïve way choosing a production 

that maximizes its profits (naïve player): 

      2 2 1 2
y

q t 1 arg max U q t ,q t                       (10) 

The dynamical system of the players is described by: 

 

     

 
   

 

1
1 1 1

1

1
2

U
q t 1 q t k q t

q

1 q t
q t 1

2 1 c


    


      

 

                          (11) 

 

The dynamics of this system focus on the parameter k (first player’s speed of 

adjustment) and the parameter μ (relative profit parameter). 

 

2.2 Dynamical analysis 

 

2.2.1 The equilibriums of the game 
 

The equilibriums of the dynamical system (11) are obtained as nonnegative 

solutions of the algebraic system: 

 

 

 

* 1
1

1

*
1*

2

U
q 0

q

1 q
q

2 1 c


  


     

 

                                        (12) 

 

which obtained by the following settings:     *
1 1 1q t 1 q t q    and 

    *
2 2 2q t 1 q t q    . 
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 If *
1q 0 , and 2

2

U
0

q





, then it gives 

 
*

2q
2 1 c





 and the equilibrium 

position is: 

 

 0E 0,
2 1 c

 
   

                                         (13) 

 If  1 2

1 2

U U
0

q q

 
 

 
, then it gives 

   
* *

1 2q q
2 1 c 1


 

  
 and the 

Nash equilibrium is: 

 

 
       

* *
* 1 2E q ,q ,

2 1 c 1 2 1 c 1

  
           

            (14) 

 

The effect of the parameter k (speed of adjustment) and the parameter μ 

(relative profit parameter) on the dynamics of this system is investigated. 

 

2.2.2 Stability of equilibriums 
 

To study the stability of game’s equilibriums, the Jacobian matrix is used. The 

Jacobian matrix  1 2J q ,q  along the variable strategy  1 2q ,q  is: 

  1 2

1 2

q q

1 2
q q

f f
J q ,q

g g

 
  
  

                                     (15) 

where:  

  1
1 2 1 1

1

U
f q ,q q k q

q


   


                               (16) 

and 

 
 

 
1

1 2

1 q
g q ,q

2 1 c

    



                               (17) 

The Jacobian matrix becomes as: 

 
 

 

2
* *1 1
1 12

1* * 1
1 2

U U
1 k q k 1 q

q q
J q ,q

1
0

2 1 c

   
             

 
  

  

                  (18) 

For the 0E  the Jacobian matrix becomes as: 
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 

 

 

 

0

2c 1
1 k 0

2 1 c
J E   

1
0

2 1 c

   
  

 
  
 

  

                                 (19) 

with 
 

 

2c 1
Tr 1 k

2 1 c

  
  


 and Det 0 .  

The characteristic equation of  0J E , gives the nonnegative eigenvalue: 

 

 
1

2c 1
r Tr 1 k

2 1 c

  
   


 

it’s clearly seems that 1r 1  and the 0E  equilibrium is unstable. 

For the *E  the Jacobian matrix becomes as: 

 
   

 

* *
1 1

*

1 2k 1 c q k 1 q

J E 1
0

2 1 c

        
 

   
  

                         (20) 

with 

  *
1Tr 1 2k 1 c q             and       

 

 

2

*
1

1
Det k q

2 1 c


   


              (21) 

To study the stability of Nash equilibrium the method of three conditions is used 

and the equilibrium position is locally asymptotically stable when they are 

satisfied simultaneously: 

(i) 1 Det 0

(ii)   1 Tr Det 0

(iii) 1 Tr Det 0

 

  

  

                                    (22) 

The first condition (i) gives: 

 

 

2

*
1

1
1 Det 0    1 k q 0

2 1 c


     


                    (23) 

 

which is always satisfied. 

The second condition (ii) gives: 

 

   
2 2 *

11 Tr Det 0    k 4 1 c 1 q 0          
 

            (24) 

 

and it’s always satisfied because    
2 2

4 1 c 1 0     , for c > 0 and 

 i 0,1  . 
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Finally, the condition (iii) becomes as: 

   

     

2 2
4 1 c 1

1 Tr Det 0    2 k 0
2 1 c 2 1 c 1

     
 

     
      

        (25) 

and it gives the stability condition of Nash Equilibrium *E . 

 

Proposition: 

The Nash equilibrium of the discrete dynamical system Eq.(11) is locally 

asymptotically stable if: 

 

   

     

2 2
4 1 c 1

2 k 0
2 1 c 2 1 c 1

     
 

 
      

 

 

 

3.  Numerical simulations 

 

3.1 Stability space 

At first the stability space (Fig.1) is made including the main two parameters 

that the dynamical analysis focuses on, the parameters k (speed of adjustment) 

and μ (relative profit parameter). This two-dimensional space is obtained by the 

stability condition that is described above in Proposition, setting specific values 

for the other parameters α = 5 and c = 0.20. 

 
Figure 1: Region of stability between k (horizontal axis) and μ (vertical axis)                   

for α = 5 and c = 0.20. 
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3.2 Focusing on the parameter k (speed of adjustment) 

In this section various numerical results focusing on the parameter k, including 

bifurcation diagrams, strange attractors, Lyapunov numbers and sensitive 

dependence on initial conditions (Kulenovic, M. and Merino, O.) are presented. 

Focusing on the parameter k the stability condition becomes as: 

     

   
2 2

4 1 c 2 1 c 1
0 k

4 1 c 1

      
 

     
 

                        (26) 

Choosing the specific values of the parameters: α = 5, c = 0.20 and μ = 0.50 the 

coordinates of Equilibrium position can be calculated as: 
* *
1 2q q 1.72 and the 

stability space for the parameter is described as: 

0 < k < 0.48 

 

It is verified by the bifurcation diagrams of the parameter k against the variables 
*
1q  (left) and 

*
2q  (right) that are shown in Fig.2 and Fig.3. These two figures 

show that the equilibrium undergoes a flip bifurcation at k = 0.48. Then a 

further increase in speed of adjustment implies that a stable two-period cycle 

emerges for 0.48 < k < 0.58. As long as the parameter k reduces a four-period 

cycle, cycles of highly periodicity and a cascade of flip bifurcations that 

ultimately lead to unpredictable (chaotic) motions are observed when k is larger 

than 0.62.        

  
Fig.2: Bifurcation diagrams with respect to the parameter k against the variables 1q  (left) 

and 2q  (right) with 400 iterations of the map Eq.(11) for α = 5, c = 0.20 and μ = 0.50. 
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Figure 3: Two bifurcation diagrams of Fig.2 are plotted in one. 

 

This unpredictable (chaotic) behavior of the system Eq.(11) is visualized in Fig. 

4 (left) with the strange attractor for k 0.65 . This is the graph of the orbit of 

(0.1,0.1) with 8000 iterations of the map Eq.(11) for α = 5, c = 0.20, μ = 0.50 

and k = 0.65. Also, we use the useful tool of Lyapunov numbers (Fig.4 (right)) 

(i.e. the natural logarithm of Lyapunov exponents) as a function of the 

parameter of interest. Figure 4 (right) shows the Lyapunov numbers of the same 

orbit. It is known that if the Lyapunov number is greater than 1, one has 

evidence for chaos. 

  

  
Fig. 4: Phase portrait (strange attractor) (left) and Lyapunov numbers (right) of the orbit 

of (0.1,0.1) with 8000 iterations of the map Eq.(11)                                                              

for α = 5, c = 0.20, μ = 0.50 and k = 0.65. 

 
      
 

Another characteristic of deterministic chaos is the sensitivity dependence on 

initial conditions. In order to show the sensitivity dependence on initial 

conditions of the system Eq.(11), we have computed two orbits with initial 

points (0.1,0.1) and (0.101,0.1) respectively. Figure 5 shows the sensitivity 

dependence on initial conditions for 1q   coordinate of the two orbits, for the 

system Eq.(11), plotted against the time with the parameter values α = 5, c = 

0.20, μ = 0.50 and k = 0.65. At the beginning the time series are 

indistinguishable; but after a number of iterations, the difference between them 

builds up rapidly. From these numerical results when all parameters are fixed 
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and only k is varied the structure of the game becomes complicated through 

period doubling bifurcations, more complex bounded attractors are created 

which are aperiodic cycles of higher order or chaotic attractors. 

 

  
Fig. 5: Sensitive dependence on initial conditions for 1q -coordinate plotted against the 

time: the orbit of (0.1,0.1) (left) and the orbit of (0.101,0.1) (right) of the system Eq.(11) 

for α = 5, c = 0.20, μ = 0.50 and k = 0.65. 

 

3.3 Focusing on the parameter μ (relative profit maximization) 

As it seems the Nash Equilibrium Eq.(14) is independent of the parameter k (the 

speed of adjustment) but it depends on the values of the other parameters. As a 

result when the values of the parameters α , c and k remain constant and only 

the parameter μ varies, this makes the Nash Equilibrium not to be constant, but 

it changes for each different value of the parameter μ. Focusing on the 

parameter μ the stability condition becomes as: 

       
22k 4 1 c 2k k 4 1 c 4 1 c k 2 0                       (27) 

with  

   2 2 2
1 16 1 c 1 2k k                                          (28) 

The inequality (27) can be satisfied if: 
2 2

1 0 k 2k 1 0                                   (29) 

and 

 1 2,    ,   where 
    2 2

1,2

2 1 c 2 1 c 1 2k k
1

k

       
  


     (30) 

The Eq.(29) becomes true if:  

   1 2

1,2

k , k k
1 2

k 0 0 k

1 2
k


   
 

   


 
 
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Finally, the stability condition Eq.(27) is satisfied if: 

 

      2 2

1 2 2
2 1 c 1 2k k 1, 0, 0 1

k0 1 2
0 k 1 2

1 2                        0 k
0 k


                     

   
        

 

  

Setting the specific values of the parameters: α = 5, c = 0.20 and k = 0.475 it 

gives that the stability space focusing on the parameter μ becomes as: 

 

0 < μ < 0.32 

 

Using the stability space (Fig.1) when α = 5, c = 0.20 and k = 0.475, it can be 

verified that there is a stable equilibrium for  0,0.32  and it is also verified 

by the bifurcation diagrams of μ against 1q  (left) and 2q  (right) (Fig.6). Also, 

the chaotic behavior for the system Eq.(11) appears only for values of the 

parameter μ (relative profit parameter) larger than 1 so if k 0.475  in this 

market the parameter μ cannot make the system unpredictable. Finally, the 

stability space between the main parameters k and μ (Fig.1) gives the useful 

result that for small values of the parameter k, the Nash Equilibrium remain 

stable for every value of the parameter μ and in this area the parameter μ cannot 

destabilize the economy.   

 

  
Fig. 6: Bifurcation diagrams with respect to the parameter μ against the variables                 

1q  (left) and 2q  (right) with 400 iterations of the map Eq.(11) for 

5,  c 0.20 and k 0.475    . 
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Figure 10: Two bifurcation diagrams of Fig.9 are plotted in one. 
 

Now, if the other parameter take the values: α = 5, c = 0.20 and k = 0.60, it 

seems that first a fixed period 2 trajectory is created and then it enters a period 

doubling and as the parameter μ takes higher values the system enters a chaotic 

orbit and becomes unpredictable. (Fig.11-12). The larger the values of the 

parameter μ more Strange attractors and Lyapunov numbers larger than 1 

(Fig.13) are appeared for the same values of the paramaters α, c and k. Also, the 

system becomes sensitive on initial condition (Fig.14) for these large values of 

the parameter μ (outside the stability space of μ).   

 

  
Fig. 11: Bifurcation diagrams with respect to the parameter μ against the variables         

1q  (left) and 2q  (right) with 400 iterations of the map Eq.(11)                                            

for α = 5, c = 0.20 and k = 0.60. 

 

 

\ 
Figure 12: Two bifurcation diagrams of Fig.11 are plotted in one. 
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Fig. 13: Phase portrait (strange attractor) (left) and Lyapunov numbers (right) of the orbit 

of (0.1,0.1) with 8000 iterations of the map Eq.(11)                                                                
for α = 5, c = 0.20, k = 0.60 and μ = 0.80. 

 

  
Figure 14: Sensitive dependence on initial conditions for 1q -coordinate plotted against 

the time: the orbit of (0.1,0.1) (left) and the orbit of (0.101,0.1) (right) of the system 

Eq.(11) for α = 5, c = 0.20, k = 0.60 and μ = 0.80. 

       

 

 

4. Conclusions 
 

In this paper the dynamics of a differentiated Cournot duopoly with 

heterogeneous expectations, linear demand and quadratic cost functions are 

analyzed. By assuming that at each time period each firm maximizes its 

expected relative profit function U under bounded rationality expectation, a 

discrete dynamic system was obtained. Existence and stability of equilibrium of 

this system are studied. It is numerically shown that the model gives chaotic and 

unpredictable trajectories. The main result is that higher values of the speed of 

adjustment and relative profit parameter may destabilize the Cournot–Nash 

equilibrium. Finally, it is proved that for lower values of the speed of adjustment 

the equilibrium is stable for every value of the relative profit parameter. 
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Abstract: This paper investigates the dynamics of a nonlinear duopoly game with 
bounded rational players and differentiated goods. We suppose linear demand and the 

cost functions are derived from the study of a duopoly in the Greek market (two oil 

companies Hellenic Petroleum and Motor Oil). The game is modeled with a system of 

two difference equations. Existence and stability of equilibrium of this system are 
studied. We examine the effect of the parameters in the dynamic of the model and we 

show that the model gives more complex chaotic and unpredictable trajectories as a 

consequence of change in the parameter of speed of adjustment and in the parameter of 

the product differentiation. The chaotic features are justified numerically via computing 
Lyapunov numbers, sensitive dependence on initial conditions, bifurcations diagrams and 

strange attractors. Finally, we apply the d-Backtest method for dynamic parameter 

selection and examine the stability of the system1. 

 

Keywords: Dupoly game; Discrete dynamical system; Nash equilibrium; Stability; 

Bifurcation;  Chaotic Behavior; d-Backtest Method. 

                                                 
1 This research is carried out / funded in the context of the project “Nonlinear dynamics 

in oligopoly market: Chaotic behavior, complexity control using machine learning and 

application in an oligopoly of the Greek market” (MIS 5049905) under the call for 

proposals “Researchers’ support with an emphasis on young researchers – 2nd Cycle”. 

The project is co-financed by Greece and the European Union (European Social Fund – 
ESF) by the Operational Programme “Human Resources Development, Education and 

Lifelong Learning 2014-2020”. 

 

 

459



1  Introduction 
 

An Oligopoly is a market structure between monopoly and perfect competition, 

where there are only a few number of firms in the market producing 

homogeneous products. The dynamic of an oligopoly game is more complex 

because firms must consider not only the behaviors of the consumers, but also 

the reactions of the competitors i.e. they form expectations concerning how their 

rivals will act. Cournot, in 1838 has introduced the first formal theory of 

oligopoly. In 1883 another French mathematician Joseph Louis Francois 

Bertrand modified Cournot game suggesting that firms actually choose prices 

rather than quantities. Originally Cournot and Bertrand models were based on 

the premise that all players follow naive expectations, so that in every step, each 

player (firm) assumes the last values that were taken by the competitors without 

estimation of their future reactions. However, in real market conditions such an 

assumption is very unlikely since not all players share naive beliefs. Therefore, 

different approaches to firm behavior were proposed. Some authors considered 

duopolies with homogeneous expectations and found a variety of complex 

dynamics in their games, such as appearance of strange attractors (Agiza, 1999, 

Agiza et al., 2002, Agliari et al., 2005, 2006, Bischi, Kopel, 2001, Kopel, 1996, 

Puu, 1998, Sarafopoulos, 2015, Zhang , 2009). Also models with heterogeneous 

agents were studied  (Agiza, Elsadany , 2003, 2004, Agiza et al., 2002, Den 

Haan , 20013, Fanti, Gori, 2012, Tramontana, 2010, Zhang , 2007).  

In the real market producers do not know the entire demand function, though 

it is possible that they have a perfect knowledge of technology, represented by 

the cost function. Hence, it is more likely that firms employ some local estimate 

of the demand. This issue has been previously analyzed by Baumol and Quandt, 

1964, Puu 1995, Naimzada and Ricchiuti, 2008, Askar, 2013, Askar, 2014. 

Bounded rational players (firms) update their strategies based on discrete time 

periods and by using a local estimate of the marginal profit. With such local 

adjustment mechanism, the players are not requested to have a complete 

knowledge of the demand and the cost functions (Agiza, Elsadany, 2004, 

Naimzada, Sbragia, 2006, Zhang et al, 2007, Askar, 2014).  

In this paper we study the dynamics of a Bertrand- type duopoly with 

differentiated goods where each firm behaves with homogeneous expectations. 

We show that the model gives more complex chaotic and unpredictable 

trajectories as a consequence of change of the speed of players’ adjustment 

(parameter k). The paper is organized as follows: In Section 2, the dynamics of 

the duopoly game with homogeneous expectations, linear demand and 

asymmetric cost functions for two players are analyzed. We set both players as 

bounded rational. The existence and local stability of the equilibrium points are 

also analyzed. In Section 3 numerical simulations are used to verify the 

algebraic results of Section 2 plotting the bifurcation diagrams of the game’s 

system and to show the complex dynamics via computing Lyapunov numbers, 

and sensitive dependence on initial conditions. Finally, in section 4 the 

application of d-Backtest in this duopoly game is presented as an attempt to 

control the chaotic of the discrete dynamical system that appears.  
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2 The game 

 

2.1 The construction of the game 

 
In this study we consider homogeneous players and more specifically, we 

consider that both firms choose their products’ prices in a rational way, 

following an adjustment mechanism (bounded rational players). We consider a 

simple Bertrand-type duopoly market where firms (players) produce 

differentiated goods and offer them at discrete-time periods on a common 

market. Price decisions are taken at discrete time periods t = 0, 1, 2,… At each 

period t, every firm must form an expectation of the rival’s strategy in the next 

time period in order to determine the corresponding profit-maximizing prices 

for period t+1. We suppose that q1, q2 are the production quantities of each firm. 

Also, we consider that the preferences of consumers represented by the 

equation: 

     2 2
1 2 1 2 1 2 1 2

1
U q ,q q q q q 2dq q

2
                               (1) 

where α is a positive parameter (α > 0), which expresses the market size and 

 d 1,1   is the parameter that reveals the differentiation degree of products. 

For example, if d 0  then both products are independently and each firm 

participates in a monopoly. But, if d 1  then one product is a substitute for the 

other, since the products are homogeneous. It is understood that for positive 

values of the parameter d the larger the value, the less diversification we have in 

both products. On the other hand negative values of the parameter d are 

described that the two products are complementary and when d 1   then we 

have the phenomenon of full competition between the two companies. The 

inverse demand functions (as functions of quantities) coming from the 

maximizing of (1) are given by the following equations: 

 1 1 2 1 2p q ,q q dq             and          2 1 2 2 1p q ,q q dq          (2) 

The direct demand functions (as functions of prices): 

 
  1 2

1 1 2 2

1 d p dp
q p ,p

1 d

   



    and   

  2 1
2 1 2 2

1 d p dp
q p ,p

1 d

   



  (3) 

 

In this work, data were collected from the financial reports of two companies. 

The data related to sales quantities in thousands of metric tons (k MT) and total 

revenue in millions of euro (m €) for each quarter of the years from 2011 to 

2020. With this data and using regression analysis we tried to approach the form 

of the cost function of each company. According to this analysis we can assume 

that the cost function of the first player is quadratic and of the second player is 

linear2. 

                                                 
2 The coefficients of determination of the regressions are relatively small 0.51 and 0.39 

respectively. This is due to the fact that the cost functions of the companies depend on 
many unpublished factors.  
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We suppose that the cost function of the first player (Motor Oil Group) is: 

  2
1 1 1 1 2 1 3C q c q c q c                                            (4) 

with 1 2 3c 0,  c 0,  c 0    and 2
2 1 3c 4 c c    (quadratic cost’s conditions). 

and the cost function of the second player  (Hellenic Petroleum Group) is  

linear:  

    2 2 4 2 5C q c q c                                              (5) 

where 4c 0  and 5c 0  (linear cost function’s conditions). 

With these assumptions the profits of the firms are given by: 

     
   

2
1 2 1 2

1 1 2 1 1 1 1 1 2 1 32 2

1 d p dp 1 d p dp
p ,p p q C q p c c c

1 d 1 d

        
           

    (6) 

and 

     
  2 1

2 1 2 2 2 2 2 2 4 52

1 d p dp
p ,p p q C q p c c

1 d

   
      


     (7) 

Then the marginal profits at the point of the strategy space are given by: 

 
        2 2 2 21

1 2 1 1 1 22
21

1
1 d 1 d 2c c 1 d 2 1 d c p d 1 d 2c p

p 1 d

                
  

   (8)     

and 

  4 2 12

2
2

1 d c 2p dp

p 1 d

    


 
                                           (9) 

Both players are characterized as bounded rational players. According to the 

existing literature it means that they decide their prices following a mechanism 

that is described by the equation: 

   

 
i i i

i i

p t 1 p t
k

p t p

  
 


 ,  k > 0                                  (10) 

Through this mechanism the player i, increases his level of adaptation when his 

marginal profit is positive or decreases his level when his marginal profit is 

negative, where k is the speed of adjustment of player, it is a positive parameter 

(k > 0), which gives the extend variation of price of the Hellenic Petroleum and 

Motor Oil Groups, following a given utility signal. 

The dynamical system of the players is described by: 

     

     

1
1 1 1

1

2
2 2 2

2

p t 1 p t k p t
p

p t 1 p t k p t
p


     


     

 

                          (11) 

We will focus on the dynamics of this system to the parameter k. 

2.2 Dynamical analysis 
 

The dynamical analysis of the discrete dynamical system involves finding 

equilibrium positions and studying them for stability. The ultimate goal of this 

algebraic study is to formulate a proposition that will be the stability condition 
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of the Nash Equilibrium position. Finally, these algebraic results are verified 

and visualized doing some numerical simulations using the program of 

Mathematica. 

 

 

2.2.1 The equilibrium positions 
 

The equilibriums of the dynamical system (11) are obtained as the nonnegative 

solutions of the algebraic system: 

* 1
1

1

* 2
2

2

p 0
p

p 0
p


  


  

 

                                                      (12) 

which is obtained by setting :     *
1 1 1p t 1 p t p    and     *

2 2 2p t 1 p t p   . 

 If 
* *
1 2p p 0   then the equilibrium position is the point:  

 0E 0,0                                                       (13) 

 If 
*
1p 0  and 2

2

0
p





 then: 

  4*
2

1 d c
p

2

  
  and the equilibrium 

position is the point:  

  4
1

1 d c
E 0,

2

   
  
 

                                               (14) 

 If 
*
2p 0  and 1

1

0
p





 then: 

    
 

2 2
1 2*

1 2
1

1 d 1 d 2c c 1 d
p

2 1 d c

     


 
 

and the equilibrium position is the point:  

    
 

2 2
1 2

2 2
1

1 d 1 d 2c c 1 d
E ,0

2 1 d c

      
 
  
 

                         (15) 

 If 1 2

1 2

0
p p

 
 

 
 then the following system is obtained: 

        
 

2 2 2 * 2 *
1 2 1 1 1 2

* *
4 2 1

1 d 1 d 2c c 1 d 2 1 d c p d 1 d 2c p 0

1 d c 2p dp 0

              

     

   (16) 

and the nonnegative solution of this algebraic system gives the Nash 

Equilibrium position  * *
* 1 2E p ,p  where: 

      
   

2 2
1 4 2*

1 2 2 2
1 1

1 d 2c 1 d 2 d dc 2c 1 d
p

4 1 d c d 1 d 2c

          


    
               (17) 
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and 

 
         

   

2 2
1 4 1 2

*
2 2 2 2

1 1

2 1 d c 1 d c d 1 d 1 d 2c c 1 d
p

4 1 d c d 1 d 2c

                  


    
   (18) 

 

From the three equilibrium positions 1 2E ,  E  and *E  the following conditions 

arise: 

  41 d c 0                                                   (19) 

    2 2
1 21 d 1 d 2c c 1 d 0                                      (20) 

 2
12 1 d c 0                                                  (21) 

         2 2
1 4 1 22 1 d c 1 d c d 1 d 1 d 2c c 1 d 0                   

    (22)  

   2 2 2
1 14 1 d c d 1 d 2c 0                                         (23)  

 

2.2.2 Stability of equilibrium points 
 

To study the stability of the equilibrium positions we need the Jacobian matrix 

of the dynamical system Eq.(11) which is the matrix: 

  1 2

1 2

p p* *
1 2

p p

f f
J p ,p

g g

 
  
  

                                            (24) 

where: 

 

 

1
1 2 1 1

1

2
1 2 2 2

2

f p ,p p k p
p

g p ,p p k p
p


   




   



                                        (25) 

and as a result the Jacobian matrix of game’s discrete dynamical system Eq.(11) 

is the following matrix: 

 

2 2
* *1 1 1
1 12

1 1 21* *
1 2

2 2
* *2 2 2
2 2 2

2 1 2 2

1 k p k p
p p pp

J p ,p

k p 1 k p
p p p p

      
            

  
      

             

        (26) 

For the 0E  the Jacobian matrix becomes as: 

 

 

   

 1
0

1

2
0

2

1
A 1 k E

0 p
1

0
2

B 1 k E0 p
2

1 k E 0
p 0

J E     
0 B

0 1 k E
p


  




  



 
            

 

     (27) 
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with  

Tr B   and Det A B  . 

The characteristic equation of  0J E  is the following: 

   2
0 0r TrJ E r DetJ E 0      

    2r A B r A B 0 r A r B 0            

The eigenvalues of   0J E  are: 

  

 

2
1

1 2
2

1 d 1 d 2c
r A 1 k

1 d

   
  



   and  
  4

2 2

1 d c
r B 1 k

1 d

  
  


 

As it is clearly seems 1 2r , r 1 , because of Eq. (19) and Eq. (20). It means that 

the equilibrium position 0E  can be characterized as unstable. 

For the position 1E  the Jacobian matrix becomes as: 

 

 

   

 1
1

1

2
* 2
2 2

2

1
C 1 k E1

p
1

1 2 2
* *2 2

D 1 k p2 1 2 12 p
2 1 2

1 k E 0
p C 0

J E     
E D

k p E 1 k p E
p p p


  



 
   



 
             
     

    

            (28) 

with Tr C D   and Det C D  .  

From the characteristic equation of  1J E , the nonnegative eigenvalue are 

found as: 

 
      2 2 2 *

1 1 2 1 22
2

1
r C 1 k 1 d 1 d 2c c 1 d d 1 d 2c p

1 d

              
 



   

and 

  4
2 2

1 d c
r B 1 k

1 d

  
  


   

Since, Eq. (20) it’s clearly seems that 1r 1  and the 1E  equilibrium is unstable. 

For the position 2E  the Jacobian matrix becomes as: 

 
   

   

 
2

* 1
1 22

1

2
2

2

2 2
* *1 1 F 1 k p E
1 2 1 2 p2

1 21
2

2 G 1 k E
2 p

2

1 k p E k p E
F Hp pp

J E     
0 G

0 1 k E
p

 
   




  



    
     

         
  

  

         (29) 

with Tr F G   and Det F G  .  

From the characteristic equation of  2J E , the nonnegative eigenvalue are 

found as: 

 
      2 2 2 *

1 1 2 1 12
2

1
r C 1 k 1 d 1 d 2c c 1 d 2 1 d c p

1 d

              
 



   

and 
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  *
4 1

2 2

1 d c dp
r B 1 k

1 d

   
  


 

Since, Eq. (19) it’s clearly seems that 2r 1  and the 2E  equilibrium is 

unstable. 

 

For the *E  the Jacobian matrix becomes as: 

 

2 2
* *1 1
1 12

1 21
* 2 2

* *2 2
2 2 2

2 1 2

1 k p k p
p pp

J E

k p 1 k p
p p p

    
     

  
  

        
    

                         (30) 

with 
2 2

* *1 2
1 22 2

1 2

Tr 2 k p k p
p p

   
      

 
                             (31)      

and 

       
2 2 2 2

* * 2 * *1 2 1 2
1 2 1 22 2

1 2 2 11 2

Det 1 k p 1 k p k p p
p p p pp p

         
                      

    (32) 

 

To study the stability of Nash equilibrium we use three conditions that the 

equilibrium position is locally asymptotically stable when they are satisfied 

simultaneously: 

(i) 1 Det 0

(ii)   1 Tr Det 0

(iii) 1 Tr Det 0

 

  

  

                                          (33) 

It’s easy to find that the first condition (i) becomes as: 

 

1 Det 0        

 

     
   2 2

12 2 2 2
1 1 * *

2 1

1 d c 1 d
4 1 d c d 1 d 2c k 2 1 d 0

p p

   
             

   
 

  (34) 

 

Also, the condition (ii) gives: 

1 Tr Det 0       

 

   

 

2 2 2
1 1* *

1 1 3
2

4 1 d c d 1 d 2c
k p p 0

1 d

     
    



                   (35) 

and it’s always satisfied because of Eq. (23). 

 

Finally, the condition (iii) becomes as: 
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1 Tr Det 0       

 

   

 

   

 

2 2 2 * 2 * 2
1 1 1 1 2

2 * *
1 2 3 2

2 2

4 1 d c d 1 d 2c p 1 d c p 1 d
k p p 4 k 4 0

1 d 1 d

              
   

       

 

  (36) 

 

Proposition: 

The Nash equilibrium of the discrete dynamical system Eq.(11) is locally 

asymptotically stable if: 

 

     
   2 2

12 2 2 2
1 1 * *

2 1

1 d c 1 d
4 1 d c d 1 d 2c k 2 1 d 0

p p

   
            

   
 

 

and 

   

 

   

 

2 2 2 * 2 * 2
1 1 1 1 2

2 * *
1 2 3 2

2 2

4 1 d c d 1 d 2c p 1 d c p 1 d
k p p 4 k 4 0

1 d 1 d

              
   

       

 

 

where 

      
   

2 2
1 4 2*

1 2 2 2
1 1

1 d 2c 1 d 2 d dc 2c 1 d
p

4 1 d c d 1 d 2c

          


    
 

and 

         

   

2 2
1 4 1 2

*
2 2 2 2

1 1

2 1 d c 1 d c d 1 d 1 d 2c c 1 d
p

4 1 d c d 1 d 2c

                  


    
 

 

 

3 Numerical simulations 

 

3.1 Focusing on the parameter k 

 
In this section some numerical simulation including bifurcation diagrams, 

strange attractors, Lyapunov numbers graph and Sensitive dependence on initial 

conditions are presented focusing on the parameter k when the other parameters 

are fixed taking the values: α = 5, c1 = 1, c2 = 0.5, c3 = 0.4, c4 = 1, c5 = 0.3 and   

d = 0.50. At first, the Nash Equilibrium for the values of these parameters 

becomes as: 
*
1p 3.06   and  *

2p 2.51     * *
* 1 2 *E p ,p E 3.06,2.51               (37) 

and for the stability conditions (proposition 1) it means that the parameter k 

must take values into the interval: 

 k 0,0.10                                                     (38) 
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This algebraic result is verified by the bifurcation diagrams of *
1p  (Fig.1) and 

*
2p  (Fig.2) with respect to the parameter k. As it seems there is a locally 

asymptotically stable orbit until the value of 0.10 for the parameter k and after 

this value doubling period bifurcations are appeared and finally, for higher 

values of the parameter k the system’s behavior becomes chaotic and 

unpredictable.  

 

 
 

Fig. 1. Bifurcation diagram with respect to 

the parameter k against the variable *
1p  

with 400 iterations of the map Eq.(11) for 

α = 5, c1 = 1, c2 = 0.5, c3 = 0.4, c4 = 1,       

c5 = 0.3 and d = 0.50. 

Fig. 2. Bifurcation diagram with respect to 

the parameter k against the variable *
2p  

with 400 iterations of the map Eq.(11) for 

α = 5, c1 = 1, c2 = 0.5, c3 = 0.4, c4 = 1,      

c5 = 0.3 and d = 0.50. 

 

 
Fig.3. The two previous bifurcation diagrams of Fig.1 and Fig.2 in one. 

 

 

 

This chaotic trajectory can create strange attractors (Fig.4) for a higher value of 

the parameter k like 0.147, outside the stability space. Also, computing the 

Lyapunov numbers (Fig.5) for this value of the parameter k and setting the same 

fixed values for the other parameters α, c1, c2, c3, c4, c5 and d, it seems that they 

are getting over the value of 1 as an evidence for the chaotic trajectory.  
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Fig. 4. Phase portrait (strange attractor) of 

the orbit of (0.1,0.1) with 8000 iterations 

of the map Eq.(11) for α = 5, c1 = 1,          
c2 = 0.5, c3 = 0.4, c4 = 1,  c5 = 0.3,             

d = 0.50 and k = 0.147. 

Fig. 5. Lyapunov numbers of the orbit of 

(0.1,0.1) with 8000 iterations of the map 

Eq.(11) for α = 5, c1 = 1, c2 = 0.5, c3 = 0.4, 
c4 = 1,  c5 = 0.3, d = 0.50 and k = 0.147. 

 

This chaotic trajectory makes the system sensitive on initial conditions, which 

means that only a small change on a coordinate may change completely the 

system’s behavior. For example, choosing two different initial conditions 

(0.1,0.1) (Fig.6) and (0.101,0.1) (Fig.7) with a small change at the                  
*
1p -coordinate and plotting the time series of system it seems that at the 

beginning the time series are indistinguishable, but after a number of iterations, 

the difference between them builds up rapidly. 

 

  
Fig. 6. Sensitive dependence on initial 

conditions for 
*
1p -coordinate plotted 

against the time: the orbit of (0.1,0.1) of 

the system Eq.(11) for α = 5, c1 = 1,          
c2 = 0.5, c3 = 0.4, c4 = 1,  c5 = 0.3,             

d = 0.50 and k = 0.147. 

Fig. 7. Sensitive dependence on initial 

conditions for 
*
1p -coordinate plotted 

against the time: the orbit of (0.101,0.1) of 

the system Eq.(11) for α = 5, c1 = 1,          
c2 = 0.5, c3 = 0.4, c4 = 1,  c5 = 0.3,             

d = 0.50 and k = 0.147. 

 

 
Fig.8. The two previous bifurcation diagrams of Fig.6 and Fig.7 in one. 
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4 Chaos control applying the d-Backtest method 

 

4.1 The application of the d-Backtest method 
 

The d-Backtest parameters’ optimization method is a method developed for 

financial predictions, Vezeris et al. (2018). It works by determining the optimal 

backtesting period that should be consulted when selecting parameters for a 

trading system that will trade over a next period. The method uses verification 

periods of various lengths in order to evaluate backtesting periods using various 

methods that look into average profits, minimum profit factors and other 

metrics. It also uses validation periods of fixed length in order to evaluate the 

methods used for the verification periods. After selecting the most promising 

method it uses it in order to suggest a backtesting period. The system can then 

be examined over that backtesting period in order to determine the optimal 

parameters that can then be used over the next period. The method has 

undergone many iterations and improvements through the last years from using 

weeks instead of months as the measure of periods to introducing additional 

methods and measures for the evaluation of verification periods, Vezeris et al. 

(2019), Vezeris et al. (2020). In our research, the method was used in order to 

determine dynamic values for k, for each player. 

The d-Backtest method was combined with the duopoly game by using it to 

determine dynamic k values for each player. More specifically each player, 

instead of using a constant value for k to determine their next price with 

system’s difference equations, used the d-Backtest method to determine a new 

value for k for each step, feeding all the data from the past steps to the d-

Backtest method. Each player used the d-Backtest method separately from the 

other with the goal of the method being to determine k values that would result 

in less fluctuations in prices and a more stable system. Because of the dynamic 

nature of k the price values determined by the difference equations had to have a 

lower bound of 0.001 so that no negative numbers would appear as price values. 

In order to use the d-Backtest method in the context of the duopoly game, it had 

to undergo a few changes. The first change was the calculation of periods in 

steps instead of weeks or months. The next change was the selection of an 

appropriate measurement that would give a value for the variability of prices 

over a period, since the d-Backtest method is used with a goal of minimizing the 

fluctuations of the prices. We used a simple root mean square deviation 

calculated over the whole period: 

 
2n

ii 1
x x

RMSD
n 1








                                       (39) 

In close connection to the above are the changes in the methods used to sort the 

verification periods. Since variability is the only measure we extract from the 

backtesting periods, we used two groups of methods, a simple average 

variability method group and an exponential variability method group. Each 

method group has the same variations as the original d-Backtest methods apart 
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from the simple averages, namely the restrictions that the verification periods 

have to be bigger than 1 and 2 steps, the use of the most backtesting occurrences 

in the verification periods and the combinations of the two aforementioned. 

Another very important change is the calculations on the backtesting periods. 

The number of the backtesting periods examined in each step was 30, as was the 

case with the financial data. In the financial applications of the d-Backtest 

method, the backtesting calculations could safely assume that the actions of the 

trader could not meaningfully change the prices on the market and the outcome 

of the test depended solely on the trader, so it is easy to determine what could 

have happened in the past for the different values of the system's parameters. In 

the case of the duopoly, the prices of each player in each step are a combination 

of both players' prices in the previous steps recursively. In order to calculate the 

prices that could have been in a past period for different values of k, each player 

takes the other's historic prices as a given and calculates only their own prices 

for a k value and then computes the variability measure for that k with these 

prices. 

Each player has to separately do the calculations for the backtests and apply the 

d-Backtest method in each step, in order to determine a backtesting period that 

can then be used to determine the best k value to use in the calculation of their 

price in the next step. The d-Backtest method needs an amount of past data in 

order to have enough data points to calculate the metrics for the verification 

methods. For this reason, each player starts with an initial price of 0.1 and a 

constant value for k for the first 10 steps and after that the d-Backtesting method 

takes over. 

 

4.2 The d-Backtest method’s results 

 
Experiments with various initial values for k were run. The plots below show 

the price values, the k values and the backtesting periods for three different 

experiments with k values of 0.147, 0.3 and 0.7. 

 

  
Fig.9. Price values of each player for 

initial k=0.147 
Fig.10. k values selected by the d-Backtest 
method for each player for initial k=0.147 
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Fig.11. Backtesting periods chosen by the d-Backtest method                                           

for each player for initial k=0.147 

 

  
Fig.12. Price values of each player for 

initial k=0.30 

Fig.13. k values selected by the d-Backtest 

method for each player for initial k=0.30 

 

 

 
Fig.14. Backtesting periods chosen by the d-Backtest method                                                 

for each player for initial k=0.30 

 

 

  
Fig.15. Price values of each player for 

initial k=0.70 

Fig.16.  k values selected by the d-Backtest 

method for each player for initial k=0.70 
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Fig.17. Backtesting periods chosen by the d-Backtest method                                           

for each player for initial k=0.70 

 
 

It can be seen that, in all three experiments, the price values end up around the 

system's equilibrium values with some small deviations after some initial 

fluctuations. This happens regardless of the fact that the initial k values were 

outside the stable range of (0, 0.1). 

The k values selected by the d-Backtest method in all three experiments show 

significant variations for the second player and less so for the first player. The 

prevalence of 0.5 values is an artifact of the d-Backtesting method when it has 

to choose from a range of k values that have the same (and best) outcome (this 

usually happens for small period backtests) so it chooses the middle value. For 

the second player there are also many values around 0.15, just outside the stable 

range for k. The first player chooses k values much lower that the second player 

in order to achieve stability, which can be explained by the bigger parameters 

that affect their price changes. 

The backtesting periods chosen by the d-Backtest method for both players are 

small on average, usually 1 or 2 backtesting periods. This happens because the 

variability metric used by the d-Backtest method has more chances of being 

small in small periods. 

Although the d-Backtest method selects different k values in the duration of the 

experiments, many of which are not in the stable range of k, it still manages to 

reach its goal of small price variability and drive the system to its equilibrium 

point. 

 

 

5 Conclusions 

 
In this paper the dynamics of a differentiated Bertrand duopoly with 

homogeneous expectations, linear demand and asymmetric cost functions 

(regression analysis) are analyzed. By assuming that at each time period each 

firm maximizes its expected profit function Π under bounded rationality 

expectation, a discrete dynamic system was obtained. Existence and stability of 

equilibrium of this system are studied. It is numerically shown that the model 

gives chaotic and unpredictable trajectories. The main result is that higher 
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values of the speed of adjustment may destabilize the Bertrand–Nash 

equilibrium. Finally, in cases where the players choose these values of the 

parameter k for which, as algebraically and graphically proved, the discrete 

dynamical system of Bertrand-type model behaves chaotically, the d-Backtest 

method was applied, giving dynamic values for the k parameter to each player 

for each time period, through which the system returns in locally asymptotically 

stable Nash Equilibrium. 
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Abstract. The potential application of biological molecules as functional devices has been 

heralded as the dawn of a new field in biotechnology and medicine. In this regard, 

molecular motors have attracted the most attention for decades. In the current study, we 
have studied the bioenergy transfer in a protein chain as a self-powered nanomotor. The 

effect of different factors on the energy transfer in protein is studied to obtain the best 

functional condition for the protein machine. The temperature plays the critical role in the 

control of energy transfer in the system. On the other hand, the external mechanical tension 
as a vibrator can increase the energy flowing in our system. The chaos theory tools can 

verify and estimate the results. Generally, one can engineer a self-powered nanomotor 

based on protein chains and control bioenergy transfer. 
Keywords: Nanomotor, Protein, Biological energy, Energy transfer, Multifractal analysis. 
 

 

1 Introduction 
 

    Biological molecules, an exciting field with continuous and robust growth for 

about half a century of existence, encompass the medical, biological, chemical, 

and material sciences [1]. In the current study, we have studied a protein chain as 

a biological molecule and its energy transfer. Protein, as the largest 

macromolecule in the body, is one of the most important components of the life 

systems that plays vital role in the body. Proteins are composed of amino acid 

chain sequences that the number of the amino acids can reach several thousand 

depending on the type of protein [2]. 

    In the current study, we investigate the bioenergy transfer in protein molecules 

as an automated nanomotor. Automated nanomotor uses the bioenergy in the 

protein as self-burning energy and converts it into autonomous motion [3]. These 

nanomotors, which derive their kinetic energy from the biological energy 

contained in proteins, are called protein nanomotors. Protein motors have 

potential medical applications and can collect, transport, and release drug carriers 

of various sizes. Internal order in eukaryotic cells is created by protein motors 

that transport organs and molecules along the cytoskeletal pathways of self-

assembled proteins such as tubulin and shuttle actin. Three known families of 

cytoskeletal protein motors include kinesin, dynein, and myosin [4]. kinesins and 

dyneins, which are the first and second types of protein motors, respectively, 

move in tubules or microtubules [5]. But Myosins, the third family of protein 

motors, move on actin filaments and are responsible for muscle contraction in the 

heart and skeletal muscles [6].  
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2 Model and Methods 
 

    In the current work, the Hamiltonian model used to study the energy transfer 

in protein molecules is based on the Peng model as follows: 

H=𝐻1 + 𝐻2 + 𝐻3 (1) 

 

where 𝐻1 indicates that a boson-type Frankit exciton is excited in protein 

molecules using the energy released in ATP hydrolysis written as follows: 

𝐻1 = ∑[𝜀0𝑎𝑛
† 𝑎𝑛 − 𝐽(𝑎𝑛

†𝑎𝑛+1 + 𝑎𝑛𝑎𝑛+1
† )]

𝑛

 
(2) 

 

𝐻2 defines the harmonic properties of the remaining amino acids: 

𝐻2 = ∑[
𝑃𝑛

2

2𝑚
𝑛

+
1

2
𝑊(𝑢𝑛 − 𝑢𝑛−1)2] 

 

(3) 

 
𝐻3 introduces the interaction between the two modes of motion [7]: 

𝐻3 = ∑[𝜒1(𝑢𝑛+1 − 𝑢𝑛−1)𝑎𝑛
†𝑎𝑛 + 𝜒2(𝑢𝑛+1 − 𝑢𝑛)

𝑛

(𝑎𝑛+1
† 𝑎𝑛

+ 𝑎𝑛
†𝑎𝑛+1)] 

(4) 

 
The parameters used in the calculations are shown in Table 1 [8]: 
 

Table 1: Parameters used  
Parameter Unit Value 

𝜀0     eV 0.2035 

𝜒1 N   6.2×10−11 

𝜒2 N (10-18)×10−12      
m   Amu 115 

W    𝑁

𝑚
 

13 

J    eV 9.68×10−4 

 

Here, 𝑎𝑛 𝑎𝑛𝑑 𝑎𝑛
†  are the creation and annihilation operators for exciton. 

𝑢𝑛 𝑎𝑛𝑑 𝑝𝑛are the displacement and momentum operators for the amino acid 

residue at site n, respectively. 𝜀0 is the energy of the exciton. 𝜒1 and 𝜒2 are 

nonlinear coupling constants. m is the mass of amino acid recidue. W is the 

elasticity constant of the proteins, and J is the dipole-dipole interaction energy 

between neighboring amino acids [9]. 

In this work, we have used the classical chaos theory. In this case, the evolution 

equations for the classical part are derived using the Hamiltonian equation (𝑝̇𝑛 =

−
𝜕𝐻

𝜕𝑞𝑛
). Also, the evolution equations for the quantum part are analyzed using the 

Heisenberg equation (𝑎̇𝑛 = −
𝑖

ħ
[𝑎𝑛 , 𝐻]) as follows: 
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𝑢̈𝑛 = ∑[
𝑊

𝑚
(𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1) +

𝜒1

𝑚
𝑛

(𝑎𝑛+1
† 𝑎𝑛+1 − 𝑎𝑛−1

† 𝑎𝑛−1)

+
𝜒2

𝑚
(𝑎𝑛+1

† 𝑎𝑛 + 𝑎𝑛
†𝑎𝑛+1 − 𝑎𝑛

†𝑎𝑛−1 − 𝑎𝑛−1
† 𝑎𝑛)] 

(5) 

 

 

𝑎̇𝑛 = −
𝑖

ħ
∑{−𝐽(𝑎𝑛−1 + 𝑎𝑛+1) + 𝜀0𝑎𝑛 + 𝜒1(𝑢𝑛+1 − 𝑢𝑛−1)𝑎𝑛

𝑛

+ 𝜒2[(𝑢𝑛 − 𝑢𝑛−1)𝑎𝑛−1 + (𝑢𝑛+1 − 𝑢𝑛)𝑎𝑛+1]} 

(6) 

 

To study the energy transfer in protein molecules, we have extracted the energy 

flux. The energy flux obtains using the continuity equation (I= - 
𝑖

ħ
[𝑎𝑛

†𝑎𝑛, 𝐻] ) as 

follows: 

𝐼 = −
𝑖

ħ
∑[−𝐽(𝑎𝑛

† − 𝑎𝑛−1 − 𝑎𝑛−1
† 𝑎𝑛 + 𝑎𝑛

†𝑎𝑛+1 − 𝑎𝑛+1
† 𝑎𝑛)

𝑛

− 𝜒2(𝑢𝑛 − 𝑢𝑛−1)𝑎𝑛−1
† 𝑎𝑛 + 𝜒2(𝑢𝑛+1 − 𝑢𝑛)(𝑎𝑛

†𝑎𝑛+1

− 𝑎𝑛+1
† 𝑎𝑛)] 

(7) 

 

 

3 Results and Discussion  
 

    Different factors effect on energy transfer in biological systems. One of the 

vital parameters on energy transfer in the protein system is the effect of 

temperature. We have used the Nos𝑒́ Hoover thermostat to apply the temperature 

to the system. The evolution equation of thermostat is written as follows [10]: 

𝜉̇ =
1

𝑀
(∑ 𝑚𝑢̇𝑛

2

𝑛

− 𝑁𝐾𝐵𝑇0) 
(8) 

 

where 𝜉 describes a thermodynamic coefficient of friction.   T0 is the temperature 

of the system. KB is the constant of Boltzmann, and M is the thermostat constant.   

A biological system can be affected by mechanical shocks. Therefore, we have 

investigated the effect of mechanical stress on energy transfer in protein 

molecules. The Hamiltonian of mechanical stress is written as follows [11]: 

𝐻𝑠𝑡𝑟 = −𝛿1,𝑛(𝑢𝑛+1 − 𝑢𝑛)𝐹0𝑠𝑖𝑛𝜔𝑡 (9) 

 

where 𝐹0 and ω are the amplitude and frequency of the external mechanical stress.  
We can also examine the best range of parameters affecting energy transfer in 

protein molecules using multifractal system analysis. Multifractal analysis of the 

system can confirm the obtained results. In addition, it can classify system 

parameters to determine the desired results. 
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In this regard, we use the R𝑒́nyi dimension spectrum, analogous of the free energy 

and analogous of the thermodynamic specific heat.  

 

3.1 Simultaneous effect of ambient temperature and the range of force 

exerting mechanical stress 
 

Temperature and external stress as the very influential factors in the performance 

of biological systems can be considered as the control parameters in the energy 

transfer in the protein system. We have considered the simultaneous effect of 

ambient temperature and the range of force exerting mechanical stress on the 

energy flux in the protein system (Fig. 1). The variation of the ambient 

temperature from 300 to 330 K and at the same time changing the amplitude of 

the force from 0 to 2 pN has negligible effect on the amount of energy flux 

transmitted in the system. In this region, the energy flux fluctuates at a  minimum 

of about 10 to 30 μeV. But,  when the temperature rises above 330 K, in the force 

range of about 1.2 pN, we can see a considerable peak in the energy flux, so that 

the energy flux reaches about 100 μeV. Similar to this phenomenon is also 

observed at a temperature of about 345 K and a force range of about 0.8 pN. 
Therefore, it can be said that temperatures above 330 and the applied stress are 

two critical parameters in the transfer of bioenergy in our protein system.  

 
Fig. 1. The energy flux through the system concerning the simultaneous variation of the 

amplitude of applied stress and the ambient temperature 

 

3.2 Simultaneous effect of temperature and applied stress frequency 

 
The frequency of applied stress simultaneously with the ambient temperature can 

be another compelling factor in regulating the energy flux through the system. As 

shown in Figure 2, at 300 to 350 K, the energy flux is more than 50 μV. But there 

are characteristic frequencies that can significantly increase the energy flux 
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through the system. A frequency of about 0.09 THz at 310 K causes the energy 

flux of the system to reach about over 200 μeV, and this shows that energy 

transport in the protein system is highly sensitive to several frequencies that can 

be used to optimize the performance of the biological system.  

 

 
Fig. 2. Energy flux relative to a simultaneous variation of applied stress frequency and 

temperature (N=150, F0=3pN) 

 

3.3 Multifractal analysis 
 

We have studied the multifractal spectrum of the energy flux through the protein 

system by using R𝑒́nyi dimension. In this regard, we consider the d 

dimensiontional phase space  of system and divide it into cubes of size l and 

calculate the R𝑒́nyi dimension (Dq) as follows [12]:   

𝐷𝑞 =
1

𝑞 − 1
lim
𝑙→0

∑ 𝑃𝑖
𝑞𝑀

𝑖

ln 𝑙
 

(10) 

                                     

Figure 3 shows the R𝑒́nyi dimension spectrum for four different frequencies of 

applied stress. 𝐷𝑞 shows the descending behavior by increasing q which 

indicates that the system is multifractal. If we go back to the previous results, we 

observe that the temperature of 300 K for a force amplitude of 3 pN, the 

frequencies ω = 0.01 THz, ω = 0.03 THz, ω = 0.05 THz are in the blue region 

where the energy flux crossing the system is minimal (Figure 2  ). Also, the 

frequency ω= 0.09 THz is in the red region where the energy flux passing through 

the system is maximum. As shown in Figure 3, for negative q, the R𝑒́nyi 

dimensions at 300 K and the force amplitude of 3 pN corresponds to the 

frequencies ω = 0.01THz, ω = 0.03THz, ω = 0.05THz are coincident with almost 

the same amount. But the R𝑒́nyi dimension of the frequency ω = 0.09THz shows 

481



a greater value for negative values of q. The R𝑒́nyi dimension distinguishes the 

regions with the highest energy flux from the regions with the lowest energy flux.  

 

 
Fig. 3. R𝑒́nyi dimension spectrum in different values of the stress frequency (T=310K, 

F0=3pN, N=150) 

 

 

To have a similarity between a multifractal system and a thermodynamic state, 

relations are usually equated with their thermodynamic equivalents. We consider 

τ(q) as analogous the thermodynamic free energy of the system, and check the 

multifractality of the system. The analogous of the free energy is written as 

follows [13]: 

  

τ(q)≡(q-1)𝐷𝑞 (11) 

 

The system is a homogenous fractal when τ(q) have a linear dependence to q. On 

the other hand, τ(q) shows a deviation from the linear state when the system is 

multifractal and the higher deviation from the the linear state shows the more 

multifractality of the system. According the figure 4, τ(q) is deviated from the 

linear state in terms of q for all frequencies at the point q = 0, and this confirms 

the multifractality of the system. On the other hand, for negative q, τ(q) is the 

same for the frequencies in the blue region. But the frequency ω = 0.09 THz, 

which is in the red area, has the highest deviation from linear behavior. Thus, the 

analogous of the thermodynamic free energy shows the distinct regions for 

negative q at 300 K and for the force range of 3 pN. 
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Fig 4. Analogous of the thermodynamic free energy in multifractal systems for different 

frequencies of the external stress (N=150, F0=3pN, T=310K) 

 

On the other hand, the analogous of the specific heat C(q) which is obtained from 

a second-order derivative of the analogous of free energy concerning q can be 

analyze the multifractal behavior of system through the following equation: 

C(q)=-
𝜕2𝜏

𝜕𝑞2 ≈ 𝜏(𝑞 + 1) − 2𝜏(𝑞) + 𝜏(𝑞 − 1) (12) 

 

Analogous of specific heat is one of the measures to check the multifractality of 

a system. As shown in figure 5, the frequencies of the blue region overlap in the 

peak area. The frequency ω = 0.09THz, which is in the red region, shows a higher 

peak. Therefore, a analogous of thermodynamic specific heat also shows the 

distinct regions and confirms the previous results. 
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Fig. 5. Analogous of thermodynamic specific heat in multifractal systems for different 

frequencies (N=150, F0=3pN, T=310K) 

 

Conclusions 
 

   We have studied the bioenergy transfer in a protein system to design a 

nanomotor.  In this regard, we have investigated the effect of various parameters 

such as temperature and mechanical stress on the energy transfer in protein 

nanomotors. We have analyzed the multifractal nature of the system using the 

multifractal analysis methods. Using the multifractal analysis, we are able to 

confirm the previous results and show the distinct areas.  
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Forced van der Pol oscillator – Synchronization
from the bifurcation theory point of view
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Kotlářská 2, 611 37, Brno, Czech Republic
(E-mail: 460534@mail.muni.cz, pribylova@math.muni.cz)

Abstract. The contribution presents a bifurcation theory point of view to synchro-
nization of a forced van der Pol oscillator, which is coupled to a master oscillator as
a system with a stable limit cycle corresponding to harmonic oscillation. We present
bifurcation manifolds, 3D sections of the phase space and its Poincaré sections for
parameters close to these manifolds providing a clear visualization of the dynamics
of the 4D system. Among other things, we present the coexistence of a stable torus
and a stable cycle arising from q-fold bifurcation on an Arnold tongue.
Keywords: Synchronization, Van der Pol oscillator, Bifurcations of limit cycles,
Neimark–Sacker bifurcation, q-fold bifurcation, Arnold tongues.

1 Introduction

Synchronization of coupled systems of oscillators is an important phenomenon
that touches a large class of nonlinear dynamical systems. Synchronization
is ubiquitous and methods of applied nonlinear dynamics can thus help to
solve problems and create new technologies in neuroscience ([5], [14], [1]),
chemistry (Kuramoto[6]), biology (Winfree[12]), superconducting electronics
(Welp et al.[10], Braginski[3]), spintronics (Sturgis-Jensen et al.[9]), computing
(Mallick et al.[8]), or even particle physics (Beck[2]). Since these nonlinear sys-
tems exhibit complex and sometimes even counterintuitive dynamics, the most
commonly used methods to study synchronizations are simulations.

Although the theory of bifurcations offers a suitable apparatus for the analy-
sis of the systems mentioned above, it is usually not used. The highly abstract
thinking and mathematically generalized view of dynamics needed for such
an analysis are not the only obstacles to using bifurcation analysis methods.
Another problem occurs because the phase variables present in such models
usually enter as harmonic terms. Due to that, the systems are typically stiff,
and standard numerical continuation techniques fail.

Our contribution brings a suitable method for analyzing dynamics of forced
oscillators concerning synchronization. We present this method on the forced
van der Pol oscillator example. In addition, it also allows excellent visualization
of the state space in the neighborhood of bifurcation manifolds that belong
to the onset of synchronization. All nonlinear phenomena that are closely
related to it, as torus birth, resonances, or complex dynamics near double
Hopf bifurcation, can be visualized in 3D space which greatly simplifies their
explanation. This approach can be used for much more complex systems of
coupled oscillators as you can see in Záthurecký and Přibylová[13].
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2 Forced van der Pol oscillator representation

Consider the widely known van der Pol oscillator driven by an external har-
monic force represented by the equation

ẍ− µ
(
1− x2

)
ẋ+ ω2

0x+A sinωt = 0, (1)

where x ∈ R is a time-dependent position coordinate, µ > 0 denotes a param-
eter indicating the nonlinearity (the strength of the damping), and ω0 ∈ R is
the natural frequency. The last term represents the external driving force with
amplitude A > 0 and frequency ω ∈ R.

This second-order differential equation can be expressed in the following
form of two-dimensional non-autonomous system

ẋ = y + ε cosωt, (2a)

ẏ = µ
(
1− x2

)
y − ω2

0x, (2b)

where ε = A
ω . To obtain an autonomous system, it is usually convenient to

rewrite the time-dependent term ε cosωt in (2a) using a pair of new variables,
specifically

ẋ = y + εu, (3a)

ẏ = µ
(
1− x2

)
y − ω2

0x, (3b)

u̇ = −ωv, (3c)

v̇ = ωu. (3d)

Unfortunately, this system is stiff, and the continuation is impossible since
the periodic solution of (3c), (3d) is not asymptotically stable. Therefore, we
replace this subsystem with a normal form of supercritical Hopf bifurcation

u̇ = ru− ωv − u
(
u2 + v2

)
,

v̇ = ωu+ rv − v
(
u2 + v2

)
with an exponentially stable driving cycle allowing a stable continuation of
limit cycles and their bifurcations. Note that the added parameter r provides
a possibility to investigate bifurcations connected to the birth of an invariant
torus.

Hence, one can examine the forced van der Pol oscillator (1) as two inter-
acting master-slave oscillators in the form

ẋ = y + εu, (4a)

ẏ = µ
(
1− x2

)
y − ω2

0x, (4b)

u̇ = ru− ωv − u
(
u2 + v2

)
, (4c)

v̇ = ωu+ rv − v
(
u2 + v2

)
. (4d)

This step also provides an opportunity to clearly visualize synchronization phe-
nomena of the famous van der Pol oscillator since variables u and v are com-
plementary, and one of them can be omitted in the state space description.
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3 Basic bifurcation analysis

The studied system (4) is evidently uncoupled for zero coupling, i.e. ε = 0.
In this case, one can investigate both subsystems separately. Assuming µ = 0,
there is no damping in the van der Pol system, and thus the system exhibits
simple conservative harmonic oscillations with frequency ω0. It is known that
the unforced van der Pol oscillator undergoes a supercritical Hopf bifurcation
that gives rise to a stable limit cycle while crossing µ = 0 as well as the forcing,
master system while crossing r = 0. It follows that a double Hopf bifurcation
manifold (i.e. parameter subspace µ = 0, r = 0, ε = 0) can be detected as a
transversal intersection of these two Hopf hyperplanes.

4 Torus birth and synchronization

Double Hopf bifurcation leads to complex dynamics that is related to other
bifurcations for nearby parameters. Generically, two branches of Neimark–
Sacker bifurcation of a cycle, resulting in a torus birth, emanate from the
double Hopf point.

The system (4) gives birth to the stable invariant torus for positive µ and
r near zero obviously since supercritical bifurcations appear at µ = 0 and
r = 0, respectively. An example of a quasiperiodic trajectory densely covering
the torus is presented in Fig. 1. The trajectories of the system (4) on the
invariant torus can become periodic since the torus is described by a pair of
frequencies that can be in a mutually rational proportion. In that moment,
the synchronization appears in terms of phase- or frequency-locking. For given
external harmonic forcing with nonzero amplitude r and natural frequency ω0,
zero damping µ and zero coupling ε, it is exactly for ratios ω0

ω that are rational.
These points are resonances (two-parametric cusp bifurcations of cycles or q-
fold bifurcation points in the notation of the bifurcation theory) that correspond
to cusp Arnold tongues emanating from Neimark–Sacker bifurcation manifold
ε = 0. The Arnold tongues’ borders are fold bifurcation manifolds of a stable
cycle and a saddle cycle that coincide with each other. The stable cycle persists
inside the Arnold tongue and corresponds to the synchronization. Notice that
Neimark–Sacker bifurcation, the torus, and fold bifurcation of a cycle manifold
continue to positive ε. Since the cusp bifurcation has a typical V-shape, more
coupling strength makes the synchronization easier.

From now on, we will consider fixed values µ = 0.1, r = 0.1 and ω0 = 1. The
following results are independent of the choice in the sense that we can choose
any small µ and r to start with quasiperiodic orbit on a torus. The natural
frequency ω0 is taken as normalized, but it can be easily reparametrized. Let
us study the effect of parameters ω and ε on the synchronization in system (4).
Using numerical continuation methods in MATCONT toolbox by Dhooge et
al.[4], one can compute bifurcation curves of (4) in the parameter space (ω, ε).

Since the natural frequency of the van der Pol oscillator is chosen as ω0 = 1,
the Arnold tongues emanate from all rational numbers on the ω-axis, i.e. points

(ω, ε) =
(

p
q , 0

)
for coprime p, q ∈ N. Fig. 2 shows several Arnold tongues Ap:q
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Fig. 1: A segment of a quasiperiodic orbit on a stable invariant torus of sys-
tem (4) for µ = 0.1, r = 0.1, ε = 2.5, ω0 = 1 and ω =

√
5.

in space (ω, ε) representing parameter values, for which the synchronization
p : q takes place in the studied system (4) (p : q is a ratio between the two
frequencies on the torus, q : p is the period ratio). As usual, most of the Arnold
tongues are relatively narrow and hence difficult to be manually detected. No-
tice that we found a non-trivial branch of Neimark–Sacker bifurcation that is
different from µ = 0, r > 0 or r = 0, µ > 0, respectively, in this parameter
space. Dynamics near this branch for 1 : 3 resonance is shortly mentioned in
Section 6.

5 Visualizations of the torus birth

In addition to the analysis itself, we focused on visualization of dynamics near
bifurcation manifolds. One dimension of the 4D state space of the system (4)
can be omitted easily as a complement due to harmonic forcing. The 3D
invariant torus that appears in the state space for positive r and µ is projected
to a two-dimensional torus. Its natural section in a given phase is a Poincaré 2D
plane section of a trajectory on the torus. This situation makes it possible to
explicitly show qualitative changes in the neighborhood of bifurcation manifolds
in the plane and 3D space.

At first, let’s look at the transition between regions 1 and 2 (see Fig. 3).

The system possesses a stable limit cycle in the region 1 (see Fig. 4). When

crossing the non-trivial Neimark–Sacker curve into region 2 , the correspond-
ing Neimark–Sacker bifurcation of a cycle causes a loss of the cycle’s stability.
It gives rise to a stable invariant torus in its neighborhood (see Fig. 5 and 6). As
these figures show, using Poincaré section determined by zero u-coordinate, for
example, one can visualize bifurcations of limit cycles via specific orbit topolog-
ical change of the discrete dynamical system (see Neimark–Sacker bifurcation
of maps in Kuznetsov[7]) on the corresponding Poincaré section.
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Fig. 2: Bifurcation diagram of system (4) in the parameter space (ω, ε) for
µ = 0.1, r = 1 and ω0 = 1.

Fig. 3: Considered transitions between regions 1 , 2 and 3 in the parameter
space (ω, ε) for µ = 0.1, r = 1 and ω0 = 1.

6 Bistability of the forced van der Pol oscillator

Finally, let’s look closely to qualitative changes of dynamics near 1 : 3 resonance
point R3 on the non-trivial Neimark–Sacker branch depicted in Fig. 2 or 3 (for
the positive r, µ, ε and ω). Fig. 7 shows a typical symmetric dynamic structure
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Fig. 4: Poincaré section {u = 0} of system (4) for (ω, ε) = (2.6, 3.4), region 1 .

Fig. 5: Poincaré section {u = 0} of system (4) (ω, ε) = (2.766, 3.4), near N–S
manifold.

near 1 : 3 resonance (see Kuznetsov[7]). It visualizes the transition between

regions 2 and 3 . As we have just seen, in the region 2 (outside the Arnold
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Fig. 6: Poincaré section {u = 0} of system (4) for (ω, ε) = (2.85, 3.4), region 2 .

tongue), the system possesses a stable quasiperiodic invariant torus. When

crossing the LPC curve (entering the Arnold tongue, 3 ), the fold bifurcation
gives rise to a pair of limit cycles – stable and saddle, respectively. The forced
van der Pol oscillator evince bistable behavior for these parameters inside and
close to the Arnold tongue border since there are two stable attractors – an
outside stable limit cycle and a stable invariant torus. The torus may be
destructed via a heteroclinic bifurcation. In the Poincaré section depicted red
in Fig. 7 (b)–(c), you can see a symmetric triplet of saddles approaching the
invariant loop that belongs to the inside torus. The coincidence of the saddle
cycle with the loop destroys the stable torus.

7 Discussion and conclusions

To summarize and outline the possible research connected to synchronizations
of forced oscillators, we mention the topics we would like to focus on.

There is much more to study since Arnold tongues interfere with each other,
and symmetries near resonances give birth to various types of synchronizations.
Also, there is usually a period-doubling cascade inside the Arnold tongues,
and this route to a chaotic attractor is possible and likely. Study of all these
phenomena is allowed only using a suitable representation (4) of forced van der
Pol oscillator (1). The proper transformation of the original system and using
Poincaré sections give possibility to use continuation methods of bifurcation
theory, and also visualize in 3D the hidden phenomena behind synchronizations
of limit cycles.
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(a) Region 2 : (ω, ε) = (2.85, 3.4), before crossing LPC1:3

(b) Region 3 : (ω, ε) = (2.88, 3.4), right after crossing LPC1:3

(c) Region 3 : (ω, ε) = (2.90, 3.4), after crossing LPC1:3

Fig. 7: The onset of synchronization 1 : 3 in system (4) visualized using
Poincaré section {u = 0, v = −1} in the state space for parameters (ω, ε) from

regions 2 and 3 , i.e. for the crossing of the LPC1:3 curve corresponding to
fold bifurcation of limit cycles (see Fig. 3).
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We plan to continue with an analysis of bifurcation manifolds near the
mentioned double Hopf bifurcation, as well as near resonances. Very interesting
dynamics could be found near the torus break on the heteroclinic orbit for
parameters inside the Arnold tongues. We would like to focus also on bistability
in the case of coupled oscillators. We are convinced that this phenomenon is
closely related to chimera-like dynamics, as well as to routes to complexity and
chaos.

Acknowledgements

The work has received financial support from Mathematical and Statistical
modelling project MUNI/A/1615/2020.

References

1. H. Alinejad, D. Yang, P. A. Robinson, Mode-locking dynamics of corti-cothalamic
system response to periodic external stimuli, Physica D, 402, 2020.

2. Ch. Beck. Possible resonance effect of axionic dark matter in Josephson junctions.
Physical review letters, 111, 23, 2013.

3. A. I. Braginski, Superconductor Electronics: Status and Outlook, Journal of su-
perconductivity and novel magnetism, 32, 23–44, 2019.

4. A. Dhooge, W. Govaerts and Y. A. Kuznetsov. MATCONT: a MATLAB package
for numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical
Software (TOMS), 29, 2, 141–164, 2003.

5. H. Ju, A. B. Neiman and A. L. Shilnikov, Bottom-up approach to torus bifurcation
in neuron models, Chaos, 28, 10, 2018.

6. Y. Kuramoto. Chemical Oscillations, Waves, and Turbulence. Chemistry Series.
Dover. New York. 1984.

7. Y. A. Kuznetsov. Elements of applied bifurcation theory. Vol. 112. Springer Science
& Business Media, 2013.

8. A. Mallick, M. Bashar, D. Truesdell, B. Calhoun, S. Joshi and N. Shukla, Us-
ing synchronized oscillators to compute the maximum independent set, Nature
communications, 11, 1–7, 2020.

9. B. Sturgis-Jensen, P.-L. Buono, A. Palacios, J. Turtle, V. In, P. Longhini. On the
synchronization phenomenon of a parallel array of spin torquenano-oscillators.
Physica D 396 (2019) 71–81.

10. U. Welp, K. Kadowaki, R. Kleiner, Superconducting emitters of THz radiation,
Nature Photonics, 7, 702–710, 2013.

11. S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos. Vol.2.
New York: Springer-Verlag, 1990.

12. A. T. Winfree. The Geometry of Biological Time. Springer. New York. 2001.
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Abstract 

In recent years, thermoelectric materials and energy converters have attracted considera-

ble attention, especially as a part of advanced “green” energy and space technologies. One 

of the most promising ways of obtaining high values of the thermoelectric figure of merit is 

the formation of nanostructured 3D materials with nanoparticles of phase-separating al-

loys. In this chapter, using the example of low-temperature thermoelectric Bi1-x-Sbx alloys 

for the application in space engineering, we have shown how nanoscale effects on phase 

equilibria in nanoparticles influence on their thermoelectric properties. Such effects consist 

in nonlinear changes in mutual solubilities of components at a given temperature, phase 

transition temperatures and even the total suppression of the phase separation depending 

on the morphology of a nanoparticle as well as on some other factors. The combination of 

thermodynamic and ab initio approaches has been used while the nanoparticle shape has 

been determined using the methods of fractal geometry. A method has been suggested in 

order to calculate the optimal morphology of nanoparticles, at which their equilibrium 

phase composition leads to a dramatic reduction of the phonon thermal conductivity, favor-

ing the growth of the thermoelectric figure of merit. A decrease in the phonon thermal con-

ductivity in nanoparticles of a pure substance depending on their morphology as well as an 

approach of calculating the equilibrium size and shape distribution within a nanoparticle 

ensemble have also been discussed.   
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2.1 Introduction 

Thermoelectric materials and energy converters on their basis have been 

an object of considerable interest among researchers in recent years [1]. The ex-

panding field of their application includes energy generators which operate in ex-

treme conditions (e.g. radioisotope thermoelectric generators for Voyager-2 and 

other space modules [1]), thermoelectric converters for utilizing the waste heat 

dispersed into environment [2], cooling and temperature-control facilities based on 

the Peltier effect etc [3]. Despite the intensive development of multiple approaches 

to obtain thermoelectric materials with promising properties based on low-

dimension structures (nanofilms [4,5], quantum wires [6] etc), highly-effective 

and low-cost thermoelectrics can be produced on the basis of 3D nanocrystalline 

structures [7,8].  

The key characteristic parameter determining the materials thermoelectric 

efficiency is the dimensionless figure of merit, ZT, which can be expressed as a 

function of thermal conductivity κ , electrical conductivity σ  and Seebeck coeffi-

cient α: 
2

α σ κZT T  where T  is the average temperature between the “hot” 

and “cold” sides of a thermoelectric converter and car phκ κ κ [1,2,7]. Here, 

carκ and phκ are the contributions of charge carriers (electrons, holes) and pho-

nons to the thermal conductivity, respectively (several other contributions, e.g. the 

ones of excitons or spin-orbit coupling, are neglected, being much lower). In every 

single material, as a rule, electrical conductivity σ  and the contribution of carriers 

to the total thermal conductivity, carκ , cannot be varied separately, and optimal 

thermoelectric properties can be obtained primarily through the reduction of the 

phonon contribution phκ . In nanostructured polycrystalline materials, phκ  is gen-

erally decreased through formation of multiple interfaces (grain boundaries) which 

scatter thermal phonons [9], add to this, the energy filtration of charge carriers at 

grain boundaries, which reduces the contribution of low-energy carriers to trans-

port properties, results in an additional increase in the Seebeck coefficient [2]. Na-

nostructured polycrystalline thermoelectric materials can be produced using vari-

ous technologies of up-to-date powder metallurgy, e.g. spark plasma sintering, 

selective laser sintering, selective laser melting etc [7,8].  

It is necessary to take into account that several specific properties of na-

noscale particles provide an additional “knob” which can be used to tune the func-

tional properties of a nanostructured material. On the one hand, promising ther-

moelectric properties are associated with nanoparticles of bi- and polycomponent 

solutions (e.g., Si-Ge, Bi-Sb, Bi-Sb-Te, Bi-Te-Se etc) while ab-initio calculations 

demonstrate in many cases a dramatic decrease in phonon thermal conductivity 

phκ  with an increase in the concentration of a dopant [10]. In several systems in-

cluding the Bi1-x-Sbx alloy (which is considered to be one of the most efficient 

low-temperature thermoelectric materials [10] with multiple possible applications, 

for example, in space engineering), however, the solid solutions with high dopant 
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concentrations are thermodynamically unstable at the operation temperatures, ac-

cording to the available reference data for macroscopic phases, and undergo the 

phase separation. On the other hand, all characteristics of phase equilibria includ-

ing the thermodynamical stability of solid solutions with high dopant concentra-

tions as well as phase transition temperatures become morphology-dependent at 

the nanoscale [11-18]. In the case of stratifying solid solutions, such effects ma-

nifest themselves in dramatic changes solubility limits, temperature ranges of the 

thermodynamical stability of various heterogeneous and homogeneous states in-

cluding the value of the upper critical dissolution temperature (UCDT) depending 

of the geometric characteristics of a nanoparticle under consideration, its external 

environment [19] and some other factors [20-22]. These effects are interpreted as 

the realization of several mechanisms reducing the free energy of a nanoscale sys-

tem, which can also be competing in several cases leading to specific non-

monotonous dependences of phase equilibria characteristics [15,23]. Being ob-

served experimentally [24], at the particle sizes appropriate for the additive tech-

nologies, the mentioned effects can be simulated using the thermodynamical ap-

proach (the size limits for the thermodynamics applicability have been discussed 

in [25]). For much smaller particles, the molecular dynamics approach can be ap-

plied which demonstrate a perfect accordance with the thermodynamically ob-

tained results [26]. 

In this chapter, we present and summarize the brand-new findings on the 

realization of nanoscale phase equilibria effects in nanostructured thermoelectric 

materials and their possible influence on the thermoelectric characteristics. The 

materials morphology has been determined using the methods of fractal geometry 

which allows to express the materials geometric characteristics in the most general 

form while the fractal characteristics of nanoparticles can be measured experimen-

tally [27]. 

2.2 How to simulate phase equilibria at the nanos-

cale: mathematical formulations 

As the object of modeling below, we consider differently shaped nano-

particles of the Bi1-x-Sbx system with various atomic fractions of Sb ( x ). The vo-

lume of such a particle is set by its effective diameter 
eff

d - diameter of the sphere 

whose volume is equal to the volume of the particle.  We assume that, at the phase 

equilibrium in the temperature range below the upper critical dissolution tempera-

ture (UCDT), such a particle contains a spherical inclusion of a solid solution 

(core-phase) surrounded by a layer of a solid solution with a different composition 

(shell-phase). In a closed binary system with a core-shell configuration, the vo-

lume of a particle, total amount n  of the matter in the system, numbers 
i

n  of 

moles of each component (subscripts i=1, 2 refer to Sb and Bi, respectively), and 

concentrations 
ij

x  of components i  in phases j  (subscripts j=c, s correspond to 

core- and shell-phases, respectively) are interrelated through the conservation 

conditions of matter: 
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3

eff 1 2 1
π 6 ,  ,  ,  , ,  .

j i ij j ij i ij ij ij

j j i i

d V n xn n n n n n V n V x n n  

Here, 
j

V  is the volume of phase j while 
i

V  stands for the molar volume of com-

ponent i. The molar volumes are V1=18.4 cm
3
/mol and V2=21.3 cm

3
/mol [28,29]. 

In order to describe the irregular morphology of real nanoparticles, it is 

convenient to use the methods of fractal geometry. In the terms of the given ap-

proach, the phase of a nanoparticle is characterized by fractal dimension D which 

correlates its volume V and surface area 
s

A : 
2 D

s
A CV , where C is the numeri-

cal coefficient which also matches units. For the sake of convenience, we assume 

4πC  below (this assumption is not accompanied by any losses of generality). 

For simple geometric structures, 3.00D  while for structures with a complicated 

and irregular morphology, 3.00D  and can be non-integer. The examples of na-

noparticles with various fractal dimensions can be found in [30,31]. Fractal di-

mension D can also be related to so-called shape coefficient k which has been used 

as a calculation parameter in some previous papers of us [23, 28-30] and other au-

thors [32]: 
2 3

2
, 3 4π

D
k V D V V . The shape coefficient is equal to the ratio 

between the surface areas of the particle under consideration and the sphere of the 

same volume, for example, for nanoparticles with the effective diameter of 40 nm 

and fractal dimensions of 2.60, 2.75 and 2.90, the shape coefficients are equal to 

2.51, 1.72 and 1.23, respectively. 

Thus, the geometrical parameters of the core-shell structure can be de-

scribed as follows: 
22 3 3

eff
4π 3 4π ,  π 6

D

c c s
A V A C d .  

The criterion for an equilibrium state of the system is the minimum of 

Gibbs function g including the energy contribution of all interfaces:  

1 2 1

1 I 1 1 II 1 III 1

1 1 1 1

, σ σ ,  

, 1 1

ln 1 ln 1

j j j j s s cs s

j

j j j j j j

j j j j

g n n G x T A A

G x T A T x x A T x A T x

RT x x x x

     (1) 

where R is the universal gas constant, σ
s
 and σ

cs
 are the surface energies on the 

outer (shell-) and inner (core-shell) interfaces. 
I

6500 2.6A T T , 

II
2.645 903.7A T R T , 

III
2.458 544.6A T R T . Without any 

losses of generality, the following approximation has been used to calculate the 

values of σ
s
 and σ

cs  
(see also [33]): 

1
σ 0.5 σ

cs j

j

x , 
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1 1 1 2 1
σ σ σ 1

j j j
x x x , 

1 1 2 1
σ σ σ 1

s s s
x x  where 

1
σ =0.300 J/m

2
, 

2
σ =0.521 J/m

2 
[19,28,29]. 

2.3 Nanoscale phase equilibria and lattice thermal 

conductivity: specific phenomena 

For a core-shell structure, Gibbs function (1) has two minima which cor-

respond to heterogeneous states with different mutual arrangements of co-existing 

solid solutions. The state where the shell-phase is formed with a Bi-based solid so-

lution is hereinafter called state 1. In state 2, in turn, Sb prevails in the shell-

phase. In the case of a two-component system, simulation results and the main re-

gularities can be illustrated with the θ-diagrams for the Gibbs function. The exam-

ple of such diagrams is given in Fig. 1 where Gibbs function (1) is plotted using 

dimensionless variables 
1

θ
i ic

n n , corresponding to the atomic fraction of com-

ponent i in the core-phase relative to the total amount of component i in the sys-

tem ( θ 0,1
i

). The minima are indicated with a darker color. 

In the heterogeneous state of a macroscopic system (Fig. 1a), the minima 

of the Gibbs function are symmetric, have equal energies and correspond to the 

equal compositions of co-existing phases which match the reference data (the mu-

tual arrangement of phases morphology of the system and its total composition 

( x ) have no influence on the phase composition at each temperature as well as on 

the upper critical dissolution temperature i.e. the temperature value at which the 

phase separation terminates and all the compositions of a particle become thermo-

dynamically stable). At the nanoscale, at the same time, a notable energy contribu-

tion of all the interfaces leads to shifts of the minima in comparison with a ma-

croscopic system while the energy of state 1 becomes somewhat higher than the 

energy of another one and a high-energy metastable homogeneous state can also 

emerge in the system (see Fig. 1b). As a result, the equilibrium compositions and 

relative volumes of co-existing phases are different in states 1 and 2, differ from 

the “macroscopic” values and depend on the system morphology. 

In both states 1 and 2, a decrease in the particle size and/or a decrease in 

its fractal dimension lead to a considerable reduction of the UCDT. However, the 

UCDT values differ in different states, the upper critical dissolution temperature in 

state 1 being always lower than the one in state 2. At the temperatures above the 

UCDT for state 1, the heterogeneous state with a Bi-based shell-phase is replaced 

with a homogeneous state which co-exists with the heterogeneous one with a Sb-

based shell (see Fig. 1c). Above the UCDT for state 2, the homogeneous state be-

comes the only one in the system. An example of the dependence of the UCDT on 

the particle morphology is plotted in Fig. 2b for an equiatomic particle of deff=40 

nm in state 1. At D<2.74 the UCTD of such a particle is reduced below 100 K 

while for a particle of the same volume in state 2 this takes place at D<2.57. 

The dependences of the phonon contribution to the thermal conductivity 

coefficient exhibit its dramatic jumpwise reduction at high concentrations of do-

503



8  

pants (an example of those dependences is plotted in Fig. 2b for two crystallo-

graphic directions in the Bi-Sb crystal lattice at T=100 K. At other temperatures, 

the characteristic view of such dependences is expected to remain the same). A 

decrease in the UCDT down to the low operating temperatures leads to the ther-

modynamical stabilization of phases with equiatomic or near-equiatomic composi-

tions with significantly (by more than 50%) reduced phonon thermal conductivi-

ties (for example, in equiatomic nanoparticles of  deff=40 nm in state 1, decreasing 

the fractal dimension below 2.74 at T=100 K leads to a decrease in the phonon 

thermal conductivity by 71% as compared to the value of the shell-phase of a 

spherical 40-nm-diameter particle in the same thermodynamical conditions or 

even by 88% as compared to the one of its core-phase). 

                                                          a                                            b 

 
                                          c 

 
Fig. 1. Examples of θ-diagrams: for a macroscopic structure (a), for a nanoscale 

particle at “low” temperatures with both heterogeneous states and a highly metast-

able homogeneous one (b). for a nanoscale particle upper the UCDT for state 1 

(c). The minima in the lower right corner and in the upper left one correspond to 

states 1 and 2, respectively. The homogeneous state corresponds to the minimum 

located in the lower left corner at θ1= θ2=0. 

Morphology-dependent changes in the mutual solubilities below the 

UCTD can lead to smooth variations of phonon thermal conductivity. The temper-

ature dependences of the solubilities in nanoparticles of the Bi-Sb alloy of differ-

ent volumes and shapes have been obtained in [19,28,29]. Such dependences re-

sult from the implementation of two mechanisms of lowering the free energy of a 

nanoscale system. In the most general case, these mechanisms have been de-

scribed in [15,23] along with a specific case when the mechanisms (so-called 
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“molar-volume-controlled segregation” and “surface-energy-controlled segrega-

tion”) are competitive. These results should be accompanied by the consideration 

of one of the most interesting and non-trivial effects in small-volume structures – 

the effect of the chemical composition. In macroscopic structures, a variation of 

the chemical composition of the system leads to changes in the volume fraction of 

co-existing phases (according to the lever rule) but does not affect the mutual so-

lubility of components, in small-volume systems the chemical composition of the 

system determines not only the volume fractions of the phases, but also their equi-

librium composition (previously such effect has been considered in the case of 

systems with the liquid-liquid phase separation [20] and nanoparticles above the 

solidus temperature [21,22] and explained according to the abovementioned me-

chanisms of lowering the free energy). In a spherical 70-nm-diameter nanoparticle 

containing 50 at. % Sb (x=0.5), for example, the solubility limits are ~1.01 at. % 

for Bi in Sb, ~8.00 at. % for Sb in Bi (state 1), ~1.49 at. % for Bi in Sb, ~1.56 at. 

% for Sb in Bi (state 2). But for x=0.3, we have: ~0.96 at. % for Bi in Sb, ~6.98 at. 

% for Sb in Bi (state 1), ~1.13 at. % for Bi in Sb, ~1.59 at. % for Sb in Bi (state 2). 

For x=0.6, it turn, the solubilities are: ~0.99 at. % for Bi in Sb, ~10.47 at. % for Sb 

in Bi (state 1), ~1.82 at. % for Bi in Sb, ~1.53 at. % for Sb in Bi (state 2). Note 

that despite the fact the term “nanoscale effects” is widely used, there is a broad 

class of systems, especially polymeric ones with great molecular volumes and 

masses, in which such effects manifest themselves at characteristic sizes even sev-

eral thousand times higher [16,20] (and such effects should probably be called 

“small-amounts-of-matter effects”).  

                                                                  a                                                  b 

 
Fig. 2. The dependence of the upper critical dissolution temperature (UCDT) on 

the fractal dimension for a nanoparticle (deff=40 nm) in state 1 (a) and the influ-

ence of the Sb content on the phonon thermal conductivity of Bi-Sb solid solutions 

for binary (1) and trigonal (2) crystallographic directions (b). In the box, the crys-

talline structure of Bi and Sb. Angle α is 57
0
30’ for Bi and 75

0
84’ for Sb. 

All the demonstrated regularities for individual nanoparticles are ex-

pected to be realized in nanoparticle-fabricated alloys where the role of interfaces 

is played by grain boundaries. In such cases, however, some other geometrical 

configurations of co-existing phases may be preferable (e.g. the nucleation and 

growth of a new phase in a grain boundary) while the values of grain boundary 

energies can be estimated using different approaches (see [34], for example) 
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which may require minor changes in the presented mathematical formulations. In 

polycrystalline structures, the further optimization of the materials thermoelectric 

performance can be expected due to additional scattering of phonons at grain 

boundaries, tunneling of carriers between nanograins and energy filtering of carri-

ers (see [29] and Refs. within). One of the models which describe the phenomenon 

of grain boundary scattering can be found in [9]. 

2.4 Conclusions and additional remarks 

The obtained results can be accompanied by the estimates which allow 

predicting an additional decrease in the phonon thermal conductivity coefficients 

in nanoparticles of a pure substance corresponding to the changes in phonon dy-

namics in nanoscale particles. In order to establish the morphology-based model to 

calculate the corresponding changes in the lattice thermal conductivity parameters, 

one of the possible approaches consists in using one of the models for the mor-

phology-dependent melting temperature as well as the Debye theory and the Lin-

demann criterion of melting which correlates the melting and Debye temperatures 

of the crystal, estimating the changes in the average phonon velocity and phonon 

mean-free path on the basis of the size-dependent Debye temperature, and in ap-

plying one of the models which describes phonon scattering effects. An attempt of 

such calculations is presented in [35] where the expression of G. Guisbiers for the 

melting temperature of nanoscale structures has been used, and the obtained re-

sults demonstrate a good agreement with the experimental data for pure Si and 

GaAs nanostructures (especially, nanorods and nanofilms). For nanoparticles, 

however, we suggest using the more convenient model of W.H. Qi and M.P. 

Wang (experimentally justified, for example, for pure Bi nanoscale structures 

[32]) for the nanoparticle melting behavior combined with the fractal geometry 

approach. The Qi-Wang model is based on the correlation between the melting 

temperature and the cohesive energy of the crystal (note that the cohesive energy 

is also related to the temperatures of several other types of first-order and second-

order phase transitions including the magnetic ones [36]) and leads to the follow-

ing equation: 
nano bulk

m m at ff
1 6

e
T T kr d  where 

nano

m
T  and 

bulk

m
T  are the melting 

temperatures of a nanoparticle and the bulk material, respectively, 
at

r  is the atomic 

radius and k  and 
ffe

d  are the shape coefficient and the effective diameter of a na-

noparticle as they have been introduced above.  All these considerations allow ex-

pressing the morphology-dependent phonon contribution to the thermal conductiv-

ity as follows: 
2 232 1nano bulk3

ph 0 ff eff at eff ph
κ ηexp 1 1 π 6 κ

D
D

e
l d C d r d  

where pre-term 
0 eff

ηexp 1 l d  is included as a quite simplified approach to 

take into account the phonon scattering which increases with a decrease in the vo-

lume of a particle, an increase in the surface-to-volume ratio and surface rough-

ness [35]. η 0,1  represents the surface roughness parameter while 
0 eff

l d is 
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the Knudsen number, 
0

l  is the bulk phonon mean-free path value [35]. Coefficient 

C which matches the units has been introduced above. The larger the value of η  

is, the smoother the surface of the particle is. Note that the correlation between the 

surface roughness and fractal dimension of the nanoparticle is not unique (the 

fractal dimension value is associated with the surface-to-volume ratio while the 

surface roughness corresponds primarily to the number of edges). Several notes on 

the dependence of fractal dimension on the surface roughness are given in [37] 

(see also their graphical representation in Fig. 2 of [37]).  

In the case of nanoparticle ensembles, the average phase composition and 

functional properties depend on the size and shape distributions in an ensemble. In 

[31], we have suggested a method for calculating such distributions based on the 

combined usage of number theory, fractal geometry and statistical thermodynam-

ics. For example, the equilibrium size distributions for nanoparticles with fractal 

dimension D in a free-dispersed system can be expressed as follows: 

σ ln 2 2
, , exp ,   exp π .

3 3

sp p

D p p p

p

A D RT f N
f D N f N N

RT N

 Here, 
3

ω
p eff at

d d is the number of atoms in a nanoparticle, ω  is the lattice 

packing density, N is the total number of atoms in the system, 
sp

A D is the spe-

cific surface area of the ensemble. The presented estimates are in perfect accor-

dance with the experimental data (see [31] and Refs. within) and make it possible 

to model the thermodynamical conditions for the realization of optimal average 

characteristics of nanoparticles (equilibrium compositions, phase transition tem-

peratures, thermoelectric properties etc) as well to predict the degree at which 

such characteristic are “blurred” in an ensemble.  
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Abstract. Some nonideal hydrodynamic systems of the type ”tank with fluid - source
of excitation of oscillation” are considered. New types of limit sets of such systems,
so called maximal attractors, have been discovered and described. It was found that
the maximal attractors can be both regular and chaotic. Main characteristics of the
described maximal attractors are analyzed in details. Transitions to deterministic
chaos in such systems are considered. Despite the fact that maximal attractors are
not attractors in the traditional sense of this term, it is shown that the transition
from regular maximal attractors to chaotic maximal attractors can occur by known
before scenarios transition to chaos for ”usual” attractors.
Keywords: nonideal hydrodynamic systems, maximal attractors, scenarios of tran-
sition to chaos..

1 Introduction

Many modern machines, mechanisms and technical devices as structural ele-
ments contain cylindrical tanks partially filled with fluid. Therefore, the study
of oscillations free surface of fluid in cylindrical tanks over the past decades has
been attracting close attention (Narimanov et al.[1], Ibrahim[2], Lukovsky[3],
Raynovskyy and Timokha[4]).

Since the end of 70’s years of the last century, there have been the so-
called ”low-dimensional” mathematical models describing such oscillations
(Miles[5],[6], Meron and Procaccia[7], Miles and Henderson[8]). These models
allow us to describe oscillations of the free surface of the liquid in the tank using
nonlinear systems of ordinary differential equations instead of partial differen-
tial equations that arise when describing the problem in the general setting.
”Low-dimensional” models allow you to get a fairly adequate description of
the problem in cases where the power produced by of the source of excita-
tion of oscillations significantly exceeds the power consumed by the oscillating
load (cylindrical tank with fluid). These cases are called ideal by Sommerfeld–
Kononenko. However, in practice, most often there are cases in which the power
source of excitation of oscillations is comparable to the power consumed by the
oscillatory load. Such cases are called nonideal. In these cases, it is imperative
to take into account the interaction between the source of excitation of oscilla-
tions and the oscillatory load, which leads to essential refinement of the math-
ematical models used in ideal cases. The neglect of the interaction between the
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excitation source and the oscillatory load leads to gross errors in the descrip-
tion of the dynamics of the studied systems (Sommerfeld[9], Kononenko[10],
Frolov and Krasnopolskaya[11], Krasnopolskaya[12],[13], Krasnopolskaya and
Shvets[14]–[17]).

2 Evolution equation

Consider dynamic system, the layout of which is shown in Fig. 1. The electric
motor shaft is connected to the platform through the crank mechanism, on
which a rigid cylindrical tank of radius R is fixed, partially filled with liquid.
When the crank a rotates through an angle Ψ , the platform makes a vertical

Fig. 1. Scheme of system.

movement of the form v(t) = a cosΨ(t). To describe the vibrations of the free
surface of a liquid, we introduce a cylindrical coordinate system Oxrθ with
origin in the tank axis, on the undisturbed fluid surface. The relief equation
of free surface of the fluid we write down in the form x = η(r, θ, t). Suppose
liquid inviscid and incompressible with density ρ and fills a cylindrical tank of
cross-section S section to the depth x = −d.

We will find function of the relief of surface of liquid in the form of an
eigenmode expansion:

η(r, θ, t) =
∑
i,j

[qcij(t)kij(r) cos iθ + qsij(t)kij(r) sin iθ]. (1)

Then we write the kinetic energy of the total system in the form (Krasnopol-
skaya and Shvets[15,16]):

T =
1

2
IΨ̇2 +

1

2
m0v̇

2 +
1

2
ρS

∑
i,j,m,n

aijmnq̇
c,s
ij q̇c,smn. (2)
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Here I is the moment of inertia of the motor shaft; m0 − mass of the liquid
tank; aijmn − nonlinear functions of qc,sij (t), qc,smn(t).

In turn, the potential energy of movements of the free surface of the liquid
is ( Krasnopolskaya and Shvets[15,16])

V = ρ

∫ ∫
S

dS

η∫
0

(g + v̈)xdx =
1

2
ρS(g + v̈)

∑
i,j

qc,sij qc,sij , (3)

where g is the acceleration of gravity.
Therefore, the Lagrangian of the system takes the form

L =
1

2
IΨ̇2 +

1

2
m0a

2Ψ̇2 sin2 Ψ +
1

2
ρS

∑
i,j,m,n

aijmnq̇
c,s
ij q̇c,smn+

+
1

2
ρSa(Ψ̇2 cosΨ + Ψ̈ sinΨ)

∑
i,j

qc,sij qc,sij − 1

2
ρSg

∑
i,j

qc,sij qc,sij .
(4)

As a result, for Ψ(t) we obtain the following evolution equation

IΨ̈ = −2m0a
2Ψ̇2 sinΨ cosΨ −m0a

2Ψ̈ sin2 Ψ + aρS(Ψ̇2 sinΨ−

−Ψ̈ cosΨ)
∑
i,j

qc,sij qc,sij − 2aρSΨ̇ cosΨ
∑
i,j

qc,sij q̇c,sij + Φ(Ψ)−H(Ψ).
(5)

The last two terms on the right side of the equation (5) are the driving moment
and the moment internal forces of resistance of the electric motor.

Suppose that the speed of rotation of the shaft Ψ̇(t) in steady state condi-
tions of the engine is close to 2ω1, where ω1 is natural frequency of main tone of
oscillations of the free surface, which corresponds to the modes qc11(t)k11(r) cos θ
and qs11(t)k11(r) sin θ.

Let us introduce into consideration a small positive parameter

ε = ω1

√
a

g
. (6)

Also assume that
Ψ̇ − 2ω1 = ε2ω1β. (7)

The oscillations of the free surface of the liquid are approximated by oscil-
lations in the main and secondary modes, whose amplitudes are defined as
(Krasnopolskaya and Shvets[15,16])

qc11(t) = ευ

[
p1(τ) cos

Ψ

2
+ q1(τ) sin

Ψ

2

]
;

qs11(t) = ευ

[
p2(τ) cos

Ψ

2
+ q2(τ) sin

Ψ

2

]
;

q01(t) = ε2υ

[
A01(τ) cosΨ +B01(τ) sinΨ + C01(τ)

]
;

qc,s21 (t) = ε2υ

[
Ac,s

21 (τ) cosΨ +Bc,s
21 (τ) sinΨ + Cc,s

21 (τ)

]
.

(8)
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Here τ is slow time, τ =
1

4
ε2Ψ , υ =

R

1.8412
tanh

(
1.8412

R
d

)
. Having deter-

mined the dimensionless amplitudes Ac,s
ij (τ), Bc,s

ij (τ), Cc,s
ij (τ) secondary modes

by Miles method (Miles[5], [6], Miles and Henderson[8]) through the ampli-
tudes p1(τ), q1(τ), p2(τ), q2(τ) and applying the procedure of averaging the
Lagrangian over the explicitly entering fast time Ψ(t), for the amplitudes of
dominant modes, we obtain the following system of equations (Krasnopolskaya
and Shvets[15,16]):

dp1
dτ

= αp1 −
[
β +

A

2
(p21 + q21 + p22 + q22)

]
q1 +B(p1q2 − p2q1)p2 + 2q1;

dq1
dτ

= αq1 +

[
β +

A

2
(p21 + q21 + p22 + q22)

]
p1 +B(p1q2 − p2q1)q2 + 2p1;

dβ

dτ
= N3 +N1β + µ1(p1q1 + p2q2);

dp2
dτ

= αp2 −
[
β +

A

2
(p21 + q21 + p22 + q22)

]
q2 −B(p1q2 − p2q1)p1 + 2q2;

dq2
dτ

= αq2 +

[
β +

A

2
(p21 + q21 + p22 + q22)

]
p2 −B(p1q2 − p2q1)q1 + 2p2.

(9)

In the system of equations (9), we have the following designations: α = − δ

ω1
− reduced factor of damping, N0, N1 − constants of linear static characteristic

of the electric motor, N3 =
1

ω1

(
N0 + 2N1ω1

)
;µ1 =

ρSυR2

(1.8412)2(2I +m0a2)ω2
1

;

A and B − constants ranging from the diameter of the tank and filling it
with liquid. The system of evolutionary equations (9) is used as the main
mathematical model for study the dynamics of oscillations of a tank with a
liquid, excited by an electric motor of limited power.

The main aim of the research is to study the possible types of limit sets
of the system (9). Since this system is a rather complex nonlinear system of
equations of the fifth order, then for constructing its limit sets, a whole complex
of numerical methods and algorithms were used. The technique for carrying
out such numerical calculations for system with limited excitation is described
in detail in Shvets[18] and Krasnopolskaya and Shvets[16].

3 Numerical studies of steady-state regimes of
oscillations

Initially, we define the conditions under which the system is dissipative. Let
us denote by F the vector field generated by the system of equations (9).
Accordingly, by F1, F2, F3, F4, F5 we denote the components of this vector field,
that is, the right-hand sides of the system of equations (9). Then the divergence
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of this vector field can be found by the formula

divF =
∂F1

∂p1
+

∂F2

∂q1
+

∂F3

∂β
+

∂F4

∂p2
+

∂F5

∂q2
= α−Ap1q1 +Bp2q2 + α+

+Ap1q1 −Bp2q2 +N1 + α−Ap2q2 +Bp1q1 + α+Ap2q2 −Bp1q1 =

= 4α+N1.

(10)

So the divergence of the vector field F is constant. The dissipativity condition
for the system of equations has the form,

4α+N1 < 0. (11)

The quantities included formula (11), α (coefficient of damping) and N1 (angle
of inclination of the static characteristic of electricmotor) are always negative.
Therefore, the divergence of the vector field generated by the system of equa-
tions (9) will always be negative. Thus, this system will always be dissipative.

We will begin the study of the dynamics of the system (9) by finding its
equilibrium positions. Obviously, that

p1 = 0, q1 = 0, β = −N3

N1
, p2 = 0, q2 = 0 (12)

is one of those equilibrium position. This equilibrium position is isolated one.
The conditions of the asymptotic stability of this equilibrium position may be
obtained by using Liénard-Chipart theorem (Liénard and Chipart[19]).

In addition to the isolated equilibrium position (12), there is an infinite
number of non-isolated equilibrium positions. These equilibrium positions form
a family of non-isolated equilibrium positions, which exists in a form of some
closed line. These equilibrium positions can be found only using numerical
methods, for example, Newton’s method. In Fig. 2, an example of such family
of equilibrium positions for one concrete values of parameters of the system (9)
is shown. Conditions for the stability of such family can be obtained using the
Liénard-Chipart theorem. True, these conditions are extremely cumbersome.
Their analysis can be carried out in reality only by using computers. Note
that all equilibrium positions shown in Fig. 2 may be stable, but can not be
asymptotically stable. In the case of stability of these non-isolated equilibrium
positions, each of them belongs to the limit set of system (9), but is not an
attractor in the traditional sense of this term. We will give a description of the
attractive properties of this family below.

There are sufficiently large regions in space of parameters of the system
(9), in which all equilibrium positions are unstable. In these areas, extremely
interesting limit sets of this system arise, which can be as regular, and as
chaotic.

Limit sets of the first type may be periodic. In this case they form family
of an infinite number of closed trajectories (cycles), all of which exists simul-
taneously. Any cycle neighbourhood contains other cycles of the family, that
is, they are not isolated. However, such cycles do not have tangency or inter-
section points. Each such closed trajectory is itself a limit set. This is due to
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Fig. 2. Family of equilibrium positions .

fact that almost any trajectory that starts in some large area of phase space
tends to one of the cycles of the family. But none of cycles is an attractor in
the traditional sense of this term. So, each of these cycles is not limit cycle.
Moreover, every single cycle has same period, same Lyapunov’s characteristic
exponents and similar Poincare sections. It is worth noting that the cardinality
of this family is equal to continuum.

In Fig. 3 regular periodic limit sets of system (9) are constructed at α =
−0.8, A = 1.12, B = −1.531, N1 = −1.25, N3 = 2, µ1 = −5.15. Each cycle is
plotted in different color. There are four cycles in total, each of which is a
representative of the infinite family of cycles. We emphasize once again that
each of the cycles forming the family is not an attractor in the traditional sense
of this concept. In our opinion, the most suitable term for describing such
family is the concept of maximal attractor.
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Fig. 3. Four representatives of maximal regular attractor.

A clear definition of the concept of maximal attractor is given by Milnor[20],
by Anischenko and Vadivasova[21], as well as by Sharkovsky[22]. Thus, two
different families that are shown in Fig. 2 and Fig. 3, are essentially two
different types of regular maximal attractors.

With an increase in the value of the parameter µ1, family of chaotic tra-
jectories arises in the system. The arising family includes an infinite number
of chaotic trajectories. It is known that the ”traditional” chaotic attractor
consists of an infinite number of unstable trajectories. The resulting family, at
first glance, is a union of an infinite number of chaotic attractors. However,
each member of this family is not an attractor in the ”traditional” sense. Here,
as before, to define such union, the concept of maximal attractor can be pro-
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posed. All trajectories of the chaotic maximal attractor have same spectrum
of Lyapunov’s characteristic exponents, including positive one. The Poincare
sections of each of the trajectories of the family are structurally similar chaotic
sets consisted of an infinite number of points.

In Fig. 4 for the values α = −0.8, A = 1.12, B = −1.531, N1 = −1.25, N3 =
2, µ1 = −4.6463 limit sets of second type of the system (9) is constructed. Each
represenative of the chaotic maximal attractor is plotted in its own color. In
total, there are three chaotic trajectories of the family are presented in the
Fig. 4.

Fig. 4. Three representatives of maximal chaotic attractor of first kind.
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In Fig. 5 three representatives of another kind of chaotic maximal attractor,
constructed at µ1 = −4.6462, are shown. On the whole, the chaotic maximal
attractor of the second kind are characterized by a much denser filling of the lo-
calization region with trajectories. This two kinds of chaotic maximal attractor
are typical for system (9).

Fig. 5. Three representatives of maximal chaotic attractor of second kind.

We note one more feature of the constructed maximal attractors, both reg-
ular and chaotic. Some trajectories of those families are localized in the three-
dimensional subspace of the five-dimensional phase space of system (9). So the
trajectories shown in red in Fig. 3, 4 and 5 are localized in three-dimensional
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space. This means that the coordinates p2 and q2 of the ”red” trajectories are
equal to zero. That is, there are no oscillations in the second dominant mode.

Shortly we underscore one more interesting feature of the maximal at-
tractors of the system (9). Although these attractors are not attractors in
the traditional sense, the transition from regular to chaotic regimes and the
”chaos-chaos” transitions follow the scenarios inherent in such transitions for
traditional attractors. Thus transitions according to the Feigenbaum sce-
nario (Feigenbaum[23,24]), Manneville−Pomeau scenario were found (Man-
neville and Pomeau [25,26]) along with various scenarios of generalized in-
termittency (Krasnopolskaya and Shvets[16,17], Shvets and Sirenko[27,28]).

Let us briefly consider the features of the transition to chaos according to
the Feigenbaum and Manneville-Pomeau scenarios for maximal attractors. One
of the possible scenarios is the transition from regular regime to a chaotic one
is a cascade of bifurcations of period doubling of the cycles. At the same value
of the bifurcation parameter the period of all cycles, that form the maximal
attractor, is doubled. Then, at the next bifurcation point, the period of all
cycles of the maximal attractor is again doubled, and so on. This endless
process of period doubling bifurcations ends with the emergence of a chaotic
maximal attractor. That is, the transition from a periodic limit set to a chaotic
limit set is realized according to the classical Feigenbaum’s scenario.

The transition to chaos through intermittency (the Manneville-Pomeau sce-
nario) for the maximal attractors occurs as follows. The system has a maximal
attractor consisting of an infinite set of simultaneously existing cycles. More-
over, all the trajectories of the family have the same period. When passing
through the bifurcation point, all cycles of the family disappear and a chaotic
maximal attractor arises in the system. The movement along the trajectories of
all representatives of this maximum attractor consists of two phases - laminar
and turbulent. That is, for all representatives of the family of cycles, there is
a simultaneous transition to chaos, through one rigid bifurcation.

In conclusion, let us illustrate the transition from the maximal chaotic at-
tractor of one type to the maximal chaotic attractor of another type through
generalized intermittency. In Fig. 6a the distribution of the invariant measure
over the phase portrait projection of the representative of the chaotic max-
imal attractors of the system (9) constructed at α = −0.8, A = 1.12, B =
−1.531, N1 = −1.25, N3 = 2, µ1 = −4.6463 is shown. At µ1 = −4.6462 (other
parameters unchanged) maximal attractor disappears and chaotic maximal at-
tractor of new type is born in the system. The distribution of the invariant
measure over the projection of the phase portrait of the representative of the
new chaotic maximal attractor is shown in Fig. 6b. The transition from one
type of chaotic maximal attractor to the chaotic maximal attractor of another
type occurs according to the scenario of generalized intermittency, which was
described for attractors in the traditional sense of this term. At such tran-
sition, the scenario of generalized intermittency is simultaneously fulfilled for
all representatives of chaotic maximal attractor that presented in Fig. 4. For
each representative of the new chaotic maximal attractor, the motion along
the trajectory consists of two alternating phases, namely rough-laminar phase
and turbulent phase. In the rough-laminar phase, the trajectory makes chaotic
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a b

Fig. 6. Distribution of invariant measure over projections of maximal attractors

movements in the neighborhood of the trajectories of the representative of the
disappeared chaotic maximal attractor. Then, at an unpredictable moment of
time, the trajectory leaves the localization region of the representative of the
disappeared maximal attractor and moves to distant regions of the phase space.
Rough-laminar phase corresponds to the much blacker areas in fig in Fig. 6.
These areas in Fig. 6a are nearly the same as the distribution of the invariant
measure from in Fig. 6b. In turn, turbulent phase corresponds to much less
darkened areas in Fig. 6b. After some time, the movement of the trajectory re-
turns to the rough-laminar phase again. Then, trajectories switch to turbulent
phase again. Such transitions are repeated an infinite number of times. Note
that the duration of both rough-laminar and turbulent phases is unpredictable
as are the moments of times of transition from one phase to another.
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Abstract. Universal nature of Boltzmann statistical mechanics, generalized 

thermodynamics, quantum mechanics, spacetime, black hole mechanics, Shannon 

information theory, Faraday lines of force, and Banach-Tarski paradox (BTP) are 

studied. The nature of matter and Dirac anti-matter are described in terms of states of 

compression and rarefaction of physical space, Aristotle fifth element, or Casimir 

vacuum identified as a compressible tachyonic fluid. The model is in harmony with 

perceptions of Plato who believed that the world was formed from a formless primordial 

medium that was initially in a state of total chaos or “Tohu Vavohu” [109].  Hierarchies 

of statistical fields from photonic to cosmic scales lead to universal scale-invariant 

Schrödinger equation thus allowing for new perspectives regarding connections between 

classical mechanics, quantum mechanics, and chaos theory. The nature of external 

physical time and its connections to internal thermodynamics time and Rovelli thermal 

time are described. Finally, some implications of renormalized Planck distribution 

function to economic systems are examined.   
 

1 Introduction 
 

The universal nature of turbulence and mathematical similarities amongst 

transport laws shared by stochastic quantum fields [1-17] and classical 

hydrodynamic fields [18-30] resulted in introduction of a scale-invariant model 

of Boltzmann statistical mechanics and its applications to the fields of 

thermodynamics [31,32], fluid mechanics [33,34], and quantum mechanics [35-

37] at intermediate, large, and small scales.    

 The present study begins with a brief description of invariant model of 

Boltzmann statistical mechanics and the invariant forms of conservation 

equations. Next, generalized thermodynamics and Helmholtz decomposition of 

energy and momentum, and definitions of dark-energy, dark-matter, and dark-

momentum are discussed. The concept of internal spacetime versus external 

independent space and time and their connection to Rovelli thermal time are 

presented. Invariant Schrödinger equation recently derived from invariant 

Bernoulli equation [37] and some of its implications to a new paradigm for 

physical foundation of quantum mechanics are described next. In particular, the 
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nature of wave function, wave-particle duality, and hierarchies of quantum 

mechanics wave functions and particles as de Broglie wave-packets [3] are 

studied. Also, the implication of the model to entropy and the problem of 

information loss in black hole is addressed.  A universal hydrodynamic model of 

Faraday line of force applicable from very small scale of stochastic 

chromodynamics to the exceedingly large cosmic scale is presented.  Finally, 

some implications of the model to Banach-Tarski paradox are examined. 

 

2 Scale–Invariant Model of Boltzmann Statistical Mechanics 
 

The scale-invariant model of statistical mechanics for equilibrium galactic-, 

planetary-, hydro-system-, fluid-element-, eddy-, cluster-, molecular-, atomic-, 

subatomic-, kromo-, and tachyon-dynamics corresponding to the scale  = g, p, 

h, f, e, c, m, a, s, k, and t is schematically shown on the left hand side of Fig. 1.  
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Fig. 1. A scale-invariant model of statistical mechanics. Equilibrium--Dynamics on the 

left-hand-side and non-equilibrium Laminar--Dynamics on the right-hand-side for 

scales  = g, p, h, f, e, c, m, a, s, k, and t as defined in [36]. Characteristic lengths of 

(system, element, “atom”) are (L , ),    and  is the mean-free-path. 

 

For each statistical field, one defines particles that form the background fluid 

and are viewed as point-mass or "atom" of the field.  Next, the elements of the 

field are defined as finite-sized composite entities composed of an ensemble of 

"atoms". Finally, ensemble of a large number of "elements" is defined as the 

statistical "system" at that particular scale. The most-probable element of scale  

defines the “atom” (system) of the next higher + (lower −) scale.   

 Following the classical methods [19, 38-42], the invariant definitions of the 

density 

, and the velocity of atom u


, element v


, and system w


 at the scale 

 are given as [36] 
 

w 1
ρ n m m f du               ,            

       −
= = = u v            (1) 

1

w 1
m f du                   ,            

−

       +
=  =v u w v

  
              (2)  
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Similarly, the invariant definitions of the peculiar and diffusion velocities are 

introduced as  

 

1
      ,             ,      

       +
 = = =V u v V v w V V− −                    (3) 

 

A magnified view of part of hierarchy of statistical fields in Fig. 1 is shown in 

Fig. 2 where atomic, element, and system velocities of stochastic fields are 

better revealed.  
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Fig. 2 Hierarchy of embedded statistical fields from LAD to LED scales with 

atom 


u , element


v , and system 


w velocity.   

 

 Following the classical methods [19, 38-40], the scale-invariant forms of 

mass, thermal energy, linear and angular momentum conservation equations at 

scale  are given as [33, 34]   
 

i

i i( )
t



  




+  = 


v                     (4) 

i

i

ε
(ε ) 0

t



 




+ =


v                    (5) 

i

i ij
( )

t



  




+ = −


P

p
p v                (6) 

 

iβ

iβ β iβ β β

β

( )
t


+ = 


ωv v


                         (7) 

involving the volumetric density of thermal energy 
i i i

ρ h
  

 = , linear 

momentum 
i i i

ρ
  

=p v , and angular momentum
i i i

ρ
  

=  (since
a 1

r 1
−

= ).  
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Also, 
i

  is the chemical reaction rate and i i
ˆ / mh h  =  is the absolute 

enthalpy [36]. It is noted that the time coordinates in Eqs. (4-7) also have a scale 

subscript .    

 

3 Generalized Thermodynamics, Helmholtz Decomposition of 

Thermal Energy and Momentum 
 

To arrive at scale-invariant model of Boltzmann statistical mechanics with (atom, 

element, system) velocities
i i i

( ), ,
  

u v w , one requires a stable “atom” stabilized 

by an external pressure acting as Poincaré stress [35,36]. Next, atoms with 

different energy 
j jh =   are grouped in atomic-clusters or elements (energy 

levels) of various sizes. Atoms of various energy are under constant motion and 

allowed to make transition between elements by emitting/absorbing sub-particles. 

The question is, given the total number of atoms N of an ideal gas and the total 

energy H, with mean atomic enthalpy 
w

ˆ kh =   hence k  =   [32], what 

distribution of element sizes corresponding to various atomic energy, speed, and 

momenta leads to stochastically stationary field.  Such state of thermodynamic 

equilibrium corresponds to energy, speed, and velocity of particles being 

governed by invariant Planck, Maxwell-Boltzmann, and Gauss (Maxwell) 

distribution functions [36]. 
 

3

h / kT3

dN 8 h
d

u e 1
  



  





 
= 

−V
                 (8) 

 

2
m u / 2kTu 3/ 2 2

dN m
4  ( ) u  e du

N 2 kT

  − 

 



= 


                     (9) 

 

2
m u /2kT3/2

m
f (v ) ( )

2 kT
 e   

 



−


=                       (10) 

 

Also, due to the closure of the gap between photon gas in Planck equilibrium 

radiation theory and ideal gas in Boltzmann kinetic theory, just like photon gas, 

the potential and internal energy of ideal gas are related as [37]  
 

β β

β β β

3 k
k

3 3

  U N T
V N Tp = = =                    (11) 

 

Hence, Sommerfeld [44] “total thermal energy” or enthalpy βH  for an ideal gas 

is the sum of internal energy and potential energy [32] 
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β β β β β β β β β    4 k
4

/ 3
3

H U V U U Up N T== == + +              (12)  

 

By equations (11)-(12), enthalpy could also be expressed as 
 

β β β

β β β β β    
1

( ) ...
3 4 4 3

U H U
H U U U U= = + == + + +   

        β β2 3
 (1+  +  

1 1 1 4
...)

4 4 4 3
U U= + + =       (13) 

 

involving Archimedes [45] theorem on the area under a parabolic segment  
 

2 3 n
n 0

1+  +  
1 1 1 1 4

...
4 4 4 4 3



=

+ + = =                (14) 

 

With frequency made dimensionless through division by the most probable 

or Wien frequency w, re-normalized Planck [46] distributions at two adjacent 

scales appear as shown in Fig. 3   

 

 
         

Fig. 3 Re-normalized Planck energy distributions as a function of / w  . 

 

It is known that precisely 3/4 and 1/4 of the total thermal energy under Planck 

distribution curve in Fig. 3 fall on 
w  and 

w   sides of Wien 

frequency w [32].  In his pioneering study, Helmholtz [43] decomposed the 
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total thermal energy or enthalpy H into what he called free-heat and latent-heat 

that were recently identified as internal energy U and potential energy pV [32] 
 

β β β β  H U Vp= +                           (15) 

 

Hence, the result in Eq. (14) is in exact agreement with the pioneering 

prediction by Hasenöhrl [47,48] of the relation between total energy and 

electromagnetic energy or dark-energy expressed as 
 

2 2

β t EM

 4
M c M c

3
H = =                    (16) 

 

such that total mass relates to electro-magnetic mass by [37]  
  

t EM

 4
M M

3
=                       (17) 

 

 Since in equilibrium radiation within enclosures photons are at “stationary 

state”, their speed is Wien speed   
 

2 2 2 2

kw kwkw kw
v v v v2+ − +== +                   (18) 

 

that is related to the root-mean square speed by [32] 
 

2 2 2

rk kwc c v3 += =                      (19) 

 

Therefore, Lorentz [49] relativistic mass also leads to prediction of Hasenöhrl 

[47,48] 
 

2

kwEM
t EM EM EM2 2 1/2 2

kw

vM 1 4
M M (1 ) M (1 ) M

(1 v / c ) 2c 3 3
= + = + =

−
   (20) 

 

 As discussed in [31], if potential energy is identified as dark-matter or 

gravitational mass  
 

β

2 2 2

β β DMβ EMβ t β β

1 1 
M c M c M c N kT

3 4
p V = = = =            (21) 

 

total mass becomes the sum of dark energy or electromagnetic mass MEM, and 

dark matter or gravitational mass MGM [31,50-53] 
 

tβ EMβ DMβ tβ tβ

3 1
M M M M M

4 4
= + = +               (22) 
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It is most interesting to note that, as discussed in [31], Helmholtz [43] 

decomposition of system thermal energy at thermodynamic equilibrium in Eq. 

(19) also extends to cosmological scale (Fig. 1) and is in accordance with 

predictions of general theory of relativity [54,55] as described by Pauli [55] 
 

The energy of a spatially finite universe is three- quarters 

electromagnetic and one-quarter gravitational in origin” 

In addition, predicted fractions 3/4 and 1/4 for dark energy and dark matter in 

Eq. 19 are in good agreement with recent cosmological observations [56-59]. 

On the other hand, according to Planck [46] energy distribution (Fig. 3) and 

Eq. (18), dark matter of scale  is the total energy or enthalpy of the next lower 

scale −.   

(Dark Matter) = (Total Energy)−                           

Also, it is known that when particles form “cooper pairs” and behave as 

composite bosons [60, 61], one can derive Schrödinger equation from invariant 

Bernoulli equation for potential incompressible flow [37].  Hence, following 

classical methods [62, 63], quantum mechanics wave function may be 

expressed as products of translational, rotational, vibrational , and potential 

(internal) wave functions as [61]  

...         =t r v p t r v        −= =            (23) 

At cosmological scale
g , the wave-particle duality of galaxies is evidenced 

by their observed quantized red-shifts [64]. Therefore, the scale-invariance of 

the model (Fig. 1) and Eq. (23) lead to hierarchy of embedded statistical fields 

with translational TKE, rotational RKE, vibrational VKE kinetic energy (dark 

energy) and potential energy PE (dark matter) resulting in energy cascade 

from cosmic to photonic scales shown in Fig. 4. 

            
Fig. 4.  Cascades of kinetic energy TKE, RKE, VKE (dark energy), and 

potential energy PE (dark matter) from cosmic to photonic scales. 
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 Following Helmholtz [43], one can consider decomposition of momentum 

in Normalized Maxwell-Boltzmann (NMB) distribution as a function of 

dimensionless speed with respect to the most-probable or Wien speed 

w wv / v / =  shown in Fig. 5.   

 

                 
 

Fig. 5 Normalized Maxwell-Boltzmann distribution as a function of 

dimensionless speed v / v = /w w   [36]. 

 

As compared with (3/4, 1/4) division of energy in Planck curve in Fig. 3, the 

division of momentum on either side of Wien speed in Fig. 5 is (2/3, 1/3).  In 

view of the equality of translation kinetic and potential energy due to 

Boltzmann equipartition principle,
2 2

β β-1 β βv Vwx+ xm m =  [37], three components 

of momentum are equal due to what is called principle of equipartition of 

translational momenta  
 

x x xx x x
p mv p mv p mV+ + − −

 = = = = =              (24a) 

 

Therefore, for an ideal gas, of the total dimensionless translational momentum 

P p p p p( ) / 3x x xwx x+ −
= + + =  under NMB curve in Fig. 5, 2/3 is on v vw  

side of the Wien speed and is associated with root-mean-square momenta due to 

atomic translational velocity in (x x ),+ −
directions, and 1/3 is on v < vw  side of 

the Wien speed and is associated with peculiar translational momentum hence, 

 

x x x xx x

2 1
p p p  p P P

3 3
+ −

= + + = +                (24b) 
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Parallel to the concept of dark-matter in Helmholtz energy decomposition, for 

decomposition of momentum the second part of Eq. (24b) may be referred to as 

dark-momentum. 

As discussed in a recent study [65], once physical variables are made 

dimensionless, particular problems of physics become universal problems of 

mathematics and the nature of the specific physical entities being studied no 

longer matters. As an example, the distribution of annual personal income in 

economic systems is considered. In a recent study by Roper [66], it is suggested 

that the log-Verhulst distribution function fits the data better than does the 

lognormal distribution function. In view of random nature of economic systems, 

in some economic literature Gauss normal distribution is considered as “ideal” 

or optimal income distribution. However, typical data of annual personal 

income distribution [67] shown in Fig. 6 clearly indicate the non-Gaussian 

character of actual income distribution.   

 

                               
 
Fig. 6 Comparison between annual income distributions in 1971 and 2015 [67]. 

 

If the income in Fig. 6 is made dimensionless by division with the most 

probable income Imp, the distribution will become similar to Planck energy 

distribution since I/Imp is in the range (1-4) in Fig. 3 rather than the range (1-3) 

in Fig. 5. Hence, with dimensionless personal annual income (I/Imp) viewed as 

dimensionless frequency (w), renormalized Planck distribution could be 

considered as the optimum or “ideal” income distribution because it 

corresponds to an equilibrium i.e., maximum entropy state as discussed below.  

It is reasonable to anticipate that Gauss normal distribution will govern the 

vector field corresponding to “velocity” of money flow between various income 

levels (energy levels), in analogy to kinetic theory of ideal gas [36].  Rather than 

individuals, at larger scales of companies (corporations), one expects similar 

normalized Planck distribution of income (like Fig. 3) with thousands (millions) 

of dollars instead of dollars as “atomic” units exchanging between various 

income-levels of companies (corporations). 

      As discussed in [31,32,36,37], in accordance with Boltzmann kinetic theory 

of ideal gas and Planck theory of photon gas [46], one asks the question: given a 

total amount of money M and total number of income earners N, what is the 

distribution of number of income earners Nj with income Ij that results in 
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stochastically stationary i.e., equilibrium economic system.  On the other hand, 

entropy of an ideal gas was recently identified [31,32] as the maximum number 

of Heisenberg-Kramers [68] virtual oscillators S = 4Nk, given the total system 

energy or Hamiltonian i.e., enthalpy TS = H = 4NkT. Therefore, maximization 

of entropy in Planck [46] distribution ensures that the total energy (total 

monitory wealth) is distributed amongst maximum number of oscillators 

(income levels). In such quantum mechanical economic model, the transfer of 

energy (money) between different energy levels (income levels) will be 

governed by Schrödinger equation such that at equilibrium all income levels 

will be in “stationary states”.     
In Fig. 6, one notes the shifting of income from middle-class to upper-class 

from 1971 to 2015 that constitutes a departure from equilibrium thus having a 

destabilizing effect on the socio-economic system. The unfortunate delta 

function at the maximum income level in Fig. 6 is even more embarrassing 

departure from Planck optimal distribution thus further enhancing economic 

instabilities that may lead to future revolutionary (quantum) change in the socio-

economic system.  

 

4 Thermodynamic Definition of Spacetime and the Nature of 

Rovelli Thermal Time 

 
Since Aristotle [69] and St Augustine [70], the nature of physical time has 

remained a mysterious problem of physics.  The central insight of Aristotle 

namely “the concept of time without change is meaningless”, although correct 

remained puzzling and circular since the concept of change itself involves the 

notion of time. The hierarchy of time durations encountered from cosmic to 

photonic scales (Fig. 1) is described in an excellent recent book by ‘t Hooft and 

Vandoren [71]. Although the pioneering insights of Poincaré [72-75], Lorentz 

[49], Einstein [76], and Minkowski [77] resulted in introduction of the concept 

of spacetime as a 4-dimentional manifold, the exact physical nature of such 

mathematical concept remained obscure. Also, even though Einstein [78] 

general theory of relativity (GTR) attributed a dynamic character to spacetime, 

the very notion of existence of time was questioned in what is known as the 

“time problem” of GTR [79-90]. 
   In a recent study [91], the nature of physical space and time was investigated 

and the concepts of internal spacetime versus external space and time were 

introduced. Assuming that a statistical field at scale  is in thermodynamic 

equilibrium with the physical space at scale ( −) within which it resides, both 

fields will have a homogenous constant temperature 
1

T T
 −

=  defined in terms of 

Wien wavelength of particle thermal oscillations as [32] 

2 2

1 w 1 1 w 1m u m v kT k  − − − −= = =                                (25)  
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Hence, by definition of most-probable or Wien speed 

ws ws ws ws wsv /=   =   , one can define constant internal measures of 

(extension, duration)   

 

ws

ws

  Internal measure of extension

Internal measure of duration

 

   





                        (26)  

 

to every “point” or “atom” of space in a universe at constant temperature 

1
T T

 −
= .  Next, external space and time that are independent of each other are 

defined in terms of the internal spacetime in Eq. (26).  For example, at cosmic 

scale g = , one employs internal (ruler, clock) of the lower scale of 

astrophysics  = s to define external space and time coordinates defined as [91] 
 

x y z wx 1 t w 1
(x , y ,z ) ( , , )           ,         N N N t N

      −   −
=  =                 (27) 

 

with the four numbers 
x y z t

( , , , )N N N N
   

 being independent numbers.  

Whereas internal spacetime in Eq. (26) provides local structure of spacetime, 

the external space and time in Eq. (27) describe global dynamics of the system 

and are irreversible. Also, according to Eqs. (26-27) both internal and external 

space and time are quantized.  The four dimensions (x , y z ), , t
   

 with three 

real space and one imaginary time coordinates represent Poincaré [74] and 

Minkowski [77] four-dimensional spacetime manifold. 

      Recently, the author became aware of a number of wonderful books and 

articles by Rovelli [92-96] and consequently learned about his much earlier 

pioneering contributions to the understanding of the nature of time in general 

and what he called thermal time in particular. Clearly, the definition of 

spacetime in Eq. (26) is in accordance with the perceptions of Rovelli [95] 

 

“The theory seems to indicate that there is no explanation for the 

peculiar properties of the time variable at the mechanical level. We 

suggest that such an explanation should be searched at the 

thermodynamical level. We propose the idea that the very concept 

of time is meaningful only in the thermodynamic context” 

 

It is emphasized that the definition of internal spacetime in Eq. (26) is based on 

thermodynamic equilibrium corresponding to stochastically stationary thus 

time-reversible state.  The objective is to define what the variable called 

physical time represents as noted by Rovelli [95] 

  

“It may seem strange that time is determined by an equilibrium 

state, since in an equilibrium state the system loses track of the 
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direction (the versus, the arrow) of time. However, we are not 

concern here with versus of the time flow: we are concerned with 

definition of a variable that represents time, which is a very 

different problem.”  

 

Therefore, the external or physical time quantitatively defined in Eq. (27) is 

called Rovelli thermal time. Of course, because entropy generation due to 

various dissipations in all real systems lead to change in temperature, the 

internal measures of spacetime in Eq. (26) will also change. For example, in 

cosmology, the internal measure of spacetime change extremely slowly (eons) 

due to dissipations and the expansion of universe. 

 In another recent investigation by Rovelli [96] concerning general 

relativistic statistical mechanics, thermodynamic temperature was related to the 

ratio between the thermal time   and physical time t as 

t
T


=                                   (28)  

Since dimension of absolute temperature is meters
wT =  ,  Eq. (28) appears to 

be dimensionally non-homogeneous. To reveal the nature of dimensional 

equality in Eq. (28) we consider the velocity ratio  
 

w

w w w w

v x / t x
N

v / t


= = =

  
                    (29)  

When the external spatial extension or length is defined as xN m x = , Eq. 

(29) simplifies as  
 

w w w w
w

x x

N N

t x N
T

   
= = = =  =                   (30)  

Equation (30) that is dimensionally homogeneous becomes identical to Eq. (28) 

because of the choice of the metric or unit of length x 1 m= .  Therefore, Eq. 

(30) in effect requires that the unit of length (say meters) for external spatial 

coordinate x be identical to the internal unit employed to express absolute 

temperature w m T =  .  

 According to Eq (27), external (ruler, clock) = (x, t) at scale  within the 

hierarchy (Fig. 1) are always defined in terms of internal (ruler, clock) = (w− , 

w−) at the next lower scale −, the definition of (extension, duration) = 

(space, time) could be relegated to lower scales ad infinitum.  This is because 

infinite divisibility of both extension and duration must follow the philosophy of 

Anaxagoras [97] 
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“Neither is there a smallest part of what is small, but there is 

always a smaller, for it is impossible that what is should ever cease 

to be” 

 

Therefore, both absolute zero and absolute infinite (extension, duration) are 

singularities as ideal Aristotle potential limits never actualized as discussed in 

[65].  The fundamental and quantum nature of both space and time and their role 

in constitution of matter in quantum field theory and GTR will be further 

discussed in the following section. 

 

5 Universality of Quantum Mechanics and the Nature of 

Wave-Particle Duality 
 

The fact that Boltzmann anticipated quantum mechanics by about three decades 

is evidenced by the following quotation taken from his pioneering and often 

neglected 1872 paper [98]  
 

“We wish to replace the continuous variable x by a series of 

discrete values , 2, 3 … p.  Hence, we must assume that our 

molecules are not able to take up a continuous series of kinetic 

energy values, but rather only values that are multiples of a certain 

quantity .  Otherwise, we shall treat exactly the same problem as 

before. We have many gas molecules in a space R. They are able to 

have only the following kinetic energies:  

 

                                           , 2, 3, 4, . . . p 

 

No molecule may have an intermediate or greater energy. When 

two molecules collide, they can change their kinetic energies in 

many different ways. However, after the collision the kinetic energy 

of each molecule must always be a multiple of . I certainly do not 

need to remark that for the moment we are not concerned with a 

real physical problem. It would be difficult to imagine an 

apparatus that could regulate the collisions of two bodies in such a 

way that their kinetic energies after a collision are always multiples 

of . That is not a question here. ” 
 

Although more recent theoretical understanding of quantum mechanics based 

on fundamental contributions of its founders Planck [46,99], Einstein [100], 

Bohr [101], de Broglie [1-3], Heisenberg [102], Dirac [103], Schrödinger [104], 

Pauli [101], and Born [105] is fully established, its physical and intuitive 

understanding encounter difficulties due to abstract nature of its mathematical 

foundation. As a result, the theory confronts many problems associated with its 

physical interpretation such as   
 

1. The nature of wave function and its probabilistic interpretation. 

2. Wave-particle-duality. 
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3. Particle-particle entanglement. 

4. Double-slit experiment. 

5. EPR and problem of action-at-a-distance. 

6. Quantum-jumps and trajectory problems. 

7. Schrödinger cat. 

 

among others. 

  The problem of lack of intuitive understanding of quantum mechanics 

mentioned above extends to Newton [106] law of gravitation, Einstein [78] 

general theory of relativity, and Dirac [107] equation of quantum field theory. 

This is because, similar to quantum mechanics, such mathematical theories 

were based on certain desired mathematical properties, such as the inverse 

square law, the equivalence principle, or relativistic wave equation with positive 

probability, rather than derivation from the first principles.  As a result, in spite 

of excellent predictive power of the theories, the exact connection between 

abstract mathematical models and the physical phenomena they aim to reveal 

remain obscure.  

   Recent investigations [35, 36] were focused on connections between 

energy spectrum of photon gas given by Planck [99] distribution and both 

energy and dissipation spectrum of isotropic stationary turbulence. Thus, the 

gap between the problems of quantum mechanics and hydrodynamics was 

closed through connections between Cauchy, Euler, Bernoulli equations of 

hydrodynamics, Hamilton-Jacobi equation of classical mechanics, and finally 

Schrödinger equation of quantum mechanics.  This resulted in recent derivation 

of invariant time-independent and time-dependent Schrödinger equations from 

invariant Bernoulli equation for potential incompressible flow [37] 

 
2

2

2m
( ) 0H V

 



  −+ =                   (28) 

2

2

0
2m

i V
t



    

 


+  − =


                (29) 

 

The quantum mechanics wave function is defined as [37] 

 

r

β

1/2 1/2 i /
( ) ( ) e e

Htik  
t Φ t

− 


   ==              (30) 

 

such that 


  
  =  accounts for particle localization in accordance with 

classical results [108].  The velocity potential Φ

  of peculiar velocity that is 

complex accounts for normalization and hence the success of Born [105] 

probabilistic interpretation of 


 . In the following, some implications of the 
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model to the resolution of problems in the list (1-7) above concerning 

interpretation of quantum mechanics will be briefly examined.  

        According to the invariant model of Boltzmann statistical mechanics, each 

equilibrium statistical field (Fig. 1) is composed of a spectrum of cluster or 

wave-packet sizes containing “atoms” with velocity, speed, and energy 

respectively following Gauss, Maxwell-Boltzmann, and Planck distribution 

functions.  As discussed in [37], the conventional field of fluid dynamics does 

not correspond to equilibrium molecular dynamics EMD  = m but rather to the 

next higher scale of equilibrium cluster-dynamics ECD  = c.  Hence, in 

stationary fluid at ECD scale, Maxwell-Boltzmann distribution function governs 

the spectrum of cluster sizes that are stochastically stationary. Random motion 

of clusters accounts for the Brownian motion of small suspensions that is 

known to be a non-dissipative stationary phenomenon [35]. Transition of  a 

cluster from a small fast-oscillating “eddy” (high energy-level-j) to a large 

slowly-oscillating “eddy” (low energy-level-i) results in emission of a “sub-

particle” that is a molecule to carry away the excess energy in harmony with 

Bohr [101] frequency formula
ji j i

h( )
  

 =  −  as schematically shown in 

Fig. 7a.  

 

        
ei

ej

mji
cji

Eddy-j

Eddy-i

cluster molecule

    

atom-j

atom-i

subparticle

aj

ai

s ji

photon

kji

 
                

(a)                                                             (b) 

 

Fig. 7 (a) Transition of cluster cij from eddy-j to eddy-i leading to emission of 

molecule mij. (b) Electron transitions with emission of photon ji [37]. 

 

Similarly, but at the much smaller scale of ESD  = s or stochastic 

electrodynamics (SED), transition of an electron from high to low energy atoms 

lead to emission of a sub-particle namely photon ji as shown in Fig. 7b. 
  

       As described in [37], derivation of invariant Schrödinger equation from 

invariant Bernoulli equation results in a new paradigm of physical foundation of 

quantum mechanics.  Considering the case of stationary fluid or equilibrium 

cluster-dynamics ECD  = c, the quantum mechanics wave function 
c

  relates 

to the velocity potential of particle peculiar velocity.  However, particle or 

“atom” of ECD field namely cluster is the most-probable molecular cluster by 

definition c wm=u v in Eq. (1).  Therefore, particle of scale  is identified as the 

most probable wave-packet of the lower scale -1.  Hence, each statistical field 
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will have a quantum mechanics wave function 
  and particle P

 that is 

stationary wave-packet of the lower scale   

 

1 1

(Wave Function) = WF

P (Particle)  = (Wave Packet)  =  WP

 

  − −

 =


=
            (31) 

   

In harmony with de Broglie [1-3] picture of quantum mechanics, motion of 

“particle” P as local singularity identified as wave-packet = WP− of lower 

scale is guided by a global external quantum mechanics wave function 
  as 

schematically shown in Fig. 8.   
 

 

 

                     

EDDY   

CLUSTER

MOLECULE

ATOM 

ECD  (J)

EMD (J-1)

EAD  (J-2)  

c 

m 

a 

 . . . . . .  . . . . . . . . .  . .  . . . . . . . . . . . . .

 . . . . . .  . . . . . . . . .  . .  . . . . . . . . . . . . .  
 

 

Fig. 8 Macroscopic wave functions  or de Broglie guidance waves at (ECD), (EMD), 

and (EAD) scales that guide particles identified as wave-packets (WP) − or de Broglie 

matter-waves [37]. 

 

Hence, at any scale within the hierarchy of statistical fields in Fig.1, the solution 

of Schrödinger equation gives the energy spectrum of “atomic” clusters that 

represent Bohr [101] stationary states or energy levels of the field.   

  When one moves to the next lower scale of equilibrium molecular dynamics 

EMD  = m, derivation of Schrödinger equation [37] involves a stationary 

coordinate moving with velocity
wav since

m m m wa m
 = − = −v u V v V  by 

equations (1-2). Because by Eq. (30) m  relates to the velocity potential of 

molecular peculiar velocity m
V ,  under thermodynamic equilibrium wm c=v u  

will also be related to m
V  thus connecting m  with Pc.  As a result, particle P 

of the upper scale is identified as quantum mechanics wave function of the 

lower scale 1−  and one arrives at a hierarchy of embedded wave functions 

expressed as 
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1 1 1

1 2 2

P (Wave Function)  = WF

P  (Wave Packet)  =  WF

 − − −

− − −

= =


=
             (32) 

 

According to Eq. (32) and Figs. 1 and 6, the universe is composed of hierarchies 

of embedded waves suggesting that the entire universe was formed when the 

Almighty decided to make some waves! 

  The results in equations (27-32) and Fig. 8 may help in the understanding of 

the first and second problems in the list 1-7 above. The wave-particle duality 

problem is understood in terms of wave function
 that globally guides motion 

of particles identified as wave-packet of lower scale in accordance with the 

perceptions of de Broglie [3]. New perspectives provided by the results in Eqs. 

(27-32) and Fig. 8 concerning problems 1-2 are also expected to facilitate the 

resolution of the remaining problems 3-7. For example, problem number 6 

namely absence of particle trajectories in quantum mechanics becomes 

understandable because as shown in Fig. 7, any particle from cluster j can make 

a transition to cluster i through any arbitrary trajectory with exactly the same 

final results, thus accounting for success of Feynman method of sum-over-

paths. Regarding number 7 problem concerning Schrödinger cat, in view of 

probabilistic aspect of Φ

  hence 


  by Eq. (30), it is clear that any interference 

with the field due to a measuring instrument will disturb the velocity potential 

thus leading to collapse of the wave function


 .   

       Schrödinger cat problem is more challenging since it involves the 

phenomenon of life and death that are not understood.  Since as discussed in 

[109] all living systems are composed of living elements, and living elements 

are in turn composed of living cells, one may speculate if such infinite 

regression leads to an “atom of life” or Leibniz “living Monad”!  Although at 

present such questions are metaphysical and hence outside of jurisdiction of 

science, some aspects of the problem may be considered within the framework 

of quantum mechanics.  

 To introduce the required concepts, we need to consider an example from 

cosmology. It is well known that sometimes around 380, 000 years after the 

explosion of Lemaître [110] “atom” of our universe, the Big Bang, there was 

decoupling of radiation field from the baryonic matter field and the present 

Penzias-Wilson [111] cosmic background microwave radiation temperature of 

2.73 [m] is remnant of the cooling of Casimir [112] vacuum. It is also 

reasonable to anticipate that a living system will involve complex dynamics at 

EMD, EAD, ESD, EKD, END, ETD, … scales (Fig.1) with END denoting 

equilibrium-neutrino-dynamics at scale  = n (not shown in Fig. 1). By 

invariant Schrödinger equation (29) and Eq. (32), hierarchies of wave functions 

and particles will be associated with such fields.  Therefore, due to the well-

known decoupling of radiation from matter field in cosmology, one cannot rule 

out possible decoupling of some fields say neutrino-dynamics (END) or lower 

scale of tachyon-dynamics (ETD) from the baryonic field of molecular-
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dynamics of living systems at the moment of death t = tf.  In view of the 

hierarchies of wave functions in Eq. (23), there will be a critical sub-photonic 

decoupling scale d =   at which the cascade of wave functions in Eq. (23) will 

be broken 

 

      d+2 d+ d d d...    ...= =  = − −
          (32.5) 

Such an event may correspond to what Hegel referred to as the moment in 

which the spirit transcends temporality [94].  It is ironic that according to such 

a model, death or decoupling of Schrödinger cat corresponds to the collapse of 

wave function of cat’s life! Of course, strictly speaking, according to the present 

model (Fig. 1), complete decoupling hence total isolation of any part of the 

universe from the rest should be impossible as noted by Boltzmann [36].  

 Interestingly, Feynman [113] suggested that Schrödinger equation might in 

fact explain life 

 

“Often people in some unjustified fear of physics say you cannot 

write an equation for life.  Well, perhaps we can. As a matter of 

fact, we very possibly already have the equation to a sufficient 

approximation when we write the equation of quantum mechanics: 
 

                                          
ti


= −


  

 

Although decoupling of sub-photonic statistical fields from living system at 

molecular-dynamic scale is plausible, regarding its connection to the mind-body 

problem of Descartes or Hegel’s transcendence of spirit from corporal 

temporality, I respond by borrowing a quotation from Rovelli [94] about Plato’s 

account of a statement by Socrates:  "I am not sure". 

     At the important scale of LKD (Fig. 1) physical space or Casimir vacuum 

[112] is identified as a compressible fluid, Planck compressible ether [114], as 

discussed in [115]. A schematic diagram of physical space as states of a 

compressible fluid from infinite rarefaction (white hole WH) to infinite 

compression (black hole BH) is shown in Fig. 9.    
 
  

                            o 1 2 3-3 -1-2  
 
Fig. 9 Different degrees of rarefaction and compression of Casimir vacuum identified as 

a compressible fluid.  (-3) White hole 
WH

0 = (-2, -1) Anti-matter 
AM v

    (0) 

Casimir vacuum 
v

 =   (1, 2) Matter 
MA v

    (3) Black hole 
BH

 =  [37]. 
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Compressibility of physical space was recently shown [116] to account for 

relativistic effects when Michelson number Mi = v/c approaches unity thus 

revealing the causal [55] nature of Lorentz-FitzGerald contraction in accordance 

with Poincaré-Lorentz dynamic theory of relativity as opposed to Einstein 

kinematic theory of relativity in harmony with ideas of Darrigol [117] and 

Galison [118]. 

 When physical space or Casimir [112] vacuum is identified as superfluid 

photon or Bose-Einstein condensate, it is reasonable to anticipate that when 

heated to a critical vaporization or boiling temperature bT , the vacuum or space 

will nucleate what could be called photon gas bubbles that following Dirac 

could be also referred to as holes or anti-matter particles.  Similarly, if space or 

Casimir vacuum cools below certain critical fusion or melting temperature mT  

liquid photon undergoes phase transition and becomes solidified thus forming 

solid-light that was defined as black hole [119].  Therefore, in such a model, 

Hawking evaporation of BH will instead correspond to Hawking melting or 

sublimation of BH. Loss of mass due to melting of black hole could be caused 

by heating due to absorption of photon gas bubbles, anti-matter particles, that 

give their excess energy to melt part of BH and convert it to Casimir vacuum, 

i.e, space.  This is in accordance with absorption of negative curvature energy in 

classical model of quantum gravity described by ‘t Hooft [120] 

 

“When a black hole loses energy, it is primarily because it 

absorbs negative amounts of ‘curvature energy’. Clearly, our 

primordial model must allow for the presence of negative amounts 

of energy.  Actually, this is obviously true for quantum mechanical, 

because, after diagonalization, the total Hamiltonian has zero 

eigenvalue.  Prior to diagonalization of the total H, the Hamiltonian 

density H (x) must have negative eigenstates.  We now see that, 

since the black hole must lose weight, the primordial model must 

also have local fluctuations with negative ‘curvature energy’.  

Black holes absorb negative amounts of energy, allowing positive 

energy to scape to infinity. 

 It is due to the postulated thermodynamical stability that the 

fluctuations surviving at spatial infinity may only have positive 

energy.  Since the total energy balances out, the black hole will 

therefore receive net amounts of negative energy falling in.  Hence 

it loses weight and decays.” 

 

It is reasonable to expect two surfaces of event-horizon (BHH, WHH) to 

surround (BH, WH) with the corresponding surface temperatures m b( )T ,T .  

Under such a paradigm of physical space, Casimir vacuum with constant density 

v
 =  will correspond to constant measure (zero curvature) Euclidean space, 

colder and denser 
vm   regions correspond to matter (positive curvature) 
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called Riemannian space, and finally hotter and lighter 
vam    regions 

correspond to Dirac anti-matter (negative curvature) and called Lobachevskian 

space [37]. 

 The new perspectives concerning the nature of physical space described in 

Fig. 9 as well and the identification of dimension of absolute thermodynamic 

temperature as length [m] associated with Wien wavelength of thermal 

oscillation will have a major impact on cosmology in general and physical 

interpretation of Einstein [78] GTR in particular. Compressible nature of 

physical space (Fig. 9) with “atomic” or quantum volume 
3 3

wv̂ T= =   may 

facilitate bridging the gap between QM and GTR since it is harmonious with 

modern paradigms of quantum gravity [120-122]. For example, it is reasonable 

to anticipate that gravitational forces will be associated with gradient of Casimir 

[112] vacuum density (scalar curvature) hence pressure of physical space. 

      In a recent study [32] it was shown that entropy of black hole is S = 4Nk in 

exact agreement with prediction of Major and Setter [123]. The entropy of black 

hole according to Rovelli and Vidotto [124] is 

2 3 3

4
3

4
k

3

L E

15(c )
S =


            (33)   

However, one notes that the power of four in the expression  

 
2 3 3

4

3

L E

15(c )
N =


                             (34)   

is due to the four degrees of freedom per oscillator associated with its 

translational, rotational, vibrational, and potential energy such that the actual 

number of oscillators is 

2 3 3

3

L E

15(c )
N =


                           (35) 

From a recent study [36] on closure of the gap between photon gas in Planck 

equilibrium radiation and Boltzmann kinetic theory of ideal monatomic gas, the 

number of photons in volume V of Casimir [112] vacuum is  

3 35 2 3
kT E8 L

45 hc 45 c

V
N

 
= =

   
   
   

                                                    (36)   

The results in equations (33), (35), and (36) give             

4 kS N=               (37) 

in exact agreement with [32, 123].   
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The result (37) is also in agreement with application of global temperature 

in general relativistic statistical mechanics of Rovelli [96] 

ln ln ln(S Z)= E Z


 = −  −  +                           (38) 

 

when mean value of energy  

lnh


= −                                (39) 

is identified as internal energy U that is related to Hamiltonian (enthalpy) H as 

3
3 k

4
h H UE = = = = N T             (40)              

Substituting for 1/ k 1/T T = = , with the assumption k = 1 [96], the 

translational partition function 
t e

N
Z = , and the mean energy E from Eq. (40) 

into Eq. (38) gives the black hole entropy in Eq. (37).   

Alternatively, the partition function Z in [96] 

 

( ) e eH F
Z =

− −
 =               (41) 

is the translational partition function 
t e

F
Z =

−
and kF = N T− is Helmholtz 

free energy of ideal gas [31]. Inclusion of translational, rotational, and 

vibrational degrees of freedom gives 
t r v e e

3 F U
Z = Z Z Z = =

− −   such that the 

mean energy E [124] 

 

1 d ln

d

Z
E = −

 
              (42) 

becomes the internal energy 3 kU 3F N T= =− as in Eq. (40).  Therefore, result 

in Eq. (37) is also in exact agreement with entropy given by Rovelli [96] 

formula  

S = E F −               (43) 

after substitution for 1/ T = , kF = N T− , and 3 kE U N T= = from Eq. (42). 

      An outstanding problem regarding connection between thermodynamics and 

black hole mechanics [125-131] concerns Shannon information theory [132]  

j j

j

K p ln pI = −               (44) 

and what happens to the information as matter crosses the event horizon into a 
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black hole. For ideal monatomic gas with four degrees of freedom namely 

translational, rotational, vibrational, and potential, r r v p e
4N

Z = Z Z Z Z = the 

atomic, element, and system entropy relate to the number of Heisenberg-

Kramers [68] virtual oscillators as [32] 
 

4ˆ ˆ ˆs k lnp p e        ,          −
= − =         (45a) 

j4

j j j

j

ˆk ln p k ln p p e
N

S =         ,       
−

= − − =          (45b) 

4

j j

j j

k ln p k ln p p e N
S S  =         ,        −

= − −= =         (42c) 

For a multicomponent mixture, the atomic mixture entropy is [109] 

mix j j
ˆ k p ln ps

S
  

N
−= =                (46) 

Therefore, Shannon formula in Eq. (44) will become identical to Eq. (46) of 

thermodynamics if one defines Shannon measure K in terms of Boltzmann 

constant as K = Nk such that Eq. (44) becomes 

j j

j

î k p ln p
I

N
= −=             (44) 

      With entropy identified as the number of Heisenberg-Kramers [68] virtual 

oscillators, the problem of information loss in black hole is resolved since loss 

of number of oscillators could be attributed to coarse-graining as photons freeze 

from liquid to solid phase when they cross black hole event-horizon BHH.  In 

other words, as temperature decreases, atoms of space i.e., photons collect in 

larger and larger clusters, thus decreasing the number of oscillators leading to 

loss of entropy by Eq. (37) [109].  On the other hand, when anti-matter bubbles 

enter the black hole, their excess thermal energy leads to melting of part of 

black hole from solid into liquid photon at BHH increasing entropy and 

producing more Casimir [112] vacuum that accounts for observed accelerative 

expansion of the universe [56-59].   

In view of the model of physical space in Fig. 9 and entropy of black hole 

in Eq. (37), it is reasonable to assume that Lemaître [110] primordial “atom” of 

our universe was in a state of solid light extremely close to absolute zero 

temperature hence having nearly zero entropy as Planck perfect crystal [46,99]. 

This is in harmony with perceptions of Plato who believed that the world was 

formed from a formless state of total chaos or “Tohu Vavohu” [109]. Since 

according to Fig. 9 matter and anti-matter annihilate each other leaving Casimir 

[112] vacuum of a flat universe, in harmony with perceptions of Aristotle there 

is no “void” except the singularity called white hole (Fig. 9).   
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6 Universal Hydrodynamic Model of Faraday Line of Force 

from Cosmic to Photonic Scales 

Because of the scale-invariant nature of the model (Fig. 1) the physical insights 

available at ordinary scales can help in the understanding of nature at much 

larger or much smaller scales that are less accessible to ordinary human 

intuition.  For example, it is known that a rotating sphere in an otherwise 

quiescent fluid causes polar inflow jets (IJ) and equatorial outflowing disk (OD) 

[133] as shown in Fig. 10. 

 

                             

Fig.10 Direct photograph of swirling equatorial disc outflow (DO) created by a rotating 

rigid sphere in otherwise stationary silicon oil with aluminum powder illuminated by 

laser sheet light [133]. 

 

However, if the rigid sphere is stationary but instead the surrounding fluid is 

rotating, Huygens centrifugal forces will reverse direction resulting in accretion 

by inflowing disk (ID) and polar outflowing jets (OJ).  Occurrence of outflow 

jets (OJ) from black holes is well established in cosmology. 

      The flow fields in otherwise stationary background fluid induced by rotating 

spherical particles are shown in Fig. 11 

                                            
Figure 11. Schematic model (a) flow near a spinning particle (b) locally conserved flow 

streamlines (c) formation of Faraday line of force from a row of co-spinning particles and 

the associated vortex field within the subquantum background fluid. 

Because of finite available energy and momentum, such flows cannot extend to 

infinity and instead form a finite spherical volume by outflowing equatorial disk 

turning around and joining the inflowing polar jets as shown in Fig. 11b 

resembling magnetic field lines in electrodynamics. When multiple spinning 

spheres are present, the hydrodynamic forces cause spinning particles to form a 

chain of alternating particle and “anti-particle” also called “hole” that is 
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spherical regions of rarefaction, called hydrodynamic model of Faraday line of 

force [115] schematically shown in Fig. 12.  

 

                                     

FARADAY LINE 
OF FORCE

OD

ID OJ

ID

OD

ID

OD

OD

IJ

ID

IJ

 
 

Fig. 12 Faraday line of force as electron (black) and positron (white) string with inflow 

jet (IJ) of one matching the outflow jet (OJ) of its neighbor. Also shown are alternating 

outflow (OD) and inflow discs (ID) [115]. 

 

      In a pioneering study, Dirac [134] introduced the mathematical concept of 

Faraday line of force as a directional line with an electron at one end and a 

positron at the other,   

 

“This leads us to a picture of discrete Faraday lines of force, each 

associated with a charge, −e or +e. There is a direction attached to 

each line, so that the ends of a line that has two ends are not the 

same, and there is a charge – e at one end and a charge +e at the 

other. We may have lines of force extending to infinity, of course, 

and then there is no charge.”  

 

The fluid or Casimir vacuum between two spinning spherical particles is 

expected to cavitate, because of strong equatorial outflowing disks from 

spinning particles (Figs. 11, 12), thus forming a spherical region of vapor called 

“hole” or Dirac “anti-matter” particle.  For example, the Faraday line of force in 

stochastic electro-dynamics at ESD scale (Fig. 1) will be composed of an 

alternating chain of electron-positron as shown in Fig. 12.  The breakage of such 

stable vortex lines is analogous to the following description of Dirac [134] 

concerning the breaking of Faraday line of force: 

 

 “This process −the breaking of the line of force− would be the 

picture for creation of an electron (e−) and a positron (e+). It would 

be quite a reasonable picture, and if one could develop it, it would 

provide a theory in which e appears as a basic quantity. I have not 

yet found any reasonable system of equations of motion for these 

lines of force, and so I just put forward the idea as a possible 

physical picture we might have in the future.” 
 

 Similarly, but at much smaller chromodynamics (SU3) or EKD scale, the 

chromodynamic Faraday line of force will be identified as strings of quark-

antiquark as described by ‘t Hooft [135] 
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“It took several years before it became clear that these are exactly 

the expressions obtained if each of these mesons is viewed as being 

a kind of rope with quark at one end and an antiquark at the other.  

The ropes can be stretched ad infinitum, because stretching them 

adds energy to them, which will be turned into more matter: that 

is, more rope.” 

 

At large hydrodynamic scales turbulent eddies are known to form vortex 

tubes. By Kelvin circulation theorem, it is known that such vortex lines cannot 

abruptly end within potential flows and instead must be either pinned to a solid 

boundary or else close on themselves thus forming a closed vortex “loop” in 

harmony with LQG [121,122] models of quantum gravity. Such behavior is well 

known in superfluid helium-3 experiments revealing “quantized” vortex lines 

discussed in [133].   

An example at molecular-dynamics scale is combustion of acetylene that 

results in large amounts of soot or carbon particles that form many centimeters 

long chains.  At the much larger scale of astrophysics, it has recently been 

observed that our galaxy the Milky Way contains large numbers of very long 

star streams [136,137].  Finally, at exceedingly large scale of cosmology, it is 

well known that rotating galaxies form very long streams that could be called 

cosmic Faraday lines of force.   

7 Implication to Banach-Tarski Paradox 

In this section, application of invariant model of Helmholtz vorticity equation 

[33, 34] to the interesting mathematical problem of Banach-Tarski [138] 

paradox (BTP) is examined. To begin, let us consider a spherical flow within a 

fluid droplet located at the stagnation point of axisymmetric gaseous 

counterflow jets as shown in Fig. 13.  As seen in this figure, induced by the 

outer flow, two cylindrically closed recirculation flows, or two tori, form in the 

upper and lower hemispheres of the spherical droplet.    

 

                                         

Fig.13 Flow in liquid droplet composed of two semi-spherical Hill vortices at 

stagnation point of gaseous axisymmetric counterflow [34]. 

The streamlines for such a flow (Fig. 14a) obtained from solution of modified 

Helmholtz vorticity equation [34].   
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r

r z

2 2

2 2 2

v
w w

1
      +
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= + + − +

       

ω ω ω ω ω ω ω
      (45) 

 

is given by the stream function  

 
2 2 2 2 2(1 / R / R ) =  − −           (46) 

 

Because of linearity of Helmholtz vorticity equation (45), one can apply the 

superposition principle and introduce product solutions for flow within two 

immiscible liquid droplets given by the stream function 

2 4 2 2 2 2 2 2 2 2(1 / R / R )(3 / R / R ) =   − − − −        (47) 

 leading to the flow configurations shown in Figure 14b. 

 

               

        (a)                                (b)                              (c) 

Fig.14 (a) Streamlines from Eq. (46). Turning a sphere inside out: (b) 1-1 and 

2-2 as outer tori (c) 1-1 and 2-2 as inner tori. 

 

First, the problem of turning a sphere inside-out is considered by looking 

at flow fields within two concentric spherical flows shown in Fig. 14b.  Each 

hemisphere is composed of two semi-spherical tori, the outer toros 1-1 and the 

inner toros 3-3 in Fig. 14b.  It is easy to imagine that one could compress the 

inner toros 3-3 towards vertical axis and move it upwards, while the outer toros 

1-1 is stretched outwards and pushed down.  When one imagines each toros as 

a cylindrical balloon, the above procedure changes the position of outer 1-1 and 

inner 3-3 tori thus turning the sphere 14b inside out as shown in Fig. 14c.    

A flow configuration that results in fusion of two spheres into one sphere of 

identical volume is shown in Fig. 15.   
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(a)                     (b)                            (c) 

Fig.15 (a) Hill spherical vortex. (b) Fusion of two Hill spherical vortices into 

(c) A spherical flow composed of two semi-spherical Hill vortices [34]. 

As two spherical Hill vortices (S1, S2) in uniform flow (Fig. 15a) in opposing 

cylindrically-symmetric jets approach each other (Fig. 15b), they form two 

semi-spherical Hill vortices [34] and merge into a single spherical flow S3 at 

the stagnation point as shown in Fig. 15c. It is possible to adjust the flow 

conditions such that spheres (S1, S2) containing N1 = N2 molecules of ideal gas 

1 1 1 1kpV N T=  and 
2 2 2 2kp V N T=  form sphere S3 at temperature T3   

3 1 2 3 1 2 1/ 2 /2              ,               2T T T N N N N= = = + =       (48) 

such that, 

1 1 2 2 3 3 3 3 1k   pV p V p V N T E= = = =             (49) 

In the above fusion process, density is doubled, temperature is halved, and 

energy of S3 is half that of the original two spheres 

3 3 3 1 1 1 2 2 1 2 3             ,          + 2E p V E pV p V E E E= = = + =       (50) 

Hence, conservation of energy requires that energy E1 be removed from the 

system (exothermic).  The inverse process of “fission”, namely S3 splitting into 

two spheres (S1, S2) will be endothermic and require absorption of energy E1. 

The above transformations of spherical geometry, though related, do not 

correspond to the mathematical problem of Banach-Tarski paradox (BTP) 

[138] since in BTP problem a sphere is shown to transform to two spheres with 

identical volume and density as the original.  Hence, BTP constitutes a clear 

violation of rational foundation of mathematics in the spirit emphasized by 

Nelson [139]. As a result, some mathematicians have raised objection, and 

justifiably so, against the assumptions underlying the set theoretical foundation 

of BTP.  It is important to emphasize that the two spheres generated in BTP are 

known to be “measureless”. In the following, some implications of invariant 

model of Boltzmann statistical mechanics (Fig. 1) and the associated laws of 

generalized thermodynamics to BTP is examined. 

In the above fusion of spherical objects, whereas the role of number of 

particles N and volume V as mathematically concepts are clear, that of 
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temperature is not.  According to equations (25) and (26), absolute temperature 

is the most-probable or Wien wavelength of particle thermal oscillation thus 

constituting a “measure” of spatial extension. It is most interesting that in his 

description of hyperbolic geometry, Poincaré [140] anticipated absolute 

thermodynamic temperature as a “measure” or metric of physical space: 

 

"Suppose, for example, a world enclosed in a large sphere and 

subject to the following laws: --The temperature is not uniform; it is 

greatest at the center, and gradually decreases as we move towards 

the circumference of the sphere, where it is absolute zero.  The law 

of this temperature is as follows:  If R be the radius of the sphere, 

and r the distance of the point considered from the center, the 

absolute temperature will be proportional to 2 2R r− .  Further, I 

shall suppose that in this world all bodies have the same coefficient 

of dilatation, so that the linear dilatation of any body is proportional 

to its absolute temperature.  Finally, I shall assume that a body 

transported form one point to another of different temperature is 

instantaneously in thermal equilibrium with its new environment. 

There is nothing in these hypotheses either contradictory or 

unimaginable. A moving object will become smaller and smaller at it 

approaches the circumference of the sphere. Let us observe, in the 

first place, that although from the point of view of our ordinary 

geometry this world is finite, to the inhabitants it will appear infinite.  

As they approach the surface of the sphere, they become colder and 

at the same time smaller and smaller.  The steps they take are 

therefore smaller and smaller, so that they can never reach the 

boundary of the sphere.  If to us geometry is only the study of the 

laws according to which invariable solids move, to these imaginary 

beings it will be the study of the laws of motion of solids deformed by 

the differences of temperature alluded to.” 
 

Therefore, 
wT =   is called Poincaré thermal measure.  

To address BTP problem, we begin with the following thought experiment 

concerning geometry. Let us consider a circle with 360 m circumference and at 

spacings of 1-meter around the circumference, let straight lines of equal and 

uniform thickness t = 1 mm be drawn to the origin of the circle as schematically 

shown in Fig. 16.   
 

                                            

Fig.16 Formation of black-core due to coalescence of radial lines. 
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Clearly, due to their finite thickness, adjacent lines will coalesce on a circle with 

approximate circumference of 360 mm beyond which the merged lines form a 

“black core” around the origin as shown in Fig. 16.  This thought experiment 

suggests that there exists a circle with critical minimum radius corresponding to 

maximum number density even in the limit of infinitesimal thickness of radial 

lines. Clearly, the diameter of such a “black core” could be used as a measure of 

maximum resolution of printers.   

Therefore, the question is what happens if the above procedure (Fig. 16) is 

considered in the limits of a circle of infinite radius when infinite number of 

radial lines of zero thickness are drawn to the origin. For example, at 

cosmological scale (Fig. 1) the problem corresponds to infinite radial lines from 

circumference of a spherical universe converging on a galaxy as “atom” at the 

center like a hologram.  As discussed in a recent study on the gap between 

physics and mathematics [65], the invariant model of statistical mechanics leads 

to coordinates shown in Fig. 17.  

  

                          

 +  1 1 +  1 0 +  1 − 1  +1

0 1   −   − 1  

−   +1

+ = 
2 

 = 
2 −

 
 

Fig. 17 Hierarchy of normalized coordinates associated with embedded 

statistical fields [36]. 

According to this figure, interval (0 1 ),x  =   of upper (outer) scale 

corresponds to interval 
1 1 1(1 ),x− − −=   of next lower (inner) scale (Fig. 17). 

The location of the new origin 1 10x− −=  is defined by the new unit of length 

or measure at the lower scale.   

 According to Fig. 5, invariant Maxwell-Boltzmann distribution when re-

normalized with respect to the most-probable state leads to transformation 

mp  x 1   ,   x 4/ = 2.567( π ) →→ .  For example, three consecutive scales within 

the hierarchy of coordinates with 
-100 -80

β β

-120

β

2
= 1 = (4/ )10  ,  = (4/ ) 100 10  ,  ( π π )  and the size of zero and 

infinity relative to unity taken as 
-20 20

 (10 ,  1 ,  10 )  is shown in Fig. 18 from the 

previous study [65].  
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Fig. 18 Hierarchy of coordinates for hierarchy of embedded statistical fields [65]. 

 

Applying the hierarchy of normalized coordinates (0 1 ), ,x   =  , results in 

circular geometry corresponding to three generation as shown in Fig. 19. 
 

                                        

Fig. 19 Formation of hierarchy of embedded black holes due to infinite number of 

compactified statistical fields at the origin [119]. 

In Fig. 19, three generations covering the range of radii (0 1 ), 
, 

1 1(0 1 ),+ +
, 

2 2(0 1 ),+ +
are revealed.  Following Aristotle, it is assumed that potentially 

infinite statistical fields are compactified within the black hole singularity at the 

origin.  According to equation (25) and Fig. 18, since temperature is Wien 

wavelength or Poincaré thermal measure 
w

T
 

=  , absolute zero of adjacent 

scales relate as 
1 2

10
 − −

= =  . 

As a second thought experiment, let us consider a spherical volume S1 at 

scale   composed of two semi-spherical tori as shown in Fig. 14a.  The central 

singularity or black hole is at “absolute zero” r 0
 =  and located at the origin. 

Let the sphere S1 contain total of 1N atoms of ideal gas (
1N / 2 in each toros) at 

the average temperature 
aveT = T , thus the total energy or enthalpy 

1 1 1kE = H = 4N T  [32].  Let thermal energy 1E  be added to S1 resulting into 1N  

new atoms be decompactified from “black hole” singularity, due to phase 
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transition such as melting, forming a smaller internal spherical volume (tori 3-3 

and 4-4 in Fig. 14b) at temperature 3 4 LT = T = T .  It is assumed that half of the 

added energy 1E is absorbed by gases in original sphere S1 (tori 1-1 and 2-2 in 

Fig. 14b) raising their temperature from 
aveT = T to 1 2 HT = T = T .  Finally, let 

the two embedded spheres in Fig. 14b undergo fission and split into two spheres 

S2 = Tori (1-1)-(3-3) and S3 = Tori (2-2)-(4-4).  It is assumed that during the 

fission process the heat exchange between tori (1-1) and (3-3) results in their 

temperatures being respectively lowered and raised to the average temperature 

H L ave( ) / 2T +T = T = T . Exactly similar heat exchange is assumed between (2-

2) and (4-4) tori also leading to the same final average temperatureT .  

Therefore, the original sphere S1 has undergone an endothermic fission 

process (absorbed energy E1) creating two identical spheres S2 and S3 with 

exactly the same number of atoms N1, volume V1, pressure p1, and temperature 

T .  This process could be repeated ad infinitum, as long as energy E1 is added 

to the system each time, due to Aristotle potentially infinite statistical fields that 

are compactified in the central black hole singularity [119].  Satisfaction of 

energy conservation principle as well as clarification of “measureless” nature of 

generated spheres in BTP problem, through introduction of what is called 

Poincaré thermal measure 
wT =  , may help in resolution of the paradoxical 

aspect of Banach-Tarski problem [138].   

In connection to BTP problem, it is further noted that due to Poincaré 

thermal measure 
w

T
 

=  , macroscopic (extensive) system volume V

 and 

microscope (intensive) most probable atomic volume 
wv̂ 

are related as 

3 3

w w
ˆ vV N N N T      = = =           (50) 

Also, at thermodynamic equilibrium, by NMB distribution in Fig. 5 and in 

view of speed versus wavelength ratio relation  

j jv / v = /w w              (51) 

the statistical field is composed of a spectrum of cluster or “element” volumes  

3

j ij ij

i i

ˆ vV   = =             (52) 

such that 

j

j

 V V =              (53) 
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The quantum nature of physical space with spectrum of “atomic” volumes 

ijv̂ 
forming a spectrum of cluster volumes 

jV 
is in harmony with modern 

concepts of quantum gravity [120, 121, 122,123, 124]. 

 

7   Concluding Remarks 
 

Some implications of a scale-invariant model of Boltzmann statistical 

mechanics to generalized thermodynamics, Helmholtz decomposition of energy 

and momentum, and definitions of dark-energy, dark- matter, and dark-

momentum were investigated. The model resulted in internal spacetime and 

external space and time having quantum nature in accordance with 

thermodynamic thermal time of Rovelli [95]. Invariant Schrödinger equation 

resulted in introduction of hierarchies of quantum mechanics wave functions 

and particles as de Broglie wave-packets from cosmic to photonic scales.   

       Physical space, Casimir [112] vacuum, was identified as a compressible 

fluid with density v  varying from infinite rarefaction WH 0 =  (white hole) to 

infinite compression 
BH =    (black hole) as its two singularities. With space 

curvature viewed as deviation of density from density of Casimir 

vacuum
v =  −  , the states ( 0,  0,  0)   =    of (matter, vacuum, anti-

matter) fields were associated with (Riemannian, Euclidean, Lobachevskian) 

geometry. An invariant hydrodynamic model of Faraday line of force was 

introduced and shown to be in harmony with observations from cosmic to 

photonic scales.  Finally, some implications of the model to black hole entropy 

and information loss as well as Banach-Tarski paradox were examined. The 

results were found to be in harmony with quantum gravity considered as 

dissipative deterministic dynamic system [120].   
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Abstract. The work is devoted to a new concept in physics - D entropy, defined as the 

relative increment of the internal energy of a body due to its energy of motion. D-entropy 
arises due to taking into account the role of the body structure in its dynamics. It follows 

from the body’s motion equation, which is derived based on the principle of dualism of 

symmetry (PDS). According to the PDS, the evolution of bodies is determined by both the 
symmetry of space and the symmetry of the body. According to the PDS, the motion 

equation is derived from the expression of energy, which is the sum of the body's internal 

energy and the energy of its motion. Such a representation of energy is carried out in micro- 

and macro-variables that determine the movements of the elements of the body and the 
body itself, as a whole, respectively. This made it possible to take into account bilinear 

terms in the body’s motion equation, which depend on micro- and macro-variables, arising 

when the body moves in an inhomogeneous field of forces, and determining the 

transformation of its energy of motion into internal energy. The D-entropy for large 
equilibrium systems, like the Clausius entropy, only increases. For small systems, the D-

entropy can decrease. The main advantage of D-entropy is that it is determined through the 

dynamic parameters of the body. This makes it possible to use it to study the processes of 

evolution of matter within the framework of the fundamental laws of physics, as well as to 
substantiate the empirical laws of thermodynamics, statistical physics and kinetics. 

Keywords: entropy, symmetry, nonequilibrium, evolution, mechanics.  

 

 

1. Introduction 
 

Entropy is a key concept for all natural sciences. Historically, the concept of entropy 

arose phenomenologically in thermodynamics because when performing work with a 

body, part of it, one way or another, from the point of view of useful work, is lost [1, 2, 
11]. In statistical physics, there is the following modern definition of entropy [11]: 

"Entropy is a quantity that characterizes the average properties of a body over a certain 

nonzero period of time". Today the existing concepts of entropy face common difficulties. 

Perhaps the main one is that its connection with the fundamental laws of physics has not 
been fully disclosed. Therefore, it is difficult to answer the following questions: how does 

the entropy of a body change when it moves in an inhomogeneous external force field; 

how entropy is related to the symmetry of the body and space; how, while remaining 

within the framework of the laws of classical mechanics, to explain the concept of 
entropy. These difficulties create problems in using the concept of entropy in physics, for 

example, when constructing an evolutionary picture of the world. Some of these 

difficulties can be removed with the help of the definition of D-entropy, recently proposed 

within the framework of the laws and principles of classical mechanics. D-entropy was 
defined as the ratio of the increment in the internal energy of a body, due to its movement 

in an external nonhomogeneous force field, to its total value. The definition of D-entropy 

emerged from the search for a solution of the irreversibility problem within the framework 

of the laws of classical mechanics [3, 4]. 
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The purpose of this work is to consider the physical essence of the concept of D-
entropy. To do this, the following questions will be considered here: how the solution to 

the problem of describing dissipative processes was obtained within the framework of the 

laws of classical mechanics; how D-entropy follows from the motion equation of 
structured particles; how D-entropy is related to the second law of thermodynamics; how 

the recurrent form of D-entropy in hierarchy of open nonequilibrium dynamical systems 

was obtained. 

 

2. Dissipative equation of the system's motion 

The definition of D-entropy follows from the system’s motion equation of potentially 

interacting material points, which takes into account the role of the internal dynamics of 

the system’s elements in its motion [3]. Therefore, in order to explain the essence of D-
entropy, let us briefly explain how this motion equation was obtained. 

According to classical mechanics, built based on the Newton’s motion equation, the 

dynamics of matter must be reversible. However, all processes in nature are dissipative 

and therefore irreversible. This contradiction leads to an important problem for physics: 
how to explain the irreversibility of the dynamics of bodies, if Newton's equation of 

motion is reversible [5, 6]. At the beginning of solving this problem, a probabilistic 

mechanism of irreversibility was discovered [5]. A necessary condition for the occurrence 

of this irreversibility is the presence of arbitrarily small random external influences on 
the system. Therefore, let us call this mechanism probabilistic. However, this mechanism 

did not allow answers many questions. For example, how the second law of 

thermodynamics relates to the fundamental laws of physics; how "order" arises from 

"disorder", etc. Therefore, further searches for a solution to the problem of irreversibility, 
but strictly within the framework of the basic laws of physics, were continued. 

Our search for a solution to this problem began with the derivation of the motion 

equation of a structural particle in the framework of the laws of classical mechanics 

without any restrictions, which were used to obtain the Lagrange and Hamilton equations 
[3]. The main idea of such a solution to the problem of irreversibility was to try to take 

into account the role of the body structure in its dynamics. Obtaining this equation was 

carried out based on fundamental laws and principles that apply both to the system and to 

its elements. These laws and principles include the laws of conservation of energy and 
momentum, Galileo's principle. But since we considered the motion of a structured body, 

instead of a material point, in addition to these principles, the principle of symmetry 

dualism was used. This principle claims that the motion of the structured bodies is defined 

not only by the space symmetry, as in case of a material point, but also by the body’s 
internal symmetry. This approach to obtaining the system’s motion equation has fully 

justified itself. As a result, the system’s motion equation were found and the explanation 

of the mechanism of irreversibility that followed from this equation were submitted [3]. 

Below we will briefly explain how the motion equation for a system from material points 
was obtained. It will help explain how the concept of entropy emerges within the strict 

laws of classical mechanics. 

In accordance with statistical laws, the motion of a body, taking into account friction, 

is described by an equation in which the friction forces are proportional to the velocity 
[11]: 

0 0 0MV F V  
,         (1) 

where M -is the body’s mass, 
0V - is the velocity of the center of mass, - 

0F - is the 

force acting on the center of mass,   - is the effective coefficient of friction.  

In accordance with this equation, the energy of the body's motion is converted into 
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the internal energy of the relative motion of its elements. This result is achieved within 
the framework of the laws of statistics that govern the molecular kinetic theory [11]. Let 

us show how one can explain the mechanism of transformation of the motion energy into 

the internal energy of the body, taking into account the role of the structure of the body 
in its movement [8, 9]. 

Consider the motion of a body along an inclined rough surface under the action of 

gravity. For this purpose, we take a body model as an equilibrium system consisting from 

a sufficiently large number of potentially interacting material points. 
At the initial moment of time, the equilibrium system has potential energies. During 

the sliding of the body, part of potential energy is converted into its kinetic energy. 

Another part goes to increase the internal energy because of the work of the friction force. 

This means that each material point of the body participates in two types of motion: in 
motion together with the center of mass of the system and in motion relative to its center 

of mass. Therefore, the invariant of motion is the sum of the motion energies and the 

internal energy of material points. Dissipation is associated with a part of the system’s 

motion energy, which is converted into its internal energy. Thus, if we want the system’s 
motion equation to describe dissipative processes, it is necessary that it take into account 

the transformation of the motion energy into internal energy. Below we will show how to 

do this. 

The total energy of the system can be represented as the sum of the energy of motion 
and internal energy using two groups of variables [3]. The group of variables that 

determine the internal energy are called micro-variables. The group of variables that 

determine the system’s motion energy are called macro variables. The key point for the 

possibility of representing the system’s energy in the form of this sum is that the following 
equality holds for the scalar sum of quadratic functions of vectors [3]: 

 
12 2 2

1 1 1

N N N

i N N iji i j i
N v NM V v



   
   

                    (2) 

The vector iv  determines the velocity of the material point in the laboratory 

coordinate system; Nji ...3,2,1,  - numbers of material points where the values ,i j  
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ins

N rUrU  - is a potential energy of interaction of the material 

points, where ij i jr r r  .  

The existence of this equality proves the independence of micro- and macro variables 

[3]. The total energy in these variables is decomposed into the system’s internal energy 

and the motion energy. That is, micro- and macro-variables belong to two symmetry 

groups.  
The coordinate system in which the total energy is presented according to eq. (2), we 

will call the dual coordinate system. In these variables, the system’s energy has the form: 
tr ins

N N NE E E const                                   (3) 

 

Here ins

N

ins

N

ins

N UTE  - is the system’s internal energy, where  


N

i i

ins

N vmT
1

2 2~
 

is the kinetic component of internal energy; tr tr tr

N N NE T U   - is the motion energy, 
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tr

NT  - is the system’s kinetic energy, depending on the macro-variables, 
tr

NU  - is the 

system’s potential energy in the field of external forces. 
In a dual coordinate system, the internal energy is determined by micro-variables. 

This is because the sum of the energies of the relative motions of material points and the 

energy, determined by the sum of the kinetic energies of their motion relative to the center 
of mass, coincides. The body's motion energy is associated with a group of macro-

variables. The energy of motion of a system is characterized by the fact that the sum of 

the impulses of its elements is equal to the total impulse of the system, but the internal 

energy of the system is characterized by the fact that the sum of the impulses of all 
elements is equal to zero. The law of conservation of energy of a system is that the sum 

of the energy of motion of the system and the internal energy is invariant along its 

trajectory, but each of these types of energy is not an invariant of motion. 

The system’s motion equation follows from the eq. (3) by differentiating in relation 
to time, and then by summing scalar values of energy changes for each material point. It 

has the form [8, 9]: 
0

N N N NM V F V  
,                    (4) 

where 0 0

1

N

N ii
F F


  ; 

0

iF - is external force acting on the i -th material point; 

int 2/ ( )max

N NE V  ; 
ijF  - is the strength of interaction i  and j  material points; 

0 0 0

ij i jF F F  ; 
1int 0

1 1
( )

N N

N ij ij ij iji j i
E v mv F NF



  
    ; int 0/ 0max

N N NV E F  .  

The eq. (4) already takes into account the relationship between the body's motion 
energy and it internal energy during the motion of the system.  

In the right hand side of eq. (4), the first term determines the external forces, which 

applied to the center of mass. These potential forces change the system’s velocity.  

The second term is nonlinear and bisymmetric, because it depends simultaneously 
from micro- and macro-variables. This term defines the role of the structure of a system 

in its dynamics. The coefficient “  ” determines the fraction of the system's motion 

energy, which is transformed into internal energy. The work of external forces spent on 

increasing internal energy is nonzero only when we have: 0 0 0 0ij i jF F F   , or when 

the field of external forces is non-homogeneous. 

The second term was call as the evolutionary nonlinearity, because this term links 

two symmetry groups, which depended from of micro – and macro-variables and leads to 
a violation of the time’s symmetry and evolution [10].  

The nature of the evolutionary nonlinearity can be explained by that that due to the 

non-homogeneity of the external field of forces, the linking of the vectors from the 

different symmetry groups is appeared. For the structured bodies these groups of body’s 
symmetry and space symmetry. The linking is determined by bilinear evolutionary 

nonlinearity terms. These terms is determine the conversion of the body’s motion energy 

into its internal energy. It is lead to a violation of the conservation of motion energy, when 

total energy is preserved. Thus, the bilinear terms arise when a body moves in an external 
non-uniform force field. An example of inhomogeneous external forces is an 

inhomogeneous external gravitational field in which the objects of the Universe move. It 

leads to the transformation of the energy of motion of these objects into their internal 

energy as a result of the work of forces proportional to the gradients of external fields. 
This effect can be called "gravitational friction". "Electromagnetic friction" can be 

defined in a similar way. 
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In the cases of homogeneity field of the external forces or in approximation of a solid 
body, this term is equal to zero and eq. (4) becomes the Newton’s motion equation. 

The dynamics of an equilibrium system in a weak inhomogeneous field of external 

forces is irreversible [3, 8]. Indeed, in accordance with eq. (4), the magnitude of the 
change in the internal energy is of the second order of smallness. Therefore, the 

disturbance of equilibrium of the system can be neglected. However, according to 

Galileo's principle, the motion energy of an equilibrium system cannot increase due to 

internal energy. Consequently, we have a decrease in the motion energy of an equilibrium 
system along its trajectory in an inhomogeneous space.  

The existence of dissipation is a necessary condition for formation of attractors [20]. 

However, the dissipation is possibly only for the structured bodies. The conclusion about 

the infinite divisibility of matter is following from here [9]. This means that according to 
the laws of classical mechanics, the matter should be an infinite hierarchy of systems. 

That is, any arbitrarily small selected part of the body is a system of elements.  

According to eq. (4) the efficiency of increasing the internal energy of the system is 

determined by the ratio of its increment to the value of the internal energy itself. That is, 
we have [4]: 

int int/d

N N NS E E  
                 (5) 

Here 
d

NS - is a D-entropy for system from N elements. This expression was called 

D-entropy [4]. The symbol "D" was introduced because this entropy determines the 

measure of the transformation of the ordered energy of motion of the system into the 
chaotic motion energy of its elements relative to the center of mass of the system. 

Below it will be briefly explained how the D-entropy is determined for an open 

nonequilibrium dynamical system, what are the properties of D-entropy and what is the 

relationship between D-entropy and existing definitions of entropy. 
 

D-entropy for nonequilibrium systems 
 
A description of the evolutionary processes of matter is impossible without taking 

into account the fact that all bodies in nature to one degree or another are open 

nonequilibrium dynamic systems. The nature of such processes is determined by D-

entropy, which determines the relationship of external influences on the system with its 

internal structure in according with the eq. (4).  

It turned out that when a sufficiently small system moves in inhomogeneous fields of 

external forces; its internal energy could either increase or decrease. For example, 

calculations showed that for an oscillator with N=2 which in motion in an inhomogeneous 
field of external forces, internal energy can transformed into the motion energy depending 

on the initial phase of its oscillation and D- entropy can be negative [13]. However, with 

an increase of the number of particles in the system, the part of the internal energy that 

can be transformed into the system’s motion energy is decreasing. When N1 > 100, the 

internal energy could only increase and we have: 0d

NS  . For N2>103 the increment 

of internal energy growth do not increase [14]. Thus, N2 ~103 determines the range of 

applicability of the thermodynamic description for the system. In the general case, these 

critical numbers depend on the parameters of the task. This is in consistent with [2] where 

stated, that the irreversibility is qualitative: the more particles in the system, the more 
irreversibly it behaves (that is, the more unlikely reversibility). Thus, D-entropy allows 

us to determine the area of applicability of thermodynamics based on the laws of classical 

mechanics. 
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In the approximation of local thermodynamic equilibrium, with a sufficient degree of 
generality, a nonequilibrium system can be submitted by a set of equilibrium subsystems 

moving relative to each other [11]. The motion of each subsystem is equivalent to its 

motion in an inhomogeneous field of forces, created by all other subsystems. When a 
system is in equilibrium, the relative velocities of its subsystems and the resulting forces 

acting from other subsystems are zero [15]. If to take the system closed, prepared in a 

nonequilibrium way, then its total energy is invariant value. In this case, the change of 

the D-entropy for system is determined by the sum of the increments of the entropies of 
each subsystem. Therefore, we have [17]: 

 

 int int

1 1
/ [ ] /

La Nd L

N N N L ks k LL k s
S E E N F v dt E

 
     

         (6)  

LE - is internal energy of L- subsystem; 
L

ksF -is a force, acting on the k -th particles 

of the subsystem from the side of the particles of the other subsystems; s  - is external 

particles with respect to L - subsystem, interacting with its k -i particles; kv -is a speed 

of the i-th particles; 
LN – is a number of particles in L - subsystems; L =1,2,3…; a – is 

a number of subsystems in nonequilibrium system.  

The calculations showed that the magnitude of the fluctuations of the system’s 
internal energy due to changes of number of particles, obeys the law [14]:  

 

~ 1/trE N .         (7) 
 

Since statistical laws follow from calculations of the dynamics of systems based on 

deterministic equations, it can be argued that they follow from the deterministic laws of 
physics. A similar conclusion was made in [16]. This is also confirmed by the fact that 

the principle of maximum entropy corresponds to the principle of least action [17]. It 

follows that the fundamental laws of physics determine the field of application of 

statistical laws, and these laws can be considered as possible simplifications of the 
analysis of the dynamics of systems [18]. 

The proof of equilibrating closed non-equilibrium dynamical systems can be reduced 

to the proof that the energy of the relative motions of subsystems is irreversibly 

transformed into their internal energy. Let us show that in accordance with eq. (4) such a 
transformation takes place. This can be done by assessing the energy flows between 

subsystems [3]. 

Obviously, for a non-equilibrium system consisting from equilibrium subsystems, the 

mechanism for the formation of direct and reverse energy flows for subsystems is 
associated with the mutual transformation of the energies of the relative motions of the 

subsystems and their internal energies. Consequently, the proof of the irreversibility of a 

nonequilibrium system is reduced to the proof that the inflow of internal energy of the 

subsystems is greater than the outflow. 

Let us 
trE  is the energy of the relative motion of the subsystems, which is 

transformed into its internal energy. According to eq. (4), 
trE  is determined by a 

bilinear term whose value is equal to the second order of smallness. Let us notice that the 

value 
trE  is also a second order of smallness in according with the statistical 

estimations of an increment of entropy [11]. Therefore we can write: 
trE

2~  , where 

  is a small parameter, for example, the ratio of the internal forces between material 
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points and value of external forces. If it so, then 
int/ 1trE E   and the violation of 

the equilibrium of the subsystems can be neglected. In this case, irreversibility takes 

place, since the transformation of the internal energy of the subsystem into the energy of 
its motion is impossible due to the law of conservation of momentum.  

Let us consider the second case. If the equilibrium subsystems’ interaction forces or 

their gradients are the great enough, the equilibrium of the subsystems can be disturbed. 

Then the subsystems can be represented as a set of equilibrium systems moving relative 
to each other. In this case, to increase the internal energy of the subsystems, one can write: 

tr tr h

insE E E     , where 
tr

insE  is the increment of the energy of the relative 

motions and 
hE  is the increment of the internal energies of the subsystems. 

That is, 
tr tr

insE E   . The energy of the equilibrium subsystems cannot be 

transformed into their motion energy. Therefore, we will proceed from the fact that only 

the energy of the relative motions of sub-

subsystems can be transformed back into 
the motion energy of the subsystems. Let 

us denote such a reverse flow of the 

subsystems internal energy, as: 
tr

retE .  

According to eq. (4), the value 
tr

retE  is determined by the bilinear 

function of the sub-subsystems 

variables, which determined its motion 
energies and the internal energies.  

 

Figure. 1. The graph of the formula 8. 

These are terms of the second order of smallness of their micro - and macro variables. 

But because: 2~trE  , we will have that 
4~tr

retE  . Thus, the return flow of 

the internal energy of subsystems into the energy of its motion cannot be more than the 

fourth order of smallness. The decrease in the energy of motion of the subsystems can be 

determined by the following equation: 

 
2 4tr

decE    
       (8) 

and we have: 

int~ /d tr

decS E E                     (9) 

Here the ,   constants can be determined using of the eq. (4), 
dS -D-entropy.  

Fig. 1 shows a graph of 
tr

decE . For values:
0  , where 

0  are the roots of eq. 

(10), the irreversibility takes place. In general, for N >>1, we have 
tr

decE > 0. This 

corresponds to the second law of thermodynamics. For the stationarity of the system it is 

necessary to fulfill the equality: 0tr

decE  . However, this state is unstable and 

determined by micro variables [17].  
Thus, the concept of D-entropy arose in the mechanics of structured particles, which 

operates with the total energy of the system, including the system’s motion energy. In this 

mechanics, internal energy is defined, as the energy of motion of the system's elements 

relative to the center of mass. Thus, the work of external forces, acting on the system, is 
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divided into mechanical work to move it and work to change its internal energy. The 
energy of the relative motion of interacting subsystems due to the presence of gradients 

of external forces can pass into their internal energy, but the reverse process is forbidden 

by the Galilean principle, since the momentum of the system cannot change due to its 
internal energy. 

D-entropy is valid for any equilibrium and nonequilibrium systems from any number 

of elements. At its determination, the absent of the interaction between subsystems was 

not required, as it is required in the case of statistical physics [11]. However, the 
interaction energy of subsystems, which is not taken into account in statistical physics, 

determines the processes of evolution of systems.  

In thermodynamics, in contrast to the mechanics of structured particles, the concept 

of internal energy is defined as the total energy of a system minus its motion energy. 
Therefore, Clausius entropy are a special case of D-entropy.  

D-entropy in quantum mechanics is defined in the same way as in classical mechanics 

in the form of the ratio of the change in the internal energy of quantum systems to its 

value. D-entropy follows from the expanded Schrödinger equation obtained from the 
principle of dualism of energy [21]. 

The entropy for open non-equilibrium systems can be obtained also with a help of 

distribution function. This function, ),,( tprff аа  , is found using the extended Liouville 

equation, which has the form [19]: 

 

1

( )
N

i i

i i i

df f f f
R P f

dt t R P
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

  
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                            (10)

 

Here i =1,2,3…N - is a number of subsystem, 
1

N

i

i i

F
P








 , iF - is a forces acted 

on the i-th subsystems, 
iP - is a momentum of the subsystem. 

Extended Liouville eq. (10), which can be used to describe open nonequilibrium 

dynamical systems, was obtained using eq. (4). This equation, given on the phase plane 
of coordinates and momenta of a system of structured particles, differs from the canonical 

prototype in that the phase volume of the system is not conserved due to the openness of 

the system.  

From eq. (10), it follows that only non-potential forces contribute to the change in the 
distribution function of particles of the system. In accordance with eq. (4), the magnitude 

of the change in the distribution function is proportional to the gradients of potential 

internal and external forces. For a closed non-equilibrium system, the value of “ ” 

decreases with a decrease in the energy of the relative motions of the subsystems due to 
its transformation into the internal energy of the subsystems [9]. 

Formal solution of the eq. (10) can be written like this: 

 

exp ( )of f dt  .                            (11) 

The generality of the distribution function (11) lies in the fact that it was obtained 

taking into account the work of dissipative forces. That is, this distribution function 

directly follows from the motion equation of structured particles. Therefore, it can be used 

to analyze dissipative systems. 

It is known that for entropy can be wright [11]: lnBS f f dpdq  . From here 

and eq. (10), we can obtain:  

568



 /B BdS dt S f                                 (12) 

Thus, if 0  , then we have: / 0BdS dt  . Thus, “
BS ” has a maximum when the 

subsystems do not have relative speeds. This corresponds to the equilibrium system’ state 

of the. 

D-entropy “
dS ” is more general than “

BS ”. This is due to the fact that “
dS ” is 

acceptable for describing the evolution of open nonequilibrium dynamical systems moving 
in inhomogeneous fields of external forces, without using averaging any statistical 

hypothesize.  

 

D-entropy for open nonequilibrium dynamical systems 
The emergence and existence of all objects in nature is possible only due to dissipative 

processes as a result of the interaction of bodies, the exchange of energy, momentum and 

matter [20, 22]. Therefore, to describe evolutionary processes, it is necessary to take into 

account the openness of bodies. In addition, it must be borne in mind that dissipative 
processes arise only if the bodies, as well as their elements, have a structure. Hence it 

follows that matter must be infinitely divisible [9]. The infinite divisibility of matter or 

the impossibility of the existence of bodies with zero internal energy follows from the 

mechanics of structural particles. That is, if all bodies possess all these properties and 
have arisen as a result of evolution, then they must be open nonequilibrium dynamical 

systems. The idea that the main element of matter is open nonequilibrium dynamical 

systems was also expressed in [17, 22]. Then matter is a hierarchy of open 

nonequilibrium dynamical systems. One way or another, the model of the body, as an 
open nonequilibrium dynamical system, should be used to study the processes of self-

organization of systems, the emergence of “order” from “chaos” and evolution [9]. To 

cover general qualitative properties of the structure and dynamics of matter, the chain of 

the structure of matter can be written as [9]:  

Material point’s   structural particles   open nonequilibrium dynamical systems. 

Therefore, according to the principle of symmetry dualism, to describe the dynamics 

at all hierarchical levels of the structure of matter its energy should be represented as the 
sum of the motion energy and internal energy.  

The change in D-entropy at an each hierarchical level consists of the increments of 

the energies of motion and internal energies for the constituent parts of this level. These 

increments are carried out due to the energy of the external hierarchical level. 
Let us assume that the system is near a stationary state. In this case, dissipative 

processes within the hierarchical levels can be neglected. Let outside forces begin to work 

on the system. According to the principle of dualism of energy, this will lead to a change 

in the energy of motion and internal energies of the elements of the first hierarchical level. 
Their change, in turn, will lead to a change in the energy of the second hierarchical level, 

and so on. It can be written like this [9]: 

 
i

0 1 1 ;m nE E E     i

1 2 2 ;....m m nE E E             i

1 .m m n

N N NE E E      (13) 

                         i i/d n n

i i iS E E                             (14)  

Here 
0E -the work of the external energy; the energies of the corresponding 

hierarchical levels of matter consist of the sum of the energies of motion of elements and 

their internal energies, denoted by the symbols "m" and "in", respectively.  

The eqs. (13, 14) are chains of energy and D-entropy increments for all hierarchical 

levels of matter due to the work of external forces. These equations can be called the 
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principle of relativity of energy and D-entropy for the steps of the hierarchical ladder of 
matter. The motion equation for open nonequilibrium dynamical systems can be obtained 

from its energy [9]. 

However, due to nonequilibrium of the internal dissipative processes also determine 
the state of the system. These processes lead to a decrease in the motion energy of 

elements of a given level due to its transformation into their internal energy. As a result, 

the change in the motion energy at each hierarchical levels can be determined by the 

condition: 
m m dis

i i iE E E   
    (15) 

The quantity /ND m in

i i iW E E   we will call D- negentropy. Thanks to " "ND

iW

, an open nonequilibrium dynamic system can be in a stationary non-equilibrium state. 

This state takes place when for each hierarchical level of the system the next equality 
have a place:  

0m

iE 
    (16) 

Of course, not all the factors that determine the stationary state of the system are taken 

into account here.  For example, an external influence on a system can directly affect 
several hierarchical levels of matter. For example, in the case of a flow of solar radiation 

to the earth. The spectrum of this flow is wide enough change to directly the state of 

terrestrial matter at many of its hierarchical levels [24]. However, the nature of such an 

impact always obeys the principle of symmetry dualism. Moreover, the positive flux of 
entropy can be compensated by the Planck radiation [12]. However, a complete 

description of the energy balance goes beyond the scope of classical mechanics. 

 

3. Conclusions 
    The concepts of entropy and energy play a key role in all areas of natural science. 

Their complementarity, unity and opposition becomes clear if we start from the principle 

of dualism of symmetry. Energy determines the measure of possible useful work, the 

measure of the organization of the system. Therefore, it is logical to associate it with the 
concept of "Order". Entropy defines internal energy. It is logical to associate this with 

the measure of “Chaos”. Through "Chaos», nature has found a way to combine two 

opposite concepts - movement and rest. “Chaos” ensures the existence of bodies at rest, 

if their elements are constantly in motion. This is possible because the total impulse of 

the elements can be equal to zero. Consequently, "Chaos" personifies the disappearance 

of motion or “Order” as a result of the disappearance of the energy of “Order”, turning 

into the energy of “Chaos”. Entropy is at its maximum when the system is in equilibrium.  

The concept of D-entropy in classical mechanics follows from the motion equation of 
structured bodies. The physical meaning of D-entropy is that it determines the efficiency 

of dissipative transformation of the motion energy into the internal energy. The body’s 

motion equation is derived from the energy of the body based on the principle of dualism 

of symmetry. According to this principle, the evolution of bodies is determined by both 
the symmetry of space and the symmetry of the body. In accordance with this principle, 

the body’s energy is represented as the sum of the internal energy of the body and the 

motion energy in the space of micro-variables and macro-variables, respectively. 

The derivation of the body’s motion equation based on the principle of dualism of 
symmetry made it possible to take into account the dissipative processes of transformation 

the body’s motion energy into internal energy. This transformation is determined by the 

bilinear terms of the motion equation of the body. Dissipation occurs when a body moves 

in an inhomogeneous field of forces. 
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Mathematically, D-entropy is due to the nonlinear interaction of micro- and macro-
variables. The description of the dynamics of the body based on micro- and macro-

variables is called “complete description”. It is called complete, because it takes into 

account the role of the internal dynamics of the elements of the body on its dynamics as a 
whole. "Complete description" connects the violation of time-symmetry with a change in 

the internal states of systems due to their motion energy. 

D-entropy reveals the physical essence of entropy for open nonequilibrium dynamical 

systems. The need for such a representation of the body’s model is because only it allows 
one to take into account and describe the processes of their evolution. 

D-entropy is applicable for bodies with a large and small number of elements. For large 

equilibrium systems, it goes over into the Clausius entropy. For small systems, D-entropy, 

unlike all other concepts of entropy, can decrease. 
Since the D-entropy is obtained from the fundamental equations of physics, it can be 

used to analyze the nature of evolution of systems and to substantiate empirical branches 

of physics based on a "complete description" of the dynamics of systems within the 

framework of the laws of classical mechanics. In addition, it can be used to define the 
scope of statistical and empirical concepts of entropy. 

In general, the D-entropy is convenient when studying the processes of evolution of 

matter within the framework of the fundamental laws of physics, presented in the form of 

a hierarchy of open nonequilibrium dynamical systems. 
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Abstract: Modern science intensively develops various (pseudo-) universal meta-

theories, consistently opening fundamentally new perspectives in many areas of 
knowledge in comparison with the gradually exhausting classical traditional approaches. 

However, even the simplest review points to their limitations and incomplete 

effectiveness, due to the systemic shortcomings of the modern general scientific 

paradigm, which undoubtedly must be replaced by more advanced developmental 
paradigms. 1) If historically the first ancient categorical-phenomenal paradigm gave birth 

to science, then 2) the modern classical (axiomatic, dogmatic) paradigm has improved it 

in certain particular subject areas, and 3) the next expected universal (met-) paradigm 

will presumably unite all knowledge into a single system 4) by increasing the level of 
abstraction until the achievement of a single initial Universal Axiom and meta-concepts 

derived from it, 5) which should be adequate for all phenomena and 6) form the ultimate 

Universal meta-theory, 7) resolving all the problems of scientific knowledge. 8) The 

presented work summarizes the authors' many years of research on this topic and 9) 
systematically sets out the main provisions of the meta-universalization of knowledge, 

10) substantiates the theoretical and practical possibility of obtaining a single universal 

meta-formalism of the Universe and derivatives of meta-formalisms of phenomena, 11) 

describing all things let very complex, but a single universal formula. 12) The results of 
the work have been successfully applied to solve many chronic conceptual problems and 

13) have a universal perspective in all areas. 14) Despite the initial state of the Universal 

Theory, 15) any of its applications are already radically changing the traditional ideas 

about the world around them, 16) especially complex chronically unknowable 

phenomena. 17) The ultimate meta-level of abstraction of universal concepts today is a 

necessary condition for the radical development of knowledge, 18) in which, 

undoubtedly, many teams of leading scientists should participate, like the scientific 

school of Bourbaki. 
Keywords: Meta-theory, Modern science, Universal Theory, Harmony, Universal 

Cosmology, Multi-phase Universe, “Boiling” Universe hypothesis 

 
1    Introduction 

If justification (proof) is understood as 1) the derivation of concepts from other 

justified concepts, then 2) without additional conditions it is an infinite 

hierarchically recursive unsolvable process (cognition), 3) doomed to unfounded 

(hence erroneous) assumptions (hypotheses) and 4) unprovability of any 

universal concepts. 
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Obviously, such a definition needs additional rules for the beginning / ending of 

such recursion, specific to our Universe. 

Let us accept the following minimum sufficient for this concept of 

substantiation of universal concepts: 

Definition. Justification (definition, proof) is a (justified) conclusion of a 

concept from other (justified) concepts. 

Consequence. The rationale in this definition is an unsolvable infinite recursion 

that needs natural (Universal) specific conditions for its beginning / end. 

Definition. Reasonable is a consistent conclusion of a concept (allowing 

connectivity with other internal / external concepts). 

Definition. (Direct) inference is the composition (synthesis) of the formula 

(formalism) of the defined (output) concept from other (input) grounded 

concepts (Figure 1). 

 

 

Fig. 1. Schema for the meta-definition of a concept 

 

Consequence. The concept has 3 parts: 1) a set of input concepts, 2) a formula 

for the composition of a defined concept from input concepts, and 3) one output 

defined concept, which 4) can participate unrestrictedly in other derived 

concepts. 

Consequence. An unambiguous conclusion of a concept is obtained in the 

absence of cycles 1) in its definition (the absence of a defined concept among 

the input concepts) or 2) the part of the concept system associated with it, which 

3) is observed in nature and is accepted in this study. 

Consequence. An ambiguous conclusion of the concept is obtained in the 

presence of such cycles that are not observed in nature. 

Consequence. The absence of such cycles creates a unidirectional / hierarchy of 

the concept system. 

Consequence. The definition of a concept is a directed relation of a set of input 

concepts to one definite concept (Figure 1). 

Consequence. The use of a concept is a directed relation of one specific concept 

to a set of using concepts (Figure 1). 

Consequence. An increase in the number of combinations with a direct 

derivation of concepts increases the system of concepts towards its 

unidirectionality with the predominant formation of its conical (pyramidal) 

shape with a complete enumeration of justified combinations. 

Definition formula  
c = f (c1, c2…cn)  
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cn 

Tautology excluded 
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concepts 

Outgoing 
concept 

(unlimited use) 
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Consequence. Direct direction / hierarchy of a system of concepts presupposes a 

reverse direction / hierarchy in the same system, which generates their 

reciprocal dualism. 

Consequence. The reverse direction / hierarchy of the system of concepts 

converges to a certain single initial concept (the original Universal (meta-) 

Axiom (UA)), which generates all the Universal concepts and is present in each 

of them. 

Consequence. Concepts have two mutually opposite directions of inference: 1) 

direct complicating (developing) concretization (from higher to lower concepts) 

and 2) reverse simplifying (reducing) generalization (from lower to higher 

concepts). 

Consequence. The lower limit of (forward) recursion is a network of facts, the 

upper limit of (reverse) recursion is UA. 

Consequence. Concretization is carried out through logical deduction, 

reasonably combining the concepts achieved in this case. 

Consequence. Generalization is performed by logical induction, revealing 

embedded concepts. 

Consequence. With adequate generalizations / concretization, the concepts 

coincide with the Universal categories and form a grounded formal system of 

concepts. 

Next, we specify the above meta-justifications for our Universe: 

Definition. A meta-concept is a concept of a concept. 

Consequence. A concept is a meta-concept for all its concretizing concepts and 

2) a concretizing concept for all its meta-concepts. 

Definition. Definition is a direct (without intermediate meta-concepts) meta-

concept of being, from which it begins in the system of universal concepts. 

Definition. The axiom is the definition of the class of beings. 

Definition. UA is the definition of the system of universal concepts (UAP). 

Definition. Category is an active property of the Universe. 

Definition. A concept is a copy of a category. 

Definition. A link (copy) is a repetition of the components of one entity (object) 

in another entity (subject). 

Definition. Existence is a part of the Universe, separated by some connection as 

a whole. 

Definition. The universe is a complete set of directly or indirectly related 

entities. 

Definition. The Universe is divided into two parts: Real (RW) and Categorical 

(Abstract) Worlds (AW). 

Definition. Phenomenon is existence RW. 

Definition. The category is the existent AW. 

Hypothesis. Categories have a uniform constant formalization in the Universe. 

Consequence. The concepts naturally have an approximate incomplete / 

inaccurate various formalization by different subjects. 

Definition. Truth is the degree to which concepts approach categories. 

Consequence. The absolute truth is the universe. 

Hypothesis. Categories are the only means of formalizing the universe. 
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Definition. (Meta-) Theory is a system of grounded (meta) concepts. 

Consequence. (Meta-) Theory is an approximate formalism of categories. 

The presented meta-concept is the rationale for fundamental problem studies of 

this work, the purpose of which is to study the state and prospects of meta-

theories in modern science on the example of a new universal general scientific 

paradigm. 

 

2    Meta-theories and general scientific paradigms 

New meta-concepts give rise to the corresponding meta-theories that make up 

the well-known history of world science. The first meta-theories arose in the 

ancient world at the birth of science through the initial meta-concepts, from 

where their name came from. From the works of Plato and his school came the 

first general scientific paradigm of the division of the Universe into RW / AW 

(Figure 2). Attempts at a scientific description of popular natural and 

humanitarian phenomena gave rise to the so-called metaphysical theories, 

naively explaining reality. 

 

 

Fig. 2. Schema of the antique paradigm of knowledge 

The Renaissance epoch up to the Middle Ages persistently expanded these 

concepts through empiricism, mathematical formalization and great discoveries 

plus well-known socio-political events of the 20th century, the conceptual peak 

of which was the axiomatic (dogmatic) paradigm of Bourbaki, which for the 

first time, as it seemed, built a single scientific meta-picture the world in the 

form of a system of highly abstract meta-axioms and multiple consequences 

from them (Fig. 3). 
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Fig. 3. Schema of the axiomatic (dogmatic) paradigm of knowledge 

Axiomatization for the first time formalized knowledge, radically raised the 

level of abstraction of knowledge and created many high-quality technologies 

that continue to be improved to this day. But due to the well-known tautology of 

the invisibility of the unknown and the unknowability of the invisible, 

unexpectedly for modern science, it was unable to overcome the important 

chronically unsolvable meta-problems, which are briefly mentioned in the 

following review. 

Based on the above substantiated provisions, one should increase the level of 

abstraction of problematic phenomena and achieve higher meta-concepts that 

solve the corresponding problems. 

 

3    Achievements and problems of modern Meta-Theories 

First of all, non-formalized important humanitarian, artistic and philosophical 

concepts that fall out of the strict norms of axiomatic science and thereby 

delegitize it as a product of exclusively intellectual activity do not reach the 

required meta-level. The verbal analogies used instead of them fundamentally 

do not allow formal analysis / synthesis / assessment of the corresponding 

phenomena. 

Modern psychology, as the main subject of its activity, explores the higher 

physiological and intellectual problems of people, but is forced to use primitive 

empirical meta-models, which are fundamentally incomplete to explain complex 

phenomena in living organisms. 

Medicine of the 21st century completes the basic questions of the physiology 

and pathology of living organisms at the biochemical and biological levels, but 

is unable to fully explain, synthesize, modify and apply the deciphered genetic 

codes in the corresponding meta-concepts, except for experimenting with ready-

made parts of the codes. 
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Meta-formalization is most developed and applied in the exact sciences by 

means of the UML language, which contains a large set of particular axiomatic 

concepts, which, however, do not form a universal language for describing 

everything, since they are obtained empirically, but not ontologically, from a 

unifying VA. 

Software engineering is developing a generalizing standard for the Meta-Object 

Facility language, which allows combining heterogeneous computer programs 

and platforms on the basis of a single type system that increases the degree of 

abstraction and application of the UML, which also has a private utilitarian 

focus, like other intensively developed ontological data analysis tools, in in 

particular, OntoClean, based on formal, domain-independent properties of 

classes and meta-properties of objects, etc. 

Numerous formal semantics and translators of almost all existing natural and 

artificial languages have a long history, also focused on low-level meta-concepts 

that cannot be overcome in principle within the framework of the current private 

axiomatic general scientific paradigm. 

All such numerous examples are naturally explained by Gödel's theorem on the 

emergence and growth of incompleteness of (partial) systems of logical 

equations (to which many phenomena are usually reduced) with an increase in 

their complexity, which gives rise to the ambiguity of the formalisms of 

phenomena and destroys private axiomatic knowledge into weakly interacting 

areas. 

In principle, it is possible to get out of the conditions of this theorem and solve 

axiomatic problems only in the developing universal general scientific 

paradigm. 

 

4    Meta-Theories and Cosmology 

The original meta-concept justifies the following important directional 

consequences: 

1. The Universe is self-determined and has an exclusively internal existence, 

which, as will be shown below, naturally develops into self-knowledge and 

further through living Classes into a grounded Universal Cosmology. 

2. The Universe combines strict formalization and, as shown below, free 

uncertainty, jointly guaranteeing the realization of Universal Cosmology and the 

achievement of a strictly defined goal of Absolute Harmony / Absolute Nothing. 

3. The Universe has a single Universal Meta-Formalism (UMF), which 

produces all kinds of Universal Formalisms of Private Universe Entities 

(UMFE) that govern the development of the Universe. 

4. All emerging problems of Universal Cosmology are successfully overcome 

by consistent inner cognition and application of meta-concepts by the Universal 

phenomena up to VA. 

5. Full cognition of VA corresponds to the Universal singularity (hereinafter 

defined as the Absolute Harmon), presumably completing the Universe. 
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6. As substantiated below, the Universe has a complex structure of a constructor 

of Universes, and combines multiple coexisting phases with different joint 

mechanics, where formalization is one of them. 

7. Universal Cosmology and its stages / phases is of great importance in the 

knowledge of the Universe and, accordingly, in the development of science. 

8. This concept justifies the following developmental (Universal) general 

scientific paradigm. 

 

5    Universal general scientific paradigm 

The limiting increase in the level of abstraction from the system of intermediate 

axioms to VA substantiates the universal system of concepts and the derivative 

formalization of phenomena as the next universal general scientific paradigm 

(Fig. 4). 

 

 

Fig. 4. Schema of the universal paradigm of knowledge 

The universal paradigm loses the limitations of Gödel's incompleteness theorem 

with the transition from particulars to universal formalisms and uses the really 

established system of categories in the process of the evolution of the Universe 

instead of artificial concepts. 

By definition, a universal paradigm is sufficient for a reasonable formalization 

of all Universe beings from a single UMF. The modern problem of the 

Universal Paradigm is the incompleteness of the universal system of concepts 

and the insufficient degree of formalization of UMF for a fully formal 

(automatic) derivation of universal formalisms of entities, which should be 

resolved like the collective work of the Bourbaki school. 
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reasonable universal formalism (UV, which should always be a UMF) - 

identification of a phenomenon in the Universe - identification of a phenomenon 

in UV - deduction of the formalism of the phenomenon with UV ”, which is 

limited by UV, which can exceed the field of view (Fig. 5). 

 

 

Fig. 5. Execution schemes of axiomatic (A) and universal (B) paradigms of 

cognition 

 

6    The Universe’s dualisms 

Universalization reveals many fundamental (meta-) dualisms of the Universe, 

the most important of which are given below. 

Abstract / real dualism. Universal phenomena are divided into a visible real 

(factual) part and an invisible abstract (categorical) part. The former activate / 

deactivate the latter, which turn on / off the corresponding properties that 

control the phenomena, which harmonizes / disharmonizes them, depending on 

the cognition and use of knowledge. 

Continual / discrete dualism. The universe coexists in several fundamentally 

different joint phases with corresponding mechanics, of which only classical and 

quantum mechanics are known to modern science. The initial phase is a 

continual phase, which is sampled (reduced) to the formalization phase, 

allowing approximate, but successful harmonization to the target phase of 

Harmon. The sought-after scientific formalisms begin with a sampling phase. 

Macro / micro dualism. The Universe is divided into infinitely internally 

nested hierarchies of the Real and Categorical Worlds, the properties of which 

differ at different levels of the hierarchy. Science operates exclusively with the 

Middle World of the Universe and is not available to the extreme macro / micro 

Worlds. 

Border dualism. The universe, by definition, assumes the presence of its 

opposite part and, accordingly, the border between them. However, 

universalization substantiates the infinite and limitless in Space-Time-Matter 

Universe. Consequently, the Universe / non-Universe dualism is observed in 

another part of it, unknown to modern science and difficult to cognize due to 

going beyond the Universe. The latter makes it difficult to identify the scope of 

the Universal laws and undermines scientific knowledge. 
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Harmony / Chaos dualism. Universalization substantiates the meta-concepts of 

Harmony / Chaos unknown to traditional science as the presence / absence of 

connection, respectively, as well as the Meta-law of increasing Harmony, which 

have the highest irresistible force of action and radically change ideas about the 

world around them, without which adequate formalization of knowledge is 

impossible. 

Determinism / Freedom dualism. Universalization substantiates the natural 

emergence of freedom (and the resulting uncertainty) in any (even fully defined 

and deterministic) unharmonized system, which is understood as any difference 

from the state of Harmon. The latter, as substantiated below, is on the border of 

the universe. This stipulates the obligatory combination of Determinism / 

Freedom within it, which together guarantee the directed achievement of the 

Harmon state without stopping at the local extrema of the Universal Global 

Optimization Problem. This justification is a universal analogue of K. Gödel's 

theorem on the incompleteness of particular formalisms in the axiomatic 

paradigm. 

 

7    Meta-features of universal knowledge 

Universalization 1) continues logical processes from divided dogmatic areas of 

knowledge to a single Universal system of knowledge (Fig. 6), 2) stabilizes the 

system of concepts in the process of cognizing phenomena (Fig. 7) and 3) 

increases the variability of universal formalisms in comparison with private 

limited low-level dogmatic formalisms by increasing the level of abstraction, 

starting from the limiting UA (Fig. 8). 

 

 

Fig. 6. Scheme of continuation of logical processes in meta-cognition. 
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Fig. 7. Scheme of stabilization of meta-cognition of complex phenomena. 

 

Fig. 8. Схема увеличения вариативности мета-формализмов. 

The aforementioned dualisms in the formalization phase combine heterogeneous 

polar meta-properties of phenomena that specify the diversity of the Universe. 

For example, at low levels of abstraction with a small number of activated 

categories, phenomena receive high degrees of determinism / accuracy of 

axiomatic formalisms, which are mistaken by axiomatizers for justification. But 

at high levels, even precise meta-formalisms get a long way of causal 

concretization with random operating factors that turn them into precise but 

randomly realized asymptotes, mistakenly considered approximate (Fig. 9). 

 

 

Fig. 9. Scheme of transformation of exact high-level meta-formalisms 

into chaotic asymptotes. 

 

8    Meta-ontology of the Complexes 

Definition. The complex is an entity participating in all Universal entities. 

Consequence. The Universe is the original Complex. 

Consequence. The Universe has two derivatives of the Complex: AW and RW 

(Fig. 2). 

Consequence. RW has 3 derivatives of real Complexes: Space, Time and Matter 

(fig.). 

Definition. The space is conceptually a regular permanent RW Complex. 

Definition. Time is conceptually a regular variable RW Complex. 

Definition. Matter conceptually is an irregular RW Complex, containing 2 

derivatives of the Complex: Processes - a temporarily variable part of 

phenomena, and Subjects - a temporarily permanent part of phenomena. 

Consequence. Complexes of Space, Time and Matter form a single STM-

Complex, which is further divided into phenomena. 
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Consequence. STM-Complex is conceptually formed by two concepts: 

Persistence and Regularity and their negations (fig.). 

Consequence. AW is a Complex that is divided into UA and an infinite (due to 

recursive nesting) system of derived categories in the form of a pyramid-like 

structure (UAP) up to RW. 

Hypothesis. AW comes from the inhomogeneity of the meta-existent Prana 

during the decay of Harmon in the initial coexisting phases of the Universe (see 

below), the local indistinguishable parts of which condense into the abstract 

categories of the Universe that are supposedly precise and unchanged in the 

STM-Complex. 

 

9    Meta-concepts of Harmony / Chaos 

Definition. Harmony is a connection between beings (phenomena / categories) 

(Fig. 10). 

Definition. Chaos is a lack of connection between beings. 

Consequence. Harmony / Chaos inherits the linkage classification defined by 

Venn diagrams (Figure 11). 

Consequence. Harmony and Chaos are mutually inverse mutually 

complementary general Universal concepts. 

Consequence. Harmony and Chaos together constitute a complete conceptual 

Universum, describing every state of the Universe and its beings. 

Consequence. Universum is realized in the Universe beings as a complete 

subgraph of realized (existing) and unrealized (resource harmonization of 

essences) relationships on all components of existence (Fig. 12). 

Definition. Harmonization is an increase in the harmony of beings. 

Consequence. The limit of harmonization of existent is local Harmon with 

absent chaos (Fig. 12). 

Consequence. The limit of harmonization of the Universe is the Absolute 

Harmon, which unites all beings in the Universe. 

Definition. Existence is a connection between an object and a subject (an object 

exists for all its subjects). 

Consequence. Existence is an asymmetric directional concept relative to an 

object-subject pair. 

Consequence. Harmony harmonizes beings and enhances their existence. 

Consequence. Chaos separates and generates a difference between entities with 

classification up to the emergence of problems of existence and destruction 

(breaking the defining connection) of entities. 

Consequence. Harmonization is the original Meta-Law of the Universe, which 

generates all other laws of the Universe's existence. 

Definition. In incomplete formalization, the Meta-Law is expressed as "all 

things seeks to increase their harmony." 
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Fig. 10. The scheme of a meta-concept 

relation 

Fig. 11. Schema for the Euler - Venn 

diagrams 

 

 

Fig. 12. Scheme of an entity dichotomy for Harmony / Chaos 

 

10    The Harmon/Mandala and the Universe’s Perpetuum Mobile 

According to the Meta-Law, the limit of harmonization of a reasonably infinite 

Universe is the state of Absolute Harmon (hereinafter - Harmon) as a Complete 

Infinite Oriented Graph CIOG (CIOG) = lim COGn (COGn), n → ∞, whose 

vertices are the same graphs (Fig. 13). 

Absolute Harmon is Absolute Everything, homogeneous continuum and Bose 

condensate of Harmon, which condenses into Absolute Nothing (Chaos) and 

disappears due to the impossibility of adding any connections. Absolute Chaos, 

by analogy with a physical condensate, is presumably capable of decondensing 

back into the state of Harmon (Fig. 13). 

 

 

Fig. 13. Scheme of the original Universal Entity – the Harmon and its 

condensation / decondensation with Absolute Chaos – the Universal Perpetuum 
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Mobile. 

 

The Absolute Harmon is unstable due to the internal asymmetry of nesting and 

disintegrates into the Universe known to us. If we assume the infinite resource 

of Absolute Chaos, then the Absolute Harmon / Absolute Chaos pair forms the 

inexhaustible Universe's Perpetuum Mobile, which moves our Universe and 

determines its structure. 

Harmon is identical to the well-known religious symbol Mandala / Mangala, 

which is traditionally worshiped by about 1.5 billion people around the world, 

which testifies to 1) disappeared civilizations, 2) who knew it well, and 3) the 

cyclic succession of world civilizations (Fig. 14). 

 

Fig. 14. Typical modern images Mandala / Mangala. 

 

11    Meta-ontology of Intelligence 

The meta-ontology of Intelligence begins together with the Universe from UA, 

associated with the meta-concept of communication (Fig. 10), which is then 

consistently concretized into the meta-concept of cognition as the cyclical 

advancement of a copy of an object into a subject in 4 stages: 1) information (on 

the subject's border) ; 2) knowledge (within the subject); 3) understanding 

(internal harmonization with other knowledge of the subject) and 4) research 

(external harmonization with other properties of the object) (Fig. 15). 

The meta-scheme of cognition is naturally concretized for 1) multiple objects 

(Fig. 16), 2) learning through an intermediate subject (teacher) (Fig. 17) and 3) 

virtualization (exceeding properties) of an object in a virtualizer subject, which 

enhances harmonization due to active search for harmonious states of the object 

(Fig. 18). 
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Fig. 15. Schema of a cognition 

meta-concept 

Fig. 16.  Schema of a multiple 

cognition meta-concept 

 

Fig. 17. Schema of a teaching meta-concept. 

 

 
Fig. 18. Schema of a virtualization meta-concept. 

 

12    Meta-methods of cognition 

1) Cognition is a special case of harmonization of phenomena with concepts, 

therefore, 2) Meta-Law is the initial method of cognition, 3) which seeks and 

implements all possible ways of using categories to establish connections 

between phenomena, 4) which are further concretized by derivative methods in 

various situations, 5) specific universal of which RW (STM-Complex) has 

Conditioned Reflex (CR), 6) developing the ideas of the Nobel laureate I. 

Pavlov. 

The conditioned reflex (CR), according to the original Meta-Law, identifies and 

copies the invisible categories of the cognized object-phenomenon into the 

visible concepts of the subject-phenomenon, starting from the subject's zero 

ability according to the following complementary concept (Fig. 19): 

Definition. Knowledge is concepts and facts. 

Definition. Cognition is the restoration (copying) of the categories of the 

phenomenon-object into the concepts of the phenomenon-subject. 
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Definition. The initial method of cognition in CR is induction, which uses the 

specifics of the structure of the AW and generalizes the phenomena / lower 

cognized concepts by highlighting common parts in the corresponding subject 

area. 

Consequence. Induction builds up error quickly and stops prematurely without 

reaching higher meta-concepts. 

Definition. The secondary method of cognition in CR is deduction, which by 

exhaustive search consistently combines the cognized concepts and reveals 

additional concepts missed by induction. 

Consequence. The joint combination of induction / deduction raises the level of 

abstraction of concepts, but does not guarantee the achievement of IA. 

Consequence. In the subject, two opposite streams of inductive and deductive 

concepts arise, which, as cognition progresses, should asymptotically converge. 

Consequence. Coinciding inductive and deductive concepts in flows form, 

accumulate and improve a hypothetical system of concepts (knowledge). 

Consequence. Inconsistent inductive and deductive concepts in streams are sent 

for inquiry to eliminate all external (with a cognizable phenomenon) / internal 

(among themselves) contradictions. 

Consequence. As it is inquired, the system of knowledge should asymptotically 

approach the available Universal categories. 

Consequence. The harmonized structure of the CR corresponds to a typical 

dichotomy of a biological brain into two specialized hemispheres with the 

expected internal functional similarity (Fig. 20). 

Consequence. Higher meta-concepts are learned exclusively by the Method of 

Sequential Concretization of Hypotheses (CCGM) between the agreed 

conflicting concepts with a hypothetically surmountable distance between them 

in order to eliminate the current contradictions / incompleteness of the acquired 

knowledge system (Fig. 21). 

Definition. A hypothesis is a statement that has not been proven false. 

Hypothesis. Induction, deduction, and CCGM provide complete knowledge of 

beings. 

Consequence. Any knowledge (concepts and facts) is subjective, hypothetical 

and has a measurement of truth exclusively by the volume of an externally / 

internally consistent system of concepts. 

Consequence. The universe is the only criterion for truth. 

 

 

Рис. 19. The scheme of a conditioned reflex 
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Рис. 20. Typical brain dichotomy. 

 

Fig. 21. The scheme of a concepts sequential concretization method with 

overcoming distance between them 

 

13    Phenomena Universal harmonic meta-classification 

Phenomena are harmoniously structured by 3 groups of connections: internal, 

external and connections between them (Fig. 22). 

 

 

Fig. 22. The scheme of a phenomena harmonic structure 

 

Таблица 1. Универсальная гармоничная классификация явлений (мета-

фаза формализации Вселенной) 

 

Continuous harmonization of phenomena sequentially complicates all groups 

of connections between phenomena and enhances their harmonious properties 

with the following principal states (Classes), which generate a universal 

harmonious classification (Table 1). 
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Table 1. Universal harmonious classification of phenomena (meta-phase of the 

formalization of the Universe) 

 

Clas

s 

Name Internal 

structure 

Harmonious  

Resource 

Harmony 

type 

Characteristic 

quantity 

0 Absolute Chaos No No No No 

1 Thermodynamic

s 

No Real relations in the 

Present 

Starting Entropy 

2 Mechanics Present + virtual relations 

during the Past 

interval 

Passive Energy 

3 Intelligence Copy of 

STM-

Complex 

+ virtual relations 

during the Future 

interval 

Active Harmony 

4 The Highest 

Reason 

Real STM-

Complex 

+ real Present 

during Time axis 

Highest Harmony 

5 The Harmon Absolute Absolute 

connectedness 

Absolute Harmony 

6 Absolute 

Chaos 

No No No No 

 

The internal structure of phenomena is sequentially complicated with the 

formation and increase of the Virtual Channel in Time (VTC) in the interval 

from the Past to the Future around the current real Present (Fig. 23), which 

enhances the additional harmonizing ability of the phenomena from degradation 

(Class 1) through preservation (Class 2) until active harmonization in Class 3, 

which becomes prevalent in Class 4 due to full access to the entire axis of Time 

and becomes sufficient for the destruction of STM-Complex into the state of 

Absolute Harmon. The Upper Classes partially inherit the properties of the 

lower Classes. 

 

 

Fig. 23. The scheme of a phenomenon dividing into the Past, Present and 

Harmony 
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Future and its Virtual Time Cannel 

 

14    Virtual Time Channel and Classes characteristic values 

The VTC radically changes the interaction of phenomena (Fig. 24). 

Thermodynamic phenomena almost do not interact with external relations and 

pass them with small changes. Mechanical and living phenomena strongly 

influence external relations with an increase in the VTC and from the passive 

turn to active and destabilizing ones. The Universe is completely self-

determined and depends only on internal relations. 

The intellect forms and consistently develops the VTC in time, which is 

fundamentally different from the Shannon channel in space and provides 

additional internal temporal switching of phenomena and the harmonious 

advantage of the higher Classes over the lower Classes (Fig.). VTC is a key 

attribute of Intelligence as opposed to purely logical non-living phenomena. 

The VTC radically changes the interaction of phenomena (Fig. 24). 

Thermodynamic phenomena almost do not interact with external relations and 

pass them with small changes. Mechanical and living phenomena strongly 

influence external relations with an increase in the VTC and from the passive 

turn to active and destabilizing ones. The Universe is completely self-

determined and depends only on internal relations. 

 

 

 

 

Fig. 24. Classification of the phenomena Classes interaction. 

 

The VTC radically changes the characteristic quantities of phenomena from 

passive entropy (that tends from complex to the simplest states) and 

conservative energy (that preserves phenomena) to active harmony that gathers 

itself back from the simplest to the highest states and thereby creates complex 

phenomena (Fig. 25).  
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Fig. 25. The scheme of characteristic quantities action on phenomena Classes. 

 

Accordingly, Class 1 destroys, Class 2 saves, and Class 3 develops phenomena 

(Table 2). 

The VTC and additional Time harmony correspond to the desired negative 

entropy of E. Schrödinger []. 

 

Table 2. Characteristic Quantities of Harmonic Phenomena Classes 

 

Class Class name Characteristi

c quantity 

Degree of phenomena 

harmony 

1 Quasi-chaos 

(Thermodynamics) 

Entropy Degradation 

2 Natural selection 

(Mechanics) 

Energy Conservation 

3 Life (Intelligence) Harmony Development 

 

15    Meta-definition of Intelligence 

The Universe has 3 main conceptually strongly interconnected initial meta-

divisions: 1) Abstract AW / RW division, 2) Time Past / Present / Future 

division, and 3) division into categories that are initial candidates for Meta-Law 

harmonization. 

Consequence. Abstract, Temporal and Categorical meta-divisions of the 

Universe change only jointly. 

Definition. Intellect is the (active) harmonizer of the joint Abstract, Temporal 

and Categorical meta-divisions of the Universe. 

Consequence. Each category generates a corresponding division of the 

Universe, which is eliminated by deactivation of the category. 

Consequence. In the existing unchanged AW, the categories are unchangeable / 

non-removable and it is only possible to reduce / avoid the conditions of their 

action on the phenomena that are identified and fulfilled by the corresponding 

concepts of Intelligence. 

Consequence. The Meta-Law seeks and applies all kinds of ways of intellectual 

harmonization of any divisions through their cognition (copying) and 

virtualization by a harmonizing subject. 
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Consequence. Intelligence is divided into 1) the UMF of the Intelligence 

(UMFI), the same for the entire Universe, and 2) its various harmonization 

(concretization) with specific ecological niches of existence (ENE) (Fig. 26). 

 

 

Fig. 26. Intelligence concretization scheme. 

 

16    Meta-definition of ecological niches of existence 

Definition. ENE is a part of the Universe harmonized with UMFI. 

Hypothesis. UMFI can flesh out with any part of the Universe. 

Consequence. RW is the first ENE of the Universe, the concretization of UMFI 

with which has properties common to the entire RW. 

The UMFI cyclically harmonizes an object by the following stages: 1) observing 

the object over a certain time interval, 2) building a model of an object's 

process, 3) predicting the development of the model over the next time interval, 

4) predicting the required harmonic state of the object taking into account the 

target of a subject, 5) calculating the control action on the object, 6) returning 

from the subjective into real time, 7) implementing the control action on the 

object, 8) comparing the predicted and actual state of the object and 9) 

correction of the process model (Fig. 27). 
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Fig. 27. The scheme of thinking act in RW 

 

17    Meta-ontology of Highest Reason 

The Meta-Law harmonizes the Universe from the decondensation of the 

Harmon by sequential passage of all Classes with the emergence and sequential 

development of VTC in Classes 4-5 until complete disappearance in Class 6 

Absolute Chaos. 

Class 4 Highest Reason transforms virtual access to a segment of the Time axis 

around the current Present into real access to the entire axis, necessary for its 

destruction by the ultimate harmonization and condensation of Time Complex, 

like all other Complexes. This is achieved by the ultimate increase in all VTC of 

the Universal phenomena to the state of Harmon, embedded in their unifying 

Harmon. 

For this, Highest Reason achieves full knowledge / access to all Complexes and 

activates their condensation by the harmonious resources of the emerging 

Harmon. These properties bring Highest Reason closer to the historically 

traditional concept of God as a necessary component of Universal Cosmology / 

Universe, which for the first time becomes an important object of fundamental 

scientific research. 

 

18    The living Universe 

As biological organisms rationally combine non-living / living Classes, so the 

Universe does the same, forming a single living organism with 6 Classes of 

phenomena to effectively achieve the target state of Absolute Chaos. 

Due to the high degrees of infinity of the Universe, all admissible possibilities 

are realized when moving to the limiting state of Harmon as the Absolute 

Everything, which proves the truth of any consistent formalisms, including 

those substantiated in this study. 

 

19    Universal Cosmology 

Universal Cosmology (UC) следует из следующей непротиворечивой мета-

концепции (Fig. 28): 

Universal Cosmology (UC) follows from the following consistent meta-concept 

(Fig. 28): 
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1. The Absolute Nothing decondenses into the Harmon, 

2. The Harmon is unstable due to enclosure asymmetry and 

3. Disintegrates into the Universe (in the state of disharmonized 

inhomogeneous Prana), 

4. Where the STM-Complex arises and the Meta-Law joins in, 

5. Which brings the Universe back into the state of the Harmon, 

6. That condenses back into the Absolute Chaos, 

7. And this cycle repeats endlessly. 

 

 

Fig. 28. The scheme of Universal Cosmology 

 

All Classes of the Universe in pure / mixed (with inheritance of the lower 

Classes) form fulfill their purposes in the phase of formalization of the Universe 

(Fig. 29). Class 1 Thermodynamics utilizes unpromising weakly harmonious 

phenomena, Class 2 Mechanics stabilizes phenomena and includes passive 

natural selection, Class 3 Life actively develops phenomena into Class 4 Higher 

Intelligence, which activates the entire Universe and, upon reaching the state of 

Harmon, "burns" everything (Abstract + STM- ) Complexes into Absolute 

Nothing. There are no other consistently substantiated mechanisms of 

Cosmology for the present. 
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Fig. 29. The scheme of Classes role in the Universal Cosmology 

 

20    Multiphase Universe 

Harmon suggests the following meta-concept of its decay, explaining and 

generalizing the observed properties of our level of existence of the Universe: 

1. Harmon is a continuum of limiting complexity ∞∞, 

2. Which disintegrates into an inhomogeneous continual Prana 

3. With decreasing complexity (reduction), 

4. Which further continues through atomization (selection of the most 

connected inhomogeneous parts) of Prana 

5. Before the emergence of relatively weak externally connected with each 

other (remaining continuous) entities. 

6. Weak ties naturally form a nested hierarchy at all levels and between them, 

7. Which naturally form the formalisms of beings from phenomena to 

categories. 

8. Categories are supposedly a generalization (condensation) of phenomena to 

eliminate all kinds of internal contradictions in the existing system of things, 

9. Admitting effective combinatorial-logical harmonization of the reduced 

phenomena 

10. Fundamentally similar limited entities 

11. According to the reduced, stable categories 

12. Until reaching the desired target state of Harmon. 

Thus, the Universe exists in several joint successively developing meta-phases 

with fundamentally different properties / mechanics, presented in the minimum 

configuration in Table. 3. They are justified exclusively by a complete mutual 

composition, of which modern science knows only quantum and objective 

(classical) mechanics. 

This work examines only the phases around formalization to obtain a universal 

meta-paradigm of cognition and the corresponding meta-formalisms. 

 

Table 2. Universal meta-phases of the Universe. 

 

№ Phase Purpose Properties 

1 Absolute 

Chaos 

Preliminary phase Unknown origin and resource 

(limited / unlimited), 

decondensation into Harmon, 

mechanics of Nothing. 

2 Harmon 

(Mandala) 

Initial homogeneous 

continuum 

Bose-condensate Harmon of 

extreme complexity ∞∞, nesting 

asymmetry, explosive instability, 

decay, Harmon mechanics. 
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3 Prana Inhomogeneous 

continuum 

T
h
e 

U
n
iv

er
se

 

 

Inhomogeneity, stabilization, the 

emergence of the PVM-Complex, 

the beginning of the Meta-law, 

continual mechanics. 

4 Discretizatio

n 

Emergence of 

entities / 

relations 

In
an

im
at

e 

Starting harmonization, elementary 

particles, quantum mechanics. 

5 Formalizatio

n 

Emergence of 

structures 

Simplification of the Universe, the 

emergence of hierarchies 

(classifications), decreasing orders 

of complexity from ∞∞, finite 

formalisms, partial knowledge, 

limited knowledge, exhaustive 

search, subject mechanics. 

6 Categorizatio

n 

Condensation of 

indistinguishabl

e structures 

7 Cognition Copying of 

structures  

Complication of phenomena, 

mechanics of great complexity. 

8 Life, 

Intellect 

Partial cognition 

L
iv

in
g
 

Harmonization of phenomena, 

intellectual mechanics. 

9 Higher 

Reason 

Complete 

cognition 

Destruction of the STM-Complex, 

the mechanic of the Higher Reason 

10 The Harmon Resulting homogeneous 

continuum 

Transformation of phenomena into 

Harmon, Harmon mechanics. 

11 Condensatio

n 

Absolute fusion of all 

structures into Nothing 

Exhaustion of the resource of 

harmonization, the mechanics of 

condensation. 

12 Absolute 

Chaos 

Final phase Disappearance of all things into 

Absolute Nothing, mechanics of 

Nothing. 

 

21    Constructor set of Universes 

The hypothetical Universe's Perpetuum Mobile radically changes the classical 

views of the world order: 

1. When a Harmon decays, it obviously creates (“sets fire to”) an infinite 

number of parent / daughter decaying Harmon, which are involved in its 

Universe as a source of singularity. 

2. Singularities produce Prana (RW), which partially and presumably 

unambiguously condenses categorically into AW (UAP). In the case of 

unambiguity, singularities produce the same fully compatible UAP and "merge" 

Prana into a single Universe. Otherwise different UAPs, they give rise to 
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separate Universes. Further (our) Universe of 2 concepts and their negations: 

Constancy / Variability and Regularity / Irregularity forms STM-Complex (Fig. 

30). 

 

 

Рис. 30. Схема распада Гармона в его Комплексы. 

 

3. Internal Complexes Space, Time and Matter of the Universe have different 

formulas and properties that allow to distinguish them as separate entities that 

can mutually separate and generate internal inhomogeneities with known 

relativistic effects. 

4. Presumably, each part of Harmon -∂H generates proportional parts of Space 

∂S, Time ∂T and Matter ∂M: 

 

 -∂H = ∂S + ∂T + ∂M; 

 

the mutual relationship of which should not change due to the fundamental 

homogeneity of Harmon. Then the mutual partial derivatives of the Complexes 

must be constant:  

 

 ∂S/∂T = VST,  ∂M/∂T = VMT, 

 ∂T/∂T = 1,  ∂M/∂S = VMS 

 

which is actually observed for a known constant speed of light VST = c and in 

principle allows only short-range action and prohibits long-range action inside 

the STM-Complex. 

5. All the Universe meta-phases coexist, starting with the state of Harmon, 

all parts of which, by definition, are directly fully interconnected in the absence 

of a PVM-Complex, and support absolute long-range action, which should slow 

down as the STM-Complex forms and short-range action arises, but partially 

acts in the soft transition boundaries between meta-phases. 

6. As an inexhaustible source of all that exists from nothing, Universe's 

Perpetuum Mobile basically allows the preservation of the Past / Future with 

Time disabled and instantaneous movement throughout the saved Time from the 

beginning to any previously reached moment, after which the indefinite Future 

begins (Fig. 31). Time can be switched on at any point of the Past by 

transferring there any point of singularity, which are formed indefinitely as 

products of the decay of Harmon. 
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Fig. 31. Control scheme for the structure and long-range action of the Universe. 

 

7. These mechanisms of structuring and long-range action of the Universe allow 

inanimate / living means to observe / change the entire Universe from beginning 

to end, cut / insert new trajectories of development, create parallel worlds / 

Universes, guarantee the achievement of many desired subjective goals by the 

Higher Intelligence. 

8. Thus, the Supreme Intelligence, through direct access to all Complexes, is 

able to obtain the possibilities of long-range action 1) complete through the 

meta-phase of Harmon, 2) partial in its vicinity and 3) complete in the saved 

Universe with Time turned off for effective control of the entire infinite 

Universe. 

9. Due to the infinite number of naturally occurring parameters. The Universe is 

a constructor set that allows you to create arbitrary universes with the desired 

characteristics. 

 

22    Structural meta-classifications of relations 

An enumeration of elementary structures produces a structural meta-

classification of external relations that generate the following important 

fundamental properties of the Universe. Since universalization refines, 

simplifies, inherits and brings together concepts, many of them are repeated in 

their properties and with different names that turn out to be superfluous. 

The unary relations, which are the simplest relating to entities themselves (Fig. 

32). 
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Fig. 32. The schemes of Determinism / Existence and 

Freedom / Nonexistence of entities 

 

Definition. Determinism (Dependency) is the presence of incoming relations of 

entity. 

Definition. Freedom (Independence) is the absence of incoming relations of 

entity. 

Definition. Existence (Action, Influence) is the presence of outgoing relations of 

entity. 

Definition. Nonexistence is the absence of outgoing relations of entity. 

Consequence. Free non-existent phenomena are deleted from the Universe by its 

definition. 

The combination of these classes generates complex configurations of external 

relations of an entity with the inheritance of corresponding properties. 

The binary relations, which are the next in complexity (Fig. 33). 

 

 

Fig. 33. The schemes of Certainty and Uncertainty of entities. 

 

Definition. Certainty of an entity-object relative to an entity-subject is the 

existence of relations from the first to the second one. 

Definition. Uncertainty of an entity-object relative to an entity-subject is the 

absence of relations from the first to the second one. 

Definition. Relativity is a dependence (structure) of a relation on other relation.  

The multiple (indirect) relations of entities through intermediate entities 

include intermediate entities.They can lose copies of initial entities-objects 

without the loss of general connectivity (coExistence in the common Universe) 

with entities-subjects, which generates full indirect Uncertainty of entities. 

It is shown in the example how entity 1 loses indirect Existence for entity 4 

(inside the common Universe) which results in full Uncertainty of entity 1 for 

entity 4 and Freedom of entity 4 for entity 1. 

The restriction on carrier capacity of entities relations. The relations with 

limited carrier capacity transfer only part of a copy of entities-objects and 

generate corresponding partial Uncertainty of entities-objects relative to entities-

subjects that has (structural) measurement (Fig. 35). 

 

 

Entity -
object 

Entity -
object 

No relations 
 

Uncertainty 
 

Certainty 
 

Relation 

Entity - 
subject 

Entity -
subject 

599



A. V. Sosnitsky, A. I. Shevchenko 

  

Fig. 34. The scheme of loss of indirect 

connectivity of entities (on the 

example of entities 1 and 4) 

Fig. 35. The scheme of partial 

Uncertainty of formalization with the 

restriction on carrier capacity of relations 

 

Division and mixture (distortion) of entities relations. Indirect relations 

can divide copies of entities-objects into several different copies or mix copies 

of different entities in one copy. The result is transferred further with the loss of 

entities-objects membership (Fig. 36). Such copies are perceived as a reduction 

and distortion (noise) of relations and, therefore, generate Uncertainty of 

entities. 

 

 

Fig. 36. The scheme of emergence of Uncertainty owing to 

division and mixture (distortion) of entities relations 

 

23    Stability / instability of phenomena and the “boiling” Universe 
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1) If we use the measure of stability of phenomena ∆H / H, where H is the value 

of harmony, and ∆H is its change, then 2) phenomena at low degrees of 

harmonization are less stable than at high ones, which 3) enhances external 

dependence and 4) facilitates management of them, which 5) is widely observed 

in nature now and 6) indicates the initial stage of harmonization of the Universe. 

7) With an increase in internal harmony, the stability of phenomena increases, 

8) as well as external controllability decreases, but 9) the harmonizing ability of 

phenomena increases, 10) which prevails in combination with pp. 2-4 and 11) 

explosively (AntiExplosion) forces the environment of the phenomenon into a 

state of local Harmon 12) with further decondensation into local Absolute 

Nothing 13) in the final stage of the Universe, 14) where this completely 

disappearing region returns. 

Thus, the hypothesis of the limitless infinitely “boiling” Universe is 

substantiated, the multiple singularities of the collapsing Harmon of which 

continuously produce existence from quasi-chaos to the state of local Harmon in 

some areas, which further “collapse” as they mature under the control of the 

Higher Mind grown in them. Today it is the only simplest complete way to 

scientifically consistently explain our Universe (Fig. 37). 

 

 
 

Fig. 37. The scheme of the “boiling” Universe hypothesis 

 

24    Meta-resource of the meta-Universe 

Thus, the UC substantiates Absolute All (Harmon) / Nothing by some single 

persistent (limited) unknown meta-Universal resource Absolute Nothing, which 

continuously circulates at the meta-Universal level with different forms of 

existence. 

The knowledge of such a resource is very limited due to going beyond the limits 

of our Universe, on the basis of which we build all kinds of knowledge and 

assumptions, and, probably, is possible only in Class 4. Perhaps it is a 

consequence of the Harmon of a higher level of the native Harmon of the 

Universe, which forces the higher harmonic means return your borrowed part 

from the low-level collapsing Harmon. 

The Universe 

Singularities and their 

short range areas 

Condensation areas 

of Local Harmones 
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In combination with the possible ambiguity of the structure of the UAP and, 

therefore, Class 4, one can also assume a diverse society of Class 4 at the meta-

Universe level instead of its monoblock identical structure within the Universe. 
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26    Conclusion 

1. Any serious system of knowledge begins with the initial meta-concepts, the 

interest and significance of which has been growing widely and strongly in 

recent years in many areas of mankind, including fundamental science and high 

technologies. However, along with high-level technological advances, the well-

known chronically unsolvable stagnant problematic of studying complex higher 

phenomena is growing more and more, indicating the fundamental shortcomings 

of the existing general scientific paradigm of cognition, up to the formal / actual 

illegitimacy of the modern scientific system of knowledge. 

2. This problem is obviously solved by the transition from an axiomatic private 

paradigm to a new universal meta-paradigm of knowledge, which for the first 

time allows to fundamentally achieve UA and unite the system of universal 

concepts derived from it into a single UMF, which in principle allows 

formalization of all simple and complex Ecumenical phenomena without 

exception. 

3. In a series of works by the authors, a universal meta-paradigm of knowledge 

is substantiated and the possibility of creating a likely single exact consistent 

UMF is shown on the example of the developed Universal system of meta-

concepts in a structural representation as the most appropriate to the initial 

properties of our Universe and allowing in the future a set-theoretic analogy and 

formal combinatorial -logical transformations. 

4. For this, for the first time, it was possible to reasonably limit the 

fundamentally infinite recursion of the derivation of meta-concepts by the 

specific properties of the Universe and formally define all the basic concepts 

used with a supposedly surmountable conceptual distance between them, 

formulate the initial UA and higher meta-concepts, properties and laws of the 

Universe, the main of which is reveals the value of Harmony, based on the 

connectivity of beings, and the meta-Law of its increase, which directs the 

movement of beings and the Universe as a whole. 

5. Universal phenomena are naturally classified according to the degree of 

internal harmonization into 6 main Classes, of which Life and the Higher Mind 

play the main role in the existence of the Universe. Universalization allowed for 

the first time to scientifically define Intellect as an active harmonizer that 

overcomes the 3 main harmonic Abstract, Temporal and Categorical meta-

divisions of the Universe, which has a single initial UMFI for the entire living 

world and a different concretization for an infinite number of ecological niches 
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of existence, generating all the living diversity of the Universe. UMFI 

fundamentally legitimizes both all research / development in this area, and 

science in general as a product of exclusively intellectual activity. 

6. The Universe turns out to be a complex living self-organizing organism, 

rationally combining all Classes, in which the Supreme Mind for the first time 

becomes the object of scientific research and the main acting being at the final 

stage of existence. 

7. The limit of any harmonization is the meta-state of Harmon, which turns our 

ideas about the world around as Absolute Everything, which condenses into 

Absolute Nothing and decondenses back, overcoming many fundamental 

contradictions through the meta-concept of the Universal Perpetuum Mobile, 

impossible within the Universe, but possible on its border. 

8. Universal Perpetuum Mobile reasonably deduces UC, which is radically 

different from the Big Bang hypothesis. The Universe is infinite always / 

everywhere, has no physical boundaries in Space. Time and Matter, cyclically 

passes through all Classes of development, has unlimited STM to achieve the 

state of Harmon / Absolute Nothing (harmonious death of the Universe) and is 

reborn from the singularities of the disintegrating Harmon, presumably arising 

from them in separate regions, forming a "boiling" Universe. 

9. The Universe has innate parametric properties of a constructor, which may 

well be used by the Higher Intelligence to create arbitrary Universes with 

different properties, 

10. The Universe has at least 12 coexisting nested phases of the state, 

sequentially reducing everything that exists to ensure effective harmonization up 

to the achievement of the final goal - the state of Harmon / Absolute Nothing 

with the corresponding mechanics, of which axiomatic science knows only two 

- continuous quantum and discrete formal classical mechanics ... 

Universalization opens up other previously unknown mechanics to science to 

reveal new fundamental natural laws. 

11. Universalization is fully consistent / does not contradict the known scientific 

/ historical facts and forms the largest system of grounded concepts, including 

the well-known axiomatic science as a partial derivative case. Continuation of 

universalization develops UMF and presumably leads to the achievement of a 

supposedly complete exact state, which deduces the same formalisms of all 

known / unknown Ecumenical phenomena, as far as possible in the 

formalization phase, combined with similar reducing means of describing 

entities in other phases. Despite the initial state of the Universal Theory, any of 

its applications are already radically changing the traditional ideas about the 

world around us, especially complex chronically unknowable phenomena. 

12. The ultimate meta-level of abstraction of universal concepts today is an 

urgent prerequisite for the development of knowledge, in which, undoubtedly, 

many teams of leading scientists should participate, like the scientific school of 

Bourbaki. The seemingly unusual presentation of many important universal 

concepts follows exclusively from the incompleteness of modern axiomatic 

science, as well as ancient knowledge in comparison with the latter. 
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Abstract. We investigate the existence of positive solutions for a Riemann-Liouville
fractional differential equation with sequential derivatives, a positive parameter and a
nonnegative singular nonlinearity, subject to nonlocal boundary conditions which contain
Riemann-Stieltjes integrals and various fractional derivatives. In the proof of the main
result, we use the fixed point index theory.
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1 Introduction

We consider the nonlinear ordinary fractional differential equation with sequential deriva-
tives

Dα
0+

(
q(t)Dβ

0+v(t)
)

= λr(t)f(t, v(t)), t ∈ (0, 1), (1)

subject to the nonlocal boundary conditions
v(j)(0) = 0, j = 0, . . . , n− 2, Dβ

0+v(0) = 0,

q(1)Dβ
0+v(1) = aq(ξ)Dβ

0+v(ξ), Dγ0
0+v(1) =

p∑
i=1

∫ 1

0

Dγi
0+v(t) dHi(t),

(2)

where α ∈ (1, 2], β ∈ (n− 1, n], n ∈ N, n ≥ 3, p ∈ N, γi ∈ R, i = 0, . . . , p, 0 ≤ γ1 < γ2 <
· · · < γp ≤ γ0 < β − 1, γ0 ≥ 1, λ > 0, a ≥ 0, ξ ∈ (0, 1), q : [0, 1]→ (0,∞) is a continuous
function, f : [0, 1]× (0,∞)→ [0,∞) is a continuous function which may have singularity
at the second variable in the point 0, the function r : (0, 1) → [0,∞) is continuous and
may be singular at t = 0 and/or t = 1, Dς

0+ denotes the Riemann-Liouville fractional
derivative of order ς, for ς = α, β, γ0, γ1, . . . , γp, and the integrals from the boundary
conditions (2) are Riemann-Stieltjes integrals with Hi, i = 1, . . . , p functions of bounded
variation.

In this paper, we present some assumptions on the function f and intervals for the
parameter λ such that problem (1),(2) has at least one positive solution. By a positive
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solution of (1),(2) we mean a function v ∈ C[0, 1] satisfying (1) and (2) with v(t) > 0
for all t ∈ (0, 1]. In the proof of our main theorem we use some results from the fixed
point index theory. In what follows we present some recent results connected with our
problem (1),(2). In [9], the authors studied the existence of nonnegative solutions for the
fractional integro-differential equation

Dγ
0+v(t) + f(t, v(t), T v(t),Sv(t)) = 0, t ∈ (0, 1),

with the multi-point boundary conditions

v(0) = v′(0) = · · · = v(n−2)(0) = 0, Dp
0+v(1) =

m∑
i=1

aiD
q
0+v(ξi),

where γ ∈ R, γ ∈ (n − 1, n], n ∈ N, n ≥ 3, ai, ξi ∈ R for all i = 1, . . . ,m, (m ∈ N), 0 <
ξ1 < · · · < ξm ≤ 1, p, q ∈ R, p ∈ [1, n − 2], q ∈ [0, p], T v(t) =

∫ t
0
K(t, s)v(s) ds, Sv(t) =∫ 1

0
H(t, s)v(s) ds for all t ∈ [0, 1], and f is a nonnegative function which satisfies some

assumptions. In the proofs of the main results they used the Banach contraction mapping
principle and the Krasnosel’skii fixed point theorem for the sum of two operators. In [13],
by using the Guo-Krasnosel’skii fixed point theorem and some height functions defined on
special bounded sets, the author proved the existence and multiplicity of positive solutions
for the nonlinear fractional differential equation

Dγ
0+v(t) + f(t, v(t)) = 0, t ∈ (0, 1), (3)

supplemented with the nonlocal boundary conditions

v(0) = v′(0) = · · · = v(n−2)(0) = 0, Dp
0+v(1) =

∫ 1

0

Dq
0+v(t) dH(t),

where γ ∈ R, γ ∈ (n − 1, n], n ∈ N, n ≥ 3, p, q ∈ R, p ∈ [1, n − 2], q ∈ [0, p], H is
a function with bounded variation, and the nonlinearity f may change sign and may be
singular at the points t = 0, t = 1 and/or v = 0. In [1], the authors investigated the
existence of multiple positive solutions for the equation (3) with the boundary conditions

v(0) = v′(0) = · · · = v(n−2)(0) = 0, Dβ0
0+v(1) =

m∑
i=1

∫ 1

0

Dβi
0+v(t) dHi(t), (4)

where m ∈ N, βi ∈ R for all i = 0, . . . ,m, 0 ≤ β1 < β2 < · · · < βm ≤ β0 < γ − 1, β0 ≥ 1,
Hi, i = 1, . . . ,m are functions of bounded variation, the nonlinearity f may change sign
and may be singular at the points t = 0, t = 1 and/or in the space variable v. They used
in [1] various height functions of the nonlinearity of equation defined on special bounded
sets, the Leggett-Williams theorem and the Krasnosel’skii fixed point index theorem. In
[19], the authors studied the fractional differential equation

Dγ
0+v(t) + λh(t)f(t, v(t)) = 0, t ∈ (0, 1), (5)

subject to nonlocal boundary conditions (4), where λ is a positive parameter, the non-
negative function f(t, v) may have singularity at v = 0 and the nonnegative function h(t)
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may be singular at t = 0 and/or t = 1. Under some assumptions for the functions h and
f , they established intervals for the parameter λ such that problem (5),(4) has positive
solutions. These intervals for λ are expressed by using the principal characteristic value
of an associated linear operator. In the proof of the main theorems they used the fixed
point index theory. A related semipositone problem is also studied in [19] by using the
Guo-Krasnosel’skii fixed point theorem. In [14], the author investigated the fractional
differential equation (3) with the nonlocal boundary conditions

v(0) = v′(0) = · · · = v(n−2)(0) = 0, Dβ0
0+v(1) =

m∑
i=1

∫ 1

0

ai(t)D
βi
0+v(t) dHi(t), (6)

where m ∈ N, βi ∈ R for all i = 0, . . . ,m, 0 ≤ β1 < β2 < · · · < βm < γ − 1, 1 ≤
β0 < γ − 1, Hi, i = 1, . . . ,m, are functions of bounded variation, the functions ai ∈
C(0, 1) ∩ L1(0, 1), i = 1, . . . ,m, and the nonlinearity f is nonnegative and it may be
singular at the points t = 0, t = 1 and/or v = 0. She presented conditions for the data
of problem connected to the spectral radii of some associated linear operators such that
the problem (3),(6) has at least one or two positive solutions. In the proof of the main
existence theorems the author used an application of the Krein-Rutman theorem in the
space C[0, 1] and the fixed point index theory. In [10], the authors studied the system of
nonlinear fractional differential equations with sequential derivatives Dα1

0+

(
Dβ1

0+v(t)
)

+ λf(t, v(t), w(t)) = 0, t ∈ (0, 1),

Dα2
0+

(
Dβ2

0+w(t)
)

+ µg(t, v(t), w(t)) = 0, t ∈ (0, 1),
(7)

supplemented with the nonlocal coupled boundary conditions
v(j)(0) = 0, j = 0, . . . , n− 2; Dβ1

0+v(0) = 0, Dγ0
0+v(1) =

p∑
i=1

∫ 1

0

Dγi
0+w(t) dHi(t),

w(j)(0) = 0, j = 0, . . . ,m− 2; Dβ2
0+w(0) = 0, Dδ0

0+w(1) =

q∑
i=1

∫ 1

0

Dδi
0+v(t) dKi(t),

(8)
where α1, α2 ∈ (0, 1], β1 ∈ (n − 1, n], β2 ∈ (m − 1,m], n, m ∈ N, n, m ≥ 3, p, q ∈ N,
γi ∈ R for all i = 0, 1, . . . , p, 0 ≤ γ1 < γ2 < · · · < γp ≤ δ0 < β2 − 1, δ0 ≥ 1, δi ∈ R
for all i = 0, 1, . . . , q, 0 ≤ δ1 < δ2 < · · · < δq ≤ γ0 < β1 − 1, γ0 ≥ 1, λ > 0, µ > 0, f
and g are sign-changing continuous functions that may be singular at t = 0 and/or t = 1,
Hi, i = 1, . . . , p and Kj, j = 1, . . . , q are functions of bounded variation. Under some
assumptions on the nonsingular/singular functions f and g, they presented intervals for
parameters λ and µ such that problem (7),(8) has at least one or two positive solutions.
In the main existence results they applied the nonlinear alternative of Leray-Schauder
type and the Guo-Krasnosel’skii fixed point theorem. The existence, multiplicity and
nonexistence of positive solutions for systems of Riemann-Liouville fractional differential
equations with ϕ-Laplacians and nonnegative nonlinearities, with or without parameters,
subject to the coupled boundary conditions (8) or uncoupled boundary conditions which
contains various fractional derivatives were investigated in [18] and [4]. We also mention
the books [2], [3], [6]-[8], [11], [12], [15]-[17], [20] and their references for other results
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obtained in the last years and for the applications of fractional differential equations in
various fields.

The paper is organized as follows. In Section 2 we study a linear fractional boundary
value problem associated to our problem (1),(2), and we give some properties of the
associated Green functions. Section 3 is devoted to the main existence theorem for (1),(2),
and in Section 4 we present an example which illustrates our result.

2 Preliminary results

We consider the fractional differential equation

Dα
0+(q(t)Dβ

0+v(t)) = x(t), t ∈ (0, 1), (9)

with the boundary conditions (2), where q ∈ C([0, 1], (0,∞)) and x ∈ C(0, 1) ∩ L1(0, 1).
We denote by

∆1 = 1− aξα−1, ∆2 =
Γ(β)

Γ(β − γ0)
−

p∑
i=1

Γ(β)

Γ(β − γi)

∫ 1

0

ϑβ−γi−1 dHi(ϑ). (10)

Lemma 2.1 If ∆1 6= 0 and ∆2 6= 0, then the unique solution v ∈ C[0, 1] of problem
(9),(2) is given by

v(t) =

∫ 1

0

G2(t, ϑ)

(
1

q(ϑ)

∫ 1

0

G1(ϑ, ζ)h(ζ) dζ

)
dϑ, t ∈ [0, 1], (11)

where

G1(t, ϑ) = g1(t, ϑ) +
atα−1

∆1

g1(ξ, ϑ), (t, ϑ) ∈ [0, 1]× [0, 1], (12)

with

g1(t, ϑ) =
1

Γ(α)

{
tα−1(1− ϑ)α−1 − (t− ϑ)α−1, 0 ≤ ϑ ≤ t ≤ 1,
tα−1(1− ϑ)α−1, 0 ≤ t ≤ ϑ ≤ 1,

(13)

and

G2(t, ϑ) = g2(t, ϑ) +
tβ−1

∆2

p∑
i=1

(∫ 1

0

g3i(τ, ϑ) dHi(τ)

)
, (t, ϑ) ∈ [0, 1]× [0, 1], (14)

with

g2(t, ϑ) =
1

Γ(β)

{
tβ−1(1− ϑ)β−γ0−1 − (t− ϑ)β−1, 0 ≤ ϑ ≤ t ≤ 1,
tβ−1(1− ϑ)β−γ0−1, 0 ≤ t ≤ ϑ ≤ 1,

g3i(t, ϑ) =
1

Γ(β − γi)

{
tβ−γi−1(1− ϑ)β−γ0−1 − (t− ϑ)β−γi−1, 0 ≤ ϑ ≤ t ≤ 1,
tβ−γi−1(1− ϑ)β−γ0−1, 0 ≤ t ≤ ϑ ≤ 1.

i = 1, . . . , p.

(15)

Proof. We denote by q(t)Dβ
0+v(t) = w(t). Then problem (9),(2) is equivalent to the

following two boundary value problems

(I)

{
Dα

0+w(t) = x(t), t ∈ (0, 1),
w(0) = 0, w(1) = aw(ξ),

4
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and

(II)


Dβ

0+v(t) = w(t)/q(t), t ∈ (0, 1),

v(j)(0) = 0, j = 0, . . . , n− 2, Dγ0
0+v(1) =

p∑
i=1

∫ 1

0

Dγi
0+v(t) dHi(t).

By Lemma 4.1.5 from [8], the unique solution w ∈ C[0, 1] of problem (I) is

w(t) = −
∫ 1

0

G1(t, ϑ)x(ϑ) dϑ, t ∈ [0, 1], (16)

where G1 is given by (12). By Lemma 2.2 from [1], the unique solution v ∈ C[0, 1] of
problem (II) is

v(t) = −
∫ 1

0

G2(t, ϑ)w(ϑ)/q(ϑ) dϑ, t ∈ [0, 1], (17)

where G2 is given by (14). Now by using (16) and (17) we obtain the solution v of problem
(9),(2) which is given by relation (11). 2

By applying some properties of functions g1, g2, g3i, i = 1, . . . , p given by (13) and
(15) (see [8] and [3]), we deduce the following result.

Lemma 2.2 If Hi, i = 1, . . . , p are nondecreasing functions, ∆1 > 0, ∆2 > 0, then the
functions G1 and G2 given by (12) and (14) have the properties:

a) G1, G2 : [0, 1]× [0, 1]→ [0,∞) are continuous functions;
b) G1(t, ϑ) ≤ J1(ϑ), ∀ (t, ϑ) ∈ [0, 1]× [0, 1], where

J1(ϑ) = h1(ϑ) +
a

∆1

g1(ξ, ϑ), ∀ϑ ∈ [0, 1],

and h1(ϑ) = 1
Γ(α)

(1− ϑ)α−1, ϑ ∈ [0, 1];

c) G2(t, ϑ) ≤ J2(ϑ), ∀ (t, ϑ) ∈ [0, 1]× [0, 1], where

J2(ϑ) = h2(ϑ) +
1

∆2

p∑
i=1

∫ 1

0

g3i(τ, ϑ) dHi(τ), ∀ϑ ∈ [0, 1],

and h2(ϑ) = 1
Γ(β)

(1− ϑ)β−γ0−1(1− (1− ϑ)γ0), ϑ ∈ [0, 1].

d) G2(t, ϑ) ≥ tβ−1J2(ϑ), ∀ (t, ϑ) ∈ [0, 1]× [0, 1].

By using Lemma 2.2, we easily obtain the following lemma (see also [8]).

Lemma 2.3 If Hi, i = 1, . . . , p are nondecreasing functions, ∆1 > 0, ∆2 > 0, and
x ∈ C(0, 1) ∩ L1(0, 1) with x(t) ≥ 0 for all t ∈ (0, 1), then the solution v of problem
(9),(2) given by (11) satisfies the properties v(t) ≥ 0 for all t ∈ [0, 1] and v(t) ≥ tβ−1v(η)
for all t, η ∈ [0, 1].
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3 Existence of positive solutions

In this section we present some conditions on the function f and intervals for the parameter
λ such that problem (1),(2) has at least one positive solution. We consider the Banach
space X = C[0, 1] with the supremum norm ‖v‖ = supt∈[0,1] |v(t)|, and we define the cones

C = {v ∈ X , v(t) ≥ 0, ∀ t ∈ [0, 1]}, S = {v ∈ X , v(t) ≥ tβ−1‖v‖, ∀ t ∈ [0, 1]} ⊂ C.

We also define the operator E : C → C and the linear operator F : X → X by

Ev(t) = λ

∫ 1

0

G2(t, ϑ)
1

q(ϑ)

(∫ 1

0

G1(ϑ, τ)r(τ)f(τ, v(τ)) dτ

)
dϑ, t ∈ [0, 1], v ∈ C,

Fv(t) =

∫ 1

0

G2(t, ϑ)
1

q(ϑ)

(∫ 1

0

G1(ϑ, τ)r(τ)v(τ) dτ

)
dϑ, t ∈ [0, 1], v ∈ X .

We see that v is a solution of problem (1),(2) if and only if v is a fixed point of operator
E . For θ > 0 we denote by Sθ = Bθ ∩ S and Sθ = Bθ ∩ S, (Bθ = {v ∈ X , ‖v‖ < θ},
Bθ = {v ∈ X , ‖v‖ ≤ θ}, ∂Bθ = {v ∈ X , ‖v‖ = θ}).

We present now the assumptions that we will use in this section.

(H1) α ∈ (1, 2], β ∈ (n − 1, n], n ∈ N, n ≥ 3, p ∈ N, γi ∈ R, i = 0, . . . , p, 0 ≤ γ1 <
γ2 < · · · < γp ≤ γ0 < β − 1, γ0 ≥ 1, λ > 0, a ≥ 0, ξ ∈ (0, 1), q : [0, 1] → (0,∞)
is a continuous function, Hi : [0, 1] → R, i = 1, . . . , p are nondecreasing functions,
λ > 0, and ∆1 > 0, ∆2 > 0 (∆1, ∆2 are given by (10)).

(H2) The function r ∈ C((0, 1), [0,∞)) and 0 <
∫ 1

0
r(ϑ) dϑ <∞.

(H3) The function f ∈ C([0, 1]× (0,∞), [0,∞)) and for any 0 < θ1 < θ2 we have

lim
m→∞

sup
v∈Sθ2\Sθ1

∫
Im

r(ϑ)f(ϑ, v(ϑ)) dϑ = 0,

where Im =
[
0, 1

m

]
∪
[
m−1
m
, 1
]
.

Lemma 3.1 We suppose that assumptions (H1)− (H3) hold. Then for any 0 < θ1 < θ2,
the operator E : Sθ2 \ Sθ1 → S is completely continuous.

Proof. By (H3) we obtain that there exists a number m1 ≥ 3 such that

sup
v∈Sθ2\Sθ1

∫
Im1

r(ϑ)f(ϑ, v(ϑ)) dϑ < 1. (18)

For v ∈ Sθ2 \ Sθ1 , we find that there exists ω0 ∈ [θ1, θ2] such that ‖v‖ = ω0, and then

tβ−1θ1 ≤ tβ−1ω0 ≤ v(t) ≤ ω0 ≤ θ2, ∀ t ∈ [0, 1].
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Let M1 = max
{
f(t, y), t ∈

[
1
m1
, m1−1

m1

]
, y ∈

[
1

mβ−1
1

θ1, θ2

]}
. By Lemma 2.2, (H2), (H3)

and (18), we deduce

sup
v∈Sθ2\Sθ1

Ev(t) = sup
v∈Sθ2\Sθ1

λ

∫ 1

0

G2(t, ϑ)
1

q(ϑ)

(∫ 1

0

G1(ϑ, τ)r(τ)f(τ, v(τ)) dτ

)
dϑ

≤ sup
v∈Sθ2\Sθ1

λ

∫ 1

0

J2(ϑ)
1

q(ϑ)

(∫ 1

0

J1(τ)r(τ)f(τ, v(τ)) dτ

)
dϑ

≤ sup
v∈Sθ2\Sθ1

λ

∫ 1

0

J2(ϑ)
1

q(ϑ)

(∫
Im1

J1(τ)r(τ)f(τ, v(τ)) dτ

)
dϑ

+ sup
v∈Sθ2\Sθ1

λ

∫ 1

0

J2(ϑ)
1

q(ϑ)

(∫ m1−1
m1

1
m1

J1(τ)r(τ)f(τ, v(τ)) dτ

)
dϑ

≤ λJ10

∫ 1

0

J2(ϑ)
1

q(ϑ)
dϑ+ λM1

(∫ 1

0

J2(ϑ)
1

q(ϑ)
dϑ

)(∫ m1−1
m1

1
m1

J1(τ)r(τ) dτ

)
≤ λJ10

(∫ 1

0

J2(ϑ)
1

q(ϑ)
dϑ

)(
1 +M1

∫ 1

0

r(τ) dτ

)
<∞,

where J10 = maxs∈[0,1] J1(s) > 0. This gives us that the operator E is well defined.
Next we show that E : Sθ2 \ Sθ1 → S. Indeed, for any v ∈ Sθ2 \ Sθ1 and t ∈ [0, 1], we

have

Ev(t) = λ

∫ 1

0

G2(t, ϑ)
1

q(ϑ)

(∫ 1

0

G1(ϑ, τ)r(τ)f(τ, v(τ)) dτ

)
dϑ

≤ λ

∫ 1

0

J2(ϑ)
1

q(ϑ)

(∫ 1

0

G1(ϑ, τ)r(τ)f(τ, v(τ)) dτ

)
dϑ,

and then

‖Ev‖ ≤ λ

∫ 1

0

J2(ϑ)
1

q(ϑ)

(∫ 1

0

G1(ϑ, τ)r(τ)f(τ, v(τ)) dτ

)
dϑ.

By Lemma 2.2, we also obtain

Ev(t) ≥ λtβ−1

∫ 1

0

J2(ϑ)
1

q(ϑ)

(∫ 1

0

G1(ϑ, τ)r(τ)f(τ, v(τ)) dτ

)
dϑ

≥ tβ−1‖Ev‖, ∀ t ∈ [0, 1],

hence Ev ∈ S. Then E(Sθ2 \ Sθ1) ⊂ S.
We prove now that E : Sθ2 \ Sθ1 → S is completely continuous. We suppose that

D ⊂ Sθ2 \ Sθ1 is an arbitrary bounded set. By the first part of the proof, we see that
E(D) is uniformly bounded. We show next that E(D) is equicontinuous. Indeed, for ε > 0
there exists a natural number m2 ≥ 3 such that

sup
v∈Sθ2\Sθ1

∫
Im2

r(ϑ)f(ϑ, v(ϑ)) dϑ <
ε

4λJ10

(∫ 1

0

J2(ϑ)

q(ϑ)
dϑ

)−1

.

Because G2(t, ϑ) is uniformly continuous on [0, 1] × [0, 1], for the above ε > 0 we deduce
that there exists ρ > 0 such that for any t1, t2 ∈ [0, 1] with |t1 − t2| < ρ and ϑ ∈ [0, 1] we
have

|G2(t1, ϑ)− G2(t2, ϑ)| < ε

2λr0J10M2

(∫ 1

0

1

q(ϑ)
dϑ

)−1

.
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Here M2 = max
{

1,max
{
f(t, y), t ∈

[
1
m2
, m2−1

m2

]
, y ∈

[
1

mβ−1
2

θ1, θ2

]}}
and r0 = max {1,

max
{
r(ϑ), ϑ ∈

[
1
m2
, m2−1

m2

]}}
.

Therefore for any v ∈ D, t1, t2 ∈ [0, 1] with |t1 − t2| < ρ, we find

|(Ev)(t1)− (Ev)(t2)|

= λ

∣∣∣∣∫ 1

0

(G2(t1, ϑ)− G2(t2, ϑ))
1

q(ϑ)

(∫ 1

0

G1(ϑ, τ)r(τ)f(τ, v(τ)) dτ

)
dϑ

∣∣∣∣
≤ 2λ sup

v∈D

∫ 1

0

J2(ϑ)
1

q(ϑ)

(∫
Im2

J1(τ)r(τ)f(τ, v(τ)) dτ

)
dϑ

+λ sup
v∈D

∫ 1

0

|G2(t1, ϑ)− G2(t2, ϑ)| 1

q(ϑ)

(∫ m2−1
m2

1
m2

J1(τ)r(τ)f(τ, v(τ)) dτ

)
dϑ

≤ ε
2

+ ε
2

= ε.

So we obtain that E(D) is equicontinuous. By the Arzela-Ascoli, we conclude that E :
Sθ2 \ Sθ1 → S is compact.

We prove next that E : Sθ2 \Sθ1 → S is continuous. We assume that vn, v0 ∈ Sθ2 \Sθ1
for all n ≥ 1, and ‖vn− v0‖ → 0 as n→∞. Then θ1 ≤ ‖vn‖ ≤ θ2 for all n ≥ 0. By (H3),
for ε > 0 there exists a natural number m3 ≥ 3 such that

sup
v∈Sθ2\Sθ1

∫
Im3

r(ϑ)f(ϑ, v(ϑ)) dϑ <
ε

4λJ10

(∫ 1

0

J2(ϑ)
1

q(ϑ)
dϑ

)−1

. (19)

Because f is uniformly continuous in
[

1
m3
, m3−1

m3

]
×
[

1

mβ−1
3

θ1, θ2

]
, we find

lim
n→∞

|f(ϑ, vn(ϑ))− f(ϑ, v0(ϑ))| = 0, uniformly for ϑ ∈
[

1

m3

,
m3 − 1

m3

]
.

Then by using the Lebesgue dominated convergence theorem, we deduce∫ m3−1
m3

1
m3

r(ϑ)|f(ϑ, vn(ϑ))− f(ϑ, v0(ϑ))| dϑ→ 0, as n→∞.

So, for the above ε > 0 there exists a natural number m4 such that for all n > m4 we
obtain∫ m3−1

m3

1
m3

r(ϑ)|f(ϑ, vn(ϑ))− f(ϑ, v0(ϑ))| dϑ < ε

2λJ10

(∫ 1

0

J2(ϑ)
1

q(ϑ)
dϑ

)−1

. (20)

By (19) and (20) we conclude that

‖Evn − Ev0‖

≤ sup
v∈Sθ2\Sθ1

λ

∫ 1

0

J2(ϑ)
1

q(ϑ)

(∫
Im3

J1(τ)r(τ)|f(τ, vn(ϑ))− f(τ, v0(τ))| dτ

)
dϑ

+ sup
v∈Sθ2\Sθ1

λ

∫ 1

0

J2(ϑ)
1

q(ϑ)

(∫ m3−1
m3

1
m3

J1(τ)r(τ)|f(τ, vn(τ))− f(τ, v0(τ))|dτ

)
dϑ

≤ ε
2

+ ε
2

= ε, ∀n > m4.
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So we find that E : Sθ2 \ Sθ1 → S is a continuous operator. Therefore E is a completely
continuous operator. 2

Under assumptions (H1)− (H3), by using the extension theorem, the operator E has
a completely continuous extension (also denoted by E) from S to S.

By using the Krein-Rutman theorem in the space C[0, 1] and similar arguments as
those used in the proof of Lemma 3.2 from [19], we have the following result.

Lemma 3.2 We suppose that assumptions (H1) and (H2) hold. Then the spectral radius
r(F) 6= 0 and F has an eigenfunction ζ1 ∈ C\{0} corresponding to the principal eigenvalue
r(F), that is Fζ1 = r(F)ζ1. So r(F) > 0.

By a similar argument used in the proof of Lemma 3.1 for operator E , we deduce that
F(S) ⊂ S.

Theorem 3.1 We suppose that assumptions (H1)− (H3) hold. If

0 ≤ fs∞ := lim sup
y→∞

max
t∈[0,1]

f(t, y)

y
< fi0 := lim inf

y→0+
min
t∈[0,1]

f(t, y)

y
≤ ∞,

then for any λ ∈
(

1

fi0r(F)
,

1

fs∞r(F)

)
the problem (1),(2) has at least one positive solution

v(t), t ∈ [0, 1], (with the conventions 1/(0+) =∞ and 1/∞ = 0+).

Proof. We consider λ ∈
(

1

fi0r(F)
,

1

fs∞r(F)

)
. For fi0, there exists ω1 > 0 such that

f(t, y) ≥ y
λr(F)

for all t ∈ [0, 1] and y ∈ [0, ω1]. Then for any v ∈ ∂Sω1 we obtain

Ev(t) = λ

∫ 1

0

G2(t, ϑ)
1

q(ϑ)

(∫ 1

0

G1(ϑ, τ)r(τ)f(τ, v(τ)) dτ

)
dϑ

≥ 1

r(F)

∫ 1

0

G2(t, ϑ)
1

q(ϑ)

(∫ 1

0

G1(ϑ, τ)r(τ)v(τ)dτ

)
dϑ =

1

r(F)
Fv(t), ∀ t ∈ [0, 1].

We suppose that E has no fixed point on ∂Sω1 (if not, the proof is finished). We will prove
that

v − Ev 6= νζ1, ∀ v ∈ ∂Sω1 , ν ≥ 0, (21)

where ζ1 is given in Lemma 3.2. We assume that there exist v1 ∈ ∂Sω1 and ν1 ≥ 0
such that v1 − Ev1 = ν1ζ1. Then ν1 > 0 and v1 = Ev1 + ν1ζ1 ≥ ν1ζ1. We denote by
ν0 = sup{ν, v1 ≥ νζ1}. Then ν0 ≥ ν1, v1 ≥ ν0ζ1 and

Ev1 ≥
1

r(F)
Fv1 ≥

1

r(F)
ν0Fζ1 = ν0ζ1.

So v1 = Ev1 + ν1ζ1 ≥ ν0ζ1 + ν1ζ1 = (ν0 + ν1)ζ1, which contradicts the definition of ν0.
Then relation (21) holds, and by [5] we conclude that

i(E ,Sω1 ,S) = 0. (22)

9

615



For fs∞, we deduce that there exist η ∈ (0, 1) and ω2 > ω1 such that f(t, y) ≤ η 1
λr(F)

y

for all t ∈ [0, 1] and y ∈ [ω2,∞). We define the operator F1 : X → X by

F1v(t) = η
1

r(F)
Fv(t) =

η

r(F)

∫ 1

0

G2(t, ϑ)
1

q(ϑ)

(∫ 1

0

G1(ϑ, τ)r(τ)v(τ) dτ

)
dϑ,

for all t ∈ [0, 1] and v ∈ X . The operator F1 is linear and bounded, and F1(S) ⊂ S.
Because η ∈ (0, 1) we find r(F1) = η < 1. We consider the set U = {v ∈ S \ Bω1 , νv =
Ev with ν ≥ 1}. For v ∈ S, we denote by K(v) = {t ∈ [0, 1], v(t) ≥ ω2}. Then for v ∈ S,
we have v(t) ≥ ω2 for all t ∈ K(v), and so

f(t, v(t)) ≤ η
1

λr(F)
v(t), ∀ t ∈ K(v). (23)

By (23) and the definition of operator F , for any v ∈ U , ν ≥ 1 and t ∈ [0, 1], we obtain

v(t) ≤ νv(t) = (Ev)(t) = λ

∫ 1

0

G2(t, ϑ)
1

q(ϑ)

(∫ 1

0

G1(ϑ, τ)r(τ)f(τ, v(τ)) dτ

)
dϑ

= λ

∫ 1

0

G2(t, ϑ)
1

q(ϑ)

(∫
K(v)

G1(ϑ, τ)r(τ)f(τ, v(τ)) dτ

)
dϑ

+λ

∫ 1

0

G2(t, ϑ)
1

q(ϑ)

(∫
[0,1]\K(v)

G1(ϑ, τ)r(τ)f(τ, v(τ)) dτ

)
dϑ

≤ η

r(F)

∫ 1

0

G2(t, ϑ)
1

q(ϑ)

(∫
K(v)

G1(ϑ, τ)r(τ)v(τ) dτ

)
dϑ

+λ

∫ 1

0

J2(ϑ)
1

q(ϑ)

(∫ 1

0

J1(τ)r(τ)f(τ, ṽ(τ)) dτ

)
dϑ

≤ η

r(F)

∫ 1

0

G2(t, ϑ)
1

q(ϑ)

(∫ 1

0

G1(ϑ, τ)r(τ)v(τ) dτ

)
dϑ

+λJ10

(∫ 1

0

J2(ϑ)
1

q(ϑ)
dϑ

)
M3 = F1v(t) + λJ10

(∫ 1

0

J2(ϑ)
1

q(ϑ)
dϑ

)
M3,

(24)

where ṽ(t) = min{v(t), ω2} for all t ∈ [0, 1], (which satisfies the inequalities ω1t
β−1 ≤

ṽ(t) ≤ ω2 for all t ∈ [0, 1]), J10 = sups∈[0,1] J1(s) andM3 = supv∈Sω2\Sω1

∫ 1

0
r(ϑ)f(ϑ, v(ϑ)) dϑ,

(as in the proof of Lemma 3.1 we find that M3 < ∞). By the Gelfand formula we know
that (I−F1)−1 exists and (I−F1)−1 =

∑∞
i=1F i1, which gives us (I−F1)−1(S) ⊂ S. This

together with (24) imply

v(t) ≤ (I −F1)−1

(
λJ10M3

∫ 1

0

J2(ϑ)
1

q(ϑ)
dϑ

)
, ∀ t ∈ [0, 1],

and so

v(t) ≤ λJ10M3

(∫ 1

0

J2(ϑ)
1

q(ϑ)
dϑ

)
‖(I −F1)−1‖, ∀ t ∈ [0, 1],

which means that U is bounded. Now we choose ω3 > max{ω2, sup{‖v‖, v ∈ U}}. We
obtain νv 6= Ev for all v ∈ ∂Sω3 and ν ≥ 1. By [5], we deduce that

i(E ,Sω3 ,S) = 1. (25)
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By (22), (25) and the additivity property of the fixed point index , we conclude that

i(E ,Sω3 \ Sω1 ,S) = i(E ,Sω3 ,S)− i(E ,Sω1 ,S) = 1.

Then operator E has at least one fixed point on Sω3 \ Sω1 which is a positive solution of
problem (1),(2). 2

4 An example

Let α = 4
3
, β = 7

2
(n = 4), p = 2, a = 11

10
, ξ = 1

3
, γ0 = 9

4
, γ1 = 1

6
, γ2 = 5

3
, q(t) = 1

t+1
for all

t ∈ [0, 1], H1(t) = t
4

for all t ∈ [0, 1], H2(t) =
{

1
3
, t ∈ [0, 1

2
); 14

9
, t ∈ [1

2
, 1]
}

, r(t) = 1
4
√
t(1−t)3

for all t ∈ (0, 1), f(t, x) = 3
√
x+ t2 + 1

7√
x2

for all t ∈ [0, 1] and x > 0.

We consider the fractional differential equation

D
4/3
0+

(
1

t+ 1
D

7/2
0+ v(t)

)
=

λ
4
√
t(1− t)3

(
3
√
v(t) + t2 +

1
7
√
v2(t)

)
, t ∈ (0, 1), (26)

with the boundary conditions{
v(0) = v′(0) = v′′(0) = 0, D

7/2
0+ v(0) = 0, D

7/2
0+ v(1) = 33

20
D

7/2
0+ v

(
1
3

)
,

D
9/4
0+ v(1) = 1

4

∫ 1

0
D

1/6
0+ v(t) dt+ 11

9
D

5/3
0+ v

(
1
2

)
.

(27)

We have ∆1 ≈ 0.23730259 > 0 and ∆2 ≈ 1.15334282 > 0, and so assumption (H1) is

satisfied. In addition we find
∫ 1

0
r(ϑ)dϑ ≈ 4.44288294 ∈ (0,∞), and then assumption

(H2) is also satisfied.
For 0 < θ1 < θ2, v ∈ Sθ2 \ Sθ1 and Im =

[
0, 1

m

]
∪
[
m−1
m
, 1
]
, we obtain

Λm =

∫
Im

r(ϑ)f(ϑ, v(ϑ)) dϑ =

∫
Im

1
4
√
ϑ(1− ϑ)3

(
3
√
v(ϑ) + ϑ2 +

1
7
√
v2(ϑ)

)
dϑ

≤
∫
Im

1
4
√
ϑ(1− ϑ)3

(
3
√
θ2 + 1 +

1
7
√

(ϑ5/2θ1)2

)
dϑ

= ( 3
√
θ2 + 1)

∫
Im

dϑ
4
√
ϑ(1− ϑ)3

+
1

7
√
θ2

1

∫
Im

1

ϑ27/28(1− ϑ)3/4
dϑ,

and then limm→∞ supv∈Sθ2\Sθ1
Λm = 0, because g1(ϑ) = 1

ϑ1/4(1−ϑ)3/4
∈ L1(0, 1) and g2(ϑ) =

1
ϑ27/28(1−ϑ)3/4

∈ L1(0, 1). So assumption (H3) is satisfied. We also have fs∞ = 0 and

fi0 = ∞. Then by using Theorem 3.1, we conclude that for any λ ∈ (0,∞), the problem
(26),(27) has at least one positive solution v(t), t ∈ [0, 1], which satisfies the condition
v(t) ≥ t5/2‖v‖ for all t ∈ [0, 1].
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Abstract. We present in this work some experiments involving the optics of systems 

where the paraxial optics approximation cannot be applied, as in the case of rainbow 

formation by raindrops and the case of light deflection by massive objects, such as in the 

vicinity of black holes. The first experiment is the injection of laser light into a glass 
cylinder, while the other is a circular billiard formed by a circular mirror and a laser 

beam. We use the theory of dynamical systems and the Mandelbrot set as an analogy to 

represent the paths of the light beam, as well as the properties involving the Farey 

sequence. 
 

Keywords: Farey mediant, Optics, Dynamical Systems, Mandelbrot set. 
 

1  Introduction 
 

This work was developed due to the authors' interest in different 

aspects of dynamical systems that involve optics [1, 2], gravitation and the 

aesthetic appeal of fractal forms [3,4]. In this way we will present some 

connections between concepts of optics and Mandelbrot sets resulting from 

recursion formulas, feedback processes or systems in which we have the 

repeated application of some mapping rule.  

How to compare trajectories of light rays with a recursive mapping 

normally used in dynamic systems? In Fig. 1 we have a luminous ray inside a 

glass plate that undergoes multiple reflections. A change in the path of this ray 

can be associated with the series of events shown in Fig. 1 (b). This series of 

events is reproduced topologically with the "circle map" of the graphic diagram 

in Fig. 1 (c), with the Poincaré section shown in Fig. 1 (d) [1]. We can see the 

same thing applied to period-3 in Fig. 1(e) for the case of the circle map, and the 

same dynamical system in a circular billiard in (f) and (g). For the cases found 

in nature, we know from optics that light rays in a raindrop of Fig. 2, which can 

behave like particles in a circular billiard, forming multiple rainbows, through 

recurring internal reflections. In this case, in addition to the rays of light that hit 

the droplet wall several times, obeying the law of reflection, we have rays that 

escape the droplet by refraction forming multiple rainbows, which give us some 

information about the shape of the droplet, as in the case of twin rainbows, in 

which we see an ellipsoidal rainbow between two circular rainbows, which 
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appears to be a bifurcation, as it also occurs in other atmospheric optics 

phenomena, as in the case of the circumscribed halo surrounding the 22-degree 

solar halo of Fig. 3. 

 
Fig. 1. Multiple reflections of a laser beam in a glass plate in (a). (b) sequence of 

events (c) Iterations in the circle map for a period-2 (d) Poincaré section of this 

period-2. Circle map in a period-3 in a circle map and its respective orbits in a 

circle in (f). Experiment showing multiple reflections in a period-3 in a 

reflective cylinder in (g). 

 

 
Fig. 2. In (a) reflections in a rain drop and primary rainbow, and reflections in a 

drop and secondary rainbow. In (b) the curious case of twin rainbows that could 

be explained considering elliptical drops.  
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 In the context of relativity, massive objects can "bend" light, forming 

Einstein's rings [1], which behave like lenses, as in the case of the lens in the 

form of a pseudo-sphere. In the case of a black hole acting as a lens in Fig. 3(b), 

the properties of Minkowsky's space-time are altered by the presence of the 

mass, causing it to curve around itself, as if it were an optical lens. We also 

observed the reverse shape of this lens causing light to be distorted in Fig. 3(c). 

 
Fig. 3. In (a) cylinders and hexagonal bars can be used as lens with a laser to 

generate patterns. For the case of cylinder, we can associate elliptical profile 

with two circles. In 22 degree halo formed by hexagonal column of ice crystals 

can be measured with a hand flat. The 22 degree halo and the circumscribed 

halo. A pseudosphere lens in (b) and inverse pseudosphere lens from a pool 

drain in (c). Comparing the three-dimensional Euclidean space and Minkowski 

spacetime in (d) with a representation of the optical effects of a massive object 

such as black hole. In the four-dimensional Minkowski spacetime used in 

general relativity equations, time and space expand in opposite direction, with 

one solution of these equations being the black hole depicted in (d). 

 

In our previous work on this subject, we studied rainbows and massive 

objects in the formation of luminous halos, starting from an optical system 

composed of a cylinder with the injection of a laser beam of Fig. 4, where we 

use the circular section of the cylinder and compare it with the circular section 

of a drop. The modification of the cylinder topology led to the case of the 

pseudo-sphere. 

This optical system formed by the laser hitting obliquely in the glass 

cylinder of Figs. 4(c)-(d), behaves like an open billiard, with which we can see 

the formation of curious patterns associated with the star polygons, which due to 

the fact of restrictions to the total internal reflection, follow some rules related 

to a Farey mediant of Fig. 4(f). This system is related to the phenomenon known 
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as period locking (mode-locking), which can be observed in patterns projected 

on a screen of Fig. 5. This mode-locking is also seen in Mandelbrot set systems. 

 
Fig. 4. Images of light scattering in cylinders in (a) and (b). Diagrams of light 

rays in the glass cylinder in (c) and (d). Light spiral in (e) obtained from this 

experiment. Comparison between stellar polygons in a billiard and the case of 

the glass cylinder, in which we can observe the case of Farey's mediant in (f). 

 

 

 Increasing the inclination of the laser beam in the cylinder, we 

perceive a process of “optical deformation” of the circular section of the 

cylinder, for an elliptical billiard. With that, we recognize some interesting 

effects like the formation of caustics in the rainbow angle, which unfolded in 

separated branches [1]. This suggested to us the possibility that elliptical 

rainbows may be related to caustics unfolded from the cylinder, as discussed in 

the literature for ellipsoidal drops of fig. 2(b). 
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Fig. 5. Circle map and cone of light. In (a) and (b) images of cone laser 

scattering from a cylinder of the diagrams shown in (c) and (d). Light spiral of 

this system in (e). (f) Mode-locking and Farey sequence in the Arnold tongues 

with some light patterns. 

 

 

2  Mandelbrot set and star polygons. 
 

Motivated by the observation of geometric patterns in the laser / 

cylinder system, we realized that the formation of caustics in cylinders may be 

related to the recursive rotations of maps in the complex plane, as in the case of 

the Mandelbrot Set, with the formation of star polygons for different initial 

conditions. The evolution of the iterations in Mandelbrot set presents a rich 

dynamics, with some complete routes to chaos, like Feigenbaum route and 

mode-locking route to chaos, besides intermittency. The Mandelbrot can be 

used as a toy model to explore the dynamics of the light in the cylinder, in order 

to help to explore this system and the pseudo-sphere used to simulate black 

holes or massive objects bending light. 
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Fig. 6. Some star polygons in the Mandelbrot set. Period-7 in the Mandelbrot set 

and in the circular billiard. 

 

 For example in Fig. 6, we present the existence of star polygons in the 

Mandelbrot set, with period-2, peripd-3, period-5 and period-7. For this last case 

we can compare the dynamics of ray in a billiard forming a period-7 with the 

Mandelbrot set. 
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Fig. 7. Example of Farey sequence in the mandelbrot set ans the stability for 

some initial conditions in the Mandelbrot set.  

 
The orbits of the Mandelbrot system are directly related to the Farey 

mediant, as shown in the diagram in Fig. 7(a). The stability of the orbits can be 

observed with the cobweb diagram for values of the Mandelbrot set with real 

numbers. We can observe the stability of the system converging to a fixed point 

in Fig. 7(b). When the control parameter is changed in 7(c), we have different 

behaviors such as intermittency in Fig. 7(b), or this fixed point becoming a 

saddle point in which a doubling of period occurs in Fig. 7(e). Changing the 
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control parameter further, we have a period-4 in Fig. 7(f), followed by chaotic 

behavior in Fig. 7(g). 

 

 
 

 
Fig. 8. Mandelbrot set and some caustics obtained with multiplication table 

applied to ray dynamics in a circle: in (a) the cardioid, in (b) the nephroid, with 

three lobes in (c) and with four lobes in (d). 

 

626



 Another interesting relationship between the Mandelbrot set and the 

formation of caustics in a circular billiards is shown in Fig. 8. This relationship 

can be better understood by watching the video cited in the references [5] along 

with the papers describing the process of caustic formation [6, 8]. The central 

idea is that these caustics are related to the fractal pattern profile associated with 

different polynomials of the Mandelbrot set. 

 

 

 
Fig. 9. Dynamics of spiral formation in the Mandelbrot set compared to the laser 

in the glass cylinder. 

 

 Finally, we show in Fig. 9 two examples of initial conditions in the 

Mandelbrot set for the case of orbits forming spiral patterns and compare them 

with the case of the experiment with the laser beam in the glass cylinder. We 

can see that the rotation orientation of the spiral depends on the position of 

choice of the initial condition, represented by the blue dot, with respect to the 

horizontal axis, which makes the spiral clockwise or counterclockwise. The 

same happens with the experimentally observed dynamical system, with the 

choice of the starting point that the laser beam touches the glass cylinder with 

respect to the horizontal axis, with the red spiral rotating clockwise and the 

green spiral rotating counterclockwise. For more information about these 

experiments, we recommend this video in references [9]. 
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Conclusions 

 
These connections between billiard systems, Optics, Mandelbrot set 

and caustics were explored due to their interesting aesthetic appeal, which 

facilitates the investigation of the optical system with the well-known system 

formed by Mandelbrot set. Multiple reflections of a laser inside a cylinder, 

which escapes by refraction and can projected in a screen, can be compared to 

the trajectories of the iterations of Mandelbrot map for certain regions in the 

Argand plane.  In systems like the ones discussed in this paper, we can observe 

mode-locking and the formation of star polygons. These comparisons allow us 

to extract the essence of the dynamics existing in experimental optical systems 

that we cannot use the well-known paraxial optics, as happens in real physical 

systems such as light in raindrops or in a black hole. In the case of massive 

object optics, such as the bending of light around black holes, matrix operations 

involving Minkowski space can generate rotations that cause the doubling of 

light rays from distant stars, as well as the formation of halos, such as Einstein 

rings, which were discussed in the case of light patterns in the laser/glass 

cylinder system. 

 Nonlinear dynamical systems that involve some kind of rotation as 

the case of the map of the circle presented in our previous works, or the 

Mandelbrot set, or matrix operations for the case of general relativity, can lead 

to certain results that can be observed experimentally with a non-paraxial optic 

that involves multiple reflections as in the case of the cylinder/laser and circular 

billiards. In this work, we emphasize how the use of Mandelbrot systems helps 

us to explore the different behaviors in a practical way, observing the different 

types of orbits based on the choice of initial conditions, which allows us to 

analyze the stability behavior of these orbits. Furthermore, we reproduce some 

interesting results of the formation of caustics in circular billiards through the 

multiplication rules, which are directly connected with Mandelbrot polynomials 

and their remarkable fractal representation. Overall, we believe that a lot can 

still be explored in the context of these analogies. 
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pseudorandom numbers basing on solutions of congruences of two variables modulo
the power of prime number. The estimates of discrepant function of constructed
sequences of pseudorandom numbers have been obtained.
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1 Introduction

Following the revelation of public-key cryptography that arose at the last
quarter of XX century, in 1985 Nil Koblitz and Victor Miller have found that
the elements over the group of points from elliptic curve over finite field are
able to store the secrete information due to of complexity on addition opera-
tion. And it would serve as motive to study the cryptography on elliptic curves.
The sequences of pseudorandom number at every time was being intrinsic part
of cryptography, and therefore for the last 20 years the theory of elliptic curves
has application in problem of generating of sequences of pseudorandom num-
bers. The useful survey in this direction belongs to I. Shparlinskii[4].

In our paper we consider the algorithm of producing the sequences of pseu-
dorandom numbers from algebraic curves over the ring Zpm of residue classes
of prime power modulus. The according elements of such sequences accept the
polynomial representation over Zpm . We demonstrate this concept to construct
the sequences of pseudorandom numbers of algebraic curves

y2 ≡ x3 + ax+ b (mod pm)

and

ax3 + y3 ≡ 1 (mod pm).

The constructed sequences have the fixed period τ = pm−1 that can be
grown as for the growth of prime number p or factor m.

Notations. The letter p denotes a prime number, p ≥ 3. For n ∈ N the
notations Zpm(accordingly, Z∗pm) denote the complete (accordingly, reduced)
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system of residues modulo pm. We write (a, b) for notation a great common di-
visor of a and b. For z ∈ Z, (z, p) = 1 let z′ or z−1 be the multiplicative inverse
of a modulo pm. We write νp(A) if pνp(A)|A, pνp(A)+1 - A. Landau symbol ”O”
is equivalent to Vinogradov symbol ”�”. The notation f(x) � g(x) means
that for x → ∞ the inequality |f(x)| ≤ C · g(x) holds with arbitrary constant
C. Through [x] we will denote the integral part of real number x.

2 Auxiliary results

Let E(Fp) be an elliptic curve defined over Fp given by an affine Weierstraβ
equation of the form

Y 2 + (a1X + a3)Y = X3 + a2X
2 + a4X + a6,

where a1, a2, a3, a4, a6 ∈ Fp such that the partial derivations ∂F
∂X and ∂F

∂Y for
the function

F (X,Y ) = Y 2 + (a1X + a3)Y −X3 − a2X2 − a4X − a6

do not become zero simultaneously at the points of the curve (x, y) ∈ E(Fp)
over the algebraic closure Fp of Fp.

For the case p > 3 the previous equation can be deduce to form

Y 2 = X3 + ax+ b (1)

for some a, b ∈ Fp with 4a3 + 27b2 6= 0.
We recall that the set of points of curve E(Fp) together with point at

infinity O, relatively to a special operation ⊕, forms the abelian group Ep of
order N (Ep) which satisfies inequality

|N (Ep)− p− 1| ≤ 2p
1
2 .

For a point Q ∈ E(Fp) we use x(Q), y(Q) to denote its coordinates, that
is, (x(Q), y(Q)).

For m > 1 we denote Ep(m) as the set of solutions (x, y) satisfying to the
congruence

y2 ≡ x3 + ax+ b (mod pm) (2)

The set Ep(m) we will call the elliptic curve over the ring Zpm and N (Ep(m))
be a number of solutions of (2) with condition (y, p) = 1.

Lemma 1. Let (x0, y0) be a solution of (2) with (y0, p) = 1 and m = 1. Then
for any integer t the congruence

y2(t) ≡ (x0 + pt)3 + a(x0 + pt) + b (mod pm) (3)

has just two incongruent solutions modulo pm for every positive m.

The assertion of this lemma follows from the fact that any solution (x0, y0)
of congruence (3) with m = 1 we can grow to the solutions y1(t) = y(t),
y2(t) = −y(t).

Denote by yi(t), i = 1, 2 the solution of congruence (3).
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Lemma 2. Let p > 2 be a prime, m ≥ 3 be an integer, s =
[
p−1
p−2m

]
. There

exist the polynomial ϕ(t) ∈ Zpm [t] of degree s

ϕ(t) = φ0(x0) + pλ1φ1(x0)t+ · · ·+ pλsφs(x0) · ts,

where (φi(x0), p) = 1, i = 0, 1, . . . , s, and λ1, λ2, . . . , λs ∈ N, moreover

λj ≥ j
p− 2

p− 1
, j = 1, . . . , s.

such that

yi(t) = yi(0)ϕ(t) (mod pm), i = 1, 2,

and the points (x0 + pt, yi(t)), i = 1, 2, belong to the elliptic curves (2).

Proof. Let (x0, y0) is the solution of (2) for m = 1, (y0, p) = 1. For every
t, 0 ≤ t ≤ pm−1 − 1, we denote y1(t), y2(t) as two different solutions of the
congruence

y2(t) ≡ (x0 + pt)3 + a(x0 + pt) + b (mod pm).

Denote by x′0 the multiplicative inverse of x30 + ax0 + b, i.e.

x′0(x30 + ax0 + b) ≡ 1 (mod pm).

Such solution exists since (y0, p) = 1.
Hence, we find that (3) is equivalent to

y2(t) ≡ (x30 + ax0 + b)(1 + (3ptx20 + 3p2t2x0 + p3t3)x′0).

Let U2(ω) = (1 + (3ωx20 + 3ω2x0 + ω3)x′0).
Expanding the function U(ω) to series in powers of ω

U(ω) =

∞∑
i=0

Xi(x0, x
′
0)ωi

and its logarithmic derivation

d logU(ω)

dω
=
U ′(ω)

U(ω)
=

∞∑
i=1

iXi(x0, x
′
0)ωi−1

∞∑
i=0

Xi(x0, x′0)ωi
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gives the following recursion formulas for j = 2, 3, . . . :

Xj+1 = − 2j + 1

2(j + 1)
(3x20x

′
0 + ax0)Xj

− 3(j − 2)

j + 1
x0x
′
0Xj−1

− 2j − 7

2(j + 1)
x′0Xj−2,

X0 = 1,

X1 =
1

2
(3x20x

′
0 + ax0),

X2 =
1

2
3x0x

′
0 −

1

8
(3x20x

′
0 + ax′0)2.

(4)

Let show that the formal p-adic series for U(pt) converges in p-adic metric and
modulo pm the congruence

U(pt) ≡ ϕ(t) (mod pm),

where

ϕ(t) = φ0(x0) + pλ1φ1(x0)t+ · · ·+ pλsφs(x0) · ts, (5)

and ϕj(x0) ∈ Z, λj ∈ N and λj ≥ m for j > s. holds.
In our reasoning we will use p-adic analysis by schema of L.P. Postnikova[3].
Let us introduce the variables Yj , Zj , j = 1, 2, . . . , s defined by the condi-

tions

Y1 = 0, Y2 = 1, Y3 =
1

2
(3x20x

′
0 + ax′0),

Z1 = 0, Z2 = 0, Z3 = 1

and for j ≥ 4 Yj , Zj be determined by recursion formulas of type (4).
Let us consider determinants

∆j =

∣∣∣∣∣∣
Xj−2 Xj−1 Xj

Yj−2 Yj−1 Yj
Zj−2 Zj−1 Zj

∣∣∣∣∣∣ , j = 3, 4, . . . , s.

In particular, we have modulo pm

∆3 =
1

2
(3x0x

′
0 + ax′0).

From this moment on, we suppose that −3a is the non-quadratic residue
modulo p. Therefore, we have

(x′0, p) = 1, (3x20 + a, p) = 1.

634



(since otherwise the congruence x2 ≡ −3a (mod p) has the solution).
But then νp(∆3) = 0.
Also for j ≥ 4 we easily obtain

∆j = −2j − 9

2j
x′0∆j−1 =

· · · = (−x′0)j−s
(2j − 9)(2j − 11) · · · 3 · 1 · (−1)

2j−sj(j − 1) · · · 4
∆3 =

= (−x′0)j−3
(2j − 9)! · 6

22j−7j!(j − 4)!
∆3.

Let νp(Xjp
j) = λj , νp(Yjp

j) = µj , νp(Zjp
j) = τj .

Now let take out a common factor pmin (λj−1,λj ,λj−2) from the first row
of determinant ∆j . From the second and third rows let do the same with
pmin (µj−1,µj ,µj−2) and pmin (τj−1,τj ,τj−2), respectively.

It easy prove that

λj ≥ j
p− 2

p− 1
, µj ≥ j

p− 2

p− 1
, τj ≥ j

p− 2

p− 1
.

Now, taking into account the relation between ∆j and ∆3 we easily find

min (λj , λj−1, λj−2) ≤ 3j − 3− 2(j − 2)p−2p−1+

+
∞∑
k=1

[
2j−9
pk

]
−
∞∑
k=1

[
j
pk

]
−
∞∑
k=1

[
j−4
pk

]
.

Also take into account that [2x] ≤ 2[x] + 1 for x ≥ 0, and the quantity of

nonzero summand in sum
∞∑
k=1

[
2j−9
pk

]
be at most 2j−9

p < 2j
p−1 .

Then we have

min (λj , λj−1, λj−2) ≤ j + 1 +
4(j − 1)

p− 1
.

Bringing up the definition for ϕ(t) (5) we at once obtain the proof of Lemma
2. ut

Corollary 1. In the conditions of Lemma 2 we obtain p-adic description of
the solutions of the congruence

y2 ≡ x3 + ax+ b (mod pm)

in the form

x = x0 + pt, yi(t) = yi(0)(1 +A1pt+A2p
2t2 +A3p

λ3t3 + · · · ) (modpm),

where

λ1 = 1, λ2 = 2, λ3 ≥ 3, j = 3, 4, . . . ;

A0 = 1, A1 = 2−1(3x20x
′
0 + ax′0), A2 = 3 · 2−1x0x′0 − 2−3(3x20x

′
0 + ax′0)2;

(Ai, p) = 1, i = 1, 2, 3, . . . .

(here 2−1 be the multiplicative inverse for 2 modulo pm).
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Corollary 2. For the fixed x0, y0 ∈ Ep and yi(0), i = 1, 2 we have

yi(t1) ≡ yi(t2) (mod pm)

if and only if t1 ≡ t2 (mod pm−1). And hence, the sequences yi(t), t =
0, 1, . . . , pm−1 − 1 have the least period τ = pm−1 (here i = 1 or 2, y2(t) =
−y1(t)). Thus we obtain the family of different sequences {y(t)}, which define
by selection of initial point (x0, y0) on the curve Ep and by selection of index
i ∈ {1, 2}.

Bellow we will show that the sequence of real numbers {y(t)pm }, t = 0, 1, . . .,

pm−1 − 1 be the sequence of real numbers from [0, 1) that may be considered
as the sequence of pseudorandom numbers passes the serial test on pseudoran-
domness.

Note that the same point (x0, y0) of elliptic curve Ep generate two sequences
yi(t) defined by Lemma 2, the selection of which defines by the values of yi(0)
as the solution of congruence

y2 ≡ x3 + ax+ b (mod pm).

If 0 < y(0) < p
2 then yi(t) denotes by y1(t), otherwise we have y2(t).

Over constructed set of sequences {y(t)} we can define operation ”*” by the
following way:

y′(t) ∗ y′′(t) = y′′′(t),

where y′′′(t) defines by sum of two points (x′0, y
′
0) and (x′′0 , y

′′
0 ) of elliptic curve

Ep
(x′0, y

′
0)⊕ (x′′0 , y

′′
0 )

and by Lemma 2, where 0 < y′′′(0) < p
2 if y′(0) and y′′(0) simultaneously

belong to
[
0, p2

]
or
[
p
2 , p
]
. Otherwise, y′′′(0) is selected from interval

[
p
2 , p
]
.

Similarly, we can construct the sequence {y(t)} same to the sequence from
Lemma 2 produced by the congruence

y` ≡ f(x) (mod pm),

where f(x) be the polynomial with integer coefficients of degree ≥ 3.
In particular, let see the congruence

ax3 + y3 ≡ 1 (mod pm). (6)

We will assume that p be the prime number of form 6k − 1.
Define by y(t) the solution of congruence

y3 ≡ 1− a(x0 + pt)3 (mod pm). (7)

where (x0, y0) be the anyone solution of congruence

y3 ≡ 1− ax3 (mod p).

with 1− ax30 6≡ 0 (mod p). Every of such x0 uniquely define the respective y0.
So, the solution y(t) of congruence (7) defines uniquely.
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Lemma 3. Let s =
[
p−1
p−2m

]
. There exists the polynomial of degree s

ϕ(t) = Φ0(x0) + pλ1Φ1(x0)t+ · · ·+ pλsΦs(x0)ts,

where (Φi(x0), p) = 1, i = 0, 1, . . . , s; λ1, . . . , λs are the natural numbers satisfy
the inequalities λj ≥ j p−2p−1 , such that

y(t) ≡ y(0)ϕ(t) (mod pm).

The proof of this lemma passes simultaneously to proof of Lemma 2 and the
respective coefficients Φj(x0) define by recurrent relation

Φj+1 =
3j − 1

j + 1
ax20x

′
0Φj +

3j − 5

j + 1
ax0x

′
0Φj−1 +

j − 3

j + 1
ax′0Φj−2,

moreover,

Φ0 = 1, Φ1 = −ax20x′0, Φ2 = −ax0x′0 − a2x40x′20 .

Here, x′0 is the multiplicative inverse modulo pm for 1− ax30.

3 Discrepancy

Let {xn} be the sequence of points from [0, 1). As characteristic property of
equidistribution of such sequences the following discrepant function DN is used

DN (x0, x2, . . . , xN−1) = DN := sup
∆⊂[0,1)

∣∣∣∣AN (∆)

N
− |∆|

∣∣∣∣ ,
where AN (∆) is the number of points among x0, x2, . . . , xN−1 falling into ∆,
and |∆| denotes the length of ∆.

In the same way there is defined the discrepancy for the sequence of s-
dimensional points Xn ⊂ [0, 1)s.

From definition of equidistribution of sequences of s-dimensional points we

can conclude that for D
(s)
N → 0 with N → ∞ we can obtain better uniformly

distributed sequences {X(s)
n }.

Every sequence {xn}, xn ∈ [0, 1) defines the sequence of s-dimensional

points X
(s)
n , where X

(s)
n = (xn, xn+1, . . . , xn+s−1).

It is clear that for every equidistributed sequence {xn}, which elements are
statistically independent (unpredictable) for every integer s ∈ N, the according

sequence {X(s)
n } = {xn, xn+1, . . . , xn+s−1} be the equidistributed sequence.

We say that the sequence {xn}, xn ∈ [0, 1) passes s-dimensional test on

pseudorandomness if every sequence {X(s)
n }, s = 1, 2, . . . , s be the equidis-

tributed on s-dimensional unit interval [0, 1)s.

To estimate the s-dimensional discrepant function of sequence {X(s)
n } the

following lemmas is used.
For integers s ≥ 1 and q ≥ 2, let Cs(q) be the set of all nonzero lattice
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points h = (h1, . . . , hs) ∈ Zs with − q2 < hj ≤ q
2 for 1 ≤ j ≤ s. Define for

h ∈ Cs(q)

r(h, q) =

{
1 if h = 0,

q sin (π |h|q ) if h 6= 0,

r(h, q) =
s∏
j=1

r(hj , q)

(8)

Lemma 4. Let N ≥ 1 and q ≥ 2 be integers. Suppose that y0,y1, . . . ,yN−1 ∈
Zsq. Then the discrepancy of the points tk = yk

q ∈ [0, 1)s, k = 0, 1, . . . , N − 1,
satisfies

DN (t0, t1, . . . , tN−1) ≤ s

q
+

1

N

∑
h∈Cs(q)

1

r(h, q)

∣∣∣∣∣
N−1∑
k=0

e(h · tk)

∣∣∣∣∣ (9)

(Proof of this lemma see in [1],[2]).

From the last statement it follows the classical statement of Turan-Erdös-
Koksma inequality.

Lemma 5. Let T ≥ N ≥ 1 and q ≥ 2 be integers, yk ∈ {0, 1, . . . , q − 1}s for
k = 0, 1, . . . , N − 1; tk = yk

q ∈ [0, 1)s. Then

DN (t0, t1, . . . , tN−1) ≤ s

q
+

1

N

∑
h∈Cs(q)

∑
h0∈(−T2 ,

T
2 ]

1

r(h, q)r(h0, T )
×

×

∣∣∣∣∣
T∑
k=0

e(h · tk +
kh0
T

)

∣∣∣∣∣
(10)

This assertion follows from Lemma 4 and from an estimate of incomplete ex-
ponential sum through complete exponential sum.

Lemma 6 (Niederreiter,[1]). Let q ≥ 2, T > 1 be integers. Then∑
h∈Cs(q)

h≡0 (mod v)

r(h, q) <
1

v

(
2

π
log q +

7

5

)s

for any divisor v of q with 1 ≤ v < q, and∑
h0∈(−T2 ,

T
2 ]

1

r(h0, T )
≤ 2

π
log T +

7

5
(11)

Lemma 7. The discrepancy of N arbitrary points t0, t1, . . . , tN−1 ∈ [0, 1)2

satisfies

DN (t0, t1, . . . , tN−1) ≥ 1

2(π + 2)|h1h2|N

∣∣∣∣∣
N−1∑
k=0

e(h · tk)

∣∣∣∣∣ (12)

for any lattice point h = (h1, h2) ∈ Z2 with h1h2 6= 0.
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(It is the special version of Niederreiter result in [1]).

From these lemmas we can to see that the character of equidistribution of
sequence {xn}, xn ∈ [0, 1) completely defines by estimate of exponential sum

SN :=

N∑
n=1

e2πihxn , h ∈ N.

In section 2 we constructed two sequences {xt}, xt = y(t)
pm that were being

produced by the algebraic curves over the ring Zpm defined by the congruences
(2) and (6). From lemmas 2 and 3 it is clear to see that y(t) are defining by
special polynomials from the ring Zpm [t]. These polynomials have the form

y(t) = A0 +A1pt+A2p
2t2 +A3p

λ3t3 + · · · ,

moreover, λj ≥ 3, (Aj , p) = 1 for j ≥ 3.
The according sums SN can be estimated by use of the generalized Gauss

sums and the last can be estimated using the following lemma.

Lemma 8 (see, [5], Lemma 3). Let p > 2 be a prime number, m ≥ 2 be a
positive integer, m0 =

[
m
2

]
, f(x), g(x), h(x) be polynomials over Z

f(x) = A1x+A2x
2 + · · · ,

g(x) = B1x+B2x
2 + · · · ,

h(x) = C`x+ C`+1x
`+1 + · · · , ` ≥ 1,

νp(Aj) = λj , νp(Bj) = µj , νp(Cj) = νj ,

and, moreover,

k = λ2 < λ3 ≤ · · · , 0 = µ1 < µ2 < µ3 ≤ · · · ,
νp(C`) = 0, νp(Cj) > 0, j ≥ `+ 1.

Then the following bounds occur∣∣∣∣∣∣
∑

x∈Zpm
em(f(x))

∣∣∣∣∣∣ ≤
{

2p
m+k

2 if νp(A1) ≥ k,
0 if νp(A1) < k;

∣∣∣∣∣∣
∑

x∈Z∗
pm

em(f(x) + g(x−1))

∣∣∣∣∣∣ ≤ I(pm−m0)p
m
2

∣∣∣∣∣∣
∑

x∈Z∗
pm

em(h(x))

∣∣∣∣∣∣ ≤
{

1 if ` = 1,
0 if ` > 1,

where I(pm−m0) is a number of solutions of the congruence

y · f ′(y) ≡ g′(y−1) · y−1 (mod pm−m0), y ∈ Z∗pm−m0 .
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This lemma is the estimation of complete generalized Gauss sum. The
incomplete generalized Gauss sum

N∑
t=1

e2πi
f(t)
pm , 1 ≤ N ≤ pm

we can estimate by using the inequality∣∣∣∣∣
N∑
t=1

e2πi
f(t)
pm

∣∣∣∣∣ ≤
pm∑
k=1

1

max (k, pm − k)

∣∣∣∣∣
pm∑
t=1

e2πi
f(t)+kt
pm

∣∣∣∣∣ =

= max
1≤k≤pm

∣∣∣∣∣
pm∑
t=1

e2πi
f(t)+kt
pm

∣∣∣∣∣ log pm � p
m
2 log pm.

Now we can obtain the estimate of discrepancy for sequences generated in
Lemmas 2 and 3.

Indeed, the function y(t) for the sequence generated by elliptic curve (2) as
the function y(t) for the sequence generated by (6) both satisfy for all conditions

of Lemma 8 and so the sum
pm∑
t=1

e2πi
y(t)
pm can be estimated as O(p

m+1
2 log pm).

And now using lemmas 4 and 5 we obtain the estimate of discrepancy for the

sequence {xt}, where xt = y(t)
pm , t = 1, 2, . . . , N , N ≤ pm−1

D
(1)
N ≤

3p
m+1

2

N
logN

This proves the equidistribution of the sequence {xt}. Moreover, h1y(t) +
h2y(t+1)+ · · ·+hsy(t+s−1) be the polynomial which for the nontrivial set of
coefficients h1, . . . , hs generates the polynomial Y (t) that satisfies to condition

of Lemma 8 and so the discrepancy of s-dimensional sequence {X(s)
n } has an

estimate
s

N
+
p
m+1

2

N
(3 logN)s.

Therefore, the sequences produced by congruences (2) and (6) pass serial test
for s ≤ p− 2.

To obtain the lower bounds for discrepancy of sequences generated from
elliptic curve we apply Lemma 7.

From Corollary 1 we can write

y(t) = y(0)(1 +A1pt+A2p
2t2 +A3p

λ3t3 + · · · ) (modpm)

Therefore, we have

y(t+ k) = y(0)(1 +A1p+ 2A2p
2 + 3A3p

λ3 + · · · )t+
+ (A2t

2 + 3A3p
λ3 + · · · )t2+

+ (A3p
λ3 + 2pλ4A4 + · · · )t3 + · · ·
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And hence,

h1y(t) + h2y(t+ 1) =free term + (A1h1 +A1h2 + 2A2h2p)pt+

+ (A2h1 +A2h2 + 3A3h2p)p
2t2+

+ pλ3t3ψ(t)

where ψ(t) is a polynomial with coefficients from Zpm .
By form of coefficients for A1 and A2 it is clear that we can find x0 such

that the coefficient at t in the last equality is divided at least by p2 but the
coefficient at t2 exactly divided by p2. Let define this conditions as (*).

Now Lemma 8 gives∣∣∣∣∣∣
pm−1−1∑
t=0

e
2πi

h1y(t)+h2y(t+1)

pm−1

∣∣∣∣∣∣ =

{
p
m+ν

2 if conditions (*) hold,
0 otherwise.

Theorem 1. Let {xt} be the sequence of PRN’s produced by elliptic curve
y2 ≡ x3 + ax + b (mod pm). There exists the point (x0, y0), y0 6= 0,∞ on
the curve y2 ≡ x3 + ax+ b (mod p) such that the sequence of two-dimensional

points {Xt}, Xt = (xt, xt+1) has discrepancy D
(2)
τ , τ = pm−1 for which the

following inequalities

1

4(π + 2)h∗
p−

m−1
2 ≤ D(2)

τ ≤ 3p−
m−1

2 log2 pm,

hold, where h∗ = min (h1, h2), (h1, h2) is a point from (Z∗pm−1)2 with conditions

(*).

This theorem together with Lemma 8 shows that the obtained upper bound
is, in general, the best possible up to the logarithmic factor for any inversive
congruential sequence {(xt, xt+1)}, t ≥ 0 (defined by the congruence (2)).

Hence, on the average, the discrepancy D
(2)
τ has an order of magnitude

between p−(
m−1

2 −ν) and p−(
m−1

2 −ν) log2 pm. In the certain sense, inversive con-
gruential pseudorandom numbers model the random numbers very closely.

4 Conclusion

In conclusion let introduce the step by step algorithm of constructing the se-
quences of PRN’s with a period τ = pm−1, associated with elliptic curve over
finite ring Zpm , p > 3 be a prime, m ≥ 3 ∈ N, that can be described by the
following way.

First of all for (x0, y0) ∈ Ep, (y0, p) = 1, i.e. for the point of elliptic curve
y2 ≡ x3+ax+b (mod p) over Zp with non-quadratic residue −3a we construct
the points (x(t), y(t)), 0 ≤ t ≤ pm−1 − 1 which belongs to elliptic curve over
Zpm . Then

1) we select (x0, y0), where y0 6= 0 and y0 6=∞;
2) calculate x(t) ≡ x0 + pt (mod pm);
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3) calculate yi(0), i = 1, 2 as the solutions of congruence

y2 ≡ x30 + ax0 + b (mod pm);

4) we will use the Taylor series for the function of ω at the point ω = 0 in
form √

1 + (3ωx20 + 3ω2x0 + ω3)x′0 = X0 +X1ω +X2ω
2 + · · · . (13)

(here x′0 is the multiplicative inverse modulo pm for x30 + ax20 + b).
5) In (13) we put ω = pt and then modulo pm we construct the following

polynomial:

ϕ(t) ≡ 1 +X1pt+X2p
2t2 + · · ·+Xsp

sts ≡
≡ Φ0(x0) + pλ1Φ1(x0)t+ · · ·+ pλsΦs(x0)ts (mod pm),

where Φj(x0) ∈ Z, (Φj(x0), p) = 1, λj ∈ N, λj ≥ j p−2p−1 , j = 1, 2, . . . , s.

6) This polynomials and the solutions yi(0), i = 0, 1 we use to construct the
following representations modulo pm:

yi(t) ≡ yi(0)(Φ0(x0) + Φ1(x0)pλ1t + · · ·+ Φs(x0)pλsts) ≡

≡ yi(0)(1 +A1pt+A2p
2t2 +A3p

λ3t3 + · · ·+Asp
λsts)

for each i = 1, 2, which produce two sequences of PRN’s{
yi(t)

pm

}
, t = 0, 1, . . .

with the period τ = pm−1.

Using the results obtained in previous sections we can say that the constructed
sequence of PRN’s, associated with elliptic curve y2 ≡ x3 + ax+ b (mod pm),
passes the serial test on pseudorandomness, and therefore may be used in cryp-
tographic applications.
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Abstract. This paper is devoted to the analysis of calculation methods for solv-
ing fractional chaotic systems and the impact of these different approaches on the
behavior of the fractional chaotic system. Two widely used time domain fractional
differential equations solving approaches are discussed, the fractional ABM corrector-
predictor method based on Caputo fractional derivative definition, and the long mem-
ory calculation approach based on Grunwald fractional derivative. These numerical
solutions calculation methods are employed to depict the phase portrait of a class of
commensurate fractional chaotic systems. The Lyapunov exponent and bifurcation
diagrams of the systems over various fractional orders and parameters are illustrated
to detect the impact on the dynamics of the chaotic system applying different calcu-
lation approaches.
Keywords: Fractional calculus, Numerical solution, Fractional Chaotic system,
Non-linear dynamics.

1 Introduction

Chaos is a random-like behavior exhibited by many nonlinear dynamic systems.
The very first proponent on this topic can be dated back to 1880 while the three
body problem was studied [1]. Eighty years latter, when Edward Lorenz worked
on weather prediction, the so-called ’Lorenz attractor’ was found [2]. By giving
it a description and a poetic name of ’butterfly effect’, the gate of mathematical
and scientific world of Chaos was opened. Since then, many researchers have
tried to uncover the deterministic laws behind the apparently random states of
disorder of different chaotic systems.
One of the characteristics of chaotic system is that it is very sensitive to the ini-
tial conditions as described by butterfly effect. This sensitivity can be measured
by Lyapunov Exponent(LE) which calculates the rate of exponential divergence
of trajectories starting from two close initial conditions. This characteristics
also contributes to the application of chaotic systems in many domains of sci-
ence and engineering, such as biology [3], economics [4], finance [5], cryptogra-
phy [6][7] and etc.
In the meantime, fractional calculus is considered as the generalization of clas-
sical integer-order integration and differentiation operators to real, or complex
orders [8]. Many mathematicians have discussed the fractional calculus since
1695 by introducing different mathematical characterisations (definitions) for
fractional derivative and integration. In many cases, these characterisations
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are equivalent if the initial conditions are ad hoc [9], and the most well known
three are Rienmann-Liouville(RL), Grunwald-Letnikov(GL) and Caputo char-
acterisations.
The analysis and discussion of fractional calculus remained purely in the do-
main of mathematics for centuries. It was not until 1980s that the application
of fractional calculus in the domain of science and engineering has started to
be studied and explored. Due to the memory effect possessed by fractional
calculus, it is considered to be suitable to model many real-life systems. After
years of research, the fractional differential equations have now been used in
diverse disciplines like physics, biology, and economics, etc. [10][11].
The fractional chaotic system also attracts a lot of attention. The difficulties for
this research owes to the intricate geometric interpretation of fractional deriva-
tives [12] and the fact that there exist, as mentioned above, different definitions
for fractional derivatives. One basically considers continuous systems, and uses
numerical methods to approximate the solution. In the case of a fractional
system, the discrete approximating system may inherit the chaotic behaviour
of the initial continuous system, but this relationship is somehow complex.
What adds to the intricacy is that the chaotic behavior of the approximating
can be different for different numerical methods employed to solve the frac-
tional differential equations [13]. Therefore, the understanding of the impact
on the chaoticity of the system applying one or another numerical calculation
approaches is of great importance, in order to choose the most appropriate one
for a given application.
In the following, two numerical calculation methods under GL and Caputo
characeterizations for fractional differential equations are recalled. Then, we
employ both methods to obtain the states of two fractional chaotic systems ex-
tended from classical integer order chaotic system. The impact on the chaoticity
of the systems applying the two approaches has been analyzed in terms of LE
and from the aspect of bifurcation diagram and time responses.

2 Preliminaries on fractional calculus and fractional
systems

In this section, some preliminaries on fractional calculus and fractional systems
are introduced to give a rough idea on the topic. The widely-accepted stability
criteria for a commensurate fractional system is also illustrated.

2.1 Fractional calculus

As mentioned before, the fractional calculus studies the fractional derivative
and integral which can be considered as the extension of classical integer order
differentiation and integration to real or complex orders. In the long history
of the study of fractional calculus, many mathematicians have contributed and
introduced different characterisations(referred as ’definitions’ in many paper)
towards the topic. Here after, we give two well-known definitions Grünwald-
Letnikov (GL) and Caputo definitions [14][15].
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The fractional derivatives under GL characterisation can be writen as

aD
α
t f(t) = lim

h→0

1

hα

[ t−a
h ]∑
j=0

(−1)j
(
α

j

)
f(t− jh) (1)

The term [ t−ah ] in equation (1) stands for the integer part of t−a
h ; a and t are

the bounds of the derivative operation aD
α
t for f(t); α represents the fractional

derivative order. The
(
α
j

)
in (1) is defined in (2), where Γ (.) is the Eular Gamma

function in the form of (3).(
α
j

)
=

Γ (α+ 1)

Γ (j + 1)Γ (α− j + 1)
(2)

Γ (α) =

∞∫
0

tα−1

et
dt (3)

The caputo type fractional derivative holds the form as following,

c
aD

α
t f(t) =

1

Γ (n− α)

∫ t

a

f (n)(τ)

(t− τ)α−n+1
dτ, for n− 1 < α < n (4)

where α denotes the fractional derivative order; a and t are the bounds for the
operation; n is the smallest integer greater than α; Γ (.) is the Eular Gamma
function in equation (3); and f (n)(t) is the n-th derivative of f(t).
The Caputo type fractional derivative is often used for engineering applica-
tion since the fractional differential equations with this type of derivative can
provide the applied problem with an interpretive initial condition.

2.2 Fractional system

A fractional system is a dynamic system which can be modeled by fractional
differential equations [16]. A general form of fractional system is as follows,

aD
αi
t xi (t) = fi (x1 (t) , x2 (t) , ..., xn (t) , t)

xi (0) = ci, i = 1, 2, ..., n.
(5)

In (5), bound a is equal to 0; xi(0)(i = 1, 2, ...n) denotes the initial conditions
for each component constituting the state vectors; αi(i = 1, 2, ...n) is the frac-
tional derivative order for i-th differential equations consisting the system, and
fi is a linear or non-linear function.
The equilibrium points of system (5) can be obtained by solving equation
fi(x) = 0(i = 1, 2, ..., n). If a commensurate system with αi = α, i = 1, 2, ..., n
is considered, then, according to the stability theorem defined in [17], the equi-
librium points are locally asymptotically stable if the eigenvalue of the Jacobian
matrix of system (5) satisfies the following equation evaluated at equilibria.

|arg (eig (J))| = |arg (λi)| > α
π

2
, i = 1, 2, ..., n (6)

where J denotes the Jacobian matrix of (5), λi(i = 1, 2, ...n) are its eigenvalues.
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3 Numerical calculation methods for fractional
differential equations

In this section, two numerical solutions calculation methods for fractional differ-
ential equations are introduced. The methods are based on Grünwald-Letnikov
and Caputo fractional derivative characterisations.

3.1 Grünwald-Letnikov calculation method

The explicit numerical approximation of q-th derivative under GL characteri-
sation at the points kh, (h = 1, 2, ...) is expressed as follows [14]

(k−Lm)/hD
α
tk
f(t) ≈ h−α

k∑
j=0

(−1)
j

(
α
j

)
f(tk−j). (7)

In expression (7), Lm is the memory length; tk = kh, where h is the calculation

time step; the binomial coefficient (−1)j
(
α
j

)
can be denoted as c

(α)
j (j = 0, 1, ...)

which is expressed use the following expression[18],

c
(α)
0 = 1, c

(α)
j =

(
1− 1 + α

j

)
c
(α)
j−1. (8)

Thus, the general numerical solution of fractional differential equation de-
scribed by equation(9) can be expressed as given in (10).

aD
α
t y(t) = f(y(t), t) (9)

y(tk) = f(y(tk), tk)hα −
k∑
j=ν

c
(α)
j y(tk−j)) (10)

The sum in (10) stands for the memory term. If a ’long memory effect’ is
considered, then the lower index ν = 1 for all k, otherwise ν = 1 for k < (Lm/h)
and ν = k − Lm for k > (Lm/h).

3.2 Fractional ABM corrector-predictor method

The fractional ABM corrector-predictor method is another widely used time
domain numerical calculation method in the domain of engineering. It is a
generalization of the classical Adams–Bashforth–Moulton integrator which is
used for the numerical calculation of classical first order problem.
From the analytical point of view, the fractional differential equations under
Caputo characterization with initial conditions yk(0) = yk0 , k = 0, 1, 2...m − 1
where m := dαe, is equivalent to Volterra integral equation expressed as follows,

y(x) =

dαe−1∑
k=0

y
(k)
0

xk

k!
+

1

Γ (α)

∫ x

0

(x− t)α−1f(t, y(t))dt (11)
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The algorithm is developed on a uniform grid {tn = nh : n = 0, 1, ...N}. The
basic idea of the algorithm is to obtain the approximation of the latter point on
the grid from the former point. Detailed formula derivation for the algorithm
can be found in [19]. Here, we only give out the derived equations for the next
states values in equation (12)-(15).

yh(tn+1) =

dαe−1∑
k=0

tkn+1

k!
y
(k)
0 +

hα

Γ (α+ 2)
f(tn+1, y

P
h (tn+1))

+
hα

Γ (α+ 2)

n∑
j=0

aj,n+1f(tj , yh(tj)),

(12)

yPh (tn+1) =

dαe−1∑
k=0

tkn+1

k!
y
(k)
0 +

1

Γ (α)

n∑
j=0

bj,n+1f(tj , yh(tj)). (13)

aj,n+1 =


nα+1 − (n− α)(n+ 1)α, if j = 0,

(n− j + 2)α+1 + (n− j)α+1 − 2(n− j + 1)α+1, if 1 ≤ j ≤ n,
1, if j = n+ 1.

(14)

bj,n+1 =
hα

α
((n+ 1− j)α − (n− j)α) (15)

In the above equations, yh(tn+1) stands for the next state, yPh (tn+1) denotes
the predictor value for the next state, a and b are coefficients.

4 Fractional chaotic Chen and Lu systems

4.1 Fractional chaotic Chen systems

The system equation for fractional Chen system can be expressed as follow-
ing[20],

fc (x) =

Dαcx1 (t) = ac (x2 (t)− x1 (t))
Dαcx2 (t) = (cc − ac)x1 (t)− x1 (t)x3 (t) + ccx2 (t)
Dαcx3 (t) = x1 (t)x2 (t)− bcx3 (t)

(16)

In the equation, Dαc denotes the fractional derivative with order αc, (ac, bc,
cc) are the parameters of the system. The system is an extension from integer
order chaotic Chen system studied in [21].
The equilibria of the system can be obtained through the same way as its
original integer order system, by setting the right hand sand system equation
equal to zero fc (x∗) = 0 as given below,ac (x2 (t)− x1 (t)) = 0

(cc − ac)x1 (t)− x1 (t)x3 (t) + ccx2 (t) = 0
x1 (t)x2 (t)− bcx3 (t) = 0

(17)
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The singularity of the equilibrium points can also be acquired through the
classical method as given below, by evaluating the eigenvalue of the jacobian
matrix of the system at equilibrium points.

det (λcI−Jc) =

 λc + ac −ac 0
−cl + al + x∗3 λc − cc x∗1

−x∗2 −x∗1 λc + bc

 = 0 (18)

Jc in equation (18) represents the Jacobian matrix of the system equation, I is
the identity matrix, λc denotes the eigenvalue, and (x∗1, x

∗
2, x
∗
3) stands for the

equilibrium point.
The singularity of the three equilibrium points of fractional Chen system for
system parameters (ac, bc, cc) = (35, 3, 28) can be obtained through above an-
alytical expressions and are given in Table 1.

4.2 Fractional chaotic Lu system

The system equation for fractional chaotic Lu system extended from integer
order Lu system can be described as follows [22],

fl (x) =

Dαlx1 (t) = al (x2 (t)− x1 (t))
Dαlx2 (t) = −x1 (t)x3 (t) + clx2 (t)
Dαlx3 (t) = x1 (t)x2 (t)− blx3 (t)

(19)

where Dαl denotes the fractional derivative with order αl, al, bl, and cl are
the parameters of the system. The equilibrium points of the system can be
acquired calculating the solutions of the following system of equations,al (x2 (t)− x1 (t)) = 0

−x1 (t)x3 (t)x1 (t) + clx2 (t) = 0
x1 (t)x2 (t)− blx3 (t) = 0

(20)

The singularity of the equilibria can be obtained the same way as discussed
previously for the fractional Chen system through the following identities,

det (λlI−Jl) =

λl + al −al 0
x∗3 λl − cc x∗1
−x∗2 −x∗1 λl + bl

 = 0 (21)

where Jl in equation (21) represents the Jacobian matrix of the fractional Lu
system, λl denotes the eigenvalue, and (x∗1, x

∗
2, x
∗
3) stands for the equilibrium

point. When the parameters of the system is set to (ac, bc, cc) = (36, 3, 20),
three equilibirum points E∗1 = (0, 0, 0), E∗2 = (7.460, 7.460, 20) and E∗3 =
(−7.460,−7.460, 20) can be obtained applying equation (20). The singular-
ity of the equilibria is also given in Table 1.

5 Solutions for the chaotic systems applying different
approaches

In this section, the solutions for fractional Chen and Lu solution are obtained
applying both GL method and fractional ABM corrector-predictor method dis-
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cussed in section 3. The impact of the two approaches on the chaotic behavior
of the systems are also discussed.

5.1 Chaotic system applying GL method

With the numerical solution of fractional differential equation calculated under
GL method derived as in (10), the calculation for the states of fractional Chen
system and fractional Lu system (expression (16) and (19)) can be expressed
by the following identities (22) and (23) respectively.

x1(n) = (ac(x2(n)− x1(n− 1)))hαc −
n∑
j=ν

c
(αc)
j x1(n− j)

x2(n) = ((cc − ac)x1(n)− x1(n)x3(n− 1) + ccx3(n− 1))hαc −
n∑
j=ν

c
(αc)
j x2(n− j)

x3(n) = (x1(n)x2(n)− bcx3(n− 1))hαc −
n∑
j=ν

c
(αc)
j x3(n− j)

(22)

x1(n) = (al(x2(n− 1)− x1(n− 1)))hαl −
n∑
j=ν

c
(αl)
j x1(n− j)

x2(n) = (−x1(n)x3(n− 1) + clx2(n− 1))hαl −
n∑
j=ν

c
(αl)
j x2(n− j)

x3(n) = (x1(n)x2(n)− blx3(n− 1))hαl −
n∑
j=ν

c
(αl)
j x3(n− j)

(23)

System Equilibrium
Eigenvalue

singularity
λ1 λ2, λ3

Fractional
Chen
system

(0, 0, 0) -30.8359 23.8359,-3 Saddle
(-7.9379,-7.9379,21) -18.4280 4.2140±14.8846i Saddle Focus
(7.9379,7.9379,21) -18.4280 4.2140±14.8846i Saddle Focus

Fractional
Lü

system

(0, 0, 0) −36 20,−3 Saddle
(−7.460,−7.460, 20) −22.6516 1.8258 ± 13.6887i Saddle Focus

(7.460, 7.460, 20) −18.4280 1.8258 ± 13.6887i Saddle Focus

Table 1: Fractional Chen and Lu systems’ equilibria and their singularity

To be mentioned is that in our work, the ’long memory effect’ is adopted
applying GL method which means that the number ν in equaitons (22) and
(23) is equal to 1. The time step h in above equations is set to a fixed value
0.001.
We plotted the phase portraits of the two systems with fractional orders αc =
0.9 and αl = 0.95 in Fig.1a and 1b, respectively. The parameters and initial
conditions for Chen system are (35, 3, 28) and (−9,−5, 14). Those of Lu system
are chosen to be (36, 3, 20) and (0.2, 0.5, 0.3).
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5.2 Chaotic systems applying ABM corrector-predictor approach

Based on the fractional ABM corrector-predictor numerical calculation ap-
proach for the solution of fractional differential equations given in equations
(12)-(15), the states of fractional Chen system applying ABM predictor correc-
tor approach can be expressed as follows,

Xc(n+ 1) = Xc(0) +
hαc

Γ (αc + 2)
fc(X

P
c (n+ 1))

+
hαc

Γ (αc + 2)

n∑
j=0

aj,n+1fc (Xc (j))
(24)

XP
c (n+ 1) = Xc (0) +

1

Γ (αc)

n∑
j=0

b1j,n+1fc (Xc (j))

aj,n+1 =


nαc+1 − (n− αc)(n+ 1)

αc , ifj = 0,

(n− j + 2)
αc+1

+ (n− j)αc+1 − 2(n− j + 1)
αc+1

, if1 ≤ j ≤ n,
1, ifj = n+ 1.

bj,l+1 =
hαc

αc
((n+ 1− j)αc − (n− j)αc)

(25)
In the above equations, Xc(n+ 1), Xc(n) and XP

c (n+ 1) are state vectors com-
prised of all the state components x1m x2, and x3; αc is the fractional order
between (0, 1); fc stands for the Chen system equations.
The formula for the calculation of the states of fractional Lu system can be
obtained by substituting the state vectors, fractional order and system equa-
tions in equations (24)-(25) with Xl, αl and fl where 0 < αl < 1. The phase
portraits of the two systems acquired employing corrector-predictor approach
are given in Fig.1c and 1d, respectively. The fractional orders, parameters and
initial conditions are the same as those for the GL method.

5.3 Impact on system chaoticity with chosen methods

For the work in this section, we used the same parameters and initial conditions
for the two systems as adopted in the previous section, which are (ac, bc, cc) =
(35, 3, 28), Xc(0) = (−9,−5, 14); (al, bl, cl) = (36, 3, 20), Xl(0) = (0.2, 0.5, 0.3),
respectively. The time step h is set to 0.005. The MATLAB code[23] for ABM
corrector-predictor method and [24] is employed for the following simulation
and the calculation of LE.
According to the stability criteria introduced by equation (6), [17] states that
for a fractional system Dαx = f(x) to remain chaotic, a necessary condition
is keeping the eigenvalue λ in the unstable region, which gives the following
equation for the fractional derivative order α.

α >
2

π
tan−1

(
|Im(λ)|
Re(λ)

)
(26)
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(a) GL method Chen system (αc = 0.9) (b) GL method Lu system (αl = 0.95)

(c) GL method Chen system (αc = 0.9 (d) ABM method Lu system (αl = 0.95

Fig. 1: Phase Portrait of fractional Chen and Lu systems characterized by GL
and ABM method

where λ is the eigenvalue of the Jacobian matrix of the system, α is the com-
mensurate fractional order. Therefore, for the given parameter values, the
fractional chaotic Chen system should have a fractional order αc greater than
or equal to 0.8244.
In Fig. 2, we plot the phase portrait of fractional Chen system at boundary
fractional values 0.82 and 0.83 applying both GL and ABM corrector-predictor
methods. The time response of the last 2000 states obtained through both
methods are also given. The states calculated by GL method is in red and
ABM corrector-predictor in blue. It is not difficult to observe from Fig. 2a
and 2c that with order 0.82 there are only one red point in the figure, which
indicates that the states stays at the same fixed point applying GL method.
Whereas for the applied ABM method(blue dots), they appear to have a shape
of the attractors. When the system order is equal to 0.83, both methods dis-
play the shapes with attractors. This indicates that when applying GL calcu-
lation method with long memory effect, the system’s dynamic behavior is in
accordance with the stability criteria given by equation (26). While the ABM
calculation method applied in this paper provides the system with a smaller
derivative order for the system to be chaotic.
The time response figures given by Fig. 2b and 2d confirms the founding. The
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(a) Chen system with order 0.82 (b) Time response with order 0.9

(c) Chen system with order 0.83 (d) Time response with order 0.83

Fig. 2: Phase Portrait and time response of Chen system at boundary fractional
order values

blue curve stands for the states obtain through ABM method and red for GL.
It is clear that for derivative order 0.82, the red attractors stays at the same
value for the three state vector components x1, x2 and x3, while the blue curves
appear to be oscillating.
We also give the Lyapunov exponent and bifurcation diagrams over different
fractional orders of fractional Chen and Lu systems in Fig.3. For each frac-
tional derivative orders, 104 states were generated and the LEs were calculated
throughout the iterations. The LE spectrum curves in 3a and 3b are obtained
by combining LE values of the last iteration for every evaluated orders. The
plots show that only x1 component possesses LE value greater than 0 apply-
ing both methods. It can be observed that applying ABM corrector-predictor
approach, for the fractional Chen system, the LE of x1 greater than 0 appears
before order 0.53, whereas for GL method, the LE exceeds 0 after fractional
order of 0.8. The LEs for fractional Lu system calculated using both methods
show the similar results, with ABM method having a smaller chaotic fractional
derivative value. This is in accordance with our previous findings concern-
ing the phase portrait and time response which draws to the conclusion that
GL method give a more accurate approximation of original fractional system.
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Apart from this, from the y-coordinates of the bifurcation diagram where the
system is non-chaotic, it can be observed that the solution obtained using ABM
method stays at the equilibrium point as obtained through analytical analysis.

(a) Chen system GL method (b) Chen system ABM method

(c) Lu system GL method (d) Lu system ABM method

Fig. 3: LE and bifurcation results for Chen and Lu systems over dif-
ferent fractional derivatives employing different methods ((ac, bc, cc) =
(35, 3, 28),(al, bl, cl) = (36, 3, 20)

The LEs results and bifurcation diagram over different parameters of fractional
Lu system are also given in Fig.4 to illustrate the dynamics possesses by the
system. We set the system fractional order fixed to 0.9. It can be observed
that applying different numerical calculation methods, the system dynamic is
quite different. It is worth mentioning that is that the results for different
parameters are conducted by changing one parameter at a time and fixing the
other two unchanged.

6 Conclusion

In this paper, we recalled two numerical solutions calculation methods for frac-
tional differential equations adopting Grünward-Leinikov and Caputo charac-
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(a) Lu system GL method al LE results (b) Lu system ABM method al LE results

(c) Lu system GL method bl LE results (d) Lu system ABM method bl LE results

(e) Lu system GL method cl LE results (f) Lu system ABM method Cl LE results

Fig. 4: LE and bifurcation results for Chen and Lu systems over different frac-
tional parameters employing different methods
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terization of fractional derivative, respectively. Two fractional chaotic systems,
fractional Chen system and fractional Lu system are discussed and their dis-
cretized states were calculated employing both methods. The results show that
compared to the adopted ABM corrector-predictor method, the GL approach
with long memory effect provide the original fractional system with a better
approximation in coherence with the analytical studies. At the contrary, em-
ploying ABM method, the approximation accuracy appears to be deteriorate.
However, in terms of chaoticity, it has a greater chaotic range for fractional
derivatives.
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Divergence des séries de M. Lindstedt. Acta Mathematica. 13 (1–2): 1–270,1890.

2. E.N. Lorenz. The Predictability of Hydrodynamic Flow. Transactions of the New
York Academy of Sciences. 25 (4): 409–432, 1963.

3. E. Liz and A. Ruiz-Herrera. Chaos in discrete structured population models.SIAM
Journal on Applied Dynamical Systems. 11 (4): 1200–1214, 2012.

4. C. Kyrtsou and W. Labys. Evidence for chaotic dependence between US inflation
and commodity prices. Journal of Macroeconomics. 28 (1): 256–266, 2006.

5. J. Fernando. Applying the theory of chaos and a complex model of health to estab-
lish relations among financial indicators.Procedia Computer Science. 3: 982–986,
2011.

6. Z. Qiao, I. Taralova, S. El Assad. Efficient Pseudo-chaotic Number Generator for
Cryptographic Applications.International Journal of Intelligent Computing Re-
search, 11: 1041-1048, 2020.

7. M. Babaei. A novel text and image encryption method based on chaos theory and
DNA computing. Natural Computing. 12 (1): 101–107, 2013.
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Coupled FitzHugh-Nagumo Type Neurons
Driven by External Voltage Stimulation
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Department of Mathematics and Statistics, Faculty of Science, Masaryk University,
Kotlářská 2, Brno, 61137, Czechia
(E-mail: 437099@mail.muni.cz, pribylova@math.muni.cz)

Abstract. We have extended some results of previous works on coupled FitzHugh-
Nagumo type neurons stimulated by an external alternate voltage source. At first
a few electronic circuits modeling the influence of brain waves on particular groups
of coupled neurons are constructed. Bifurcation analysis of limit cycle dynamics
is carried out, and route to chaotic dynamics is described with respect to coupling
strength and forcing amplitude. This analysis enables constructing systems of coupled
oscillators with specified dynamic behavior. We show that for appropriate values of
parameters, a chimera-like state can be observed in a system of four coupled forced
oscillators. A similar approach can generally be used, and the chimera state in coupled
systems may be explained by means of bifurcation theory.
Keywords: FitzHugh-Nagumo, neuronal cells, brain waves, chaos, chimera state.

1 Introduction

This short text is inspired by the works Kyprianidis et al.[7] and Kyprianidis
and Makri[8] about coupled FitzHugh-Nagumo oscillators. Nonlinear dynam-
ics, especially chaos theory, is becoming a very important tool in understanding
brain activity, as can be seen, for example, in Faure and Korn[2] and Korn and
Faure[5]. Here we attempt to demonstrate this fact by using bifurcation theory
to explain some kinds of behavior in systems of coupled FHN type neurons.
At first, we recall basic results about dynamics of a single oscillator driven by
external periodic voltage source. Such a system can model a neuron influenced
by brain waves (an externally driven FHN type neuron). We describe an elec-
tric circuit that is characterised by the studied equations. Next, we investigate
two coupled oscillators driven by the same voltage source as a model of two
externally driven FHN type coupled neurons influenced by brain waves. In
every case, the coupling is realized by a resistor, hence we model gap junctions
between cells.

Finally, we use these results to construct a system of four coupled oscillators
exhibiting a stable state similar to a chimera state. As a model of four neurons
coupled in a ring topology, we construct a minimum system that exhibits such
dynamics with two groups of two mutually synchronized neurons with two
different dynamic behaviors. Bifurcation analysis (using continuation program
MATCONT, Dhooge et al.[1]) explains the choice of parameters for presented
synchronizations and chimera-like states.
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2 Dynamics of externally driven FHN type neuron

The starting point of the work Kyprianidis et al.[7] is an electric circuit de-
picted in Fig. 1. The component denoted by NR is a resistor with a cubic

Fig. 1: Electric circuit modelling FitzHugh-Nagumo equations.

i− v characteristic. The dynamics of this system is described by the following
equations, that can be derived using Kirchhoff’s laws and dimensional analysis:

x′ = x− x3

3
− y + ε(u− x),

y′ = k(a− by + x),

where x is proportional to the voltage v, y is proportional to the current iL,
ε is proportional to the reciprocal of the resistance RS and finally u is pro-
portional to the voltage vS . The alternate voltage u is given by the formula
u(t) = U0 cos 2πωt. To make the system autonomous, non-stiff, and suitable
for bifurcation continuations, we attach two more equations:

u′ = 2πω(µu− w − u(u2 + w2)),

w′ = 2πω(u+ µw − w(u2 + w2)).

Since these equations exhibit a stable solution given by the formula

(u,w)(t) = (
√
µ cos(2πωt),

√
µ sin(2πωt)),

the parameter µ, µ ≥ 0, corresponds to the earlier introduced parameter U0,
µ = U0

2. From now we assume the following values of parameters: a = 0.7,
b = 0.8, k = 0.1 and ω = 0.16. This is a typical choice that leads to oscillatory
dynamics (from regular neuron spiking to more complex firing patterns). The
nonlinear phenomenon is generic and another parameter choice in domain of the
limit cycle stability can be taken with analogous results. We briefly reconstruct
a bifurcation analysis from the original paper. A stable (globally attractive)
limit cycle undergoes period-doubling cascade of bifurcations with respect to
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parameter µ that corresponds to variation in amplitude of the external forcing.
The results are illustrated in figures 2, 3, 4, and 5.

Two-parameter bifurcation curves with respect to parameters µ and ε are
depicted at Fig. 6 (numerically computed with MATCONT, Dhooge et al.[1]).
Evidently, the occurrence of oscillations with different frequencies depends both
on the amplitude of the external waves and on the strength of the coupling.
The selection of only one of the parameters is not sufficient to create a complete
cascade of period-doubling. Various levels of coupling give birth to bifurcation
diagrams with bubbles that correspond to bounded parts of the Sharkovski
sequence of periods with respect to parameter µ. For a deeper insight into
the theory of two-parameter bifurcations of limit cycles, see Kuznetsov[6] or
Wiggins[11].

Fig. 2: Poincaré section by the hypersurface x = −0.75 for different values of
the parameter µ, values of y are plotted. The value of the parameter ε is 0.15.

Fig. 3: Maximal Lyapunov exponent
for different values of the parameter µ,
ε = 0.15.

According to the mentioned figures, a chaotic bubble appears for ε = 0.15.
Especially, an increase of the parameter µ from initial values around 10 or a
decrease of this parameter from initial values around 110 leads to an infinite
cascade of period-doubling bifurcations. Positive values of maximal Lyapunov
exponent indicate the presence of a chaotic attractor for appropriate values of
the parameter µ. Visible windows corresponding to stable periodic orbits with
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Fig. 4: Zoomed windows of stable cycles of odd period. The value of the pa-
rameter ε is 0.15.

Fig. 5: Left: 5-cycle for µ = 45.4, right: 7-cycle for µ = 43.1. The value of the
parameter ε is 0.15.

Fig. 6: Right: Bifurcation curves of a stable limit cycle (from the left upper
corner to the right lower corner) of period-doubling (2-cycle birth), period-
doubling (4-cycle birth), fold bifurcation of 5-cycle, and fold bifurcation of
7-cycle, continued in MATCONT. Left: Magnification of the right picture.

odd period can be observed after magnification (recall Sharkovski ordering).
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Particularly, a 5-cycle and a 7-cycle windows are large enough to be detected
easily. Curves of fold bifurcations of these cycles can be used for specifying
borders of the stable oscillatory dynamics and domains of the chaotic attractor
in ε−µ plane. Evidently, the cell exhibits chaotic behaviour for example for the
values (ε, µ) = (0.15, 38) (see also Fig. 4), whereas the choice (ε, µ) = (0.3, 38)
lead to periodic oscillations. We can possibly use a different pair of parameter
values. Bifurcation diagrams in Fig. 6 agree with the results of the original
paper Kyprianidis et al.[7], which demonstrate an extinction of the chaotic
bubble with the increase of the parameter ε.

3 Dynamics of two coupled externally driven FHN type
neurons

Further, we study a system of two coupled oscillators, both of which are driven
by the same alternate voltage source. This situation can be interpreted as
an influence of brain waves on two coupled neurons and is represented by the
electric circuit depicted in Fig. 7. Again, Kirchhoff’s laws and dimensional

Fig. 7: Electric circuit modelling two coupled FitzHugh-Nagumo oscillators.

analysis give us the following set of equations which describes dynamics of the
circuit:

x′1 = x1 −
x31
3
− y1 + ε1(u− x1) + ξ(x2 − x1),

y′1 = k(a− by1 + x1),

x′2 = x2 −
x32
3
− y2 + ε2(u− x2) + ξ(x1 − x2),

y′2 = k(a− by2 + x2).

The new parameter ξ is proportional to the reciprocal of the resistance R12.
Now, we investigate an influence of the coupling strength ξ on attenuation of
chaos in the first cell, hence we choose (ε1, ε2, µ) = (0.3, 0.15, 38). The results
can be seen in figures 8, 9 and 10.

For sufficiently large ξ, the first cell makes the second one oscillate period-
ically, which is a natural state of the first one. The second cell would behave
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Fig. 8: Left: Poincaré section by the hypersurface x1 = −0.75 for different val-
ues of the parameter ξ, the values of y1 are plotted. Right: Poincaré section by
the hypersurface x2 = −0.75 for different values of the parameter ξ, the values
of y2 are plotted. The remaining parameters are (ε1, ε2, µ) = (0.3, 0.15, 38).

Fig. 9: Maximal Lyapunov exponent
for different values of the parameter ξ.

Fig. 10: Right: Bifurcation curves of a stable limit cycle (from the right up-
per corner to the left lower corner) of period-doubling (2-cycle birth), period-
doubling (4-cycle birth), fold bifurcation of 7-cycle and fold bifurcation of 5-
cycle. Left: Magnification of the right picture.

chaotically without the coupling. On the other hand, we can say that the
strength of coupling is not sufficient for changing the natural behavior, if ξ is
small. Poincaré sections indicate a presence of small deviations from periodic
oscillation in the case of the first cell. However, they do not change behaviour
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qualitatively and can be considered as fluctuations caused by the environment.
Bifurcation curves demonstrate an extinction of the chaotic bubble with the
increase of the parameter ξ, see Fig. 11.

Fig. 11: Poincaré section by the hypersurface x2 = −0.75 for different values of
the parameter µ, the values of y2 are plotted. The values of the parameter ξ
are as follows ξ1 = 0.009, ξ2 = 0.014, ξ3 = 0.03 and ξ4 = 0.05. The remaining
parameters are chosen to be (ε1, ε2) = (0.3, 0.15).

Before we proceed to the case of four oscillators, we focus on the influence of
the parameter ξ on emerging of synchronization. We deal with two situations
in which we couple a chaotic cell together with a periodically oscillating cell
and two chaotic cells together, respectively. The dependence of synchronization
on the parameter ξ is depicted in Fig. 12. In the first case, we couple two cells
driven by different forces, which leads to coupling between different oscillators.
It is not surprising that there will always be some difference between phases
of these oscillators, no matter how strong the coupling is. On the other hand,
we know that two identical chaotic oscillators are able to achieve complete
synchronization if the coupling is strong enough. A comprehensive treatment
of a concept of synchronization can be found in Pikovsky et al.[9].

4 Chimera-like states

The main result of this contribution is the explanation of the chimera-like be-
havior of a system of coupled oscillators by means of bifurcation theory. We
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Fig. 12: Dependence of synchronization on the parameter ξ. For the values
of the parameter ξ from appropriate intervals ten sets of initial conditions
were chosen randomly. Uniform distribution on the interval [−2, 2] has been
used. Maxima of deviations |x1(t)− x2(t)| for t in the interval [1000, 2000] are
plotted. The values of parameters are (ε1, ε2, µ) = (0.3, 0.15, 38) for the left
diagram and (ε1, ε2, µ) = (0.15, 0.15, 38) for the right diagram.

can easily use previous bifurcation analysis results to construct various systems
of four coupled cells exhibiting synchronizations/non-synchronizations, chaotic
behavior and partial synchronizations, and especially stable chimera state,
which means that two groups of oscillators have qualitatively different dynam-
ics. One group of two oscillators behave chaotically (in a synchronized or non-
synchronized state), the other group exhibits synchronized oscillations. The
same approach can be analogously used for other systems of Hodgkin–Huxley
type, Morris-Lecar type, Hindmarsh–Rose type, or others.

We are interested in an electric circuit depicted in Fig. 13 with the following
equations governing its dynamics:

x′1 = x1 −
x31
3
− y1 + ε1(u− x1) + ξ12(x2 − x1) + ξ13(x3 − x1),

y′1 = k(a− by1 + x1),

x′2 = x2 −
x32
3
− y2 + ε2(u− x2) + ξ12(x1 − x2) + ξ24(x4 − x2),

y′2 = k(a− by2 + x2),

x′3 = x3 −
x33
3
− y3 + ε3(u− x3) + ξ13(x1 − x3) + ξ34(x4 − x3),

y′3 = k(a− by3 + x3),

x′4 = x4 −
x34
3
− y4 + ε4(u− x4) + ξ24(x2 − x4) + ξ34(x3 − x4),

y′4 = k(a− by4 + x4).

Three different situations are going to be considered all of which are illustrated
in figures 14, 15 and 16. The choice of parameters in Fig. 14 represents a
situation in which the natural state of the first cell is periodic oscillations, while
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Fig. 13: Electric circuit modelling four coupled FitzHugh-Nagumo oscillators.

ε3 = 0.15
OO

ξ13=0.001

��

oo
ξ34=0.01

// ε4 = 0.15
OO

ξ24=0.001

��

ε1 = 0.3 oo
ξ12=1

// ε2 = 0.15

Fig. 14: Bottom: projection of the tra-
jectory on the phase space of the third
and of the fourth cell on the left and on
the phase space of the first and of the
second cell on the right, respectively.

the remaining cells behave chaotically. Moreover, the coupling between the first
two cells is strong enough to suppress chaos in the second cell. Finally, chaotic
cells are not able to synchronize, and respective groups do not influence each
other too much. Since the first two cells are different oscillators, they are not
able to achieve complete synchronization. However, frequency locking appears
obviously. If the natural state of the second cell is periodic oscillations, then
the choice of parameters in Fig. 15 leads to complete synchronization in the
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ε3 = 0.15
OO

ξ13=0.001

��

oo
ξ34=0.01

// ε4 = 0.15
OO

ξ24=0.001

��

ε1 = 0.3 oo
ξ12=0.01

// ε2 = 0.3

Fig. 15: Bottom: projection of the tra-
jectory on the phase space of the third
and of the fourth cell on the left and on
the phase space of the first and of the
second cell on the right, respectively.

first group. On the other hand, the fluctuations caused by the group of chaotic
cells are still present, but they are much weaker. Finally, we can consider a

ε3 = 0.15
OO

ξ13=0.001

��

oo
ξ34=0.001

// ε4 = 0.3
OO

ξ24=0.001

��

ε1 = 0.3 oo
ξ12=0.001

// ε2 = 0.15

Fig. 16: Bottom: projection of the tra-
jectory on the phase space of the sec-
ond and of the third cell on the left
and on the phase space of the first and
of the fourth cell on the right, respec-
tively.

situation in which cells are connected to cells of the other group only, which
is illustrated in Fig. 16. Since periodically oscillating cells are driven by the
same force, they do not need to be coupled in order to achieve synchronization.
The stability of partial synchronization in the second and the third situation
is demonstrated in figures 17 and 18.
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Fig. 17: Deviations between pairs
of oscillators for one hundred ini-
tial conditions chosen randomly from
the interval [−2, 2] with uniform dis-
tribution. Maxima of deviations
|x1(t)− x2(t)| for t ∈ [1000, 2000] are
displayed in green colour and max-
ima of deviations |x3(t)− x4(t)| for
t ∈ [1000, 2000] are displayed in blue
colour. Parameters are the same as in
Fig. 15.

Fig. 18: Deviations between pairs
of oscillators for one hundred ini-
tial conditions chosen randomly from
the interval [−2, 2] with uniform dis-
tribution. Maxima of deviations
|x1(t)− x4(t)| for t ∈ [1000, 2000] are
displayed in green colour and max-
ima of deviations |x2(t)− x3(t)| for
t ∈ [1000, 2000] are displayed in blue
colour. Parameters are the same as in
Fig. 16.

5 Conclusion

The majority of this work can be considered as a straightforward extension
of ideas and analyses published in Kyprianidis et al.[7] and Kyprianidis and
Makri[8]. On the other hand, the system of coupled oscillators can be seen as a
prototype for the description of chimera-like dynamics, which can be explained
by bifurcation analysis. It is possible to explain changes in dynamics with re-
spect to the coupling force between the oscillators or the external excitation
(brain waves) by crossing bifurcation manifolds. We have observed two main
types of cell behavior: a cell can exhibit periodic oscillations that lead to par-
ticipation in the generation of brain waves, or it can behave chaotically. There
could also be various ratios of phase-locking observed as the period-doubling
route to chaos takes place. It thus explains the phenomenon when a neuron can
contribute both to a synchronized brain wave activity but also have different
and even chaotic dynamics (Korn and Faure[5]). Analysis of phase-locking is
connected with fold bifurcations on a torus, more precisely birth of torus via
Neimark-Sacker bifurcation of a cycle and near Arnold tongues existence. This
analysis is not included in this contribution, but a possible analysis approach
is explained in Ševč́ık and Přibylová[10].

All studied systems of differential equations describe dynamics of some elec-
tric circuit which is presented in detail. We have seen that the resulting type
of behavior strongly depends on the topology of the network, the strength of
coupling between cells, and the amplitude of the forcing signal. Our further re-
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search will be focused on applications of functional analysis, singularity theory,
and group theory to the investigation of the origin of partial synchronization
based on ideas from Golubitsky and Schaeffer[3] and Golubitsky et al.[4] since
in the case of similar coupled neurons, symmetry can be used to study and
describe idealized and perfectly same coupled neurons, and breaking symmetry
can lead to chimera states that could be explained by means of equivariant
bifurcation theory.
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Abstract. In this article we discuss the demographic dynamics modelling in communities 

of countries with different levels of economic development. Our approach is based on the 

stratum model of population growth, proposed by the authors earlier. The observed 
processes of depopulation of the periphery of such communities were studied within the 

framework of the model. The phenomenon of institutional trap is considered as an 

explanatory principle of the functioning of complex socio-economic structures. Its main 

traits are discussed. Based on the proposed model, the forecasts of population growth in 
several countries were calculated. Within the proposed model of institutional trap a set of 

measures to overcome the negative demographic trends were formulated. 

Keywords: Simulation, Demographics, Institutional Trap, Stratum Model, Forecast. 
 

1 Introduction 
 

Significant progress has been made in the field of creating mathematical models 

for complex social systems in recent decades [1]. The results of scientific 

forecast (foresight) of socio-economic processes of countries and the world as a 

whole by methods of social, humanitarian and natural sciences are used both in 

the field of public administration and strategic planning, and in large business 

when developing a growth strategy [2]. Mathematical modeling of social 

processes, and, in particular, the population growth forecasts should be 

recognized as an integral element of foresight that enlightens the trends of 

economic development of the society [3]. The topic of forecasting the 

population growth of countries and the whole world continues to be relevant not 

only because of the limited life resources and the prospect of overpopulation of 

the planet, but also because countries tend to build management decisions based 

on reliable long-term forecasts. The study of this problem leads to the 

conclusion that such forecasts can be made on the basis of adequate 

mathematical models. 

One of the first and most famous experiences of successful modeling in 

the field of social and economic sciences was the work of Malthus [4], which 

caused sharp criticism at the time. The main idea of T.R. Malthus was the point 

that the difference in the growth of the population and the productive forces (the 

wealth of society) leads to a complication of the social situation, producing 

wars, crises and diseases. The discussion of the “overpopulation crisis” 

predicted by Malthus, which was expected by 2004, led to the correction of the 
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growth model and the creation of several variants of such model. In general, the 

proposed approaches can be divided into 3 groups: 

 models-concepts based on the identification and analysis of general 

historical patterns and their representation in the form of cognitive 

schemes describing logical connections between various factors 

affecting historical processes (ideas of J. Goldstein, I. Wallerstein, L.N. 

Gumilev, N.S. Rosov, etc.). These models have a high degree of 

generalization, but they are not mathematical, but purely logical, 

conceptual in nature; 

 pure mathematical models of the simulation type devoted to the 

description of specific historical events and phenomena (Yu.N. 

Pavlovsky, L.I. Borodkin, D. Meadows, J. Forrester, etc.). The 

applicability of such models is usually limited to a fairly narrow space-

time interval since they are related to a specific geopolitical situation; 

 “intermediate” mathematical models between the two specified types. 

Their task is to identify the basic patterns that characterize the flow of 

processes of the type under consideration. 

Our work aimed at studying the relationship between socio-economic 

life and demographic processes, thus relating to the third type of models. This 

approach involves both conducting mathematical modeling, and taking into 

account and describing the factors and processes that affect the phenomena 

under consideration. 

One of the first steps in this direction that should be named is the 

Verhulst logistics model [5] and the concept of “world-systems” [6]. Within the 

framework of these approaches, the unified system (the world) was divided into 

subsystems (economic subsystem, and/or social and demographic ones). Later, 

dynamic models were proposed that go beyond the neoclassical model of 

economic growth by R. Solow [7], based on equilibrium, when in a stationary 

state the rate of labor productivity growth is equal to the rate of technological 

progress, and the rate of economic growth is the sum of the rate of technological 

progress and the rate of population growth 

At the same time, the Solow model could not explain many problems 

related to economic growth, which was caused by the fact that many parameters 

of the model were set exogenously. The next step was the Cobb-Douglas model 

[8], the Ramsey-Kass-Koopmans model [9] and the Mankiw Romer and Vail 

model [10].  

All the models considered assumed a different format of “combining” 

social, economic and demographic parameters [6,11]. In practice, we should 

mention the Gushchin-Malkov model of macroeconomic dynamics (which 

describes the economic cycles of US GDP growth, see [12])) and the Korotaev 

model of great divergence/convergence [13], as well as the Kapitsa population 

growth model [11]. The last work proposed an exponential model of world 

population growth, showing the "limits of growth" beyond which a global 

catastrophe can await the planet. Based on this model, the trend change point or 

“transition point” (2005) was also predicted, when exponential growth is 

replaced by a slowdown in growth. Although this model made it possible to 
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predict global trends quite well, it was completely unsuitable for calculating 

population growth forecasts for individual countries, in particular because 

migration processes play an important role in these processes, which were not 

taken into account in the model in any way. 

Methodologically, our study continues the approach of dividing a 

single system into a number of subsystems, and in this sense, the approach can 

be called hierarchical. The subject of our study will be the population growth in 

the subsystems of a single “economic community”, taking into account the 

socio-economic development of this system. It is assumed that in the system 

under consideration, it is possible to explicitly allocate the Center and the 

Periphery (i.e., to allocate subsystems). A similar problem was solved earlier in 

the course of mathematical modeling of the population size based on the stratum 

model [14]. 

Our special attention was attracted by the Korotaev’s model [13] of 

great divergence/convergence, in which an attempt is explicitly made to take 

into account population growth in the economic model of the development of 

countries. The authors drew the conclusion about the “inevitable convergence of 

heterogeneous economic systems of the Periphery-Center type”. Meanwhile, 

this conclusion contradicts the trends observed in some similar situations, in 

particular in the EU-Baltic states, where not only convergence is not observed, 

but rather divergence occurs, accompanied by the process of depopulation of the 

Periphery. 

The obvious disadvantage of mentioned model is the lack of migration 

in it – and, as it seems to us, this process leads to the opposite effect: to the 

growth of the economic gap between these parts of the system and, ultimately, 

leads to the depopulation of the Periphery. The most important resource of 

economic growth is the labor force leaving depressed regions, which leads to a 

significant decrease in the economic growth potential of these regions. 

The way out of this situation, in our opinion, may be the stratum model 

of population growth proposed by us in 2014 [14], which can be generalized to 

the case of a heterogeneous economic system/commonwealth of countries with 

different levels of development. An additional argument in favor of the attempt 

to combine the convergence model with the stratum model of population growth 

was our analysis of population growth forecasts for 2014 for several countries in 

comparison with statistical data for these countries over the past 4 years, which 

showed a good agreement of these forecasts with statistics. 

The essence of the stratum model is that the population of a country is 

considered not as homogeneous, but as consisting of several strata. We used 

following denotations: x (t) – the number of urban population, y(t) - the number 

of rural population. The parameters that determine the dynamics of changes in 

each stratum are different, in particular, both the birth rate and mortality in the 

strata can differ significantly, in addition, there is a significant migration of the 

population (almost always it is the move of the rural population to the city). 

Taking into account these circumstances, the model of population growth in a 

particular country can be presented in this form: 
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The meaning of the parameters ax and ay is that they are determined by the 

balance of instantaneous fertility and mortality in each stratum. Since the 

economic conditions for the existence of strata and the way of life within strata 

are different, the characteristic coefficients ax and ay can vary greatly. The 

parameters dx and dy conditionally determine the “capacity of the corresponding 

niche”, i.e. they reflect the limited life resources, and the ratio of the parameters 

(ax,ay) and (dx,dy) determines the linear “transition point”. 

The system (1) is written in a symmetric form, the coefficients (ax, ay) 

and (dx, dy) determine the internal dynamics of the stratum, and cx and cy 

determine the migration between the strata. The migration flow may depend on 

many factors, but for each specific country it is a fairly stable parameter, and the 

last term in the equations should be proportional to the frequency of meetings of 

residents of the city and village, it is this part of the equation that can 

significantly accelerate the dynamics of changes in the system. 

This is also connected with the possibility of economic growth of the 

country exceeding the population growth rate, since the migration of the rural 

population to the city provides additional needs for industrial labor resources. 

For a particular country, the migration rate is determined by the coefficients cx,y 

(in the simplest case, these coefficients are equal and opposite in sign, which 

means that all those who left the “village” ended up in the “city”). If we start 

from the stratum model of population growth of one country (1), then it is easy 

to build a model of world population growth based on the principle of hierarchy: 

for this it is necessary to determine the coefficients (ax, ay), (dx, dy), (cx, cy) for 

each individual country, moreover, an additional term describing the emigration 

of the population from one country to other countries should be introduced, this 

term will be similar to the third in the system (1). The forecast calculated in this 

order for each country allows us to find the total population of the world. 

It should be said that in this approach, the amount of calculations 

increases significantly, but the accuracy of the forecast also increases. It should 

be emphasized that it was the forecasts for these countries that led us to the idea 

of the existence of so-called “institutional traps” that individual countries fall 

into, i.e. such situations that do not disappear by themselves, but require a 

purposeful restructuring of the institutional environment. It is for this reason that 

below we present the results of calculations of forecasts for a group of countries, 

the choice of which is due to the fact that, using the example of these countries, 

we will try to construct and test a mathematical model of an “institutional trap”, 

i.e. a situation caused by the institutional characteristics of countries and a way 

out of which is possible only as a result of serious institutional changes. 

In the next section we present the results of numerical simulation for 

population growth of countries that can be considered as good axample of 

center-periphery system. 
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2 The dynamics of population growth as an institutional trap. 

Former USSR republics case 
 

Let us discuss the demographics dynamics of former soviet republics, 

precisely – Russia, Belarus, Ukraine and Baltic states. Here we do not take into 

account the pandemic influence, hoping its negative consequences will be 

overcome soon, and the population trend will restore.  

A characteristic feature of the demographic dynamics of Russia was a 

change in the trend from neutral (fluctuation in the population near 147 million) 

to moderately optimistic growth since 2010 year. The trend change was mainly 

due to the growth of urban population, while the rural population continued to 

decline. The graph on the right shows statistics for 4 years from 2014 to 2018. 

Thus, it can be argued that the managerial decision made in Russia on cash 

payments at the birth of the second and third child has already influenced the 

dynamics of population growth. 

Since the collapse of the USSR, Belarus is the only post-Soviet 

republic where the population began to grow. Urban growth continued after the 

collapse of the USSR, the rural population continued to decline at a constant 

rate, while the total population began to grow only in 2014. These changes 

however are not stable and can be reversed due to political tensions.  

Since 1991, Ukraine has shown a steady population decline dynamics: 

population was decreasing at a constant rate of 1% per year. Moreover, the 

decrease in the population is taking place both in the countryside and in the city 

at almost the same rate. This dynamic indicates the ongoing economic crisis in 

the country. Data for 4 years (from 2014 to 2018) do not provide any indication 

of a change in trend. 

 

 
Fig. 1. Russia population forecast and statistical data 
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After the collapse of the USSR in the period up to 2000, the population 

decline in Estonia was the fastest among the post-Soviet countries, and then it 

diminished. The shift of the dynamics in recent years (positive growth) should 

be considered separately, since there is no obvious explanation for such a 

change. 

After 1991, the most dramatic situation developed in Lithuania - 

depopulation was stable both in the city and in the countryside, and there is no 

need to talk about a change in trend. In Latvia the situation is almost completely 

similar to Lithuania: depopulation is going on at a constant pace, and no change 

in the trend is expected.  

The graphs indicate the presence of two groups of countries: these are 

the post-Soviet countries that remained outside the economic blocs and the post-

Soviet countries that entered the EU (or are associated with the EU). The 

demographic situation in these groups is radically different. 

All this suggests that a mathematical model should be created that 

would take into account migration between countries and at the same time 

reveal the reasons for such large-scale population migrations. In our opinion 

stratum model is the best possible starting point on the way to such a socio-

demographic model. As an explanatory principle we rely on institutional 

reasons. Since the ideas to link demographic variables with economic and social 

variables have appeared for a long time, we decided to make an attempt to 

create an economic-socio-demographic model that would allow us to consider 

the problems of demography in connection with economic and social ones. 

Moreover, one of these attempts raised the problem of convergence of countries 

with different levels of economic development. 

Our explanation of the differences in dynamics boils down to the 

following causal chain: joining the EU (or association) opens borders for 

migration of the population, the existing gap in the standard of living and 

education leads to the flow of migrants from conditionally “poor countries” 

towards rich ones. Such migration deprives poor countries of human 

development resources, and then their economic development slows down. 

The problem of heterogeneity or uneven development of countries has 

already been considered in the above mentioned work [13]. Obviously, without 

taking into account migration, such a model leads to “great convergence” - a 

completely fair goal, which was set by the countries that joined the EU. 

However, in fact, the entry of the Baltic countries into the EU led to 

depopulation and an increase in the income gap. A similar process is underway 

in the case of Ukraine (although with some delay). We can expect the same 

situation with Belarus – Russia case, or Ukraine – Russia (if political tensions 

declined). 

All this allows us to conclude that accounting for migration in the 

Center-Periphery model is necessary. Otherwise, the model will not adequately 

describe the dynamics of the system. 
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Fig. 2. Ukraine population forecast and statistical data 

 

 
Fig. 3. Estonia population forecast and statistical data 

 

 
Fig. 4. Lithuania population forecast and statistical data 
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Of course, we will model a system that is simplified compared to the 

real one, but we will keep its most important features: the free movement of 

people (migration) and the heterogeneity of the system. Therefore, we will 

assume that the system consists of a developed Center and a backward 

Periphery. From the point of view of the stratum model, the new EU countries 

represent the same “city” and “rural” in the country, and there is unlimited and 

practically unregulated migration between these strata. We note that the 

proposed model should transform into previous model of [14] in the case of low 

migration process.  

 

3 Model improvement: inclusion of social and economic 

factors. 
For the sake of generality, we will keep the previous designations: x(t) 

– the population of the Center, y(t) - the population of the Periphery. Let's 

supplement system (1) by adding equations to take into account the socio-

economic development of the regions. By analogy with the work [13], we will 

introduce the level of “wealth” – Sx,y  and “education” Ex,y.  

In practice, these factors reflect material wealth and other intangible 

benefits. The meaning of the parameters ax and ay is that they are determined by 

the balance of instantaneous fertility and mortality in each of the subsystems: in 

the Center and Periphery. Since the economic conditions of existence in the 

Center and on the Periphery, as well as the way of life within each subsystem 

are different, the characteristic coefficients ax and ay can be very different. The 

parameters dx and dy conditionally determine the "capacity of the corresponding 

niche", i.e. they reflect the limited life resources in the subsystems.  
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The first two equations of the system (2) is written in a symmetric 

form, the coefficients (ax,ay) and (dx,dy) determine the internal dynamics of the 

subsystem Center and the Periphery, here, instead of the coefficients cx and cy, 

which determine the migration of the population from one part of the subsystem 

to another, some functions of the variables Sx,y and Ex,y are selected, which 

characterize the per capita income and the level of education in each part of the 

system: Sx is a relatively excess product per capita of the Center population, and 
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Sy is a relatively excess product per capita of the Periphery population; Ex is the 

level of education of the population in the Center, and Ey is the level of 

education of the population in the Periphery. Differences in income level and in 

the level of education in the Center and on the Periphery will induce migration 

of the population to the Center. Additionally, the following notation is 

introduced in system (2): G (t) = x (m + Sx) + y ( m + Sy) is the GDP of the 

Center-Periphery system, m is the minimum necessary product (estimated as $ 

440), Glim is a certain fundamental limitation and a normalization term that 

defines a fundamental constraint in the system. In the model [14] describing the 

world-system, Glim= $ 400 trillion, in the model we propose, Glim should 

coincide in order with the EU GDP, i.e. about $ 100 trillion. 

Let us pay attention to the choice of signs in these terms in the first two 

equations of the system (2) that fixes the direction of migration from the 

Periphery to the Center. Thus, to describe the dynamics of interaction of the 

heterogeneous Center-Periphery system, a socio-economic demographic 

mathematical model (2) of the system is proposed, which takes into account 

both the dynamics of the population of individual parts of the system, and the 

migration of the population from one part of the system to another, due to the 

difference in income in different subsystems and the difference in the level of 

education. Equations (2) contain φ, ψ which we will call “convergence 

functions”, which show the relationship between the Center and the periphery. 

Unlike [13], we do not postulate the form of these functions, moreover, in our 

opinion, their form needs serious refinement. 

At the same time, the choice of convergence functions should reflect 

the main trends in the modern world. Thus, according to the authors [12,13], the 

gap between highly and medium-developed countries has been decreasing at a 

particularly rapid pace in recent years, and the gap between highly and 

underdeveloped countries is decreasing at a noticeably slower pace, at the same 

time they show an increase in the gap between medium and underdeveloped 

countries. In practice, it turns out that advanced economies are “going into 

isolation”, medium-developed countries receive the greatest benefits from 

globalization, catching up with developed countries, but underdeveloped 

countries are moving to increasingly worse positions. According to the author 

[15], we are talking about the reconfiguration of the world-system and the trend 

towards the concentration of income. There is a discrepancy between the richest 

and the poorest people in the world, despite the general convergence of average 

incomes. 

These conclusions, in our opinion, are very controversial. The existing 

practice shows that a country's participation in a successful economic 

community does not guarantee its automatic convergence, does not 

automatically raise it to the level of the Сenter. In our opinion, correct 

accounting of migration can lead simultaneously to depopulation and economic 

degradation of the Periphery, and "on average" (or "per capita") there will be an 

increase in welfare. 

In the model we propose, in the simplest case: 
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Note that the function ψ must be non-zero, otherwise the resulting 

solutions for Ey will tend to 1, i.e. the village becomes fully educated, which 
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It corresponds to full education in the Center and some non-zero (but 

not 100%) education in the Periphery.The proposed equations (2) are essentially 

nonlinear, and may contain complex dynamics, such as periodic oscillations, 

periodic oscillations with attenuation or increase in amplitude, or, conversely, an 

asymptotic output to constant values. 

Stability analysis for the system (2) reveals that there are always trivial 

solutions for Ex,y = 0 or 1 (totally educated or fully uncivilized strata). Assuming 

two extreme cases Sx >> Sy (the welfare of the Center significantly exceeds the 

welfare of the Periphery) and Sx = Sy (the convergence occurred) we obtain 

following results. For Sx >> Sy we get A> A (critical value)  = x(0) ay = ay ay/dx 

For the case Ex = 1, Ey = 0 (developed center and backward periphery) 

we get the restriction (A + B) (critical value) = x(0) ay . The system loses stability if 

the sum of the parameters (A + B) exceeds the critical value. Thus interesting 

realistic solutions system (2) will be played out around the adiabatic values of 

variables x(t) and  y(t). 

A similar approach (adiabatic change of parameters) can be applied in 

the case of convergence functions, assuming that they are a small perturbation 

that has the greatest impact on the population of the periphery.  

It seems that the next step would be reasonable to choose the 

convergence functions by analogy with the terms in the first two equations in 

the form 
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The obtained equations (2) are characterized by the following 

properties. Firstly, there are no exogenous variables in them, taking into account 

external factors is contained only in the parameters (coefficients) of the 

equations. Secondly, the meaning of the parameters contained in the model 

follows from the equations themselves, and the values of these parameters can 

be determined from the analysis of statistical data for a certain period. Third, the 

type of convergence functions is not defined a priori. 

It seems that this system of equations will allow us to study various 

modes of behavior of the Center-Periphery system depending on the values of 

the parameters, as well as to predict the behavior of the Center-Periphery 
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system, in the case when the parameters are determined. This model is a 

development of the stratum model, taking into account the ideas about the 

functioning of the “world-system” [6]. The authors suggest that the developed 

approach will allow us to consider complex systems where simplified 

approaches do not work. 

 

Conclusion 
The proposed model of the institutional trap is described by a system of 

equations (2), which is characterized by the following properties: 

Firstly, there are no exogenous variables in them, external factors are 

taken into account only in the parameters (coefficients) of the equations. 

Secondly, the meaning of the parameters contained in the model 

follows from the equations themselves, and the values of these parameters can 

be determined from the analysis of statistical data for a certain period. 

Third, the type of convergence functions is not defined a priori and 

may vary depending on the task. 

It seems that this system of equations will allow us to study various 

modes of behavior of the Center-Periphery system depending on the values of 

the parameters, as well as to predict the behavior of the Center-Periphery 

system, in the case when the parameters are determined. 

We emphasize once again that this model is a development of the 

stratum model [14], taking into account the ideas about the functioning of the 

"world-system" [6,13]. The authors suggest that the developed approach will 

allow us to consider complex systems where simplified approaches do not work. 

The results obtained, however, should be used with caution: their applicability 

to specific situations is limited by both the initial conditions and the current 

operating conditions of the system under consideration. In terms of the 

institutional trap, this is equivalent to the destruction of the trap in the course of 

institutional restructuring (reform). Note that a similar effect can be achieved by 

a sharp change in the initial parameters of the system (the population in the 

Periphery, which has changed dramatically, for example, in the results of 

uncontrolled migration), which is equivalent to the "transfer" of the system to 

the pool of attraction of another attractor. 

Given the almost unlimited labor migration within the EU, it is 

assumed that the proposed model will adequately describe the case of an 

institutional trap that occurs in the Center-Periphery system, in which economic 

integration does not lead to an equalization of the level of per capita income in 

the subsystems, but leads to the depopulation of the Periphery. The results of 

computer modeling should make it possible to estimate the characteristic times 

of the development of unfavorable dynamics (the "half-life" of the Periphery 

countries). The authors also hope that the study of this model will allow us to 

formulate recipes for getting out of emerging institutional traps (by controlling 

the parameters of the system). 
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