
 

CHAOS 2021 
 

International Conference 

 
 

PROCEEDINGS 
 

 

 

 

 

Christos H. Skiadas 

Editor 

 

 

 

 

 

 



 

 

 



________________ 

14th CHAOS Conference Proceedings, 8 - 11 June 2021, Athens, Greece 

© 2021 ISAST 

 

The Higgs boson and the Higgs field in fractal models 

of the Universe: supermassive black holes, relativistic 

jets, solar coronal holes, active microobjects 

 

Valeriy S. Abramov 

 
Donetsk Institute for Physics and Engineering named after A.A. Galkin, Ukraine 
(E-mail: vsabramov2018@gmail.com) 
 
Abstract. To describe the masses of black holes, their relationships with the parameters 

of the Higgs boson, models based on the distribution density functions of the number of 

quanta in the ground and excited states for relic photons, and on the basis of the density 

distribution functions of the radiation intensity are proposed. It is proposed to represent 
the central region of a supermassive black hole near the upper mass boundary as a Bose 

condensate from black holes. Various states for a black hole with an intermediate mass 

are introduced. The following estimates have been made: masses for light black holes, 

binary and supermassive black holes; the speeds of motion of relativistic jets (emissions 
of matter); widths of active regions of coronal holes on the Sun; a number of parameters 

of active microobjects. These estimates are consistent with experimental data. 
Keywords: supermassive black holes, Bose condensate from black holes, Higgs boson, 

relic photons, relativistic jets, coronal holes on the Sun, active microobjects. 

 

1  Introduction 
 

Roger Penrose, Reinhard Henzel, Andrea Gez are the laureates of the 2020 

Nobel Prize in Physics. Using the general theory of relativity, R. Penrose 

theoretically predicted the gravitational collapse of massive stars, space-time 

singularities, and the birth of black holes [1, 2]. R. Genzel, A. Gez discovered 

and described a supermassive black hole in the center of our Milky Way galaxy 

[3, 4]. Earlier K.S. Thorne [5] showed that a star can collapse under the 

influence of its own gravity: the space around it becomes curved, the star 

disappears and a black hole appears. It has been experimentally established, that 

the merger of two black holes [6], two neutron stars [7] is accompanied by the 

emission of gravitational waves. In [8, 9], a description of the parameters of 

gravitational waves, relict photons and their relations with the parameters of the 

Higgs boson was carried out in the framework of the Dicke superradiance 

model. In this case, supernonradiative states of gravitational fields are possible 

[10, 11]. However, the mechanisms of transitions from black holes with light 

masses (of the order of 29 32 sM  [6, 7], where sM  is the mass of the Sun) to 

supermassive (of the order of 
64 5 10 sM   [3, 4]) and relativistic (of the order 
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1110 sM ) black holes have not yet been described. The creation of such 

theoretical models requires taking into account stochastic processes, the mass 

distribution functions of black holes in the Universe, the effect of ordering 

operators and the presence of qubit states [12, 13] for binary black holes and 

neutron stars. It also becomes necessary to describe the ejections of matter 

(relativistic jets) from a supermassive black hole [14]. The use of experimental 

methods with high angular resolution [15] makes it possible to study the nature 

of the Higgs field by the example of the behavior of solar active regions 

(coronal holes). The parameters of active objects are determined by the 

connections with the Higgs boson and with the different nature of the Higgs 

field. In [16], experimental evidence was obtained for the decay of the Higgs 

boson into a lepton pair and a photon, which indicates to the presence of an 

asymmetry of matter and antimatter [16, 17].  Experimentally in [18] the 

processes of formation and decay of tetraquarks were investigated. The authors 

believe that the structure of the new tetraquark contains charmed diquark and 

antidiquark, which are coupled by gluon interaction.  In [19], a target made of 

gaseous deuterium was irradiated with a proton beam and the cross section for 

reactions with the formation of a helium isotope was measured. The authors 

estimated the baryon density for the early Universe during the process of 

primordial nucleosynthesis. However, the contributions of nonzero rest mass 

antineutrinos to Higgs fields have not been described. 

The aim of this work is to describe the parameters of black holes, relativistic 

jets, active microobjects, their connections with the Higgs boson and the Higgs 

field of various nature (taking into account antineutrinos with nonzero rest 

mass) within the framework of a number of fractal cosmology models. 

 

2  Models for describing black hole masses 
 

In [8, 9] the Dicke superradiance model was used to describe gravitational 

waves and relict photons from binary black holes and neutron stars. For the ratio 

of the radiation intensities (maximum mI  to initial (0)I ) was obtained 

0 0/ (0) ( )( 1)m m mI I a a a a    ; 2 2
0 ( 2) /4ma a z z     ;

2
2m Aa z ; 2ra AN z z   . (1) 

Here 2 1034.109294Az   and 7.18418108z   are the usual and cosmological 

redshifts; the number of relic photons
 

1041.293475raN  ; intensity ratio
 

/ (0) 81.06580421mI I  . Supernonradiative states (of which the radiation 

intensity is equal to zero) were considered within the framework of the 

models 0A , 1A  [8, 9]. In the model 0A , the characteristic value of the number 

of bosons in the equilibrium state 
5

0 3.557716045 10AN    was obtained. This 

made it possible to determine the characteristic energy 

0 0 4.311073329eVA A GE N E  , where the rest energy of the graviton 

12.11753067μeVGE  . In the model 1A , a characteristic distribution density 
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function 0.114317037zgn   is obtained, where | | 1zg zgn n    for Fermi-type 

particles. This function allows us to determine the characteristic frequencies 

zg  , zg  , 0D  

0zg zg Gn   ;   01/zg zg    ;   01 01 0/ HE  ;   0 0 0G A DN   .        (2) 

Here 0 125.03238GeVHE   and 01 126.9414849GeV   are Higgs boson 

energies obtained without and taking into account the Higgs field; frequency 

0 2.9304515GHzG  , 01 1.015268884   [8, 9]. Based on (2), we find the 

numerical values 335.0005326 MHzzg   , 329.9623754 MHzzg   , 

0 8.236889799 kHzD  . Our calculated frequency zg   practically coincides 

with the frequency of 330 MHz, at which dark matter dominates from 

observations of radio filaments [20]. 

Model 0B . Black holes with light masses bhM  are described on the basis of 

spectra for occupation numbers 0 0Ax A xn n S   and 0Ax A xun n S   ( 1,2,3,4x  ; 

spectral parameters 0xS   and xuS  are determined in [8, 9]) within the 

framework of the anisotropic model, where the main parameter 

0 58.04663887An   is determined based on the expressions 

2
0 ( ) 1 ( 3 / 2)( 1/ 2)An z z z         ;   1/ 2z z    ;   1/ sinz   ; 

2
0 ( )An z  ;   0 0 1A An n   ;   2a HQ   ;   1 2 4( ) 2h h A Gn n n n   .       (3) 

Using the example of binary black holes in [8, 9] and expressions (3), the quanta 

number of the second black hole 2 2 0/ /2 29.02331944h h s An M M n   , the first 

black hole 1 1 / 35.98093926h h sn M M   before their merger was obtained. After 

the merger, a black hole is formed with a number of quanta 

42 / 62.0042587A bh sn M M   and a number of quanta 21/ 3G Hn Q   are carried 

away by gravitational waves. In the general case, the number of quanta 0An , Gn  

and the cosmological redshift z  determine the number of quanta of the gluon field 

02 / [ ( 1) ]g G An n z z n     . At 3Gn  , constant parameters z  from (1), 0An  

from (3) we obtain 8gn  . If Gn , z , 0An  are variables, then the number of 

quanta of the gluon field gn  becomes a function of these three arguments, that is 

typical for bulk fractal structures of the Universe. 

Model 1B . To estimate the masses of supermassive black holes, we write down 

the basic relations for the energies 

0 0 0/ /H G H G HGE E N   ;   0 0 0/ / 2G G H HE E    ; 
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0 0 0/H A nE E N ;   0 0 0/H n nE N  ;   0 0(1 )n zg nN n N   .               (4) 

Here  is Planck's constant. Taking into account (4), we find the parameters 
161.031830522 10HGN   , 

10
0 2.900261036 10nN   , 

10
0 3.231810284 10nN   , 

energy 0 3.86880321eVn  . The parameter HGN  is a function of the main 

parameters raN , 0AN , 0nN  

0 0 0HG ra c A n D ra ra A raN N N N N N n N N n     ; 

0c A raN N n  ;   0n ra raN N n ;   0D ra AN N N  ,              (5) 

where parameters 
72.785248449 10ran   , 

83.704626502 10DN    , 

129.909123093 10cN     are additional. For bulk fractal structures of the 

Universe, the main and additional parameters from (5) can be operators. In the 

general case, these operators do not commute; when describing light and 

supermassive black holes, the appearance of stochastic properties is possible. 

We introduce the distribution density functions in the ground raf  and excited 

raf   states for relic photons 

1ra raf f   ; ˆ ˆ /( )ra ra ra ra raf c c N N z
    ; ˆ ˆ /( )ra ra ra raf c c z N z 

     ,(6) 

where ˆ ˆ,ra rac c
 are creation and annihilation operators of relic photons; <…> is 

averaging symbol. Based on (6), (1), we find the numerical values 

0.006947216raf  , 1.006947216raf   . Expressions (1) - (6) make it possible 

to estimate the masses 0BM , 0bM , 0bM   black holes by the formulas 

0 0B ra bM f M ; 0 0/ (1 ) /b s g zg ra AM M n n n n  ; 0 0 0 0b B b ra bM M M f M    .  (7) 

The numerical values are equal: 
6

0 / 4.307173111 10B sM M   , 

6
0/ 4.277456693 10b sM M   , 

6
0/ 0.029716418 10b sM M   . Our estimate of the 

mass 0 /B sM M  practically coincides with the mass of the central body 

64.31 10  of a supermassive black hole in the center of the Milky Way galaxy 

[3, 4]. The value 
6

02 / 0.059432836 10b sM M    determines the error 
60.06 10 , 

associated with the error in measuring the parameters of the orbit of the S2 star, 

rotating around the central body [3, 4]. 

Model 2B . The fractal structure of the Universe is characterized by the 

distribution of masses of black holes, which are found in the center of various 

galaxies. So for a supermassive black hole in the core of the galaxy M87, using 

the Event Horizon Telescope [21, 22], a shadow image in the radio range was 

obtained. Using four Chandra X-ray observations [14] for the MAXI J1820+070 

binary black hole relativistic jets were detected. To estimate the upper mass 

limit 0 0 0J A bM N M , we will represent the central body of a supermassive 
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black hole as a Bose condensate of black holes with masses 0bM . In this case, 

for the parameter 0 1A A GEN N  , representation is acceptable, where 

2
1 1A m   , / /GE s E Gs GEN M M R R   . Here EM  is mass of the Earth; GsR  

and GER  are Schwarzschild gravitational radii of the Sun and Earth; 

53.32958 10GEN   . In this model, the density of matter near supermassive 

black holes 0.141730642m
   is close to our calculated value 

0.141145722m   from [23, 24] and the value of 0.141 obtained by the Planck 

observatory, based on the new Hubble constant 0H  for the attenuation of γ-rays 

against the intergalactic background. As a result, we find 
11

0/ 15.21797631 10J sM M   . For experimentally search of supermassive black 

holes near the upper mass boundary, brightness distributions, changes in stellar 

radiation intensity when photographing galaxies with high resolution, adaptive 

optical spectroscopy to compensate for fluctuations in the atmosphere, and 

speckle spectroscopy are used [4]. For the maximum radiation intensity mI  

from (1) near the upper mass boundary, the representation is acceptable 

1 2mI I I   ;  2 2
1 1v sin ( )zg m J m WI n I I    ;  2 2 2

2 1 1(u v cos ( ))zg m J J W mI n I I    ; 

2 2
1 1v 0.5(1 (0) / )J J mk I I   ;   

2 2
1 1u ( ) 0.5(1 (0) / )J J mk I I   ;   

2 2
1 1u v 1J J  ; 

2 2
1 1 1 1/ sn ( ; )m J W J zgI I k u k n   ;   2

2 1 1/ dn ( ; )m W J zgI I u k n   .         (8) 

Here 1Jk , 1Jk   and 1Wu  are moduli and effective displacement for elliptic 

functions 1 1sn( ; )W Ju k , 1 1cn( ; )W Ju k , 1 1dn( ; )W Ju k ; the angle W


 
acts as the 

effective Cabibo angle for supermassive black holes; parameters 1u J , 1v J  

depend on the initial and maximum radiation intensity and are analogous to the 

N.N. Bogolyubov's transformation parameters in the theory of 

superconductivity. Numerical values are equal: 
2
1 0.493832171Jk  , 

2
1( ) 0.506167829Jk   , 

2sin ( ) 0.231489651W
  , 

2cos ( ) 0.768510349W
  , 

intensity distribution density functions 1 1 2/ 0.129072187Jf I I   , 

1 2/ 1.129072187J mf I I   . Expressions (8) allow us to estimate the masses of 

black holes 1JM  , 1JM  near the upper mass boundary by the formulas 

1 1 0J J JM M M   ;   1 1 0J J JM f M  ;   1 1 0J J JM f M ;   1 1 1J Jf f   .       (9) 

Based on (9), we obtain a numerical value 
11

1/ 1.964217483 10J sM M   , that is 

close to the experimental value 
111.96 10 sM  for the supermassive black hole 

SDSS J140821.67+025733.2. For intermediate masses of black holes, the 

maximum radiation intensity mI   can change over a segment (0) m mI I I  . 
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These changes are described by a variable number of quanta mn  and an 

inversion parameter JmB  

2 2
1 1/ u vm m m J J Jmn I I B    ; 2 2 2

1 1 1( ) u /v sin ( )Jm zg J J WB B n      ; 1 1JmB   ; 

2
2 ( ) cos ( )Jm zg WB B n    ;  2

1 1vJ J zgn n  ;  2
1 1uJ J zgn n   ;  1 1J zgn n  .   (10) 

From (10) it follows, that a black hole with an intermediate mass can be in 

different states, which are determined by a pair of parameters mn  and JmB . 

Let's introduce these states: ground 1J  ( 1mn  , 1JmB  ), supernonradiative 2J  

(
2
1um Jn  , 0JmB  ), fully inverse state 3J ( 2 2

1 1u vm J Jn   , 1JmB  ), partially 

inverse state 4J  ( m zgn n  , 1JmB B ), deviated from the ground 5J  ( m zgn n  , 

2JmB B ). The parameters 1 0.793489803B , 11 0.206510197B  , 2B
, 

1 0.391850792Jn  , 1 0.608149208Jn   carry information about the characteristic 

parameters (velocities, energies) of a relativistic jet (ejection of matter from a 

supermassive black hole) [14]. 

 

3  Relativistic jets 

 

To describe the parameters of a relativistic jet, we will use the basic model equations 

2 / 2 0.5H AB AH FQ R R n  ;   
2

0 ( )Fn   ;   0 0L W L ZE E 
   .        (11) 

Here the parameter 2 1 / 3HQ   is determined by the expression from (3) and is 

related to the angles  , 22.43261135a  , cosmological redshift z  from our 

anisotropic model [8] of the expanding Universe; the number of quanta 

0.054219932Fn   determines the Fermi level and the neutrino density 

0 0.002939801  ; the lepton quantum number 0.002402187L   is related to 

the quantum number 0.002116741L
   through the rest energies 

0 80.35235464GeVWE   and 0 91.188GeVZE   for 0W  and 0Z  bosons, 

respectively; Hubble radius 
9

013.75 10AH cR L   . From (11) we find the 

characteristic radius (horizon of matter particles)
9

045.72314437 10AB cR L   . 

Note, that parameters are: 0 0 0 0light year = 0.306597989 pcc c c ESL c N L   ; 

limiting speed of light in vacuum 
5 1

0 2.99792458 10 kmsc   , 

4
0 6.324043414 10cN   ,        

7
0 365.2503353day =3.155762897 10 sc   ,    

81au=1.495995288 10 kmESL   . Based on (11), we introduce the refractive index 

ABn  of the medium of matter particles 

6



2
AB ABn Q ;   2/ 2( 0.5) /AB AB AH F HQ R R n Q   .                (12) 

Numerical values are 11.05775038ABn  ; 3.325319591ABQ  . Next, we find the 

particle velocities AH , 0 , AW  and velocities ratios AH , 0J , AW  

2 2
0 /AH ABc n  ;   2 2

1 0 2AH u u AWS S    ;   0/AH AH c  ;   0 0 0/J c  .   (13) 

Values are: 
4 19.015447983 10 kmsAH   , 5 1

0 1.803089597 10 kms   , 

1196.9672387 kmsAW  ; 0.300722975AH  , 0 0.60144595J  , 

6
0/ 657.0119876 10AW AW c     . 

From our model 2B  it follows, that the density of matter near supermassive black 

holes m m
   . This leads to a change in the refractive index of the medium ABn , 

the radius ABR  from (12), the neutrino density 0  from (11), and the particle 

velocities from (13). Accounting for these changes near supermassive black holes is 

described by new parameters 

2
AB ABn Q ;   0 2/ 2( 0.5) /AB AB AH HQ R R n Q   ;   

2
0 0( )n   ; 

0 22 m un S
   ;   0 /AH ABc Q  ;   2 2

1 0 2AH u u AWS S    .        (14) 

Numerical values are equal: medium refractive index 11.06252927ABn  , radius 

9
045.73302352 10AB cR L   , parameters 3.326038074ABQ  , 

0 0.054339679n   , density of the relativistic neutrino 0 0.002952801  ; 

velocities 
4 19.013500487 10 kmsAH   , 5 1

0 1.802700097 10 kms   , 

1196.9246903kmsAW  ; velocities ratios 1/ 0.300658013AH ABQ   , 

0 2 0.601316027J AH   , 
6

0/ 656.8700603 10AW AW c     . 

Further, taking into account (1), (2), (8), we find the energies of the jet particles 

0JE  and 1JE , 2JE  in the absence and presence of the Higgs field, respectively, 

by the formulas 

0 0 1 2/ / (0) / (0) / (0)J H mE E I I I I I I    ;   1 01 0J JE E ;   2 02 0J JE E .   (15) 

Numerical values of energies are equal 0 10.13585044ТeVJE  , 

1 10.29061357ТeVJE  , 2 9.978687329ТeVJE  , where 02 0.984494334  . 

The effective Cabibo angle W


 allows us to estimate the angular width W


 of the 

jet based on the angular parameters 0n , En , 0E  by the formulas 

2
0 / sin ( )W n W    ;   0 2 /n G En gn n  ;   0 1/ (1 )En n E p um m S   ,   (16) 

where the parameters ,G gn n  are determined in the model 0В  by expressions (3);
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/ 1.008985047n pm m   is the ratio of the neutron mass ( nm ) to the proton mass 

( pm ). Based on (16), we find estimates of the angular parameters 

2.592779092W
  , 0 0.600201527n  , 0.800268702En  , where the 

parameter 0 0.830215001E   describes the behavior of photons near 

supermassive bodies in Einstein's theory [5]. The obtained estimates of the 

parameters 0J , 0JE , W


 do not contradict the experimental data [14] for a 

velocity ratio of 0.6, an energy of 10TeV, and an angular width 2.5928  of jet 

particles. Based on the effective radii ABR  from (12), ABR  from (14), we obtain 

estimates of the distance 0R  from the Sun to the supermassive black hole in the 

center of our Milky Way galaxy and the errors 0R  by the formulas 

0 0/AB RR n ;   0 0/AB RR N  ;   (1 )AB Q AB    ;   AB AB ABR R   ; 

0 ( 0.5 / (0))R g ra mN n N I I  ;   0 2 0 0( )R H ra A g Jn Q N n n     .       (17) 

The numerical values of the parameters are equal: 0 8654.611017RN  , 

0 363.5795993Rn  , 
6

09.87915 10AB cL    , 
6

09.879150543 10AB cL    . 

Based on (17), we find estimates of the distance 0 8.330851608kpcR   and error 

0 0.349978489 kpcR  . 

Based on the distribution density function 1Jf   from (9), the number of quanta 0n   

from (14), we find the radius JBr  of the central body by the formulas 

0G JB JB ABN r l   ;   1JB AB Jf   ;   0sin( )AB ABl   ;   0 /G a HGN N N ; 

0 0G H a GN E N E ;   0 0 0 0 0sin( ) (1 )n n n         .                   (18) 

Values of the parameters are equal: 
7

0 5.83956170310GN   , 0 2.945548561  , 

0sin( ) 0.051386878  , 
5

05.07658703710AB cl L   , 
6

011.1542741110JB cL     . 

From (18) we obtain 
4

00.199705618 1.262947001 10 auJB cr L    . 

Next, we find estimates for the semi-axes 0Sx , 0Sy  the elliptical orbit of the star 

S2, rotating around the central body by the formulas 

0 / (1 )S JB AB my r n   ;   2 2 2 2
0 0 1 0 2/ sin( ) /S S u g ux y S S ; 

2
0 0 0sin ( ) ( )( ) /g A g e eh gn n E E E    ;   0 0g g HE n E .             (19) 

Here the rest energies of the gluon 0 1.00025904ТeVgE  , electron eE  and 

electron hole ehE  are assumed to be equal 0.51099907МeVe ehE E  ; 

0sin( ) 0.007150827g  , the angle of polarization of the radiation 

8



0 0.409715696g  ; semi-axes 0 999.9241011auSy  , 0 119.5804463auSx  . 

Our estimates of the parameters 0R , 0R , JBr , 0Sx , 0Sy  agree with the 

experimental data [3, 4] for the distance 8.33kpc  from the Sun to the supermassive 

black hole in the center of the Milky Way galaxy, the error 0.35kpc , the radius of 

the central body 00.2 cL , for the semi-axes 120au , 1000au  the elliptical orbit of 

the S2 star, rotating around the central body, respectively. 

 

4  Asymmetry of matter, antimatter and the Higgs field 
 

The presence of a Higgs field of various nature (gluon, lepton, neutrino, hadronic 

based on the parameter L
  from (11), gravitational, etc.) leads to changes in the 

rest energy of the Higgs boson 0HE  in (18); energies of holes (antiparticles) ehE  in 

(19), hE , hE  for e ,  ,  -leptons, respectively; the appearance of asymmetry 

of matter and antimatter. We introduce the energy 0LE  based on the total energy 

0L  of paired leptons, the number of quanta of gluons gn  

0 0L g LE n  ;   0 ( ) ( ) ( )L e eh h hE E E E E E          .          (20) 

Here 105.658389МeVhE E   , 1777.00МeVhE E    are rest energies for 

 ,  -leptons, respectively. From (20) we find the energies 

0 3.766338776GeVL  , 0 30.13071021GeVLE   (close to the data from [16]). 

Next, we introduce the distribution density functions of the Bose type gAf  (ground 

state), gAf   (excited state) based on the number of quanta of black holes ( 0An ), 

gluons ( gn ). Based on 0HE  we find the energy gAE , gAE  

1gA gAf f   ;   0/ ( )gA g A gf n n n  ;   0 0/ ( )gA A A gf n n n   ; 

0 / 2gA H gAE E f ;   0 / 2gA H gAE E f  ;   0 / 2gA gA HE E E   .           (21) 

The numerical values are equal: 0.159850895gAf  , 9.993268924GeVgAE  , 

72.50945893GeVgAE  . Taking into account the energy gAE  from (21), the 

expressions for the rest energies of leptons have the form 

2sin ( )e gA egE E  ;   2sin ( )gA gE E  ;   2sin ( )gA gE E  .      (22) 

Here angles are equal: 0eg g  , 5.901862921 ,g   24.94112323 .g   To 

describe the interaction of   and e -leptons, we find the energies E , E
  from 

the expressions 

2 2 2 1/2sin ( ) ( 4 )gA g egE E E          ;   02 A exn E  ;   ex e hE E E  ; 
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2 2 2 1/2sin ( ) ( 4( ) )gA g egE E E          ;  02 A exn E
   ;  ex e hE E E   ; 

/ 0.5 sin( )e ex exE E   ;  / 0.5 sin( )h ex exE E    ;  / 0.5 sin( )e ex exE E    .   (23) 

For variant I (sum of angles), the parameter values are: 6.311578617g eg   , 

120.7760733МeVE  , 15.11768432МeVE E    , energy gap 

29.25390878МeV  , energy 1.007944968МeVexE  , hole energy 

0.496945898МeVhE  , sin( ) 0.0069712ex  , characteristic angle 

0.399423573ex  . For variant II (angle difference), the parameter values are: 

5.492147225g eg   , 91.54109182МeVE
 , energy gap 

26.38145028МeV
  , energy 0.908974259МeVexE  , hole energy 

0.397975189МeVhE , sin( ) 0.062171112ex  , characteristic angle 

3.564441086ex  , / 0.5 sin( )h ex exE E     . Note, that the values of the angle 

differences ( ) /2 18.52582072 ,eg ex     ( ) /4 9.26291036eg ex     are 

characteristic of the angular widths of coronal holes on the Sun [15]. From (23) we 

find expressions easy for analyzing the asymmetry of individual contributions from 

eE , E , different angles, in energy E , E
  in the form 

2 2( )/2 cos ( ) cos ( )e g egE E E E        ; sin(2 )sin(2 )gA g egE E E      . (24) 

Based on the energy 0LE  from (20) we found characteristic energies dL , 0d , 

dz   and the Higgs boson energies HdE , HdE  , HgE , HgE , HLE , HLE   

0 0L g L G dLE n n   ;   0 0d A dLn  ;   ( 1)dz dLz z      ;   0 02dz d L     ; 

2 2 2
0Hd H dLE E   ;  

2 2 2
0( )Hd H dLE E    ;  2 2 2

0Hg H gAE E E  ;  2 2 2
0( )Hg H gAE E E   ; 

2 2 2
0 0HL H LE E   ;   

2 2 2
0 0( )HL H LE E    .                             (25) 

Characteristic energies are 10.04357007GeVdL   (close to the energy for dark 

matter from [20]), 0 582.9954848GeVd  , 590.5281624GeVdz   . Energies 

dL , gAE , 0L  describe the different nature of the Higgs field. The presence of the 

Higgs field leads to the appearance of active particles with energies 

125.4351201GeVHdE  , 124.6283385GeVHdE   , 125.4311025GeVHgE  , 

124.6323819GeVHgE  , 125.0890937GeVHLE   (corresponds to the peak for 

the Higgs boson decay process from [16]), 124.9756406GeVHLE   . Energy 

differences 4.0176МeVHg Hd HgE E E    , 4.04343МeVHg Hg HdE E E       

describe the line width in the energy spectrum for the Higgs boson [16]. 
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5  Active microobjects 
 

Based on the energies dL , gAE , 0L  from (25) we find the radii dLR , gAR , 0LR  

of active microobjects associated with the different nature of the Higgs field 

dL G dLR A  ;   gA G gAR A E ;   0GL G dL g LR n R n R  ; 

( 1)dz dLR z z R     ;   0 0d A dLR n R ;   0 02dz d LR R R   .             (26) 

Here 
10.960836162fm(eV)GA   is the constant from [23, 24]. The gravitational 

radii are: 9.6502253μmdLR  , 9.6018942μmgAR  , 0 3.6188345μmLR  . For 

characteristic radii we obtain: 0 560.1631441μmdR   (coupled to the number of 

quanta of the black hole 0An ); 567.4008131μmdzR   (coupled to cosmological 

redshift z ); 28.95067596μmGLR   (coupled with the number of quanta of the 

gravitational field in an excited state Gn , or with the number of quanta of the gluon 

field gn ). Next, we find the characteristic lengths 0dl , dzl  , 0Ll  of active objects 

0 0 0 0 0 12/ / / 2 /d d dz dz L L u H ul R l R l R E E S     ;  12 1 2u u uS S S  ;  u S cE E E   ; 

012 0 0S H gS gE S E E   ;   012 01 02S S S   ;   012/gS gS n  .               (27) 

Here the parameters are: 12 0.013690291uS  , 012 0.005451282S  , 

0.00068141gS  ; the rest energy 1.030142904GeVcE  , c-quark gravitational 

radius 0.989798554μmc G cR A E  ; energy 0.681586763GeVSE   is 

determined either through the rest energy of the Higgs boson, or through the energy 

of the gluon, energy 1.711729667GeVuE  ; gravitational radii
  

654.8932091nmS G SR A E   , 1.644691763μmu G uR A E   . From (27) we 

obtain values of characteristic lengths 0 7.6687965μmdl  , 7.7678822μmdzl  , 

0 99.085795nmLl  . From (27) it follows that it is possible to describe particles and 

antiparticles, compound particles (hadrons), which are experimentally observed at 

the LHC [16], on the basis of energies uE , SE , cE . As an example, consider the 

possibility of describing the energies TQE , TQE  of a tetraquark, a hadron by 

2 2TQ c cE E E  ;   0c c S c gS g uE E E E E E                ; 

2( )TQ TQE E E E     ;   1 2T TQE E E     ;   2 2T TQE E E 
     .    (28) 

Here 1.738111117GeVcE  ,
 

226.4344623МeVE E    are the c-antiquark, 

muon pair energies, respectively. Energies 1 6628.875515МeVTE  , 

2 6742.980837МeVTE   determine the features of the type of local maximum, 

minimum on the experimental dependence of the number of events on the state of 
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the tetraquark [18]. The base narrow peak corresponds to the tetraquark energy 

6899.681571МeVTQE  , and the broadened peak corresponds to the hadron 

energy 6446.812646МeVTQE  . Note, that the energy difference 

938.6018122МeVcE E
   (for the c-quark and antimuon) is close to the sum of 

the energies 938.7833217МeVp eE E   (for the proton and the electron). This 

indicates us to the need and possibility of describing additional contributions from 

the neutrinos, hadron Higgs fields to the energies of active objects. 

The classical decay of a neutron into a pair of proton-electron and antineutrino is 

described by the expressions 

( )n p e ra nE E E n    ;   2 2 1/2( )n HG n     ;   
2 2( 2)n n n HGz z      ; 

n HG n HG n HGz         ;   1n nz    .                     (29) 

Here the rest energies are for neutrino 280.0460475meVHG   [23, 24], neutron 

946.7027435MeVnE  , proton 938.2723226МeVpE  . From (29) we find the 

antineutrino energy 284.3344848meVn  , energy gap 49.1966514 meVn  , 

parameters of the neutrino field 0.015313329nz  , 1.015313329n  . 

We take into account the contribution from the hadronic Higgs field by replacing the 

energy of the pair ( )p eE E  in (29) with the energy of the difference cE E
  for 

the c-quark and antimuon. In this case, the antineutrino energy n  is replaced by 

the renormalized antineutrino energy n  and is determined from the expressions 

( )n c ra nE E E n 
   ;   

2 2 1/2( )n HG n     ;   
2 2( 2)n n n HGz z      ; 

n HG n HG n HGz         ;   1 0.5n n n nz n         ;   
2
n Ln 

   ; 

n h n      ;   0.5h n HGn   ;   
2 2 1/2( ( ) )n HG n n HG           .    (30) 

Here, the parameter 0.046008054nn   from (11) describes the contribution from 

the hadron Higgs field to the energy 6.442186838meV.h 
 
Based on (30), we 

find the renormalized antineutrino energy 290.8512992 meVn  , energy gap 

78.54100538meVn  , parameters 0.038583839nz  , 1.038583839n  . 

The energy 284.4091123meVn
  , energy gap 49.62614656meVn

  , field 

parameters 0.5 0.015579812n n nz z n  
    , 1n nz      describe a different 

state of the antineutrino, compared to the state from (29). 

Taking into account (29), we find the baryon densities of the Universe 1b  (ground 

state of matter), 2b  (hole state of matter) from the expressions 

1 (0.5 z )b n nn    ;   2 (0.5 z )b n nn    ;   1 2b b nn   .             (31) 
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Numerical values are equal: 1 0.022299491b  , 2 0.023708563b  . At the same 

time 1 2b b   , that confirms the presence of two states of baryonic matter due to 

the presence of the Higgs antineutrino field nz . Replacing in (31) nz  by nz


 

from (30) leads to other values of the baryon density 1 0.02228723b
  , 

2 0.023720824b
  . Hence it follows, that the baryon density of the Universe 

depends on the states of the antineutrino field. On the other hand, within the 

framework of our anisotropic model (taking into account the polarization of the 

CMB), the base parameter nn  can be independently determined from 

0 0| | sin( ) 2n ef g rc Gn       ;  1 00.5 2 sin( )b n L gn n     ;  
2
L Ln  .  (32) 

Here | | 0.2504252ef  , 0.04420725rc  , 
6

0 4.99501253 10G
    from [23, 

24]. The values 1b  from (32) and (31) coincide and agree with the baryon density 

of the Universe 0.0223 from the experimental data [19]. Note, that expressions (31) 

allow us to describe the inverse (at 0nz  ) states, states with shifts 1b , 2b  or 

1b , 2b  of the baryon density of the Universe 

1 1b b L
   ;   2 2b b L

   ;   1 1b b L
   ;   2 2b b L

       (33) 

due to the presence of a contribution from L
  while preserving the quantum 

number nn . Numerical values are equal: 1 0.02018275b  , 1 0.024416232b  . 

Expressions (31) – (33) can be used to describe the effective susceptibilities x  of 

active regions ( , , , ,x A B C D E ) of coronal holes on the Sun. In [15] the 

parameters 2xN , 1xN  for these regions were measured. Based on the formulas 

2 1/x x xN N  ;   1bx x b    ;   
2 1/2 2 1/2(1 ) 1 1 (1 )bx bx bxz        ; 

2
21 12 0| | 2NA G      ;   

2 2 1/2( )bA HG bA    ;   
2 2 1/2( )bA HG bA       (34) 

estimates for each of the regions can be obtained: 0.1721131A  , 

0.1689743B  , 0.1744639C  , 0.1789925D  , 0.1608336E  . From 

(34) independently (based on the susceptibility components 21 , 12 , constants 

Ta , a  from our anisotropic model [23, 24]), we find NA  exactly coinciding 

with A . For the susceptibility with a shift, we find: 0.1922958bA  , 

0.0183210bAz  , 0.1905423bA  . These susceptibilities determine the gaps 

53.851680 meVbA bA HG    , 53.360611meVbA bA HG     (which 

correspond to the effective temperatures 39.489369 CbA T bAT a   , 

36.6398 CbA T bAT a   ), energies 285.17677 meVbA  , 285.08445meVbA   

(which correspond to the wavelengths /2 2.1734659μmbA bAa   , 
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/2 2.1741698μmbA bAa   ) in the spectra of neutrinos with nonzero rest mass. 

These active microobjects can be part of the solar and intergalactic winds and affect 

to various physical, chemical, biological processes on Earth and in Universe. 

 

Conclusions 
 

The relationships between the base parameters of the Higgs boson and the 

parameters of black holes are established. Based on the distribution density 

functions of the number of quanta in the ground and excited states for relic 

photons, a lower mass estimate for a supermassive black hole is obtained. Based 

on the density distribution functions of the radiation intensity, an estimate of the 

mass near the upper boundary is obtained. The description of the central region 

of a supermassive black hole is made in terms of Bose condensate from black 

holes. Various states for a black hole with intermediate mass are introduced. 

Estimates for the mass and radius of the central body, the distance from the Sun 

to the supermassive black hole in the center of the Milky Way galaxy, the semi-

axes of the elliptical orbit of S2 (rotating around the central body) are obtained. 

The model equations are used to describe the base parameters of a relativistic 

jet: velocities, energy, angular width of jet particles. 

It is shown, that the presence of a Higgs field of different nature leads to 

changes in the rest energy of the Higgs boson and the energies of holes 

(antiparticles) for paired leptons; the appearance of active microobjects with 

different energies and sizes; the appearance of asymmetry of matter and 

antimatter. A model for the classical decay of a neutron into a proton-electron 

pair and an antineutrino with a nonzero rest mass is proposed. The possibility of 

using this model to describe tetraquarks, the baryon density of the Universe, 

which depends on the states of antineutrinos, is shown. 

Parameter estimates are consistent with experimental data. 
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Abstract: Model fractal coupled structures are considered, for which a characteristic 
feature of the behavior of the deformation field is the presence of such superposition 

qubit states where there is no damping. Such states can be memory cell. The possibility 

of internal and external control of the structure of the memory cell, the possibility of 

performing the operations of write and delete information has been established. It is 
shown, that changes in deformation fields in a memory cell are anisotropic. External 

control of a memory cell in a coupled structure is performed using different fractal 

indices of separate structures. In this case, fractal indices do not depend on iterative 

processes. It is shown, that there is a critical value of the fractal index of separate 
structures, when passing through which effective damping occurs. This effect can be 

used to control the storage of information in a memory cell. When fractal indices depend 

on an iterative process, self-organization (internal control) occurs. By the example of the 

sinusoidal law of change in the fractal index of separate structures, it is shown, that 
structures of the following type arise: vertical, horizontal, inclined stripes; lattice 

structures of various orientations. 

Keywords: coupled fractal structures, memory cell, superposition of qubit states, 

deformation field, control of memory cell structure. 
 

1  Introduction 
 

In [1], the description of the complex deformation field of model fractal coupled 

structures was carried out on the basis of different qubit states of separate 

structures such as circular and elliptical cylinders. A distinctive feature of the 

behavior of the deformation field of such coupled structures is the presence of 

qubit states, for which there is no damping (the imaginary part of the 

deformation field is zero). Such states can be memory cells. 

The relevance of the work is associated with the problem of creating quantum 

computers [2, 3], that encode information in qubits; with quantum cryptography, 

where information is recorded in a memory cell below the noise level. Physical 

systems, that realize qubits, can be any objects, that have two quantum states. 

Modern nanotechnology makes it possible to create such active objects. Various 

nanostructures, metamaterials [4 - 6], superconductors [7] can act as active 

objects. These active objects can be in superposition qubit states, exhibit 

stochastic properties, quantum entanglement, which is the basis for the creation 

of quantum computers. Control, storage of quantum information, the possibility 

of its extraction are important steps for quantum communication. Modern 
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nanotechnologies use various periodic structures and metamaterials [4], where 

the amplitude and phase of the deformation field is carried out by external 

control. In the presence of an iterative process, quantum chaos and the 

phenomenon of self-organization (internal control) appear in a memory cell. 

Therefore, the question of preserving a memory cell for fractal coupled 

structures requires additional research. Random matrices are used to describe 

quantum chaos [8]. Elements of random matrices are formed as a result of an 

iterative process. In this case, it becomes necessary to describe and take into 

account the effect of ordering of separate operators of deformation fields in a 

coupled structure [9, 10], which based on various qubit states. 

The aim of this work is to describe the deformation field of a memory cell in a 

fractal coupled structure with elements of cylindrical type, internal and external 

control of its structure. 

 

2  Memory cell of a model fractal coupled structure 
 

To describe the deformation field of memory cells, let us consider a model 

coupled structure, which consists of two fractal cylinders of elliptic type 

( =1, 2)i , located in a bulk discrete lattice 1 2 3N N N  , whose nodes are given 

by integers , ,n m j . Nonlinear equations for the dimensionless displacement 

function u  of the lattice node are [1, 9, 10] 

2

1
Ri

i

u u



 ;   
2 2

0(1 2sn ( , ))Ri i ui i uiu R k u u k    ;   1,2i  ;                       (1) 

2 (1 ) /ui i ik Q  ;   
2 1/2

  (1 )ui uik k   ;  0 0 1 2 3i i i i ip p p n p m p j    ;      (2) 

2 2 2 2 2 2
0 1 0 2 0 3 0( ) / ( ) / ( ) /i i i i ci i i ci i i ciQ p b n n n b m m m b j j j       .      (3) 

Here i  are the fractal dimensions of the deformation field u  along the axis Oz ; 0iu are 

the constant (critical) displacements; variable modules uik , uik   are functions of 

indices n , m , j  nodes of the bulk discrete lattice. Different structures are 

characterized by parameters: 0ip , 1ip , 2ip , 3ip , 1ib , 2ib , 3ib , 0in , cin , 0im , 

cim , 0ij , cij , iR . In our model, the choice of different states of qubits in the 

plane nOm  is determined by the nonzero coefficients of the linear terms in the 

functions 0ip , iQ  from (2), (3). The initial state (0,0) of an separate structure is 

determined by zero coefficients 1 0ip  , 2 0ip  . Various basic and 

superposition states of qubits were considered in [1]. In this work, we will focus 

only on the superposition state (-1, -1), in which the parameters 1ip , 2ip  have 

the form 1 0.00423ip   , 2 0.00572ip   . 

Consider a superposition state (-1, -1) of two fractal coupled structures (A), (B). 

In structure (A), the operation of scalar multiplication of the complex 

deformation fields of separate structures (I) and (II) is realized, while the 
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deformation field of this structure is described by a function 1 2( )A R A Ru u f u  

with a corresponding matrix AM . The elements of the matrix AM  are obtained 

by solving equations (1) - (3) by the method of iteration over the index n . This 

procedure simulates coupled (dependent) stochastic processes of the original 

independent stochastic processes for structures (I) and (II), which are described 

by the functions 1Ru u  and 2Ru u . Structure (I) is a circular cylinder with 

constant semi-axes 1 1c cn m , and structure (II) is an elliptical cylinder with 

variable semi-axes 2 2,c cn m . 

To take into account the ordering of separate operators of deformation fields in a 

coupled structure, structure (B) is considered, where the operation of scalar 

multiplication of complex deformation fields of separate structures (II) and (I) is 

realized. The deformation field of this structure is described by a function 

2 1( )B R B Ru u f u  with a corresponding matrix BM . In the numerical 

modeling, it was assumed that 1 240N  , 2 240N  , 0 29.537u  , 0 1.0423p  , 

1 2 1i ib b  , 0 121.1471in  , 0 120.3267im  , 0 31.5279ij  , 11.8247cij  , 

3 0ib  . Values of the semi-axes of a circular cylinder (I) are 1 1 57.4327c cn m   

with 1 1R  . For elliptical cylinder (II) with 2 1R  , we have the following 

dimensions of the semi-axes: variant 1 are 2 43.0746cn  , 2 19.1443cm  ; 

variant 2 are 2 55.2537cn  , 2 14.9245cm  ; variant 3 are 2 119.9327cn  , 

2 6.8758cm  . Further consider only coupled structures (A), (B), in which 

separate structures (I) and (II), (II) and (I) have the same fractal dimensions i  

and the same superposition qubit states (-1,-1), but differ in the order of the 

deformation field operators 1 2( )A R A Ru u f u , 2 1( )B R B Ru u f u . 

As an example, Fig. 1 shows the behavior of the deformation field ReA Au u  

of the structure (A) with the same fractal dimension 0.5i   of separate 

structures (I) and (II). The variable semi-axes of the elliptical cylinder of 

structure (II) correspond to variants 1, 2, 3. A change in the semi-axes of an 

elliptical cylinder of structure (II) (internal control of the structure parameters) 

does not lead to the appearance of an imaginary part of the displacement 

function, which is a characteristic feature of the behavior of the deformation 

field. For ReA Au u  the presence of a stochastic peak is characterized, for 

which the structure and region of localization in the plane nOm  changes with 

depending on the semi-axes of the elliptical cylinder (II) (Fig. 1 a, b, c). to a 

decrease in the semi-axis 2cm  of the elliptical cylinder (II) (Fig. 1 g, h, i). The 

cross sections Re Au  (Fig. 1 g, k, l) confirm the anisotropic nature of the 

alteration of the structure of the inner region of the stochastic peak: there is a 

change in the shape and structure of separate elliptical rings, the effect of 

mixing of separate trajectories. 
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a) variant 1 b) variant 2 c) variant 3 

   
d) variant 1 e) variant 2 f) variant 3 

   
g) variant 1 h) variant 2 i) variant 3 

   
j) [ 0.1;0.1]u   k) [ 0.1;0.1]u   l) [ 0.1;0.1]u   

 

Fig. 1. Dependences of the deformation field of the structure (A) at 0.5i   on the 

variable semi-axes of the structure (II): Au u  (a, b, c) – general view; projections 

on the planes nOu  (d, e, f), mOu  (g, h, i); (j, k, l) – cross sections (top view). 

 

These changes are anisotropic. In this case, along the axis On , the peak 

broadens due to an increase in the semi-axis 2cn  of the elliptical cylinder (II), 

the amplitudes of the peaks are of the order of 10 (Fig. 1d), 12 (Fig. 1e), 11 (Fig. 

1f) dimensionless units. A narrowing of the peak occurs along the axis Om  due 
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to a decrease in the semi-axis 2cm  of the elliptical cylinder (II) (Fig. 1 g, h, i). 

The cross sections Re Au  (Fig. 1 g, k, l) confirm the anisotropic nature of the 

alteration of the structure of the inner region of the stochastic peak: there is a 

change in the shape and structure of separate elliptical rings, the effect of 

mixing of separate trajectories. 

For both the structure (A) and the coupled structure (B) with the same 

superposition states (-1,-1) of separate structures feature of the behavior of the 

deformation field is the absence of effective damping in all over region (

Im 0Bu  ). For Re Bu  it is also characterized by the presence of a expanded 

stochastic peak with a structure close to the peak Re Au  (Fig. 1), but 

Re Re 0B Au u  . In this case, the conditions are carried out 

2 1 1 2( ) ( ) 0B A R B R R A Ru u u f u u f u    ,   0B A M M ,                 (4) 

which is related to the dependence of the considered stochastic processes. This 

indicates that the operators of the displacement fields of separate structures (II), (I) 

and (I), (II) do not commute in coupled structures (B) and (A). The results of 

numerical modeling for structure (B) are not presented in this work. 

 

3 External control of a memory cell 
 

External control of the structure of a memory cell will be carried out due to a 

different choice of constant fractal dimensions i  of separate structures (I), (II). 

In this case, fractal indices i  do not depend on iterative processes. On Fig. 2 

shows the behavior of the deformation fields ReA Au u  of the structure (A) for 

the same fractal dimensions of structures (I), (II): 1 2 0.0    (Fig. 2 a, d), 

1 2 0.9    (Fig. 2 b, e), 1 2 0.99    (Fig. 2 c, f); the semi-axes of 

structure (II) correspond to variant 1. When fractal dimensions of structures (I), 

(II) increase, then a change in the shape and structure of stochastic peaks is 

observed, which is accompanied by a sharp decrease in amplitudes from 46 

(Fig. 2a), 0.33 (Fig. 2 b) to 0.0036 (Fig. 2 c) of dimensionless units. The cross 

sections (Fig. 2 d, e, f) confirm a significant alteration of the structure of the 

inner region from a wave-like state (Fig. 2 d) to an almost regular behavior 

(Fig. 2 f). When 1 2 1.0    the deformation field becomes zero 

Re 0A Au u  . This makes it possible to interpret such a change in fractal 

dimensions as an operation of delete information in a memory cell. Next, 

consider the structure (A), where the fractal dimensions i  of separate 

structures (I) and (II) are chosen to be different. In this case, for an elliptical 

cylinder (II) with 2 1R  , we have the parameters of variant 1. Fig. 3 shows the 

dependences of the deformation field of the structure (A) on various joint changes in 

the fractal dimensions 0 1i   of structures (I), (II): an increase 1  for structure 
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(I) and a decrease 2  for structure (II) in the segment [0; 0.99]. For projections on 

the plane nOu  (Fig. 3 a, d, g, j), mOu  (Fig. 3 b, e, h, k), the following 

characteristic features of the behavior of the deformation field are observed. The 

amplitudes and shapes of stochastic peaks change. Cross sections (Fig.3 c, f, i, l) 
4 4[ 10 ;10 ]u     allow more detailed information to be extracted. 

 

   

a) 1 2 0     b) 1 2 0.9    c) 1 2 0.99    

   
d) 1 2 0   ,  

[ 0.1;0.1]u    

e) 1 2 0.9   , 

[ 0.01;0.01]u   

f) 1 2 0.99   , 

[ 0.0001;0.0001]u   
 

Fig. 2. Dependences of the deformation field of the structure (A) on the same fractal 

dimensions of the structures (I), (II): ReA Au u u   (a, b, c) – projections on the 

plane nOu , (d, e, f) – cross sections (top view); 0 1i  . 

 

The circular cylinder of structure (I) with 1 0   defines the external regular wave-

like behavior of the deformation field, and the elliptical cylinder of structure (II) 

with 2 0.99   defines the internal stochastic behavior of the deformation field 

(core) (Fig. 3 c). With a further joint change in fractal dimensions, a significant 

change in the structure of both the core and the outer region occurs: there is an 

intersection (Fig. 3 f), breaks (Fig. 3 i) of regular and stochastic rings; the 

appearance of rings with superposition (Fig. 3 l) of regular and stochastic behavior. 

When 1 2 1.0    the deformation field becomes zero Re 0A Au u  , which 

follows from the basic equations (1) – (3). This allows for the possibility of 

interpretation as an operation of delete information in a memory cell. With a 

further increase in the values of fractal dimensions 1i   of separate structures 

(I), (II) (Fig. 4, Fig. 5), one should expect a significant alteration of the 
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deformation field in the coupled structure (A). 

 

   
a) 1 0  , 2 0.99   b) 1 0  , 2 0.99   c) 1 0  , 2 0.99   

   
d) 1 0.1  , 2 0.9   e) 1 0.1  , 2 0.9   f) 1 0.1  , 2 0.9   

   
g) 1 0.9  , 2 0.1   h) 1 0.9  , 2 0.1   i) 1 0.9  , 2 0.1   

   
j) 1 0.99  , 2 0   k) 1 0.99  , 2 0   l) 1 0.99  , 2 0   

 

Fig. 3. Dependences of the deformation field of the structure (A) on various fractal 

dimensions of the structures (I), (II): projections ReA Au u u   on the planes 

nOu  (a, d, g, j), mOu  (b, e, h, k); (c, f, i, l) – 
4 4[ 10 ;10 ]u     cross sections (top 

view); 0 1i  . 
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As an example, Fig. 4 shows the dependences of the deformation field of the 

structure (A) on the same fractal dimensions of structures (I), (II) for 

1 2 1.01    and 1 2 1.1   . Wherein, the amplitudes of the peaks increase 

from 
34 10  (Fig. 4 a, b) to 0.4 (Fig. 4 d, e), there are features like an inflow near 

the stochastic core of the peaks. The cross section (Fig. 4 c) confirms the formation 

of an almost regular convex region (inflow) around the stochastic core. With an 

increase in fractal dimension, the cross section (Fig. 4 f) is characterized by the 

formation of broadened rings of complex shape (in contrast to circular and elliptical 

rings from Fig. 3). Stochastic rings are present within the core (Fig. 4 f). 

Note, that the imaginary part of the displacement function is as before equal to zero. 

 

   
a) 1 2 1.01    b) 1 2 1.01    c) 1 2 1.01    

   
d) 1 2 1.1    e) 1 2 1.1    f) 1 2 1.1    

 

Fig. 4. Dependences of the deformation field of the structure (A) on the same fractal 

dimensions of structures (I), (II): projections ReA Au u u   on the planes nOu  (a, 

d), mOu  (b, e); (c, f) – cross sections 
4 4[ 10 ;10 ]u     (top view); 1 1.1i  . 

 

A further increase in the fractal dimension leads to the appearance of the 

imaginary part of the displacement function Im 0Au   (Fig. 5 d, e, f). The 

amplitude of the peaks Re Au  (Fig. 5 a, b, c) increases compared to (Fig. 4 d, e, f), 

and the shape of the peaks becomes asymmetric. Wherein, the area of the stochastic 

core expands with the formation of intersecting circular and elliptical rings (Fig. 5 

c). The appearance of the imaginary part Im 0Au   can be interpreted as a 

possible mechanism for the loss of a part of information from a memory cell. 

Comparison of the behavior of the deformation fields of the structure (A) shows, that 
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there is a critical value of the fractal dimension 1.12cr    (where 

1.1 1.2  ), when passing through which, damping occurs. 

 

   

a) Re Au u  b) Re Au u  c) 
4 4Re [ 10 ;10 ]Au     

   

d) Im Au u  e) Im Au u  f)
17 17Im [ 10 ;10 ]Au     

 

Fig. 5. Dependences of the deformation field of the structure (A) on the same fractal 

dimensions of the structures (I), (II): projection Re Au  and Im Au  on the planes 

nOu  (a, d), mOu  (b, e); cross sections (c, f) (top view); 1 2 1.2   . 

 

4 Internal control of a memory cell 
 

Modern nanotechnology uses various periodic structures and metamaterials [4], 

where the amplitude and phase of the deformation field is performed by external 

control. The question about preservation the memory cell at the presence of an 

iterative process for fractal coupled periodic structures requires additional 

research. In this work, using examples of various sinusoidal laws of change in 

the fractal dimensions of separate structures (I), (II) of the coupled structure (A), 

we investigate the behavior of the deformation field, the change in the structure 

of the memory cell depending on the iterative process. In this case, self-

organization (internal control) occurs. We realize various sinusoidal laws of 

change in fractal dimensions 1  and 2  separate structures (I) and (II) of the 

coupled structure (A) in expressions (2) as different functions of lattice indices 

,n m  (Fig. 6, Fig. 7). Note, that for Fig. 6, Fig. 7 the imaginary part of the 

deformation field are equal Im 0Au  . 

Fig. 6 shows the dependences of the deformation field of the structure (A) for 

25



the same sinusoidal laws of change in the fractal dimensions of separate 

structures (I), (II) on the lattice indices ,n m : 1 2 1sin    , 

1 6 ( 1) / 39n    (Fig. 6 a, b, c); 1 2 2sin    , 2 6 ( 1) / 39m    (Fig. 6 

d); 1 2 3sin    , 3 1 2     (Fig. 6 e); 1 2 4sin    , 4 1 2     

(Fig. 6 f). Deformation field dependence ReA Au u u   for projection on the plane 

nOu  (Fig. 6 a) is a zug (a sequence of peaks of different amplitude along the axis 

On ). This is due to the presence of a sinusoidal law sin(6 ( 1) / 39)n   for the 

fractal dimensions of separate structures (I), (II) from the lattice index n , according 

to which the iterative process is performed.  
 

   

a) 1 2 1sin     b) 1 2 1sin     c) 1 2 1sin     

   

d) 1 2 2sin     e) 1 2 3sin     f) 1 2 4sin     

 

Fig. 6. Dependences of the deformation field of the structure (A) for the same 

sinusoidal laws of change in the fractal dimensions of separate structures (I), (II): 

projections ReA Au u u   on the plane nOu  (a), mOu  (b); (c, d, e, f) – cross 

sections [ 0.1;0.1]u   (top view). 
 

There is no iterative process along the axis Om , therefore a broadened stochastic 

peak for projection ReA Au u u   on the plane mOu  is observed (Fig. 6 b). The 

cross section (Fig. 6 c) shows, that the core of the coupled structure (A) is a sequence 

of broadened stochastic stripes parallel to the axis Om . Stochastic elliptical rings 

with internal periodicity (outer region of the coupled structure (A)) around the core 

are observed. 

Note, that when choosing an iterative process along the axis Om , a zug will be 

observed for projection on the plane mOu , and a broadened stochastic peak will be 
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observed for projection on the plane nOu . In this case, the core of the coupled 

structure (A) will be a sequence of broadened stochastic stripes parallel to the axis 

On . Thus, the choice of the iterative process makes it possible to additionally 

control the deformation field of the coupled structure (A). 

When the same fractal dimensions of separate structures (I), (II) 1 2 2sin    , 

2 6 ( 1) / 39m    depend on the lattice index m  (Fig. 6 d), then the core of the 

coupled structure (A) is a sequence of broadened stochastic stripes parallel to the 

axis On . Other stochastic elliptic rings with internal periodicity and discontinuous 

trajectories around the core are observed. 

When choosing fractal dimensions of separate structures (I), (II), depending on the 

superposition of lattice indices ,n m  ( 1 2 3sin    , 3 1 2     (Fig. 6 e); 

1 2 4sin    , 4 1 2     (Fig. 6 f)) inclined periodic structures appear in the 

core of the coupled structure (A). Note, that the angle of rotation for inclined 

structures of the core is anticlockwise (Fig. 6 e) and clockwise (Fig. 6 f). In this case, 

a significant difference for the deformation field of the coupled structure (A) is 

observed. 
 

   

a) Re Au u  b) Re Au u  c) Re [ 0.1;0.1]Au    

   

d) Re Au u  e) Re Au u  f)
 
Re [ 0.1;0.1]Au    

 

Fig. 7. Dependences of the deformation field of the structure (A) for various 

sinusoidal laws of change in the fractal dimensions of separate structures (I), (II): 

projections ReA Au u u   on the plane nOu  (a, d), mOu  (b, e); (c, f) – cross 

sections [ 0.1;0.1]u   (top view). 

 

Fig. 7 shows the dependences of the deformation field of the structure (A) for 

various ( 1 2  ) sinusoidal laws of change in the fractal dimensions of separate 
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structures (I), (II) on the lattice indices ,n m : 1 1s in  , 2 2sin  , 

1 6 ( 1) / 39n   , 2 6 ( 1) / 39m    (Fig. 7 a, b, c); 1 3s in  , 2 4sin  , 

3 1 2    , 4 1 2     (Fig. 7 d, e, f). 

Compared to Fig. 6 a, b here the dependences of the deformation field 

ReA Au u u   for projections on the plane nOu  (Fig. 7 a) and (Fig. 7 b) are zugs 

(sequences of peaks of different amplitudes) both along the axis On  and along the 

axis Om , respectively. This is due to the fact that the fractal dimension 1  is a 

function of the lattice index n , and the fractal dimension 2  is a function of the 

lattice index m . The section (Fig. 7 c) shows, that the core of the coupled structure 

(A) is a lattice of square-shaped sub-elements. For the variant, when fractal 

dimensions 1 , 2  are functions of two lattice indices ,n m , instead of 

pronounced zugs (Fig. 7 a, b), stochastic peaks with a thin structure are observed 

(Fig. 7 d, e). The cross section (Fig. 7 f) shows, that the core of the coupled structure 

(A) is now a lattice of rhombic-shaped sub-elements. This behavior of the 

deformation field (the appearance of rhombic-shaped sub-elements) is associated 

with the presence of joint rotations of inclined structures both anticlockwise and 

clockwise, in comparison with Fig. 6 e and Fig. 6 f (where rotations are done 

separately). 

Choosing other functions for fractal dimensions 1 , 2  one can expect, that the 

core of the coupled structure (A) will be an irregular lattice of sub-elements of 

various shapes (such as quantum dots, curved stripes, hexagonal cells). 

Modern nanotechnology makes it possible to create such structures, for example, on 

the surface of thin membrane. 

The operators of the displacement fields of separate structures (II), (I) and (I), (II) do 

not commute in the coupled structures (B) and (A) in an iterative process. 

Taking into account the ordering of separate operators of deformation fields in a 

coupled structure (B) leads to a different behavior of the deformation field 

depending on the functions of fractal dimensions 2 , 1  separate structures (II), 

(I). The results of numerical modeling for structure (B) are not presented in this 

work. 

 

Conclusions 
 

It is shown, that a pronounced feature of the behavior of the deformation field of 

coupled structures (A), (B) with the same superposition qubit states (-1,-1) of 

separate structures is the absence of the imaginary part of the displacement 

function in the all region ( Im Im 0A Bu u  ) at 10 1.12  , 20 1.12  , 

which indicates to the absence effective damping. This makes it possible to 

interpret coupled structures (A), (B) with the same superposition states (-1,-1) of 

separate structures (I), (II) as memory cells. It is shown, that there is a critical 

value of the fractal dimension 1.12cr   , when passing through which, 

damping occurs. 
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The possibility of internal and external control of the parameters of the structure 

of the memory cell by changing the semi-axes of the elliptical cylinder of the 

structure (II) and the fractal dimensions i  of separate structures (I), (II) has 

been established. The possibility performing operations of write, delete 

information in a memory cell has been established. Changes in the deformation 

fields of coupled structures are anisotropic. 

The behavior of the deformation field of the structure (A) from constant (same and 

different) fractal dimensions of separate structures (I), (II) (external control of the 

memory cell) is investigated. It is shown, that a change in the fractal dimensions 

leads to alteration of the shape and structure of stochastic peaks, the core of the 

coupled structure (A). 

Internal control of the memory cell is performed by realization various 

sinusoidal laws of change in fractal dimensions 1  and 2  separate structures 

(I) and (II) of the coupled structure (A), as different functions of lattice indices 

,n m . It is shown, that substructures of the type of vertical, horizontal, inclined 

strips, lattice structures with sub-elements of various shapes appear in the core 

of a coupled structure (A). 
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Abstract 
 
This chapter is devoted to discussion of the behavior of one-disk dynamo 

under the action of harmonic and random signals. Evaluations of separated effects 
of harmonic and random external voltages in the framework of the linearized Bul-
lard equations have been presented. As random signals with zero average the 
Gaussian delta-correlated noise and the Langevin stochastic process have been 
considered. In particular, as physical values characterizing these influences both 
autocorrelation functions of observables and their spectral densities have been 
calculated. This information is important for design and testing of homopolar dy-
namo layout to perform analog research of stochastic resonance in this device in 
nonlinear regime. 
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Abbreviations 
 
GSSP — the Gaussian stationary stochastic process. 
ACF — the autocorrelation function. 
SD — the spectral density. 
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2.1 Introduction  
 
Stochastic resonance is known to be a cooperative effect in nonlinear sys-

tems manifesting itself in increasing of the output signal-to-noise ratio under  ad-
dition of the optimal portion of noise [1].  

At present great attention is paid to studying of stochastic resonance in 
multidimensional systems arising from physics through chemistry to biology and 
neuroscience [2-5]. However, in our opinion, the most correct path in investigation 
of stochastic resonance leading to a real understanding of the essence of this phe-
nomenon is choosing of a fairly simple dynamic system with a relatively small 
dimension and a detailed study of this one. As a rule there are no analytical solu-
tions both the nonstationary Fokker-Plank-Kolmogorov equation for such system 
and stochastic differential equations describing its behaviour. Numerical solution 
of these problems is quite hard too [6, 7]. Therefore this system ought to allow ex-
perimental investigation.  

On the one hand, from the point of view of clarity, preference should be 
given to mechanical systems. Such systems are easily perceived and interpreted 
due to our daily experience. On the other hand, electrical systems are character-
ized by the ease of controlling of external influences. Hence it is convenient to 
take an electromechanical system as a model system for experimental and  theo-
retical research of stochastic resonance.  

In the framework of this approach we study one-disk dynamo (the so-called 
Bullard dynamo). At first this electromechanical system was suggested in article 
[8] in order to illustrate a number of astrophysical and geophysical effects con-
cerning motion of electrically conducting fluid in a magnetic field (see [9] and 
references therein). Contrary to original article [8] we take into consideration both 
electrical load in parallel with the field coil and friction at the axis of the dynamo. 
But we restrict ourselves by investigation of the linear response of the Bullard dy-
namo because of our final aim is design of functioning homopolar dynamo for  
analog modeling of stochastic resonance in this system. We stress that in our re-
search there is no any magnetohydrodynamic background — compare for instance 
with work [10].  

The  rest of  the chapter  is organized as  follows: in  section 2,  we discuss  
equations of motion for the Bullard dynamo and their linearization. Section 3 is 
devoted to calculations of influence of harmonic external voltage on the linearized 
Bullard system. Section 4 deals with linear responses of the system on random 
signals with zero average, namely, on the Gaussian delta-correlated noise and the 
Langevin stochastic process. Final section is devoted to discussion of results 
elaborated and conclusions. 
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2.2 Main equations  
 
 Mathematical model of the homopolar dynamo is given by the following 
system of stochastic ordinary differential equations:                         









Ω⋅⋅−⋅−=Ω⋅

+Ω⋅⋅=⋅+⋅
,

2
d

d

)(
d

d

2 γJMK
t

I

tUJMJR
t

J
L

             (2.1) 

where  is electric current via the inductance L  on Fig. 2.1; )(tJ

)(tΩ  is angular speed of rotation of the disk of dynamo;  

R  is value of resistance in the electrical circuit on Fig. 2.1.;  
M  is coefficient of mutual inductance: 

)(tU  is an external voltage;  

I  is moment of inertia for the dynamo; 
K  is constant mechanical torque on the axis of the dynamo; 

γ⋅2  is coefficient of mechanical friction on the dynamo axis. 

 

 

Fig. 2.1. Structural scheme of the homopolar dynamo  
 

To study stochastic resonance in the system on Fig. 2.1 one ought to 
choose external voltage in (2.1) as follows: 

            ),()cos()( 0 tVtUtU +⋅⋅= ν  (2.2) 

where  is amplitude of harmonic signal; 0U

ν  is circular frequency of harmonic signal; 
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)(tV  is the Gaussian stationary stochastic process (GSSP) with zero average:  

,0)( >=< tV  (2.3) 

and fixed autocorrelation function (ACF): 
).()()( ttBtVtV −′>=′⋅<  (2.4) 

We underline that our approach in (2.1) differs sharply from one in paper 
[11] because of authors of this paper apply separation of the magnetic flux on 
magnetic flux across disk of the dynamo and magnetic flux across the loops of in-
ductance. This separation of magnetic flux on two parts leads to increasing of di-
mension of phase space of the system. 

 

 
Fig. 2.2. Phase plane of the homopolar dynamo in the absence of external load   

 
 For further analysis of system (2.1) it is convenient to introduce the next 
dimensionless variables and parameters:  

,1 J
K

M
x ⋅=    ,2 Ω⋅

⋅
⋅=
KL

IM
x        ,0 IL

KM

⋅
⋅=ν  

,
MKI

L

⋅⋅
⋅= γδ .

I

L
KUm ⋅=           (2.5) ,

KLM

I
R

⋅⋅
⋅=μ

        After that one can rewrite system (2.1) in the following form:   

,
21

)(

2
2
12

2111





⋅⋅−−=
+⋅+⋅−=

xxx

uxxxx

δ
τμ




 (2.6) 

where mUtUu )()( =τ  is dimensionless external voltage; 

2,1x  are derivatives of dimensionless variables  with respect to dimensionless 

time 
2,1x

t⋅= 0ντ . 

 The system (2.6) in the absence of external voltage is defined as: 

.
21 2

2
12

2111





⋅⋅−−=
⋅+⋅−=

xxx

xxxx

δ
μ




 (2.7) 
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 It is easy to see that if μδ 210 <<   then system (2.7) possesses by three 

equilibrium states: ))2(1,0( δ⋅sO  and ),21( μμδ ⋅⋅−±±O . It is not diffi-

cult to check that if μμδ 2420 2 −+<<  then points  are stable focuses and 

if 

±O

μδμμ 21242 2 <<−+  then points  are stable nodes. Point  is saddle 

point in both cases. 

±O sO

We shall suppose that dimensionless damping factor δ  is quite small 

therefore we shall deal with situation when points  are stable focuses. Phase 
plane of system (2.7) at 

±O
0.1=μ  and 1.0=δ  corresponding to the case under con-

sideration is shown on Fig. 2.2.   
It is obvious that system (2.7) is invariant under transformation of variables 

 therefore to calculate linear response of the system (2.6) it is 

enough to take into account only vicinity of the point . 

),(),( 2121 xxxx −→
+O

 Introducing for system (2.6) new variables  as follows: 2,1y

,21 11 yx +⋅⋅−+= μδ      ,22 yx += μ  (2.8) 

and rejecting terms with powers of  greater than one we find that system  (2.6) 

is reduced to this one: 
2,1y

.
2212

)(21

212

21







⋅⋅−⋅⋅⋅−⋅−=
+⋅⋅⋅−=

yyy

uyy

δμδ
τμδ




 (2.9) 

 From system (2.9) it is easy to observe that variable  obeys to the equa-

tion of motion for harmonic oscillator with damping factor 
2y

δ  and fundamental 

frequency )21(20 μδω ⋅⋅−⋅= under the action of external force: 

                           ),(22 02
2
022 τωωδ uyyy ⋅⋅−=⋅+⋅⋅+                      (2.10)             

and that the behaviour of variable  is governed by the behaviour of variable  

as follows: 
1y 2y

                                       .
2

2

0

22
1 ω

δ
⋅

⋅⋅+−= yy
y


                                      (2.11)          

 At last for self-consistency of above presented linearization external di-
mensionless voltage ought to be weak: 1|)(| <<τu . 
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2.3 Action of harmonic signal on the linearized 
Bullard dynamo  

 
At first let us consider behaviour of the system (2.9) under the influence of 

external voltage:  
                                        ),cos()( 0 ωττ Au =                                         (2.12)  

where in accordance with formulae (2.5) 
mU

U
A 0

0 = ; 

0ννω = .  

 
Fig. 2.3. Amplitude responses of the homopolar dynamo  

 
Looking at equation (2.10) with right hand side (2.12) one can see that in 

this case it describes harmonically excited linear oscillator with damping therefore 
we may solve it in the framework of the well-known complex amplitude method.  
 Seeking solution of equation (2.10) in the following form: 

                                 )],exp()(Re[)( 22 ωτωτ iAy ⋅=                              (2.13)                           

one can  easily find that complex amplitude )(2 ωA  is equal to: 

                                .
2

2
)( 022

0

0
2 A

i
A ⋅

+−
⋅−=

δωωω
ωω                              (2.14)                                         

 Further substituting expression (2.13) into equation (2.11) and using for-
mula (2.14) it is not difficult to establish that 

                               )],exp()(Re[)( 11 ωτωτ iAy ⋅=                                 (2.15)     

complex amplitude )(1 ωA  in formula (2.15) being equal to: 

                                   .
2

2
)( 022

0
1 A

i

i
A ⋅

+−
+=

δωωω
δωω                              (2.16)                                         
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Thus from formulas (2.14) and (2.16) it is easy to obtain that amplitude re-
sponses of dynamical variables of system (2.9) on voltage (2.12) are equal to:  

                         .

4)(

2|)(|

4)(

4|)(|

2222
0

2

0

0

2

2222
0

2

22

0

1

ωδωω
ωω

ωδωω
δωω

⋅+−

⋅=

⋅+−
⋅+=

A

A

A

A

                            (2.17) 

Graphs of dependences (2.17) on dimensionless frequency ω  for 0.1=μ  

and 1.0=δ  are presented on Fig. 2.3. On this Figure continuous line corresponds 
to function )(1 ωA  and dashed line corresponds to function )(2 ωA . Both of them 

demonstrate typical resonance behavior.   
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2.4 Action of the Gaussian delta-correlated noise 
and the Langevin stochastic process on the linearized 
Bullard dynamo  

 
Let us now suppose that external voltage is GSSP purely.  
In this case it is interesting to determine the following ACF:  

,))()()((),( >−′−=<′ aaJ JtJJtJttB                            (2.18) 

where  
>=< )(tJJa                                                     (2.19) 

is average value of electric current in the circuit on Fig. 2.1. 
Reducing in accordance with formulas (2.5) input GSSP voltage to dimen-

sionless form: 

                                       
mU

tV
u

)(
)( =τ                                                     (2.20)            

and substituting expression (2.20) into formula (2.3) we establish that:  
                                        ,0)( >=< τu                                                   (2.21) 

therefore from formulas (2.10) and (2.11) one can immediately obtain that: 
                                 .0)()( 21 >=>=<< ττ yy                                        (2.22) 

Thus combining formulas (2.5), (2.8) and (2.22) it is easy to find that: 

,
2

1
MK

R

M

K
Ja ⋅

⋅−⋅= γ
                                          (2.23) 

hence 

),,(),( 1 ττ ′⋅=′ B
M

K
ttBJ                                           (2.24) 

where  
.)()(),( 111 >′=<′ ττττ yyB                                        (2.25) 

On the other side in correspondence with formula (2.11) behavior of value 
)(1 τy  is controlled by value )(2 τy  therefore ACF (2.25) is expressed via the next 

ACF: 
.)()(),( 222 >′=<′ ττττ yyB                                        (2.26) 

Inserting expression (2.11) into definition (2.25) and using the simplest 
properties of ACF [12] it is not hard to prove that:  

  .),(4
),(),(

2
),(

2

1
),( 2

2222
2

2
0

1 







′+








′∂
′∂+

∂
′∂+

′∂∂
′∂=′ ττδ

τ
ττ

τ
ττδ

ττ
ττ

ω
ττ B

BBB
B   

(2.27) 
Further after looking at formula (2.4) and comparing it with formula (2.20) 

it is obvious that: 
                                   ),()()( ττττ −′>=′⋅< ubuu                                  (2.28) 

where 
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                                     ).(
1

)(
2

ttB
U

b
m

u −′=−′ ττ                                  (2.29) 

It is clear that formulas (2.28) and (2.29) demonstrates stationary state of 
dimensionless input voltage therefore value )(2 τy  is GSSP too because of it obeys 

to linear differential equation with constant coefficients (2.10) [12]. It means that 
ACF (2.26) in fact depends only on variable ττθ −′= : 

).(),( 22 θττ BB ≡′                                          (2.30) 

Substituting representation (2.30) into formula (2.27) one can easily derive 
that: 

                           ,)(4
)(

2

1
)( 2

2
2

2
2

2
0

1 







+−= θδ

θ
θ

ω
θ B

d

Bd
B                      (2.31) 

hence )(1 τy  is also GSSP. 

For further advance it is convenient in accordance with the Wiener-
Khinchin theorem [12] to introduce spectral densities (SD) of ACF (2.30) and 
(2.31) as follows: 

                                                  (2.32) .)exp()()( 2,12,1 θθωθω diBS ⋅⋅⋅−⋅= 
+∞

∞−

After the Fourier transform relation (2.31) is reduced to the next one be-
tween SD )(1 ωS  and )(2 ωS : 

                                          ).(
2

4
)( 22

0

22

1 ω
ω

δωω SS ⋅+=                               (2.33) 

At last it is well-known that for linear homogeneous system (2.10) connec-
tion between input and output SD is expressed via its amplitude response (2.17) 
[12] namely: 

                                          ),(
)(

)(
2

0

2
2 ωωω uS

A

A
S ⋅=                                    (2.34) 

where 

                                                             (

is SD fo

θθωθω dibS uu ⋅⋅⋅−⋅= 
+∞

∞−

)exp()()( 2.35) 

r ACF (2.28). 
 formulas (2.17), (2.33) and (2.34) one can obtain that: Thus combining

                               ).(
4)(

4
)(

22

ωδωω SS ⋅⋅+=                (2
2222

0
21 ωδωω u⋅⋅+−

.36) 

Inverse Fourier transform of expression (2.36) is known to represent ACF 

   

(2.25): 

    .
2

)exp()(
4)(

4 22 ωδω d⋅++∞

)(
2222

0
21 π

θωω
ωδωω

θ iSB u ⋅⋅⋅⋅⋅
⋅+−

= 
∞−

        (2.37) 
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If input voltage is the Gaussian delta-correlated noise (the white noise) then 
ACF (2.4) is equal to: 

),(2)( ttDttB V −′⋅⋅=−′ δ                              (2.38) 

therefore  
                                        ),(2)( ττδττ ′−⋅⋅=−′ Dbu                           (2.39) 

rdance with formula where inte

(2.29) 

nsity of stochastic process is renormalized in acco
2

0 mV UDD ν⋅= . as 

 
Fig. 2.4. Reaction of the homopolar dynamo  

on the Gaussian delta-correlated noise 
 
Further exp th ACF (2.39) is 

equal to
ression (2.35) gives us that SD of GSSP wi

 DSu ⋅= 2)(ω . Thus integrand in formula (2.37) possesses by four simple 

poles δδω ⋅±−± i22
0  hence using the well-known Jordan’s lemma one can cal-

culate exp ntation of ACF (2.25) in this case: licit represe

     ,|)|exp(
4

Re
2

|)|xp( 22
0

22

22
0

1 






−⋅

+
⋅

−

−

∗

∗ θδω
ω

δω
δωδ
θδ

        (2.40) 
e

)(


⋅=θ D
B

where δδωω =∗ ⋅+− i22
0 . 

Graph of the ACF (2.40) for 0.1=μ , 1.0=δ  and s shown on 

in soch process then dimens
(2.29) g form [13]: 

002.0=D  i

Fig. 2.4. 
If input voltage is the Langev asic ionless ACF 
may be chosen in the followin

                      |),|exp()(ub        .0>2 ττγσττ −′−⋅=−′ γ                  (2.41) 

where 2σ  is dispersion of input GSSP )(τu . 

SD correspond ]: ing to ACF (2.41) is equal to [13
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                                         .
2

)(
2σγω ⋅⋅=S            
22 γω +u                              (2.42) 

It means that in this case two additional simple poles γ⋅±i arise in inte-

grand in formula (2.37).  

 
Fig. 2.5. Reaction of the homopolar dynamo  

 
In the same manner one can derive that for SD (2.42) ACF (2.25) is equal 

to the 

                                                         (2.43) 

where 

    

on the Langevin stochastic process 

next sum: 

                ),()()( 2
1

1
11 θθθ BBB +=









−⋅

+⋅
+⋅

−⋅⋅

−⋅⋅=
∗∗

∗ |)|exp(
)(

4
Re

2

|)|exp(
)( 22

022

22

22
0

2
1
1 θδω

γωω
δω

δωδ
θδσγθB         (2.44) 

and 

                |).|exp(
4)(

4
)(

22222
0

22
22

1 θγ
γδγω

γδσθ −⋅
⋅⋅−+

−⋅⋅=B                (2.45) 

Graph of the ACF (2.43) for 0.1=μ , 1.0=δ , 02.0=γ  and 2.0=σ  is 

presen  2.5 w  Fig. 2. one can e that t

 

ted on Fig. 2.5. Comparing Fig. ith 4 observ his 
graph also has oscillatory character stipulated by function (2.44). But moreover 
this graph possesses by variable vertical shift caused by contribution of function 
(2.45) into expression (2.43). 
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2.5 Conclusion  
 

In the chapter linear responses of the homopolar dynamo both on weak 
harmo

 physical parameters 
of the 

armonic signal with very 

slowly

nic input voltage and weak GSSP input voltage have been calculated. This 
preliminary research gives one a possibility of investigation of stochastic reso-
nance in the Bullard dynamo by means of analog modeling.  

To realize this research program one ought to evaluate
system on Fig. 2.1 and then use them to make its layout. After that one can 

perform a number of tests of the operation of the layout. 
The first test is an action of weak ( mUU <<0 ) h

 varying circular frequency on the r dynamo layout. If dimen-
sionless circular frequency 

homopola
ω  of this input signal gets closer to 0ω  then a sharp 

increase in amplitude of elec ic current in the circuit should be observed in accor-
dance with formula (2.16) (see also Fig. 2.3). 

The second test is an application to the

tr

 layout of the weak Gaussian delta-
correla

rm GSSP into non-
Gaussi

  (2.46)                       

and calculate its bispectrum [14]: 

           (2.47) 

 If the influence of nonlinearity is small then both value (2.46) and value 
(2.47) 

 an in-
put vo

successfully then one can pro-
ceed to

ted noise as an input voltage. In this case measured ACF (2.18) must corre-
spond to the calculated dependence (2.40) (see also Fig. 2.4).  

Moreover nonlinearity of a system is known to transfo
an stochastic process [12], therefore, in order to control the role of nonlin-

earity of system (2.1) one should measure the following triple ACF [14]: 
              >−+−+−=< ))()()()()((),( 2121 aaa JttJJttJJtJttT         

                            
+∞+∞

.)exp(),(),( 2122112121 dtdttitittTQ ⋅−−⋅=  
∞− ∞−

ωωωω

must be close to zero due to the Gaussian nature of the input signal.  
The third test is an action of the weak Langevin stochastic process as
ltage.  This kind of input voltage can be obtained by means of transferring 

of the Gaussian delta-correlated noise via four-terminal network with resistance 
and capacitance [12]. In this case measured ACF (2.18) must correspond to the 
calculated dependence (2.43) (see also Fig. 2.5). And it is necessary to oversee 
closeness to zero of values (2.46) and (2.47) too. 

At last if the layout overcomes these checks 
 the experimental study of stochastic resonance in the homopolar dynamo 

under the action of input voltage (2.2) in nonlinear regime. 
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Abstract. In this paper, we show that the existence of a multifractal medium implies a 

series of characteristics that are specific to artificial intelligence such as memory, 

multivalent logic, etc. This medium contains the implicit information, the explicit 

information being evidenced only by a spontaneous breaking symmetry mechanism. In 
this context, we propose a universal holographic mechanism, mathematically based on 

group invariances of SL(2R) type, through which the transition of implicit-explicit 

information is realized. The principles discussed are found in the most complex structure 

from an informational point of view, that is, the human brain. 
Keywords: Multifractal medium, Implicit information, Explicit information, 

Spontaneous symmetry breaking, Brain. 

 

 
1 Introduction 

 

To describe complex system dynamics in the fractal paradigm, but remaining 

faithful to the differentiable mathematical procedures, it is necessary to 

explicitly introduce scale resolutions, both in the expression of the physical 

variables and in the fundamental equations which govern complex system 

dynamics [1]. This means that, instead of “working” with a single physical 

variable described by a strict non-differentiable function, it is possible to “work” 
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only with approximations of these mathematical functions obtained by 

averaging them on different scale resolutions. As a consequence, any physical 

variable purposed to describe complex system dynamics will perform as the 

limit of a family of mathematical functions, this being non–differentiable for 

null scale resolutions and differentiable otherwise [2-5]. This non-differentiable 

function exhibits the property of self-similarity in every of its points, which can 

be translated into a property of ‘’holography’’ type (every part reflects the 

whole). In the present paper, considering the fractal paradigm as being 

functional, a non–differentiable model describing the complex system dynamics 

is proposed. Precisely, we prove how implicit information becomes explicit 

information based on the group invariance. This means that the mathematical 

procedure reduces to obtaining joint invariant functions under the simultaneous 

action of two isomorphic groups of SL(2R) type. To this end, starting from the 

idea that any complex system can be modeled by a multifractal, we have shown 

that its dynamics can be explained by Schrödinger-type regimes at different 

scale resolutions. Particularly, analyzing the group invariance in the case of 

multifractal Schrödinger stationary dynamics, we showed that the implicit 

information becomes explicit information through specific behaviors of period 

double type, damped oscillations, quasi-periodicity, chaos. All these 

manifestations of matter are contained in the mechanism of spontaneous 

breaking of the symmetry of the complex system. The implicit-explicit 

transition of information is associated with this breaking. 

 

 

2 Results and discussion 

 

2.1. Mathematical Model 

 

The complex system is a set of entities (or structured units) that, through their 

interactions, relationships or dependencies form a unified whole [1]. In the 

following, the complex system will be assimilated with a multifractal. Such an 

assumption is sustained by the following example, related to the collision 

processes in a complex system: between two successive collisions, the trajectory 

of the complex system particle is a straight line that becomes non–differentiable 

in the impact point. Considering that all the collision impact points form an 

uncountable set of points, it results that the trajectories of the complex system 

particles become continuous and non–differentiable curves, i.e. fractal. In such a 

context, the Fractal Theory of Motion in the form of Scale Relativity becomes 

operational through the scale covariant derivative [4, 5]: 
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�̂�

𝑑𝑡
= 𝜕𝑡 + �̂�𝑙𝜕𝑙 +

1

4
(𝑑𝑡)

(
2

𝐷𝑓
)−1

𝐷𝑙𝑝𝜕𝑙𝜕𝑝, 
(1) 

where 

�̂�𝑙 = 𝑉𝐷
𝑙 − 𝑉𝐹

𝑙 

𝐷𝑙𝑝 = 𝑑𝑙𝑝 − 𝑖�̂�𝑙𝑝 

𝑑𝑙𝑝 = 𝜆+
𝑙 𝜆+

𝑝
− 𝜆−

𝑙 𝜆−
𝑝  

�̂�𝑙𝑝 = 𝜆+
𝑙 𝜆+

𝑝
+ 𝜆−

𝑙 𝜆−
𝑝  

𝜕𝑡 =
𝜕

𝜕𝑡
, 𝜕𝑙 =

𝜕

𝜕𝑥𝑙
, 𝜕𝑙𝜕𝑝 =

𝜕

𝜕𝑥𝑙

𝜕

𝜕𝑥𝑝
, 𝑖 = √−1, 𝑙, 𝑝 = 1,2,3 

(2) 

In the above–written relations, 𝑥𝑙 is the fractal spatial coordinate, 𝑡 is the 

non–fractal time having the role of an affine parameter of the motion curves, �̂�𝑙 

is the complex velocity, 𝑉𝐷
𝑙  is the differential velocity independent on the scale 

resolution 𝑑𝑡, 𝑉𝐹
𝑙 is the non–differentiable velocity dependent on the scale 

resolution, 𝐷𝐹 is the fractal dimension of the movement curve, 𝐷𝑙𝑝 is the 

constant tensor associated with the differentiable–non–differentiable transition, 

𝜆+
𝑙 (𝜆+

𝑝 ) is the constant vector associated with the backward differentiable–non–

differentiable physical processes and 𝜆−
𝑙 (𝜆−

𝑝 ) is the constant vector associated 

with the forward differentiable–non–differentiable physical processes. There are 

many modes, and thus a varied selection of definitions of fractal dimensions: more 

precisely, the fractal dimension in the sense of Kolmogorov, the fractal dimension 

in the sense of Hausdorff–Besikovitch etc. [4, 6]. Selecting one of these 

definitions and operating it in the complex system dynamics, the value of the 

fractal dimension must be constant and arbitrary for the entirety of the dynamical 

analysis: for example, it is regularly found 𝐷𝐹 < 2 for correlative processes, 𝐷𝐹 >

2 for non–correlative processes etc. [2, 6]. Now, accepting the functionality of 

the scale covariance principle i.e. applying the operator (1) to the complex 

velocity field from (2), in the absence of any external constraint, the motion 

equations (i.e. the geodesics equation on a multifractal space) takes the 

following form [4, 5]: 

�̂��̂�𝑖

𝑑𝑡
= 𝜕𝑡�̂�𝑖 + �̂�𝑙𝜕𝑙�̂�𝑖 +

1

4
(𝑑𝑡)

(
2

𝐷𝑓
)−1

𝐷𝑙𝑘𝜕𝑙𝜕𝑘�̂�𝑖 = 0, 
(3) 

This means that the fractal acceleration 𝜕𝑡�̂�𝑖, the fractal convection �̂�𝑙𝜕𝑙�̂�𝑖 

and the fractal dissipation 𝐷𝑙𝑘𝜕𝑙𝜕𝑘�̂�𝑖, make their balance in any point of the 

fractal curve. 

If the fractalization is achieved by Markov–type stochastic processes [2, 

3], then: 

𝜆+
𝑖 𝜆+

𝑙 = 𝜆−
𝑖 𝜆−

𝑙 = 2𝜆𝛿𝑖𝑙, (4) 
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where 𝜆 is a coefficient associated to the differentiable–non–differentiable 

transition and 𝛿𝑖𝑙 is Kronecker’s pseudo–tensor. Under these conditions, the 

geodesics equation (3) takes the form: 

�̂��̂�𝑖

𝑑𝑡
= 𝜕𝑡�̂�𝑖 + �̂�𝑙𝜕𝑙�̂�

𝑖 − 𝑖𝜆(𝑑𝑡)
(

2

𝐷𝑓
)−1

𝜕𝑙𝜕𝑙�̂�𝑖 = 0 
(5) 

 

2.2. Dynamics of complex systems in the form of Schrödinger–

type “regimes” 

For irrotational motions of the complex system, the complex velocity field �̂�𝑖 

from (2) takes the form: 

�̂�𝑖 = −2𝑖𝜆(𝑑𝑡)
(

2

𝐷𝑓
)−1

𝜕𝑖 ln Ψ 
(6) 

where ln Ψ is the fractal scalar potential of the velocity fields. 

Then, substituting (6) in (5), the geodesics equation (5) becomes (for 

details, see [4, 5]): 

𝜆[𝜆𝜕𝑙𝜕𝑙/(𝑑𝑡)
2(1−

2

𝐷𝑓
)

+ 𝑖𝜕𝑡/(𝑑𝑡)
(1−

2

𝐷𝑓
)
]Ψ = 0 

(7) 

This is a Schrödinger equation of fractal type. Therefore, various dynamics 

of any complex system can be implemented as Schrödinger–type fractal 

“regimes” (i.e. at various scale resolutions). In the one–dimensional stationary 

case, the Schrödinger equation of multifractal type takes the form ([4, 5]): 

𝑑2Ψ

𝑑𝑥2
+ 𝑘0

2Ψ = 0 
(8) 

with 

𝑘0
2 =

𝐸

2𝑚0𝑥2(𝑑𝑡)
(

4

𝐷𝑓
)−2

 
(9) 

In (9) 𝑥 is the fractal spatial coordinate, 𝐸 is the fractal energy of the complex 

system entity and 𝑚0 is the rest mass of the complex system entity. In the 

general case, Ψ(𝑥) is a complex function. Considering that Ψ(𝑥) can be written 

in the form: 

Ψ(𝑥) = 𝑋(𝑥) + 𝑖𝑌(𝑥) (10) 

(8) in real variables becomes: 
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𝑑2𝑋

𝑑𝑥2
+ 𝑘0

2𝑋 = 0 
(11) 

𝑑2𝑌

𝑑𝑥2
+ 𝑘0

2𝑌 = 0 
(12) 

Relations (11) and (12) are invariant to the group of SL(2R)–type (for 

details see [7]): 

𝑋′ = 𝛼𝑋 + 𝛽𝑌 

𝑌′ = 𝛾𝑋 + 𝛿𝑌 

𝛼𝛿 − 𝛽𝛾 = 1 

(13) 

The basis of this Lie algebra is given by the infinitesimal generators: 

𝑋1 = 𝑌
𝜕

𝜕𝑋
, 𝑋2 =

1

2
(𝑋

𝜕

𝜕𝑋
− 𝑌

𝜕

𝜕𝑌
) , 𝑋3 = −𝑋

𝜕

𝜕𝑌
, 

(14) 

the generators satisfying the commutation relations: 

[𝑋1, 𝑋2] = 𝑋1, [𝑋2, 𝑋3] = 𝑋3, [𝑋3, 𝑋1] = −2𝑋2 (15) 

The solution of equations ((11) and (12)) is written in the form: 

[𝑋(𝑥)|𝑌(𝑥)] = 𝑧𝑒𝑖(𝑘0𝑥+𝜃) + 𝑧̅𝑒−𝑖(𝑘0𝑥+𝜃) (16) 

where 𝑧 is a complex amplitude, 𝑧 ̅is the complex conjugate of 𝑧 and 𝜃 is the 

specific phase. Thus, 𝑧, 𝑧̅ and 𝜃 label each entity from an eventual complex 

system that has, as a general characteristic, the same 𝑘0. Equation (10) has a 

“hidden” symmetry in the form of a homographic group: the ratio of two 

independent linear solutions of equation (10), 𝜏, is a solution of Schwartz’s 

differential equation [8]: 

{𝜏, 𝑥} =
𝑑

𝑑𝑥
(

�̈�

�̇�
) −

1

2
(

�̈�

�̇�
)

2

= 2𝑘0
2 

�̇� =
𝑑𝜏

𝑑𝑥
, �̈� =

𝑑2𝜏

𝑑𝑥2
 

(17) 

The left part of (17) is invariant with respect to the homographic 

transformation: 

𝜏 ↔ 𝜏 ′ =
𝑎1𝜏 + 𝑏1

𝑐1𝜏 + 𝑑1
, 

(18) 

with 𝑎1, 𝑏1, 𝑐1and 𝑑1 real parameters. The relation (18) corresponding to all 

possible values of these parameters defines the group SL(2R). Thus, all the 

entities of the complex systems having the same 𝑘0 are in biunivocal 
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correspondence with the transformations of the group SL(2R). This allows the 

construction of a “personal” parameter 𝜏 for each entity of the complex system, 

separately. Indeed, as a “guide” it is chosen the general form of the solution of 

(17), which is written as: 

𝜏 ′ = 𝑢 + 𝜐 tan(𝑘0𝑥 + 𝜃) (19) 

So, through 𝑢, 𝜐 and 𝜃, it is possible to characterize any entity of the 

complex system. In such a context, identifying the phase from (19) with the one 

from (16), the “personal” parameter of the entity becomes: 

𝜏 ′ =
𝑧 + 𝑧̅𝜏

1 + 𝜏
, 𝑧 = 𝑢 + 𝑖𝜐, 𝑧̅ = 𝑢 − 𝑖𝜈, 𝜏 ≡ 𝑒2𝑖(𝑘0𝑥+𝜃) 

(20) 

The fact that (20) is also a solution of (17) implies the group of SL(2R)–

type ([4, 5, 7]): 

𝑧 ′ =
𝑎1𝑧 + 𝑏1

𝑐1𝑧 + 𝑑1
, 𝑘 ′ =

𝑐1𝑧̅ + 𝑑1

𝑐1𝑧 + 𝑑1
𝑘 (21) 

The infinitesimal generators of the group (21) are: 

𝐵1 =
𝜕

𝜕𝑧
+

𝜕

𝜕𝑧̅
, 𝐵2 = 𝑧

𝜕

𝜕𝑧
+ 𝑧̅

𝜕

𝜕𝑧̅
,

𝐵3 = 𝑧2
𝜕

𝜕𝑧
+ 𝑧̅2

𝜕

𝜕𝑧̅
+ (𝑧 − 𝑧̅)𝑘

𝜕

𝜕𝑘
, 

(22) 

with commutation relations: 

[𝐵1, 𝐵2] = 𝐵1, [𝐵2, 𝐵3] = 𝐵3, [𝐵3, 𝐵1] = −2𝐵2 (23) 

The group (21) admits the differential 1-forms (absolutely invariant 

through the group) [7]: 

Ω0 = −𝑖 (
𝑑𝑘

𝑘
−

𝑑𝑧 + 𝑑𝑧̅

𝑧 − 𝑧̅
) , Ω1 =

𝑑𝑧

(𝑧 − 𝑧̅)𝑘
, Ω2 = −

𝑘𝑑𝑧̅

𝑧 − 𝑧̅
, (24) 

and the invariant metric: 

𝑑𝑠2

𝑓
= Ω0

2 − 4Ω1Ω2, (25) 

with 𝑓 an arbitrary constant factor. An interesting case is the one induced by 

means of the parallel transport of direction in the Levi-Civita sense [7, 8]. Then, 

in the space of variables (𝑧, 𝑧̅, 𝑘) the differential 1–form Ω0 is null: 

Ω0 = 0, (26) 

while in the space of variables (𝑢, 𝜐, 𝜃) is: 
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𝑑𝜃 = −
𝑑𝑢

𝜐
 (27) 

Since through (26) or (27) the invariant metric (25) is reduced to the 

Lobachevsky plane metric in Poincaré representation, it results: 

𝑑𝑠2

𝑓
=

𝑑𝑘𝑑𝑧̅

(𝑧 − 𝑧̅)2
=

𝑑𝑢2 + 𝑑𝜐2

𝜐2
 (28) 

In such a conjecture, 𝜃 from (27) defines the angle of the parallel transport of 

direction in the Levi–Civita sense ([7, 8]). Once the previous functionality is 

accepted, the infinitesimal generators of the group (21) become: 

�̅�1 =
𝜕

𝜕𝑧
+

𝜕

𝜕𝑧̅
, �̅�2 = 𝑧

𝜕

𝜕𝑧
+ 𝑧̅

𝜕

𝜕𝑧
, �̅�3 = 𝑧2

𝜕

𝜕𝑧
+ 𝑧̅2

𝜕

𝜕𝑧
 (29) 

and satisfy the same commutation relations of (23) type. 

Now, consider another group of SL(2R) – type given by means of 

infinitesimal generators 

�̅�1 =
𝜕

𝜕ℎ
+

𝜕

𝜕ℎ̅
, �̅�2 = ℎ

𝜕

𝜕ℎ
+ ℎ̅

𝜕

𝜕ℎ̅
, �̅�3 = ℎ

2 𝜕

𝜕ℎ
+ ℎ̅

2 𝜕

𝜕ℎ̅
 (30) 

which satisfy the commutation relations: 

[�̅�1, �̅�2] = �̅�1, [�̅�2, �̅�3] = �̅�3, [�̅�3, �̅�1] = −2�̅�2 (31) 

Then, the Stoka system [9] for operators (29) and (30) takes the form: 
𝜕𝐹

𝜕ℎ
+

𝜕𝐹

𝜕ℎ̅
+

𝜕𝐹

𝜕𝑧
+

𝜕𝐹

𝜕𝑧̅
= 0 

ℎ
𝜕𝐹

𝜕ℎ
+ ℎ̅

𝜕𝐹

𝜕ℎ̅
+ 𝑧

𝜕𝐹

𝜕𝑧
+ 𝑧̅

𝜕𝐹

𝜕𝑧̅
= 0 

ℎ
2 𝜕𝐹

𝜕ℎ
+ ℎ̅

2 𝜕𝐹

𝜕ℎ̅
+ 𝑧2

𝜕𝐹

𝜕𝑧
+ 𝑧̅2

𝜕𝐹

𝜕𝑧̅
= 0 

(32) 

It is important to notice that this system has the rank 3; as such, only one 

independent integral exists. This is the cross–ration generated by means of the 

relation: 

ℎ − 𝑧

ℎ − 𝑧̅
:
ℎ̅ − 𝑧

ℎ̅ − 𝑧̅
≡ 𝜁2, (33) 

where 𝜉 is real, and the square is taken in order to account for the fact that the 

cross–ratio (33) is always positive. Any joint invariant function, F, is here a 
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regular function of this ratio. In such a context, if 𝜁 ≡ tanh 𝜙, where 𝜙 is 

arbitrary, then z is related to ℎ through the linear relation:  

𝑧 = �̅� + �̅�ℎ0 (34) 

where 

ℎ = �̅� + 𝑖�̅�, 𝑖 =  √−1 

ℎ0 = −𝑖
cosh 𝜙−𝑒−𝑖𝛼 sinh 𝜙

cosh 𝜙+𝑒−𝑖𝛼 sinh 𝜙
, Δ𝜙 = 0 

(35) 

Δ is the Laplace operator and 𝛼 is real. Therefore, synchronization of phase–

amplitude type of each complex system entity (mathematically described 

through parallel transport of direction in Levi–Civita sense) implies joint 

invariant function of two simultaneous isomorphic groups of SL(2R)–type as 

solution of Stoka–type equation. Then, period doubling, damping oscillations, 

self–modulation and chaotic regimes emerge as natural behaviors in the 

complex system dynamics. (see Figures 4 a–l for 𝛼 = 𝜔𝑡, tanh 𝜙 = 0.1 and 

Real [(𝑧 − �̅�)/�̅�] ≡Amplitude at various scale resolutions, given by means of 

the maximum value of 𝜔). 
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Figures 1. Various types of synchronization of complex system entity (3D, 

contour plot and time series representation of the function signaling): period 

doubling (a, b, c), damped oscillation regime (d, e, f), signal modulation (g, h, i) 

and chaotic behavior (j, k, l)).  
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3 Possible implications 

 
These considerations might be applied in understanding brain’s functionality. 

Indeed, human brain is, morphologically, a multifractal. Moreover, its own 

space (the one generated by the brain) is structurally, a multifractal in the most 

general sense given by Mandelbrot [2].  

In such space, the only possible functionalities (which are compatible 

with the brain structure) are achieved on continuous but non-differentiable 

curves [3, 4, 5]. Brain’s structural-functional compatibility (structural-functional 

duality) as a source of the cerebral dynamics at any scale is thus imposed. 

Accepting the structural-functional duality of the brain, the trajectory of motion 

realized on the structural component must be identified with an element from 

the functional part. If we admit that the anharmonic oscillations of the 

neurofibrils would be the source of the functional part of the brain, then the 

curve describing the motion of a neurofibril is a continuous non-differentiable 

curve. So this motion takes place in a fractal space, the one generated by the 

fractal structure of the brain, and thus it can be identified with the geodesic of 

the associated fractal space. At yet another scale, the neuron can be identified 

with its corresponding geodesic. More generally, the wave is identified with the 

corpuscle, the motion of the corpuscle in the field of its associated wave being 

obviously a continuous non-differentiable curve (fractal curve), whence the idea 

of geodesic.  

We have presented the mathematics of this model in [10, 11] and, 

therefore, we shall not insist here on this aspect. We insist only on the fact that 

brain’s spectral functionality is described through Schrödinger fractal type 

geodesics, while brain’s structural functionality is described by means of 

geodesics. In our opinion, both functionalities (either the one which is 

responsible of the brain activity unpredictable character, or the other one which 

is responsible of the brain activity predictable character) act simultaneously. By 

their interconditioning there result brain coherence (or brain compatibility) of 

the two neuronal networks (the spectral one and the structural one). 

The statements from Section 2 (refering to implicit and explicit duality, 

breaking of symmetries, role of measurement, spectral projection, etc.) can be 

found not only from the characteristics of chance (Df = 2), but from the 

characteristics of determinism (Df = 1). To achieve this it is possible to use the 

fractal component (Le Méhaute et al. [12], Le Méhaute [13, 14]) of category 

theory (Leinster [15, 16]), introducing then the role of the Riemann Zeta 

function (Le Méhaute [17], Riot and Le Méhaute [18]) in connection with the 

Riemann conjecture (Riot and Le Méhaute [19]). The Riemann function carries 

with him a role of mediation between both limits and the role of the set of filters 

required in the frame of Scott topology (Steenrood [20]). The categorical 

approach confirms the epistemological break introduced by fractal geometry in 

the contemporary physics of complex systems (Riot et al. [21]). 
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4 Conclusions  

 
The main conclusions of the present paper are the following: 

1. Assimilating a complex system with a multifractal, we have shown that in 

the fractal theory of motion, its dynamics can be explained in the form of 

Schrödinger-type regimes at different scale resolutions; 

2. In the stationary case of the fractal Schrödinger-type equation, we 

explicited the invariance groups, both that of the variables and that of the 

initial conditions, groups which are isomorphic.  In our opinion, these 

groups contain system’s potentiality in the form of implicit informational 

energy. The connection of the entities of the substructures to the complex 

system (which in our opinion corresponds to a mechanism of spontaneous 

symmetry breaking, a mechanism by which implicit information becomes 

explicit information), implies obtaining joint invariant functions in relation 

to the above mentioned isomorphic groups. Joint invariant functions are 

obtained based on Stoka’s theorem and in this situation one can evidentiate 

diverse implicit-explicit information transition scenarios, in the form of 

period doubling, damped oscillations, quasi-periodicity and even chaos. 
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[9] M.I. Stoka, Géométrie intégrale, Paris: Gauthier-Villars, 1968. 

[10] M. Agop, A. Gavrilut, L. Eva, G. Crumpei, Towards the Multifractal Brain by 

means of the Informational Paradigm. Fundaments and Applications, ArsLonga 
Publishing House, Iasi, 2019. 

[11] M. Agop, A. Gavrilut, G. Crumpei, L. Eva, Brain dynamics explained by means of 

spectral-structural neuronal networks, Lectures from CHAOS 2019, "12th Chaotic 

Modeling and Simulation International Conference", Springer, 2020. 
[12] A. Le Méhauté, A. de Guibert, A. Delaye, M. Fillipi, Modèle de transfert d’énergie 
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Abstract. Consider an ordered sequence of repeated operations given by a distance-

dependent rotation followed by a translation. Operating this sequence with special 
parameters and initial conditions provides for characteristic spatial density patterns in the 

plane. In this work we introduce an additional orbital rotation and find local chaotic 

orbital patterns and attractors in the plane. There are two ways to form a local density 

from discrete long-range jumps: either a jump-back boundary condition or rotating the 
jump direction. We focus on real time simulations, where the chaotic evolution and vivid 

dynamics (the live cycles of orbitals) with characteristic numbers or stability conditions 

is manifest. Stable and unstable chaotic orbital patterns or solitons emerge dynamically 

and fluctuate without any “hard” additional boundary or radial back-jump-condition. We 
show some typical orbital patterns and suggest a method of categorization. 
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1  Introduction 
 

Repeating a discrete sequence of rotation – translation – reflection operations 

can provide for a wide range of interesting and very complex pattern emerging 

from chaotic jumps, see Skiadas [1,2,3]. Counterintuitively, discrete long-range 

jumps often follow a continuous type of flow pattern, e.g. in [3] very similar to 

v. Kármán Streets, see fig. 1.  

 

 
 

Fig. 1: Skiadas type v. Kármán Streets with rotation parameter 𝑐1 = 𝜋, power 

exponent 𝑝1 = −2, reflection 𝑚 = 2, and long jump back (red arrow). 

 

To get a special pattern requires adjusting the rotation strength parameter and 

eventually a boundary distance condition parallel to the jump direction. We 

found that the correspondent pattern building process can be assigned to small 

nonlinear geometric (phase) shifts arising in the rotation-translation sequence on 

every loop Binder [4, 5]. Applying this nonlinear concept it is possible to 
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generate a broad range of patterns, including periodic structures like waves, 

circles, saw-tooth or point-like discrete geometries by desktop computer 

simulations. The model can be generalized to multiple rotation-translation 

sequences on orthogonal rotation axes in higher dimensions Binder [5]. 

In this work we add to the basic rotation-translation-reflection model an extra 

orbital rotation orthogonal to the jump direction and wonder, if we can generate 

in these ways structures on closed orbits. This means, we add another rotation 

around the existing singularity (at the origin) and look for orbital structures. As 

a result, we find chaotic periodic structures emerging on the orbit without any 

additional constraint like a jump-back condition limit. These dynamical 

structures are more or less stable and often fluctuating like vivid entities. In this 

paper we point to some interesting patterns/simulations and try to make a 

categorization according to boundary conditions and characteristic parameter. 

 

 

2  The Basic Operation Sequence 
 

In the plane the chaotic model is based on a discrete iteration sequence of the 

polar vector 

𝑟 =  (
𝑥
𝑦) .    (1) 

 

Its polar coordinates are given by the radius  𝑟 = |𝑟|  and polar angle/direction 

, where 

𝑥 = 𝑟 sin  ;  𝑟2 =  𝑥2 + 𝑦2;   = atan2(𝑥, 𝑦).   (2) 

 

The iteration will be given by an ordered sequence composed by the two or 

three operations given by a polar rotation R and non-radial translation T and 

eventually a radial inversion I. The vector coordinate evolves in successive 

operations within one iteration sequence with numbering 𝑡 → 𝑡 + 1 according to   

 

𝑟𝑡 → 𝑟𝑅 → 𝑟𝑇 → 𝑟𝐼 = 𝑟𝑡+1 

 

by the following relations: 

 

I. A radius dependent polar/central rotation including reflection 

𝑟𝑅 =  R(𝑟, ∆ )      (3) 

 

with rotation angle ∆  in eq. (3) composed by the following rotation 

and reflection components  

 

∆  = ∆
1

+ ∆
2
      (4) 

given by:  
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1. ∆
1
 in eq. (4) is the Skiadas type rotation angle that has a power-

law radial distance dependence with exponent  𝑝1 < 0 

∆
1

 = 𝑐1𝑟𝑝1 ,   (5) 

 

2. ∆
2
 in eq. (4) generalizes the reflection given by the difference 

 −   multiplied by a reflection mode 𝑚  

 

∆
2

 = 𝑚( − ) ,      (6) 

 

where 𝑚 = 2 is a reflection to the opposite side with respect to the 

initial polar angle  in the co-rotating frame. In our special case, 

the global direction   in eq. (6) sums up with a constant orbital 

rotation 𝑐0 eventually driven by a radial power-law 𝑐2𝑟𝑝2 

 = 𝑡 =  𝑡−1  + 𝑐0 + 𝑐2𝑟𝑝2 ,   (7) 

 

The total rotation is with in eqs. (4) - (7) given by  

 

∆  = 𝑐1𝑟𝑝1  + 𝑚( − ),  (8) 

 

and the rotation in eq. (3) provides for the new orientation angle 

  


𝑅

=  + ∆ .     (9) 

 

II. The non-radial translation 𝑟𝑇 = T(𝑟𝑅,, ∆𝑟) = T(𝑟𝑅, ∆𝑟⃗⃗⃗⃗⃗) of the rotated 

𝑟𝑅 by ∆𝑟⃗⃗⃗⃗⃗ in the initial  - direction (and not in the actual 
𝑅
- direction 

of eq. (9)) 

𝑟𝑇 = T(𝑟𝑅, ∆𝑟⃗⃗⃗⃗⃗) = 𝑟𝑅 + ∆𝑟⃗⃗⃗⃗⃗ ,  (10) 

 

where the translation in eq.(10) is given by  

 

∆𝑟⃗⃗⃗⃗⃗ =  ± (
∆𝑥
∆𝑦

) = ±|∆𝑟⃗⃗⃗⃗⃗| (
cos
sin) = 𝑐3𝑟𝑝3 (

cos
sin ), (11) 

 

Eq.(11) generalizes the usual “jump” in 𝑥 – direction, where the unit 

jump has |∆𝑟⃗⃗⃗⃗⃗| = 1 or always 𝑐3 = ±1 with 𝑝3 = 0. In this paper we 

will consider for simplicity only unit jumps and in chapter 7 negative 

jumps with 𝑐3 = −1. 
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III. Finally there could be an additional inversion operation with respect to 

the origin 

𝑟𝐼 = I(𝑟𝑇) = 𝑟𝑇/|𝑟𝑇|2,   (12)  

 

with invariant direction angle but inverse length to get a rotation-

translation-inversion sequence. 

 

3  Categories of Jumping Patterns 
 

Without orbital rotation the jumps would only go in one direction (usually the x-

direction) and disappear to infinity. There are two ways to form a local density: 

either a jump-back boundary condition or rotating the jump direction. The v. 

Kármán Street pattern in fig. 1 and 2 and the typical 2d wave pattern on the 

plane in fig. 3 have a jump-back distance condition in the x-direction, which 

means, if the distance to the origin in jump direction exceeds a limit, a jump 

back near to the origin follows. 

 

 
 

Fig. 2: Long jump back with 6 arm-symmetric v. Kármán Street pattern, c2 =
2π/6, with m = 2, c1 = π, p1 = −2, and p2 = 0.   

 

With a new extra orbital rotation orthogonal to the jump direction we get local 

chaotic patterns without any orbital conditions (no jump condition) similar to 

the orbital solutions we know from quantum mechanics. We will call them 

“Localized Autonomous Chaotic Orbital Patterns” or LACOP, where we get 
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many interesting orbital structures for integral 𝑝1, 𝑝2, 𝑚. It makes sense to group 

the jumping patterns according to the boundary conditions, where we have 

identified five categories given by a 

 

1. random starts condition: long jump back (red arrow) randomly near to 

center, if distance or number of jumps exceeds a limit (see examples in 

figs.1,2,6,7). 

 

2. periodic boundary condition: a defined long jump back to the back side, if 

distance exceeds a limit, see fig.3. 

 
 

Fig. 3: periodic boundary jump back conditions producing waves,  

where  𝑝1 < 0, 𝑝2 = 0, 𝑚 = 2.  

 

3. inversion condition: inversion operation 𝑟′ = 𝑟/𝑟2 if distance r exceeds a 

limit 𝑟𝑚𝑎𝑥.  

 

4. no boundary condition: free orbital jumps around the center according to 

orbital quantum numbers and symmetries producing LACOP. 

 

5. parameter conditions: relating the two parameter 𝑐1, 𝑐2 can define a family 

of patterns,  e.g., if we define a small isotropic geometric phase shift gap 

𝑔 ≪ 1 and relating the coefficients via the gap g geometrically to the 

rotation-translation parameter according to  

 

𝑐1 = arccos (1 − 𝑔),  𝑐2 = 𝜋(1 − 𝑔)/𝑀. (13) 

 

In this case we get with = 1, 𝑐3 = −1,  𝑝1 = 0 , 𝑝2 = 1 special radial 

conditions like spirals intersected by radial rays, see figs. 6 and 7 with 

random starts near to the center (condition 1).  

 

4  Physics Relevance 
 

It is interesting comparing these structures to Quantum Electrodynamic and spin 

symmetries. The parameter conditions in condition categories 5 and 6. In 

63



chapter 3 can be combined with condition categories 1, 2, 3, 4, where 𝑝2 = −1 

with 𝑚 – pole provides for multipole type orbital ring clouds and field 

structures:  

 

 
 

Fig. 4:  𝑝1 = 𝑝2 − 1 with 𝑝2 = 2, left:  LACOP with 𝑚 = 1,  

right: random starts with 𝑚 = 2. 

 

 

5  Simple 𝑚 = 0 LACOP  

 
Both regular and highly non-linear or chaotic are the 𝑚 = 0  patterns in a wide 

parameter range, see fig.5:  

 

 
 

Fig. 5: Vivid LACOP with regular orbital structure, examples of a regular 

pattern with  𝑚 = 0,  𝑝1 = 0 , 𝑝2 = −1,  𝑝3 = 0. 
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6  Monopole 𝑚 = 1 Negative Jumps 𝑐3 = −1  with Random 

Start near to Center 
 

Both, highly chaotic and regular are the 𝑚 = 1, 𝑐3 = −1  patterns in a wide 

parameter range, see figs.6 and 7, where the geometric gap condition in eq. 13 

produces radial rays intersecting spirals with random starts. It is not surprising 

to get Fresnel Charge structures in fig. 6 for  𝑝2 = 1, since a Fresnel spiral has 

an inherent spiraling angular structure with 𝜑 ∝ ∑ 𝜎 ∝ 𝑟𝑝2+1 = 𝑟2 . 

 

 
 

Fig. 6: 𝑚 = 1, 𝑐3 = −1,  𝑝1 = 0 , 𝑝2 = 1, geometric gap condition eq. 13  

producing radial rays. 
 

 

  
 

Fig. 7:  𝑚 = 1, 𝑐3 = −1,  𝑝1 = 0 , 𝑝2 = 1, 𝑔 = 0.001, 

 left and mid 𝑀 = 3, right 𝑀 = 13. 

 

With a second relation or constraint between the two parameter 𝑐1, 𝑐2 we can a 

fixed points for the parameter, e.g., combining eq.(13) with the simple isotropic 

gap condition 𝑐1 = 𝑐2, we get the magic angle condition 𝑀𝑐1 = cos (𝜋𝑐1) 

Binder [5]. With no boundary condition 4. we get M-gonal fixed points on the 

monopole ring. 

  

65



7  More Complex Vivid 𝑚 = 2 LACOP  
 

Very interesting and exciting is the chaotic dynamics of the 𝑚 = 2 LACOP 

orbitals, see fig.8 and some mixed examples in fig.9. There is in most cases no 

static or stationary solution, since the orbitals often show a chaotic variation in 

the orientation or orbital shape. Therefore, a stable LACOP should be properly 

initialized; usually by an high enough orbital rotation parameter 𝑐2 (spin, 

energy) while increasing the m-parameter from 1 to 2. In simulations the 

solutions (recorded as videos) appear to be like vivid orbitals with inherent 

chaotic dynamics especially in the substructure of orbital rings:  

 

 
 

Fig. 8: Vivid LACOP steadily changing orbital structure (the two examples are 

snapshots from the same LACOP) with  m = 2,  p1 = −1 , p2 = 1,  p3 = 0,  

 c1 ≈ 3π , c2 ≪ 1.   

 

 

 
 

Fig. 9: typical LACOPs with a core and a hole in the center 

𝑝1 < 𝑝2, 𝑚 > 0.  
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Conclusion 
 

The resulting patterns often show a localized ring shape with several mixed 

orbits in a kind of hydrodynamic-type orbital shelf flow and an empty region or 

hole at the center. 𝑚 – poles or reflection modes with higher 𝑚 show more 

complex and instable pattern. A stable form must be initialized; otherwise the 

pattern collapses or expands to infinity. The emerging LACOP solitons or 

wavelets show always characteristic  

 

 radial and orbital wave numbers,  

 radial and orbital symmetries, 

 parameter 𝑚, 𝑐𝑖, 𝑝𝑖, 

 dynamics and fluctuations, 

 geometric phase conditions. 

Finally, we propose that this computer experiments show some relevance to 

quantum physical systems since we have 

 

 a wave attractor showing quantization effects in terms of rotational 

units, 

 a quantization of monopole and multipole charges,  

 a basic non-zero quantum spin in the two main operators (rotation-

translation, non-commutative) with characteristic geometric phase 

shifts, 

 point-like local events with emerging global wave-like probabilistic 

patterns.  

There will be videos of simulations available on the internet with title “Dynamic 

Autonomous Chaotic Orbital Patterns” or tag “#DACOPSimulation”. 
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Abstract. To benefit of embedded systems which are highly customized providing
architectures to suit real-time computing, optimized unit size and low power con-
sumption require highest levels of data communication security which are very useful
advantage for telecommunications and networks and Internet of Things (IoT) com-
munication applications that handle sensitive information. This paper presents an
extracted new 5-dimensional (5-D) discrete time chaos system to generate a robust
chaotic cipher data stream to ensure encryption application for secure communication.
Dynamical behaviors and security analysis are investigated and compared to current
discrete chaotic maps proving its suitability for embedded data encryption systems.
Field-Programmable Gate Array (FPGA) implementation design shows better per-
formance and good security robustness compared with previous works while proving
the performance improvement of the proposed cipher block in terms of throughput,
used hardware logic resources, and resistance against most cryptanalysis attacks.
Keywords: Chaotic generator, Secure communication, Key space, Encryption, FPGA
implementation.

1 Introduction

Due to advancement in technology, thousands of devices in home, industry
and health care systems are connected to each other. With advent of IoT,
this number is increasing exponentially [20]. With the provision of too many
features, these devices still need more protection from cyber-attacks [9]. Due
to the existing low security protocols, these devices are always on high threat,
which makes the communication vulnerable and prone to foreign intrusion. In
the literature, many schemes and protocols have been proposed to address the
network security issue. In [21] authors have proposed an unclonable-based func-
tions for authentication the protocol, for IoT devices. However, the proposed
protocol lack some related computations [14]. In [16] authors have presented
a simplified protocol to reduce the computations through the authentication
phase But the complexity of the proposed scheme is not appropriate for the
IoT devices [13]. Moreover, Random numbers are used in many cryptographic
protocols, key management, identity authentication, image encryption, and so
on [23]. As software generated random sequences are not truly random, fast
entropy sources such as quantum systems or classically chaotic systems can be
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viable alternatives provided they generate high-quality random sequences suf-
ficiently fast [3]. In [2], authors have introduced a new hardware chaos-based
pseudo-random number generator, which is mainly based on the deletion of an
Hamilton cycle within the N-cube plus one single permutation. [7]initiates a
systematic methodology for real-time chaos-based video encryption and decryp-
tion communications. Based on the fundamental anti-control principles of dy-
namical systems, a novel 6-dimensional real domain chaotic system is designed,
and then the corresponding algorithm is developed. The proposed algorithm is
utilized to design a real-time chaos-based secure video communication system,
with a generalized design principle derived, which is implemented on an FPGA
hardware. Additionally, some other research works have been proposed which
include, applications of chaotic systems for speech signal encryption [18], e-mail
and database encryption [19] and image encryption [8,10,12,15,6].Unfortunately
due to different technical reasons, all these schemes are not useful for different
IoT applications. Because the discovery of simple chaotic systems with com-
plex dynamics has always been an interesting research work [11], we propose
through this paper an extracted low resource consumption 5-D Chaotic System
has been proposed for secure IoT communication. The proposed chaos-based
cryptosystem is implemented by using Xilinx ZYNQ-XC7Z020 FPGA board.
The rest of this paper is organised as follows. Section 2 describes the proposed
5-D map. Hardware implementation and performance analysis are presented
in section 3. Finally, section 4 concludes this paper.

2 The proposed 5-D map

In [5] authors proposed a multidimensional chaotic map within good chaotic
properties. From the proposed system, the extracted 5-D discrete time chaos
system with nine nonlinear terms and five control parameters is described as
follows: 

X(n + 1) = 1− a ∗X(n)2 + (Y (n) ∗ Z(n) ∗W (n) ∗ P (n))

Y (n + 1) = 1− b ∗ Y (n)2 + (X(n) ∗ Z(n) ∗W (n) ∗ P (n))

Z(n + 1) = 1− c ∗ Z(n)2 + (X(n) ∗ Y (n) ∗W (n) ∗ P (n))

W (n + 1) = 1− d ∗W (n)2 + (X(n) ∗ Y (n) ∗ Z(n) ∗ P (n))

P (n + 1) = e ∗X(n) ∗ Y (n) ∗ Z(n) ∗W (n)

(1)

Whereas a,b, c, d and e ∈ R are the controllers and X, Y , Z, W , P are the
state variables respectively.

2.1 Bifurcation analysis

To investigate behaviours of the proposed system defined by the proposed 5-D
map, we analyze the bifurcation diagrams related to parameters a, b, c, d and e.
According to the bifurcation study, chaotic behaviour of the proposed system
appears for a ∈ [0.8, 1.8], b ∈ [0.1,1.4] , c ∈ [0.7,1.9] , d ∈ [0.3,1.6] and e ∈
[0.05,1.1] as shown in Figure 1 (the bifurcation study of the parameters b, d).
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Fig. 1: The bifurcation graphs of the proposed 5-D map with parameters b, d.

2.2 Signals analysis

To study the dynamical behaviours of the proposed model, the signal graph
and the phase space trajectories defined by the state variables (X,Y, Z,W,P )
can be used as an indicator to determine that the motion of that system is
chaotic. In the proposed work, the technique is based on the signal output and
the projection of the trajectories onto the plane, which reflects the chaotic be-
haviour result of the proposed system as shown in Figures 2 and 3, respectively.

Fig. 2: Signals graphs of the proposed 5-D map

2.3 Sensitivity analysis

To evaluate the sensitivity to initial conditions of the proposed map, we consider
a changing by 10−10 of the initial values X(0), Y (0), Z(0), W (0) and P (0),
then for the parameters a, b,c,d and e . The results shown in Figures 4, 5, 6,
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Fig. 3: Trajectory graph of the proposed 5-D map

7 and 8 prove that after a few number of iteration all the signals are different
from the initial ones.

Fig. 4: The proposed bench test platform

Fig. 5: The proposed bench test platform
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Fig. 6: The proposed bench test platform

Fig. 7: The proposed bench test platform

Fig. 8: The proposed bench test platform

3 FPGA implementation of secure Peer-To-Peer
communication

3.1 The proposed platform test bench

Because of flexibility, reliability, low cost, fast time-to-market, and long term
maintenance, FPGA environment is considered more useful for the validation
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of the proposed scheme. Initially the hardware description language (VHDL)
is used to implement the proposed 5-D system as a chaos-based cryptosystem
(called Chaos 5-D Generator). After that, the designed is integrated as a new
core or module with the other components of the Xilinx ZYNQ-XC7Z020 FPGA
board as given in Figure 9 [5].

Fig. 9: FPGA block design

To establish the final platform of Peer-To-Peer secure communication, we
connect all the programmed FPGA boards through an Ethernet network (Fig.10).

Fig. 10: The proposed bench test platform
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The proposed bench test runs as follows:
- The peers establish a new connection;
- If it is the first connection (i=1), then key-Generator modules are reset;
- The key-Generator of both peers load the key corresponding to the sequence
i of the implemented 5-D map;
- The generated keys are used to encrypt and send the data;
- The generated keys are used to decrypt and read the received data;
Lastly, the peers terminate the communication by closing the channel, and the
key-Generator module saves the samples (i+1)for the next communication.

3.2 Performance analysis

In such kind of cryptosystems, without any robust experimental solution to the
chaotic synchronization issue [17], we introduce the control option for the chaos
5-D generator. Hence for each established connection i, the proposed cryptosys-
tem generates the same encryption key which corresponds to the sample i of
the proposed 5-D chaotic map.

Ensuring that both generators implemented on two different boards gener-
ate the same keys, thereby, the connected peers can encrypt/decrypt exchanged
messages easily as shown in Figure 11.

Fig. 11: Exchanged messages between the peers

To show the performance of our system, the proposed model is compared
with some of the state of the art works. Table 1 gives the details of the com-
parison. The comparison is made on the basis of LUTs, FF, DSP, maximum
frequency and Slices. From table 1, it is evident that the proposed scheme
has the best results with 2570 (4.83% from available) lookup tables (LUTs),
872 Slices (6,55%), 2570 flip-flops (FF), 111 DSP multipliers (50,45%) and no
block RAMs, all at maximum frequency of 553,09 MHz. These results are
never achieved before, which confirms the novelty and suitability of the pro-
posed scheme.

4 Conclusion

With the development of chaotic theory and its applications in different do-
mains, proposals of constructing new and higher dimensional chaotic systems
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Proposals Resources LUTs FF DSP Slices Fmax(MHz)
Available 53200 106400 220 13300 /

[1] / 2986 NM NM 26893 147.863

[24] / 23173 1598 220 5111 125,50

[4] / 17322 1598 220 5111 125,50

[22] / 24836 NM NM 27371 135.04

Proposed 5-D System / 2570 918 111 872 553,09

Table 1: FPGA resource utilization comparison

become one rising trend.
In this paper, we proposed an extracted 5-D discrete chaotic map for key stream
cipher generation. The chaotic behaviour of the proposed map is investigated
using the bifurcation and the trajectory analysis.
Compared to some well know chaotic systems, the proposed 5-D map presents
better properties in terms of resource consumption and achieved frequency.
Moreover, the proposed 5-D chaotic map provides an attractive trade-off be-
tween key space, resource utilization and memory consumption proving its
suitability for securing communications of resource-constrained devices such as
IoTs.
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Abstract. Chaos theory is considered as a tool for studying the systems that show
divergence and disorder. After having used discrete mathematics to deduce non-
convergence situations, these theories are modeled in the form of a dynamic system
and are applied in several domains such as electronic, mechanic , network security,
etc. In network security domain, the development of new cryptosystems based on
chaos is a relatively new area of research and is increasingly relevant. The essence
of the theoretical and practical efforts in this field derive from the fact that these
cryptosystems are faster than conventional methods, while ensuring performance of
security, at least similar.
In this paper, we discuss several proposals about chaos-based cryptosystem and
pseudo-random number generator (PRNG). Moreover, topology and architecture of
the proposed chaos systems are detailed. Finally, in order to show the more suitable
system for encryption and secure communication, a synthesis comparison is presented
and considered.
Keywords: Chaos, Network security, crypto-systems, Communication, PRNG.

1 Introduction

Nowadays, network communication is vulnerable to many threats and cyber-
attacks and it becomes more important for network experts to safeguard the
network access [1]. Among the available security mechanisms, chaos-based
cryptosystems are considered one of the most effective solution that provides
the integrity, the authentication and the confidentiality. Recently, the develop-
ment of new cryptosystems based on chaos is a relatively new area of research
and is increasingly relevant.
In [2], an Field-Programmable-Gate-Array (FPGA) implementation of image
encryption purpose using two chaotic discrete time systems. The proposed two
phases algorithm is executed by using the well known Arnold Cat map and
the generalized logistic map, respectively. Authors in [3] initiate a system-
atic methodology for securing real-time video communication. The proposed
chaos-based cryptosystem have been implemented on an FPGA hardware plat-
form via Verilog Hardware Description Language (Verilog HDL). [4] presents a
Hardware implementation of a Pseudo chaos signal generator using three recon-
figurable discrete time systems with a linear feedback shift registers (RLFSR).
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The proposed technique was implemented using Verilog HDL codes, then ana-
lyzed using Xilinx Plan Ahead compiler and Model-sim software. In terms of
network security protocols, [5] proposed a novel chaos-based mechanism that
includes Pseudo-Random Key-Generator which can be used to secure a socket-
based communication. The proposed key-generator, created by solving the
Lorenz chaos-system, has the main task of delivering at each opened channel a
new 32-bit key that is used for encrypting/decryption the exchanged data.

In this paper, we discuss several proposals about chaos-based cryptosystem
and pseudo-random number generator (PRNG). Moreover, topology and archi-
tecture of the proposed chaos systems are detailed. Finally, in order to show
the more suitable system for encryption and secure communication, a synthesis
comparison is presented and considered.
The remainder of this paper is structured as follows. Section 2 describes the
classification of the most used chaotic systems. Section 3 shows the hardware
implementations of these chaotic systems as well as their purposes. Section 4
concludes this paper.

2 Background and description of chaotic systems

Due to the sensitivity and periodicity properties, chaotic systems have been in-
volved mainly in key generation of the recently proposed cryptography schemes.
Regarding their topology and mathematical model, we can classify all existing
and newly proposed chaos systems in two main categories: continuous-time
systems and discrete-time systems.

2.1 Continuous time systems

The continuous-time systems are described by a set of linear differential equa-
tion. Moreover, in order to ensure that the dynamical systems to be chaotic,
the dimensions of the system’s phase space must be at least equal to three (3).
In the literature, there are several well known continuous-time systems such as
Lorenz [6], Chen [7], Lu [8], etc.

Lorenz system The basic form of the Lorenz 3-D system is described by the
following set of equation:

ẋ = a(y − x)

ẏ = y + bx− xz
ż = xy − cz

Where x,y and z are the state variables. a, b and c are the system parameters.
The chaotic behaviour (see Fig.1) appears for a=10, b= 28 and c=8/3 with the
initial conditions x0=0, y0=5 and z0=25 [8].
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Fig. 1. Trajectory graph of the Lorenz system

Van-der-Pol system The Van-der-Pol oscillator as given in [10], is described
in two dimensions as follows:

ẋ = a(x− (1/3)x3 − y)

ẏ = (1/a)x

Where x,y are the state variables, and a is the system controller. The phase
portrait of the 2-D system is illustrated in figure 2.

Fig. 2. Phase plan projection of the Van-der-Pol system

81



Chen system Based on the 3-D Lorenz system, Chen 3-D system is proposed
and described by the following set of equations:

ẋ = a(y − x)

ẏ = (b− a)x+ by − xz
ż = xy − cz

Where x,y and z are the state variables. a, b and c are the system parameters.
The chaotic behaviour appears for a=35, b= 28 and c=8/3 [19], while the phase
plan projection is shown in figure 3.

Fig. 3. Phase plan X-Y projection of the 3-D Chen system

Lu system The Lu system is known as the bridge between Lorenz system and
Chen system [8]. Thereby, the mathematical model is given as follows:

ẋ = a(y − x)

ẏ = by − xz
ż = xy − cz

Where x,y and z are the state variables. a, b and c are the system parameters.
The trajectory graph of the proposed system is given in figure 4.
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Fig. 4. Trajectory X-Y-Z of the 3-D Lu system

Linz-Sprott system Trying to simplify the formula of a chaotic system, Linz
and Sprott [19] have proposed a new system which is defined as follows:

ẋ = y

ẏ = z

ż = −az − y − 1 + |x|

Where x,y and z are the state variables and a is the system’s parameter. As
shown in figure 5, the chaotic behaviour of the proposed system is achieved for
a=0.6.

Fig. 5. Trajectory X-Y-Z of the Linz-Sprott system
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Four-Wing memristive hyperchaotic system Looking for higher dimen-
sional chaotic system, authors in [13] have proposed a novel 4-D system which
is described as follows:

ẋ = ax+ byz

ẏ = cy + dxz − pyW (w)−Q
ż = ez + fxy + gxw

ẇ = −y
W (w) = m+ 3nw2

Where x, y, z, w are the state variables. a, b, c, d, e, f, g, m, n, p, Q
are the controllers of the proposed system. In order to ensure the chaotic
behaviour, the controllers parameters are defined as follows: a=0.35, b=-10,
c=-0.6, d=0.3, e=-1.6, f=2, g=0.1, m=0.1, n=0.01, p=0.2 and Q=0.01. The
trajectory graphs corresponding to the proposed system with the associated
parameters, are shown in figure 6.

Fig. 6. Trajectory graphs of the proposed 4-Wing system

New 3-D continuous time system Getting inspired from the Lorenz sys-
tem[9], with only two (02) controllers, a novel 3-D system is proposed and
defined as follows:

ẋ = y − x− az
ẏ = xz − x
ż = −xy − y + b

Where x,y and z are the state variables. a and b are the system parameters.
The chaotic behaviour of the proposed system is observed for the values a=0.5
and b=1 while the initial conditions are x0=y0=z0=0 (See Fig.7).
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Fig. 7. Phase plan projections of the proposed 3-D system

New 4-D continuous time system In [20], another new 4-D chaotic system
is proposed based on the Rossler system, and defined by the following set of
equations:

ẋ = −y − z + dw

ẏ = x+ ay

ż = b+ z(x− c)− a(y − w)

ẇ = az − w

Where x,y,z and w are the state variables. a, b, c and d are the system param-
eters. By choosing a=0.4, b=0.6, c=3 and d=0.8, the chaotic behaviour of the
proposed system is showed by phase plan projection (see Fig.8)

Fig. 8. Phase plan projection of the proposed system
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Fig. 9. Trajectory graph of the lo-
gistic map

Fig. 10. Signal graph of the logis-
tic map

2.2 Discrete time systems

The discrete time chaos system is a dynamic system which works in increments
and takes the conditions at a given time t to change these conditions at a
later time t + ∆t. Hence, unlike the mathematical model of the continuous
time systems, discrete time maps are described mathematically by an iterated
function. Moreover, the dimension of the system’s phase space could be only
equal to one (01) to show chaos behaviour.

Logistic map In the literature, many proposals have used the well known
logistic map such as in [11] for PRNG, [2] for image encryption,[15] for chaotic
signal generating, etc. The mathematical description of this map is given as
follows:

xi+1 = axi(1− xi)

Where xi is the state variable and a is the system controller.
To ensure the chaotic behaviour (see Fig.9 and Fig.10) of this system, a should
be in the interval [3.57 - 4].

Hénon map A simple 2-D with quadratic non-linearity, Hénon system was
the first map to show strange attractor with a fractal structure [14]. The
mathematical description of this map is given as follows:

xi+1 = a+ yi − x2i
yi+1 = bxi

Where xi and yi are the state variables and a, b are the system controllers.
The obtained strange attractor of this map, is shown in figure 11 while the
controllers are a=1.4 and b=0.3.
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Fig. 11. Trajectory graph of the Hénon map

Rene-Lozi map By introducing the absolute value in the Hénon map, the
Rene-Lozi map used in [12] for stream cipher purpose, is described as follows:

xi+1 = 1 + yi − a|xi|
yi+1 = bxi

Where xi and yi are the state variables and a, b are the system controllers.
Similarly to the Hénon map, it has been shown that for a=1.4 and b=0.3,
chaotic behaviour of this map can appear (see Fig.12).

Fig. 12. Trajectory graph of the Rene-Lozi map
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Bernoulli map Unlike all the discrete time maps, Bernoulli map is composed
of two piece-wise linear parts which are separated by a discontinue space of
points [13] (see Fig.13).
Mathematically, the Bernoulli map is defined as follows:

xi+1 =

{
axi + 0.5 if x < 0

axi − 0.5 if x ≥ 0,

Where xi is the state variable and a is the control parameter.
The chaotic status of this map is ensure for all the values of the parameter a
inside the interval ]1.4 - 2] (see Fig.14).

Fig. 13. Trajectory graph of the Bernoulli map

Fig. 14. Signal graph of the Bernoulli map

Sine map the sine map is qualitatively similar to the logistic map, and the
superficial similarity has resulted in a much deeper connection.
As indicated by its name, the sine map is defined by a sine function as follows:

xi+1 = asin(πxi), 0 ≤ xi ≤ 1, a > 0

Where xi is the state variable and a is the system parameter. The projection
graph which proves the behaviour of this map is shown in figure 15.

Tent map Regarding the slope of its mathematical function, tent map with
only one state variable, is considered as a slope of two (02) model. Without
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Fig. 15. Trajectory graph of the sine map

any control parameter, the tent map is defined as follows:

xi+1 =

{
2xi if 0 ≤ xi < 1/2

2(1− xi) if 1/2 ≤ xi ≤ 1

Where xi is the state variable. Moreover, the trajectory graph of the tent map
is shown in figure 16.

Fig. 16. Trajectory graph of the tent map

All these systems have been used mainly for either generating random num-
bers, cipher keys or chaotic signals. They differ from each other in terms of
dimension, control parameters and the purpose of use. In table 1 we summarize
all these differences obtained regarding our study.

3 Hardware implementations and applications

FPGA-based prototyping is specifically geared toward meeting the design and
verification demands created by the complexities of low and constrained re-
sources devices. Moreover, FPGA-based prototyping allows designers to de-
velop and test their systems and provides software developers early access to a
fully functioning hardware platform long before silicon is available. In order to
be implemented on FPGA, the continuous time systems need to be discredited
numerically using some popular methods such as Euler and Runge-Kutta (RK)
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System Reference Type Dimension Controllers Purpose

Lorenz [8] Continuous 3-D 3 Image encryption

Van-der-Pol [10] Continuous 2-D 1 Random number generator

Chen [19] Continuous 3-D 3 Chaos signal generator

Lu [8] Continuous 3-D 3 Image encryption

Linz-Sprott [19] Continuous 3-D 1 Chaos signal generator

4-Wing [13] Continuous 4-D 11 Random number generator

New 3-D [9] Continuous 3-D 2 Random number generator

New 4-D [20] Continuous 4-D 4 Image processing

Logistic [11] Discrete 1-D 1 Random bit Generator

Hénon [14] Discrete 2-D 2 Encryption

Rene-Lozi [12] Discrete 2-D 2 Stream cipher

Bernoulli [13] Discrete 1-D 1 Random number generator

Sine [15] Discrete 1-D 1 Chaos signal generator

Tent [16] Discrete 1-D 0 Chaos signal generator

Table 1. Summary of the chaotic systems: description and purpose of application

methods. Euler’s method is a straight-forward method that estimates the next
point based on the rate of change at the current point and it is easy to code
[24]. It is called also a single step method. While RK methods are actually a
family of schemes derived in a specific style. Higher order accurate RK methods
are multi-stage because they involve slope calculations at multiple steps at or
between the current and next discrete time values [25]. The next value of the
dependent variable is calculated by taking a weighted average of these multiple
stages based on a Taylor series approximation of the solution. The weights
in this weighted average are derived by solving non-linear algebraic equations
which are formed by requiring cancellation of error terms in the Taylor series.
Developing higher order RK methods is tedious and difficult without using
symbolic tools for computation. The most popular RK method is RK4 since
it offers a good balance between order of accuracy and cost of computation.
RK4 is the highest order explicit Runge-Kutta method that requires the same
number of steps as the order of accuracy (i.e. RK1=1 stage, RK2=2 stages,
RK3=3 stages, RK4=4 stages, RK5=6 stages, ...). Beyond fourth order the
RK methods become relatively more expensive to compute . Among all the
studied proposals, we have synthesised a brief comparison that includes mainly
the used FPGA technology and the consumed resources. Table 2 summarizes
the difference between different proposals regarding the chosen system as well
as the resource consumption. However, we found that in the single-precision
and the double-precision operations, there are more than 10-6 differences in
less than 100 iterations, and the difference reaches more than one digit after
1000 iterations[23]. This is because the binary has a round-off error, so the
binary cannot strictly obey the commutative law or the distribution law in
floating-point operations.
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Reference FPGA technology Resources Chaos system Discretization

[9] Virtex-6 LUTs=1070 Regs=1196 New 3-D Euler

[10] Virtex-6 LUTs=22674 Regs=21797 Van-der-Pol RK4

[11] Virtex-7 LUTs=510 Regs=120 Logistic No Need

[12] Spartan-6 LUTs=562 Regs=386 Rene-Lozi No Need

[13] ZYNQ-XC7Z020 LUTs=22556 Regs=26426 Four-wing RK4

[14] Virtex-5 LUTs=1496 Regs=432 Hénon No Need

[8] Virtex-II LUTs=2490 Regs=1316 Lorenz/Lu RK-4

[17] Virtex-5 LUTs=2799 Regs= 1722 Logistic No Need

[18] Zynq-7000 LUTs=856 Regs= 521 Hénon No Need

[22] Stratix-IV LUTs=49005 Regs=611 New 3-D Euler

Table 2. Summary of the FPGA implementations

4 Conclusion

In this paper, we discuss several proposals about chaos-based cryptosystem and
pseudo-random number generator (PRNG). Moreover, topology and architec-
ture of the proposed chaos systems are detailed. Finally, in order to show the
more suitable system for encryption and secure communication, a synthesis
comparison is presented and considered.
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Abstract 

 

The paper consists of three parts. The first one is devoted to approximate methods for evaluating Riemann 

integrals, singular and hypersingular integrals on closed non-rectifiable curves and fractals in the complex plane. An 

integral on non-rectifiable curves or fractals is defined as a double integral over a region that bounded by a 

non-rectifiable curve or a fractal. To evaluate double integral cubature formulas have been constructed. 

The second part contains methods for solving hypersingular integral equations on prefractals. 

Issues of solvability of singular and hypersingular integral equations with fractal in the right-hand side have 

been studied in the third part. Singular and hypersingular integral equations that model aerodynamics problems have 

been investigated. In such cases right-hand side of equations describes the gas flow which is a fractal. 
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Abbreviations 

SI - singular integral 

HI - hypersingular integral 

SIE - singular integral equation 

HIE - hypersingular integral equation  
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2. Introduction 

 

 2.1. Review of approximate methods for calculating hypersingular integrals and solving hypersingular 

integral equations. Starting the middle of the last century, the methods of singular and then hypersingular integral 

equations have been increasingly used in the study and modeling of various problems in physics, natural science and 

technology: in aerodynamics, electrodynamics, elasticity theory, nuclear and atomic physics, geophysics, and 

mathematical physics. Analytical methods for solving singular and hypersingular integral equations are known only for 

very special cases. Thus numerical methods are widely employed for solving singular and hypersingular integral equations 

[1] – [7]. 

The development of approximate methods for solving singular integral equations (SIE) started in the 50s of the 

last century. The number of publications devoted to approximate methods for solving SIE and their generalizations and 

related Riemann and Hilbert boundary problems has not decreased up-to-date. Main approximate methods for solving SIE 

are presented in [1], [2], which contain extensive bibliography. 

It is interesting to note that hypersingular integrals (HI) were introduced to mathematical world around the same 

time as singular integrals (SI). However the development of approximate methods for solving hypersingular integral 

equations (HIE) started later than the development of similar methods for solving SIE. Today HIE is the fast growing field 

in mathematics. 

An intense development of approximate method for solving SIE and HIE is caused by their numerous 

applications. In particular, SIE and HIE are main mathematical engine in antenna theory, composite materials theory, 

metamaterials. 

Main approximate methods for solving HIE can be found in the publications [3]–[7]. 

Effective approximate methods for evaluating SI and HI are required to implement numerical methods for 

solving SIE and HIE. Analytically singular and hypersingular integrals can be evaluated pretty rare. Lack of analytical 

methods require the development of numerical methods for evaluating SI and HI. 

There are numerous publications devoted to evaluate SI and HI over smooth curves issues. The bibliography is 

presented in [1], [5], [8], [9], [10]. The authors do not know about works devoted to numerical methods forcalculation SI 

and HI and solution SIE and HIE over fractals. 

Recently the need for study of physical and technical processes on fractals has appeared. First, it should be noted 

synthesis and analysis of the fractal antenna problems [11], and the microwave theory and technique. It is important to 

know, different antenna types are modeled by SIE and HIE. Obviously, the development of approximate methods to solve 

SIE and HIE on non-rectifiable curves and fractals for modeling electrodynamic processes in fractal antennas will be 

required. 

The chapter is devoted to approximate methods for calculating singular and hypersingular integrals  and  

solving singular and hypersingular integral equations over non-rectifiable curves and fractals. 

 2.2. Definitions. 

Let L  be a contour on the complex plane. Let = [ , ]A a b  or =A L . 

 Definition 2.1. Class of Holder functions ( ; )(0 < 1)H M A    consists of functions ( )f x  given on A  
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and satisfying at all points x  and x  of this set the inequality | ( ) ( ) | | |f x f x M x x       . 

 Definition 2.2. The class ( ; )rW M A  consists of functions defined on ,A  continuous and having continuous 

derivatives up to ( 1)r  -th order inclusive and piecewise continuous derivative r -th order satisfying on this set the 

inequality 
( )| ( ) |rf x M . 

 Definition 2.3. The class ( ; )rW H M A  consists of functions ( )f x  belonging to the class ( ; )rW M A  

and satisfying the additional condition 
( ) ( ) ( )rf x H M . 

 Definition 2.4 [12]. Let 
1( ) ( , ).pt W H M A   The Integral 

( )
, < < , = 2,3, ,

( )

b

p

a

d
a c b p

c

  

   in 

the sense of Cauchy - Hadamard principal value is called the limit: 

0 1

( ) ( ) ( ) ( )
= ,lim

( ) ( ) ( )

b c v b

vp p p p

a a c v

d d d v

c c c v

         

  



 



 
  

   
    here ( )v  is a function satisfied the conditions: 1) the 

limit exists; 2) ( )v  has a continuous 1p   degree derivative at a neighborhood of zero. 

Let us give the definitions of SI and HI on a closed non-rectifiable curves and fractals. 

Let   be a simple closed curve in the complex plane forming the boundary of  

D , and D
 and D

 be interior and exterior domains respectively. If ( )u z  is continuous in D


 and has intagrable 

partial derivatives in в D
, Stokes' formular occurs ( ) = ,

D

u
u z dz zd z

z 


 


   where 

1
= , = ( )

2
z x iy i

x yz

  
 

 
. 

This formula allows you to enter the definition of the integral over non-rectifiable curves and fractals:  

 
( )

( ) = , (2.1)

D

u z
u z dz dzd z

z





    

here ( )u z  is a continuation of ( )u z  to the region .D
 

The [13] notes that this definition belongs to Whitney. 

There are many methods of continuation. Here Whitney's continuation has been used [14], p.205. 

The Whitney operator has the following properties:  

1) if the function ( ) ( ), ,u z H z     then its extension ( )u z  satisfies the Holder condition in ;D
 

2) in \C  , the continuation of ( )u z  satisfies the estimate 
1| ( ) | ( ( , )) .gradu z C dist z    

Stein [14] shows that Definition (2.1) does not depend on Whitney's operator selection. Thus for any 1( )u z  and 

2 ( )u z  Whitney's continuation appears  

98



 
1 2( ) ( )

= .

D D

u z u z
dzd z dzd z

z z 

 

 
     

It is known [15] the integral 
( )

D

u z
dzd z

z




   exists for > ( ) 1,     where ( )   is the cell dimension 

of the curve .  

 Definition 2.5. If a closed curve   has a cell dimension ( ), ( )f H    and > ( ) 1     occurs, 

then  
( )

( ) = ,

D

f z
f z dz dzd z

z 





   where ( )f z  is a Whitney continuation for .f  

In case of singularity of f , 
0= ,f f v  here 

0 0( ), ( ) = 0,f H f t   and 

1 1| ( ) | | | ,| / | | | , \ ,v z c z t v z c z t z D t


         then it occurs 

 Definition 2.6 [16]. If a closed curve   has a cell dimension ( )  , the inequalities 

1 1| ( ) | | | ,| / | | | , \v z c z t v z c z t z D t


         and > ( ( )) / 2    are satisfied then 

0( ( ))
( ) = ,

D

v f z
f z dz dzd z

z 





    where 0 ( )f z  is any Whitney continuation for .f  

Consider the singular integral 
1 ( )

= , .
f d

S f t
i t





 


 


  

If   is a smooth curve, S f  is regularized by  

1 ( ) ( ) ( )
( )( ) = =

f f t f t d
S f t d

i t i t


 

 


   




  
1 ( ) ( )

( ).
f f t

d f t
i t





 




  

It yields us to the following statement. 

 Definition 2.7 [16]. A singular integral S f  over a closed non-rectifiable curve is defined by 

1 ( ( )) 1
( )( ) = ( ) ,

D

f z
S f t f t dzd z

i z tz


 





   where ( )f z  is a Whitney continuation for .f  

Consider the hypersingular integral 
1 ( )

, , 2,3,....
( ) p

f
d t p

i t



 

 
 

  

In case of a smooth closed curve   a hypersingular integral on the complex plane C  is defined by  

( 1)
( 1)

2

1 ( ) 1 ( , ) 1
= ( )

( ) ( )

( ) 1 ( ) 1 1 ( , ) 1
... = ( ),

1! ( ) ( 1)! ( 1)!

p p

p
p

p

f g t d
d d f t

i t i t i t

f t d f t d g t
d f t

i t p i t i t p
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where 

( 1)
1 1( ) ( )

( , ) = ( ( ) ( ) ( ) ... ( ) ) / ( ) .
1! ( 1)!

p
p pf t f t

g t f f t t t t
p

    


 
      


 

Using the last formula the definition follows. 

 Definition 2.8. A hypersingular integral over a non-rectifiable curve   is defined by 

( 1)1 ( ) ( ) 1 ( ) 1
= ,

( ) ( 1)!

p

p

D

f f t g z
d dzd z

i t p i z tz




  








  
    where ( )g z   is a Whitney continuation for ( , ).g t  

On a smooth closed curve  , the hypersingular integral is also defined by the expression 

1

1

1 ( ) 1 1 ( )
= .

( ) ( 1)!

p

p p

f d f
d d

i t p dt i t
 

 
 

   



     

Using this formula, we arrive at the following definition. 

 Definition 2.9. The hypersingular integral over the non-rectifiable contour or fractal  is defined by the formula 

( 1) 1

1

1 ( ) ( ) 1 1 ( ) 1
= ,

( ) ( 1)! ( 1)!

p p

p p

D

f f t d f z
d dzd z

t p p dt i z tz




  

 








   
    where ( )f z   any continuation of a 

Whitney type function ( ).f z  

It is easy to see that Definitions 2.8 and 2.9 are equivalent. 

 

3. Approximate calculation of integrals on fractals 

 

3.1. Riemann integrals. Let ( ) ( ),f z H    be closed non-rectifiable curve. 

There are two possibilities: 

1) ( )f z  is defined in domain D
 with an intagrable partial derivative with respect to ;z  

2) ( )f z  is defined only on .  

In the first case, the Stokes formula is used directly to calculate the integral ( ) .f z dz


  One can put

( ) =

D

f
f z dz dzd z

z
 




    and the problem is reduced to constructing a cubature formula for calculating the integral 

on the right. 

In the second case, it is necessary to continue the function ( ), ,f z z   to the domain .D
 If 

( ) ( ),0 < <1,f z H    then as the continuation operator we can take the zero Whitney operator [14], p. 204, 

associating the function ( )f z  with the function 
0( ) = ( ), ,f z f z D   by formula 

( )
( ) = .

D

f z
f z dz dzd z

z 
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The specific function depends on the choice of the basic infinitely differentiable function 
*,  defined on a unit 

square. It is known [14] that the formula is valid for any basis functions. 

Constructing the function ( ),u z z D  given in [14] is rather complex. Below it is presented a numerical 

method for evaluating the integral ( )f z dz


 . 

Let = [ , ; , ]G a b c d , .D G  Let h  be a grid of a cubature formula. For simplicity assume 

1 2( ) / = ,( ) / =b a h m d c h m    are integer. Let 
1= , = 0,1,..., ;kx a hk k m 2= , = 0,1,...,ly c hl l m  be 

nodes. By 
klz  denote the node = ,kl k lz x iy 1 2= 0,1,..., , = 0,1,..., .k m l m  

Let 
1 1 1=[ , ; , ], = 0,1,..., 1,kl k k l lx x y y k m   2= 0,1,..., 1.l m   

Fix (0 ).h    Assign each point 
klz  a point 

klp   attains the distance from 
klz  to .  Since it is 

rather difficult to find an accurate location of 
klp , it is sufficient to select any point 

klp    in ( , ).klB p   Assume 

1 2( ) = ( ), = 0,1,..., 1, = 0,1,..., 1kl klu z f p k m l m   . 

Fix an arbitrary 
2= 0,1,...,l m  and assume a sequence 

1( ), = 0,1,..., .klu z k m  Using it we will calculate the 

derivative 
,

( )
| .k l

u z

x




 There are various methods for derivatives calculating. The method based on hypersingular 

integrals is used below [17]. 

Consider the quadrature formula [17] 

 
1

1 11

1 1
=0

1
(t, y ) !

= ( , ) ( ).
2 ( ( )) ( ( ))

m k kr

l
k l mr r r

k x x
k k

x x
u r d d

u x y R u
t i t i t i

  

     

 

 

 
  
    
  

    

This formula allows you to calculate the derivatives of any finite order and has a sufficiently high accuracy and 

stability. The regularization parameter is .  

Similarly using the sequence 
2( ), = 0,1,...,klu z k m  derivatives ,

( , )
|k
k l

u x y

y




 are calculated. 

Each node 
klz   is assigned in the complex number 

= ==

( , ) ( , )( , )
| = ( | | ) / 2, =

l k
x x y yx x k lk l

u x y u x yu x y
iy y

z x y

 


  
, 

1 2= 0,1,..., 1, = 0,1,..., 1.k m l m   

By 
*

kl  denote rectangles 
kl  having no intersection with .  Let 

*

* ,
= .klk l

   

Define the function  

 

*

,

*

, 1 2

( , ) ( , )
( | | ) / 2, ,, ,

( ) =

0, \ , = 0,1, , 1, = 0,1, , 1.

klx x
k l k l

k l

k l

u x y u x y
i zy y

x yw z

z G k m l m
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Let 
,

,

( ) = ( ).k l

k l

w z w z  

To evaluate the integral ( )f z dz


  the following formula is used  

 

*

1 2

,
1 2

=0 =0
,

1 1

( ) = ( ),,

m m

k l m

k l
k l

f z dz w dzd z R fm
 

 

      

where 
*

  means summation over the rectangles 
,k l , included in 

* . 

 

 3.2. Singulal and hypersingular integrals. Consider the integral  

 
1 ( ) 1 ( )

= ( )
.

f f z d
d f t

i t i z tz

 


   




 
    

where ( )f z  is a Whitney's continuation for ( ) ( ).f f t   

Similarly above, construct a function ( )w z  approximating 
( )

.
f z

z




Then a cubature formular for calculating 

singular integral should be constructed using results in  [8].The calculation of the HI is carried out according to the 

formula  

 

( 1)1 ( ) ( ) 1 ( )
= ,

( ) ( 1)!

p

p

f f t g z d
d

i t p i z tz

 


  








  
    

where ( )g z  is a Whitney's continuation for ( , ).g t The function   is given in Definition 2.8. 

Then we construct a function ( ),w z  approximating 
( )g z

z




, and a cubature formula for calculating the 

singular integral.  

4. Approximate solution of hypersingular integrals over prefractals 

Let 
nC  be n th prefractal of the Cantor set (in other words n th Cantor set iteration). Consider hypersingular 

integral equation  

 
( )

( ) ( ) ( ) ( , ) ( ) = ( ), .(4.1)
( )

np

C C
n n

x
a t x t b t h t x d f t t C

t


  


  

   

Remark. The problem might be discussed for [0,1]t . 

Two approximation schemes for solution of the equation (4.1) have been introduced and justified in [18]. 

Let's imagine one of them. For simplicity of notation, put ( , ) 0.h t    

Let = 2p . 

An approximate solution of the equation (4.1) is sought in the form of a spline  
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2

, ,
1 1=1

1

( ) = ( ), , (4.2),..., ,...,
,...,

n nl i l i
n nl i

n

x t t t Ci i
i
     

 

 
,
1 1

,
1

1

( ), ,,..., ,...,
( ) =,..., 0, [0,1] \ , =1,2, = 0,2, =1, , ,,...,

l i i
n n

l i
n

ji
n

g t ti i
ti t l i j ni







 

 

where functions 
,
1

( ),...,l i
n

g ti  are similar to basic functions  

 

2

2

1,0,...,0 2 2

2

1
1,0 ,

3

3 3 1 1 1 1
( ) = , ,

2 3 3 3 3

1 1 1
0, ,

3 3 3

n

n n

n n n n

n n n

t

t
g t t

t


 


 

  



  



 

 

 

2

2

2,0,...,0 2 2

2

1
0,0 ,

3

3 1 1 1 1
( ) = , ,

3 2 3 3 3

1 1 1
1, .

3 3 3

n

n

n n n n

n n n

t

t
g t t

t


 




  



  



 

The coefficients 
,
1
,...,l i

l
i  are found from the system of equations:  

 
, 21 1 1 1

1

( )
( ) ( ) = ( ), (4.3),..., ,..., ,..., ,...,

( ),...,

n

i l j i i
n n n n

C
n i

n

x dl l la t b t f ti j i ilt i

 






  

1 22 2
1

2 2 2 21=1,2, = ... ,,..., 3 3 3 3
n nn ni

n

l t i i i ii     , 
1 22 2

1

2 2 2 1 22 = ...,..., 3 3 3 3 3
n nn n ni

n

t i i i ii      , 

= 0,2, =1,2, , .ji j n  

Under hypothesis | ( ) | > 0b t  , [0,1]t  a unique solvability and convergence of the solution of the 

system of equations (4.3) to the solution of equation (4.1) has been proved. 

A numerical method for solution hypersingular integral equation on Hilbert's curve has been constructed and 

justified in [18]. 

In the work cited above, a spline-collocation method for solving the following equation is constructed and 

substantiated 1 2 1 2
1 2 1 2 1 2 1 2 1 22 2

1 1 2 2

( , ) ,
( , ) ( , ) ( , ) = ( , ), ( , ) ,

(( ) ( ) )
np

n

x d d
a t t x t t b t t f t t t t

t t

   

 


 
    where 

n  is the 

n -th prefractal of the Sierpinski carpet. 
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5. Solution of singular integral equations 

Consider an SIE with a Hilbert integral kernel and constant coefficients c  and d  

 

2

0

( ) ( ) = ( ).(5.1)
2 2

d s
cx s x ctg d f s




 



   

We denote by 
, ( )cW s 

 and 
, ( )sW s 

 cosinosoidal and sinusoidal Weierstrass functions 

, ,

=1 =1

( ) = cos( ), ( ) = sin( ).c k k s k k

k k

W s s W s s      
 

   

Hardy showed that the functions 
, ( )cW s 

 and 
, ( )sW s 

 for 0 < <1, >1,  1   are continuous, 

nowhere non-differentiable functions. 

In the equation (5.1) we put 
,( ) = ( )cf s W s 

. Since the right-hand side of the equation (5.1) is a periodic 

function, we put = 2 . Under the assumption that the parameters   and   satisfy the conditions 

1/ 2 < <1, 1,    the function ( )f s  is continuous nowhere non-differentiable function. 

Its fractal dimension is 
ln

= 2
ln

D



 [19] and varies depending on the values of the parameters   and   

from 1 to 2. 

We will seek an approximate solution of the Eq. (5.1) in the form of a series  

 

=0 =1

( ) = cos sin .(5.2)k k

k k

x t a kt b kt
 

   

Substituting series (5.2) into the equation (5.1) and using the formulas [20] 

 

2 2

0 0

1 1
sin = cos , cos = sin , (5.3)

2 2 2 2

s s
k ctg d ks k ctg d ks

 
 

   
 

 
   

we get  

 

=0 =1 =1 =1 =1

cos sin sin cos = cos( ).(5.4)k k

k k k k

k k k k k

c a ks c b ks d a ks d b ks s 
    

        

From the equation (5.4) we have  

 

2 2

2

2 2

2

= 0,

= / ( ),
(5.5)

= / ( ), =1,2,3, ,

= = 0, = {1,2,...} \ 2 , =1,2,....

k

k

k

k

l

k k

a

a c d c

b d d c k

a b k l








 

Thus, the solution of the SIE (5.1) has the form  

*

,2 ,22 2 2 2 2 2 2 2
=1 =1

( ) = cos(2 ) sin(2 ) = ( ) ( ).(5.6)
k k

k k c s

k k

c d c d
x s s s W s W s

c d c d c d c d
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Let us prove the validity of formula (5.6) under the assumption that the coefficients 
ka  and 

kb  are defined by 

formulas (5.5). For this, we investigate the smoothness of the function 
*( ).x t  We denote by 

*

2
( )nS x  the sum  

 
*

2 2 2 22
=1

( ) = cos(2 ) sin(2 ) .
k kn

k k

n

k

c d
S x s s

c d c d

  
 

  
  

Then 
*

2 2 2 22
= 1

( ) | cos(2 ) sin(2 ) |
k k

k k

n

k n

c d
E x s s

c d c d

 



 
  

  
 .nC  So, 

*

2
( ) , =| | .logn

C
E x

n
   

Here 
*( )nE x  is the best uniform approximation of the function 

*( )x s  by trigonometric polynomials of order 

.n  

The right-hand side in the equation (5.1) is the Weierstrass function with exponent 2. So, one can put 

1
< <1.

2
  Hence, 0 < <1.  From Bernstein's converse theorems of the constructive function theory [21] implies 

that .x H  

Let us put 
* *

2 2
( ) = ( ) ( )n nR s x s S x  and estimate the inequality  

 

2 2

1

2 2 2 2 2
0 0

1 1

(1 )2 2

1 1
( ) | ( ) ( ) | | ( ) ( ) | | |

2 2 2 2

(| ( ) | | ( ) | )
2

n n n n n

n n n

s s
R ctg d R R s R R s ctg d

c
C R R s

 

 

 

 

 
    

 





 



 
   

  

 
 

and 

2

2
0

1
( ) = 0.lim

2 2
n n

s
R ctg d




 





  Consequently, the permutation of the operators of summation and 

integration is justified. 

The following statement is true. 

 Theorem 5.1. Let 
2 2 0c d  . Equation (5.1) has a unique solution 

*( ),x s  which is nowhere 

non-differentiable function. 

Let us consider the singular integral equation  

 

2 2

,2

0 0

( ) ( ) ( ) ( ) = ( ).(5.7)
2 2

cd s
x ctg d h s k x d W s

 




    




   

We will seek an approximate solution to equation (5.7) in the form of series (5.2). 

Substituting (5.2) into (5.7), we have  
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=1 =0 =0 =1

,2

=0 =1

cos sin cos sin

(5.8)

( ) = ( )),

k k k k

k k k k

c

k k k k

k k

d b ks a ks v ks w ks

a b W s 

   

 

   
      

   

 

   

 

 

where 

2

0

0

1
= ( ) ,

2
k d



  
   

2

0

1
= ( )cos ,k k k d



   
 

2

0

1
= ( )sin , = 0,1,....k k k d k



   
 

 

From (5.8) we obtain the following groups of equations 

 

0

=0 =1

=0 =1

=0 =1

=0 =1

= 0;

= 0, =1,2,...;

(5.9)

= , = 2 , =1,2,...;

= 0, = {1,2,...} \{2 , =1,2, }.

l l l l

l k

k k l l l l

l k

j j

k k l l l l

l k

l

k k l l l l

l l

v a b

db v a b k

da w a b k j

da w a b k l

 

 

  

 

 

 

 

 

 
 

 

 
  

 

 
   

 

 
   

 

 

 

 

 

 

If 
0 0,v   then  

 

=0 =0

= 0;

= / , = 2 , = 1,2,...; (5.10)

= 0,{ = 1,2,...} \{ = 2 , = 1,2,...,}

= 0, = 1,2,....

l l l

l l

j j

k

j

k

k

a b

a d k j

a k k j

b k

 



 





 

 

From equation (5.8) we find 
0 :a 0 2

=10

1
= .l

l

l

a
d

 




   

It follows from equalities (5.10) that equation (5.7) has a unique solution if 

2

0

0

1
= ( ) 0

2
k d



  


  and 

2

0

0

1
= ( ) 0.

2
v h d



 


  In other cases has a parameter-dependent solution. 

 

6. Solution of hypersingular integral equations  

 

Consider the hypersingular integral equation 
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2

20

1 ( )
= ( ),0 2 ,

4
sin

2

x
d f s s

s




 


 


                  (6.1)

 

which simulates a number of aerodynamic problems. In these cases, ( )f s  simulates a gas flow and, therefore, is a 

fractal. 

Let us investigate the solvability of condition (6.1) under the assumption that the right-hand side is the 

Weierstrass function 
,2 ( ).cW s

 

Equation (6.1) can be represented as  

 

2

,2

0

1
( ) = ( ).(6.2)

2 2

cd s
Sx x ctg d W s

ds






 




   

The solution of equation (6.2) (and, hence, (6.1)) will be sought in the form of the series 

 
*

=0

( ) = ( cos2 sin 2 ).k k

k k

k

x t a s b s


  

Acting formally, we arrive at the following equation 

 

=1 =1

( 2 cos2 2 sin 2 ) = cos(2 ).(6.3)k k k k k k

k k

k k

a s b s s
 

    

It follows from formulas (5.3) that 

2

0

0

1
= 0.

2 2

s
a ctg d








  

Thus, the coefficient 
0  turns out to be undefined and additional condition is required to determine it. As such 

condition, we can take 

2

0

( ) = 0.x s ds



  Then 
0 = 0.a  From equations (6.3) we have = ( ) , = 0, =1,2,...

2

k

k ka b k


. 

So, 
* 1( ) .x t W H  

Consider the hypersingular integral equation  

 

2 2

,2
20 0

1 ( )
( ) ( ) ( ) = ( )(6.4)

4
sin

2

cx
d h s k x d W s

s

 




   




   

We will seek an approximate solution in the form of a series
*

0 =1

( ) = cos sin .k k

k k

x s a ks b ks
 



   

Substituting the series 
*( )x s  into the equation (6.4) we have  

 
=1

,2

=0 =0 =1

( cos sin )

(6.5)

( cos sin ) = ( ).

k k

k

c

k k k k k k

k k k

a k ks b k ks

v ks w ks a b W s 



  

  

  
    
  



  
 

From equality (6.5) we obtain the following groups of equations. At first we introduce the notation 
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=0 =1

= .k k k k

k k

A a b 
 

   

We have  

 

0 = 0,

= 0, =1,2,...
(6.6)

= , = 2 , =1,2,..

= 0, = {1,2,...} \{2 , =1,2}.

k k

l l

k k

l

k k

v A

b k w A k

a k v A k l

a k v A k l



 

 

 

 

If 
0 0,v   then = 0A  and  

 

= 0, =1,2,...;

= / , = 2 , =1,2,...;

= 0, = {1,2,...} \{2 , =1,2,...;}.

k

l l

k

l

k

b k

a k k l

a k l

  

From the condition = 0,A  we have 
0 2

=1 0

1
.

2

l

ll
l

a





 
  
 
  

Thus, for 0v   and 0,  equation (6.4) has a unique solution  

 
*

2
=1 =10

1
( ) = cos 2 .(6.7)

2 2

l l
l

ll l
l l

x s s
 




  
 

 
   

Repeating the reasoning given above in 
05n , we see that the series and the differentiated series on the right-hand 

side of (6.7)  converge uniformly and 
* 1

2
( ) , =| | .logqx s W H q   

If 
0 = 0v  we have a family of solutions depending on the parameter. 

7. Conclusion 

 The approximate method for evaluating Riemann integrals, singular and hypersingular integrals on closed 

non-rectifiable curves and fractals has been proposed. For integrand continuation from fractal to the interior region the 

approximate computational scheme based on Whitney's continuation has been constructed. The approximate calculation 

of derivatives is based on using hypersingular integrals. It leads to two-dimensional integrals (for Riemann integrals) and 

to singular integrals (for singular and hypersingular integrals). Cubature formulas have been employed for evaluation of 

constructed integrals. The proposed method can be used to evaluate integrals over open curves. 

The approximate method for solving hypersingular integral equations on the n -th prefractal of Cantor perfect 

setis presented. The spline-collocation method with first-order splines has been used. Justification of this method is based 

on theory of stability of ordinary differential equations systems. One of the main advantages of this method turns out to be 

its resistance to coefficients and right-hand side of equation disturbance. This method can be used  for construction 

approximate solutions of singular and hypersingular integral equations on fractals of various types. 

The solvability of singular and hypersingular integral equations with Weierstrass function in the right-hand side 

has been investigated. 
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Abstract. 

 
The work is devoted to the approximate methods for solution direct and inverse problems of gravity exploration on 

bodies with a fractal structure. It is known that in order to construct mathematical models adequate to the geological reality, 

it is necessary to take into account the orderliness inherent in geological environments. One of the manifestations of 

orderliness is self-similarity, which remains during the transition from the microlevel to the macrolevel. Scaling of geological 

media can be traced in petrophysical data and in anomalous fields. 

It should be noted that in real structures there is no infinite self-similarity and scaling must be considered in a certain 

range. 

The work investigates analytical and numerical methods for solving inverse contact problems of the logarithmic and 

Newtonian potential in the generalized setting. In the case of a Newtonian potential, the problem is formulated as follows. It is 

required, having three independent functionals of the gravity field above the Earth's surface and additional information on the 

self-similarity of the disturbing body, to determine the depth, the density and the surface of the perturbing body. 
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Introduction 
For the effective solution of direct and inverse problems of gravity prospecting, the methods of modeling bodies that 

perturb the potential and gravitational fields of the Earth (perturbing bodies) are of great importance. In most works, 

disturbing bodies are modeled by a set of the simplest geometric bodies (bar, parallelepiped, ball) [1]. In the works [2], [3], 

modeling is carried out with spheroids. In recent years, a large number of studies have been carried out on the fractality of 

individual minerals and the entire Earth as a whole [4], [5], [6], [7]. Scaling of geological media can be traced in petrophysical 

data and in anomalous fields [8], etc. On the basis of the apparatus of fractional measure and fractional dimension , the 

processing of disturbances of the Earth's gravitational field is investigated [9]. 

Most minerals are porous. There are two types of porosity: the porosity of minerals and the porosity of liquids. 

Numerous studies have shown that in both mention cases, the porosity has a fractal structure. 

In particular, the group of authors argues that sandstones have a fractal structure [4], [5], [10]. Hansen and Skjeltorp 

[6] investigated the fractal dimension D  of a flat sandstone sample and obtained = 1,73.D  Brakenseik [11] determined 

the fractal dimension of a two-dimensional oil cut. It is equal to = 1,8D . In [12], the fractal dimension of the surfaces of 

porous ceramic materials is investigated. 

In the monograph [7] the Menger's sponge is proposed as a mathematical model of porosity, which is constructed 

somewhat differently from the standard construction. 

In this work, when constructing fractal models of geological environments, the authors proceed not from fractals, 

but, following [13], from additions to fractals, since areas (volumes) of additions tend to areas (volumes) of the original body. 

Taking into account the fractal components of gravitational fields makes it possible to clarify the structure of the 

disturbing bodies. 

Methods for solving contact inverse problems of logarithmic and Newtonian potentials in a generalized setting are 

analyzed [14]. The problem is formulated as follows. It is required, having three independent functionals of the gravity field 

over the Earth's surface = 0z  and additional information about the self-similarity of the disturbing body, determine the 

depth H , the density ( , )x y  and the surface ( , )H x y  of the disturbing body occupying the region 

( , ) ( , )H z x y H x y   . 

Taking into account the fractal components of the gravitational and magnetic fields makes it possible to clarify the 

structure of the disturbing bodies. 

The work is devoted to the approximate solution of direct and inverse problems of gravity prospecting on bodies with 

a fractal structure. 

When solving inverse problems, a continuous method for solving nonlinear operator equations is used, which is 

presented in the next section. 

 3. Continuous operator method 

Let B  be a Banach space, ,a z B , K  be a linear operator mapping from B  to B , ( )K  be the 

logarithmic norm [15] of the operator K , and I  be the identity operator. We shall use the following notation: 

( , ) = { : },B a r z B z a r  P P ( , ) = { : = },S a r z B z a r P P *= = ( ) / 2,ReK K K KR  

0

( ) = ( 1) / .lim
h

K I hK h


  P P  

Let a complex matrix = { },ijA a , = 1, 2, , ,i j n  be given in n  dimensional space 
nR  of vectors x  with 

the norms 1

=1

= | |,
n

k

k

x xP P 2 1/2

2

=1

= [ | | ] ,
n

k

k

x xP P and 3
1

= | | .max k
k n

x x
 

P P  

The corresponding logarithmic norms of the matrix A  then read [16]:  

1

=1,

( ) = ( ( ) | |),max

n

jj ij
j i i j

A e a a


  R  2 max( ) = ( ) / 2 ,TA A A 

3

=1,

( ) = ( ( ) | |).max

n

ii ij
i j j i

A e a a


  R  

Here max ( )A  means the largest real part of eigenvalues of the matrix A . 

Consider an equation  

 ( ) = 0, (3.1)A x f  

where ( )A x  is a nonlinear operator mapping from Banach space B  to B . 

Let 
*x  be a solution of the equation (3.1). In [17] the connection between stability of solutions of operator 
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differential equations in Banach spaces and resolving operator equations of the form (3.1) has been established. Here we shall 

summarize the results on the method. 

Let us associate the equation (3.1) with the following Cauchy problem  

 
( )

= ( ( )) , (3.2)
dx t

A x t f
dt

  

 

 0(0) = .(3.3)x x  

 Theorem 3.1[17]. Let the equation (3.1) has a solution 
*x  and on any differentiable curve ( )g t  in Banach space 

B  the inequality is valid  

 

0

1
( ( ( )) , > 0 .(3.4)lim

t

g g
t

A g d
t

   


    

Then the solution of the Cauchy problem (3.2), (3.3) converges to the solution 
*x  of the equation (3.1) for any 

initial approximation. 

 Theorem 3.2[17]. Let the equation (3.1) has a solution 
*x  and for any differentiable curve ( )g t  in a ball 

*( , )B x r  the following conditions are satisfied: 

1) for any ( > 0)t t  

 

0

( ( ( )) 0;(3.5)

t

A g d    

2) the inequality (3.4) is valid. 

Then the solution of the Cauchy problem (3.2), (3.3) converges to a solution of the equation (3.1). 

Note 1. In the inequality (3.4) it is assumed that the constants > 0g  can differ for different curves ( )g t . 

Note 2. From inequalities (3.4) - (3.5) it follows that the logarithmic norm ( ( ( ))A g   can be positive for some 

values of  ; i.e. the Frechet derivative ( ( ))A g   can degenerate into an identically zero operator along the curve. 

Note 3. An example in [18] (an approximate solution of a hypersingular integral equation) has demonstrated 

convergence of an iterative process based on a continuous operator method when the Frechet derivative vanishes at the initial 

approximation. 

Note 4. Logarithmic norm has the property which is very useful for numerical analysis. Let ,A B  be square 

matrices of order n  with complex elements and 1= ( , , )nx x x , 1= ( , , )ny y y , 1= ( , , )n   , 

1= ( , , )n    are n -dimensional vectors with complex components. Let us consider the following systems of algebraic 

equations: =Ax   and =By  . The norm of a vector and its subordinate operator norm of the matrix are fixed; the 

logarithmic norm ( )A  corresponds to the operator norm. 

 Theorem 3.3[19]. If ( ) < 0A , the matrix A  is non-singular and 
1 1/ | ( ) |A A  P P . 

Theorem 3.4[19]. Let =Ax  , =By   and ( ) < 0A , ( ) < 0B . Then  

 .
| ( ) | | ( ) ( ) |

A B
x y

B A B

  
  

  

P P P P
P P  

Main properties of the logarithmic norm are given in [15]. 

The logarithmic norm of the operator K can have different (positive or negative) values in different spaces.  

The continuous method for solving nonlinear operator equations admits the following generalization. Let us return to 

equation (3.1). Denote by 0( )A x  the Gateaux (Frechet) derivative on the element 0x . We introduce the equation 

 
* *

0 0( ( )) ( ) ( ( )) = 0.(3.6)A x A x A x f   

Equation (3.6) is associated with the Cauchy problem 

 

 
* *

0 0= ( ( )) ( ) ( ( )) ), (3.7)
dx

A x A x A x f
dt
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 0(0) = .(3.8)x x  

If 
*

2 0 0( ( )) ( )) > 0A x A x  , then in some neighborhood 0( , )B x r  of the element 0x  the Euclidean logarithmic 

norm of the operator - 
*

0( )) ( )A x A x  will be negative and ( ) < (0)x t xP P P P for some i nterval
 0 1 0t ( , ], t 0t t  . 

Let the inequality 
*

2 0( ( )) ( )) > 0A x A x   be satisfied on the segment 0 1 0[ , ], = 0.t t t t  (Here ( )x t  is the 

solution to the Cauchy problem (3.7), (3.8)). 

For 1t t , consider the Cauchy problem  

 
* *1

1 1

( )
= ( ( ) ( ) ( ( )) ), (3.9)

dx t
A x A x A x f

dt
    

 

 1 1 1( ) = ( )(3.10)x t x t  

and define the segment 1 2[ , ]t t , in which the inequality 
*

2 1 1( ( )) ( )) > 0A x A x   occur. 

Taking 2 2 1 2( ) = ( )x t x t  as an initial value when solving the Cauchy problem  

 
* *2

2 2

( )
= ( ( )) ( ) ( ( )) ), (3.11)

dx t
A x A x A x f

dt
    

 

 2 2 1 2( ) = ( ), (3.12)x t x t  

we have 
( )

= 0lim
t

dx t

dt

P P  and therefore 
*( ) =lim

t

x t x


 

Assertions follow from this remark. 

 Theorem 3.5. Suppose that equation (3.6) has a solution 
*x  and for any differentiable curve in the Banach space 

B  the inequality  

 
*

0

1
(( ( ( ))) ( ( ))) , > 0(3.13)lim

t

g g
t

A g A g d
t

    


     

occur. Then the solution to the sequence of Cauchy problems ((3.7), (3.8)), ((3.9), (3.10)), ((3.11), (3.12)), etc. converges to 

the solution 
*x  of equation (3.6). 

 Theorem 3.6. Suppose that equation (3.6) has a solution 
*x  and for any differentiable curve in the sphere 

*( , )B x r  the inequalities  

 
*

0

(( ( ( ))) ( ( ))) < 0(3.14)

t

A g A g d     

and (3.13) occur. Then the solution of the sequence of Cauchy problems ((3.7), (3.8)), ((3.9), (3.10)), ((3.11), (3.12)), etc. 

converges to the solution 
*x  of equation (3.6). 

If the conditions of Theorems 3.5 and 3.6 are not satisfied, the regularization  

 
* *

0 0= ( ) (( ( )) ( ) ( ( )) ), 0,
dx

x t A x A x A x f
dt

       

is carried out. 

 

4. Direct tasks 

Let us consider a geological deposit represented by the uniform body D  of arbitrary form. Assuming that the body 

has fractal dimension 3,HD   we will approximate it with its complement of the Menger sponge [7]. Let the body D  be 

situated in the cube 
3[ , ] .a a    Let us construct the n-th order prefractal (n-th iteration of the fractal) for the Menger 
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sponge in the cube  . During the construction of the first iteration the cube   is divided into 27 equal cubes with sides 

1 2 / 3,r a  and 7 central cubes are dropped.  

During the construction of the second iteration every cube from the remaining 20 cubes is divided into 27 equal cubes 

with the sides 2 / 9.a  As the result we have 729 cubes including 400 central cubes (for every initial cube with the side 

2 / 3a ) that are dropped. Repeating the described operations n times we get the n-th Menger  prefractal. As noted in the 

work [13], not classical fractals but their complements with respect to the initial domain should be used as the model for 

geological bodies. Consequently geological deposits are modeled with the set of cubes with different lengths of edges (and 

with different sizes).  

When modeling granular and liquid media it seems that it is more efficient to model them with reduced copies of the 

first iteration of the Menger sponge. In that case we can construct the model using not only classical fractal but also 

complement to it.  

Let us introduce the Cartesian three-dimensional rectangular coordinate system with down-directed z-axis and with 

the origin of coordinates placed at the Earth surface. Assume that the body D  occurs at sufficiently great depth z=H  under 

the Earth surface.  

As the parameter H we fix the distance from the Earth surface to the average point (in vertical direction) of 

gravitating body.   

In the introduced coordinate system the domain ,  which the body D  belongs to, rewrites as: 

 ( , , ) : , , .x y z a x a a y a H a z H a     „ „ „ „ „ „  

Let , , 1 1 1, ; , ; , ,i j k i i j j k kx x y y z z  
     / , 0,1, ,2 ,ix a ai n i n    

/ , 0,1, ,2 ,jy a aj n j n     / n, 0,1, ,2 .kz H a ak k n      

 We refer to as marked the cubes ijk  that have nonempty intersection with the domain .D  In the marked cubes 

we locate the first iteration of the Menger sponge fractal with the edge length / .a n  Suppose that the body is modeled by 

the first iteration of the fractal. Denote the constructed model of the body by .nD  For computation of the perturbed field it is 

sufficient to compute the vertical component of the gravity field generated by the cell ijk at the point ( , ,0).x y  

The cell ijk  consists of 20 cubes with edges having the length / 3 .a n  Assuming n and H being sufficiently big 

we may treat   cos , ,x y z   , where  , , ijkx y z      as constant within the limits of the cell. Here 

 , ,x y z    is the angle between the radius-vector M P  (  , , ,M x y z    ( , ,0)P x y ) and the z-axis.  

Let us denote by oijk  the center of the cell .ijk  Obviously, 

 o ( 1 2) / , ( 1 2) / , ( 1 2) / .ijk a a i n a a j n H a a k n           

Let us also denote by ijk  the angle between the vector oijk P  and the z-axis. 

Thus the vertical component of the gravity force generated by the cell ijk  at the point ( , ,0)P x y  equals to  

       
3

1
3

23 20

2

3

27
( , , ) 20 / 3 cos / (o , ) / (o , ) .k kz za

z ijk ijk ijkn
dV i j k a n r P r P
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Here    is the gravitational constant,    is a density of body. Therefore the vertical component of the gravity 

force generated by the disturbing body D at the point ( , ,0)x y  equals to 

   1

2 1 3
3 3

2
, , 0

( , ,0) 20 ) / 27 o ,( ,k k

n
z z

z ijk ijk ijk

i j k

V x y a n r P






    

is  a density of cell.  Consider the example. 

Let us se t the following parameter values:  5, 1 / 4, 10.H a n    

 We perform calculations using the formula  
3

1
3

20

27

3

2
( , , ) / (o , ) .k kz za

z ijkn
dV i j k r P

   

 Let us fix ,i j k n    that corresponds to the central cell ijk  in the domain  For illustrative 

purposes the product of the constants   and  we set to  

 The field  of the vertical component of anomalous gravity force generated by the described cell at the 

Earth surface is shown in the figure below.  

 
Picture 1. The vertical component of anomalous gravity force generated by the cell of  theMenger sponge first order 

prefractal.  

For comparison we also introduce the plot of the vertical component of the anomalous gravity field generated by the 

continuous body occupying the domain  
 The computed field is depicted in the following figure.   

 

.

610 .

( , , )dV i j k
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Picture 2. The vertical component of anomalous gravity force generated by the elementary cell.  

From the comparison of the computed fields it is obvious that the solution of the direct problem is essentially 

dependent on the chosen model for representation of the elementary cell. 

 

5. Inverce tasks 
 
This section examines the influence of the chosen model on the accuracy of the interpretation of the results. 

Let in the domain 1{ : , , ( , )}D D l x l l y l H z H x y          are distributed with density 

( , , )x y z  sources disturbing gravitational field of the Earth. The gravity field above the Earth's surface is determined by 

the equation  

 
2 2 2 3/2

( , )

( , , )( )
= ( , , ), (5.1)

(( ) ( ) ( ) )

H

H

z d d d
G f x y z

x y z
  

       

  

 

 



        

where ( , , )f x y z  is the experimentally determined value, G   gravitational constant, which for the convenience of 

further calculations will be set equal to = 1/ 2 .G   

To describe the force of gravity on the Earth's surface in equation (5.1), one should set = 0.z  

Having calculated the integral on the left-hand side of Eq. (5.1) by parts and assuming that the density does not 

depend on  , we have  

 

2 2 2 1/2

2 2 2 1/2

1
( , ) (( ) ( ) ( ( , )) )

2 (5.2)

(( ) ( ) ( ) ) = ( , , ).

x y H z

x y H z d d f x y z

       


   

 







       

      

 
 

We represent equation (5.2) in the form  

 

2 2 2 1/2 1/2

2 2 2 1/2

1
( , ) (( ) ( ) ( ) ) (1 )

2 (5.3)

(( ) ( ) ( ) ) = ( , , ),

x y H z u

x y H z d d f x y z

    


   

 

 





       

      

 
 

where 

2

2 2 2

( , ) 2( ) ( , )
=

( ) ( ) ( )

H z
u

x y H z

     

 

 

    
. Under the assumption that | |< 1u , the function 

1/2

1

(1 )u
 is expanded in 

the series  

 
1/2

=1

1 (2 1)!!
= 1 ( 1) .(5.4)

(1 ) 2 !

n n

n
n

n
u

u n

 
 


  

Substituting (5.4) into (5.3) and using the uniform convergence of series (5.4), we have  
2

2 2 2 1/2
=1

1 (2 1)!! ( ( , ) 2( ) ( , ))
( 1) ( , ) =

(5.5)2 2 ! (( ) ( ) ( ) )

= ( , , ).

n
n

n n
n

n H z d d

n x y H z

f x y z

       
  

  

 





  


    
  

 

Let us approximate equation (5.5), limiting ourselves to one term on the left-hand side. As a result, we obtain the 

equation [14] 

 

2

2 2 2 3/2

1 ( ( , ) 2( ) ( , ))
( , ) = ( , , ).(5.6)

4 (( ) ( ) ( ) )

H z d d
f x y z

x y H z

       
  

  

 



 


       

Equation (5.6) contains three unknowns: the depth of the gravitating body H , the density of the body ( , )x y  

and the shape of the surface ( , )H x y . To find these unknowns, it is necessary, in addition to values of the gravity field 

on some surface, to have two more linearly independent sources of information. As these functionals, one can use values of the 

gravity field at three different levels, a combination of the values of the gravity field and its derivatives in different directions, 

etc. 

Note. Having values of the gravity field at the same level, it is possible to restore values of the gravity field at several 

levels using the Poisson formula. 
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In the work [14], analytical and numerical methods are proposed for the simultaneous determination of the depth of 

the disturbing body, its density and the surface equation in contact problems of the logarithmic and Newtonian potential. In 

[14], the disturbing body was assumed to be solid. 

Compared with iterative methods for solving equation (5.6), studied in [14], the preferable is the continuous operator 

method described in section 3. In both cases, the density is interpreted as a constant function within the unit cell, which 

simulates the gravitating body. In the case of modeling a gravitating body with fractals, the density in elementary cells is not 

constant. It is of interest to study the influence of fractals chosen for modeling disturbing bodies on the accuracy of 

determining their densities. 

In [14] the following example was analytically solved. 

Let in the domain = {5 ( , ) 5 ( , )z x y x y    , < , < }x y  , there is a perturbing body with density 

( , )x y . Let the gravity force and its first two derivatives be known on the surface = 0z :  

 

0 2 2 3/2 2 2 3/2

1 2 2 5/2 2 2 3/2 2 2 5/2 2 2 3/2

=0

2

2 2 2 2 7/2 2 2

=0

24 7
( , ,0) = ,

( 36) 5( 49)

( , , ) 432 4 147 / 5 2 / 25
( , ,0) = = ,

( 36) ( 36) ( 49) ( 49)

( , , ) 12960 1029
( , ,0) = =

( 36) (

z

z

f x y
x y x y

f x y z
f x y

z x y x y x y x y

f x y z
f x y

z x y x y

 

   

 


   


  

        




    7/2

2 2 5/2 2 2 5/2 2 2 3/2

49)

216 21 / 25 4 /125
.

( 36) ( 49) ( 49)x y x y x y

  




  
     

  

 It is necessary to find a depth of the gravitating body H , a density of the body ( , )x y  and a shape of the surface 

( , )H x y . To solve this problem, in addition to equation (5.6), two more equations are added  

1 2
02 2 2 3/2

2

1 2 1
12 2 2 5/2 2 2 2 3/2

2 1

2 2

2 ( , ) ( , )
= ( , ),

(( ) ( ) )

6 ( , ) 3 ( , ) 2 ( , )
= ( , ),

(( ) ( ) ) (( ) ( ) )

3 ( , ) 18 ( , )

(( ) ( )

Hw w
d d f x y

x y H

H w Hw w
d d f x y

x y H x y H

w Hw

x y H

   
 

 

     
 

   

   

 

 



 



 





   

 
 

        



   

 

 

 
3 2

1 2
22 5/2 2 2 2 7/2

(5.7)

30 ( , ) 15 ( , )
= ( , ).

) (( ) ( ) )

H w H w
d d f x y

x y H

   
 

 

 
 

    

 

When obtaining system (5.7), the following formulas were used 1( , ) = ( , ) ( , ),w x y x y x y 
2

2 ( , ) = ( , ) ( , ).w x y x y x y   

Its exact solution was obtained: = 5H , 

3/2
2 2

2 2

1
( , ) =

4

x y
x y

x y


  
 

  
, 

2 2 3/2

2 2 3

( 4)
( , ) =

( 1)

x y
x y

x y


 

 
. 

When solving the system of equations (5.7) by the spline-collocation method with zero-order splines, an error is 

equal to 
1( )O N 

, where 
1=h N 
 is a step of the computational scheme by coordinates ,x y . Hence it follows that the 

results of the approximate solution can be interpreted as follows. In area 

2 2 3/2

2 2 3

( 4)
( , ) :{ 1/ }

( 1)

x y
x y N

x y

 


 
 let us put 

( , ) = 0x y . Domain G  defined by the inequality 

2 2 3/2

2 2 3

( 4)
{ 1/ }

( 1)

x y
N

x y

 


 
 we will cover with elementary cells 

(cubes) with edges of length /d N , where d  is area diameter G . Place the first-order prefractal of the Mergel sponge in 

the elementary cells. Then, depending on the mineral filling the addition of the Margel sponge to the unit cell, the density of 

the body varies from ( , )x y  to 27 ( , ) / 20.x y  Thus, when solving inverse problems on fractals, an additional problem 

arises of choosing an appropriate model (fractal, multifractal) for a gravitating body. 
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6. Conclusions 
 

In this work by the example of the Menger sponge approximate methods for solution of direct and inverse problems 

of gravity exploration using fractals are investigated. As far as inverse geophysical problems belong to the class of ill-posed 

problems for their solution in this work we propose the generalization of continuous operator method for solution of nonlinear 

equations. The proposed method allows to obtain stable solution for inverse problems which are modeled with nonlinear 

convolutional equations. At the core of the method there are criteria for asymptotic stability of solutions of systems of 

ordinary differential equations. The method can be used for solution of numerous equations of mathematical physics. In 

solving direct and inverse problems using fractals we show the problem of dependency of interpretation of computational 

results on the chosen model. 
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Abstract  

Watery Precipitations 

When a raindrop, mist or dwe falls through a thundercloud, it is subject to strong 

electromagnetic fields that pull and tug on the droplet, as well as a soap bubble in the wind. 

If the electric field and consequently the electromagnetic effect is strong enough, it can 

cause the droplet to burst apart, creating a fine, electrified mist. Droplets tend to form as 

perfect little spheres due to surface tension, the cohesive force that binds water molecules 

at a droplet’s surface and pulls the molecules inward. The droplet may distort from its 

spherical shape in the presence of other forces, such as the force from an electric field. 

Sometimes, we have anomalous diffraction because of the different shapes of the droplets. 

While surface tension acts to hold a droplet together, the electric field acts as an opposing 

force, pulling outward on the droplet as charge builds on its surface. 

Main theme 

Interaction of a magnetic field with a charge object 

How does the magnetic field interact with a charged object? If the charge is at rest, there is 

no interaction. If the charge moves, however, it is subjected to a force, the size of which 

increases in direct proportion with the velocity of the charge. The force has a direction that 

is perpendicular both to the direction of motion of the charge and to the direction of the 

magnetic field. There are two possible precisely opposite directions for such a force for a 

given direction of motion, extremely in cases of storm, followed by lightning and thunder. 

Certainly, the cold thermal currents contribute to the condensation of water vapor and the 

creation of various water sediments. This apparent ambiguity is resolved by the fact that one 

of the two directions applies to the force on a moving positive charge while the other 

direction applies to the force on a moving negative charge. Figure 1 illustrates the directions 

of the magnetic force on positive charges and on negative charges as they move in a 

magnetic field that is perpendicular to the motion. Depending on the initial orientation of 

the particle velocity to the magnetic field, charges having a constant speed in a uniform 

magnetic field will follow a circular or helical path. 
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Figure 1. 

Electromagnetic field – Maxwell’s Equations 

 

The meaning of symbols is: D= dielectric displacement, ρ = the density of charge, B = the 

magnetic density, E = electric field strength, H  = magnetic field strength, J = current density 

and t = time. 

Interactions with the Atmosphere 

Before radiation used for remote sensing reaches the Earth's surface it has to travel 
through some distance of the Earth's atmosphere. Particles and gases in the 

atmosphere can affect the incoming light and radiation. These effects are caused by 
the mechanisms of scattering and absorption. Scattering occurs when particles or large 
gas molecules present in the atmosphere interact with and cause the electromagnetic 

radiation to be redirected from its original path. How much scattering takes place 
depends on several factors including the wavelength of the radiation, the abundance 
of particles or gases, and the distance the radiation travels through the atmosphere. 

There are three (3) types of scattering which take place. 

We have:  Rayleigh scattering, Mie scattering, Nonselective scattering 

Rayleigh scattering, finger2, occurs when particles are very small compared to the 
wavelength of the radiation. These could be particles such as small specks of dust or 
nitrogen and oxygen molecules. Rayleigh scattering causes shorter wavelengths of 

energy to be scattered much more than longer wavelengths. Rayleigh scattering is the 
dominant scattering mechanism in the upper atmosphere. The fact that the sky appears 
"blue" during the day is because of this phenomenon. As sunlight passes through the 
atmosphere, the shorter wavelengths (i.e. blue) of the visible spectrum are scattered 

more than the other (longer) visible wavelengths. At sunrise and sunset the light has to 
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travel farther through the atmosphere than at midday and the scattering of the shorter 
wavelengths is more complete; this leaves a greater proportion of the longer 

wavelengths to penetrate the atmosphere. 
 

 

Fig. 2 

 

 

Fig. 3 

Mie scattering occurs when the particles are just about the same size as the wavelength of 

the radiation. Dust, pollen, smoke and water vapour are common causes of Mie scattering 

which tends to affect longer wavelengths than those affected by Rayleigh scattering. Mie 

scattering occurs mostly in the lower portions of the atmosphere where larger particles are 

more abundant, and dominates when cloud conditions are overcast. 

The final scattering mechanism of importance is called nonselective scattering. This occurs 

when the particles are much larger than the wavelength of the radiation. Water droplets and 

large dust particles can cause this type of scattering. Nonselective scattering gets its name 

from the fact that all wavelengths are scattered about equally. This type of scattering causes 

fog and clouds to appear white to our eyes because blue, green, and red light are all 

scattered in approximately equal quantities (blue+green+red light = white light). Fing. 3 

Absorption is the other main mechanism at work when electromagnetic radiation interacts 

with the atmosphere. In contrast to scattering, this phenomenon causes molecules in the 

atmosphere to absorb energy at various wavelengths. Ozone, carbon dioxide, and water 

vapour are the three main atmospheric constituents which absorb radiation. 
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Ozone serves to absorb the harmful (to most living things) ultraviolet radiation from the sun. 

Without this protective layer in the atmosphere our skin would burn when exposed to 

sunlight. 

You may have heard carbon dioxide referred to as a greenhouse gas. This is because it tends 

to absorb radiation strongly in the far infrared portion of the spectrum - that area associated 

with thermal heating - which serves to trap this heat inside the atmosphere. Water vapour in 

the atmosphere absorbs much of the incoming longwave infrared and shortwave microwave 

radiation (between 22µm and 1m). The presence of water vapour in the lower atmosphere 

varies greatly from location to location and at different times of the year. For example, the 

air mass above a desert would have very little water vapour to absorb energy, while the 

tropics would have high concentrations of water vapour (i.e. high humidity). Fig. 4 

 

Fig. 4 

Energy Well of Watery Precipitators 

 

Fig.5 

Energy levels in atoms are known to be discreet rather than forming a continuous set. Light 

emission from a hot hydrogen gas therefore yields a spectrum consisting of individual lines 

at specific wavelengths rather than a continuous distribution of wavelengths. Understanding 

this discreet nature of the energy levels and the calculation of the energies requires the use 

of quantum mechanics as classical mechanics can not describe atomic systems correctly. 

The infinite quantum well 
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The infinite well represents one of the simplest quantum mechanical problems: it consists of 

a particle in a well which is defined by a zero potential between x=0 and x=Lx and an infinite 

potential on either side of the well. The potential and the first five energy levels are shown 

in the figure below: 

 

Fig. 6 

The energy levels in such a infinite well are given by: 

 

 

where h is Planck's constant and m* is the effective mass of the particle. n is the quantum 

number associated with the nth energy level, with energy En. Note that the lowest possible 

energy is not zero even though the potential is zero within the well. Also that the distance 

between adjacent energy levels increases as the energy increases. Two electrons with 

opposite spin can occupy each level as n and s are the only two quantum numbers needed 

to describe this system. 
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Fig. 7 

The finite quantum well 

F 

Fig.8 
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Abstract. Detection the precursors of critical transitions in complex systems is one of the 

most difficult and still unsolved problems. This problem has not received a final solution, 

not only for real complex systems, but also for model systems capable to self-organize 

into the critical state. The presented paper is devoted to early detection of time moments 

of self-organized critical transitions in cellular automata as a result of the analysis of the 

time series they generate for a number of grains falling from the grid. It was found that 

cumulative moments of probability distribution and cumulative scaling exponents are 

quite informative indicators for early detection of critical transitions. General features of 

the behavior of indicators when approaching a critical point are established for the time 

series generated by cellular automata with different rules. 

Keywords: Cellular Automata, Sandpile Model, Self-Organized Criticality, Time Series, 

Probability Moments, Multifractality. 
 

1  Introduction 
 

More than thirty years development of the theory of self-organized criticality 

(SOC), explaining the emergence of power law for probability density function, 

1 / f-noise and long-range spatial and temporal correlation in nonlinear systems 

far from equilibrium, has led to the emergence of the number of basic models, 

which have nontrivial scale-invariant dynamics under very simple local rules 

[1,2]. The basic models of SOC theory are sandpile models [3]. These models 

have become the most important tool for studying the mechanisms of the 

appearance of scale-invariant properties and power statistics. 

The sandpile model is a conical pile of sand, on the center of which grains of 

sand are placed one by one. We will assume that the cohesion between grains of 

sand is large enough and only superficial movement of sand is possible. Then 

the state of the system is determined by the local slope of the surface of the sand 

pile ( S ). If S is small, then the sand is motionless. If S  exceeds a certain 

value cS , then there is a spontaneous flow of sand   over the surface, which 

increases continuously with increasing of S . This process corresponds to a 

second-order phase transition, in which the control parameter is S , the order 

parameter is  . The value cS  separates subcritical (SubC) phase and 

supercritical (SupC) phase. A pile of sand in these phases is resistant to small 

disturbances. On the contrary, the SOC state is highly volatile. Adding just one 
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grain of sand to a pile in this state can lead to avalanches of sand of any size 

theoretically. 

A fundamentally important property of systems, which are characterized by 

avalanche-like behavior, is their ability to self-organize into the critical state. In 

this case, it is not required to fine-tune the parameter S  to the value cS . Such 

systems are capable to transit to the SOC state spontaneously, which is typical 

for most real and model complex systems, the behavior of which is determined 

by the nonlinear local rules. 

Scale-invariant properties and power statistics are characteristics not only for 

the level of the structure of the complex system and its local microscopic 

interactions, but also for the level of time series generated by such systems [4]. 

For the sandpile model, such time series are the time series ( t ), which 

demonstrate the stochastic dynamics of sand grains falling on the surface of the 

pile. When describing a pile of sand using cellular automata models, t  is the 

number of grains falling from the grid. The approach to the study of self-

organized critical states of complex systems based on the analysis of generated 

time series has, at least, one significant advantage. The approach does not 

require the study of detailed interactions between elements of the real systems. 

Information about detailed interactions is usually inaccessible for research, for 

example, for social networks, or inaccessible, for example, for financial 

networks. 

Detection of early warning signals for critical transitions is a challenging 

task not only for the real complex systems, but also for the model systems. The 

overwhelming majority of the papers known to us are devoted either to 

detection of early warning signals associated with the critical slowing down 

phenomenon [5-8], or to the solution of particular problems of the early warning 

[9,10]. In these studies, precursors of the critical transitions in real systems were 

established, which are associated with the change in the autocorrelation 

function, variance, skewness, and power spectral density of the observed time 

series when the system parameters approach their critical value. 

To our knowledge, however, there is no study that investigates the search for 

precursors of the SOC transitions not only in real complex systems, but also in 

model systems, for example, in the self-organized criticality cellular automata. 

The detection of such precursors as a result of the analysis of the time series for 

the number of grains falling from the grid is the purpose of our study. 

 

2  Methods 
 

2.1 Time series generated by the cellular automata 

It is easy to study the stochastic dynamics of the order parameter ( t ) of the 

sandpile models using models of cellular automata in grids of size LL . The 

parameter t  is the number of sand grains falling from the grid at time t . 
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Random integers jiz ,  are generated in the grid cells to represent the local slope 

of the sand pile. The cells for which cji zz , , where cz  is the critical value, 

are unstable and fall off according to the rules defined for each cellular 

automata. For the pile of sand, several different variants of the rules for 

shedding an unstable cell have been proposed. This paper considers six sandpile 

models, each of which belongs to one of two classes of self-organized critical 

models: conservative and dissipative models. Models with conservative rules 

are characterized by the fact that when unstable cells fall, the grains of sand 

removed from them are redistributed without loss and leave the grid only after 

reaching its edges. The boundary conditions of such systems are open. In 

dissipative models, after the shedding of the unstable cell, the number of grains 

of sand in it is zero. In the case of the supercritical number of sand grains, they 

are able to leave the grid also within its boundaries. 

 

2.1.1 Conservative systems 

 

Let us consider in more detail the historically very first model, called the BTW-

model [11]. Consideration of other models, including dissipative models, is 

limited to consideration of only the rules for shedding cells. 

 BTW-model is a cellular automaton on a square grid of size LL . A grain 

of sand is randomly added to a randomly selected cell  ji, , increasing the 

number of grains of sand ( jiz , ) in the cell by one: 1, jiz . As a result, 

1,,  jiji zz . If 4, jiz , then one grain of sand moves to the four nearest 

cells: 11,1  jiz . In this case, the number of grains of sand in the cell  ji,  

decreases by the value 4cz : 4, jiz . The considered movement of sand 

grains can lead to loss of stability of neighboring cells, and, consequently, lead 

to the appearance of the avalanche with loss of stability. The introduction of the 

condition 4, jiz  leads to the saving of the number of sand grains. 

Thus, the rules of the model are as follows: 

1,4,4 1,1,   jijic zzz   (1) 

In the Fig. 1 the time series for the number of grains falling from the grid for 

a 40 × 40 grid of the BTW-model are presented. The rest of the time series looks 

the same except for the iteration number (or point in time ct ) corresponding to 

the SOC state. ct  depends on the grid’s size: 1656ct  for 20×20 grid, 

2171ct  for 30×30 grid, 3736ct  for 40×40 grid, 5491ct  for 50×50 

grid, and 8234ct  for 60×60 grid. 
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Fig. 1. Time series of the number of 

grains falling from the grid for the 

BTW-model 

Fig. 2. Time series of the number of 

grains falling from the grid for the 

Manna model 

Manna model [12] is the stochastic analogue of the BTW-model. The cell 

 ji, crumbles as a result of the stability loss, transferring a random number of 

grains of sand ( 0k ) to four neighboring cells. 

Formally, the rules of the model are as follows: 

  

k

kkkjijic zzz 4,0,,4,4 1,1,   (2) 

In the Fig. 2 the time series for the number of grains falling from the grid for 

a 40 × 40 grid of the Manna model are presented. The rest of the time series 

looks the same except for the iteration number corresponding to the SOC state. 

ct  depends on the grid’s size: 892ct  for 20×20 grid, 2510ct  for 30×30 

grid, 3335ct  for 40×40 grid, 5671ct  for 50×50 grid, and 7625ct  

for 60×60 grid. 

DR-model [13] is the cellular automaton, the rules of which are formulated 

on a two-dimensional hexagonal lattice. It is a cellular automaton with open 

boundary conditions on the lower side and periodic boundary conditions on the 

left and right sides. A grain of sand is randomly added to a randomly selected 

cell  ji,  of the top layer, increasing the number of grains of sand ( jiz , ) in the 

cell by one: 1, jiz . When the value in any cell exceeds one, this cell loses 

stability and crumbles, transferring one grain of sand to the two cells lying 

below. It is important that the DR-model rules are anisotropic, i.e. the avalanche 

of sand grains, spreading from the top to the bottom, never affects the same area 

twice.  

Formally, the rules of the model are as follows: 

1,2,2
2

1
,1

, 
 ji

jic zzz   (3) 

In the Fig. 3 the time series for the number of grains falling from the grid for 

a 40 × 40 grid of the DR-model are presented. The rest of the time series looks 

the same except for the iteration number corresponding to the SOC state. ct  

depends on the grid’s size: 1491ct  for 20×20 grid, 1821ct  for 30×30 
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grid, 3241ct  for 40×40 grid, 5200ct  for 50×50 grid, and 7476ct  

for 60×60 grid. 

  
Fig. 3. Time series of the number of 

grains falling from the grid for the 

DR-model 

Fig. 4. Time series of the number of 

grains falling from the grid for the 

PSV-model 

PSV-model [14] is the stochastic analogue of DR-model. The cell  ji,  

crumbles as a result of the stability loss, transferring the random number of sand 

grains ( 0 ) to the two cells lying below. 

Formally, the rules of the model are as follows: 

2,0,,2,2
2

1
,1

,  



ji

jic zzz  (4) 

In the Fig. 4 the time series for the number of grains falling from the grid for 

a 40 × 40 grid of the PSV-model are presented. The rest of the time series looks 

the same except for the iteration number corresponding to the SOC state. ct  

depends on the grid’s size: 1ct  for 20×20 grid, 1ct  for 30×30 grid, 1ct  

for 40×40 grid, 1ct  for 50×50 grid, and 1ct  for 60×60 grid. 

 

2.1.2 Dissipative systems 

 

The rules of the models considered above are conservative, i.e. when cells are 

shattered, the grains of sand removed from them are redistributed to neighboring 

cells without loss. The grains of sand leave the grid only when they reach its 

edges.  

DFF-model [15] is a deterministic cellular automaton with a two-

dimensional orthogonal grid of size LL . The integers in the cells jiz ,  can be 

interpreted as the number of grains of sand that can participate in the pouring 

processes. There is no designated slope direction. If 4, jiz , then the cell 

 ji,  is unstable and overturns. Overturn is zeroing of the number of sand 

grains in the cell with a simultaneous increase by 1 in the values in four cells 

that have a common side with this cell. 

Formally, the rules of the model are as follows: 
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1,0,4 1,1,   jijic zzz   (5) 

In the Fig. 5 the time series for the number of grains falling from the grid for 

a 40 × 40 grid of the DFF-model are presented. The rest of the time series looks 

the same except for the iteration number corresponding to the SOC state. ct  

depends on the grid’s size: 1ct  for 20×20 grid, 1ct  for 30×30 grid, 1ct  

for 40×40 grid, 1ct  for 50×50 grid, and 1ct  for 60×60 grid. 

  
Fig. 5. Time series of the number of 

grains falling from the grid for the 

DFF-model 

Fig. 6. Time series of the number of 

grains falling from the grid for the 

stochastic DFF-model 

The stochastic DFF-model with a random number of sand grains ( k ) in 

four neighboring cells that have a common side with the cell is characterized by 

the following rules: 

  

k

kkkjijic zzz 4,0,,0,4 1,1,   (6) 

In the Fig. 6 the time series for the number of grains falling from the grid for 

a 40 × 40 grid of the stochastic DFF-model are presented. The rest of the time 

series looks the same except for the iteration number corresponding to the SOC 

state. ct  depends on the grid’s size: 1ct  for 20×20 grid, 1ct  for 30×30 

grid, 1ct  for 40×40 grid, 1ct  for 50×50 grid, and 1ct  for 60×60 grid. 

 

2.2 Moments of probability density function for the time series 

 

Earlier, we proposed the algorithm for detecting the self-organized critical state 

of the system. The algorithm is based on the analysis of scaling exponents of 

power laws for probability density function ( ), power spectral density (  ), 

and autocorrelation function (  ) for time series generated by SOC systems. The 

algorithm make it possible to identify the SubC phase and the SupC phase by 

belonging of  ,   and   to certain intervals. The disadvantage of the 

algorithm is its applicability only to the analysis of scale-invariant probability 

density function and the impossibility of its application to the analysis of other 

heavy-tailed distributions. The heavy-tailed distributions are characteristic for 

the time intervals of the system evolution, corresponding to its SupC phase. A 
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famous example of a scale-invariant heavy-tailed distribution is the Pareto 

distribution. 

Therefore, in order to go beyond the limitations of the algorithm associated 

only with the use of   as the only identifier of the SOC state, the SubC phase 

and the SupC phase, we used the main moments of probability density function 

as cumulative indicators. 

For detection of early warning signals for self-organized criticality we used 

the following moments: 

first raw moment (or mean)  ,  

second central moment (or variance) 
2 ,  

standardized third moment (or skewness)  ,  

standardized fourth moment (or kurtosis)  . 

 

2.3 Scaling exponents for the time series 
 

Even the description of model time series using the moments of their probability 

density function is exhaustive only for a very limited number of random 

processes. For example, realizations of Gaussian processes are fully described 

by second-order moments. Therefore, apart from the moments, other quantities 

should be used to describe the time series. These quantities include the scaling 

exponents for the time series, which determine the fractal dimensions of time 

series as geometric objects. 

The most general approach to the study of scaling exponents of 

heterogeneous time series is their multifractal analysis. It is sufficient to 

calculate a single scaling exponent to describe the scale invariance of 

homogeneous model time series, since such time series demonstrate only one 

type of singular behavior constant in time. On the contrary, the nature of the 

singularity of inhomogeneous time series at different points in time may differ; 

therefore, the description of such time series cannot be performed using only 

scaling constant. Therefore, multifractal analysis, which allows to provide local 

analysis of heterogeneous time series, is a more informative approach. 

We used multifractal detrended fluctuation analysis (MF-DFA) [16] for 

making of multifractal analysis of time series generated by self-organized 

critical cellular automata. The application of this method makes it possible to 

obtain estimates of the spectrum of scaling constant time series:   qh . 

In short, the algorithm of MF-DFA method is reduced to revealing the power 

law 

   qhssqF ,   (7) 

for the fluctuation function 

    
qN q

s

s

s
N

sqF

1
2

1

2,
2

1
,









 


 . (8) 
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To calculate function (8) from a discrete time series i , a fluctuation profile 

is formed  



i

k

kiX
1

 , which is divided into sN  non-intersecting 

intervals   containing the equal number of points s . Further, for each of the 

intervals, the local trend ix ,  and the deviation of the fluctuation profile from 

the local trend iii xXY ,,,    are determined. The value 

  ii YYs ,, minmax,    for each split interval. 

A detailed description of the algorithm of the MF-DFA method, as well as 

its capabilities and limitations, are presented in the paper [16]. Therefore, we 

will restrict ourselves by considering the main features of the time series for 

which the power law is satisfied (7). For multifractal time series at 0q , the 

main contribution to function (8) is given by the partition intervals   

characterized by large values  s, ; at 0q , the main contribution to 

function (8) comes from the partition intervals   characterized by small values 

 s, . For monofractal time series  qh  does not depend on q . This is due 

to the fact that the behavior of function (8) when changing the scale s  is the 

same for all intervals  . 

 

3  Results and their Discussion 
 

Cumulative mean and variance, as well as their corresponding time series, are 

presented in the Fig. 7 and the Fig. 8. These figures show moments and time 

series for the Manna model. The dimensions of cellular automata are 40 × 40. 

For other cellular automata and their other grid sizes, the mean and variance 

behavior are similar. 

  
Fig. 7. Cumulative mean for the 

Manna model 

Fig. 8. Cumulative variance for the 

Manna model 

Cumulative mean and variance are not informative indicators characterizing 

the transition of cellular automata in the SOC state. Indeed, these moments are 

increasing functions of time and there are no significant changes in them when 

passing through the SOC state. 
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Cumulative kurtosis and skewness are quite informative precursors for the 

transition of cellular automata into the SOC state. The cumulative kurtosis and 

skewness, as well as their corresponding time series, are presented in the 

Figures 9 and 10. These figures show the moments and time series for the 

Manna model. The dimensions of cellular automata are 50 × 50. For other 

cellular automata and their other grid sizes, the behavior of kurtosis and 

skewness is similar. 

  
Fig. 9. Cumulative kurtosis for the 

Manna model 

Fig. 10. Cumulative skewness for the 

Manna model 

As the cellular automata approach to the SOC state, a noticeable decrease in 

kurtosis and skewness is observed up to the critical point. At the same time, a 

sharp increase in these cumulative moments is observed at the critical point. 

The change in the cumulative moments when approaching the critical point 

has a simple explanation. Mean and variance increase as a result of the increase 

in the number of grains falling from the grid in the certain time interval 

 cc ttt ,  from the SubC phase, preceding the transition of the cellular 

automaton to the critical state. The decrease in the skewness in the interval ct  

is also a consequence of the increase in the number of the grains. In this interval, 

a right-sided asymmetry of the distribution is still observed, characterized by an 

elongated right “tail,” which decreases as the critical point is approached. In 

other words, the shortening of the right “tail” of the distribution occurs in the 

interval ct .  At the critical point, a sharp lengthening of the right “tail” of the 

distribution occurs as a result of the accumulation of the number of the grains 

from the SupC phase. An increase in the number of the grains in the interval 

ct  also leads to a decrease in kurtosis in this interval. The peak of the 

distribution near the mathematical expectation is sharp for the entire SubC 

phase, but as the critical point is approached, the peak of the distribution is 

smoothed out. At the critical point, there is severe increase in the sharpness of 

the distribution. 

In the Fig. 11 the cumulative scaling exponents  qh  at 5,3,1q  are 

shown. The behavior of scaling exponents is similar for all cellular automata 

and their sizes; therefore, we restrict ourselves by considering only two 
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automata. The scaling exponents  1h  are shown in blue, in orange –  3h  and 

in gray –  5h . 

 
Fig. 11. Cumulative scaling exponents for the Manna model (50×50) 

The time series generated by cellular automata are multifractal time series. 

Moreover, scale invariance in the form (7) is characteristic only for 0q , for 

0q  scale invariance is not observed. Therefore, there are only the scaling 

exponents describing the intervals of time series partitioning   with large 

fluctuations. Intervals   with small fluctuations are not typical for the studied 

time series. 

As approaching to the critical point, the distance between the points  

         5331 hhhhqh i  decreases and is the smallest at the critical 

point. In the SupC phase, the distance between the points is almost independent 

of the iteration. All this is demonstrated in the Figure 11. Recall that for the 

Manna model (50 × 50) 5671ct . 

Thus, the moments of probability density function, primarily   and  , as 

well as the scaling exponents  qh , can be used as indicators of early warning 

for the SOC state in cellular automata. 

 

Conclusions 
 

Analysis of the behavior in time of moments and scaling exponents made it 

possible to provide early detection of the self-organized critical state in cellular 

automata. For such the early detection, it is sufficient to carry out the statistical 

and multifractal detrended fluctuation analysis of time series for the number of 

grains falling from the grid generated by cellular automata. 

The results obtained allow us to make the following conclusions: 
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(1) Self-organized critical cellular automata generate multifractal time 

series, in which subcritical and supercritical phase, and self-organized 

criticality state can be distinguished.  

(2) The most informative indicators of early detection of self-organized 

criticality state are cumulative skewness and kurtosis. 

(3) Multifractality of time series for number of grains falling from the grid 

makes it possible to use cumulative scaling exponents as indicators of 

early detection of self-organized criticality state. 

 

In conclusion, we briefly consider the possible practical applications of the 

use of the proposed indicators for early detection of critical states. If real 

systems are able to self-organize into the critical state, then the cumulative 

moments of probability distribution and the cumulative scaling exponents can 

be used as early warning indicators for critical states. Self-organized criticality 

is characteristic of phenomena and processes of a very different nature: solar 

flares, earthquakes, floods, forest fires, the emergence and extinction of species, 

demographic, ecological, economic, social, informational processes. Early 

detection of the critical state means predicting the critical moment in time after 

which the system behaves in an unpredictable manner. In this case, the system is 

in the supercritical phase, which is characterized by avalanche-like dynamics. 
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Abstract. Mathematical models of a deterministic system of the type ”analog generator-
piezoelectric transducer” are considered. A double symmetry, atypical for dynamical
systems, is found in the alternation of scenarios of transitions from regular attrac-
tors to chaotic ones. For the considered system, the symmetry inside symmetry: the
described above chains of scenarios is located at the ”median” point of other wider
symmetric chains of transition to chaos was found.

Also, for the first time for the considered system, a transition ”chaotic attractor
of one type-chaotic attractor of another type” through generalized intermittency was
discovered. One of the distinctive features of such a transition is the appearance
of coarse-grained (rough) laminar phase instead of laminar phase of usual intermit-
tency.
Keywords: nonideal electro-elastic systems, scenarios of transition to chaos, gener-
alized intermittency..

1 Introduction

Consider a cylindrical piezoceramic transducer placed in an acoustic medium.
Let us assume that the oscillations of a piezoceramic transducer are excited by
an analog generator. Let’s also assume that the power of the generator is com-
parable to the power consumed by the transducer. Under these assumptions,
the ”generator - piezoceramic transducer” system is a typical nonideal dynamic
system according to Sommerfeld-Kononenko (Sommerfeld[1,2], Kononenko[3]).
The mathematical model of such a system was described using a normal system
of ordinary differential equations in Krasnopolskaya and Shvets[4].

The mathematical model of the ”generator-transducer” system was derived
for a real physical system based on the strict principles of the general theory
of electroelastic systems in acoustic media. Subsequently, it was revealed that
the ”generator-transducer” system has a very wide variety of dynamic behav-
ior. So in such a system, all the main types of regular attractors were discov-
ered, such as equilibrium positions, limit cycles and invariant tori (Krasnopol-
skaya and Shvets[4], Balthazar et al.[5], Shvets and Donetskyi[6]). Chaotic
attractors, including hyperchaotic ones, were also found in the ”generator-
transducer” system (Shvets and Krasnopolskaya[7]). Transitions to chaos (hy-
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perchaos) through a cascade of period doubling bifurcations (Feigenbaum[8,9]
and through intermittency (Manneville and Pomeau[10]) were identified. And
finally, in paper Shvets and Donetskyi[6], self-excited, hidden and rare attrac-
tors were discovered in the ”generator-transducer” system.

The above allows us to assert that the ”generator-converter” system has
greater variety of dynamic behavior than the classical Lorentz (Lorenz[11])
and Rössler (Rössler[12,13]) systems. Such system is the ”library” of regular
and chaotic dynamics and can be used as a basic one in the study of the general
theory of dynamical systems.

2 Mathematical model

Using papers Krasnopolskaya and Shvets[4], Shvets and Donetskyi[6], we write
the mathematical model of the ”generator-converter” system in the form a
normal system of differential equations:

dξ

dτ
= ζ,

dζ

dτ
= −ξ + α1ζ + α2ζ

2 − α3ζ
3 − α4β,

dβ

dτ
= γ,

dγ

dτ
= −α0β + α5ξ + α6ζ − α7γ.

(1)

Here phase variables ξ, ζ describe the dynamics of piezoceramic transducer.
Accordingly, phase variables β, γ describe the dynamics of analog generator.
The physical meaning of these variables and parameters α0, α1, ..., α7 of the
system (1) are described in detail in paper Krasnopolskaya and Shvets[4].

Since the system of equations (1) is a nonlinear system of differential equa-
tions, the study of its dynamic behavior, in the general case, can be carried out
only by numerical methods. The methodology for conducting such research is
described in the papers Shvets[14], Shvets and Krasnopolskaya[7].

3 Symmetry and double symmetry

Typical behavior for dynamical system is when, with increase(decrease) in the
value of a bifurcation parameter, the following chain of transitions to chaos
is observed: a cascade of bifurcations of period doubling of limit cycles, then
chaos, then so called periodicity window, after which this chain repeats: cascade
of period doubling→ chaos→ periodicity window→ cascade of period doubling
→ . . . This behavior is also known as Feigenbaum scenario. Accordingly, with
a decrease(increase) in the value of a bifurcation parameter, different chain of
transactions to chaos is observed. Namely limit cycle, then intermittency in
chaos, then periodicity window, after which this chain repeats: limits cycle
→ intermittency in chaos → periodicity window → limit cycle → . . . This

142



Fig. 1. Phase-parametric characteristic

Fig. 2. Phase-parametric characteristic
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behaviour is known as Pomeau-Manneville scenario. In this system, however,
there are regions of parameters for which violation of strict chain of transactions
for either scenarios is observed.

(a) (b)

(c) (d)

Fig. 3. Phase portrait projections: at α2 = 9.1 (a); at α2 = 9.13 (b); at α2 = 9.14
(c); at α2 = 9.15 (c).

Let values of parameters be α0 = 0.995, α1 = 0.0535, α3 = 9.95, α4 =
−0.103, α5 = −0.0604, α6 = −0.12, α7 = 0.01. And leave parameter α2 as
bifurcation one. In Fig. 1, for these values of parameters, the phase-parametric
characteristic of the system (1), the so-called bifurcation tree, is constructed.
Steady-state periodic regimes correspond to individual branches of this tree,
and chaotic ones correspond to densely black areas. A careful study of the
phase-parametric characteristics allows us to understand the bifurcations oc-
curring in the system. As one may notice, there is some symmetry value of
bifurcation parameter (α2 ≈ 9.6455), relative to which any chain of transitions
to chaos is reflected. This means that with increase in the value of the bifurca-
tion parameter both Feigenbaum scenario and Pomeau-Manneville one occur,
which is violation of strict chain of transitions to chaos. Same behavior is also
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true for the case of decrease in the value of the bifurcation parameter. We no-
tice that such situation appears to be natural for this specific system, since it
is not the first time when such symmetry in transition to chaos was established
(Shvets and Donetskyi[6]). And as we will see further, not the last.

Consider couple more intervals of bifurcation parameter for which symmet-
ric transition to chaos is observed along with some other interesting features.

Let us start with interval 9.075 < α2 < 9.3. As we can see from Fig. 2,
there is a double symmetry in the alternation of scenarios of transitions to
chaos. One of the symmetries is clearly seen over the entire range of variation
of the bifurcation parameter. Inside this symmetry, in a much smaller interval,
one more symmetry is visible. Such double symmetries (symmetries within
symmetries) are quite atypical for dynamical systems. Just like before, we can
see violation of strict chain of transitions to chaos both with increase and with
decrease in the value of the bifurcation parameter.

In the Fig. 3 you can see couple of bifurcations of Feigenbaum scenario for
the Phase-parametric characteristic presented in the Fig. 2. Namely, there are
three first period doubling plotted in the Fig. 3a – Fig. 3c. And the chaos
presented in the Fig. 3d.

Fig. 4. Phase-parametric characteristic

Another type of symmetry is realized on the interval of variation of the
bifurcation parameter 9.646 < α2 < 9.64625. The phase-parametric charac-
teristic of the system for this interval is shown in Fig. 4. Here, the transition
to chaos occurs, in one bifurcation, through the intermittency both on the left
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and on the right of the considered interval. Moreover, there are no periodic-
ity windows inside the chaos. Accordingly, no other transitions to chaos are
observed according to the Feigenbaum scenario.

4 Generalized intermittency and symmetry

Finally, consider the bifurcations that occur in the system on the interval
9.64624 < α2 < 9.64665. As the parameter α2 increases, a cascade of bi-
furcations of doubling the period of limit cycles begins in the system, which
leads to the appearance of a chaotic attractor. Further, as α2 increases, the
chaotic attractor is replaced with periodicity window. Then this chain of tran-
sitions is observed again: a cascade of period doubling bifurcations → chaos
→ a periodicity window, and so on. However, the sequence of such transitions
is interrupted at α2 ≈ 9.64631. Further, an extremely interesting transition
occurs from a chaotic attractor of one type to a chaotic attractor of another
type according to the scenario of generalized intermittency. This scenario is
described in detail in the papers Krasnopolskaya and Shvets[15], Shvets and
Sirenko[16]. One of distinctive features of such a transition is the appearance
of coarse-grained (rough) laminar phase instead of laminar phase of usual in-
termittency.

Fig. 5. Phase-parametric characteristic

We notice that all described above behavior is symmetric, i.e. exists some
”median” value of bifurcation parameter α2, such that any transition to chaos

146



(a) (b)

(c) (d)

Fig. 6. Phase portrait projections: at α2 = 9.6463 (a); at α2 = 9.64631 (b). Distri-
bution of invariant measure: at α2 = 9.6463 (c); at α2 = 9.64631 (d).

is reflected. But there is more than that, since the very first chain of transitions
to chaos that happend prior the generalized intermittency is reflected too. It is
worth emphasizing due to fact that regularly generalized intermittency is not
a part of any other chain of transitions to chaos.

Let us illustrate the scenario of generalized intermittency using phase por-
traits and distributions of the invariant measure of the corresponding attractors
presented in Fig. 6. In the Fig. 6a and Fig. 6c, the phase portrait projection
and distribution of invariant measure are presented respectively, prior the gen-
eralized intermittency. After the bifurcation, chaotic attractor of one type
disappears, and chaotic attractor of other type borns. Phase portrait projec-
tion, as well as distribution of invarian measure for this new attractor are pre-
sented in the Fig. 6b and Fig. 6d respectively. Behavior of newborn chaotic
attractor consists of two main phases: the rough-laminar phase and turbu-
lent one. In the rough-laminar phase, trajectory of the caotic attractor makes
chaotic movements near localization of disappeared attractor. During these
movements, trajectory of newborn attractor almost coincide with trajectory
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of disappeared one. These correspond to the much darkened areas in Fig. 6d.
Then, at the unpredictable moment of time, turbulent phase begins. During
this phase, trajectory leaves localization region and moves to distant regions of
the phase space. After some time, trajectory returns to rough-laminar phase.
This process of switching phases is repeated infinitely many times.

5 Conclusions

Thus, the paper explored a number of symmetries in the alternation of scenarios
of transitions to chaos in a nonideal dynamic system ”piezoelectric converter-
analog generator”. The existence of double symmetry is established for such
alternations of scenarios.

The possibility of transitions ”chaotic attractor of one type - chaotic attrac-
tor of another type” according to the scenario of generalized intermittency was
revealed for the first time.
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Abstract. We study the problem of estimating reachable sets of nonlinear dynami-
cal control systems considered under assumption of uncertainty in system parameters
and in initial system states. It is assumed that only bounding sets are available for
unknown terms, and no additional statistical information is provided on their behav-
ior. Basing on main results of the theory of trajectory tubes of control systems we
find solutions for control problems under uncertainty and study their properties. The
algorithms of constructing ellipsoidal estimates for the solution tubes are discussed
and tested. Applications to the problems of behavior of competing firms, population
growth models, environmental change, the development of certain competing indus-
tries, etc. are dicussed.
Keywords: Nonlinear control systems, Estimation problem, Set-membership uncer-
tainty, Ellipsoidal calculus, Maximum principle, HJB equation.

1 Introduction

The nonlinear dynamical control systems with unknown but bounded uncer-
tainties related to the case of a set-membership description of uncertainty
have attracted the attention of researchers for many years, due to interest-
ing mathematical formulations of theoretical problems and in connection with
the study of real models of various nature, with the presence of elements of non-
linearity and uncertainty in their description. In this regard, it is important
to highlight fundamental researches by Kurzhanski and Valyi[13], Kurzhanski
and Varaiya[14], Schweppe[16], Chernousko[4], Polyak et al.[15] and other re-
searchers. The important issue in nonlinear set-membership estimation is to
develop retated techniques, which produce necessary external or internal es-
timates for unknown system characteristics. In this context, it is possible to
point out not only the theoretical academic interest in the study of problems
of this circle, but also the possibility of practical application as the basis of
algorithmic support for a number of applied problems for the models of which
there are both uncertainty and nonlinearity. It would be worth mentioning
in this context, for example, researches by August et al.[1], Boscain et al.[2],
Ceccarelli et al.[3].

In this paper the modified state estimation approaches which use the special
structure of nonlinearity of studied control system and use also the advantages
of ellipsoidal calculus are presented.
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Here we develop the techniques related to constructing external set-valued
estimates of reachable sets for nonlinear control systems. The results presented
here are related to the theory of trajectory tubes of differential control systems
with uncertain parameters and are based on the following main principles:

• the set-membership estimation approach to deal with system uncertainty,
• the optimality principle used for studied control problems to analyze the

properties of reachable sets,
• the Hamilton - Jacobi - Bellman (HJB) approach which is used to find the

external set-valued estimates of uncertain solutions of dynamical systems.

These basic ideas and the above approach open the possibilities to get estimates
for the solutions of some new classes of nonlinear control system studied under
uncertainty conditions.

2 Main Notations and Formulation of the Problem

Introduce first some basic notations. Here we denote as Rn the n-dimensional
Euclidean space, compRn stands for the set of all compact subsets of Rn, Rn×m

is the set of all real n×m-matrices.
The inner product of x, y ∈ Rn is denoted as x′y = (x, y) =

∑n
i=1 xiyi and

the norm of x ∈ Rn is

‖x‖ = ‖x‖2 = (x′x)1/2, ‖x‖∞ = max
1≤i≤n

|xi|.

We use also symbols I ∈ Rn×n for the identity matrix, tr (A) for the trace of
n×n-matrix A (the sum of its diagonal elements) and |A| for the determinant.

Also let B(a, r) = {x ∈ Rn : ‖x − a‖ ≤ r} be a ball in Rn with a center
a ∈ Rn and a radius r > 0 and

E(a,Q) = {x ∈ Rn : (Q−1(x− a), (x− a)) ≤ 1}

be an ellipsoid in Rn with a center a ∈ Rn and with a symmetric positive
definite n× n-matrix Q.

Consider the following nonlinear control system with uncertain terms

ẋ = A(t)x+ f(x)d+ u(t), x0 ∈ X0, t ∈ [t0, T ], (1)

where x, d ∈ Rn, f(x) is the nonlinear function, which is quadratic in x, f(x) =
x′Bx, with a given symmetric and positive definite n× n-matrix B.

We assume that the matrix A(·) in (1) contains uncertain elements, namely
we have

A(t) ∈ A = A0 + A1 (2)

where A0 is given n× n-matrix and A1 is the following set

A1 = {{aij}∈Rn×n : aij = 0 for i 6= j, and

aii = ai, i = 1, . . . , n, a = (a1, . . . , an), (a,Da) ≤ 1 }.
(3)
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We will assume here that X0 in (1) is an ellipsoid, X0 = E(a0, Q0), with a
symmetric and positive definite matrix Q0 ∈ Rn×n and with a center a0.

Let the absolutely continuous function x(t) = x
(
t;u(·), A(·), x0

)
be a solu-

tion to dynamical system (1)–(2) with initial state x0 ∈ X0, control u(·) and
with a matrix A(·) satisfying (2)–(3). We assume here that the solutions {x(t)}
are extendable up to the instant T and are bounded ‖x(t)‖ ≤ K (with some
K > 0) (see e.g. Filippova and Berezina[5]).

The reachable set X (t) at time t (t0 < t ≤ T ) of system (1)–(2) is defined
as the following set

X (t) = {x ∈ Rn : ∃x0∈X0,∃u(·)∈U ,∃A(·)∈A, x = x
(
t;u(·), A(·), x0

)
}. (4)

This kind of nonlinear control systems with uncertain data was studied
earlier in Filippova[6], here we consider another kind of techniques which allows
us to find the external ellipsoidal estimate E(a+(t), Q+(t)) (with respect to the
inclusion of sets) of the reachable set X (t) (t0 < t ≤ T ).

The main problem considered here is related to the search for possibilities
of determining the reachability sets of dynamical systems of the specified class.
In cases when it is difficult to find the exact reachability sets of an indefinite
system (or it takes a very long time to construct it), the statements and re-
sults proposed here may well turn out to be useful, especially in cases when
approximate solutions of reachability and optimization problems are sufficient.

3 Hamilton - Jacobi - Bellman Inequalities in State
Estimation

We develop here in some features the techniques of generalized solutions of
Hamilton - Jacobi - Bellman inequalities to find the external set-valued esti-
mates of reachable sets as level sets of a related cost functional.

The solution of problems of state estimation and control synthesis for sys-
tems described by ODEs with unknown but bounded disturbances may be
transformed to the investigation of first order PDEs of the Hamilton- Jacobi -
Bellman (HJB) type and their modifications.

To investigate this possibility, consider the control system

ẋ = f(t, x, u(t)), t ∈ [t0, T ] (5)

u(·) ∈ U = {u(·) : u(t) ∈ U0 ∈ compRm, t ∈ [t0, T ]}, (6)

x(t0) = x0 ∈ X0 (7)

with a solution x(t) = x(t, u(·), t0, x0) and with the reachable set X(t) =
X(t; t0, X0) generated by the trajectory tube

X(·) = X(·; t0, X0) =
⋃
{ x(·) =

x(·, u(·), t0, x0) | x0 ∈ X0, u(·) ∈ U }.
(8)

We will use here the following result (Kurzhanski[12]).
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Lemma 1. Assume that there exists a function µ(t) integrable on [t0, T ] and
such that

Vt(t, x) + max
u∈U

(Vx, f(t, x, u)) ≤ µ(t), t0 ≤ t ≤ T. (9)

Then the following external estimate of the reachable set X(t) = X(t; t0, X0) is
true

X(t) ⊆ { x : V (t, x) ≤
∫ t

t0

µ(s)ds+ max
x∈X0

V (t0, x) }, t0 ≤ t ≤ T. (10)

Instead of (9), we may consider the following inequality of a more general
type (Gurman[10], Gusev[11]).

Vt(t, x) + max
u∈U

(Vx, f(t, x, u)) ≤ g(t, V (t, x)) (11)

with g(t, V ) integrable in t ∈ [t0, T ] and continuously differentiable in V .
Consider the following ordinary differential equation

U̇(t) = g(t, U), U(t0) = U0, (12)

which is called a comparison equation for (5)–(7).

Theorem 1. Assume that (11) and (12) are fulfilled. Assume also that

max
x∈X0

V (t0, x) ≤ U0. (13)

Then the following upper estimate is valid

X(t) ⊆ {x : V (t, x) ≤ U(t)}, t0 ≤ t ≤ T. (14)

4 Main Results

4.1 Ellipsoidal Estimates through HJB inequalities

Consider the following control system

ẋ(t) = Ax(t) + f(x(t))d+ u(t), x ∈ Rn, t0 ≤ t ≤ T,

with
x(t0) = x0 ∈ X0 = E(a0, Q0), u(t) ∈ U = E(â, Q̂),

f(x) = x′Bx, d ∈ Rn

Here Q0, Q̂, B are symmetric positive definite n × n - matrices and k+0 is
such that E(a0, Q0) ⊆ E(a0, (k

+
0 )2B−1).

Consider the following HJB inequality

Vt(t, x) + max
u∈E(â,Q̂)

(Vx, Ax+ f̃(x)d+ u) ≤ 0 (15)

with boundary condition

V (t0, x) = φ(x) ≤ 0 (16)

where φ(x) is a given continuously differentiable function.
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Theorem 2. Let

V (t, x) = (x− a+(t))′(r+(t))−1B(x− a+(t))− 1 (17)

with a+(t) and r+(t) defined in Theorem 4. Then V (t, x) satisfies the HJB
inequality (15) with the boundary condition

V (t0, x) = (x− a0)′(k+0 )−2B (x− a0)− 1 ≤ 0. (18)

Moreover, the related upper estimate

X(t) ⊆ {x : V (t, x) ≤ 0}, t0 ≤ t ≤ T (19)

is true.

We observe that Theorem 2 allows us to find the solution of HJB inequality
explicitly. It follows from the special form of the chosen initial function V (t0;x)
and from a type of studied control system.

In more general cases the use of appropriate approximations gives us the way
to establish a similar connection between the techniques of ellipsoidal calculus
for dynamic control systems with uncertainties and results based on comparison
theorems of theory of Hamilton-Jacobi-Bellman equations and inequalities.

4.2 Example

Consider an example which show that in nonlinear case the reachable sets
of the dynamical system of the studied type (with simultaneously presenting
nonlinearity and uncertainty) may lose the convexity property with increasing
time t > t0. Nevertheless the related external estimates calculated on the
basis of above ideas and results are ellipsoids (and therefore convex) and these
ellipsoids contain the true reachable sets of the studied nonlinear system. The
ellipsoidal estimates in some directions are tight that is, they cannot be further
reduced, otherwise they will stop evaluating the reachable set and to give the
guaranteed upper estimate. In this sense, the proposed estimates are accurate.

Example. Consider the following control system in the 3-dimensional Eu-
clidean space R3  ẋ1 = −a1x1 + x21 + x22 + x23 + u1,

ẋ2 = a2x2 + u2,
ẋ3 = a3x3 + u3.

(20)

Here we take x0 ∈ X0 = B(0, 1), 0 ≤ t ≤ 0.4 and U = B(0, 0.1). System
coefficients {a1, a2, a3} are unknown but bounded,

a21 + a22 + a23 ≤ 1.

Applying Theorem 1 and using the numerical algorithm similar to those de-
scribed in Filippova and Matviychuk[8,9] we can construct the upper ellipsoidal
tube E+(t) (it is shown in blue colour in Fig.1) which estimate the real set-
valued solution of the system X(t) (shown in black in Fig.1).
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Fig. 1. The reachable set (black colour) and its upper estimate (blue colour).

This example confirms that the upper ellipsoidal estimates in some direc-
tions are tight that is, they cannot be further reduced, otherwise they will stop
evaluating the reachable set and will not give the guaranteed upper estimate.
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In this sense, the proposed estimates are accurate. Further discussions and
other numerical examples may be found also in

5 Conclusions

The problems of state estimation for nonlinear dynamical control systems with
unknown but bounded initial state were considered.

The solution was studied through the techniques of trajectory tubes with
their cross-sections X(t) being the reachable sets at instant t to control system.

We presented the modified state estimation approach which uses the special
structure of the control system and the techniques of generalized solutions of
Hamilton - Jacobi - Bellman equations and inequalities and is based on the
comparison method for analogies to related Lyapunov functions.
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Abstract: Recent efforts have been focused on producing nanoscale spintronic systems 

based on molecular materials. Molecular spintronics is an exciting concept for spin-based 

quantum computing. Spintronics combines the electronic with electron spin, which is an 

attractive field for processing and transferring the information. On the other hand, creating 

the pure spin currents in response to strain can be studied in the content of the piezo 

spintronic effect.  In this regard, we have tried to design a DNA-based piezo spintronic 

device. We have proposed a theoretical model for controlling the spin current in DNA 

based on coupling between mechanical distortions and spin degrees of freedom. We have 

used the chaos theory tools to study the spin transport properties in the system. The 

obtained results determine that different DNA sequences show distinct behavior with 

respect to the mechanical tension. Also, the regions in the parameter values in which the 

maximum spin current flows through the system can be investigated. The mechanical 

tension can adjust the spin current flowing through the system. Therefore, one can design 

and control a novel piezo spintronic nanodevice based on DNA sequences. 

Keywords: Piezo spintronic, Mechanical tension, DNA chain, Spin current, Chaos theory 

tools. 
 

1 Introduction 
 

The spintronic field can detect, inject and manipulate electron spins into solid-

state systems [1]. Researchers have recently shown, using experiments and 

theoretical work, that they can perform similar and even better functions in 

making spinning devices than inorganic metals and semiconductors [2]. This 

phenomenon, known as molecular spintronics, has grown exponentially over the 

past few decades for practical applications [3]. The molecular spintronic field uses 

the spin state of organic molecules to produce electromagnetic devices widely 

used in sensors, memory, and quantum computing [4]. Molecular spintronic 

devices can produce future spin valves and quantum computing devices [5]. In 

these devices, polar spin currents are transmitted through molecules [1]. In 2011, 

scientists discovered that the transfer of electrons through chiral molecules 

depends on the direction of the electron spin. It has recently been shown that the 

transmission of charge in these molecules is spin polarized [6]. 

In this work, we use a new effect, called piezo spintronic (piezo in Greek means 

stress), to generate spin current in DNA nanowires, which is based on mechanical 

connection and the degree of spin release [7]. This effect, unlike the effects of 

piezo magnetism and piezoelectricity, is a phenomenon limited to the 

simultaneous presence of systems with time-reversal (T), inversion (I), and 

symmetry failure [8]. This mechanism opens the way to obtain and measure net 
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spin currents. In essence, a crystal may exhibit piezoelectric, piezomagnetic, and 

piezo spintronic effects simultaneously. The piezo voltage is one of the most 

effective methods for controlling magnetic switching, in which the deformation 

of the crystal structure of the magnetic material changes the crystal magnetic 

anisotropy, which is directly related to a spin-orbit interaction in the crystal [9]. 

On the other hand, the DNA molecule is widely used as a complex nanostructure 

with high flexibility in nanotechnology [10]. The double-stranded DNA molecule 

is a piezoelectric material. Piezoelectric materials are a class of dielectrics that 

can be polarized by an electric field and mechanical stress [11]. This particular 

property of piezoelectric materials is due to the crystal structure of the material 

[12]. Piezoelectric materials are used in converters and devices that convert 

electrical energy into mechanical energy or vice versa.  Piezoelectric materials 

have many applications in diodes, switches, memories, transistors, sensors, 

energy storage devices, etc. [13, 14, 15]. DNA molecule is a chiral molecule due 

to its asymmetric crystal structure (mirror asymmetry) that can exhibit 

conductivity, insulation, semiconductor, and superconductivity. On the other 

hand, chiral organic molecules are a good candidate for transmitting information 

encoded in spin and spin-polarized current sources [16]. The piezo spintronic 

effect is very similar to the polarization of charge currents caused by pressure-

induced spin-orbit interactions. In this work, we show that many polar spin 

currents can be produced by applying external mechanical stress to the molecular 

junctions of the DNA chain. We also show that spin-dependent charge transport 

can be observed in DNA nanowires by applying the mechanical stress and in the 

presence of an external magnetic field. For this purpose, we designed a piezo 

spintronic nanostructure based on the DNA sequence according the Figure 1.  

 

 
Fig. 1. A schematic illustration that shows the DNA nanowires immersed in a thermal 

bath and connected at both ends to the metal leads in the presence of an external 

mechanical stress. 

 

2 Model and Methods 
 

In the current work, we have studied the spin currents along DNA nanowires 

through the piezo spintronic effect using the Peyrard-Bishop-Holstein (PBH) 

model modified for the spin degree of freedom. PBH model considers the pairing 

of bases in the direction of hydrogen bonding and plots the DNA molecule as a 
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one-dimensional network [17]. The Hamiltonian of the system can be presented 

as follows: 

 

H=HDNA + Hso + Hlead + HDNA−lead + HBath + HDNA−Bath +
Hfields                       

(۱)  

 

where, the first term is Hamiltonian related to DNA molecule written as follows: 

 

𝐻𝐷𝑁𝐴 = ∑ ∑ [𝜀𝑖,𝑗𝑐𝑖,𝑗
+𝜎𝑐𝑖,𝑗

𝜎 + 𝑉𝑖,𝑖+1,𝑗𝑐𝑖+1,𝑗
+𝜎 𝑐𝑖,𝑗

𝜎 ]

𝜎=↑↓

+ ∑ 𝜆𝑖𝑐1,𝑖
+𝜎𝑐2,𝑖

𝜎

𝑖,𝜎𝑖,𝑗=1,2

+ ∑[2𝑖𝑡𝑠𝑜

𝑖,𝑗

𝑐𝑜𝑠𝜃(𝑐𝑖,𝑗
+↑𝑐𝑖+1,𝑗

↑ − 𝑐𝑖,𝑗
+↑𝑐𝑖−1,𝑗

↑ − 𝑐𝑖,𝑗
+↓𝑐𝑖+1,𝑗

↓

+ 𝑐𝑖,𝑗
+↓𝑐𝑖−1,𝑗

↓ + 𝐷𝑖,𝑖+1𝑐𝑖,𝑗
+↑𝑐𝑖+1,𝑗

↓ − 𝐷𝑖,𝑖+1
+ 𝑐𝑖,𝑗

∗↓𝑐𝑖+1,𝑗
↑

+ 𝐷𝑖−1,𝑖
∗ 𝑐𝑖,𝑗

+↓𝑐𝑖−1,𝑗
↑ − 𝐷𝑖−1,𝑖𝑐𝑖,𝑗

+↑𝑐𝑖−1,𝑗
↓ )] + 𝐻. 𝑐. 

 

(2) 

where,  𝑡𝑠𝑜  is a spin−orbit coupling constant, θ is the helix angle, and i, j indicate 

the number of sites and strings, respectively. Also, ɛ is electron energy and ci,j
†  

, ci,j are  the electron creation and annihilation operators at the site (i, j), 

respectively. 𝜆𝑖 is the interaction coupling between the DNA chains and  

 

𝐷𝑛,𝑛+1 = 𝑖𝑡𝑠𝑜 sin 𝜃{sin[𝑛∆𝜑] + sin[(𝑛 + 1)∆𝜑]

+ 𝑖 cos[𝑛∆𝜑] + 𝑖 cos[(𝑛 + 1)∆𝜑]} 

 

(3) 

where 𝜑 = 𝑛∆𝜑 is the angle in the cylindrical coordinate and ∆𝜑 is defines the 

twist angle. To maintain inverse symmetry, we have 

 

    𝐷n,n−1 = 𝐷𝑛−1,𝑛
∗  

 

Also, Vi,i+1,j shows the mutation between the nearest neighbors, which is written 

as follows: 

 

𝑉i,i+1 = Vo𝑒−βi(yi+1 − yi) 

where 𝑉𝑜 is the constant of the hopping integral and the 𝛽𝑖  indicates the intensity 

of the coupling.  
 
Hso is a spin-orbit coupling Hamiltonian written as follows: 
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𝐻𝑆𝑂 = ∑[2𝑖𝑡𝑠𝑜 𝑐𝑜𝑠 𝜃 (𝑐𝑖
†↑𝑐𝑖+1

↑ − 𝑐𝑖
†↑𝑐𝑖−1

↑ − 𝑐𝑖
†↓𝑐𝑖+1

↓ + 𝑐𝑖
†↓𝑐𝑖−1

↓ )

𝑛

+ 𝐷𝑖,𝑖+1𝑐𝑛
†↑𝑐𝑖+1

↓ − 𝐷𝑖,𝑖+1
∗ 𝑐𝑖

†↓𝑐𝑖+1
↑ + 𝐷𝑖−1,𝑖

∗ 𝑐𝑖
†↓𝑐𝑖−1

↑

− 𝐷𝑖−1,𝑖𝑐𝑖
†↑𝑐𝑖−1

↓ ] 

(4) 

 

 

Hlead is the Hamiltonian related to the electrodes expressed as follows: 

 

 𝐻𝑙𝑒𝑎𝑑 = ∑ ∑ (𝜀𝐿𝑗,𝑘
+

𝑒𝑉𝑏

2
) 𝑎𝐿𝑗,𝑘

+𝜎 𝑎𝐿𝑗,𝑘𝑘,𝜎 + ∑ ∑ (𝜀𝑅𝑗,𝑘
−𝑘,𝜎𝑗=1,2𝑗=1,2

𝑒𝑉𝑏

2
)𝑎𝑅𝑗,𝑘

+𝜎 𝑎𝑅𝑗,𝑘           
 

(5) 

where 𝑉𝑏 is the bias voltage applied to the system and 𝑎𝛽𝑗,𝑘

+  , 𝑎𝛽𝑗,𝑘
 are the operators 

of electron creation and annihilation in the electrode β = R, L, respectively. 
𝐻𝐷𝑁𝐴−𝑙𝑒𝑎𝑑  is the Hamiltonian relating to the interaction of the DNA molecule 

with the electrodes written as follows: 

 

 𝐻𝐷𝑁𝐴−𝑙𝑒𝑎𝑑 = ∑ ∑ (𝑡𝐿𝑎𝐿𝑗,𝑘

+𝜎 𝑐𝑗,1
𝜎 + 𝑡𝑅𝑎𝑅𝑗,𝑘

+𝜎 𝑎𝑗,𝑁
𝜎 + 𝐻. 𝑐. )𝑘,𝜎=↑↓𝑗=1,2  (6) 

𝐻𝐵𝑎𝑡ℎ is the Hamiltonian of thermal bath defined as follows [18]: 

 

 𝐻𝐵𝑎𝑡ℎ = ∑ ℏ𝜔𝑖𝑏𝑖
+𝑏𝑖

𝑁
𝑖=1 + 2 ∑ ℏ𝛺𝑖(

𝑁−1
𝑖=1 𝑏𝑖

+𝑏𝑖+1 + 𝑏𝑖+1
+ 𝑏𝑖) + 𝐻. 𝑐.     (7) 

 

where 𝑏𝑖
+ and 𝑏𝑖  are the oscillator creation and annihilation operators at the i site, 

respectively. Ω is the reciprocal coupling constant and ω is the oscillator 

frequency at the site. The Hamiltonian of the interaction of the thermal bath with 

the DNA molecule is written as follows: 

 

 𝐻𝐷𝑁𝐴−𝑙𝑒𝑎𝑑 = ∑ ∑ (𝑡𝐿𝑎𝐿𝑗,𝑘

+𝜎 𝑐𝑗,1
𝜎 + 𝑡𝑅𝑎𝑅𝑗,𝑘

+𝜎 𝑎𝑗,𝑁
𝜎 + 𝐻. 𝑐. )𝑘,𝜎=↑↓𝑗=1,2  (8) 

 

here, 𝑡𝑖  is related to the elements of the tunneling matrix. In recent equations, the 

phrase H.C. is entered for the effect of a Hermitian conjugate. 

Finally, 𝐻𝑓𝑖𝑒𝑙𝑑𝑠  is related to the external electric and magnetic field Hamiltonian 

written as follows: 

 

 Hfields = HE + HB (9) 

 

The Hamiltonian of an electric and a magnetic field is written as follows: 

 

 𝐻E = −𝑒 ∑ 𝐸𝑑 cos[(𝑖 − 1)∆𝜑]𝑐𝑖
𝜎†𝑐𝑖

𝜎
𝑖,𝜎=↑،↓  (10) 
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  𝐻𝐵 = ∑ (−𝜇𝐵𝐵𝑐𝑖,𝑗
↑†𝑐𝑖,𝑗

↑
𝑖,𝑗 + 𝜇𝐵𝐵𝑐𝑖,𝑗

↓†𝑐𝑖,𝑗
↓ ) (11) 

where d is the radius of DNA and μB =
𝑒ℏ

2𝑚𝑐
= 5/78838 ↑× 10−5 is the constant 

of magneton Bohr. 

In the current study, to apply a mechanical stress to the system, we corrected the 

electron onsite and electron hopping constants at site n through the stress 

parameter as follows [19]: 

 

  𝜀𝑛′ = 𝜀𝑛
0 +

𝑒𝑟(1−𝜎
𝑠1

100
)

𝐿(1+
𝑠1

100
)

𝑡𝑎𝑛 𝛼 𝑉𝑠𝑑 𝑐𝑜𝑠 (
2𝜋𝑖

10
+ 𝜑0) 

(12) 

 

 

  𝑉𝑛′+1 = 𝑉𝑛+1𝑒(1+
𝑠1

100
)
 

(13) 

where r = 10 is the radius of DNA, α is the angle of DNA rotation, Vsd is the 

source voltage, σ = 0.5 is the Poisson rate, and S1 is the longitudinal stress applied 

to DNA [20]. 

Here, the evolution equations of our dynamical system can be derived through the 

Heisenberg equation �̇�𝑛
𝜎 = −

𝑖

ħ
[𝑐𝑛

𝜎 , 𝐻] for up spin and down spin operators, 

respectively [21]. On the other hand, the spin current corresponding to up and 

down spins can be extracted via the continuity equation as follows: 

 

 𝐼↑(𝑡) = −𝑖𝑒

ħ
∑ {

𝑊𝑛,𝑛+1𝑐𝑛
†↑𝑐𝑛+1

↑ + 𝑊𝑛−1,𝑛
∗ 𝑐𝑛−1

†↑ 𝑐𝑛
↑ +

𝐷𝑛,𝑛+1𝑐𝑛
↓†𝑐𝑛+1

↓ − 𝐷𝑛−1,𝑛𝑐𝑛−1
†↓ 𝑐𝑛

↓
}𝑛  

(14) 

 

 𝐼↓(𝑡) = −𝑖𝑒

ħ
∑ {

𝑊𝑛,𝑛+1
∗ 𝑐𝑛

†↓𝑐𝑛+1
↓ + 𝑊𝑛−1,𝑛𝑐𝑛−1

†↓ 𝑐𝑛
↓ −

𝐷𝑛,𝑛+1
∗ 𝑐𝑛

↑†𝑐𝑛+1
↑ + 𝐷𝑛−1,𝑛

∗ 𝑐𝑛−1
†↑ 𝑐𝑛

↑
}𝑛  

 (15) 

 

Therefore, the net charge current 𝐼𝐶 and the net spin current 𝐼𝑠 can be defined as 

follows: 

 

𝐼𝑐 = 𝐼↑ + 𝐼↓ 

𝐼𝑠 = 𝐼↑ − 𝐼↓ 

 

(16) 

 

3 Results and Discussion 
 

In this study, we have tried to investigate the spin transfer and generation of pure 

spin currents in different sequences of DNA in the presence and absence of 

mechanical stress and magnetic field. The system shows high sensitivity to the 

initial conditions since the dynamics behavior is nonlinear.  
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3.1 Mechanical stress effect 
 

To investigate the effect of mechanical stress on the system in the absence of a 

magnetic field, we have applied micro-positive and negative mechanical stress to 

the system (negative stress means DNA compression and positive stress means 

DNA elongation). According to Figure 2, in 𝑆1 = 3, the maximum spin current 
and in 𝑆1 = −3 , the minimum spin current flow through the system.  
 

 
Fig. 2. The spin current with respect to the mechanical stress parameter (B = 0). 

 

3.2 Effect of different sequences on the spin current 

 
The conductivity dependence of the DNA molecule on the type and length of its 

sequence are studied, previously [22]. One of the effective parameters on the 

electrical properties of DNA molecule is the variation the sequence type since 

different arrangement of adjacent pairs in the molecule changes the coupling and 

the energy of the pair [23]. 

In this study, we have chosen three types of sequences: CH22, AT-rich, and CG-

rich, with a length of 60 bp. Therefore, we have studied the spin transport yn 

system by applying stress 𝑆1 = 3  and in the presence of a magnetic field B = 4.5 

(mT). According to Figure 3, at t = 500 (ps), the maximum spin current flows in 

CH22 sequence. A moderate spin current value flows in the CG-rich sequence, 

and a minimum spin current flows in the AT-rich sequence. The result indicates 

the effect of type the sequence in the spin current flows through the molecule 

chain. 
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Fig. 3. The time-series of spin currents for CH22, AT-rich and CG-rich sequences in the 

presence of tension 𝑆1 = 3 and B = 4.5 (mT). 

 

3.3 Voltage effect 

 
The external electric field, or in other words the gate voltage, is an influential 

factor on the spin current flowing through the DNA molecule. DNA molecule 

behaves distinctly against variable voltage [24]. According to Figure 4, the spin 

current in terms of voltage shows an increase in spin current with increasing 

voltage in some regions can be called quasi-ohmic regions. In some regions, a 

decreasing spin current is observed by increasing the voltage which can be 

expressed as spin-polarized negative differential resistance (SPNDR) regions. In 

the interval 7-8 (mV), system shows the quasi-ohmic behavior while in the 

interval 11-12 (mV), the SPNDR behavior is observed. 

 

 
 

Fig. 4. The I-V characteristic diagram for the spin current in the presence of a stress  

𝑆1 = 3  (B=0). 

 

3.4 Spin current in the presence of simultaneous variation of 

mechanical stress and DNA twist angle 

 
We have tried to examine the simultaneous effect of mechanical stress and DNA 

twist angle as the most effective parameters in piezo spintronic effect on the spin 

current flowing through the CH22 sequence (Fig. 5). Figure 5 shows the creation 
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of island-like areas in different parameter values. The simultaneous effect of the 

mechanical stress parameter and twist angle leads to the maximum and the 

minimum spin current flowing regions. It is clear in Fig. 5 that no significant 

current flows through the system as long as the mechanical tension have the zero 

or negative value, but by increasing the twist angle and applying mechanical 

stress 𝑆1 =3 and higher, an increase in net spin current is observed, so that at  

𝑆1 = 5 and α=0.27(rad), the maximum spin current flows through the system. 

 

 
Fig. 5. The simultaneous effect of mechanical stress and DNA twist angle on spin 

current. 

 

3.5 Spin current in the presence of simultaneous variation of the 

external electrical field and DNA twist angle 

 
Figure 6 shows the simultaneous effect of DNA twist angle and applied voltage 

on the spin current flowing through the CH22 sequence. We have observed 

island-like regions in which the simultaneous effect of the molecule's twist angle 

and voltage creates areas with a maximum and minimum spin current. It is clear 

that by increasing the applied voltage to the system in the presence of mechanical 

tension, the islands with maximum spin current increases. The result indicates the 

positive effect of simultaneous application of voltage and stress on the spin 

current in the system. 

 

 
Fig. 6. The simultaneous effect of voltage and DNA twist angle on spin current. 

 

Conclusions 
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In this study, we have studied the piezo spintronic effect led to creating the net 

spin current in response to stress. We discussed the piezo spintronic response of 

DNA nanowires to create net spin currents. By studying the spin current in terms 

of voltage, we have observed quasi-ohmic and SPNDR regions. Finally, by 

examining the simultaneous variation of the DNA twist angle and the applied 

voltage to the system, we have observed the islands that represented the maximum 

and minimum spin current. 

The results expand the field for spin mechanical systems since it provides a direct 

coupling between the spin current and the tension. In this work, we used a 

simplified model that considers the structure of DNA as a ladder. To continue the 

work, it is suggested that the natural structure of DNA, which is considered as a 

double helix with degrees of freedom of angle be considered.  
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1  Introduction 
 

Using  different notions, concepts and results, in this paper we shall try to 

answer the question "What is the atom?" from a mathematical-physical 

perspective, offering at the same time a series of possible interpretations and 

meanings that exceed its strict limits. We shall see that the mathematical 

perspective preserves the intimate, defining property of the atom, in its various 

forms and mathematical meanings of being, in a sense, the essential 

indestructible, indivisible, irreducible, minimal and self-similar unity. We 

emphasize that an atom is a mathematical object (an entity) that, in essence, has 

no other subobjects (subentities) than the object itself or the null subobject. The 

idea is also found in computer science, for example. In partially ordered sets, 

atoms are generalizations of the singletons (that is, sets containing only one 

element) of the sets theory. Moreover, in this sense, atomicity (the property of a 

mathematical object of being atomic), provides a generalization in an algebraic 

context of the possibility of selecting an element from a nonempty set. In 

mathematical logic, an atomic formula is a formula without a deep propositional 

structure, that is, a formula that does not contain logical connections, or, 

equivalently, a formula that does not have strict subformulas. Atoms are thus the 

simplest well-formed formulas of logic, the compound formulas being formed 

by combining atomic formulas using logical connections. Also, also in logic, an 

atomic sentence is a type of declarative sentence that is either true or false and 

that cannot be broken down into other simpler sentences. In some models of set 

theory, an atom is an entity (a mathematical object) that can be an element of a 

set but does not itself contain elements with similar properties (hence the 

"ultimate" character of an atom). In mathematical analysis, a set’s property of 

being an atom is defined in relation to another mathematical object, namely, 

with respect to a set (multi)function. 
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2. The mathematical-physical perspective 

 

2.1. Set functions 

 

Let  be a ring of subsets of a non-empty abstract set  and  be a 

set function which satisfies the condition . The following notions 

generalize the notion of a measure in its classic sense (as a foundation of 

measure theory). In mathematical analysis, a measure (in classic sense) is a 

function which  ,,measures”, assigning to certain sets of a class (family) of sets, 

a positive real number or . In this sense, a measure is a generalization of the 

concepts of length, area or volume. One particularly important example is the 

Lebesgue measure on a Euclidean space, which assigns the conventional length, 

area and volume of Euclidean geometry to appropriate subsets of the Euclidean 

space . For instance, the Lebesgue measure of the interval  is its length 

in the ordinary sense of the word, namely,  (Royden, 1988; Fremlin, 2000). A 

measure must be additive, which means that the measure of a set representing 

the union of a finite (or countable) number of smaller sets that are pairwise 

disjoint is equal to the sum of the measures of these smaller subsets. 

The notions that we shall introduce next have contributed to the 

development in recent years of the theory of non-additive measures, sometimes 

known as the fuzzy measures theory (Pap, 1995). These notions prove their 

utility due to the necessity to model phenomena from the real world, in 

circumstances in which the condition of additivity (either finite or countable), as 

an immediate property of a measure, is much too restrictive. 

The set function  is called: 

(i) null-additive if for every sets , 

satisfying the condition  

(ii) null-null-additive if  for every sets , 

satisfying the condition  

(iii) diffused if , whenever  

(iv) monotone if , for every sets , so that 

 

(v) null-monotone if for every two sets , having the property 

that , if  holds, then one necessarily has also  

(vi) finitely additive if , for every 

disjoint sets ;  

(vii) subbaditive if , for every (disjoint 

or not) . 
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Example. (i) Let us suppose that , where for 

every represents a particle, and  is a set 

function representing the mass of the particle. In the macrosopic world,  is a 

finitely additive set function. At quantum scale, however, this statement no 

longer remains valid due to the phenomena of annihilation. For instance, if  

and  represents an electron and a positron, respectively, then 

, but 

 

(ii) Entropy in Shannon’s sense is a subadditive set function, taking 

real values (Gavriluț and Agop, 2016; Gavriluț, 2019).  

 

 

2.2. Types of atoms  
 

      In the following, we shall present several types of atoms in their  

mathematical meaning, we shall establish some relationships among these types 

of atoms and we shall also highlight several possible interpretations. Unless 

stated otherwise,  will represent a ring of subsets of an arbitrary nonvoid set  

and  an arbitrary set function satisfying the 

condition . This abstract set function represents the generalization 

of the classic notion of a measure used in measure theory and it is the 

mathematical object through which the process of so-called "measurement" is 

performed. 

 

 

Atoms and pseudo-atoms 
 

These are the main types of atoms from the mathematical perspective: 

 

I. A set  is called an atom of if  and for every 

, with , it holds either   or  

We observe that, in a certain sense, an atom is a special set, of strictly 

positive ,,measure”, having additionally the property that any of its subsets 

either has zero ,,measure”, or the difference set between the initial set and its 

subset we refer to has zero ,,measure”. An atom can be interpreted, from a 

physics viewpoint, as the correspondent of a black hole. 

II. The set function  is said to be non-atomic if it has no atoms, that 

is, for every set  with , there exists a subset 

so that  and .  
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III. A set  is called a pseudo-atom of  if and for 

every subset  ( one has either  or 

.   

In other words, a pseudo-atom is a special set, of strictly positive 

,,measure”, for which any of its subsets either has null ,,measure”, or has the 

same ,,measure” as the set itself. Thus, it can be stated that a pseudo-atom 

possesses the property that any of its subsets either has null ,,measure” (that is, 

it is negligible during the ,,measurement” process), or it entirely ,,covers” the 

set (during the same ,,measurement” process).  In other words, assuming that 

the set function is monotone, then a pseudo-atom is a set of strictly positive 

,,measure” and which does not contain any proper subset of strictly smaller and 

strictly positive ,,measure”. 

IV. The set function is said to be non-pseudo-atomic if it does not 

have pseudo-atoms, that is, for any set  with , there exists a 

subset  so that  and .  

For instance, the Lebesgue measure on the real line is a measure (in the 

classic sense) which is non-pseudo-atomic (Royden, 1988), and therefore it does 

not have any pseudo-atom. The non-pseudo-atomic measures satisfy the 

following remarkable property, which we owe to Sierpinski, a property which 

states that if  is a non-pseudo-atomic measure (in classic sense), defined on a 

-algebra  (of subsets of an abstract space , and  is an arbitrary set 

so that , then for every element , there exists a set 

, so that  and  (in other words, the set function  

takes a continuum of values, and thus it does not omit any intermediate value). 

V. A set function  is called purely-atomic if the space  can be 

represented as a finite or countable union of atoms of  

 

Examples. (i) Let be the set . We define the set 

function  as follows: . Then 

 the singleton  is an atom of : 

 and , we have either 

, in which case , or , in which case 

 So, in this case, any singleton is an atom. 

 

(ii) Generally, there is no relationship between the notion of an atom 

and that of a pseudo-atom: Let us consider an abstract set  and let 

also be the set function  defined for every  by 
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Then  is an atom and it is not a pseudo-atom for  Indeed, 

 Let be an arbitrary subset of  If , then 

 

If , then, by the definition, ; 

If , then, by the definition,  

If , then  

Therefore,  is indeed an atom of  On the other hand, let us note 

that there exists the singleton  for which  and 

 Consequently,  is not a pseudo-atom of   

However, we note that, if the set function  is null-addtive, then any 

atom of   is a pseudo-atom (*). Indeed, let us assume that  is a 

null-additive set function, and that the set  is an atom of . We shall 

prove that  is also a pseudo-atom of : Obviously, since  este atom, then 

. If we consider an arbitrary set , with , from the fact 

that  is an atom it follows that either  or . In the 

latter case, since  is null-additive, it follows that 

 Consequently,  is a pseudo-atom of 

 Conversely, if the set function  is, moreover, finitely additive, 

then any pseudo-atom  of  is an atom, too, and this immediately yields 

based on the equality 

, which 

implies . 

That is why, in the framework of the classic measure theory (a measure 

always possesses the null-additive property), the notions of an atom and that of 

a pseudo-atom coincide. The converse of the above statement (*) does not 

generally hold since there exist pseudo-atoms which are not atoms: 

 

(ii) Let   be an abstract set, containing two arbitrary 

elements, and let us consider the set function  defined for 

every set  by  

Then  is null-additive and  is a pseudo-atom of , but 

it is not an atom of . Let  be so that . By the definition 

of  we note that we must necessarily have , whence 

, and this proves that the set function  is null-additive. 

We prove now that  is a pseudo-atom of . Indeed, we 

have  and let  an arbitrary subset. If , then 

 If , then the set  either is a singleton, or is the set T, itself 
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consisting of two elements. In both situations, one has , 

which proves that  is a pseudo-atom of . 

Let us prove now that  is not an atom of  Indeed, 

 and there exists the singleton  for which we have 

 and  Therefore, 

 is not an atom of  

 

(iii) The Dirac measure (or, the unit mass measure) (or, the -measure) 

 concentrated in an arbitrary fixed point  of an abstract set  is an example 

of a measure (in the classical sense) which is purely-atomic (Kadets, 2018). The 

Dirac measure is defined as follows: If  is a -algebra of subsets of , then 

 

Obvioulsy,  is an atom of  (because  and 

 it holds either  or  as  or , 

that is,  

 

Let us recall now the following: 

If  is a ring of subsets of an abstract space  and if  is a 

set function satisfying the condition  two sets  are said to 

be equivalent if  

We note that if the set function  is additionally null-monotone and 

null-additive, then  (which justifies the terminology, since 

the equivalence of the sets takes place in the sense of the ,,measurement” 

process). Indeed, since  and 

 is null-monotone, it follows that  and , 

whence, because  is null-additive and 

it follows that  We note that, with respect to the Dirac 

measure  the atom  (the space itself, unreduced to a single point) is 

equivalent to the singleton  (Kadets, 2018). Indeed, we have 

 (so, with respect to the Dirac measure, the space ,,collapses” 

into a single point). 

 

We shall prove in the following that, with respect to a monotone and 

null-additive set function, any set which is equivalent to an atom is itself an 

atom: Let us assume that the set  is an atom and we prove that the set  

which is equivalent to the set , possesses the same property. Indeed, 
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according to the above statements, we have  and let 

, be arbitrary. If , then the proof ends. If 

, then, since  is monotone and , it follows 

that  

On the other hand, again from the monotonicity of  we have 

 based also on 

the fact that  is null-additive and  Consequently, 

, and this finally proves that  is an atom of , too. 

 

Let us also note that, with respect to a monotone and null-additive set 

function, any set which is equivalent to a pseudo-atom is, itself, a pseudo-atom: 

We assume that  is a pseudo-atom and we prove that the set , which is 

equivalent to the set , possesses the same property. Indeed, from the above 

statements, we have  and let , be 

arbitrary. If , then the proof ends. If , then, since 

, it follows that  is also a pseudo-atom of  

 

 

Atoms and fractality 
 

Next, we shall underline the fact that both the notion of atom and that of 

pseudo-atom (in the mathematical sense) possess a remarkable property, 

namely that of self-similarity (every part reflects the whole), a property which is 

a characteristic to fractals, both from a mathematical point of view and from the 

perspective of modern physics. This finding, among others, justifies the 

extension we illustrate in the last section, in which we address the necessity to 

introduce the notion of a fractal atom (Gavriluţ et al., 2019). 

 

The self-similarity property of the atoms (pseudo-atoms, respectively) 

(i) If  is a null-monotone set function, with 

 is an atom of  and  is a subset of  having the 

property , then  is also an atom of  and, moreover, 

 (which means that the ,,measure” of what remains when the set  

 is removed from the set  is null). Indeed, one has  and if we 

consider an arbitrary set , with , then, since , it follows 

that . If , the proof ends. Let us assume now that 

. Because  is an atom al lui  it follows that 

 Since  and  is null-monotone it gets that 

 and, therefore,  is an atom of  Moreover, since  is 
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an atom of  and  is a subset satisfying the property , then 

we must necessarily have  

 

(ii) If  is a pseudo-atom of  and the set  satisfies 

 and , then  is also a pseudo-atom of  and, moreover, 

 (the sets  are  are ,,identical” with respect to the 

,,measure” ). Indeed, we have  and, if we consider an arbitrary 

set , with , then, since , it follows that . If 

, the proof ends. Let us assume now that . Since  

is a pseudo-atom of  it follows that  On the other hand, 

since  is a pseudo-atom of , the set  satisfies  and 

, then  In consequence,  and 

this finally proves that  is also a pseudo-atom of  

 

Let us make, at the end of this section, the following observation: 

Assuming that a set function  is monotone, null-additive and 

regular (meaning that, roughly speaking, we can, through it, approximate sets 

about which we have little information, with sets about which we have more 

information), one can prove that for each atom  of  (if it exists), there exists 

a unique element  so that  (Pap, 1995) (this means 

that the ,,measure” of the atom is equal to the measure of each ,,point” it 

contains, and this reflects the holographic perspective, according to which the 

information is concentrated in a single point. 

 

 

Minimal atoms  
 

We shall now introduce a very special category of atoms, which we show to 

reflect the property of indivisibility (non-decomposability). Let  be an 

arbitrary ring of subsets of an abstract space  and let  be a set 

function so that  A set  is called a minimal atom of  

if  and for every subset  ( it holds 

either  or (Ouyang et al., 2015). 

In other words, a minimal atom is a special set, of stricly positive 

,,measure”, so that any of its subsets has either zero ,,measure”, or identifies 

with the set itself. Thus, a minimal atom has the property that any of its subsets 

has either zero ,,measure” (that is, it is negligible during the  ,,measurement” 

process), or identifies with the initial set (without the need of a ,,measurement” 

process). The terminology is justified. Indeed, if  is a minimal atom of 

, then for  there cannot exist other minimal atom ,  which is 
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different from  and satisfies  Indeed, if we assume, on the contrary, 

that there exists another minimal atom  which is different from  and 

satisfies , then, since  is a minimal atom, we get that . 

Because  then , and this is false due to our assumption. 

 

Example. Let  be an abstract set, constituted of four 

distinct elements and let also be the set function  defined for 

every   

We note that any singleton (i.e., a set containing only one element) is a 

minimal atom of . Indeed, the ,,measure”  of any singleton is, according to 

the definition,  so it is strictly positive and any subset is either void and hence 

has zero measure, or is the set itself. 

 

In general, any minimal atom is, particularly, an atom and also a 

pseudo-atom. Indeed, if  is a minimal atom of  then and 

for any of its subset  (  it holds either  or . 

The latter posibility yields  and , so  is both 

an atom and a pseudo-atom of . 

 

The following examples show that there is generally no relationship 

between the notions of atom/pseudo-atom and that of minimal atom: 

 

Examples. (i) Let  be an abstract set constituted of two 

distinct elements and let also be the set function  defined as 

follows: 

 
Then  is an atom of : Obviously,  Let  be 

an arbitrary set. If , then  If  then 

. If , then  If 

, then  

But  is not a minimal atom of  Obviously, one has 

 and let  be an arbitrary set. We observe that there 

exists the set  for which  We also note that the 

set  is an atom (we have  and any subset  

either is void, so  or is the set  itself, so . 

175



The set  is also a minimal atom of  since  and any 

subset  either is void, so  or is  itself. 

 

(ii) Let be an abstract set and let also be the set 

function  defined as follows:  

 
Then and  are minimal atoms of  We shall prove the 

statement, for instance, for the set  Indeed,  we have 

 and let be an arbitrary subset. If , the 

statement is verified. If  or , then, according to the 

definition, we have , so the statement is again 

verified. If , then  

 

In the following, we note that if  is a null-null-additive set 

function and  are two different minimal atoms of , then they must 

be necessarily disjoint, that is,  Indeed, let us assume that, on the 

contrary, . Since  are two minimal atoms of , 

 and , it follows that  

or  and  or  

(i) If , then , which is false since, according to 

our asumption, we have . 

(ii) If  and , then, since  is null-

null-additive, one gets that , which is 

false, since , the set  being a minimal atom of . 

(iii) If  and , then , so, since  is a 

minimal atom of , one gets from the above observation that , which is 

false. 

Consequently,  

 

The property we shall demonstrate next reflects the non-

decomposability (non-partitionability) of the minimal atoms: A minimal 

atom  of a null-null-additive set function  cannot be partitioned in sets 

that are elements of . Indeed, if we suppose, on the contrary, that there exists a 

partition of a lui , this means that there exists  a family  of 

nonvoid sets of  so that  and the sets  are pairwise disjoint. 
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Referring to the first set  since  is a minimal atom, it follows 

that we cannot have the situation  Therefore,  

Analogously, for the second set,  we get that . Recurrently, it 

gets that  Since  is null-null-additive, it 

follows that , which is obviously false. 

Consequently, any minimal atom is non- decomposable. 

In the following, we shall prove that the converse of this statement also 

holds, namely, we shall demonstrate that any non-decomposable atom is 

necessarily a minimal atom. Indeed, since the set  is an atom, then 

. Since the set  is not partitionable, there cannot exist two nonvoid 

disjoint subsets  of  so that  Let be an arbitrary 

set  with  If , then the proof ends. If , 

since , one gets that  (otherwise, the family  is a 

partition of : , which is 

false). Consequently,  is a minimal atom. From the two statements above, one 

arrives at the following conclusion: an atom is minimal if and only if it is not 

partitionable (it is non-decomposable).  

 

In the following, we shall highlight that, in the case when the abstract 

set  is finite, then any set , satisfying the condition   

possesses at least one set  which is a minimal atom minimal of  

. Moreover, in the particular case when  is an atom of  and the set 

function  is null-additive, one gets that  and the set  is 

unique. Indeed, let us consider the family of sets 

 Obviously, since  then 

 We note that any minimal element  of  is a minimal atom 

of . Indeed, since  is a minimal element, there cannot exist another set 

 so that  

Since , this means that  and  

We shall prove that  is a minimal atom of . Indeed, for any set 

 we have either  or  In the latter case, 

we have either  (which is suitable) or , which contradicts the 

statement  

Let us assume, moreover, that the set  is an atom of  and  is null-

additive. According to the considerations proved above, there exists at least one 

set  which is a minimal atom of  This means that 

 and, because  is an atom, we must necessarily have 
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 Since  is null-additive, this yields 

 

It only remains to prove that the set  is unique. Indeed, if we suppose, 

on the contrary, that there exist two different minimal atoms  and  of , 

this would imply, as before, that . If 

, then 

 which is false. If , since  and  are minimal atoms of 

, it results that , which is again false. Finally, we shall 

prove that, if the set  is finite, the set function  is null-additive, and 

 is the family of all different minimal atoms which are contained 

in a set , satisfying  (we proved in the above considerations 

that such atoms exist), then . 

(This means that the set  identifies itself, from the ,,measure”  

viewpoint, with the union of all different minimal atoms which it contains, 

therefore the minimal atoms are the only ones that matter from the 

,,measurement” point of view).  

Let us note that  (if, on the contrary, one has 

, from the statement proved above it would follow that 

there exists at least one set  which is a minimal 

atom of , and this is false since  are the only different minimal 

atoms contained in . Since  and  is null-additive, it 

follows that . 

 

We finally note the following: 

1. Any minimal atom is also an atom and a pseudo-atom (which 

justifies the terminology); 

2. If the set function is null-additive, then any of its atoms is a pseudo-

atom, too; 

3. If, moreover, the set function is finitely additive, then the converse 

of the above statement is also valid, therefore any pseudo-atom is particularly an 

atom. 

178



 Consequently, for a finitely additive set function (which is 

automatically null-additive), the notion of atom and that of pseudo-atom 

coincide. 

         

                                                   

 

2.3. Extensions of the notions of atom   
 

Generalizations of the mathematical notion of an atom have been made, so far, 

in two major directions. A first direction is given by the fact that, instead of set 

functions, which are indispensable to the process of the so-called 

"measurement", one could generally operate with set multifunctions (that is, 

functions that associate a set to another set).  

Thus, results with a higher degree of generalization and abstraction can be 

obtained. The second direction is given by the correlation that can be made by 

placing the notion of (minimal) atom within the fractal sets theory, thus 

resulting in the notion of fractal (minimal) atom  (Gavriluţ et al., 2019; Gavriluţ 

and Agop, 2016). 

 

 

The first direction: Set-valued approach 

 

 Let be an abstract nonvoid set ,  a ring of subsets of ,  a real linear 

normed space with the origin  and  the family of all nonvoid subsets 

of  By a set multifunction we mean a function (or, application) which 

associates a set to another set, in contrast with the notion of a function, which 

associates a point to another point. So, in what follows, let  be 

an arbitrary set multifunction, with  

The notions of atom, pseudo-atom, minimal atom introduced with 

respect to a set function  can be generalized in this context, with respect to the 

set multifunction , as follows. We say that a set  is: 

(i) an atom of  if and for every set  with 

 we have either  or  

(ii) a pseudo-atom of if  and for every set  with 

 it holds either or  

(iii) a minimal atom of  if  and for every set  

with  one has either  or  

Detailed considerations on atomicity with respect to set multifunctions 

can be found in Gavriluţ and Agop, 2016 and also in Gavriluţ et al. 2019.  

 

 

The second direction: Towards a fractal theory of atomicity  
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The main idea in the quantum theory of measure and in generalized quantum 

mechanics is to provide a description of the world in terms of histories. A 

history is a classical description of the system considered for a certain period of 

time, which may be finite or infinite.  

If one tries to describe a particle system, then a history will be given by classical 

trajectories. If one deals with a field theory, then a history corresponds to the 

spatial configuration of the field as a function of time. In both cases, the 

quantum theory of measure tries to provide a way to describe the world through 

classical histories, extending the notion of probability theory, which is 

obviously not enough to shape our universe. 

On the other hand, ordinary structures, self-similar structures etc. of 

nature can be assimilated to complex systems, if one considers both their 

structure and functionality. The models used to study the complex systems 

dynamics are built on the assumption that the physical quantities that describe it 

(such as density, momentum, and energy) are differentiable. Unfortunately, 

differentiable methods fail when reporting to physical reality, due to instabilities 

in the case of complex systems dynamics, instabilities that can generate both 

chaos and patterns. 

In order to desribe such dynamics of the complex systems, one should 

introduce the scale resolution in the expressions of the physical variables 

describing such dynamics, as well as in the fundamental equations of the 

evolution (density, kinetic moment and equations of the energy). This way, any 

dynamic variable which is dependent, in a classical sense, both on the space and 

time coordinates, becomes, in this new context, dependent on scale resolution as 

well. Therefore, instead of working with a dynamic variable, we can deal with 

different approximations of a mathematical function that is strictly non-

differentiable. Consequently, any dynamic variable acts as the limit of a family 

of functions. Any function is non-differentiable at a zero resolution scale and it 

is differentiable at a non-zero resolution scale. This approach, well adapted for 

applications in the field of complex systems dynamics, in which any real 

determination is made at a finite resolution scale, clearly involves the 

development of both a new geometric structure and a physical theory (applied to 

the complex systems dynamics) for which the motion laws, that are invariant to 

the transformations of spatial and temporal coordinates, are integrated with scale 

laws, which are invariant to transformations of scale. Such a theory that includes 

the geometric structure based on the assumptions presented above was 

developed in the scale relativity theory and, more recently, in the scale relativity 

theory with constant arbitrary fractal dimension. Both theories define the class 

of fractal physics models. In this model, it is assumed that, in the complex 

systems dynamics, the complexity of interactions is replaced by non-

differentiability. Also, the motions forced to take place on continuous, 

differentiable curves in a Euclidean space are replaced by free motions, without 

constraints, that take place on continuous, non-differentiable curves (fractal 

curves) in a fractal space. In other words, for a time resolution scale that seems 

large when compared to the inverse of the largest Lyapunov exponent, 

deterministic trajectories can be replaced by a set of potential trajectories, so 
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that the notion of "defined positions" is replaced by the concept of a set of 

positions that have a definite probability density. In such a conjecture, quantum 

mechanics becomes a particular case of fractal mechanics (for the structural 

units motions of a complex system on Peano curves at Compton scale 

resolution). Therefore, the quantum theory of the measure could become a 

particular case of a fractal measure theory. One of the concepts that needs to be 

defined is that of a fractal minimal atom, as a generalization of the concept of a 

minimal atom (Gavriluţ et al., 2019). 

 

 

Conclusions 
 

An exhaustive study on the problem of atomicity with respect to set functions is 

provided. Different types of atoms are discussed, the relationships among them are 

studied and several examples and physical possible implications and applications are 
obtained. 
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Abstract. In the introductory part of the plenary lecture, an overview of nonlinear 

differential equations of heavy ball and heavy thin dick rolling along curvilinear paths 
and surfaces of different shapes were presented. This is reason that this content is omitted 

from present review paper. In the introductory part of this article, we will present 

nonlinear phenomena of motion of a heavy material point moving along a rotating, 

smooth circle around a vertical, central or eccentric axis, as well as around an eccentric 
oblique axis relative to the vertical, at a constant angular velocity. Using chomear and 

nonlinear approximations of the nonlinear differential equation in the vicinity of singular 

points of the observed dynamics, the analysis of the local dynamics of the heavy material 

point system along the rotating circle around the oblique axis is given. A mathematical 
analogy between this model and the model of the dynamics of a thin heavy disk rolling in 

a rotating circle around an eccentric-centric oblique axis is pointed out. Using linear and 

nonlinear approximations of the nonlinear differential equation in the vicinity of the 

singular points of the observed dynamics, the analysis of the local dynamics of the heavy 
material point system along the rotating circle around the oblique axisat a constant 

angular velocity is given. A mathematical analogy between this model and the dynamics 

model of a thin heavy disk rolling in a rotating circle around an eccentric-centric vertical-

oblique axis is pointed out. The central and main subject of the paper is the identification 

and presentation of nonlinear phenomena in the nonlinear dynamics of a class of 

generalized rolling pendulums, whose heavy bodies roll along curvilinear paths, lying in 

a vertical plane, rotating around a vertical axis, at a constant angular velocity. The 

bifurcation parameter of coupled rotations is identified. The bifurcation of the position of 
stable equilibrium of the generalized rolling pendulum and the corresponding 

representative singular points of the type of the stable center is described, as well as the 

stratification and transformation of phase trajectories in the phase portrait of nonlinear 

dynamics of the generalized rolling pendulum in the Earth's gravitational field, and along 
curvilinear route in rotate vertical plane around vertical axis at a constant angular 

velocity. Additionally a theorem of trigger of coupled singularities and a homoclinic 

orbit in the form of the number "eight" is graphically proofed. A series of graphs of 

characteristic equation oh nonlinear dynamics as well as series of phase portraits for 
different coefficients of curvilinear paths described by parabola, br-quadratic parabola or 

polynomials of the eighth degree is presented and sets of transformed phase trajectories 

and homoclinic oebits in the form of the number "eight" are presented, which include one 

or more triggers of coupled singular points in nonlinear dynamics of relative rolling thin 
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heavy disk along these curvilinear trace in rotate vertical plane around vertical axis at a 
constant angular velocity. 

 

Keywords: Generalized rolling pendulum, Bifurcation, Trigger of coupled singularities, 
Curvilinear rolling puth, Phase trajectory portrait, Homoclibic orbit, Theorem, 

mathematical analogy. 

 

1  Introduction 
 

This review paper presents the main content of the Plenary Lecture, which 

Author held at the international conference "CHAOS 2021 Conference", 

traditionally organized by Professor Christos H Skiadas, CHAOS Conference 

Chair. He is the "spiritus movens" of the high scientific level program of the 

series of these good conferences and the accompanying series of publications of 

papers presented at them. 

In the introductory part of the Plenary lecture, an overview of nonlinear 

differential equations of heavy ball [17, 22, 23]] and heavy thin dick rolling 

along curvilinear paths [18, 20, 21, 24] and surfaces of different shapes [23 ] 

were presented. 

Also, an overview of nonlinear differential equations and nonlinear 

equations of phase trajectories were given for a number of special rolling points 

on spherical surfaces, on a cone and on a torus (see References [24]). 

For a number of nonlinear dynamics of ball and thin disk rolling along 

curvilinear paths, phase portraits were presented with the definition of the term 

generalized rolling pendulum (see References [20]). 

This review paper of mine contains my author's original scientific 

results, one part of which has already been presented or published, and some of 

which have now been shown for the first time and have not been published 

before. The presentation begins with an introduction to the nonlinear dynamics 

of rheonomic discrete systems with coupled rotations, both with two degrees of 

mobility and one degree of freedom of movement. Such systems are described 

by one rheonomic coordinate and one independent generalized coordinate. The 

rheonomic coordinate introduces a kinematic constrain, ie kinematic excitation, 

into the system, and with the help of an independent generalized coordinate, 

which describes a degree of freedom of movement of the rheonomic system, a 

nonlinear differential equation of nonlinear dynamics of the rheonomic system 

is formed.  

 

I.1. Models of fascinating nonlinear dynamics of abstraction of 

real systems and phenomenological mapping of local dynamics 

around stationary states 
 

We first present several models of abstraction of nonlinear dynamics of 

real rheonomic mechanical systems, which simultaneously represent models of 

motion of a heavy meterail point in a circle, which rotates with a constant 

angular velocity around the centric/eccentric vertical or oblique axis (see 
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Refences [4, 8, 9, 11-14, 16, 19]), but in terms of mathematical analogy and 

models of abstraction of real systems of rigid bodies (rolling without sliding a 

thin heavy disk), which perform dynamics with coupled rotations around two or 

three passing  (no intersecting) axes. In the conditions of rotation around the 

hair, in relation to the vertical, the axis, there is another member that explicitly 

depends on both the generalized coordinate and the time.  

In this part, we focus on determining the linearization and the linear and 

nonlinear approximation of the nonlinear differential equation around stationary 

singular points. The stability as well as the instability of the system dynamics 

around stationary singular points-positions of relative rest (equilibrium) of the 

material point on the rotating circle were, also, analyzed. 

The appearance of triggers of coupled singularities [1, 6, 7, 10, 13, 15, 

26, 35] is especially pointed out, as well as the fact that the sources of chaos 

dynamics in such systems are. It is indicated how the character of local 

properties of linear and nonlinear dynamics around stationary singular points is 

examined.  

Figure 1 shows three models of structurally the same system, with one 

axis around which the circle rotates at a constant angular velocity and along 

which a heavy metal point moves.  
The difference between these three models is in the different position of 

the fixed axis, around which the circular line rotates, in relation to the horizon, 

as well as the position of the axis in relation to the center of the circular line. 

Depending on the position of the axis around which the circular line rotates at a 

constant angular velocity, the nonlinear dynamics of the relative motion of a 

material point along a circular, ideally smooth line is described by the following 

nonlinear differential equations [4, 19]: 

  tctg  coscossincos 22    

(Model in Figure 1.а.1*, за 0 )            (1) 

  0sincos2      

 (Model in Figure 1.a.2*, за 0 )             (2) 

0cossincos 2

2

22

2

2       

(Model in Figure 1.a.3*, за 0 )                             (3) 

These differential equations (1)-(3) in Petrović's terminology would be 

phenomenological differential equations (see References [4, 19]). 

Figure 1 shows models of a heavy material point moving in a rotating 

circle, at a constant angular velocity, around an eccentric axis obliquely 

positioned relative to the horizon (a.1*), or a vertical centric (a.2*) or vertical 

eccentric axis (a.3*); Figure 1.b.2* shows the phase portraits of the nonlinear 

dynamics of a heavy  material point moving along a rotating circle, at a constant 

angular velocity, around a centric (b.2*) or eccentric vertical axis (b.3*). Both 

phase portraits are in the case of the appearance of triggers of coupled 

singularities. Each of the triggers of coupled singularities contains a homoclinic 

phase trajectory in the shape of the number "eight" which intersects at a singular 

point of the unstable saddle type, and surrounds a stable center-type singular  

185



 

rh

 ph
 

  
sin  



 


 



 

  

A  

B  

O  

n


 horizont  

mgG   

m

 

t
 


 

e
 

e
 

  

 

t  

  

  

O  

C  

mg  

  

  

    

 

t  

  

  

O  

C  

mg  

  

  

e  

 
         а.1*    а.2*  а.3* 

 

b.2* 

 
 b.3* 

Figure 1. Models of a heavy material point moving in a rotating circle, at a 

constant angular velocity, around an eccentric axis obliquely positioned with 

respect to the horizon (a.1*), or a vertical centric (a.2*) or vertical eccentric axis 

(a. 3*); b* Phase portrait of the nonlinear dynamics of a difficult material point, 

moving in a rotating circle, at a constant angular velocity, around a centric 

(b.2*) or eccentric vertical axis (b.3*) 
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point on the left and onthe right side of the unstable saddle type singular point. 

The trigger of coupled singularities in the phase portrait in the Figure (1.b.2*), 

ie (1.b.3*), was created by bifurcation of a singular point of the stable center 

type. At certain values of the bifurcation parameter of the system, this singular 

point of the stable center type was transformed into a singular point of the 

unstable saddle type, and two new singular points of the stable center type 

appeared around it and a new separatrix-homoclinic phase trajectory appeared in 

the form of number "eight" with self-intersection at a singular point of the 

unstable saddle type and surround singular points of stable centre types. At 

certain values of the bifurcation parameter of the system, in the phase portrait of 

the material point nonlinear dynamics along the rotating circle there is no trigger 

structure of coupled singularities and there is no transformation of the singular 

point of the stable center type into the singular point of the unstable saddle type. 

These cases of phase portraits, which do not contain in their structure a 

substructure of triggers of coupled singularities, were not considered to be 

presented here. 

 

I.2. Linearization of a nonlinear differential equation around 

singular points and local properties of system dynamics 

We start with the linearization of the nonlinear differential equation (1) 

around the singular points, obtained for the differential equation (2) obtained 

from the previous one for
2


  . In particular, we will consider cases of 

linearizations [4, 19] around singularity: 1 * for, 1  around singularity 0  

and 2 * for 1 , around singularity  arccos . 

1* In the case that 1 , and we examine small forced oscillations 

around a singular point 0  of the center type, by linearization around it we 

obtain a linearized differential in the following form 

  tctg  cos1 22                                                         (4) 

in which we performed linearization by the following approximations 

...sin   and ...1cos  , and measured the coordinate from the singularity, 

around when we performed linearization, and introduced the assumption that the 
coordinate is small. 

From the linearized differential equation (4) we can conclude that for 

the case 1 , around a singular point 0  for small force amplitudes 

ctg2  and small values of initial angle coordinate  00    and small 

initial angular velocity  00    , that the circular frequency of natural 

oscillations is 1  , around that singular point, while the frequency   

of forced oscillations corresponds to angular velocity of a rotating circle in a 

rheonomic system. 
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 We can also conclude that when rez
 
and 2  when there is a 

resonant state for small oscillations around the singular point 0 for 1  , so 

the linearization of the differential equation can be accepted only in a very short 

time interval, while the amplitude of forced oscillation, which increases with 

time in which the system is exposed coercion, does not go beyond the assumed 

limits, which allow linearization.  

In the resonant case, the linearization around a singular point 0 , 

when 2
rez  and 2 , for given initial conditions, the solution of the linearized 

differential equation is of the form: 
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where  
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  , 2rez . 

2 * For the case when 1 , we will report the linearization around the 

singular points  arccoss , so instead of the coordinate   in the nonlinear 

differential equation (1), we enter  s   by writing:  

       tctg sss  coscossincos 22 
       (6)

 

now the coordinate   is measured from these singular points  arccoss , as 

the beginnings in which that coordinate is zero. After linearization of the 

nonlinear differential equation (6) around singular points  arccoss , the 

linearized differential equation takes the form: 

  tctgt
ctg


















 coscos

1
11 2

2

22 



      (7) 

Obtained by linearization, nonlinear differential equations around 

singular points  arccoss , the previous differential equation is reolinear and 

Mathieu-Hill type: 

  



coscos~~

2

2

h
d

d


          (8) 

whose shape coefficients are:  

 
 21   , 21

~
   и 

~
1~ 2 hctg  , t , 

A general solution to the Mathieu-Hill differential equation can be 

found in References to Mathieu’s differential equation [31, 32, 34] or Floquet, 

Annales de l’Ecole Normale, 1883..
      tpBetpAet tt

21
 

           (9) 
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in which A  and B  there are also integration constants;    is a characteristic 

exponent, and   2,1, itpi  
are periodic functions of the period 2 , which 

depend on the parameters 
~

 and ~ .     

The main problem in studying the stability around these singular 

points, which in the basic autonomous nonlinear system described by the 

autonomous nonlinear differential equation (2) represent stable centers (stable 

relative positions of the relative equilibrium of the rheonomic system, when the 

axis of rotation is vertical), and in the nonautonomous system described by 

nonlinear differential equation (1) and approximation (7) and (8), respectively, 

open more complex questions of motion stability testing around these same 

singular points. References to the solution of the solution of the Mathieu-Hill 

differential equation of the form (8) can be found in references [30, 31]. Using 

the Ince-Strutt stability map, we can determine the parameter areas by 
~

 and 

~ , in which the solutions are stable or unstable, and then conclude about the 

character of the stability of the system motion around the relative equilibrium 

position or singular points of the nonlinear differential equation (1).  

 

 I.3. Phenomenological approximate mapping of 

nonlinear dynamics 
 

In this previously presented example, linearization of nonlinear differential 
equations, we have shown that the analysis of nonlinear dynamics of a nonlinear system 

can be performed by decomposing the analysis to the analysis of local dynamics in the 

vicinity of singular points by linear mappings of dynamic phenomena into approximate 

local dynamics or linear or rheolinear and in depending on the initial conditions to study 
the properties of these dynamics. Knowing the properties of local dynamics or stable 

singular or unstable singular points, we can assemble-compose a whole of global motion 

and rare nonlinear phenomena of nonlinear system dynamics. 

This is a phenomenological mapping [28-30] of partial, linear and reolinear 
phenomena from local dynamics to global nonlinear system dynamics by analyzing the 

phenomenon of dynamics in local domains and synthesizing the results of these analyzes 

into global ones. 
We see that by approximations around some singularities, harmonic natural or 

forced oscillations occur with the possibility of the occurrence of the basic resonant state 

of local dynamics, ie in rheolinary natural or forced dynamics, with the possibility of the 

appearance of the parametric resonant state. Both the basic resonant state and the 

parametric resonant state, depending on the initial conditions, as well as the length of the 
time interval in which the nonlinear dynamical system is subjected to that local state of 

dynamics, come out of that state of dynamics, when the descriptions do not applicable, 

and stady must ro continue in global. 
The ideas of Mihailo Petrović and his mathematical or qualitative 

phenomenology [28-30] can also be recognized in these approaches. And if we take into 

account that these models of nonlinear dynamics of a heavy material point have the same 

mathematical description as the motion of a rolling rigid body (homogeneous heavy thin 

disk), which performs coupled rotations around the passing (no intersecting)  axes,  then 
Mathematical phenomenology and phenomenological mapping become the right tool for 
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searching for models of abstraction of nonlinear dynamics of real mechanical systems, 
which are described by one or more nonlinear differential equations. 

 

2 Bifurcation and trigger of coupled singularities in the dynamics of 

generalized rolling pendulums along curvilinear route in a rotating vertical 

plane at a constant angular velocity about a vertical axis 
 

In a series of References [18, 20, 21, 24] of the author of this paper, the results 

of research of nonlinear dynamics of special cases of generalized rolling pendulums on 

curvilinear line in a rotating vertical plane, at a constant angular velocity   around the 
vertical axis are presented, and a given series of phase trajectory portraits in phase 

planes. Each of these phase portraits contains at least one trigger of coupled singularities, 

consisting of a singular point of the unstable saddle type, and two singular points of the 

stable center type, surrounded by a single-separator phase trajectory in the form of 
number “eight”, which intersects at a singular point of the unstable saddle type. The 

angular velocity   of rotation of the vertical plane around the vertical axis appears as a 
bifurcation parameter, whose change can achieve the disappearance of the trigger of 

coupled singularities, or the appearance of that trigger in the phase portrait, or the 

appearance of bifurcation of a stable type sigular position, and two new singular points of 
the stable center type appear around it, and in the phase portrait a separatrix phase 

trajectory in the form of a number of “eight” that surrounds them and self-intersect at 

singular point which has lost stability and bifurcated into unstable saddle-type singular 

point. 
 In such a system, there is now a phenomenon of a bifurcation [1, 2, 3, 4], 

because the trigger of coupled singularities is now in results caused by the property of 

nonlinearity in the form of bifurcation and nonlinear dynamics of such a system. And 

with the existence of a bifurcation parameter with the change of which the trigger of 
coupled singularities appears or disappears. 

In such a system, there is at least one parameter with the change of which such 

a trigger of coupled singularities would disappear or appear, which is caused by the 

properties of both, the curvilinear path and the existence of extremums in a set of one 
maximum and two minimums of the curvilinear trajectory in the rotate vertical plane at 

constant angular velocity   around vertical axis. Bifurcation and trigger of coupled 

singularities are nonlinear properties of nonlinear dynamics of generalized rolling 

pendulum. 

For example, the ordinary nonlinear differential equation of non-linear rolling 

dynamics, non-slip, heavy homogeneous thin disk, radius r , in a circle, radius R , in a 

rotating vertical plane at a constant angular velocity    about the vertical central axis, is 
[21]: 

  0sincos
2




 


     (10) 

which   is feberalized independent coordinate,  
2

2

C

r

i
1  is the coefficient of disk 

rolling and 

  2


rR

g
  is  the bifurcation parameter  (see References [12, 15] for 

details). 
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In Figure 2, a*and  b*, shown graphic representation of the transformations, by 

changing the bifurcation parameter 

  2


rR

g
 ,  of the separatrix phase trajectories 

of the phase portrait of the non-linear rolling dynamics of a heavy homogeneous thin 

disk, radius r , in a circle, radius R , in a rotating vertical plane at a constant angular 

velocity   around the vertical central axis. These graphs are also presentation 
continuous process of bifurcations followed by change of bifurcation parameter 

  2


rR

g
  depending of angular velocity   of vertical plane rotation around 

vertical axis, and also of difference between  radiuses of rolling disk r  and circle trace 

R .  

а*  

b*  

Figure 2. Transformation of a singular point of the stable center type into an 

unstable singular point of the unstable saddle type by bifurcation into a trigger 

of coupled singularities with a homoclinic phase orbit in the form of the number 

"eight"; a* bifurcation of a stable center-type sinar point into a trigger of 

coupled singularities and b* stratification of phase trajectories by changing the 

bifurcation pathmeter 

 

The nonlinear differential equation of rolling dynamics of a heavy 

homogeneous disk in a circle in a rotating vertical plane of the central vertical 

axis at a constant angular velocity is thematically analogous to the nonlinear 

differential equation of motion of a heavy material point along a smooth circular 

191



line in a rotating vertical plane around a vertical axis at a constant angular 

velocity. We have shown a phase portrait in Fig. 1. b.2*, for the case when a 

tiger of conjugate singularities is visible. 

Figure 2 shows the transformation of a singular point of the stable 

center type into an unstable singular point of the unstable saddle type by 

bifurcation into a trigger of coupled singularities with a homoclinic phase orbit 

in the shape of the number "eight". Figure 2.a* shows the bifurcation of the 

singular point of the stable center type into the trigger of coupled singularities, 

and Figure 2.b* shows the stratification of phase trajectories by changing the 

bifurcation parameter. (see also Reference [1-3]). 

 

3 Nonlinear differential equations and phase trajectory equation of 

nonlinear dynamics of a class of rolling pendulums 
 

Reference [20] by Hedrih (Stevanović) К.R.,  titled by  “Generalized rolling 

pendulum along curvilinear trace: Phase portrait, singular points and total 

mechanical energy surface”, is the full paper of Plenary Lecture given in Mini-

symposium on Computational Aspects of Classical and Celestial Mechanics, 

Stability and Motion Control at CASTR (Computer Algebra Systems in 

Teaching and Research - CASTR'2017. Thus paper contains description of a 

generalized rolling pendulum along curvilinear trace consisting by three circle 

arches in vertical plane. Sets of three non-linear differential equations of 

dynamics of described generalized rolling pendulum along each of three circle 

arches, is presented. Three integrals of previous three nonlinear differential 

equations present a set of three equations of each of three phase trajectory 

branches which correspond to dynamics of described generalized rolling 

pendulum along each of three circle arches. Phase portrait, set of singular points 

and total mechanical energy surface are graphically presented for particular case 

of geometrical parameters of the system. Paper contains basic elements of the 

methodology for investigation of the vibro-impact dynamics of the system with 

two rolling bodies along defined curvilinear trace in successive collisions. 

Reference [21] by  Hedrih (Stevanović) К.Р.  titled by  “Rolling heavy disk 

along rotating circle with constant angular velocity” is a paper  of Plenary 

lecture in section of Mini-symposium on Computational Aspects of Classical 

and Celestial Mechanics, Stability and Motion Control included in the 

Conference Program Computer Algebra Systems in Teaching and Research 

CASTR'2015. In Abstract of this reference we read following: ”Non-linear 

differential equation of non-linear dynamics of a rolling heavy disk along 

rotating circle trace, with constant angular velocity, about central axis in vertical 

direction is derived. For this case, corresponding equation of phase trajectory 

portraits depending on kinetic parameters of the system are obtained. Existence 

of trigger  (see References [20, 21]) of coupled three singular points and 

homoclinic orbit in the form of number "eight" depending on system kinetic 

parameters and appearance of the bifurcation of relative equilibrium positions 

are investigated. Functional dependence between angle of disk relative arbitrary 

position on rotating circle trace and time of motion duration is derived. For 
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obtaining this solution, an elliptic integral is derived. For solving elliptic 

integral, series of transformations are introduced and functions under the elliptic 

integral are expanded in three series along angle of disk relative arbitrary 

position on rotate circle trace. By use obtained functional dependence between 

time of disk rolling and angle of disk relative position, discussion of different 

period duration of rolling disk oscillations along rotating circle trace about 

vertical central axis is done depending of initial conditions and constant angular 

velocity of the circle rotation”. 

Next Reference [24] titled by “Vibro-impact dynamics of two rolling heavy 

thin disks along rotate curvilinear line and energy analysis” written by  Hedrih 

(Stevanović) К.Р.  is published as original article in Journal Nonlinear Dynamics, 

Springer Nature. 

Reference [25] by  Hedrih (Stevanović) К.Р. titled by “Dynamics of a 

rolling heavy thin disk along rotate curvilinear trace on vertical plane about 

vertical axis” is an extended abstract of first presentation lecture in session of 

General Mechanics at Congress of Serbian Society of Mechanics helped in 

Sremski Karlovci 2019. In the lecture Nonlinear differential equation of 

dynamics of a rolling, without slipping, heavy thin disk along rotate general 

curvilinear trace, in vertical plane, around vertical axis with constant angular 

velocity, is presented. First integral of this nonlinear differential equation is 

presented.  First integral present the nonlinear equation of the phase trajectory in 

phase plane of a rolling, without slipping, heavy thin disk along rotate general 

curvilinear trace, in vertical plane, around vertical axis with constant angular 

velocity.  

Based on the new author's authentic research and new results, which 

represent new contributions by generalizing previous results, without the 

articleс being clear and we think that there is no need to historically present the 

results of other authors, which are mostly in the field of mathematics. 

We observe an axially symmetric heavy rigid body with one central 

plane of symmetry, which is in the case of a thin disk of radius  r , mass M , 

the axial mass inertia moment CJ  for the central axis parallel to the rolling 

axis. See Figure 3. 
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Figure 3. Geometric parameters of a rolling, without slipping, of heavy thin 

rigid discs on a rotating curvilinear trace in a vertical plane around a vertical 

axis with constant angular velocity 
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Suppose there is a curvilinear trace, determined by  xfy  , such 

that the radius of curvature of each of its concave arch is larger than the radius 

of the contour of the disc circle in the plane of symmetry, by which the disk 

rolls, without slipping, along the curvilinear trace, rotating, around the vertical 

axis with constant angular velocity  , in the rotating vertical plane. 

If we introduce the coefficient of disk rolling, without slipping, in the 

form   1
2

2

2

2

2 rrMr

CPP iiJ
, [31-34], which for thin disk is 

2

3
 , then the nonlinear ordinary differential equation of rolling, without 

sliding, a heavy rigid thin disk along a curvilinear line route in rotate vertical 

plane around vertical axis at a constant angular velocity  , is in the 

following form: 
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where  t  is rheonomic coordinate, as a kinematica eccitation, x  

independent generalized coordinate, correspond to one degree of freedom of this 

rheonomic system with two degrees of mobility. Next,  xfC  and  rxF ,  are  

expressed by dollowijg expressions (for details see Reference [4] by Hedrih 

(Stevanović) KR.): 
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Expression (14) presents axial mass inertia moment of thin disk for vertical axis 

of vertical plane rotation in which curvilinear trace of disk rolling lies. 

Then, previous integral of nonlinear differetial equation (11) finally 

take the following form: 

      
  

  
    

   
    rxfrxf

rxF

g

rxF

rMxrMxr
xx

xx

CC

P

zz ,,
,

2

,

,,,,
0

0

2
22

0 






J

JJ



 (15)  

194



where  xfC  is expressed by (13) and  rxF ,  is expressed by (12) and . 

 rMxz ,,J  is expressed by (14). 

We can now write an expression for the relative angular velocity 

 xxP
,  of thin rigid disk  relative rolling, without slipping, along a curved 

line route  xfy   in rotate vertical plane around vertical axis with constant 

angular velocity  , based on a expression:     rxFx
r

xxP ,
1

, 2

2

2    and 

previous obtained integral (15) in the following form: 

    rxFx
r

xxP ,
1

,   , and finally in the form: 
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where  xfC  is expressed by (13) and  rxF ,  is expressed by (12) and . 

 rMxz ,,J  is expressed by (14). 

 

4 Characteristic equations of nonlinear dynamics of a class of 

rolling pendulums and bifurcatuion of relative stable 

equilibrium positions 
 

In this paper, main attention is paid to a more detailed analysis of the 

characteristic equation  xK  of dynamics of the generalized rolling pendulum, 

along trajectory in rotate vertical plane at a constant angular velocity   about 

vertical axis, which was performed in [24] in the form: 
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    (17) 

and in which:  xfy   in general, or in particular cases    2kxxfy   or 

   2222 axkxxfy   or      222222 bxaxkxxfy   or  

      2224222 bxcaxkxxf   is equation of the curvilinear path, 

where a , b , c  and k  are known constants, and with the following relation 

ba  . 

For various changes of values of the angular velocity   of rotation of 

the vertical plane, in which the curvilinear path along which the generalized 
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rolling pendulum rolls is located, the numerical analysis shows the obtaining of 

the zero (roots) of characteristic equation (17), or singular points and triggers, 

each of coupled three singular points.  

 

 

5 Nonlinear phenomena in the dynamics of a class of rolling 

pendulums: Bifurcations and trigger of coupled singular points 
 

In this part of our paper, using the equation of a curvilinear trajectory 

in a rotating vertical plane, around a vertical axis at a constant angular velocity 

 :  xfy   in general, for in particular cases    2kxxfy   or 

   2222 axkxxfy   or      222222 bxaxkxxfy   or  

      2224222 bxcaxkxxf  , where a , b , c  and k  are known 

constants, and with the following relation ba  ,  we will analyze the zeros of 

the graph of the characteristic equation   0xK , defined by expression (17).  

 
Figure 4. Graphs of the curvilinear route, defined by parabola in the form 

  2kxxfy    as well as the frequency function  xK  of the nonlinear rolling 

dynamics of a rigid heavy thin disk, in a rotating vertical plane with a constant 

angular velocity   around the vertical axis defined by the equation (17): case 

with a trigger of coupled three singular points 
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The following, Figures 4-10, show, in pairs, the characteristic curves of 

the shape of the curvilinear trajectory,   2kxxfy   or    2222 axkxxfy   or 

     222222 bxaxkxxfy   or        2224222 bxcaxkxxf  , with 

the corresponding extreme points, the minimum and maximum, and the graphs 

of the corresponding characteristic equations   0xK with the corresponding 

zeros, for the cases of the indicated curvilinear paths the chosen angular velocity 

   of rotation of the system around the vertical axis. 
 Im Figures 4 and 5, graphs of the curvilinear route, defined by parabola in the 

form   2kxxfy    as well as the frequency function  xK  of the nonlinear rolling 

dynamics of a rigid heavy thin disk, in a rotating vertical plane with a constant angular 

velocity   around the vertical axis defined by the equation (17) are presented for 
different geometrical and kinetic parameters. We can see different cases of characteristic 

function graphs depending of the value of angular velocity  , which appears as a 
bifurcation parameter.  In Figure 4 a graph of characteristic equation poses thee zero 

points around minima of curvilinear trace of disk rolling and dynamics system is with a 
trigger of coupled three singular points. Analogous graph of characteristic equation  

 xK  is presented in Figure 5.b* for different values of angular velocity  , also a 

trigger of coupled three singular points exists. The graph of characteristic equation  

 xK  presented in Figure 5.a* for zero values of angular velocity 0 , is without 

any trigger of coupled three singular points and in minima of curvilinear parabolic trace 

of disk rolling no bifurcation. 

   
a*      b* 

Figure 5. Graphs of the curvilinear route, defined by parabola in the form 

  2kxxfy    as well as the frequency function  xK  of the nonlinear rolling 

dynamics of a rigid heavy thin disk, in a rotating vertical plane with a constant angular 

velocity   around the vertical axis defined by the equation (17): a* case without a  
trigger of couple three singular points and b* case with a trigger of coupled three singular 

points 

 

 

Im Figures 6 and 8, graphs of the curvilinear route, defined by be-

quadratic parabola in the form    222 axkxxfy    as well as the 
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characteristic frequency function  xK  of the nonlinear rolling dynamics of a 

rigid heavy thin disk, in a rotating vertical plane with a constant angular velocity 

  around the vertical axis defined by the equation (17) are presented for 

different geometrical and kinetic parameters. We can see different cases of 

characteristic function graphs depending ofhe value of angular velocity  , in 

which appears two bifurcation in each of two minima of curvilinear trace of disk 

rolling. 

In Figure 6, graphs of the curvilinear route, defined by equation 

   222 axkxxfy  , as well as the frequency function  expressed by 

expression    xKxh   of the nonlinear rolling dynamics of a rigid heavy thin 

disk, in a rotating vertical plane with a constant angular velocity around the 

vertical axis defined by the equation (17)  are presented. In Figure 6 graph of 

characteristic equation poses thee zero points around each of two minima of 

curvilinear trace of disk rolling and dynamics system is with two triggers, each 

of coupled three singular points. Analogous graph of characteristic equation  

 xK  is presented in Figure 7 for different values of angular velocity  , also 

two triggers, each of coupled three singular points. The graph of characteristic 

equation   xK , for zero values of angular velocity 0 , is without any 

trigger of coupled three singular points and in each of two minima of curvilinear 

be-parabolic trace of disk rolling no bifurcation. 

 

 

 
Figure 6.  Graphs of the curvilinear route, defined by be-quadratic parabola in the form  

   222 axkxxfy    as well as the frequency functions  xK  of the nonlinear 

rolling dynamics of a rigid heavy thin disk, in a rotating vertical plane with a constant 

angular velocity   around the vertical axis defined by the equation (17 ): case with a 
trigger of coupled three singular points 
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Figure 7. Detail of the graph of the frequency functtion  xK  of nonlinear 

rolling dynamics of a rigid heavy thin disk, along a curvilinear path in a rotating 

vertical plane with constant angular velocity   around the vertical axis, 

defined by the equation    222 axkxxfy  : detail shows the 

phenomenon of bifurcation of a stable singular point centre type into unstable 

saddle-type brush and basket of two new stable singular points center type  

around - appearance of a trigger of coupled three singular points 
 

 
Figure 8.  Graphs of the curvilinear route, defined by be-quadratic parabola in the form  

   222 axkxxfy    as well as the frequency functions  xK  of the nonlinear 

rolling dynamics of a rigid heavy thin disk, in a rotating vertical plane with a constant 

angular velocity   around the vertical axis defined by the equation (17 ): case with a 
trigger of coupled three singular points 
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In Figure 7, detail  of the graph of the frequency functtion 

   xKxh  , from Figure 6,  of nonlinear rolling dynamics of a rigid heavy 

thin disk, along a curvilinear path in a rotating vertical plane with constant 

angular velocity   around the vertical axis, defined by the equation 

   222 axkxxfy  : detail shows the phenomenon of bifurcation of a stable 

singular point centre type into unstable saddle-type brush and basket of two new 

stable singular points center type  around - appearance of a trigger of coupled 

singularities, are visible around a of two minima in trace of rolling in the form 

of be-quadratic parabila..  

 
Figure 9.   Two graphs of the curvilinear route, defined by polynomial equation 

     222222 bxaxkxxfy  , as well as the frequency function    xKxh   of 

the nonlinear rolling dynamics of a rigid heavy thin disk, in a rotating vertical 

plane with a constant angular velocity   around the vertical axis defined by 

the equation (17): case with a series of the four  triggers, each of coupled three 

singular points 

 

 
 In Figure 9, two graphs of the curvilinear route, defined by polynomial 

expression       222222 bxaxkxxfy  , as well as the frequency 

function    xKxh  , defined by the equation (17),  of the nonlinear rolling 

dynamics of a rigid heavy thin disk, in a rotating vertical plane with a constant 

angular velocity   around the vertical axis are presented. Series of triggers 

each of three coupled singular poits  are visible around each of four minimum 

4,3,2,1, sCs  of curvilinear route of disk rolling. There are four minima 
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4,3,2,1, sCs  in which and around which appear in total four bifurcations 

and four triggers of coupled singularities, and three maxima 3,2,1, sSs
 

around which no appearing bifurcations. Four bifurcations and four triggers of 

coupled singularities occur 4,3,2,1,  sTC ss  in each point of the four 

minimums 4,3,2,1, sCs  are visible in this Figure  9. 

 
Figure 10.   Detail, of Figure 9, of the graph of the frequency functtion 

   xKxh   of nonlinear rolling dynamics of a rigid heavy thin disk, along a 

curvilinear path in a rotating vertical plane with constant angular velocity   

around the vertical axis, defined by the equation      222222 bxaxkxxfy  : 

detail shows the phenomenon of bifurcation of two stable singular points each 

of a stable centre type into unstable saddle-type brush and basket of two new 

stable singular points center type  around each - appearance of two triggers each  

of coupled three singular points 

 

 

201



 In Figure 10, detail, of Figure 9, of the graph of the frequency functtion 

   xKxh   of nonlinear rolling dynamics of a rigid heavy thin disk, along a 

curvilinear path in a rotating vertical plane with constant angular velocity 

around the vertical axis, defined by the equation      222222 bxaxkxxfy   is 

presented. Detail shows the phenomenon of bifurcation of two stable singular 

points each of a stable centre type into unstable saddle-type brush and basket of 

two new stable singular points center type  around each - appearance of two 

triggers each  of coupled three singular points 

 

 

6 Phase trajectory portraits in the noнlinear dynamics of a 

class of rolling pendulums and structural analysis: 

Bifurcations, layering of phase trajectories, trigger of coupled 

singularities 
 

In this part of our paper, using the equation of a curvilinear trajectory 

in a rotating vertical plane, around a vertical axis at a constant angular velocity 

 :  xfy   in general, for in particular cases    2kxxfy   or 

   2222 axkxxfy   or      222222 bxaxkxxfy   or  

      2224222 bxcaxkxxf  , where a , b , c  and k  are known 

constants, and with the following relation ba  ,  we will analyze the structure 

of phase portraits using the equation of phase trajectories in the form (16), in the 

phase plan  - the relative angular velocity  xxP
,  of thin rigid disk  relative 

rolling, without slipping, along a curved line route  xfy   and independent 

generalized coordinate x , i.e. in the form (15), in the phase plane a 

derivative  xxx     of the independent generalized coordinate and the 

independent generalized coordinate x . 

The following Figures 11-15 show the characteristic phase portraits of 

the nonlinear rolling dynamics of a heavy thin, rigid disk along curvilinear paths 

of curvilinear path shape,   2kxxfy   or    2222 axkxxfy   or 

     222222 bxaxkxxfy   or        2224222 bxcaxkxxf  , with 

corresponding extreme points, minimum and maximum. We use the findings 

from the analysis of the number of zeros and the existence of triggers of coupled 

singular points, which we conducted in the previous chapter of this paper, by 

analyzing the number of zeros of the characteristic equation    xKxh   for a 

certain shape of the curvilinear trajectory, and for the corresponding value of the 

bifurcation parameter - the angular velocity   of rotation of the vertical plane 

around the vertical axis. 

In order to obtain one of the phase portraits, it is necessary to draw a 

series of phase trajectories for different values of the initial conditions, using the 
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equation of phase trajectories in the form (16), in the phase plane- the relative 

angular velocity  xxP
,  of thin rigid disk  relative rolling, without slipping, 

along a curved line route  xfy   and independent generalized coordinates 

x , i.e. in the form (15), in the phase plane a derivative  xxx    of the 

independent generalized coordinate x  and the independent generalized 

coordinate x . From an infinite set of phase trajectories, we choose 

characteristic series, as well as separatrix phase trajectories-hmoclinic phase 

trajectories, which separated individual series of phase trajectories, which 

describe similar properties of the dynamics of the studied nonlinear dynamics. 

 

 
Figure 11.  A phase portrait of the dynamics of a generalized rolling pendulum, 

which rolls, without slipping, along a curvilinear path defined by a parabola in 

the form   2kxxfy  , where k , is a known constant, in a stationary 

vertical plane, 0 , and in Earth’s field of gravity, in phase coordinates  

 xP , x   and a phase trajectory in phase plane  xxx   , x   

 

In Figure 11 a phase portrait of the dynamics of a generalized rolling 

pendulum, which rolls, without slipping, along a curvilinear path defined by a 

parabola in the form   2kxxfy  , where k , is a known constant, in a 

stationary vertical plane, 0 , and in Earth’s field of gravity, in phase 
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coordinates   xP , x   and a phase trajectory in phase plane  xxx   , x  

are presented. 

 

 
Figure 12.  A phase portrait of the dynamics of a generalized rolling 

pendulum, which rolls, without slipping, along a curvilinear path defined by a 

polynomial of the four degree  in the form    222 axkxxfy  , where 

a  and k , are known constants, in a rotate vertical plane around the vertical 

axis at a constant angular velocity  , and in Earth’s field of gravity, in phase 

coordinates   xP , x   

 

 

In Figure 12 a phase portrait of the nonlinear dynamics of a generalized 

rolling pendulum, which rolls, without slipping, along a curvilinear path defined 

by a polynomial of the four degree  in the form    222 axkxxfy  , as a 

be-quadratic parabola,  where a  and k , are known constants, in a rotate 

vertical plane around the vertical axis at a constant angular velocity  , and in 

Earth’s field of gravity, in phase coordinates   xP , x  is presented.  

The same Figure 12, also, shows the curvilinear path of the shape of 

the square parabola of the equation    222 axkxxfy   along which the 

disk rolls. This path has two minimums and one maximum. At the selected 

value of the angular velocity   of rotation around the vertical axis of the 

vertical plane in which the curvilinear trajectory is, bifurcation and trigger of 
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coupled singular points occur around each minimum trajectory, as we 

determined by analyzing the zeros of the characteristic equation    xKxh  . 

From the structure of the phase portrait from Figure 12, we see that it 

contains two types of separatrix trajectories - homoclinic orbits in the shape of 

the number "eight". One of these homoclinic orbits self-intersects at a singular 

point of the unstable saddle type, which corresponds to the maximum of the 

curvilinear trajectory and exists in the phase portrait and when the disk rolls 

along a stationary path and then surrounds two singular points of stable cevtar 

type on each side of the singular point of stabile center cprrespomding to 

minima od trace of rplling. 

When the curvilinear trajectory is in a rotating vertical plane, around 

the vertical axis at a constant angular velocity, and when bifurcation of each of 

the singular points of the stable center type occurs at the minimum of the 

curvilinear trajectory, then this phase trajectory surrounds on each side of the 

self-intersection unstable saddle type point. Each of these triggers was created 

by bifucation and contains two singular points of the stable center type and one 

singular point between them of the unstable saddle type. 

The other two separatrix  phase trajectories in the shape of the number 

"eight" intersect at singular points of the unstable saddle type of each of the 

formed triggers of coupled singularities, about two minimum curvilinear paths 

along which a thin disk rolls. They mean that in the observed phase portrait, two 

types of triggers of conjugated singularities appeared with bifurcation. 

One homoclinic orbit in the form of number “eight” contains two 

coupled triggers of coupled singular points, and two homoblinic orbits in the 

form of number  “eight” contains each ine trigger of coupled singular points. 

The term trigger of coupled singular points contains three singular 

points, one type of unstable saddle and two types of stable centers, and was 

created by bifurcation of a singular point of the stable center type. The term 

trigger of coupled singularities includes a trigger of coupled singular points  and 

a trajectory separatrix-homoclinic orbit in the form of number “eight” with a 

self-intersect at a no stable seddle type singular point and sournd teo singular 

points stable centre types. 

We can conclude that this phase portrait contains two triggers of 

coupled singularities and one trigger of coupled triggers of coupled singularities, 

because it surrounds two triggers of coupled singularities. 

In Figure 13 a phase portrait of the dynamics of a generalized rolling 

pendulum, which rolls, without slipping, along a curvilinear path defined by a 

polynomial of the four degree  in the form    222 axkxxfy  , be-

quadratic parabola, where a  and k , are known constants, in a rotate vertical 

plane around the vertical axis at a constant angular velocity  , and in Earth’s 

field of gravity, in phase coordinates   xP , x  and a phase trajectory in 

phase plane  xxx   , x  are presented. 
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Figure 13.  A phase portrait of the dynamics of a generalized rolling pendulum, 

which rolls, without slipping, along a curvilinear path defined by a polynomial 

of the four degree  in the form    222 axkxxfy  , be-quadratic 

parabola, where a  and k , are known constants, in a rotate vertical plane 

around the vertical axis at a constant angular velocity  , and in Earth’s field of 

gravity, in phase coordinates   xP , x  and a phase trajectory in phase plane 

 xxx   , x   

In Figure 14 a phase portrait of the dynamics of a generalized rolling 

pendulum, which rolls, without slipping, along a curvilinear path defined by a 

polynomial of the eighth degree  in the form 

     222222 bxaxkxxfy  , where w a , b  and k , are known 

constants, in a rotate vertical plane around the vertical axis at a constant angular 

velocity  , and in Earth’s field of gravity, in phase coordinates   xP , x   is 

presented.  

We can conclude that, in the observed case, in the phase trajectory 

portrait, from Figure 14, three types of separatist phase trajectories - homoclinic 

orbits in the shape of the number  "eight" are observed:  
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 The first type of separatrix phase trajectories surrounds only three 

coupled singular points, two types of stable center and one type of unstable 

saddle, which is intersect, and all these elements represent a trigger of first order 

coupled singularities. There are as four triggers of coupled singularities as there 

are four minimum of the rolling paths and in this case. 

 
Figure 14.  A phase portrait of the dynamics of a generalized rolling pendulum, 

which rolls, without slipping, along a curvilinear path defined by a polynomial 

of the eighth degree  in the form      222222 bxaxkxxfy  , where 

w a , b  and k , are known constants, in a rotate vertical plane around the 

vertical axis at a constant angular velocity  , and in Earth’s field of gravity, in 

phase coordinates   xP , x   

 

  

The second type of separatrix phase trajectories surrounds two triggers 

of coupled singularities and only intersects at one singular point of the unstable 

saddle type between them. There are two such separatrix phase trajectories in 

the studied phase portrait.  

The third type of third-order homoclinic orbits surrounds one second-

order homoclinic orbit, as well as two first-order homoclinic orbits. Here, in the 

observed case, in the phase trajectory portrait, in Figure 14, there is only one 

such homoclinic orbit - the separatrix phase trajectory, and it surrounds all four 

triggers of coupled singularities, each of which is about one of the four 

minimum positions on the generalized rolling pendulum rolling path. 

Between these separatrix phase trajectories in phase trajectory portrait, 

are regular closed phase trajectories corresponding to periodic rolls of the 
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generalized rolling pendulum with corresponding periods of oscillatory rolling 

which depend on the initial conditions and the value of total mechanical energy 

which achieves conservative nonlinear dynamics, and the number of equilibrium 

positions on the path through which the body passes for a period of one rolling 

oscillation. 

 
Figure 15.  A phase portrait of the dynamics of a generalized rolling pendulum, 

which rolls, without slipping, along a curvilinear path defined by a polynomial 

of the eighth degree  in the form      222222 bxaxkxxfy  , where 

w a , b  and k , are known constants, in a rotate vertical plane around the 

vertical axis at a constant angular velocity  , and in Earth’s field of gravity, in 

phase coordinates   xP , x   

 

 In Figure 15 a phase portrait of the dynamics of a generalized rolling 

pendulum, which rolls, without slipping, along a curvilinear path defined by a 

polynomial of the eighth degree  in the form 

     222222 bxaxkxxfy  , where w a , b  and k , are known 

constants, in a rotate vertical plane around the vertical axis at a constant angular 
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velocity  , and in Earth’s field of gravity, in phase coordinates   xP , x  is 

presented/ 

By analyzing the shape of the paths along which the body of the 

generalized rolling pendulum rolls, without slipping, as well as by analyzing a 

series of phase portraits and the structure of sangular points in them, as well as 

structural stability and sensitivity to changes in the system's bifurcation 

parameters, bused on series published author’s References [11, 12, 15, 29] , as 

well as a large number of numerical experiments and obtained different graphs 

of nonlinear phenomena in nonlinear dynamics of generalized rolling pendulum,  

a new theorem of bifurcation and of trigger of coupled singularities can be 

defined in the following formulation: 

 

Theorem on bifurcation and on the trigger of coupled singularities in 

the dynamics of generalized rolling pendulums along curvilinear routes in a 

rotating vertical plane around a vertical axis at a constant angular velocity: 

Let the curved line, given with  xfy  , for which it is valid    xfxf  , and 

which has at the points for extreme values    ssss xfyxEX ,  for   0
sxf , 

the minimums   ssss xfyxC ,  for   0
sxf ,   0

sxf , and the maxima 

  ssss xfyxS ,  for   0
sxf ,   0

sxf , the curvilinear route, along 

which rolls, without slipping, a heavy homogeneous thin disk, of radius 0r , 

and let it located in the Earth's gravitational field, and in the vertical plane, 

which rotates around the vertical axis, at a constant angular velocity 0 . The 

characteristic equation for determining the singular points, as well as the 

position of the relative equilibrium of the disk on the curvilinear path, in the 

vertical rotating plane around the vertical axis at a constant angular velocity 

0 , is of the form: 
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in which it is   1
2

2

2

2

2 rrMr

CPP iiJ , that is 
2

3
 , the rolling coefficient of 

the disk, because is 
44

24 r
M

r
z  CJ  and  22

2

3
MrMrP  CJJ , and g  

the acceleration of the Earth is heavier. Around each extremum of the 

curvilinear trajectory, which is the minimum defined by   ssss xfyxC ,  for 

  0
sxf ,   0

sxf , in the dynamics of thin dick rolling, triggers of 

conjoined singularities appear, and around each extremum, which is maximum 

defined with   ssss xfyxS ,  for   0
sxf ,   0

sxf , there is no trigger of 

coupled singularities (see Figures 11, 12, 13, and 14).  
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6 Concluding remarks  

 
The paper presents an analogy [5, 28-30] of the nonlinear dynamics of a heavy 

material point along curvilinear paths in a rotating vertical plane, at a constant angular 

velocity, around a vertical axis and the nonlinear dynamics of a generalized rolling thin 

heavy  disk pendulum along the same curvilinear paths in both these cases. One theorem 
are presented and additionally graphically proofed. The theorem describes the process of 

bifurcation and occurrence and disappearance of triggers of coupled three singular points 

in the local area of the minimum of curvilinear paths in rotating vertical planes, at a 

constant angular velocity around the vertical axis, caused by the angular velocity of 

rotation as a vifurcation parameter. 

 

Based on a numerical experiment with various curvilinear rolling routes, a large 

number of graphs of the characteristic function of nonlinear dynamics of generalized 
rolling thin heavy disk pendulum, were obtained, such as phase trajectory portraits of 

nonlinear dynamics of a generalized rolling thin heavy disk pendulum along curvilinear 

paths in a rotating vertical plane at different values of constant angular velocity about a 

vertical axis, also are presented. 
 

From a large number of obtained graphics, the most characteristic examples were 

selected and presented in the paper. The results of previous published author’s references 

for particular examples of the shape of curvilinear paths along which the thin heavy disk 
of a generalized rolling pendulum rolls were also usedas initial ideas fpr research 

continuations. 

The observed bifurcation and triggers of coupled singularities is a property of the 

nonlinear dynamics of generalized rolling thin heavy disk pendulums along rotating 
curvilinear route about vertical axis at a constant angular velocity. Identification of the 

triggers of coupled singularitues in the cuples rotations in system dynamics is very 

important for explanation of numerous phenomena in real engineering system dynamics. 
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Abstract. The substitution boxes are an open challenge due to not meeting the
theoretical criteria of a good S-box. Recently, the use of chaos in the design of
efficient S-boxes was proposed. In this article, after introducing a new quantum
system, we examine its effect on the formation of chaotic S-boxes. We compare the
proposed quantum chaotic map with previous results. Also, in the previous work,
the PSO algorithm was improved with the help of the classical map and then used
in the optimization of chaotic S-boxes. We are using and improving the performance
of PSO in generating the S-box, by the introduced quantum chaotic map. Then, by
changing the type of optimization, we examine its effects. For the first time, the
harmony search algorithm is improved by the said quantum map, and then we use it
to optimize the produced chaotic S-box. By examining the performance of generated
S-boxes by common attacks such as nonlinearity, BIC, SAC, LP, and DP. The results
for the improved harmony search algorithm is better.
Keywords: Quantum dynamical map, Substitution box(S-box), Harmony search
algorithm, Particle swarm optimization(PSO), Nonlinearity.

1 Introduction

Many researchers in recent decades, to achieve higher security, have combined
the two fields of chaos and cryptography under the heading of chaotic-based
cryptography [1–4]. Due to their many applications, quantum dots are one
of the favorite topics of researchers. So far, quantum dots have been used
in solar cells [5], diodes [6], medical imaging [7], and quantum computing [8].
When quantum dots are paired with other quantum dots or external fields,
They have a long periodicity, making them suitable for use in cryptography.
The National Institute of Standards and Technology (NIST) proposed the Data
Encryption Standard (DES) for the encryption and decryption process in 1977
[9], which was replaced by the AES symmetric-key algorithm in 2001 [10]. S-
box, which performs confusion, has been widely employed in traditional cryp-
tographic standards such as DES and AES. Making efficient boxes is a major
issue for security experts. Recently, some S-box algorithms based on the chaotic
map have been proposed [11–14]. Then optimization algorithms are used to
improve the performance of chaotic S-boxes [11,15,16]. All optimizers require
a fitness function, which ref. [11] shown to use nonlinearity fitness for better
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results. In this reference, classical maps are proposed to improve the perfor-
mance of the PSO algorithm. Considering the theoretical criteria of a good
S-box, there is a need to form new S-boxes.
In this work, a quantum map is replaced by a classical map. Also, the harmony
search algorithm is replaced with the PSO algorithm to investigate the effect
of the type of optimization.
The paper continues as follows: In Section 2, preliminary is proposed that in-
cludes the introduction of quantum dots and the study of their behavior. In
section 3, S-box criteria are presented. Sections 4 includes the algorithm for
creating improved PSO and optimized S-box. Improved HS and optimized S-
box is offered in Section 5. Section 6 provides an analysis of the performance
of the S-boxes. Finally, a conclusion is proposed.

2 Preliminary

We introduce a generalized Dicke model presenting a new quantum chaotic
map. It also investigates the chaos of this created system.

2.1 The maps of generalized Dicke model

The dynamical system governed by a generalized Dick Hamiltonian form is
constructed as follows:

H = a†a+ ωAJz +
γ√
N

(a† + a)(J− + J+) +
γ√
N
V (J−, J+)

Σnδ(t− nT ). (1)

In fact, we consider delta function added to Dicke Hamiltonian. where, a and
a† are respectively bosonic annihilation and creation operators. The parameter
~ω̃A denotes the energy separation of N two-level atoms [17]. We assume that
~ = 1, ωA = ω̃A/ω̃f ≥ 0, and ω̃f is the field of frequency. γ = γ̃/ω̃f is the
coupling parameter. Furthermore, Jz and J± are the atomic relative population
operator and the atomic transition operator, respectively [18]. In reference [12],
we introduced a chaotic mapping based on this Hamiltonian.

< J+(n+1) >= α
(
< J+(n) > − < J−(n)J+(n) >

)
. (2)

According to previous studies for quantum systems [19], here in the same way
map with quantum corrections for a system of coupled quantum dots is ex-
tracted. To appear the effect of the quantum correlations using J+ =< J+ >
+ δJ+ and J− =< J− > + δJ−, we have:

< J+(n+1) >= r
(
< J+(n) > − < J−(n) >< J+(n) >

)
−

r < δJ−δJ+ > . (3)

Taking time derivation of (δJ+δJ−) implies

d

dt
(δJ+δJ−) = δJ̇+δJ− + δJ+δ ˙J−. (4)
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Next, by applying< δJ+(nT )δJ−(nT ) >=yn , < δJ+δJ+ >=zn , < J+(nT ) >=xn,
we obtain (See Appendix A):


Xn+1 = r(xn − x2n)− ryn

Yn+1 = −yn + re−β((1− xn + e2β − xne2β)yn − znxn − e2βznxn)

Zn+1 = −zne2β + reβ(2zn − 2xnzn − xnyn − ynxn)

. (5)

The equations (5) give the lowest-order quantum corrections. For convenience,
we consider that β = iwAT [20]. The sensitivity of the map to its initial
values are shown in Fig. 1.1. We plotted Fig. 1.1 for constant parameter
r = 9, b = 0.5, y0 = 0.435 and z0 = 0.777 as well as variable initial condition
x0 = 0.423 and x0 = 0.424. Lyapunov exponent curve are seen in Fig. 1.2.

Fig. 1. (1) The sensitivity of the chaotic map to initial values the maps of generalized
Dicke model for x0 = 0.423 and x0 = 0.424 where the control parameter r = 9, b = 0.5,
y0 = 0.435 and z0 = 0.777. (2) The variation of the Lyapunov exponent the maps of
generalized Dicke model in term of parameters r.

3 S-box criteria

An n∗m S-box is a nonlinear mapping S : Vn → Vm, where Vn and Vm represent
the vector spaces of n, m elements from GF (2). Important tests to check the
performance of S-box are nonlinearity (NL), strict avalanche criterion (SAC),
bit independence criterion (BIC), linear approximation probability (LP), and
differential approximation probability (DP).

3.1 Nonlinearity

The nonlinearity value is calculated from the following equation:

N = 2n−1 − 1

2
max
a∈Bn

∣∣∣∣∣ ∑
x∈Bn

(−1)
f(x)+a.x

∣∣∣∣∣
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where B = {0, 1}, f : Bn → B, a ∈ Bn and a.x is the dot product between
a and x (see [21] for example). Since the affine functions are weak in terms
of cryptography, the similarity of the Boolean function variable of S-box is
measured with the affine variable.

3.2 Strict avalanche criterion (SAC)

Webster and Tavares introduced SAC. If one bit in the input of Boolean func-
tion changed, half of the output bits should be changed [22]. The value of
SAC=0.5 is necessary for passing this test.

3.3 Bit independence criterion (BIC)

BIC, which calculate the independence of the avalanche vectors sets, is a de-
sirable feature for any encryption transformation for S-box analysis (Webster
and Tavares defined this test in [22]). If one changes the inverse of input single
bits, these sets are created [23].

3.4 Linear approximation probability (LP)

LP [24] is:

LP = max
a,b6=0

∣∣∣∣#{x|x.a = f(x).b}
2n

− 0.5

∣∣∣∣
where a, b are the input and output masks, and the set x contains all the
possible inputs, and 2n is the number of its elements. The maximum value of
imbalance in the event between input and output bits is called LP. Low LP is
necessary for resistance against linear attacks.

3.5 Differential approximation probability (DP)

DP is:

DP = max
∆x 6=0,∆y

(#x ∈ X, fx ⊕ f(x+∆x) = ∆y/2
n)

where X shows the set of all possible input values, and 2n is the number of its
elements. DP which calculate XOR the distribution between input and output
bits of S-Box is introduced by Biham and Shamir [25]. The closer distribution
between the input and output bits is necessary for resistance against differential
attacks.

4 Improved PSO and optimized S-box

In PSO, the swarm consists of particles, each one representing a potential so-
lution in the optimization problem. These particles have position and velocity.
The PSO algorithm uses the unified function for the initial population and
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the rand function to update the speed and position. In this paper, we use a
quantum map for the initial population. Instead of the rand function, once
we use the quantum map and for the second time, the classical hierarchy of
rational-order chaotic maps (the best result of ref. [11]) (See Fig. 1). As can be
seen, the best results are obtained for improved PSO with quantum maps and
the hierarchy of rational-order chaotic maps(See Fig.2). Now we use this opti-
mization algorithm to get the best S-box based on the highest nonlinear value
(see Appendix B). The best S-box is seen in Table 2. The highest obtained
nonlinearity value is 106.

5 Improved HS and optimized S-box

Zong Woo Geem et al. in 2001 developed Harmony search which is a music-
based metaheuristic algorithm [26]. It used to solve many optimization prob-
lems such as function optimization, engineering optimization [27], water dis-
tribution networks [28]. To enhance the global convergence and to prevent to
stick on a local solution, different HS methods based on chaotic maps have
been proposed [29]. The improved HS(See Fig.3) steps and its application for
optimizing the designed chaotic S-box are discussed. The steps of the algorithm
are as follows:

step 1 Enter improved HS parameters (number of decision variables, decision
variables matrix size, Maximum number of iterations, Harmony Memory
size, number of new Harmonies, Harmony Memory consideration rate, Pitch
Adjustment rate, Fret width(Band width), Fret width Damp ratio) and
r = 5.5, β = 0.5 for Eq. 5.

step 2 Initialize Harmony Memory using liana function(liana function produce
random number between 100 and 120 by using Eq. 5).

step 3 Creation of S-box based on quantum map Eq. 5:
1- Enter r = 5.5, β = 0.5 for Eq. 5 (consider Fig. 1).
2- Pass the transition state by repeating the map Eq. 5.
3- We create empty 16 ∗ 16 box.
4- Repeat the map Eq. 5 and select x(f).
5- The S-box numbers are obtained:

S(i) = x(f) ∗ 105mod256

6- The process continues from 4 and select different S(i).

step 4 Calculation of nonlinearity for all Harmony Memory positions.
step 5 Sort Harmony Memory from MAX to MIN.
step 6 Update Best solution ever found.
step 7 Create new Harmony position using liana function.
step 8 Pitch Adjustment using nafis function(nafis function produce random

number between -1 and 1 by using Eq. 5).
step 9 If Nonlinearity(new position)¿best solution save S-box.
step 10 Merge Harmony memory and new Harmonies.
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step 11 Sort Harmony Memory from MAX to MIN.
step 12 Update Best solution ever found.
step 13 Save Best Nonlinearity.
step 14 If iteration finished, print Best Nonlinearity.

Optimized S-box creation algorithm using improved HS algorithm with quan-
tum maps is presented in Fig. 4. The created S-box are seen in Table 3. Fig. 5
shows best nonlinearity of optimized S-box with nonlinearity fitness function for
improved PSO algorithm with quantum maps and hierarchy of rational-order
chaotic maps and improved HS algorithm with quantum maps.

Fig. 2. The variation of the cost function (sphere) for (1) PSO algorithm with unifrnd
and rand functions (2) Improved PSO algorithm with quantum maps (3) Improved
PSO algorithm with quantum maps and hierarchy of rational-order chaotic maps.

Fig. 3. The variation of the cost function (sphere) for (1) HS algorithm with unifrnd
(2) Improved HS algorithm with quantum maps.
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Fig. 4. Optimized S-box creation algorithm using improved HS algorithm with quan-
tum maps.

Fig. 5. Best nonlinearity of optimized S-box for (1) Improved PSO algorithm with
quantum maps and hierarchy of rational-order chaotic maps (2) Improved HS algo-
rithm with quantum maps.

6 Security analysis

The security of any encryption is measured by its key(the keyspace size more
than 2100 [30,31]). We prob the keyspace of a quantum map to create the
S-box. The order of complexity for decoding is:

T (r, β, x0, y0, z0) = θ(r × β × x0 × y0 × z0)

If the computer’s analysis power is 1016 decimal, the accuracy for each variable
is 10−16. The number of these parameters for the quantum map in Eq. 5, is
5. So the keyspace for each is 1080(2265). These spaces could resist all types of
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brute-force attacks.
Table 4 represent nonlinearity, SAC, BIC, LP and DP results for new S-boxes
and compares with the other results.

7 Conclusion

We are using the introduced quantum map based on quantum dots to gener-
ate chaotic S-boxes. The proposed map results, improving in performance of
introduced PSO and HS optimization algorithms. In comparing the with clas-
sic ones, it is effectively acting on generation the S-box. The obtained results
show the importance of optimization algorithms in generating the S-box. The
Harmony search algorithm for the known sphere function has a weaker answer
than the PSO algorithm. In optimizing chaotic S-boxes, the use of Harmony
search algorithms produces better results. The introduced S-boxes can be used
in all image encryption, steganography, watermarking, and quantum digital
signatures to increase security.
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99 206 2 73 228 88 191 176 6 101 211 98 231 153 62 207

164 179 49 195 108 31 141 8 185 57 27 249 91 128 209 154

252 201 138 205 247 76 60 165 14 55 5 56 12 238 139 240

149 125 192 54 188 183 39 229 193 117 180 13 233 146 30 150

214 97 106 82 35 109 131 230 173 152 127 182 41 25 47 236

92 196 160 122 242 111 34 220 212 81 175 170 77 118 132 4

26 145 119 168 15 187 63 136 7 148 181 123 17 221 241 53

254 250 255 67 1 239 93 103 46 226 157 90 167 51 184 105

72 219 140 133 194 203 59 115 232 70 246 243 199 112 142 224

19 42 213 186 177 66 94 68 129 79 21 256 234 80 172 223

171 58 74 156 126 38 16 33 48 178 78 52 114 143 104 23

200 32 251 151 216 237 65 89 28 190 75 202 83 159 69 245

20 96 45 225 9 50 174 113 137 95 198 44 162 244 18 87

210 130 102 61 107 85 215 147 248 43 71 29 64 24 121 100

116 134 22 155 124 135 217 235 189 163 11 253 144 3 84 218

204 110 86 208 158 10 197 161 120 222 37 169 40 36 227 166

Table 1. New S-box for the map of the Eq. 5

185 241 245 54 115 154 198 63 190 228 29 94 177 213 186 240

192 191 28 200 208 193 194 238 34 244 188 132 254 164 107 2

151 239 125 128 171 231 181 96 220 71 21 204 43 101 39 95

256 33 41 218 127 141 137 230 207 201 44 4 102 124 70 10

248 153 212 13 158 119 69 1 143 167 14 3 195 121 206 6

81 17 152 82 111 210 109 113 199 27 140 211 131 148 233 112

48 221 92 253 187 57 243 60 217 78 234 130 116 173 216 120

31 227 246 179 83 7 162 196 232 23 182 47 45 126 72 91

90 76 62 215 30 169 88 222 99 172 176 237 136 189 139 100

197 235 64 156 229 77 87 142 157 98 166 105 51 183 61 59

106 38 68 67 144 155 202 247 40 123 104 174 147 122 163 117

79 36 255 22 37 236 20 74 32 138 223 165 35 86 97 226

58 19 110 209 108 114 103 118 25 9 50 5 160 12 129 252

65 24 149 16 249 52 224 184 55 66 178 225 219 150 242 93

11 53 49 84 175 146 205 15 26 56 89 18 250 159 180 8

170 214 42 133 46 161 75 145 134 85 203 80 251 73 168 135

Table 2. New optimized S-box for the map of the Eq. 5 with improved PSO algorithm
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206 4 51 105 57 121 73 247 36 152 101 109 18 134 119 173

25 222 43 122 78 242 30 110 83 114 12 65 23 185 58 138

141 96 1 64 209 135 116 126 156 226 212 84 237 238 160 128

47 255 103 253 40 67 98 229 153 225 14 8 66 29 99 217

21 155 146 219 37 246 181 227 108 17 171 220 7 52 256 94

89 130 211 20 77 133 82 190 24 10 50 44 62 120 136 234

224 208 80 3 163 251 245 195 148 143 203 235 113 72 216 117

144 115 16 142 162 111 70 193 191 38 177 174 213 165 194 86

145 42 34 45 202 204 22 158 139 31 157 75 92 180 241 198

11 188 61 26 151 132 197 39 233 207 97 170 184 68 214 104

149 182 35 49 112 189 60 140 107 239 56 100 199 150 87 186

250 231 196 187 33 19 168 161 46 183 249 76 221 2 93 95

9 201 240 91 13 90 192 236 223 125 28 5 147 131 244 129

230 41 71 210 254 167 69 200 27 205 48 54 228 85 172 218

166 176 248 55 159 106 88 102 15 243 59 164 6 53 124 179

81 178 252 169 154 32 123 118 63 74 79 232 137 175 127 215

Table 3. New optimized S-box for the map of the Eq. 5 with improved HS algorithm

- Nonlinearity SAC BIC-Nonlinearity BIC-SAC LP DP

New S-box 105.5 0.512939 103.714 0.140625 10
New optimized S-box with PSO 106 0.499512 103.5 0.500837 0.132813 10
New optimized S-box with HS 106.5 0.501465 104.071 0.498047 0.132813 10
[11] 106.5 0.503662 102.857 0.499512 0.140625 10
[12] 105.25 0.495605 104.571 0.504325 0.140625 12
[13] 104.2 0.4931 103.3 0.4988 0.1563 12
[14] 106 0.52881 100 - - 10
[10] 112 0.5048 112 - - 4

Table 4. Nonlinearity, SAC, BIC, LP, and DP results for new S-boxes and compare
with the other results.

A

In this appendix we derive the Eq. (5). By inserting expressions J+ =< J+ >
+δJ+ and J− =< J− > +δJ− into force equation([12]) we get

f(J+, J−) = − < J+ > −δJ+
+e−iwAT r(< J+ > +δJ+− < J− >< J+ > −δJ−δJ+−

< J− > δJ+ − δJ− < J+ >). (6)

By considering J̇+ = δJ̇+, ˙J− = δ ˙J−, and due to

δ ˙J− = δJ̇+
†
, (7)
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we use reference [12] for obtaining:

d

dt
(δJ+δJ−) = [iwA(< J+ > +δJ+)− i γ√

N
a†(0)eit(δJ+

δJ− − δJ−δJ+)− i γ√
N
a(0)e−it(δJ+δJ− − δJ−δJ+) + [−

< J+ > −δJ+ + eiwAT r(< J+ > +δJ+− < J− >< J+ >

−δJ−δJ+− < J− > δJ+ − δJ− < J+ >)] Σnδ(t− nT )] δJ−

+δJ+(−iwA(< J− > +δJ−) + i
γ√
N
a(0)e−it[δJ−δJ+−

δJ+δJ−] + i
γ√
N
a†(0)eit[δJ−δJ+ − δJ+δJ−] + [− < J− >

−δJ− + eiwAT r(< J− > +δJ−− < J+ >< J− > −δJ+
δJ−− < J+ > δJ− − δJ+ < J− >)] Σnδ(t− nT )] . (8)

By integrating Eq. (A), from nT to (n + 1)T , and take the expectation
value, by taking into account < δJ−(nT ) >=< δJ+(nT ) >= 0 , < a†(0) >=<
a(0) >= 0 we obtain:

< δJ+((n+ 1)T )δJ−((n+ 1)T ) >= − < δJ+(nT )δJ−(nT )

> +re−iwAT < δJ+(nT )δJ−(nT ) > −re−iwAT < J− >

< δJ+(nT )δJ−(nT ) > −re−iwAT r < δJ−(nT )δJ−(nT ) >

< J+ > +reiwAT < δJ+(nT )δJ−(nT ) > −reiwAT

< δJ+(nT )δJ−(nT ) >< J+ > −reiwAT < δJ+(nT )

δJ+(nT ) >< J− > . (9)

The calculation of < δJ+δJ+ > goes as follows:

d

dt
(δJ+δJ+) = δJ̇+δJ+ + δJ+δJ̇+. (10)

We end up with:

d

dt
(δJ+δJ+) = [iwA(< J+ > +δJ+)− i γ√

N
a†(0)eit[δJ+

δJ− − δJ−δJ+]− i γ√
N
a(0)e−it[δJ+δJ− − δJ−δJ+] + [−

< J+ > −δJ+ + e−iwAT r(< J+ > +δJ+− < J− >< J+ > −

δJ−δJ+− < J− > δJ+ − δJ− < J+ >)]×Σnδ(t− nT )]

δJ+ + δJ+[iwA(< J+ > +δJ+)− i γ√
N
a†(0)eit[δJ+δJ−

−δJ−δJ+]− i γ√
N
a(0)e−it[δJ+δJ− − δJ−δJ+] + [− < J+ >

−δJ+ + e−iwAT r(< J+ > +δJ+− < J− >< J+ > −δJ−δJ+
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− < J− > δJ+ − δJ− < J+ >)]Σnδ(t− nT )]. (11)

By integrating form Eq. (11), from nT to (n + 1)T , and by assuming <
δJ−(nT ) >=< δJ+(nT ) >= 0 , < a†(0) >=< a(0) >= 0 we obtain:

< δJ+((n+ 1)T )δJ+((n+ 1)T ) > e−2iωA(n+1)T− < δJ+(nT )

δJ+(nT ) > e−2iωAnT = e−2iωAnT (− < δJ+(nT )δJ+(nT ) >

+e−iωAT r(< δJ+(nT )δJ+(nT ) > − < J−(nT ) >

< δJ+(nT )δJ+(nT ) > − < J+(nT ) >< δJ−(nT )δJ+(nT ) >

)) + e2iωAnT (− < δJ+(nT )δJ+(nT ) > +e−iωAT r(

< δJ+(nT )δJ+(nT ) > − < J−(nT ) >< δJ+(nT )δJ+(nT ) >

−δJ+(nT )δJ−(nT ) >< J+(nT ) >)). (12)

B

This appendix describes the improved PSO steps and its application for opti-
mizing the designed chaotic S-box. The steps of the algorithm are as follows:

step 1 Enter improved PSO parameters (number of decision variables, size of
decision variables matrix, Maximum number of iterations, population size,
inertia weight, inertia weight damping ratio, personal learning coefficient,
global learning coefficient) and a1 = 2.61, a2 = 3.168 for the Hierarchy of
rational order chaotic maps ref. [11].

step 2 Initial population production using chaotic map Eq. 5.
step 3 Creation of S-box based on quantum map Eq. 5:

1- Enter r = 5.5, β = 0.5 for Eq. 5 (consider Fig. 1).
2- Pass the transition state by repeating the map Eq. 5.
3- We create empty 16 ∗ 16 box.
4- Repeat the map Eq. 5 and select x(f).
5- The S-box numbers are obtained:

S(i) = x(f) ∗ 105mod256

6- The process continues from 4 and select different S(i).

step 4 Calculate nonlinearity of all primary particles and search personal and
global best for this population.

step 5 Update the speed and position(consider jth dimension at iteration t of
each particle i):

Vi,j(t+ 1) = wVi,j(t) + (c1)(r1)(BestXi,j(t)−Xi,j(t))+

(c2)(r2)(GlobalBest(t)−Xi,j(t)) (13)

Xi,j(t+ 1) = Xi,j(t) + Vi,j(t+ 1) (14)
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where Vi,j(t) is a velocity of particle i at iteration t; Xi,j(t) it is a position
of i particle at iteration t; r1 and r2 are two random number between
(0,1) provided by the Hierarchy of rational order chaotic maps ref. [11];
BestXi,j(t) is the local best particle i in all swarm and GlobalBest(t) is
the leader of the swarm or global best position of all population.

step 6 Local and global search and save the best nonlinearity and related
S-box.
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1 ImViA, Université de Bourgogne, BP 47870-21078, Dijon cedex, France
(E-mails: aliyuisahbabanta@gmail.com, stbinc@u-bourgogne.fr and
Jean-Marie.Bilbault@u-bourgogne.fr)

2 ELE-FAENG, Kano University of Science and Technology, BP 3244, Kano,
Nigeria
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Abstract. In this paper, we describe the application of memristor in the neighbor-
hood connections of 2D cellular nonlinear networks (CNN) essentially for image and
signal processing. We focused particularly on the interaction of memristors between
two cells allowing us to study the contribution of the memristor qualitatively and
quantitatively. The dynamics and the steady state response of each cell is described.
The resistance of a memristor is not fixed, hence the study takes into account the ini-
tial state of the memristance characterized by the previous amount of charge passed
through the memristor. We show that the system transition and the steady state
response depend strongly on the history of the memristor.
Keywords: Memristor, 2D cellular nonlinear networks, system of two cells, system
dynamic, steady state response.

1 Introduction

Memristor is a nanoscale two terminals solid state device whose conductiv-
ity is controlled by the time-integral of the current flowing through it or the
time-integral of the voltage across its terminals [1, 2]. The dynamic conduc-
tance modulation and connection compatibility with complementary metal-
oxide semiconductor neurons, are essential features of memristor affirming its
potentiality as synaptic function and memristive gird network [3–5].

This paper describes a memristor based 2D cellular nonlinear network using
memristor in the coupling mode. The network is essentially for signal and image
processing applications. Figure 1 shows the conventional 2D cellular nonlinear
network with each cell constituting one linear capacitor in parallel with one
nonlinear resistance, and a series resistance coupling [6]. Figure 2 shows the
equivalent network using memristors in the coupling mode.

For any cell at a node n and voltage Vn, the nonlinear current function
through the nonlinear resistance is given by:

INLn
=
Vn(Vn − Va)(Vn − Vb)

RoVaVb
, (1)
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Fig. 1. 2D CNN using series resistance coupling [6].

Fig. 2. 2D CNN using memristors in the coupling mode.

and the nonlinear resistance, RNLn
:

RNLn
=

RoVaVb
Vn(Vn − Va)(Vn − Vb)

.

The characteristic roots of the cubic resistance are 0, Va and Vb, meanwhile
Ro is its linear approximation. The corresponding potential energy W (Vn) is
obtained from equation (1) as:

W (Vn) =
1

4
V 4
n − Va + Vb

3
V 3
n +

VaVb
2

V 2
n + κ,

where κ is a constant. Figure 3 shows the response of the cubic resistance
and the corresponding potential energy showing the possible equilibrium state.
The lower potential energy state are at 0 and Vb marked by numbers 1 and 2
respectively, meanwhile Va is the unstable state.
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Fig. 3. Response of the nonlinear resistance in the cells. Va = 0.7V , Vb = 1.2V
and Ro = 1023Ω. (a) I-V characteristic and (b) the corresponding potential energy.
Labels 1 and 2 show the two possible equilibrium states corresponding to Vn = 0 and
Vn = Vb.

We focus on the study of memristor response based on the interaction of
one cell with its neighbouring cells. Therefore, using the system of two cells
coupled by a memristor, allows us to observe the quantitative and qualitative
interaction of memristors in the network.

2 System of two cells

Figure 4 shows the network of two cells coupled by a memristor, thus the cells
communicate together bidirectionally. One of the cells acts as the master while
the other one as slave so that the direction of the flowing charge through the
memristor becomes specific. The switchs s1 and s2 are closed simultaneously
and the network gives the following set of bidirectional coupled equations:

dq

dt
= −C dVm

dt
− Vm(Vm − Va)(Vm − Vb)

RoVaVb
, (2a)

dq

dt
= C

dVs
dt

+
Vs(Vs − Va)(Vs − Vb)

RoVaVb
, (2b)

dq

dt
=
Vm − Vs
M(q)

, (2c)

where: I(t) =
dq

dt
is the flowing current through the memristor and M(q) is

the memristance function that has a desirable continuity for all the flowing
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Fig. 4. System of two cells coupled by a memristor. The master and slave cells with
their elements given by the subscripts letters m and s respectively.

charge [8]:

M(q) =


Roff , if q(t) ≤ 0

Roff − 3 δR

q2d
q2 +

2 δR

q3d
q3, if 0 ≤ q(t) ≤ qd

Ron, if q(t) ≥ qd

(3)

qd =
D2

µvRon
is a charge scaling factor depending on the technology parameters

[2,7] and δR = Roff −Ron is the difference between the two limiting resistance
values of the memristor, that is, the ON and OFF states, represented here by
Ron and Roff respectively. Charge flows from the master cell to the slave one
through the memristor until Vm(t) = Vs(t) and that is when the network is
stabilized. Equation (2) is reformulated as:

dVm
dt

= −Vm − Vs
C.M(q)

− Vm(Vm − Va)(Vm − Vb)

RoVaVbC
, (4a)

dVs
dt

=
Vm − Vs
C.M(q)

− Vs(Vs − Va)(Vs − Vb)

RoVaVbC
, (4b)

dq

dt
=
Vm − Vs
M(q)

. (4c)

As illustrated in Fig. 3b, 0 and Vb are the only two possible equilibrium
states. The stability of the cells at 0 or Vb is determined by Va. It can be
seen that if Vb − 2Va > 0 the cell stabilizes at Vb and if Vb − 2Va < 0 the cell
stabilizes at 0.

The initial conditions of Vm, Vs and q are Vm0 , Vs0 and q0 respectively.
Figure 5 shows the time evolution of the 2 cells network for Vm0

= 2V , Vs0 =
0V , Vb = 1.5V , Va = 0.7V , Ro = 10KΩ and Cm = Cs = 1µF , hence Vb−2Va >
0. Initially, the voltage Vm(t) and Vs(t) evolve in the differential mode and
thereafter the common mode when Vm(t) = Vs(t) which continues to evolve
until the steady state Vb. The charge q(t) flows through the memristor until
Vm(t) = Vs(t). When Vm(t) = Vs(t), the voltage across the memristor is 0 (i.e
Vd(t) = 0V ).
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Fig. 5. The evolution of Vm(t), Vs(t), Vd(t) = Vm(t)− Vs(t) and q(t), for Vm0 = 2V ,
Vs0 = 0V , Vb = 1.5V , Va = 0.7V , Ro = 10KΩ and Cm = Cs = 1µF . The charge q(t)
flows through the memristor until Vd(t) = 0 and at this time, the combined evolution
of Vm(t) and Vs(t) is the common mode which evolves further to stabilizes at the
steady state Vb.

3 Discussion

Variation of the system parameters, such as Va, Ro and q0 affects the steady
state response of the system. The results of Fig. 6 show the variation of Va
with respect to Vb, for example Va = ΥVb. The results are obtained for R0 =
2833Ω, Vb = 1.5V , Vm0

= 2V , Vs0 = 0V and Cm = Cs = 1µF . Hence, Va
varies according to Υ = [0.25, 0.45, 0.49, 0.5, 0.51, 0.55, 0.75, 0.9] with the
corresponding results given by Figs. 6a, b, c, d, e, f, g and h, respectively.
Furthermore, the difference Vb−2Va is calculated and tabulated in Table 1. The
results show two noticeable effects on the evolution of Vm(t) and Vs(t) based on
the variation of Va. The results show different timing at which Vm(t) = Vs(t)
and the change in the steady state at Vb or 0 for Va <

Vb

2 or Va >
Vb

2 respectively.

Figure 6 a b c d e f g h

Υ 0.25 0.45 0.49 0.5 0.51 0.55 0.75 0.9

Vb − 2Va (V ) 0.75 0.15 0.03 0 -0.03 -0.15 -0.75 -1.20

Table 1. Table of Vb−2Va for Fig. 6. Vs0 = 0V , Va = ΥVb, Vb = 1.5V and Vm0 = 2V .

The initial charge q0 characterizes the initial memristance of a memristor.
The initial condition of a memristor has strong effect on its circuit functionality
[9]. Figure 7 shows the effect of changing initial condition of the memristor on
the system evolution and stability. It also takes into account the variations of
R0. The initial memristance of the memristor is given by the initial charge q0.
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Fig. 6. Evolution of Vm(t) and Vs(t) showing the variations of Va ∈ [0, Vb]: R0 =
2833Ω, Vs0 = 0V , Vm0 = 2V , Vb = 1.5V and Υ = [0.25, 0.45, 0.49, 0.5, 0.51, 0.55,
0.75, 0.9] as shown respectively by figures a, b, c, d, e, f, g and h. Variation of Va

affects the time at which Vm(t) = Vs(t) and the steady state at Vb or 0 depending on
whether Va <

Vb
2

or Va >
Vb
2

respectively.

Four different initial charges are considered as: q01 = 20µC, q02 = 40µC, q03 =
60µC and q04 = 80µC, as indicated respectively, by the subscripts numbers 1-4
in Fig. 7A and B. Notice that only one parameter is varied at a time. Figure 7A:
R0 = 2833Ω while q0 varied and Fig. 7B: R0 = 10KΩ while q0 varied. In each
case, Va = 0.7V , Vb = 1.3V , Vm0

= 1.5V and Vs0 = 0V . Even though Va is
the main parameter that plays significant role on the system steady state, the
results show that other parameters (e.g. Ro and q0) affect the dynamics and
steady state of the system.

4 Conclusion

Memristor based 2D cellular nonlinear network is introduced using memristors
in the coupling mode. The cells correspond to pixels in image processing ap-
plications. Each elemental cell consists of one linear capacitor in parallel with
one nonlinear resistance such as Fitzhugh Nagumo. Using the system of two
cells coupled by a memristor, the dynamics and the steady state of each cell
are observed, with mainly a competition between the role of cubic resistance
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Fig. 7. Results showing the variation effect of q0 and Ro on the system evolution
and the steady state. Four different initial charges are considered as: q01 = 20µC,
q02 = 40µC, q03 = 60µC and q04 = 80µC, as indicated respectively by the subscripts
numbers 1-4 in figures a and b. In each case, Va = 0.7V , Vb = 1.3V , Vm0 = 1.5V ,
Vs0 = 0V and Cm = Cs = 1µF . (A) R0 = 2833Ω and (B) R0 = 10KΩ. It shows that
values of q0 and R0 have an effect on the evolution and steady state of the system.

on one hand, and the role of memristor on the other hand. The parameter
Va predominantly decides the system steady state, however other parameters
(e.g Ro, q0 etc...) affect the system steady state. The results show that the
network can be used to realize a binarization circuit, for example, to generate
different gray scaling. The ongoing study focuses on the implementation of the
generalized 2D network for processing any number cells.
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Abstract: The Turing model and discrete limit cycles are considered, from the viewpoint 
of chaos functions. Firstly, the Turing model is explained as a reaction-diffusion system 
of chemical substances, and a three-dimensional (3-D) time-dependent solvable chaos 
map corresponding to the model is derived on the basis of chaos function solutions. 
Secondly, a 2-D chaos map for the 2-D Turing model is proposed for simplicity, in order 
to present chaotic dynamics, and the 2-D map is shown to have symmetric bifurcation 
diagrams, a ring of cells and limit cycles with different patterns, depending on the system 
parameter. In particular, the limit cycles appear in pairs, and are discussed on left-handed 
and right-handed eddies, which generate convections, as nonlinear dynamics of non-
equilibrium open systems. 
Keywords: Turing model, Turing pattern, Chaos function, Bifurcation diagram, 
Symmetry, Fixed point, Limit cycle, Eddy, Convection, Non-equilibrium open system. 
 
1 Introduction 
 
For the study of nonlinear phenomena, nonlinear dynamics such as soliton, 
chaos and fractals, have been considered in the field of physics, chemistry, 
biology and engineering, as nonlinear science [1-4]. In particular, it is well 
known that one-dimensional (1-D) nonlinear difference equations possess a rich 
spectrum of dynamical behavior as chaos, and the chaotic modeling and 
simulation have been extended to medicine, optics, living systems, neuro 
science and life science, as interdisciplinary fields of science [5-8]. At the same 
time, large scale systems, such as atmosphere, climate, human brain, power grid, 
information system and communication network have been studied as non-
equilibrium open systems and/or complex systems [9-14]. 
On the other hand, the Fisher equation has been proposed as a model for the 
propagation of gene [15]. After that, travelling wave solutions to reaction-
diffusion systems are discussed widely, and the effect of boundaries on 
convection in a shallow layer of fluid heated from below has been considered in 
the field of fluid mechanics [16, 17]. Then, the propagation of waves observed 
in a chemical reaction system is reported, and has been considered as a non-
equilibrium open system [18, 19]. Later, the data obtained in the experiment on 
the Belousov-Zhabotinsky (BZ) reaction have been analyzed [20, 21]. Moreover, 
a 2-D model of nonlinear differential equations is derived for the interaction 
between local reaction and diffusion as chaotic dynamics [22, 23]. In the 
meantime, a reaction-diffusion system called the Turing model has been 
presented as a chemical basis of morphogenesis [24]. The chemical pattern is 
considered as the Turing pattern, and stripe patterns on the skin of marine 
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angelfish have been discussed for understanding biological pattern formation 
[25-27]. 
Recently, 1-D, 2-D and 3-D time-dependent solvable chaos maps and a 
nonlinear time series expansion method have been proposed [28, 29]. Then, the 
2-D maps corresponding to the FitzHugh-Nagumo (FHN) model, the BZ 
reaction and reaction-diffusion systems are derived, and the bifurcation 
diagrams and the discrete limit cycles have been studied for population growth, 
neural cells and chemical cells, respectively [30-33]. In addition, a limit cycle 
analysis and the interaction of limit cycles are presented for the 2-D logistic 
maps, as non-equilibrium open systems [34-36]. 
In this paper, firstly the Turing model is explained in Section 2 as a reaction-
diffusion system of chemical substances, and a 3-D time-dependent solvable 
chaos map, which corresponds to the model, is derived on the basis of chaos 
function solutions. Then, in Section 3, a 2-D solvable chaos map for the 2-D 
Turing model is proposed for simplicity to find chaotic properties. The 2-D map 
is shown numerically to possess symmetric bifurcation diagrams, a ring of cells 
and discrete limit cycles with different patterns, depending on the system 
parameter. In particular, the limit cycles appear in pairs, and are discussed on 
left-handed and right-handed eddies of cells, which generate convections, as 
nonlinear dynamics of non-equilibrium open systems. Finally, Conclusions are 
summarized in the last section. 
 
2  The Turing Model and 3-D Chaotic Maps 
 
As is known, a reaction-diffusion system called the Turing model has been 
presented as a chemical basis of morphogenesis [24], in where a mathematical 
model of the growing embryo in biology is described, and the chemical reaction 
and diffusion are explained, under the assumption of reaction rates. In addition, 
the spherical symmetry of embryo is introduced, and the system is assumed to 
be far from homogeneous, in left-handed and right-handed organisms. Finally, 
from the mathematics of the ring, a set of nonlinear differential equations are 
formulated as the model equations; 
 

,2
2

2
100

0 BzAzzp
dt

dz ++=                                             (1) 

,102111
1 zDzzCzzp

dt

dz ++=                                          (2) 

20
2
122

2 zFzEzzp
dt

dz ++=                                           (3) 

 
with system parameters },,,,,,,,{ 210 FEDCBAppp , where ),(0 tz )(1 tz  and    

)(2 tz  are dimensionless variables [24]. Then, the model equations can be 

rewritten into the following nonlinear difference equations by the difference 
method for numerical calculation as 
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,1,001,0 nnnn BzAztztpz +∆+∆+=+                             (4) 

),)(())(1( ,1,0,2,1,111,1 nnnnnn zDzzCztztpz +∆+∆+=+                   (5) 

),)(())(1( ,2,0
2
,1,221,2 nnnnn zFzEztztpz +∆+∆+=+                        (6) 

 
where the passage from a point ))(),(),(( ,2,2,1,1,0,0 inninninn tzztzztzz ≡≡≡  to the 

next one ))(),(),(( 11,21,211,11,111,01,0 +++++++++ ≡≡≡ inninninn tzztzztzz  is considered as 

a 3-D mapping with the discrete time it  and the time step 
ii ttt −=∆ +1
 [30]. 

On the other hand, we introduce time-dependent chaos functions; 
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with real parameters },,,{ 1321 baaa , and find a 3-D solvable chaos map with   

system parameters },,{ 321 βββ  [28], corresponding to the 3-D map (4)-(6), as  
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where )(),( inninn tyytxx ≡≡  and ).( inn tzz ≡  It is notable that the time step 

tt ∆<∆ 0, ≪1.0 is not included in the coefficients of the 3-D map (10)-(12) [31].  

 
3  2-D Chaotic Maps and Discrete Limit Cycles 
 
In this Section, we find a 2-D Turing map for simplicity, by setting 0,2 =nz  in 

the 3-D Turing map (4)-(6), as  
 

,)())(1( 2
,1,001,0 nnn Aztztpz ∆+∆+=+                            (13) 

,)())(1( ,1,0,111,1 nnnn zDztztpz ∆+∆+=+                       (14) 

 
and then, from the chaos function solutions (7), (8) and the condition given by 
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we have a 2-D chaotic map; 
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with a system parameter 0.20, ≤< αα , where the 2-D chaotic map (16) and 

(17) has chaos function solutions at 0.2=α . Here, it is important to note that 
the time step tt ∆<∆ 0, ≪1.0 is not included in the 2-D map (16) and (17), and 

the solutions )( in tx  and )( in ty  are restricted by the condition (15) for the 

generation of discrete limit cycles [34]. 
Bifurcation diagrams for the 2-D map (16) and (17) are firstly illustrated in Fig. 
1 (a) and (b), where we carry out 200 iterations of the 2-D map at each value 
of α , 01.0=∆α  with an initial point )1.0,2.0(),( 00 =yx  for Fig. 1 (a) and 

)1.0,2.0(),( 00 −=yx  for Fig. 1 (b), respectively. Here, the bifurcation diagram 

depends on the initial point ),( 00 yx  for iterations at each value ofα . Then, 

bifurcation diagrams of Fig. 1 (a) and (b) are presented in Fig. 1 (c), and it is 
found that the diagrams 

1ny  and 
2ny  are symmetric with respect to the α -axis 

on the 
21,, nnn yyx−α  plane. Thus, the bifurcation diagrams are enlarged for the 

interval 6.14.1 ≤≤ α  with 005.0=∆α , and are illustrated in Fig. 1 (d) to show 
the pitchfork bifurcation [37].  In addition, the 2-D map (16) and (17) has fixed 
points, which are defined by ),( ***

nnn yxFx =  and );,( *** αnnn yxGy = , and are given 

by  
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where the 2-D map is found to have pitchfork bifurcations with three fixed 
points in the interval 0.20.1 ≤≤ α . Thus, the numerical result at 

0.1,0.1 21 == aa  and 0.01 =b  of the 2-D map (16) and (17) is presented in Fig. 

1 (a)-(d). The MATLAB program for Fig. 1 (c) is shown in Appendix-A1.  
On the other hand, the 2-D chaotic map (16) and (17) corresponding the 2-D 
Turing map (13) and (14) is derived from the chaos function solutions (7) and 
(8), and as the numerical result, the chaotic solutions )( in tx  and )( in ty ,  
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(a) The α-xn, yn1, yn2 plane                        (b)  The  α-xn, yn1, yn2 plane 

with an initial point (x0, y0)=(0.2, 0.1)             with an initial point (x0, y0)=(0.2, -0.1)   
 

 
 
 
(c)  The α-xn, yn1, yn2 plane with                (d)  Zoomed on the α-xn, yn1, yn2 plane 
   an initial point (x0, y0)=(0.2, 0.1)                    with an initial point (x0, y0)=(0.2, 0.1)  

or (0.2, -0.1)                                                    or (0.2, -0.1) 
                                                  

  
 
 

Fig. 1. Bifurcation diagrams:  
(a) An initial point (xo, y0)=(0.2, 0.1),  
(b)  (xo, y0)=(0.2, -0.1) and △α=0.01,  
(c) An initial point (x0, y0)=(0.2, 0.1) or (0.2, -0.1), and  
(d) A zooming diagram of (c) and △α=0.005,  
at a1=1.0, a2=1.0 and b1=0.0 for the 2-D map (16) and (17). 
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orbit solutions on the 
nn yx −  plane and a ring of sequential points are illustrated 

in Fig. 2 (a)-(d), on the basis of the solutions (7) and (8), at 0.1,0.1 21 == aa  and 

0.01 =b  with an initial point )0.0,0.1(),( 00 =yx . The chaotic time series shown in 

Fig. 2 (a)-(d) are calculated without the accumulation of round-off error caused 
by numerical iterations of nonlinear equations [30]. Then, the numerical result 
of the 2-D map (16) and (17) is presented in Fig. 3 (a)-(d): (a) Symmetric orbit 
solutions on the 

nn yx −  plane, (b) A ring of sequential points at 0.2=α  with 

initial points   )000001.0,0.1(),( 00 ±=yx , (c) Symmetric orbit solutions and (d) 

Symmetric limit cycles in pairs at 69.1=α  with inside initial 
points )5.0,5.0(),( 00 ±=yx , as a numerical example of ‘dappled’ pattern shown for 

the Turing model in [24]. 
Moreover, we find symmetric limit cycles in pairs with inside initial points 

)5.0,5.0(),( 00 ±=yx  for the 2-D map (16) and (17) as shown in Fig. 4 (a)-(d). 

Then, it is found that inside initial points (blue) converge to the limit cycles and 
form left-handed and right-handed eddies of cells, and one of outside initial 
points (red) converges to the opposite limit cycle, that is, the red initial points 
generate convections, as shown for 60.1=α  and 55.1=α  in Fig. 4 (a) and (c), 
respectively. The MATLAB program for Fig. 4 (a) and (b) is presented in 
Appendix-A2.  
Here, it is interesting to emphasize that the 2-D logistic maps derived from 
chaos function solutions )2(sin)( 2

i
n

in ttx =  and )2cos()( i
n

in tty =  have discrete 

limit cycles, corresponding to the FHN model, the F-KPP equation, the BZ 
reaction and the reaction-diffusion systems, as presented in [30-33], and the 2-D 
chaotic map (16) and (17) derived as a 2-D Turing map (13) and (14) has chaos 
function solutions )2cos()( i

n
in ttx =  and ),2sin()( i

n
in tty =  which corresponds to 

the Lorenz system for atmospheric convection [28], the reaction-diffusion 
systems for fluid convections [16, 17] and the equation of motion derived from 
the Hénon-Heiles Hamiltonian for the third integral with chaotic properties [38].  
 
Conclusions 
 
The 3-D solvable chaos map corresponding to the Turing model was firstly 
derived in Section 2, and it is explained that the Turing model has nonlinear 
dynamics, such as spherical symmetry, ring of cells and numerical patterns on 
the x-y plane.  In Section 3, the 2-D chaotic map for the 2-D Turing model is 
proposed in order to show the nonlinear dynamics, and the 2-D map (16) and 
(17) is shown to have symmetric bifurcation diagrams, the ring of cells and limit 
cycles in pairs with different patterns. From the numerical result, the limit 
cycles are presented to generate discrete eddies and convections, as chaotic 
dynamics of non-equilibrium open systems. Therefore, nonlinear dynamics of 
the Turing model may correspond essentially to fluid dynamics with chaotic 
properties of the Lorenz system for atmospheric convection and the reaction-
diffusion systems for convection cells. 
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(a) Chaotic solution xn(ti) 

       

 
 
(b) Chaotic solution yn(ti) 

       

 
 
(c)  Orbit solutions (xn(ti), yn(ti))                 (d)  A ring of sequential points  

on the xn - yn plane                                      on the xn - yn plane 

 

  
 
 

Fig. 2. Chaotic time series:  
(a) Chaotic solution xn(ti) (7),  
(b) Chaotic solution yn(ti) (8), 
(c) Orbit solutions (xn(ti), yn(ti)) on the xn - yn plane,  
(d) A ring of sequential points on the xn - yn plane,  
at 0.1,0.1 21 == aa  and 0.01 =b  with an initial point (x0, y0)=(1.0, 0.0).  

 

Initial point 
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(a) Symmetric orbit solutions at α=2.0            (b)  Sequential points at α=2.0 

with (x0, y0)=(1.0, ±0.000001)                           with (x0, y0)=(1.0, ±0.000001) 
 

   
 
 
 
(c)   Orbit solutions at α=1.69                           (d)  Limit cycles at α=1.69 

with (x0, y0)=(0.5, ±0.5)                                   with (x0, y0)=(0.5, ±0.5) 
 

 
 
 
 

Fig. 3. Symmetric orbits and limit cycles of the 2-D map (16) and (17):  
(a) Symmetric orbit solutions and  
(b) Sequential points at α=2.0 with (x0, y0)=(1.0, ±0.000001),  
(c) Symmetric orbit solutions and 
(d) Symmetric limit cycles at α=1.69 with (x0, y0)=(0.5, ±0.5), 

                   at 0.1,0.1 21 == aa  and 0.01 =b . 
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(a) Orbit solutions at α=1.60                          (b)  Sequential points α=1.60 

with initial points                                              with initial points 
 

  
 
 
(c)   Orbit solutions at α=1.55                          (d)  Sequential points at α=1.55 

with initial points                                           with initial points  
 

  
 
 

Fig. 4. Limit cycles in pairs of the 2-D map (16) and (17):  
(a) Orbit solutions with left-handed and right-handed eddies  

and convections,  
(b)  Sequential points at α=1.60,  
(c)  Orbit solutions with eddies and convections,  
(d)  Sequential points at α=1.55,  
with inside (blue) and outside (red) initial points. 
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Appendix 
 
A1 
% MATLAB program for Fig. 1 (c) by S. Kawamoto 
% initial conditions 
ALFA=zeros(1, 400); 
X1=zeros(1, 200); 
Y1=zeros(1, 200); 
XX1=zeros(1, 200); 
YY1=zeros(1, 200); 
X2=zeros(1, 200); 
Y2=zeros(1, 200); 
XX2=zeros(1, 200); 
YY2=zeros(1, 200); 
X10=0.2; 
Y10=0.1; 
X20=0.2; 
Y20=-0.1; 
A1=1.0; 
A2=1.0; 
B1=0.0;  
% system parameter ALFA and bifurcation diagrams 
figure(‘Position’,[100 100 350 200]) 
for I=1:400 
     ALFA(I)=0.005*I; 
     for J=1 
          X1(I, J)=(A1+B1)-2*A1*((Y10)^2)/A2^2; 
          Y1(I, J)=ALFA(I)*(X10-B1)*Y10/A1; 
          X2(I, J)=(A1+B1)-2*A1*((Y20)^2)/A2^2; 
          Y2(I, J)=ALFA(I)*(X20-B1)*Y20/A1; 
     end 
     for J=2:200 
           X1(I, J)=(A1+B1)-2*A1*((Y1(I, J-1))^2)/A2^2; 
           Y1(I, J)=ALFA(I)*(X1(I, J-1)-B1)*Y1(I, J-1)/A1; 
           X2(I, J)=(A1+B1)-2*A1*((Y2(I, J-1))^2)/A2^2; 
           Y2(I, J)=ALFA(I)*(X2(I, J-1)-B1)*Y2(I, J-1)/A1; 
     end 
     for J=150:200 
           XX1(J)=X1(I, J); 
           YY1(J)=Y1(I, J); 
           XX2(J)=X2(I, J); 
           YY2(J)=Y2(I, J);     
 
           plot(ALFA(I), XX1(J), ‘k.’,’MarkerFaceColor’,’k’,’MakerSize’,4); hold on 
           plot(ALFA(I), YY1(J), ‘b.’,’MarkerFaceColor’,’b’,’MakerSize’,4); hold on 
           plot(ALFA(I), YY2(J), ‘r.’,’MarkerFaceColor’,’r’,’MakerSize’,4); hold on 
     end 
end 
xlabel(‘Alfa’); ylabel(‘Xn, Yn1, Yn2’) 
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A2 
% MATLAB program for Fig. 4 (a)-(b) by S. Kawamoto 
% initial conditions 
T=zeros(1, 200); 
TT=zeros(1, 200); 
X1=zeros(200, 200); 
Y1=zeros(200, 200); 
XX1=zeros(1, 200); 
YY1=zeros(1, 200); 
X2=zeros(200, 200); 
Y2=zeros(200, 200); 
XX2=zeros(1, 200); 
YY2=zeros(1, 200); 
X3=zeros(200, 200); 
Y3=zeros(200, 200); 
XX3=zeros(1, 200); 
YY3=zeros(1, 200); 
X4=zeros(200, 200); 
Y4=zeros(200, 200); 
XX4=zeros(1, 200); 
YY4=zeros(1, 200); 
L0=1; 
PR=431; 
T0=0.0; 
X01=0.5; 
Y01=0.5; 
X02=0.8; 
Y02=0.65; 
X03=0.8; 
Y03=0.55; 
X04=0.5; 
Y04=-0.5; 
ALFA=1.6; 
A1=1.0; 
A2=1.0; 
B1=0.0; 
% limit cycles in pairs with initial points 
for I=1:200, T(I)=T0+I*L0*pi/PR; end 
for I=1:200 
     for N=1 

X1(I, N)=(A1+B1)-2*A1*(Y01^2)/(A2^2); 
Y1(I, N)=ALFA*(X01-B1)*Y01/A1; 
X2(I, N)=(A1+B1)-2*A1*(Y02^2)/(A2^2); 
Y2(I, N)=ALFA*(X02-B1)*Y02/A1; 
X3(I, N)=(A1+B1)-2*A1*(Y03^2)/(A2^2); 
Y3(I, N)=ALFA*(X03-B1)*Y03/A1; 
X4(I, N)=(A1+B1)-2*A1*(Y04^2)/(A2^2); 
Y4(I, N)=ALFA*(X04-B1)*Y04/A1; 

     end 
     for N=2:I 
          X1(I, N)=(A1+B1)-2*A1*(Y1(I, N-1)^2)/(A2 2̂); 
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          Y1(I, N)=ALFA*(X1(I, N-1)-B1)*Y1(I, N-1)/A1; 
          X2(I, N)=(A1+B1)-2*A1*(Y2(I, N-1)^2)/(A2 2̂); 
          Y2(I, N)=ALFA*(X2(I, N-1)-B1)*Y2(I, N-1)/A1; 
          X3(I, N)=(A1+B1)-2*A1*(Y3(I, N-1)^2)/(A2 2̂); 
          Y3(I, N)=ALFA*(X3(I, N-1)-B1)*Y3(I, N-1)/A1; 
           X4(I, N)=(A1+B1)-2*A1*(Y4(I, N-1)^2)/(A2^2); 
          Y4(I, N)=ALFA*(X4(I, N-1)-B1)*Y4(I, N-1)/A1; 
     end 
end 
for I=1 
      TT(I)=T0; 
end 
for I=2:200 
      TT(I)=T(I-1); 
end 
for I=1 
     XX1(I)=X01; 
     YY1(I)=Y01; 
     XX2(I)=X02; 
     YY2(I)=Y02;  
     XX3(I)=X03; 
     YY3(I)=Y03; 
     XX4(I)=X04; 
     YY4(I)=Y04; 
end 
for I=2:200 
     XX1(I)=X1(I-1, I-1); 
     YY1(I)=Y1(I-1, I-1); 
     XX2(I)=X2(I-1, I-1); 
     YY2(I)=Y2(I-1, I-1); 
     XX3(I)=X3(I-1, I-1); 
     YY3(I)=Y3(I-1, I-1); 
     XX4(I)=X4(I-1, I-1); 
     YY4(I)=Y4(I-1, I-1); 
end 
% figures (a)-(b) 
figure(‘Position’, [100 100 350 350]) 
plot(XX4, YY4, ‘-b.’,’MarkerFaceColor’,’b’,’MarkerSize’, 7); hold on 
plot(XX3, YY3, ‘-r.’,’MarkerFaceColor’,’r’,’MarkerSize’, 7); hold on 
plot(XX2, YY2, ‘-r.’,’MarkerFaceColor’,’r’,’MarkerSize’, 7); hold on 
plot(XX1, YY1, ‘-b.’,’MarkerFaceColor’,’b’,’MarkerSize’, 7); hold off 
xlabel(‘xn(ti)’); ylabel(‘yn(ti)’) 
 
figure(‘Position’, [100 100 350 350]) 
plot(XX4, YY4, ‘b.’,’MarkerFaceColor’,’b’,’MarkerSize’, 7); hold on 
plot(XX3, YY3, ‘r.’,’MarkerFaceColor’,’r’,’MarkerSize’, 7); hold on 
plot(XX2, YY2, ‘r.’,’MarkerFaceColor’,’r’,’MarkerSize’, 7); hold on 
plot(XX1, YY1, ‘b.’,’MarkerFaceColor’,’b’,’MarkerSize’, 7); hold off 
xlabel(‘xn(ti)’); ylabel(‘yn(ti)’) 
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Abstract. Efficiency and safety are the main components of the requirements to the solid 
fossil fuels production industry. Currently, the combined use of alternative energy 

sources and innovative resource-saving technologies is relevant. Optimization 

approaches ensuring the stability of the “massif – innovative fastening parameters” 

spatial system elements are studied. The principles and methods of resource-saving 
increase in stability on the basis of minimizing the intensity of the rock pressure 

manifestation by adjustable operating modes of innovative fastening systems have been 

scientifically substantiated. The resulting developments make it possible to achieve the 

technological processes intensification during the minerals extraction and to develop a 
method for calculating a function that describes the rational deformation-strength 

characteristic depending on mining-and-geological conditions. 

Keywords: Optimization approaches, Stability, Resource saving, Minimization, Spatial 

system. 
 

 

1  Introduction 
 

The use of a mathematical experiment in the geomechanics problems makes 

possible to avoid unnecessary labour-intensive full-scale experiments, the 

setting of which not only requires significant financial costs, but also leads to 

significant losses in production time (Krukovskyi et al.[1]; Małkowski et al.[2]; 

Bondarenko et al.[3]). In addition, a computational experiment, in contrast to 

full-scale experimental setups, gives an ability to accumulate the results 

obtained during the study of a certain range of problems, and then quickly and 

flexibly apply them for solving similar problems (Kovalevska et al.[4]; 

Bondarenko et al.[5], [6]; Majcherczyk et al.[7]). 

To solve the problems of geomechanics, the following information should be 

obtained:  

– texture with account of the existing geological disturbances and physical 

and mechanical properties of the studied stratified or homogeneous rock mass; 

– types and values of force impacts applied to certain areas of the rock mass 

and mining facilities; 
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– type of problems to be studied numerically: distribution of stresses, 

deformations, displacements and weakening (of varying degree) of certain areas 

of the rock mass, underground structures, and the like; 

– geometric, mechanical and force parameters of the studied mining 

facilities. 

Based on the collected data, a computational scheme is formed, the type of 

which determines the choice of a method for solving a specific geomechanics 

problem. Thus, a system of mathematical equations is developed that expresses 

the ratio of the specified and sought values, which must be solved until the final 

values are obtained.  

When solving the geomechanics problems, one constantly has to face the 

problem of calculating the systems with a complex geometric configuration and 

an irregular physical structure. The rock mass and its constituent rocks have a 

large number of characteristics, which can be taken into account in 

mathematical modeling only when using finite-difference calculation schemes 

(Kovalevs’ka et al.[8]). 

A review of existing research provides strong evidence that the use of the 

finite element method (FEM) to solve the problems of geomechanics is 

becoming more widely used (Maghous et al.[9]; Kovalevska et al.[10]): 

– the methodology for performing calculations using the FEM is constantly 

being improved and complicated; 

– solving a volumetric problem in an elastic-plastic formulation has already 

become the norm in geomechanics; 

– in many cases, researchers take into account a large number of factors and 

their combinations, which have characteristics of local disturbances of the 

system; 

– the development of mathematical models is aimed at finding an obtainable 

accuracy of calculation, which is performed according to classical methods, but 

taking into account the maximum possible number of significantly influencing 

parameters. 

Geomechanical systems, studied by mankind for several centuries, are 

characterized by a complex and multi-factor structure, which, from a dialectical 

point of view, cannot be “ideally” modelled once and for all. New knowledge 

about the properties and behaviour of the rock mass is constantly emerging, and 

the development of industry, including mining sector, extends the variety of 

practical tasks.  

The factors and stages of research using the FEM method have acquired a 

certain refinement on the example of modeling the behaviour of the 

geomechanical system “rock mass – mine working suppor”, where the 

procedure for conducting a computational experiment is consistently being 

substantiated. 
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2  Search algorithm for the rational modes of interaction and 

optimization 
 

The work (Kovalevska et al.[11]) substantiates the main provisions of the process 

for loading the fastening systems of extraction mine workings in the zone of stope 

operations influence and gives schematic representations of the mutual influence 

of the deformation-strength characteristic of the lowering roof rocks (with 

disturbances in their structure) and fastening structures with different modes of 

resistance. This paper studies the changeover from the general qualitative pattern 

of such interaction to quantitative assessments of the parameters with the final 

objective of determining the rational deformation-strength characteristic of the 

fastening system as a whole and its main constituent elements, depending on the 

geomechanical factors of the mine working maintenance. 

The search algorithm for rational parameters of the fastening systems is as 

follows. The basis for optimizing the operating mode of the fastening system is 

the deformation-strength characteristics of the weakening rock mass; it is 

necessary to determine the deformation-strength characteristic  Р u  of the 

applied fastening system. This is a complex task of calculating the structure as a 

whole and each main fastening element with regard to their force interaction 

with each other. Based on such a strength calculation, by varying the fastening 

system parameters, we select the deformation-strength characteristic  Р u  of 

the fastening system as a whole so that it corresponds to the rational function 

determined at the previous stage. 

When selecting a rational deformation-strength characteristic  Р u , the 

equal strength condition should be taken into account, the fulfilment of which 

imposes its own restrictions on the variation range and discrete values of a 

number of the fastening system parameters. 

Numerous analytical studies (Li[12]; Skipochka et al.[13]; Kaiser and 

Cai[14]; Bondarenko et al.[15]) indicate a relatively weak influence of the 

fastening system reaction on the restricted rock contour displacements in the 

drift. A review of these works shows the level of influence of the order of 3 – 

15% with various combinations of geomechanical factors and the value of the 

support repulse. An approximately equivalent degree of influence is also noted 

in studies of the stress-strain state (SSS) of geomechanical systems using the 

FEM method. Thus, the deformation-strength characteristic  1q u  of the 

weakening mass is exposed to the restricted influence of the deformation-

strength characteristic  Р u  of the fastening system. The peculiarity is that the 

reaction is very sensitive to the value of the yielding property of the fastening 

system and, with its relatively small variation, the value Р  can change up to 

several times. This fact is described in sufficient detail on previously developed 

schemes (Bondarenko et al.[15]). Consequently, with a relatively small 

transformation of the SSS of the weakening mass with a change in the reaction 

of the fastening system, a very significant transformation of the fastening 
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system SSS is observed (with varying the value of yielding property), which 

provides an effective tool for optimizing the fastening system and its 

deformation-strength characteristic. 

The second peculiarity relates to the deformation-strength characteristic 

 2q u  of the rocks in the dome of natural equilibrium. Here, the experience of 

solving elastic-plastic problems using the FEM method also indicates the 

restricted influence of the fastening system reaction on the change in the SSS of 

the adjacent rock mass in the areas where the formation of the dome of natural 

equilibrium is predicted (Salcher and Bertuzzi[16]; Malkowski et al.[17]). In our 

opinion, this is conditioned by the use in the computational experiment of the 

model of a coupled medium, which does not adequately describe the state of 

weakening and loosening rocks inside the dome, losing stability and creating a 

load on the fastening system with their weight.  It is advisable to model the 

behaviour of this rock volume by the full diagram of their deformation, including 

the superlimiting stages of the state (Skipochka et al.[13]; Brodny[18]). 

Summarizing the methodological aspects, the search algorithm for the 

fastening system rational parameters includes the following positions:  

– interaction of the deformation-strength characteristics of the weakening 

rock mass and the fastening system is studied using the FEM method in an 

elastic-plastic formulation; 

– the search for a rational equilibrium state is based on a joint consideration 

of the deformation-strength characteristic of the weakening mass  1q u , 

determined by the FEM method, and the deformation-strength characteristic of 

rocks in the dome of natural equilibrium  2q u , determined by the normative 

methodology (Instruction[19]; SNiP ІІ-94-80[20]); 

– optimization of the deformation-strength characteristic of the fastening 

system is performed on the basis of FEM calculations taking into account the 

function  2q u ; 

The parameters of fastening system elements, under the condition of their 

equal strength, are optimized based on the study of their SSS by the FEM 

method. 

 

 

3  Methodology for minimizing the load on the support 
 

In accordance with the search algorithm for rational operating modes of the 

fastening system, the determination of a critically important point characterizing 

the choice of such a yielding property value Аu  of the support at which the load 

АР  on it decreases to the minimum possible value in the given mining-and-

geological conditions of maintaining the extraction mine working is specified. 

To solve this problem, a methodology has been developed to minimize the load 

on the fastening system.  

254



It has been proved earlier (Kovalevska et al.[21]) that the criterion for 

minimizing the load is the achievement of the condition of loads equality by the 

factor of displacement of the adjacent mass being weakened 1q  and by the 

factor of formation of the dome of natural equilibrium 2q .  

To increase the adequacy of the geomechanical model SSS calculations, they 

are performed in an elastic-plastic formulation using a bilinear deformation 

diagram of both rocks and fastening materials. This makes it possible to take 

into account the occurrence of the limiting state in arbitrary areas of the model, 

which is accompanied by plastic flow of steel fastening elements and quasi-

plastic deformation of rocks, provided that their volume is constant.  

An algorithm has been developed for determining the deformation-strength 

characteristic  1q u  of a weakening rock mass, depending on the main 

influencing geomechanical factors.  

The second component of the optimization scheme is the deformation-

strength characteristic  2q u  of rocks in the dome of natural equilibrium.  

When performing mathematical transformations, a linear function of the 

deformation-strength characteristic  2q u  of rocks in the dome of natural 

equilibrium has been determined: 

 
 

2
1

2
2 1

1
,

0.15 0.03 0.18
dq u K В u




 




 
       (1) 

where dK  is coefficient of dynamics, which takes into account possible 

conventionally instantaneous displacements of the rock mass around the 

extraction mine working and is determined according to recommendations 

(Instruction[19]); В  is mine working width when driving;   is weight-average 

unit specific gravity of rocks in the dome of natural equilibrium; 1  and 2  are 

parameters that set the ratio between the lowering of the mine working roof in 

the areas: outside the zone of stope works influence; in the zone of front bearing 

pressure of the approaching longwall face; behind the stope face in the zone of 

stabilization of rock pressure manifestations. 

The parameters 1  and 2  are obtained on the basis of calculated 

expressions (Instruction[19]) by transforming them for the problem to be solved 

for determining the function  2 :q u  
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where m  is coal seam extraction thickness; ,
1,2,3
r bR  is calculated values of the 

compressive resistance of the roof and bottom rocks of the coal seam in the 

corresponding areas: 1 is outside the zone of stope works influence; 2 is in the 

zone of front bearing pressure; 3 is behind the longwall face. 

When determining the deformation-strength characteristic  2q u  of the 

rocks in the dome of natural equilibrium, the basic methodological provisions of 

the normative geomechanical phenomenon, such as limiting the dimensions of 

the dome due to the fastening system reaction, have been adopted (Krukovskyi 

et al.[1]; Małkowski et al.[2]). The theoretical essence of this phenomenon is 

substantiated in the work (Skipochka et al.[13]), where it has been proved that 

through the so-called “small impacts” (the level of the support reaction in 

comparison with the acting stresses) it is possible to restore rock volumes from 

an unstable state to a stable state; then these volumes are excluded from the 

process of forming the load on the fastening system of the extraction mine 

working. 

In practical terms, to determine the limitation degree of load and 

displacements of the rock contour, the methodology and results of research 

(Bondarenko et al.[22]) on the optimization of interaction modes between the 

support of mine workings and the rock mass are used. A set of calculations has 

been performed according to existing methodologies and a database has been 

obtained, which is summarized in Table 1. 

 

Table 1. Values of the coefficient rK  of the fastening system reaction 

influence, % 

Weight-average 

compressive resistance 

of rocks in the dome 

domeR , MPa 

Fastening system reaction Р , kPa 

50 100 150 200 250 300 

5 4.2 9.6 15.6 22.1 28.8 35.9 

10 3.0 6.8 11.1 15.6 20.4 25.4 

15 2.5 5.6 9.1 12.9 16.8 20.9 

20 2.1 4.8 7.8 11.0 14.4 18.0 

30 1.7 3.9 6.4 9.0 11.7 14.6 

40 1.5 3.4 5.5 7.8 10.2 12.7 

 

Taking into account the influence of the fastening system reaction Р , the 

expression for calculating the deformation-strength characteristic of the rocks in 

the dome of natural equilibrium is transformed as follows  
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where rK  is coefficient of influence of the fastening system reaction on the 

limitation of lowering roof rocks in the extraction mine working, %; it is 

determined by Table 1.  

As a result, a methodology has been developed for determining the 

deformation-strength characteristic of a weakening rock mass  1q u  and rocks 

in the dome of natural equilibrium  2q u . They are key positions when 

optimizing the operating modes of the fastening system in the extraction mine 

workings. 

 

 

4  Determining the patterns of the fastening system optimal 

parameters in view of geomechanical factors 
 

To develop the technology of searching for the minimum load Аq  on the 

fastening system with appropriate Au , the preliminary (test) calculations of 

functions  1,2q u  have been made in the areas of boundary values of 

geomechanical parameters characterizing favourable and difficult mining-and-

geological conditions for maintaining extraction mine workings, which is shown 

in Fig. 1. Here, lines I and II represent the calculation results of the deformation-

strength characteristic  1q u  of the weakening rock mass, performed with the 

use of multivariate computational experiments; therefore, the dependences are 

shown in the form of multilinear graphs, each fracture of which corresponds to 

one computational experiment with a specific thickness of the artificial yielding 

layer. The calculations are performed for the minimum (line I) and maximum 

(line II) values of the index /H R , which approach to the boundaries of the 

studied range of the specified mining-and-geological conditions; therefore, the 

area enclosed between lines I and II gives a fairly complete understanding of the 

family of functions  1q u . 

The deformation-strength characteristic of the rocks in the dome of natural 

equilibrium is a “smooth” function  2q u , which is calculated by the formula 

(4). The variation range of  2q u  at a fixed value of the rock contour 

displacement u  is conditioned by mining-and-geological conditions of 

maintaining the extraction mine working, the standard size of its section and the 

degree of influence of the fastening system reaction on restricting the drift 

contour displacements. The presented variation range of the function  2q u  

also represents as much as possible the list of probable situations for 

maintaining the extraction mine working.  

Point А  is one of the key positions in the optimization scheme; it has been 

determined for favourable ( bА ) and difficult ( сА ) mining-and-geological 

conditions for maintaining the extraction mine workings. 
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As it can be seen, the deterioration of conditions for maintaining the 

extraction mine working leads to an increase in the minimum load by 51.8%; in 

this case, the optimal value of the fastening system yielding property increases 

by 2 times. 

 

 

Fig. 1. To the analysis of reliability and adequacy of the methodology for 

optimizing the modes of the fastening system interaction with the surrounding 

mass: I – /H R  9.6 m/MPa; II – /H R  88.9 m/MPa; “b” – В  5.18 m, 

domeR  30.2 MPa; “с” – В  4.50 m, domeR  5.3 MPa;          limits of the 

range of loads on yielding support according to normative documents 

 

To assess the degree of reliability of the developed optimization 

methodology, the results are compared with normative methodologies. In a 

generalized sense, they take into consideration the yielding property of the 

support as a factor in reducing the load  Р u ; Fig. 1 shows the variation range 

of the function  Р u  with dashed lines and shaded. The above-noted 

methodologies do not solve the problem of optimizing the modes of the support 

interaction with the surrounding mass, therefore, the load on the yielding 

support is significantly higher than the optimal values 
bА

P  and АсP , but to a 

certain extent corresponds to the studied examples of non-optimal operating 

modes of the support with increased yielding property. Thus, under favourable 

conditions, the optimal load 
bА

P is by 36.9 – 57.5 lower; in difficult mining-

and-geological conditions, this difference is 10.8 – 27.5%. But, if to compare 
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the irrational increased yielding property of the fastening system, then the noted 

difference in the values of loads is reduced to 3.7 – 19.4% under favourable 

conditions and to 1.7 – 18.0% under difficult mining-and-geological conditions.  

By assessing the degree of adequacy and reliability of the developed 

methodology for optimizing the support interaction modes with the surrounding 

rock mass, positive results have been obtained. In addition, the next stage of 

research has been substantiated, namely, the search for patterns in the 

relationship between coordinates АP  and Аu  of the point А , depending on the 

index /H R  and structure of rocks in the coal-overlaying formation (Fig. 2). 

The essence of the revealed dependences is as follows. 
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Fig 2. Patterns of the relationship between the optimal parameters of reaction 

АP  (        ) and yielding property Аu  (        ) of the fastening system depending 

on the index /H R  of mining-and-geological conditions and the type of the 

structure of coal-overlaying formation: 1 – group I; 2 – group II; 3 – group III 

 

Firstly, there is a clear pattern of a decrease in the optimal load АP  and 

yielding property Аu  of the fastening system with a decrease in the index 

/H R , regardless of the type of the rocks structure in the coal-overlaying 

formation.  
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Secondly, according to the results of a set of geomechanical calculations, it 

becomes obvious the relevance of the task for optimizing the interaction modes 

between the rock mass and the support in terms of a stable decrease in the 

required force parameters of the latter, regardless of the degree of the conditions 

complexity for maintaining the reused mine workings.  

For convenient practical use of the determined patterns (Fig. 2), a system of 

regression equations has been obtained that set the ratio between the optimal 

parameters of the deformation-strength characteristic of the support with the 

geomechanical index /H R , as well as with the groups of generalized structures 

of the coal-bearing mass. 

Group  I   
0.21

284 / ,АP Н R  kN/m;            (5) 

 
0.21

321 / ,Аu Н R  mm.           (6) 

Group  II   
0.18

270 / ,АP Н R  kN/m;            (7) 

 
0.32

172 / ,Аu Н R  mm.          (8) 

Group  III   
0.15

260 / ,АP Н R  kN/m;            (9) 

 
0.38

104 /Аu Н R , mm.         (10) 

Correlation-dispersion analysis of the optimization data evidences a stable 

power-law relationship between the parameters АP  and Аu  with the index 

/H R  regardless of the coal-bearing mass structure. Therefore, the obtained 

scientific result can be formulated as follows: the optimal parameters АP  and 

Аu  of the fastening system deformation-strength characteristic of the reused 

extraction mine workings are in power-law relationship with the geomechanical 

index /H R , regardless of the type of the coal-bearing mass structure. 

 

 

5  Substantiation and calculation of the rational deformation-

strength characteristic of the fastening system 
 

The performed optimization of the fastening system operating modes provides the 

condition ( АP , Аu ) of the equilibrium state of its interaction with the surrounding 

mass, which expresses only the final result in the form of the point А  coordinates 

on the line of the function  P u  of the deformation-strength characteristic of 

support. It is meant here that the process of the rock mass interaction with the 

support (fastening system) develops in time and space, passing through many 

states with changing coordinates jР , ju , starting from the period of the fastening 
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system erection to the moment of the studied geomechanical process stabilization. 

In this regard, it is important to ensure the stability of mine working (using 

resource-saving methods) throughout the entire period of development of the 

support interaction with the rock mass. Consequently, the main task is to find the 

optimal function  P u  of the deformation-strength characteristic of the fastening 

system, for which two boundary values are known: Р  0, u  0 and АР Р , 

Аu u . To substantiate the principle of searching for a function  P u , Fig. 3 

shows its schematic representation. 
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Fig. 3. Scheme for calculating the rational deformation-strength characteristic of 

the fastening system:          deformation-strength characteristic of rocks in the 

dome of natural equilibrium  2q u ;          variants of the deformation-strength 

characteristic of fastening systems (lines “ОP”, 1, 2 and 3) 

 

Provided that the support is sufficiently yielding (not less than the value 

Au ), the load 1q  becomes less than the load 2q . Then the determining factor is 

the deformation-strength characteristic of the rocks in the dome of natural 

equilibrium  2q u : upon condition that: 

   2P u q u       (11) 

over the entire range ( 0 Au u  ) of development of the rock contour 
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displacements in the mine working, its stability is ensured.  

Let us consider the most typical variants of condition (11) shown in Fig. 3. 

The optimal variant of the deformation-strength characteristic  P u  of support is 

the fulfilment of the equality according to the condition (11); in this case, the 

support reaction is minimally sufficient. 

Therefore, it is expedient to set for the optimal function  P u  a certain 

margin factor (Km > 1), which compensates for the possible negative factors 

effect (line 1 in Fig. 3):  

– an increase in the required support reaction by the value of ΔPm improves 

reliability of recommendations in the case of an unpredictable rock pressure 

increase; 

– an increase in the required yielding property by the value of Δum provides 

an “escape” from excessive load in the case of an unpredictable increase in the 

rock contour displacements of the mine working. 

As can be seen from the scheme, the parameters ΔPm and Δum are 

interconnected and dependent on the value of the margin factor Km. For mining-

engineering calculations, it is generally accepted to set an accuracy within 15 – 

20% to take into consideration the influence of various kinds of poorly 

predictable factors. Therefore, in the first approximation, Km = 1.15 – 1.20 can 

be taken, and the formula for calculating the rational deformation-strength 

characteristic of the support takes the form: 

 
 

2
1

2 1

1 1
100

.
0.15 0.003 0.18

r

d m

K

P u K K В u




 

 
  

 
 

 
     (12) 

The function  P u  that expresses the rational deformation-strength 

characteristic of the support is shown by line 1 in the scheme (Fig. 3). As can be 

seen, it is located slightly above the optimal line “ОP”, but an “excess” in the 

stability margin of the support is relatively small and is determined by the 

shaded area. The margin value for the support reaction is: 

 1m m АР K Р   ,    (13) 

for yielding property of the support  

 1 .m m Аu K u        (14) 

Here, the optimal parameters AP  and Au  are calculated using the 

expressions (5) – (10). 

Finally, the rational deformation-strength characteristic of the support 

(fastening system) is determined by the formula (12), its load-bearing capacity 

maxP  is calculated by the expression: 

max m АР K Р ,     (15) 
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and the maximum yielding property maxu  – by the formula 

max Au u     (16) 

with account of the equations (5) – (10). 

There are other variants to select a rational deformation-strength 

characteristic of the support, the function of which is not similar to the function 

 2q u . Thus, the line 2 in Fig. 3 represents the well-known mode of the support 

constant resistance, which, not without reason, is considered by many experts as 

the most effective. 

If the support reaction in the mode of constant resistance is equal to maxР  

(as shown in the scheme of Fig. 3), then such its deformation-strength 

characteristic is assigned to the group of rational ones, provided that the 

structural yielding property of the support is not less than the value maxu  for a 

given mining-and-geological conditions of the mine working maintenance.  

Another variant of the support deformation-strength characteristic is shown 

by line 3 and is quite widespread (Salcher and Bertuzzi[16]; Bondarenko et 

al.[22]) for various types of roof-bolt supports. Such a deformation-strength 

characteristic cannot be considered satisfactory, since at a certain point in time 

( stru u ) the fastening structure reaction becomes less than the optimal value 

АР  and its rapid strengthening is required by the value of strР  (see Fig. 3). 

Summing up the performed research, it should be noted that a very 

accessible methodology has been developed for calculating the deformation-

strength characteristic of the support fastening system, depending on the 

mining-and-geological conditions of the mine working maintenance. 

 

 

Conclusions 
 

The search algorithm for rational modes of the fastening system interaction with 

the coal-bearing mass surrounding the extraction mine working has been 

substantiated; the algorithm involves performing a number of studies that are 

closely related to each other by the general parameters of the interaction 

process: 

– formation of the minimum possible load in specific mining-and-geological 

conditions for the mine working maintenance; 

– concordance between the deformation-strength characteristics of the 

elements included in the fastening system; 

– optimization of design parameters of the fastening elements according to 

the criterion of their equal strength. 

Methodological principles have been developed to minimize the load on the 

fastening system of the reused extraction mine workings, which are based on the 

use of a combination of studies by the FEM method and recommendations of 

normative documents for calculating the dimensions of the dome of natural 

equilibrium. 
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Based on the formulated principles, a methodology has been developed for 

obtaining the deformation-strength characteristic of a weakening mass, 

depending on the main influencing geomechanical factors.  

The patterns of the geomechanical factors influence on the choice of the 

optimal parameters of the fastening system deformation-strength characteristic 

have been determined. A stable power-law relationship between the fastening 

system optimal parameters and the geomechanical index of the mining 

conditions, regardless of the coal-bearing mass structure, has been revealed; this 

makes possible to adopt a unified strategy of resource-saving improvement of 

the fastening systems in mine workings. 

Based on the found optimal parameters of the operating modes of the 

fastening systems, a substantiation has been conducted and a methodology has 

been developed for calculating the function that describes its rational 

deformation-strength characteristic depending on the mining-and-geological 

conditions for the reused extraction mine workings maintenance. The 

methodology is distinguished by the simplicity and efficiency of the necessary 

calculations of rational parameters of the fastening system as a whole, for which 

the fastening elements constituting it are selected. 
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Abstract. There are several characteristics common to all resonance vibrations occurring 

in systems with a circumferential coordinate (rings, cylindrical and spherical shells, etc.). 

The specifics of resonance phenomena make it possible mathematically to reduce the 

problem to the study of vibrations in distributed systems and examine an analogous 

problem with fewer dimensions. In the current theory of dynamical systems the coupling 

of can be ignored without altering the qualitative pattern of the phenomenon only when 

the coupling does not produce a bifurcative change in the stability of the process as a 

whole. After analyzing averaged equations for systems with a circumferential coordinate 

in cases where different types of resonance loads were applied, we were able to classify 

the resonances that occur and determine that chaos is possible only with forced resonance 

excited by loading without interaction with source of energy or it is possible at parametric 

resonance in the systems under nonideal excitation. 

Keywords: Systems with a circumferential coordinate, Interaction with source of energy, 

Steady state regimes, Chaos. 
 

 

1  Introduction 
 

A spherical pendulum is the simplest example of an oscillator with two degrees 

of freedom of equal frequency. Many of the phenomena typical for the behavior 

of a spherical pendulum also show up in the dynamics of systems with distributed 

parameters with a periodic coordinate. Examples include rings, cylindrical and 

spherical shells, circular plates, and media inside cylindrical and spherical 

cavities, see in Kubenko et al.[1], Krasnopol’skaya and Shvets[2]. Therefore, 

knowledge of the properties of a spherical pendulum gives an understanding of 

oscillations in these other systems. In the present article, we classify different 

models that describe the vibrations of distributed systems and have few 

dimensions. 

 

 

2 Parametric oscillations of a spherical pendulum with 

interaction with power source 
 

In this part of the paper we consider the parametric oscillations of a kinematically 

driven spherical pendulum. In the case of an ideal (infinite power) driving 

mechanism the averaged equations describing parametric oscillations of a 

spherical pendulum have only regular solutions in the steady state as we would 

show in the paragraph 3 of this paper. The change in the type of dynamical system 
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(the pendulum) from deterministic (having only regular motion) to chaotic 

(capable of dynamical chaos) due to interaction with an energy source shows the 

importance of properly taking into account the interaction process, see 

Krasnopol'skaya and Shvets[3, 4, 5], Krasnopolskaya[6, 7],  Balthazar et al.[8], 

Shvets[9]. This is particularly true for experimental studies of the properties of 

dynamical systems. Chaos in the system can be caused only by the finiteness of 

the power of the driving mechanism, and not by the properties of the system itself. 

Let’s consider the system shown schematically in Fig. l. A crank-shaft slide bar 

mechanism connects the rotor of a motor with the point of support of a physical 

pendulum. When the crank-shaft turns by an angle the slide bar together with the 

support (when the length of the connecting rod b a ) has a displacement  

( ) cosw t a = − along the vertical axis of a fixed coordinate system. In Cartesian 

coordinates Oxyz  the kinetic energy can be written in the form Krasnopol’skaya 

and Shvets[4], Miles[10, 11] (in a fixed coordinate system) 

( )
22 2 20.5 0.5 [ ]T I m x y z w= + + + + ,                    (1) 

and the potential energy has the form 

( )V m g l z w= − − ,                                    (2) 

where x , y , z  are the Cartesian coordinates of the center of mass of the 

pendulum; I  is the moment of inertia of the rotor of the electric motor; m  is the 

mass of the pendulum; l  is the reduced length of the pendulum; and g  is the 

acceleration of gravity. The masses of the slide bar and support are neglected. 

 
Fig. 1. Schema of the system 

 

Following Miles[10], we introduce the new variables   and   defined as 

, siny l = . Because for a pendulum we have the relation in a fixed 

coordinate system 
2 2 2 2x y z l+ + = , 

sinx l =
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it follows that 
2 21 sin sinz l  = − − . For small   and   the Lagrangian of 

the system L T V= −  can be written in the form 

( )

2 2 2 2

2
2 2

2

2 4 2 4 2 2

0,5 0,5

2 2 sin sin

cos ;
2 24 2 24 4

L I ml

a a

l l

a
gml

l

  

      

     


= + + +


+ − + + −



 
− − + − + + 

 

 (3) 

Lagrange's equations for the basic variables ( )t , ( )t , and ( )t  take the 

form 

( ) ( )

1 2

2

2 2

( ) ( )

sin sin cos sin

sin sin ;

I H H

a a g
ml a

l l l

  

     

     

= − −


− + + −



− + − +


 

( )

( )

3 2
2 2

0 1

2

6 2

cos sin 0;
a

l

 
       

    

 
+ − + + + + − 

 

− + =

                      (4) 

( )

( )

3 2
2 2

0 1

2

6 2

cos sin 0;
a

l

 
       

    

 
+ − + + + + − 

 

− + =

 

( )

( )

3 2
2 2

0 1

2

6 2

cos sin 0.
a

l

  
       

    

 
+ − + + + + − 

 

− + =

 

Here 
1( )H   is the torque of the electric motor; 

2 ( )H   is the internal torque of 

resistance to the rotation of the rotor, see Sommerfeld[12], Kononenko[13], 

Ganiev and Krasnopolskaya[14]; 
0 /g l =  is the natural frequency of the 

pendulum; 
1  is the damping coefficient of the drag force of the medium in which 

the pendulum moves. 
The above equations describe the complicated interaction between the rotation 
of the shaft of the motor (producing the driving force) and the spatial oscillations 
of the pendulum. The equations are essentially nonlinear and cannot be solved 

analytically. To simplify (4) we introduce the small parameter /a l = , where 
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we assume that a l . In addition, we assume fundamental parametric 

resonance, where the velocity   is close to 
02 :    

0 0( ) 2t    = + .   (5) 

The resonant oscillations of the pendulum are studied using the relations 

1/2

1 1

1/2

2 2

( ) ( )
( ) ( ) cos ( )sin ;

2 2

( ) ( )
( ) ( ) cos ( )sin .

2 2

t t
t p t q t

t t
t p t q t

 
 

 
 

 
= + 

 

 
= + 

 

        (6) 

Using (6) we transform to the new variable 
1( )p  , 

1( )q  , 
2 ( )p  , 

2 ( )q  , where 

  is the slow time 

0.75 ( )t = .                                            (7) 

We use the method of averaging, which simplifies the original system of 

equations somewhat and in some cases makes it possible to obtain analytical 

solutions. Without using the method of averaging it would be difficult to identify 

the main trends in the interaction process. 

We substitute (6) into (4) and use the relations 

 
1/2

1 1( ) sin cos
2 2 2

t p q
  

 
 

= − + 
 

, 
1/2

2 2( ) sin cos
2 2 2

t p q
  

 
 

= − + 
 

. 

After averaging with respect to fast time ( )t  from 0  to 2  we obtain 

( )

( )

( )

( )

2 1

1

1 1 2 1

1

1 1 2 1

2

2 2 1 2

2
2 2 1 2

1

;

0,125 0,75 2 ;

0,125 0,75 2 ;

0,125 0,75 2 ;

0,125 0,75 2 .

d
N N M

d

d p
p E q M p q

d

d q
q E p M q p

d

d p
p E q M p q

d

d q
q E p M q p

d


 



 


 


 


 


= − −

= − − + − +

= − + + − +

= − − + + +

= − + + + +

                     (8) 

The quantities 2 2 2 2

1 1 2 2E p q p q= + + + , 
1 2 2 1M p q p q= −  are dimensionless 

kinetic energy and the momentum relative to the O z -axis of the pendulum.  

Here we use the linear approximation to the static characteristic of the motor, 

where 

( ) 21 2

0 0 12

( ) ( )
0,5

0,5

H H
N N

I ma

 
   

−
= − +

+
.                 (9) 

Therefore 
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0

2 1

0

2
Nl

N N
a 

 
= − 

 
 , and 

2

2

2

0,5

ml

I ma
 =

+
, 

1 0/  =  .

 

 

The purpose of the present part of the paper is to show all possible classes of 

steady-state motion for the system of equations (8). In practice the different types 

of steady-state motion can be found for (8) only with the help of numerical 

methods of solution. As it was found in the works Krasnopol’skaya and Shvets[4], 

Shvets[9], the system under consideration has all types of steady-state when 

bifurcation parameters are changed. The most interesting results are connected to 

transition to chaos in such system. With the help of numerical experiments were 

determined the existence regions for steady-state chaotic motion in the system 

and analyzed the transition from regular motion to chaotic motion. 

 

 

3 Parametric resonance under ideal excitation 
 

It is interesting to compare our previous results with a system in which the 

interaction between the driving force and the vibrational loads is not taken into 

account. In this case the process is described by a system of equations obtained 

from (8) as follows. The first equation of (8) is dropped and the unknown function 

  in the second, third, fourth, and fifth equations is taken as a constant parameter. 
Shown below is the system of evolutionary equations in amplitudes of resonance 

vibrations that was obtained by Miles[11] for parametric resonance on the basis 

of Hamilton's principle after averaging the Lagrangian function over fast time 

( )

( )

( )

( )

1

1 1 2 1

1

1 1 2 1

2
2 2 1 2

2

2 2 1 2

0,125 0,75 2 ;

0,125 0,75 2 ;

0,125 0,75 2 ;

0,125 0,75 2 .

d p
p E q M p q

d

d q
q E p M q p

d

d p
p E q M p q

d

d q
q E p M q p

d

 


 


 


 


= − − + − +

= − + + − +

= − − + + +

= − + + + +

  (10) 

The resulting system has unique properties: these properties following from the 

physical essence of parametric resonance. Such resonance is excited by vertical 

vibrations of the suspension point. Thus, the pendulum is insensitive to the 

orientation of the horizontal axes. This is reflected in Eqs. (10) by the fact that 

they are invariant relative to the replacement of (
1p ,

1q ) by (
2p ,

2q ). 

When such excitation occurs, the moments of the exciting forces relative to the 

O z -axis will be equal to zero. Equation (10) allows us to obtain the equation 

/dM d M = −  for the dimensionless moment of momentum M , so that 

0M →  as 0 → .  Thus, 0M =  for the asymptotic steady-state regimes being 
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examined here. In this case, it is easy to prove that 
2 1p k p=  and 

2 1q kq= , where 

k  is the proportionality factor that reduces system (14) to two equations 

( )( )

( )( )

2 2 21

1 1 1 1

2 2 21
1 1 1 1

0,25 1 2 ;

0,25 1 2 .

d p
p k p q q

d

d q
q k p q p

d

 


 


 = − − + + + −
 

 = − + + + + −
 

  (11) 

System (11) has a dimensionality of two and, in accordance with the theory of 

dynamic systems Kuznetsov[15], has no chaotic steady-state regimes. 

This rule also applies to the laws that govern the occurrence of parametric 

resonance in distributed systems with a circumferential coordinate, when only 

"coupled" modes with the same natural frequencies are excited. A system of 

equations of the form (11) can be obtained for the amplitudes of the resonance 

modes of distributed systems after using the procedure of averaging in slow time, 

see Krasnopol’skaya and Podchasov[16]. Thus, we may conclude that the 

interaction with energy source which we studied in previous part of this article 

(Eqs. (8)) is the trigger to chaos.  

 

 

4 Forced resonance of pendulum oscillations under ideal 

excitation 
 

Let’s consider the case when the pendulum is kinematically excited by the 

pereodic motion of its suspension point without taking into account interaction 

with energy source. Let this point and the center of mass of the pendulum in a 

cartesian coordinate system Oxyz  with the vertical axis O z  be (
0x , 

0y , 
0z ) and 

( x , y , z ), respectively. If the suspension point moves only along the Ox -axis 

so that 

0 cosx a t= , 
0 0 0y z= = ,   (12) 

then the vibrations of the pendulum in the direction of the Ox -axis will be 

directly excited, while the vibrations occurring in the direction of the Oy -axis 

will be induced by coupling. 

For the spherical pendulum being considered the Lagrangian function L  can be 

written in the form: 

( ) ( )2 2 2 2

00,5L m x y z m l l z= + + − − .  (13) 

Here, the coordinates of the spherical pendulum must satisfy the coupling 

equation ( )
2 2 2 2

0x x y z l− + + = . 

We will assume that conditions leading to forced resonance exist, i. e., we will 

assume that   is close to 
0 . Thus, 

2 2 2

0 1    = + .   (14) 

272



Where /a l =  is a small positive parameter; 
1  is the frequency difference 

parameter. 

The slow of motion of the center of mass of the pendulum will be sought in the 

form Miles[10, 11] 

 

 

1/2

1 1 1 1

1/2

2 1 2 1

( ) cos ( )sin ;

( ) cos ( )sin ,

x l p t q t

y l p t q t

    

    

= +

= +
  (15) 

using slow time 

1 0,5 t  = .    (16) 

Inserting Eqs. (12), (15-16) into Eq. (13), averaging (13) over fast time t , and using 

Miles' method (based on Hamilton's principle), we obtain the following system of 

differential equation: 

( )

( )

( )

( )

1

1 1 1 2

1

1

1 1 1 2

1

2

2 1 2 1

1

2

2 1 2 1

1

0,125 0,75 ;

0,125 0,75 1;

0,125 0,75 ;

0,125 0,75 .

d p
p E q M p

d

d q
q E p M q

d

d p
p E q M p

d

d q
q E p M q

d

 


 


 


 


= − − + −

= − + + − +

= − − + +

= − + + +

  (17) 

System (17) has the simplest form of the equations that describe the forced 

vibration of the pendulum, since it contains only four constants coefficients  , 

1 , 0,025 ,  and 0,75 . 

Such a system of equations is used in problems concerning forced resonance 

vibration in distributed systems with a circumferential coordinate. When a system 

is subjected to excitation distributed in space with respect to one of the natural 

modes and when the exciting frequency is close to the corresponding natural 

frequency, the evolution of the amplitudes of the two coupled modes can be 

described by relations of the form (15). In this case, the system of averaged 

equations differs from system (17) only in the values of the constant coefficients 

with E  and M . Thus, the characteristic properties of system (17) may also be 

manifested in distributed systems with a circumferential coordinate. Let us 

mention the most important properties of the solution of system (17). There are 

three classes of solutions which are possible in the system: steady-state, periodic, 

and chaotic, as stated in Krasnopol’skaya and Podchasov[16]. Thus, the 

amplitudes of the forced resonance vibrations may be constant, periodic, or 

chaotic quantities for the system under ideal excitation. It should be noted that the 

fact that the vibrations of the pendulum are excited in the direction of the Ox -

axis is reflected in system (17) by the fact that the second equation of the system 

contains the term 1 . Vibrations are excited in the oy direction only due to the 

nonlinear coupling of the displacements in both directions. However, the 

development of such vibrations helps destabilize the directly excited vibration 
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process. In fact, the appearance of the both components of motion is responsible 

for the existence of the periodic and chaotic solutions of system (17). 

This effect can be manifest as follows in distributed oscillatory systems. The 

stability of vibrations in a resonance mode excited directly by an external load 

can be disturbed by the initiation of vibrations in a conjugate mode excited simply 

as a result of the nonlinear coupling of the modes Kubenko et al.[1]. The 

indirectly induced vibrations may in turn lead to chaotic vibrations in both 

resonance modes. 

 

 

5 Forced resonance in ideal pendulum kinematically excited by 

motion about a circle 
 

An interesting property of forced resonance which makes it similar to parametric 

resonance was observed in the study of vibrations of a pendulum with a 

suspension point rotating in the circumferential direction. This property is 

possessed by resonance vibrations of the free surface of a liquid in a cylindrical 

or spherical tank when the tank undergoes translatory motion and its center is 

displaced in the horizontal plane about a circle. The same property is also seen in 

the vibration of a liquid between two cylindrical shells when the vibrations are 

excited by a deformation travelling waves inside the inner shell in the 

circumferential direction, see Krasnopol’skaya and Podchasov[16], 

Krasnopolskaya and van Heijst[17]. After Galerkin's method is used, the 

equations for the amplitudes of the "coupled" resonance modes will be similar to 

the equations for the amplitudes of vibration of a pendulum in the direction of the 

Ox  and Oy  axes. The difference will be the values of the corresponding 

coefficients. As before, we will examine the derivation of the equations for such 

excitation of forced resonance by using a spherical pendulum as an example. Let 

the suspension point of the pendulum undergo motion over a circle of radius a  

in the horizontal plane. Thus, its coordinates 
0x  and 

0y  change in accordance 

with the relations 

0 cosx a t= , 
0 siny a t= .   (18) 

Proceeding on the basis of Lagrangian function (13), assuming that the exciting 

frequency is close to the natural frequency (15), and making a substitution of the 

time (16), we can obtain the following system of equations in slow time (16) 
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= − − + −

= − + + − +

= − − + + −

= − + + +

  (19) 

where   is a coefficient expressing the damping forces. 

This system differs from (17) in the presence of the term 1−  in the third 

dimensionless equation, which shows that the vibrations of the pendulum in the 

oy direction are directly excited. We can use system (19) to obtain the equation 

( )
( )

0,5
2 0,5

d E M
E M

dt


−
= − − ,   (20) 

the solution of which has the form 

0,5 const exp( 2 )E M − = − .   (21) 

Thus, for asymptotic steady-state regimes, 0,5 0E M− =  or 

( ) ( )
2 2

1 2 1 2 0p q p q− + + = .  (22) 

For the steady vibrations we are examining, it follows from (22) that 

1 2p q= ,   
2 1p q= − .   (23) 

It can be seen that the evolution of the steady-state regimes in the given case is 

governed by Eqs. (23) and the following system of averaged equations 

 

( )

( )

2 21
1 1 1 1 1

1

2 21
1 1 1 1 1

1

0,5 ;

1,

d p
p p q q

d

d q
q p q p

d

 


 


 = − − − +
 

 = − + − + +
 

  (24) 

for which only regular regimes are possible. Chaos is impossible in the second-

order system. 

Thus, after analyzing averaged equations for systems with a circumferential 

coordinate in cases where different types of resonance loads were applied, we 

were able to classify the resonance that occur and determine that chaos is possible 

only with forced resonance excited by loading in a certain direction. 

 

 

Conclusions 
 

It is shown that chaotic oscillations at the parametric resonance result from the 

interaction of the pendulum with a driving mechanism of finite power. Chaotic 

vibrations also are possible in the pendulum without interaction with exciting 
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mechanism when it is excited in one horizontal direction only due to the nonlinear 

coupling of the displacements in both directions. However, the development of 

vibrations in the second horizontal direction destabilizes the directly excited 

vibrations under ideal excitation, what can lead to chaotic regimes. In the study 

of vibrations of a pendulum with a suspension point rotating along a circle was 

determined that chaos is impossible under ideal excitation. Vibrations of a 

pendulum may have chaotic regimes under nonideal excitation. The system 

analogous to (19) would have an additional equation for the source of energy. 

Thus, nonideality is a trigger of transition to chaos. 
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Abstract. A synergetic approach to the synthesis of a control system for a nonlinear 

dynamic object is proposed on the basis of the well-known method of analytical design 
of aggregated regulators - ADAR. An applied problem of synthesis of control algorithms 

for the separation of the upper stage (US) and the carrier aircraft (CA) when the nose link 

is broken and the upper stage rotates at the main nodes is considered. The upper stage is 

located on the upper surface of the carrier aircraft and is connected to it by three nodes, 
the bow and two main ones. The carrier aircraft with the upper stage makes a flight to a 

given altitude, at which they are separated (air start of the upper stage). At the moment of 

separation, the nasal connection is broken. When the elevator is deflected and under the 

influence of the incoming flow, the upper stage rotates by a predetermined angle around 
the axis passing through the main attachment points. This angle is set so that the aft parts 

of the upper stage and the carrier aircraft do not collide. The obtained control algorithm 

provides stabilization of the upper stage rotation angle and compensation of external 

piecewise-constant disturbances acting on the system. The effectiveness of the synergetic 
approach is confirmed by the asymptotic stability of the closed-loop system "object of 

control - regulator", as well as its invariance to the influence of disturbances in the 

external environment, which is clearly demonstrated in numerical studies of the 

synthesized system. 
Keywords: Synergetics, Synthesis of Control Algorithms, Piecewise Constant 

Disturbances, Carrier Aircraft, Upper Stage. 
 

1  Introduction 
 

In order to increase the fuel efficiency and payload of space systems, at the 

present stage of space exploration, scientists and engineers are increasingly 

inclined to use multistage aerospace systems (AS) for launching spacecraft into 

orbit, with upper-stage, located on a carrier aircrafts upper surface. With the 

upper location of the upper stage, solution of the problem of separating the 

aircraft presents certain difficulties: it is necessary to ensure the safe mutual 

movement of the separated aircraft after the moment of breaking the mechanical 

bonds. It is necessary to exclude the collision of aircraft, the negative impact on 

the structure of the aircraft carrier of the jet of heated gases from the engines of 
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the upper stage; to minimize errors in piloting, to ensure the invariance of the 

system to the effects of various kinds of disturbances. Solution to these 

problems is possible with help of flight control automation systems at the most 

critical stages. The aerospace complex considered in this study is a two-stage 

system. The first stage is a carrier aircraft; the second stage is an upper stage 

located on top of the carrier aircraft. The carrier aircraft and the upper stage 

included in the AS are complex nonlinear control objects. The dynamics of 

motion of such objects is described by a system of nonlinear differential 

equations. The task of controlling the entire complex as a whole at the stage of 

joint flight, as well as the carrier aircraft and the upper stage during their 

separation and autonomous flight is multidimensional. For the synthesis of 

control systems for the aerospace complex during launch at a given speed to the 

desired altitude (for air launch); and also for the separation of US and CA in 

case of a different-time breaking of bonds, in this work it is proposed to use the 

method of analytical design of aggregated regulators. ADAR method was 

invented by Professor A.A. Kolesnikov and developed in the works of his 

apprentices and followers, Kolesnikov[1], Veselov et al.[2], Kreerenko,[3]. This 

method makes it possible to work with a complete nonlinear model of the 

motion of an aircraft and to carry out coordinated control over all phase 

variables to transfer the control object to a given state. The work considered and 

solved the following tasks: development of a procedure for synergetic synthesis 

of control algorithms for the rise of the AS at a given speed to a given height for 

an air launch of the US; development of a procedure for synergistic synthesis of 

control algorithms for the separation of the US and the CA with non-

simultaneous breaking the connections. 

 

2 Synthesis of AS control algorithms of reaching launch 

altitude 
2.1 Mathematical model of AS 

To synthesize autopilot control law of the AS at the stage of ascent to a given 

altitude, we will use the mathematical model of the longitudinal motion of the 

aircraft in projections on the axis of a semi-connected coordinate system, Bukov 

[4]. Taking into account expressions for aerodynamic forces and pitching 

moment, interference and reactions in the communication nodes between upper 

stage and carrier aircraft, mathematical model will take the form 
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where V – airspeed;   – attack angle; z – angular pitch velocity of the carrier 

aircraft; H  – flight altitude;  – carrier aircraft pitch angle; x – longitudinal 

displacement of the aircraft gravity center (c.g.); m – mass of carrier aircraft; 

zI – the moment of inertia of the aircraft relative to the OZ axis; g  – 

acceleration of gravity; x y zc ,c ,m – dimensionless coefficients of drag force, lift 

force and pitch moment; S – aircraft wing area; l  – wingspan; ab – middle 

aerodynamic wing chord; xin yin zinc , c , m    – additions of the coefficients of the 

drag force, lift and pitching moment from the interference between the CA and 

the US; 
y yN yMN N N  ; yNN , yMN – normal forces in nasal and in main node; 

xA – longitudinal force in strut of the main node 

2 1

1 1 1 1

_ _

22

sin ( )
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1
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x x в in xin xRB RB RB

x y z z x

RB RB

yN xRB yRB yRB xRB RB yRB RB xRB

x M N

y y в in yin yRB RB RB

yM z y x z yN

RB RB

P mg qS c c k c G X m m
A V r

m m m m

N G r G r X r Y r
r

qS c c k c mg G Y m m
N r V N

m m m m





 
 

 
 

     
   



    

    
    



 

1 2 3in in ink ,k ,k  – coefficients that take into account change in interference 

depending on the distance between CA and US; z

zm


 – derivative of  

longitudinal moment coefficient with respect to relative angular pitch velocity 

z , Byushgens and Studnev[5]; q  – velocity head; _ _x M Nr – distance between 

nose and main supports of US; 1yRBr , 1xRBr  – shoulders of gravity projections 

xRBG  and yRBG  relative to main support, respectively; xV , yV  – carrier aircraft 

linear velocity vector projection on the associated coordinate system axis; 

,X Y – drag force and lift of CA; xr , yr  – coordinates of radius vector r ; r  – 

radius vector connecting c.g. AS and c.g. US (fig. 1, Mehta et al.[6]); P  – 

engine thrust of CA; в  – elevator deflection angle of the CA. 

 
 

Fig. 1. Forces and moments acting on the US in free flight and reaction from CA 

 

c.g. AS 
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2.2 Synthesis of control algorithms 

The control task is to lift aerospace system to a given altitude *H  (at which the 

US will separate from carrier aircraft), as well as to move the AS at a given 

speed *V  at this altitude, that is, to create such starting conditions for the upper 

stage so that after completion of the separation maneuver with a carrier aircraft, 

he could make an autonomous flight with a climb. Let us find in analytical form 

the control vector [ , ], вu P  depending on the state variables of the system 

(2.1), which ensures the fulfillment of the given technological invariants 
* *; .V V H H   (2.2) 

The synthesis uses standard ADAR procedure, Kolesnikov[7], Kolesnikov and 

Kobzev[8],  Kreerenko[9]. For system (2.1), we introduce invariant manifolds: 
*

1 2 10; 0,zV V          (2.3) 

where *V  is the desired value of the variable corresponding to the set control 

goal (2.2); 1  - internal management. 

Manifolds (2.3) must satisfy the solution of the system of functional equations  

1 1 1 2 2 20; 0T T          (2.4) 

where: 1 2,T T  – time constants affecting the quality of dynamic processes in the 

closed system "object of control - autopilot". Asymptotic stability in the large of 

system (2.4) with respect to manifolds  1 20, 0    is ensured at 

1 20, 0T T  . As a result of the dynamic “contraction” of the phase space at the 

intersection of invariant manifolds 1 20, 0   , the decomposed system will 

take the following form: 
*

1( ) sin( ); ( ) .H t V t       (2.5) 

For system (2.5), we introduce an invariant manifold 3 : 

* *

3 sin( ) 0,V H H        (2.6) 

where 
*H  is desired value of variable (2.2). The joint analytical solution of 

equations (2.5), (2.6) and the functional equation 3 3 3 0T     , allows you to 

find an expression for "internal" control 1 , in the form of a function of state 

variables , , ,H   ,  time constant 3T  and desired parameter values: * *,V H  

*

1 *

3 3

1
(1 ) ( ) .

cos( )

H H
tg

T T V
  

 


    


 (2.7) 

According to the procedure of the ADAR method, from the joint solution of 

(2.3), (2.4), the system of functional equations (2.4) and equations of the model 

(2.1), we obtain expressions for the control actions: the deflection angle of the 

elevator в  and the thrust of the engines P . These expressions are external 

controls and are functions that depend on the system state variables 

, ( , , , , , ).в zP f V H x     After substituting the expressions for the control 

actions into the model of the control object (2.1), we obtain a closed nonlinear 

motion control system of the aerospace complex. By setting the parameters of 
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the controller and choosing the invariants, we obtain a system that depends only 

on the state variables. Below are the results of numerical studies of the dynamic 

properties of the resulting closed-loop system. 

 

2.3 Simulation 

For the numerical solution of a closed nonlinear system, we will use Runge-

Kutta method, Maple software package. Figures 2-3 show that aerospace 

complex achieves desired speed of 800 km/h and a flight altitude of 10000 m; 

figures 4-5 present changes of control actions with respect to integration time. 

 

       
Fig. 2. Flight speed of AS Fig. 3. Flight altitude of AS 

 
    

Fig. 4. Deflection angle of the elevator CA  Fig. 5. Control - thrust of the engines CA 

The simulation results show that the motion of the closed-loop system is 

asymptotically stable in the entire region of the phase space for various 

combinations of the initial values of the state coordinates. The exception is the 

points at which the considered mathematical model of the object is not defined 

(at an angle of attack and an angle of inclination of the trajectory equal to 90°). 

 

3  Synthesis of control laws of US rotation at the main nodes 
 

Consider the initial stage of separation of the upper stage and the carrier aircraft. 

At this moment, lock of nose attachment point is open and acceleration unit 

rotates about the axis passing through the main attachment points, Demeshkina 

et al.[10]. The main safety condition at this stage is to ensure that this maneuver 

is carried out without collision of the upper stage and the carrier aircraft. 

Rotation control of the upper stage is carried out by deflecting the upper stage 

,в 

, st

, st , st

m/sV , mH ,

, st

tnfP,
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elevator. The US engines at this moment are not yet working due to the 

proximity of the carrier aircraft and the danger of the negative impact of a jet of 

heated gases on the structure of the CA. The rotation of the upper stage relative 

to the main attachment points leads to an improvement in the process of 

separation of the carrier aircraft and the upper stage in comparison with the case 

of simultaneous breaking of links, Leutin[11]. By the time the US is detached 

from the main attachment points, a significant angular velocity of the US 

develops for pitching. This leads to an increase in the angle of attack and 

vertical overload of the upper stage immediately after decoupling of the main 

units, Kreerenko, O. and Kreerenko, E.[12] . This, in turn, leads to a noticeable 

increase in the difference between the vertical overloads of the upper stage and 

the carrier aircraft. During the turning maneuver on the main attachment points, 

probability of collision between the US and the CA is reduced by fixing the aft 

part of the upper stage relative to the carrier aircraft, Decker and Wilhite[13], 

Moelyadi et al.[14], Decker and Gera [15]. 

3.1 Features of the mathematical model 

Let us synthesize an autopilot law for controlling the angle of rotation of the 

upper stage relative to the carrier aircraft at the main attachment points. For the 

problem under consideration, we will assume that the movement of the upper 

stage occurs without roll and slip, the roll and yaw angles are equal to zero. We 

restrict ourselves to considering the equations of angular motion in the 

longitudinal plane. Then, to describe the rotation of the upper stage on two 

attachment points, we use the following differential equations: 

1 _ 1 1

1
( ) ; ( ) ,z r RB Main r z r

z RB

t M t
I

     (3.1) 

where 1r - US rotation angle around the main body when maneuvering 

separation (fig. 1); 1z r - the angular velocity of rotation of the US relative to 

the axis passing through the main attachment points; z RBI - moment of inertia 

US; _RB MainM - the total moment of all forces acting on the upper stage, 

relative to the main (rear) attachment point of the US to the CA. 

Let us determine the sum of the moments acting on the US, relative to the main 

(rear) attachment point of the US to the CA: 

RB _ Main G _ Main a _ Main Nn _ MainM M M M    (3.2) 

where G _ MainM  - is the moment from the force of gravity of the US, a _ MainM is 

the aerodynamic moment, Nn _ MainM  is the moment from the reaction force in 

the nose attachment point. The aerodynamic moment acting relative to the 

center of gravity the US is brought to the attachment point of the main  strut. 

Using expression (3.2), equating to zero reaction in nasal node, we obtain: 

1 _ _ 1 1)
1

( ) ( ; ( ) ,z r G Main a Main r z r

z RB

t M M t
I

      (3.3) 

The moment from the force of gravity of the upper stage relative to the main 

attachment point of the upper stage to the carrier aircraft 
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1 1G _ Main xRB yRB yRB xRBM G r G r ,   (3.4) 

where, 1yRBr , 1xRBr  are the shoulders of the projections of the force of gravity 

xRBG  and yRBG  relative to the main support, respectively. Aerodynamic moment 

of the upper stage relative to the main attachment point of the US to the CA 

1 1

RB

a _ Main RB yRB RB xRB zaM X r Y r M ,     (3.5) 

where za RBM is the pitching moment of the upper stage. 

Substituting expressions (3.4), (3.5) into (3.3), we obtain: 

1 1 1 1 1
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The pitching moment of US is determined by following expression: 
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      (3.7) 

where a RBb  is the average aerodynamic chord of the US wing; RB - the angle 

of attack of the US; вRB – the angle of deflection of the elevator of the US; 

zRB - is the relative angular velocity of the US pitch; z RBm - coefficient of the 

pitching moment of the US; z RB

zRBm


- derivative of the longitudinal moment 

coefficient by zRB ; zRB aRB zRB RBb / V  ; z RB - the angular velocity of the US 

pitch; RBV - linear speed of movement of the US; в RB

z RBm


- derivative of the 

longitudinal moment coefficient of the US by вRB ; 
в RB

k is a coefficient that 

takes into account the decrease in the efficiency of the US due to the transfer of 

the center of rotation of the US from the central heating unit. into the attachment 

point of the equivalent main support; zinRBm - increment of the pitching 

moment of the US due to the influence of interference; 3in RBk - coefficient of 

interference change when moving away from the CA. The projections upper 

stage gravity force on the associated coordinate system axis are: 

;xRB RB RB yRB RB RBG m g sin G m g cos ,      (3.8) 

where RB  is the pitch angle US. 

Aerodynamic forces when the US rotates around the main attachment point: 

1 1 1 1;' ' ' '

RB RB r RB r RB RB r RB rY Y cos X sin X X cos Y sin ,         
; ,' '

RB yRB RB RB RB xRB RB RBY c q S X c q S   
(3.9) 

where xRB yRBc ,c  are the dimensionless coefficients of US aerodynamic forces; 

RBS - US wing area, 
2

2RB RBq V /  - velocity head; RBV - linear speed of US 

movement. Taking into account expressions (3.8 - 3.9) we get: 
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We write the expressions for, in the form 

1 1 0 1 1 1 0 1( + ); ( + ),xRB r yRB rr r cos r r sin      (3.11) 

where 1r is the radius vector connecting the main attachment point and c.g. US; 

0  - the angle formed by the radius vector 1r and the axis 1 RBO X  (before the 

start of the US rotation maneuver relative to the main node) (Fig. 1). 

Taking into account the expressions for, and the expressions for the pitch angle 

of the US, as well as the aerodynamic pitching moment of the upper stage (3.7), 

the system of equations (3.10) will take the form: 
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(3.12) 

where, 1z r , 1r  are state variables. 

The control of the rotation of the US on the main hinges is carried out by 

deflecting the elevator of the US, which leads to the appearance of an increase 

in the lifting force and a change in the value of the longitudinal moment. Thus, 

the control action is the deflection angle of the elevator of the US в RB . The 

purpose of the control is to ensure the rotation of the upper stage relative to the 

axis passing through the main attachment points at a given angle:  
*

1 1r r   (3.13) 

to create the most favorable conditions for separating upper stage and carrier 

aircraft. Formulation of the problem. It is required to find in analytical form a 

control law that stabilizes the angle of rotation of the upper stage
*

1r  to create 

an increase in lift and ensure shockless separation of aircraft. 

3.2 Synthesis of the control law 

For the problem under consideration, the technological invariant is reduction to 

zero of difference between actual and given angle of rotation of the US: 
*

1 1 0.r r    (3.14) 
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In accordance with the procedure of the ADAR method for system (2.24), we 

introduce an invariant manifold of the following form: 
*

1 1 1 1( ) 0,z r r r         (3.15) 

where 1 is a positive coefficient. According to the ADAR method, the macro 

variable must satisfy the functional equation 

0,T      (3.16) 

where: is the time constant that determines the time to transfer the system (3.16) 

to the finish manifold. The constant influences the quality of the dynamics of 

processes in the system "object of control - autopilot law" and is selected from 

the condition of obtaining a transient process of the desired type. Having solved 

together (3.12), (3.15) and (3.16) with respect to the deflection angle of the 

elevator of the upper stage, we obtain an expression for the control law 
*

1 1 1 1( , , , , ).вRB z r r rf T      (3.17) 

3.3 Modeling 

In the simulation, it was assumed that the CA is balanced in steady horizontal 

flight without roll and slip, the angular rates of pitch, roll and yaw are equal to 

zero; V =800 km/h; H =10000 m. Invariant
*

1r =7°. Initial conditions 

1z r =0°/s; 1r =0°. Controller parameters: T  0.1s; 1 =1. 

  
Fig. 6. The angular rate of rotation of the 
RB at the main nodes 

Fig. 7. Angle of rotation of US 

      

Fig. 8. Deflection angle of elevator of US  Fig. 9. Invariant manifold 

Transient processes. For the numerical solution of a closed nonlinear system 

(3.12) and (3.17), the Maple software package, the Runge-Kutta integration 

method of the 4th order, was used. Figures 6–9 show the results of numerical 

studies of the dynamic properties of the resulting closed-loop system. Figures 6–

1,r 

,в RB 

, st 

, st

1,

/ s

z r



, st , st
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7 show the dependences of phase variables on time. The change in the control 

action depending on time is shown in figure 8. Figure 7 shows that the upper 

stage reaches the required setting angle *

1r = 7 °; the angular velocity of 

rotation of the US relative to the main nodes decays (fig. 6). The transition 

process shown in figure 9 for the introduced invariant attracting manifold shows 

that over time the manifold tends to zero. The simulation results show that the 

motion of the closed-loop system is asymptotically stable. The synthesized 

control law ensures the achievement of the set control goal: rotation of the upper 

stage on the main hinges at the desired angle with respect to the carrier aircraft. 

 

4 Synthesis of astatic regulator for US rotation at main nodes 
 

In some cases, to compensate for external disturbances acting on the aerospace 

complex, it is advisable to use astatic controllers. The synthesis of an astatic 

controller is based on the idea of expanding the state space of a controlled 

system by introducing additional integrating links into the structure of the 

controller. Integrators are introduced to reduce static error. The number of 

integrating links per unit exceeds the order of power-law perturbation function. 

4.1 Extended Object Model 

During the rotation of the upper stage on the hinges of the main attachment 

points to the carrier aircraft, various external disturbances can affect the system: 

wind shear, atmospheric fluctuations, etc. To suppress an external unmeasured 

piecewise constant perturbation, we synthesize an astatic control law. Suppose 

that the control object (3.12) is affected by an external unmeasurable piecewise 

constant perturbation dist (t) = const. Let us pose the problem of synthesizing a 

control law that ensures the fulfillment of invariant (3.13) 
*

1 1r r   and 

suppression of the external unmeasurable disturbance dist (t). To solve the 

problem, according to the procedure of the ADAR method, we write down an 

extended model of the control object, Kreerenko, O. and Kreerenko, E.[16] 

1 1 1 0 1 1 1 0
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(4.1) 

where z – is the dynamic variable (estimate of the external unmeasured 

disturbance performed by controller);  >0 – is a constant coefficient. The 

equation for z  (4.1) is a dynamic perturbation model. When forming dynamic 

model, the requirement to fulfill set control goal (3.13) was taken into account. 

4.2 Synthesis of the astatic regulator 
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In the synthesis of the astatic controller, the standard procedure of the ADAR 

method is used. For system (4.1), we introduce invariant manifold: 
*

1 11 1 1( ) 0,z r r r z          (4.2) 

where 11 – is a positive coefficient. From the joint solution (4.2), (4.3) 

(1/ ) 0,T     (4.3) 

and the equations (4.1), we obtain an expression for the control action в RB  

*

1 1 1 11( , , , , , ).вRB z r r rf T z      (4.4) 

Substituting obtained control law into the plant model (4.1), setting the 

controller parameters and technological invariant, we obtain a closed system. 

4.3 Simulation 

Instead of estimating an external unmeasurable disturbance z, we introduce a 

piecewise constant disturbance dist =-4/57.3 rad/s2 into the extended model of 

system (4.1). Flight speed V =800 km/h; altitude H =10000 m. Technological 

invariant: 
*

1r =7°. Initial conditions: 1z r =0°/s; 1r =0°. Controller 

parameters: T  0.1 s; 11 = 2. The modeling was carried out in the Maple 

software package, the integration method was Runge-Kutta. The simulation 

results taking into account the synthesis of the astatic controller are shown in 

fig. 6-11. As can be seen from the results of the analysis, the synthesized astatic 

controller ensures the achievement of the set goal by the control object, as well 

as compensation of the piecewise constant disturbance acting on the system, that 

is, the necessary adaptive properties of the closed-loop system.  

 

  
Fig. 6. Angular rate of rotation of US Fig. 7. Angle of rotation of US 

      

Fig. 8. Deflection angle of the elevator US  Fig. 9. Invariant manifold 
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Fig. 10. Perturbation assessment Fig. 11. Error 

 

Conclusions 
 

Using the ADAR method in analytical form, a basic control law has been 

obtained, which provides stabilization of the swing angle of the upper stage 

when it rotates about an axis passing through the main attachment points; which 

makes it possible to create an increment in the lifting force on the wing of the 

booster block and helps to reduce the loads in the nodes of the mechanism for 

attaching the US to the CA; and also provides a separation process without 

collision of aircraft.  

An astatic regulator of the upper stage rotation angle relative to the axis passing 

through the main attachment points has been developed when the nose link is 

broken and the US is delayed at the main nodes at the stage of separation from 

the carrier aircraft. The resulting controller ensures the asymptotic stability of 

the system with respect to the desired value of the US rotation angle at the main 

attachment points
*

1r ; and also invariance to external piecewise constant 

disturbance, for example, to wind shear. 
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Abstract: The first half of the twentieth century became the Golden Age of the dirigible airship. After 

the Hindenburg disaster, (1937), the dirigible use fell into rapid decline leaving the non-rigid airships 

to serve in maritime roles until the mid 1960s. Throughout dirigible and non-rigid use, violent storm 

systems have been associated with in-flight airship disasters. In particular, the popular press at time 

instilled into the public perception that lightning strikes were the guilty ignition source of the 

disasters. Over the past 25 years, Saint Elmo’s Fire has come forward as an alternative ignition source 

for in-flight airship disasters. Understanding the role of low energy discharges events is important for  

the emerging hydrogen economy that is intended to reduce the world’s energy consumption and 

greenhouse emissions. 

 

This paper reviews 2H2 + O2 = 2H2O combustion chemistry, the role of heterogeneous graupel 

chemistry within electrification of Cumulonimbus, and how the empirical mathematical construct of 

Peek’s Law which attempts to identify the visual inception voltage in terms of the minimum electrical 

field stress required for the generation of Saint Elmo’s Fire. Using this electrochemical knowledge, 

in-flight airship disasters associated with nearby cloud electrification, or violent storms systems, are 

correlated and reviewed. This study is supported by firsthand accounts (from survivors), including 

radio messages prior to an airship disaster, ground eyewitness accounts, along with the structural 

design of the airship. The hydrogen lift-gas airships reviewed here are four dirigibles (LZ-4 (L-10), 

SL-9, Dixmude and Hindenburg) and one non-rigid airship (NS.11). As a comparative control, this 

paper reviews the worst airship disaster, that of the helium lift-gas flying aircraft carrier, USS Akron 

(ZRS-4), which led to the loss of 73 lives. In addition to that of the sister airship, USS Macon (ZRS-5) 

disaster where two lives were also lost. 

 

Keywords Saint Elmo’s fire, plasmoid, dirigible, non-rigid airship, lightning 

 

 

1 Introduction 
In 2020, the authors of this paper presented two talks at the 13 th virtual CHAOS2020 conference 

Florence-Italy on how Peek’s formula [1] may be used to estimate the visual inception voltage stress 

point on natural and artificial structures [2] and microwave oven plasma processing of nanomaterials 

[3]. In the former paper, the dirigible airship was one of the artificial structures examined. In the 

follow-up question and answer section, the main question was ‘if not lightning, how does Saint Elmo 

Fire (SEF, also sometimes-called brush discharge, corona, or partial discharge) become a lethal threat 

to a hydrogen (H2) lift-gas airship. The answer to this question involves a complexity of factors, 

including a detailed knowledge of the airship construction, the prevailing metrological conditions at 

the time of the disaster and if the airship’s captain was ‘Extraordinary Good’, or ‘Lucky’. 

 

This paper consolidates published information regarding five H2 lift-gas airships (four dirigibles and 

one non-rigid airship) disasters that are associated with cloud electrification surrounding or near-by 

the airships. In these disasters, the airships are in-flight (not tied to a mooring-mast or their ground 

handling ropes secured to the ground, i.e. the airships obtain a quasi-equilibration to the local weather 

electrical field conditions. In this context amongst the factors and accounts considered are the 

prevailing metrological electrical and chemical environment, radio messages prior to the airship 

disaster, firsthand accounts (from survivors) and ground eyewitness accounts, along with the 
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structural design of the airship. References from the ‘first rough draft of history’ (newspapers and 

movie-reels) are used along with board of inquiries, contemporary and current aeronautical journals, 

metrological, physical chemistry and electrical engineering journals. The chronology of these articles 

reveals the complex processes (physical, commercial and political) were not inter-linked, but evolved 

overtime. To clarify these complex issues, the paper is organized as follows: Section 2 gives a 

historical view of SEF. Section 3 describes the process of airship disasters selection and classification 

of the selected dirigible and non-rigid airships (section 3.1). Section 4 looks at the airship 

construction, gasbag (section 4.1), non-rigid envelopes (section 4.2) and dirigible airframes (section 

4.3). Section 5 provides an anatomy of H2 lift-gas fires. Section 6 revisits Peek’s formula for a single 

metal electrode. Section 7 lists the airship under consideration in this paper. Finally, section 8 

provides summary of this review. 

 

 

2  Saint Elmo’s fire (SEF) 
Since classical Greek and Roman times Ermus of Fomia has been the patron Saint of Mediterranean 

sailors, to whom he appeared as SEF on the masts and spars of sailing ships as an electrical storm 

began to dissipate in electrical intensity. These good omens being manifest as characteristic cracking 

or hissing sound with a blue / violet flame-like glow. Between the years 1610-1611, art emulates real 

life when William Strachey’s account of the ill-fated ‘Sea adventure’ voyage from the new world in 

1610, is retold by William Shakespeare within the play ‘The Tempest’ [4]. In this play, SEF takes on a 

more sinister role as the spirit ‘Arial’ who manipulates the mariners off the ship. By 1886, this 

atmospheric phenomenon started to be systematically complied and reported as SEF, Ball lightning 

(BL) [5 - 8] and fireball (FB) [9, 10]. The latter two types proving to be more life threatening when 

compared to SEF. In addition, it has become clear that BL has the ability to interfere with radio 

broadcasts and to transfer part of its information through a glass windowpane with and without 

damage to the glass [5 - 7]. During world war one (WW1; 1914 - 1918) reports of non-lethal SEF 

encounters, both inside and outside of the airship airframe accumulates as airships flew though bad 

weather on their bombing raids and reconnaissance, due to the necessity of war, see for example 

Douglas W. Robinson’s book ‘The Zeppelin in Combat’ [11]. Table 1 provides five examples of non-

lethal SEF encounters, in each case the prevailing metrological conditions being a squall or 

thunderstorm containing lighting with a mixtures of rain, hail or snow. 

 

Table 1. WW1 dirigible non-lethal airship-SEF encounters. 

Airship Date Location Weather observations Reference [11] 

LZ-41 (L-11) Aug 10, 1915 Dogger bank Thunderstorm, cloud-to-      

cloud and cloud-to-sea 

lighting. 1,000 to 4,600 feet 

Page 121-122 

LZ 41 (L-11) Mar 5, 1916 Spurn head Squall, cloud, snow and ice. 

Wind speeds 55 m.p.h 

Temperature + 3F 

Page 148 

LZ-53 (L-17) May 3, 1916  North Sea Thunderstorm, rain and hail Page 160 

LZ-91 (L-42) May 23-24, 1917 Over London Squall, hail, solid cloud Page 244 

LZ-104 (L-59) Nov 21, 1917 Eastern Crete Thunderstorm, black clouds 

and flashes of lightning 

close-by 

Page 310 

 

Since the early 1900s, metrology has shown that cloud-to-cloud and intra-cloud electrification has its 

origins in the Earth’s troposphere (0 to 12 km) [5 - 10]. Fairweather dc electric fields are modulated 

by ac and RF fields due to thunder and lightning activity. Moreover, the appearance of SEF around 

conducting tips and protrusions being due to the geometric field enhancement where equal-potential 

lines become bunched [1]. By 1928, the term for this electrical phenomenon began to be classified as 

‘plasma’ (Greek: meaning mouldable substance), which considers an assembly of gas molecules that 

has some of its atoms or molecules temporally ionized or excited [12]. In 1952, Winston H. Bostick 

added the subclass ‘plasmoid’ that defines a separate plasma-magnetic entity that may be ejected from 
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the parent plasma [13]. 

 

 

3 Airship heuristic selection criteria and classification 
This section lists the H2 lift-gas airship heuristic elimination criteria used to identify the airships 

destroyed by violent weather conditions. Figure 1, provides a chorological (1895 to 1960) time-stamp 

of forty airship accidents against the number of deaths per accident. In this period, two airship design 

generations appeared, the dirigible (1905 to 1937), and blimp (Russian (ca, 1920 to 1947) and USA 

(1930 to 1960)). Within this period, five-hundred and five lives were lost to airship disasters. In 

addition, during this period there were twenty-two nonlethal airships accidents (not shown) where 

airships were either lost or written-off. Note airships lost to enemy action are excluded from these 

tallies. The data in Figure 1, is given as a function disaster type (fire/explosion, midair and ground 

collision, pilot error, structural failure, lost, H2 and helium (He) lift-gas airships destroyed in storm 

conditions. Where multiple disasters occurred in one year (i.e. 1902, 1912, 1913, 1915…), the total 

loss of life is denoted with a + sign.  

 

 
Fig 1. Lethal airships disasters between 1897 and 1960 as a function of related potential cause. The + 

symbol denotes the total number of in each year. For reference purposes only, ten airships are named 

here. 

 

3.1 Heuristic elimination criteria 

Using the forty airships disasters listed in figure 1 as a starting point, the heuristic elimination criteria 

(removal of airships from the list) is given as follows. 

 

1. Remove all airship decommissioned (for example SL-8, 1918 [11], page 281) 

2. Remove all airships set alight during inflation of gasbags within their hangar (for example, L-6 

and L-9, Fuhlabüttel air field, 1916 [11], page 199) 

3. Elimination of airships involved in a collision (for example, high voltage power lines (USS 

Roma TR-4, 1922 [14]), crash-landed on ice near the North Pole (Italia, 1928 [16] and grounded 

on a hillside (R101, 1930 [15], and SSSR-V6 1938 [17]). 

4. Remove all airships destroyed whist flying in good weather (for example, LZ-104 (L-59), 1918 

[11], page 315) 

5. Remove due to pilot error (for example, SSSR-V10 1938 [17] 

6. Remove all He lift-gas airships excluding the USS Akron and the USS Macon. 
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3.2 The airship classification 

The airships disasters examined in this work are the LZ-40 (L-10) and SL-9 (Type E), the NS.11, 

Dixmude (formerly the LZ-72) and the Hindenburg (LZ-129). For comparison purpose, the He lift-gas 

airships, (USS Akron (ZRS-4) and USS Macon (ZRS-5)) are used. Note in the American airship 

number system, Z refers to Zeppelin mode of construction, R refers to ridged airframe and, S refers to 

flying aircraft carrier. As all of the airships have aero-engines as a means of propulsion, the airships 

are classified as either non-rigid or dirigible. 

 

3.3 Zeppelin production number and tactical number classification 

The Zeppelin company gave their airship a production number (LZ-xxx) whereas the German military 

gave their airships a tactical number (L- xxx). This dual number system has led to some confusion. In 

this work, the Zeppelin production number is used. The Zeppelin tactical number is given in italics 

and is only used in sections 1 to 3 to provide a link between the airships, after which only the 

production number is used. 

 

3.4 Non-rigid (pressure) airship  

The non-rigid airship uses a H2, or He, lift-gas envelope that is pressurized with air-filled ballonets 

(air-filled compartments) to control lift and pitch, plus envelope shape and structural integrity. To 

achieve the weigh off (initial static-lift) the envelope is filled with H2 until the airship’s volume 

equalizes with ground-level air volume. In equilibrium flight, the effect of slow varying updrafts, 

temperature changes and loss of fuel weight requires the airship to be maintained by blowing air into 

the ballonets or releasing air from the ballonets. Whereas dynamic lift is achieved by altering the 

elevator position with aero-engine power). When a rapid and violent updraft occurs, automatic spring-

loaded lift-gas valves open to prevent the airship pressure ceiling being exceeded, resulting in a 

corresponding rapid loss of lift. 

 

3.5 Dirigible airship 

Unlike non-rigid airships, the dirigibles LZ-40 and SL-9, the NS.11, Dixmude, and the Hindenburg 

have multiple H2 lift gasbags located within a metal or wood airframe. In the case of the USS Akron 

and USS Macon, the lift gas is He. The Dirigible design ensues the airframe provides structural 

protection to the gasbags and greater shape protection from aerodynamic forces and moments. In the 

event of one of the gasbags is compromised, buoyancy is maintained by discharging ballast at the 

location of the compromised gasbag. See for example the USS Shenandoah (ZR-1) which was torn 

from its mooring-mast in 1924, and crashed in 1925 [18] and the R-33 30-hour unscheduled flight in 

1925 [19]. Again when a rapid and violent updraft occurs, the automatic spring-loaded lift-gas valve 

opens, resulting in a rapid corresponding loss of lift. 

 

 

4 Airship construction 
This section reviews WW1, lighter-than-air flight. Section 4.1 looks the development of the gasbag 

(sometimes called cell), the non-rigid envelope (section 4.2), and the dirigible airframe structure 

(section 4.3). The airships in question are the LZ-40 and the SL-9, the Dixmude, the USS Akron and 

USS Macon and the Hindenburg, plus the non-rigid airship NS.11. Ladislas D’Orcy’s ‘International 

register and compendium of airships (built between 1873 and 1917)’ [20], and Robinson’s ‘The 

Zeppelin in combat’ [11] provides information on the techniques used in the manufacture of LZ-40, 

SL-9 and LZ-72 (latter to be named the Dixmude). In addition, written articles in the ‘Journal 

Dirigible’ are extensively used.  

 

4.1. Gasbags 

Since 1782 in Paris-France, 18-inch diameter balloons made from goldbeater skins filled with H2 were 

flown for recreational purposes [21]. The goldbeater skins originally obtained from cow intestines 

(cecum, or, caecum). This very lightweight material was found to exhibit a high inherent strength and 

is almost impervious to H2 gas. When cleaned and stretched having an approximate area of 20 cm in 

length and 25 cm in width. In 1883 move from making toy balloons to manufacturing for the 10,000 

cubic foot balloon ‘Heron’ was performed by the Weinling family under direction of Captain Templar 
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at Chatham, England [22]. The Weinling family tried very hard to keep their gasbag manufacturing 

process at secret, but there is a suggestion of industrial espionage between Templar and the Italian 

government [23]. McKechnie’s (Vickers. Ltd) 1919 patent details the manufacture of a lightweight 

and gastight 4-layer gasbag for airships and balloons [24]. The layers comprise; a single ply of linen 

coated with unvulcanized rubber followed by Goldbeater skin and vanishes. The patent, also states 

‘This represents about one ton increase of lift for a million cubic feet capacity’ The quantity of 

Goldbeater skins for a standard WW1 German Navy dirigible airship is in the order of 20,000. It is no 

wonder that the Zeppelin Company had to recycle old gasbag material with greater outward (H2) and 

inward (air) permeability properties that may lead to the loss of a dirigible and its crew [25]. After 

WW1, the number of skins used for dirigibles grew considerably. For example, the USS Shenandoah 

used over 750,000 goldbeater skins [18]. 

 

 
 

Fig 2. a) Schematic of early zeppelin lift-gas venting arrangement: b), Schütte-Lanz H2  and latter 

Zeppelin venting valve arrangement (schematic redrawn from A. Thomas (2014) [26]). 

 

The early Zeppelins had a multitude of gasbags within a metal airframe covered with a waterproof, 

non-gas-tight skin. This construction allowed leakage of lift-gas to mix with the natural airflow up 

and round the gasbags and eventually permeate through the outer skin, see Figure 2a. However, 

within certain H2-air mixing ratios the gas mixture is flammable and liable to explode given a source 

of ignition. To counter act this problem, Schütte-Lanz airships improved on the design by adding 

forced ventilation which expelled the gas mixture via ducting from the bottom skin to the upper outer 

skin. In addition, a gas-tight coating to the bottom skin is added to prevent leaking lift-gas reaching 

the aero-engine exhausts. Both of these Schütte-Lanz designs were taken up by the Zeppelin 

Company during WW1, and ultimately, in a modified form for Hindenburg, see Figure 2b. 

 

4.2. Non-rigid envelopes 

Goldbeater skins, although having excellence gas-tightness, exhibited relatively low tensile strength 

and proved less than satisfactory against water. To cope with the stress encountered in non-rigid 

airship envelopes rubberized fabric of high tensile strength is used. Typical 2-3 layers are used where 

the threads of each layer is diagonal opposed. The envelope fabric, however, when subjected to an 

electrostatic fields may become electrified; and under certain conditions (such as when the envelope is 
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deflated (less taut) whilst the H2 lift-gas is being released) a fire may be ignited. 

 

By 1917, Britain’s answer to Germanys U-boat threat in the North Sea was the North Sea (NS) class 

H2 filled non-rigid airship. Using a tri-lobe lift-gas envelope based on the Astra-Torres design [27], 

fourteen of these airships were built. Within the envelope, there were six ballonets fitted with air-

blowers for buoyancy control: the control car and engine gondola being slung under the envelope. 

Initially designed for 24-hour flight endurance, on February 9 to 13, 1919 the NS.11 smashed the non-

rigid flight endurance specification by a record-breaking endurance flight of 400 miles in 100 hours 

and 50 minutes [28]. Table 2 lists the gasbag / envelope details of the six dirigibles and the one non-

rigid airship discussed here. 

 

Table 2. Airship gasbag and envelope information. 

Airship Classification Gasbag construction Gas Number of 

gasbags / 

ballonets 

 

Gas 

capacity 

(m3) 

LZ-40 Dirigible 3 layers of goldbeater on cotton H2 12 31,900 

SL-9 Dirigible 3 layers of goldbeater on cotton  H2 12 38,750 

NS.11 Non-rigid Rubberized cotton H2 6 ballonets 

in one 

envelope 

10,194 

Dixmude Dirigible 3 layers of goldbeater on cotton H2 16 68,470 

USS Akron Dirigible Rubberized cotton, & cotton 

impregnated with gelatin-latex 

He 12 194,000 

USS 

Macon 

Dirigible cotton impregnated with gelatin-

latex 

He 12 194,000 

Hindenburg Dirigible 2 cotton fabric layer with 

celluloid in between which was 

the impregnated with a gelatin-

latex applied 

H2 16 200,000 

 

4.3. Dirigible airframe structure. 

The Pre-WW1 Zeppelin designs and Schütte-Lanz dirigible airframe designs are notable for their very 

different materials and methods of construction [11, 20]. The early Zeppelin designs on the Dave 

Schwarz of Zagreb patents using zinc aluminum alloy airframes. The general appearance of a 

Zeppelin is one of cigar shaped, with a parallel mid-section built from many transverse polygon rings 

of the same form. While the short (with respect to the mid-section) front and rear sections use similar 

reducing polygon rings apart from the aft section that has four tails fins built-in using a cruciform 

girder construction. The overall design allows mass production techniques to be used. By the start of 

WW1, aged-harden aluminum alloy (duralumin) containing copper (3.5 to 4%) and manganese (0.5 to 

1%) began to be used for the airship airframes in Germany [29]. 

 

In the case of the twenty-four airships built by Schütte-Lanz, the airframe was one of the first 

successful geodesic latticework constructions. All, but two [SL-23 and SL-24] used wood and 

laminated wood all boned together with minimal metal fixings. Due to the large number of individual 

parts used, the construction time of the airframe was considerably greater than a comparable Zeppelin. 

However, the airframe tensgrity (tension and integrity) was flawed, as the laminated wood was prone 

to delaminate under moist conditions encounter in maritime roles leading the German Imperial Navy 

to mistrust these airships. Towards the end of WW1, a Schütte-Lanz engineering manager Hermann 

Müller, (Swiss by birth) defected to Britain and gave his knowledge of building wood airframe 

airships to the Short Brothers [30]. The outcome of which was R-31 and R-32 airships, which proved 

to have the same delaminating problem as the Schütte-Lanz airships. Later in 1928, Barnes Wallis 

patented the geodesic construction method using tubular metal for the contiguous transverse space 

frame design in the R101 [31].  
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During WW1 Britain, France and USA studied the construction of shot-down German airships, in 

particular the duralumin airframes. With final terms of the WW1 armistice signed on June 28, 1919 

Germany was mandated to handover its airships (and High Sea Fleet) as war reparations. The political 

and revolutionary feelings within Germany at the time resulted in the scuttling of the High Sea Fleet 

at Scapa Flow and after seven airships were destroyed on the ground. Among the reparation demands 

following this act of destruction, Germany had to make-good the lost airships and handover all their 

airship technology. This forced reparation process meant that the allies received the ‘Height Climber’ 

class of Zeppelin that where designed for high-altitude (such as the Dixmude) at the expense of 

airframe structural integrality whist maneuvering at low altitude, a design feature that would plague 

the allied countries development of commercial airships for years to come. 

 

In 1925, flying aircraft carrier proof-of-concept trails using the British R-33 airship that involved the 

launching and recapture of parasitic fighters. By 1929, the USA experimented (under land-based 

conditions) the concept of the flying aircraft carrier airship using the USS Los Angeles (ZR-3) as the 

mother ship. With completion of the British and American trials, the Goodyear-Zeppelin Corporation 

was formed for the design and construction of the first purpose built He lift-gas flying aircraft carrier: 

USS Akron and USS Macon. The hull design incorporated improvements in transverse frames for 

rigid airships as lay out by Richmond and Scott [32], which later appears to morph from the Barnes 

Wallis’s space frame design, 1928 [31]. The airships used twelve He-lift gasbags using the Goodyear 

Tire and Rubber's rubberized cotton as the outer skin. 

 

The original ship design used eight Maybach VL 11 aero-engines placed inside the hull (four each 

side) for driving propellers located in-line outside of the hull. In this configuration the engines 

disturbed air (wash) to the next inline propeller resulting sever airframe vibration and loss in available 

aero-engine power. To reduce vibration to the airframe, the propellers had to be operated in contra-

rotation to the next in-line aero-engine. This also provided greater engine thrust. In addition, during 

the design stage, the Navy requested for the bottom of the lower fin to be visible from the control car. 

To achieve this goal the goal car was moved 2.4 m aft and all the fins were shortened and deepened. 

The alteration meant that the leading edge root of the fins no longer coincided with an original main 

transverse frame fixing; instead, the attachment was now to a weaker intermediate traverses frame. 

The contra-rotating propeller preference combined with the weak tail fine attachment points have 

been the subject of much speculation of the USS Akron’s many crashes and its final demise of the 

USS Akron (section 7.5) along her sister airship (USS Macon (section 7.6). 

 

 

5 Anatomy of a H2 lift-gas fire 
To prevent an airship exceeding its safe pressure ceiling under rapid and violent updraft conditions, 

automatic spring-loaded lift-gas valves blow-off gas from the gasbags. Early Zeppelin airships (pre 

1920s) the valves where located at the bottom of the gasbags to enable contaminated H2 gas to be 

blown off. Manually venting of H2 life-gas in storm conditions was prohibited in German airships 

from late 1915 (section 7.1). During this automatic process, the released H2 gas mixed with air within 

the airship’s volume then diffuses through the outer airship fabric to mix with the airship’s slipstream. 

 

Unlike H2-air mixtures, pure H2 is difficult to ignite as many aircraft pilots firing solid metal bullets 

into the WWI Zeppelin and Schütte-Lanz airships found, see for example LZ-76 first and last raid on 

London [11]. When the metal bullets did hit the airship gasbags, they simply went through leaving 

small holes were H2 would slowly escaped and become quickly diluted by the surrounding air. It was 

not until the autumn of 1916 when the newly developed explosive bullet (Pomperoy, containing nitro-

glycerin) and the incendiary bullet (Brock, containing potassium chlorate) were fired in combination, 

the gasbags become blown apart when hit. As large quantities of released H2 mixes with atmospheric 

air, the incendiary bullet [33] ignites the flammable oxyhydrogen gas mixture. 

 

Pure H2 gas burns with low radiant heat, almost without color, and becomes red-yellow depending 
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upon the amount and variety low molecular weight carbide and carbon monoxide impurities). In early 

1900s, the German preferred method of H2 production was to pass steam over hot iron at high 

temperature to produce Knallgas (bang gas). Today’s hydrogen economy the process is known as 

Steam Methane Reforming and the product H2 gas termed as gray H2 (a mixture H2 and CO2) or Blue 

H2 if the CO2 is removed. However, as Zeppelin warfare increased the production of blue H2 could not 

keep-up with lift-gas demand leading to greater CO2 impurities in the supplied life-gas. In addition, 

production accidents (Seddin gas plant, June 7, 1917) and train supply problems between the North 

Sea and Baltic bases [11], page 271-273 affected continuity of life-gas supply to the airships. In the 

inter war years, Britain faced a smaller but similar problem which was overcome by using mobile 

batch process units containing sodium hydroxide, ferrosilicon, and water that generated sodium 

metasilicate and H2 gas (99.3 to 99.6 pure), see equation 1 [34]. 

 

2𝑁𝑎𝑂𝐻(𝑠) + 2𝐻𝑂2(𝑙)  + 𝑆𝑖(𝑠)
>150𝐶
→    2𝑁𝑎𝑆𝑖𝑂3(𝑙) + 2𝐻2(𝑔) (1) 

 

Depending on pressure (p) and temperature (T), the flammability limit of H2 in air is generally 

between 4 to 75% H2 by volume, and the explosive limit of H2 in air is 18.3 to 59% by volume. It only 

requires spark or electrical discharge of sufficient energy to crack both the H-H bond (432 kJ.mol-1) 

and the O-O bond (146 kJ.mol-1) to ignite the mixture and burn until the H2 fuel is consumed. 

Equation 2 depicts an almost physically impossible exothermic stoichiometric equation for these 

reactants to form water vapor (H2O) along with the associated -482H value per two molecules of H2 

fuel. 

  

2𝐻2(𝑔) + 𝑂2(𝑔) →  2𝐻2𝑂(𝑔), ∆H =  − 482 kJ (2) 

 

At atmospheric pressure, the stoichiometric mixture autoignition temperature is in the order of 570C 

(843.15 K) with a calculated minimum spark energy of the order of 0.02 x10-3 J [35]. However, this 

simple thermodynamic equation greatly misrepresents the electrical breakdown process of the gases, 

as both pressure and temperature; electric field stress, ignition frequency (dc, ac, or radio frequency), 

relative gas buoyancy, and the liquid-gas interface at the airship outer skin surface in storm conditions 

all have a role in the breakdown process. 

 

5.1 H2-O2 gas vapor chain reaction mechanism  

This section postulates a limited series of reaction steps within the H2 - O2 gas vapor reaction. The 

steps proceed by initiation (3), branching (4, 5) and propagation (6). 

 

𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛: 𝐻2 + 𝑂2 → 𝐻𝑂2 ∙ + 𝐻 ∙  (3) 

 

Where, the initiation step (2) proceeds with the dissociation of some amount of molecular gas (H2 and 

O2) by a spark, flame, or electric discharge. 

 

The resulting hydrogen radical (H·) attacks the reactants O2 through (4) 

 

𝐵𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔: 𝐻 ∙ + 𝑂2  →  𝐻𝑂 ∙  + 𝑂 ∙ (4) 

 

Followed by the products above steps attack the H2 fuel (5, 6) 

 

𝐵𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔: 𝑂 ∙ + 𝐻2  →  𝐻𝑂 ∙  + 𝐻 ∙ (5) 

 

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛: 𝐻𝑂 ∙ + 𝐻2 + ∙ → 𝐻 ∙ + 𝐻2𝑂 + ℎ𝑒𝑎𝑡 (6) 

 

In these oxygen - hydrogen reactions, the chain cycle starts with one H· atom product (4), then the 

cycle generates additional H· atoms (5, 6). Steps (4 and 5) are named branching steps because they 

produce OH· radicals which further attacks the H2 fuel to generate two further radicals. The branching 

steps therefore promotes the rate of heat release which may increase exponentially, to the point that 
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the heat generated cannot be removed faster enough from the vapor at which an explosion occurs. In 

addition, in each chain cycle, the propagation step (6) produces a water molecule with an associated 

release of energy, which in turn promotes steps (4 and 5) along with the energy kick from the 

Pomperoy and Brock bullets. When all of the H2 is consumed, the cycle process is terminated. In this 

context, reaction steps 3 to 6 redefine the role of H2 from a lift-gas to an energy source. 

 

In chemistry textbooks [36], the H2 - O2 reaction is shown to have a complex dependence on pressure 

and temperature, specifically a zigzag curve that separates the non-explosive (p, T) regimes from the 

explosive (p, T) regimes. The free branches of the curve are called the first, the second and the third 

explosion limit. Early airships could gain altitudes of 2.5 km [20] and later WW1 version ‘Height 

Climbers’ reaching altitudes of 6 km [11]. These altitudes equate a standard pressure range of 1013 

kPa to 47.1 kPa along with ambient temperature variation of approximately 15 to -24C (~288 to 

~249K). This p, T range places the airship flight altitude is well within the first and second explosive 

limits branching steps (7, 8) are explosively efficient. 

 

On YouTube there are many slow motion photography sequences of balloon detonations filled with 

stoichiometric mixtures of H2-O2, see for example [37]. The slow motion films reveal that the initial 

shockwave ruptures the balloon, followed by the oxyhydrogen mixture burning with a typically 

yellow-orange that expands out from center of where the balloon once was. When a balloon filed with 

pure H2 is ignited, the reaction with the surrounding air is less rapid and the sound is less loud. From 

these demonstrations, the explosion is caused by a sudden pressure effect through the action of heat. 

 

5.2. Fairweather electric field between cloud and ground / sea. 

In this section, the heterogeneous chemistry within Cumulonimbus cloud is consisted as a source of 

ignition for the H2 filled airships. First consider the convection of warmed air (mainly a mixture of N2 

and O2) from the earth as it expands adiabatically as it rises through the troposphere until it reaches 

the stratosphere, where the sun’s energy reheats the circulated air. This natural convection process 

allows the cloud to capture positive charged particles resulting in a initial electrification of the cloud. 

With increasing electrification a negative charge begins to be formed on the upper cloud boundary 

which then flows down outside to the base of the cloud. The accumulation of negative charge at the 

base of the cloud, now by convention called ‘Cumulonimbus’ reinforces the cloud-ground/sea electric 

field. The electric field in this region is of the order of 1 - 3 kV cm-1 that is not sufficient to overcome 

the dielectric strength of air. To achieve the required field strength an inductive charge process within 

clouds has been considered by Saunders [38] and Prevenslik [39] where water moisture (H2O) is 

propelled to high altitudes by updroughts and cools to form graupel (a mixture of water and ice 

particles) that undergoes a continuous dissociation-recombination process forming hydronium ions 

(H3O+) and hydroxyl ions (OH-) intermediate products. This reversible reaction process is given in 

equation 7 where approximately 20% of the intermediate product ions are available for electrification. 

 

2𝐻2𝑂 
𝑔𝑟𝑎𝑢𝑝𝑒𝑙
↔      𝐻3𝑂

+ + OH−   (7) 

 

Under natural background acidic conditions, charge separation of the available ions then follows, 

where the H3O+ ions move into the vapor phase, and due to their buoyancy are lifted by updroughts to 

the top of the cloud leaving the larger and denser OH- charged graupel to fall under gravity to bottom 

of the cloud. This dynamic process generates a potential difference between the top and bottom cloud 

boundaries. With increasing gravitational separation, the negative charged graupel forms a negative 

space-charge that enhances the pre-existing fairweather electric field between the cloud and ground / 

sea. When the charge attraction between the cloud bottom boundary and ground strengthens, electrons 

and negative charged ions shoot down from the cloud as stepped leaders to meet upward positive 

charged streamers to produce a lighting channel. As the enhanced electric field subsides, sufficient 

energy remains to partially ionized nitrogen molecules (N2) at the enhanced electrical fields at metal 

protrusions, at ground level, or in airships flying through, or near, the cloud [9] to produce the 

characteristic blue/violet. Westcox, using optical emission spectroscopy (OES) of SEF on aircraft 

measurement reveals a blue/violet emission that can be attributed to the 2nd positive system of N2 
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(C3Π𝑢
+ − B3Π𝑔

+): < 18 eV [40]. 

 

Prevenslik [39] proposed that where a cluster (10 or more) of charged graupel particles fall to the 

ground in the absence of a metal protrusion SEF does not occur but a collective discharge action 

occurs breaking down the surrounding atmospheric air causing the production of buoyant BL. The 

characteristic optical emission of which ranges from yellow, through orange, to red  = 550 - 780 

nm) as indicated by [41]. The associated atomic and molecular ion spectra are: atomic-H-Balmer-α 

line (λ = 656 nm), the 1st positive system nitrogen ( = 580 and 654 nm), the O (3p5P−3s5S) (λ = 777 

nm) and the excited NO2
* molecule continuum (λ = 450 - 800 nm) [42]. Plus metastable neutral 

molecular oxygen (O2; λ = 557.7 nm) [43]. The emission lines and bands quenching as the graupel 

finally melts. 

 

5.3 Precipitation static 

Wireless equipment having a range of 300 km started to be installed in airships as early as 1910 [11, 

20] followed by their installation in aircraft. From the outset, the performance of the wireless 

communication degraded when flying through rain, mist and snow and it is thought that this 

precipitation caused an accumulation of electrical charge on the wireless antenna and other surfaces. 

To prevent electrical arcing and flashovers the standard approach was to bond all electrical equipment 

along with the airship’s outer surface to central Earth point so that the airship has ‘theoretically’ an 

equal-potential throughout. Operationally it becomes standard practice to reel-in all wireless antennas 

when passing through a thunderstorm [9, 44], see section 7.4 (Dixmude)  

 

Marriot reports one of the first investigations of electrostatic interference in 1914 [45]. By 1937, this 

electrostatic interference became known as precipitation static, or P-static [46]. With the advent of 

aircraft, high-speed flight the flux of charged particle due to increased antenna drag became a major 

problem and aerodynamic shielding measures where sought [47]. From the early 1990s it was shown, 

based on space born X-ray measurements that lightning produces high-energy radiation, in form of an 

abundance of electrons (up to 10s MeV) and gamma-ray glow / flash that drives the thundercloud 

electrostatic interference [48]. 

 

 

6 Peek’s formula for a single metal electrode 
It is well known that increasing the electrical stress around a single metal electrode tip (or protrusions) 

ultimately results in local air breakdown around the electrode. At this level of stress, the local air 

volume is weakly ionized followed by a rapid electron recombination back to the ground state 

discharge. On the milliseconds time scale the outer boundary of this volume, the ionization frequency 

(vi) just balances the electron loss frequency (va) by attachment [49], see equation (8), and Figure 3. 

Under these condition a static corona discharge, or SEF, appears attached to the electrode with the 

visual inception voltage being higher than the visual extinction voltage because, once started there are 

always electrons to ionize gas molecules.  

 

𝑉𝑖 − 𝑉𝑎 ≈ 0 (8) 

 

Upon increasing the voltage stress level further (~5 kV cm-1), the discharge extends outward to form 

multiple streamers flowing from the electrode, where breakdown is enhanced by the production of 

electrons at the head of streamer. If the voltage becomes large or a counter electrode is close by (1 - 

10 cm) a conducting trail or channel may form producing a flashover discharge. If the applied voltage 

is maintained sparks may be also formed. Further increasing the voltage stress creates bidirectional 

leaders are formed, which involve; space-charge and a gas heating ( 500 K) mechanisms, rather than 

corona onset alone. 

 

From this sequence of increasing discharge energy states, it is reasonable to assume that SEF 

influences streamer and leader production. Table 3 (adopted from Gibson [50]) provides a guide to the 

inception voltage for the three different discharge types. The data shows that although the corona 
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inception voltage for lighting rods has the lowest value for the three discharges (where the variation in 

the values is due to physical structure orientation of the rods [51]). 

Table 3. Corona inception electrical field values and characteristic temperature (K) for atmospheric 

discharge at ground / sea level. 

Parameter Corona discharge 

1 - 2 cm diameter 

grounded lighting rods 

[50, 51] 

Streamer discharge [51] Leader discharge [51] 

Electric field (kV cm-

1) 

0.2 - 2.7 ~5 ~1 - 5 

Gas temperature (K) ~300 ~300  3000 K 

 

Peek’s formula was originally proposed as an empirical formula for coaxial cylindrical configurations, 

parallel wires and spheres in the 1920s [1]. Peek’s empirical formula utilizes the local atmospheric 

condition and the surface condition of a conductor to estimate the corona visual inception voltage at 

local gas breakdown. For a manmade ac voltage source, see equation (9). 

 

𝑔𝑣 = 𝑔𝑜𝛿𝑚 (1 +
𝑘

√𝛿𝑟0
) Measured in units of kV cm-1 (9) 

 

 
Fig 3. Schematic of corona discharge boundary limits (gv and go) for a single electrode. The ionic wind 

region is where unipolar charge carriers (for dry air, N2
+ and O2

+ ions) drift away for the corona 

region with insufficient energy to generate further reactions and/or ion creation. 

 

In equation 9, gv is the voltage gradient (kV cm-1) at the visual corona inception voltage; go is the 

disruptive electric gradient, for an ac voltage the value varies from: 27.2 k.cm-1 for a sphere, 30 

kV.cm-1 for parallel wires, and 31 kV cm-1 for coaxial geometries. The parameter  is the local 

relative air density (at sea level,  = 1 under fair weather conditions and 0.9 to 0.8 for storm 

conditions), m is the surface roughness factor (m = 1 represents dry and smooth clean surface under 

laboratory conditions). For wet conditions, Peek found that the gv fell sharply and considered this as a 

special case for m by substituting it with go = 9 kV cm-1. The parameter k is an empirical dimension 

factor (0.301 to 0.308) and ro is the tip geometry radius (cm). As energy is required to start a corona 

discharge the single electrode surface-to-space boundary limits requires that the surface electrical 

stress be raised to gv so that at a finite distance away in space where kro is go air breakdown occurs. 

For dry air, the conducting carriers are typically N2
+ and O2

+ ions within a background of neutral gas 

molecules that drifts away from the corona discharge [52]. 

 

Natural occurring disruptive electric gradients formed by thunderstorms may also have a direct 

current voltage component [1], therefore equation 9 may be rewritten as follows: 
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𝑔𝑣 = 21.9𝛿𝑚 (1 +
𝑘

√𝛿𝑟0
) Measured in units of kV cm-1 (10) 

 

Where 21.9 is the route mean square (RMS) of the ac disruptive electric gradient for air (go). The 

parameters: gv, k and r0 having the same meaning as in equation 3. 

 

Given that Peek’s Law, in its different forms (equation 9 and 10), is an empirical mathematical 

construct, parameters  m k and ro may be varied to fit the scenario of an airship entering a 

Cumulonimbus vertical cloud formation where the fairweather electric field is enhanced. In this 

scenario, the electrically isolated airship may become negatively charged with respect to the cloud 

were the amount of negative charge is determined by the competing effects of the rate of positive ions 

pulled to the charge surface as compared to the rate of electron generation by photoemission at the 

surface under ion bombardment conditions. Under this negative corona condition, the initial visual 

inception voltage generates discrete discharge points, or tufts, on airship sharp edges where the 

electrical stress is the greatest. These discrete discharges only grow in number to produce a uniform 

discharge as the voltage is increased. In addition, beyond the corona boundary (go) electrons are 

propelled away from the discharge with sufficient number and energy to drive electron-impact 

reactions with neutral molecules [52, 53]. The presence of a visible SEF glow on flying aircraft 

surface also appears to dependant on its airspeed. Researchers at MIT have recently demonstrated that 

high airspeed the SEF become detached leaving the electrical stress level to raised to it pre-visible 

inception voltage level [53]. Which of these two corona mechanisms (positive or negative) has the 

greater potential as a H2-air ignition source is of interest when considering the destruction of H2 lift-

gas airships? 

 

 

7 Storm and thunderstorm activity leading to airship disasters 
 

This section considers six notable dirigible and one non-rigid airship disaster attributed to storm and 

thunderstorm activity. These are LZ-40 and SL-9; The Royal Air Force (RAF) North Sea class NS.11; 

the French Navy Dixmude, originally built by as LZ-114 for the Imperial German Navy; the USS 

Akron and USS Macon; and the Hindenburg that ended the dirigible airship adventure. 

 

7.1 LZ-40 (1915) 

Two of the earliest known military H2 lift-gas dirigible disasters caused by natural atmosphere 

electrostatic disturbance were the LZ-40 and the SL-9 during WW1. 

 

The LZ-40 took part in a number of bombing raids on England between June and September 1915 

[11, 54 and 55]. On the LZ-40 last reconnaissance (commanded by Kapitänleunant Klaus Hirsch), the 

airship encountered a thunderstorm whilst returning to base on September 3, 1915. Robinsons [11], 

page 124-125, provides details of the disaster. The following text is therefore complied from 

Robinson’s account. In the afternoon of September 3, a radio message from LZ-40 informs Nordholz 

airship base that they would be returning at 3.30 pm. The metrology conditions in the local area were 

thunder and lighting, and at 2.30 pm, a number of eyewitness at the base saw in the direction of the 

town of Cuxhaven a ‘large flash of flame like that of an explosion’. There accounts detailed how the 

explosion was red in color and the LZ-40 smothered in flames falling into the tidal region between the 

island of Neuwerk and Cuxhaven. Immediately rescue attempts were underway, but it was not until 

the following day that the salvage teams were able to recover eleven bodies out of a total of twenty on 

board the airship, along with the airships recording barograph. Posted on the www.wrecksite [55] is a 

photograph of the LZ-40 salvage operation with the airship’s airframe laying in the shallow tidal sea. 

 

In the report of the disaster (written by Kapitän Peter. Strasser; Chief of German Imperial Naval 

Airship Division) it was detailed that the airship was above its pressure ceiling, venting H2 lift-gas at 

the time of the disaster and ventures to relate the disaster to lighting even though there was no 

eyewitness to verify this. Strasser goes on to not: ‘airships should in all circumstances try go around 

thunderstorms. If this is not possible, they should go through as far as possible under the pressure 
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height as the squalls will allow. The Airships of the Division now have such orders; also in 

thunderstorms they are ordered to reel in antennas’. 

 

On a final note, D’Orcy mistakenly lists the LZ-40 destroyed at Ostend harbor on August 10, 1915 by 

the Royal Navy Air Service (RNAS) [20], in reality it was LZ-43 that was destroyed [11]. 

 

7.2 SL-9 (1917) 

Commissioned into the Germany imperial Navy at Seddin in Pomerania, the SL-9 was the ninth in the 

series of twenty-four airships built by Schütte-Lanz. Although it wood and laminated wood airframe 

caused concerns to the German Imperial Navy, in particular Strasser [11], page 56. However, thirteen 

reconnaissance flights were made by SL-9, and in the summer of 1916, the airship bombed the port of 

Mariehimn, Finland (July 25, 1916) [56] and later took part in joint Army-Navy bombing raids over 

the South-East coast of England where airframe damage was sustained that required a month of 

repairs. After these raids, the SL-9 fell in flames into the Baltic Sea near Pillau on March 30, 1917 

with the loss of twenty-three lives. Robinson [11], page 393 mentions that SL-9 burnt in a 

thunderstorm, while the Wikipedia website [57] claims the possible cause of the crash was a lightning 

strike. As with the LZ-40, the ignition source has not been determined. A possible explanation is that 

SL-9 rose above its pressure ceiling by a violent updraft causing an automatic blow off of H2 lift-gas 

which was then ignited by cloud electrification. 

  

7.3 NS.11 non-rigid airship (1919) 

The NS.11 entered service with the recently formed RAF in 1918. Based at RN airship station 

Longside Aberdeenshire, the airship made its record-breaking endurance flight of 400 miles in 100 

hours and 50 minutes on February 9 - 13, 1919 [28]. The R-34 broke this endurance record some 

months later when flying East-to-West transatlantic flight from East Fortune, England to Mineola, 

long island, USA in 108 hours on July 2-6, 1919. Following this new endurance record, Captain 

W.K.F.G. Warneford of the NS.11 filed a circular 48-hour flight plan over the North Sea from Pulham 

airship station. Thus, the NS.11, with Warneford and eight crewmembers rather than the usual nine, 

commenced its last journey at 9 pm on July 13, 1919 from Pulham. 

 

Some eight minutes past midnight, a routine radio message revealed no problem with the flight, but 

some 15 minutes later, a Mr. E.T. Elwin from the hamlet of Newgate heard the NS.11 aero-engines 

making ‘a lot of noise’ and thought the NS.11 was in trouble. A few minutes later in the town of Cley, 

Mr. A.E Stangroom heard the NS.11 pass overhead, again making ‘a ‘tremendous noise’. By 12.45 

am a number, people heard the NS.11 pass over Blakeney. At approximately 1.45 am, a violent 

explosion out to sea was heard, with the noise being carried as far as Wells and Cromer. The NS.11 

underwent a midair explosion and fell burning and exploding again before crashing into the shallow 

North Sea some 5 to 6 miles of the Norfolk coast with the loss of nine lives [58, 59]. Unlike the ZL-40 

and SL-9, there were many ground-based eyewitnesses to the unfolding NS.11 disaster. Several 

unsuccessful, rescue attempts were made. Most of the eyewitness heard the noise of an explosion then 

turned to look at where the noise came from, at which point they described what they saw. Two 

eyewitnesses saw the explosion; an old seaman saw the airship turning under the cloud before the 

explosion and then ‘turned on end’, whilst the other stated that, ‘she ‘took a header’. Both the 

witnesses inferring that the airship aft tail fins went up as the ship took fire. The staff at Pulham 

airship station unaware of the unfolding disaster until someone from Easter Daily Press (Norwich) 

phoned to ask if they could comment on the disaster. As for the recovery of NS.11 crew, only the 

body of the second Coxswain (Sgt. C.H. Lewry) was found, it was washed up on the beach at 

Salthouse two weeks later on July 31. 

 

In all of the accounts, the most notable metrological feature of the unfolding disaster was the isolated 

‘greasy black cloud’, which the NS.11 was approaching and then turned away when the initial 

explosion occurred. Importantly there is no mention of lightning. N. Peake [60] has reconstructed a 

plausible account of NS.11 destruction that starts with the eyewitnesses seeing the NS.11 turning 

thereby presenting its rear gasbag and tail fins to the cloud and the second explosion occurring as the 

remaining gasbags rupture on impact with the sea. Figure 4 graphically shows the account. In this 
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account the appearance of the ‘greasy black cloud’ is characteristic of an advancing ‘cold front’, 

Where the front is formed dry denser cold air pushes under moisture-laden clear air which is forced up 

where upon moisture is condenses out as water droplets to form the greasy appearance of the cloud. 

The condensation process also releases heat that causes a self-sustaining warm updraft leading to the 

formation of cumulonimbus and ultimately thunderclouds. Under these metrological conditions, the 

fairweather electric field is enhanced as the ‘greasy black cloud’ grows with a potential to induce SEF 

on the outer fabric of the NS.11 envelope. This scenario in itself does not explain the explosion. 

However, factoring in that the caption and coxswain anticipated the updraft would force the NS.11 

above its pressure ceiling, and vent H2 lift-gas to counteract the uplift thereby creating the very 

distinct possibility that SEF would ionize the escaping H2 gas particularly if the H2 gas was of poor 

purity and withn the flammable limit. This scenario has credibility if the reports were true that Captain 

Warneford was attempting to break his own endurance record, by leavening Pulham with maximum 

fuel and minimum crew. In which case there would be no air in airship bonnets and her pressure 

ceiling would be much reduced. The official court of enquiry findings was inconclusive, but lighting 

was considered as a possible cause, despite no forthcoming evidence. 

 

 

 
 

Fig 4. A schematic depiction of the NS.11 near what the eyewitness described as a ‘greasy black 

cloud’. 

 

7.4 Dixmude dirigible (1923) 

The L-72 was the third and final 1918 ‘Height Climber’ X-class Zeppelin, designed to have a working 

altitude 6,000 - 6,400 m within a bombing raid duration of two-days. These airships required a 

significant increase in length (addition of one gasbag) and a reduction in weight. The achieved weight 

loss through the removal of parts of the original airframe, along with one of the original seven 

Maybach IVa aero-engines from the rear gondola, a reduction in fuel and water ballast capacity, as 

well as a reduction in machine gun armaments. 

 

As part of the war reparations, in July 1920, the LZ-72 was turned over to France in ‘perfect 

condition’ and renamed the Dixmude. At the French naval air base Cuers-Pierrefeu near Toulon, the 

airship came under the command of the charismatic twenty-eight year-old naval officer: Lt.Cdr. Jean 

Du Plessis du Grenedan. Du Plessis supervised a three-year rebuild program of the Dixmude for 

extended flight duration (four-five days) at low altitude (2,000 m). To achieved this goal, new 

goldbeater's skin gasbags supplied by the newly formed Astra Company, rather than the original 

German Company and the airframe strengthen to carry the increased fuel and water ballast plus crew 
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and passengers.  

 

After a number of trial flights, the Dixmude began its last flight on December 18, 1923, a planned 

return flight from Toulon-France to the Algerian oasis of Ain-Salah (figure 5). At 8.00 am on 

Thursday (some 50 hours of flying time) the Dixmude turned north, bound form the Algerian coast, 

the airship encountered strong impeding winds and as the Dixmude fought against the winds, radio 

messages were sent reporting that fuel was running low and two aero-engines had broken down. The 

Dixmude was now being force east to Tunisia as a ‘free-balloon’ and at the mercy of the winds. The 

airships last radio message (02:08 am Saturday morning December 21) reported that they were 

following standard operating procedures to reel-in its radio antenna due to thunderstorm activity. 

Soon afterwards (02:30 am) railway workers and a hunter near Sciacca - Sicily reported a red flash in 

the Western night sky followed by burning objects falling in to the sea. On the morning of December 

26, 1923, burnt wreckage of the Dixmude was found along with the charged corpse of her 

Commandant and the radio operator. As the news of the crash spread around the world, many 

newspapers speculated that lightning struck the Dixmude and was the cause of death of the fifty crew 

and passengers [61, 62]. 

 

 
 

Fig 5. The last flight of the Dixmude. Map redrawn from Ridley-Kitts (2010) [64].  

 

Throughout this period, French newspaper reported the Dixmude voyage up to the last radio massage, 

as for the 4-6 days the Dixmude was missing reports emerge that the airship was lost in the Tunisian 

desert, and French, Italian and British naval ships searched for the airship in the Mediterranean Sea. 
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Confusion reigned in the French Ministry of Marine and international newspapers. Later the French 

commission of enquiry confirmed the newspaper speculation that the Dixmude was destroyed by 

lightning. 

 

In 1924, Dr. Hugo Eckener (Manger of Luftschiffbau Zeppelin and later Commandant of the Graf 

Zeppelin) wrote in the ‘Luftfahrt’ on the Dixmude disaster [44]. In the article, the known German 

construction details of the L-72 and the subsequent conversion to the Dixmude are analyzed and the 

probable last four to five days timeline of the disaster presented. The following text provides a 

summary of his analysis. Firstly, repurposing the L-72 airframe from one of a high altitude bomber to 

one intended for extended flight duration by altering the distributed payload would cause excess stress 

on the airframe at low altitude. Secondly, the six Maybach aero-engines were pushed well beyond 

their military specification maintenance schedule of 1 to 2 days. Indeed, Maybach refused to 

guarantee more than 48 hours continuous use, especially for the crankshafts. Thirdly, as for a 

lightning strike being the energy source of the disaster, Dr. Eckener comments that duralumin 

airframe are designed to withstand routine lighting strikes by dissipating the electrical charge 

throughout the metal airframe, particularly at the nose and rear of the airship. [N.B. The Grafe 

Zeppelin and the Hindenburg are a case in-point, as both were struck by lightning many time as they 

voyaged between Europe and the Americas]. Fourthly, the burnt condition of the wreckage and the 

body parts found were consistent with a gasoline fire rather than a H2 fire that is less destructive to 

immediate surroundings. Fifth, automatic opening of the pressure ceiling valves due to violent 

updrafts may have been a contributing factor. Finally, even the radio message sent by the Dixmude 

build a picture of the storms it encountered; it is most likely that we will never know true cause of the 

airframe sudden and catastrophic failure. 

 

A contemporary in-depth analysis of the Dixmude may be read in Ridley-Kitts three-part history of 

the Dixmude: published in Dirigible (2010 and 2011) [63 - 65]. 

 

7.5  USS Akron dirigible (1933) 

In 1929, the USS Akron (the first purpose built flying aircraft carrier airship) was laid down and took 

her maiden voyage on November 2, 1931. After two ground-handling accidents, both captured on 

newsreels February 22, 1932 [66] and May 8, 1932 [67], a third ground handling occurred at the 

Lakehurst hangar 1 on August 22, 1932. On April 4, 1933, the worst airship disaster unfolded as the 

USS Akron crashed at sea off the coast of New Jersey with the loss of seventy-six crewmembers. The 

high death toll being due to drowning or hypothermia a factor being that there were no life jackets 

onboard the airship [68]. On this occasion, the surviving crewmembers were able to give a firsthand 

account of the disaster. The disaster happened whilst the airship was navigating at low altitude 

through a thunderstorm when her lower tail section hit the water. As with the first three accidents, the 

fourth and final accident provides a real-life and death example of the dangers of violent crosswinds 

and vertical winds to airships at or close to ground / sea level. 

 

7.6 USS Macon (1935) 

The USS Macron airship took to the sky on April 21, 1933, two week after the lost of her sister 

airship, USS Akron. In April 1934, whilst maneuvering through mountains in Arizona the USS 

Macron was forced to exceed its pressure ceiling height (910 m) and climb to 1,800 m to past the 

mountain range which required 7,300 kg of ballast and fuel to be jettisoned. To gain a safe altitude it 

became necessary to jettison H2 lift-gas leaving the airship’s ability to compensate for further changes 

in buoyancy greatly reduced. That is the USS Macon began take on balloon flying characteristics. 

With minimal ballast, and fuel, she pasted through the next mountain range in Texas, where violent 

up- and downdrafts could not be compensated for, resulting large aerodynamic pressures buckling the 

leading tail fin girder ring (# 17.5). Subsequent repairs where made to the lower and lateral fins, but 

where not finished on the upper tail before her next flight on February 12, 1935. In this flight, the 

USS Macon encountered a storm off Point Sur-California where aerodynamic pressure at the rear of 

the airship caused the upper fin to shear off. The tail fin structural failure caused the USS Macon to 

climb above it pressure ceiling where the He lift-gas was automatically released, subsequently the 

USS Macon slowly glided in to the sea. Unlike the USS Akron, life jackets and rafts where on board 
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and SOS messages sent, resulted in only two lives being lost with the remaining eighty-one 

crewmembers rescued [69]. Here again the tail fins attachment appears to be a contributing factor 

under storm conditions. A similar tail cone problem was to plague the British R-100 airship test 

flights and on the airship’s maiden transatlantic crossing to Canada (July 29 to August 1, 1930) where 

on a rival the outer fabric of the starboard elevator became ripped [70]. 

 

7.7 Hindenburg dirigible (1937) 

At 18.00 local time on May 6, 1937 the second worst dirigible airship disaster, with the lost 36 lives, 

unfolded at Lakehurst, New Jersey when the Hindenburg commenced its tethering procedure at the 

airship mooring-mast. The airship had been delayed by poor weather and nearby thunderstorms as 

portrayed by British Pathé newsreel of the unfolding disaster [71]. Out of the sixty-two survivors, 

many gave testament to the disaster along with many ground witnesses. The disaster has evoked many 

books, journal papers [26, 72 - 77] and aired TV programs [78]. This section considers the H2 lift-gas 

ignition theory based around four eyewitness accounts (Broadcaster: Herbert Morrison [79]: history 

Professor Mark Healed [76, 77]: photographer Arthur Cofod Jr [80]; and Helmsman Helmut Lau [81]. 

To aid the reader with these accounts, Figure 6 shows a sketch of the Lakehurst airfield and a 

schematic of the final 30 minutes of the Hindenburg flight. In addition, the approximate location of 

the external eyewitness is as given: H. Lau position is within the Hindenburg’s lower tail fin auxiliary 

control room. 

 

Positioned between Hangar # 1 and the mooring-mast, Herbert Morrison and Charles Nehlson’s [79] 

sound recording of the Hindenburg disaster, transmitted on the following day of the disaster, 

imprinted such public reflective memories to give rises the ‘Hindenburg syndrome’ [72]. Morrison 

and Nehlson’s account would not allow H2 gas to be used in public transport for many decades. The 

German Board of Inquiry into the Hindenburg disaster (picked out from many plausible reasons) two 

H2 gas ignition theories: (a) and (b). 

 

Theory (a), proposed that due to atmospheric electric disturbances at the time of landing of the airship 

a corona discharge, otherwise known, as SEF or brush discharge, was the ignition source.  

 

Theory (b), after dropping of the landing ropes, the airships outer fabric became less well grounded 

than the framework of the airship due to the lower conductivity of the outer fabric. Under these 

conditions, a spark possibly caused ignition of a H2-air mixture present over the gasbags four and five. 

 

Professor M. Heald with his wife and son were located outside the main gate of the naval base on a 

trip to see the Hindenburg. From the car park lot, he records seeing a dim blue flame flickering along 

the Hindenburg’s top ridge minutes before the fire started [76, 77]. The Heald’s account from outside 

the airfield that gave a starboard side view of the Hindenburg against the backdrop of darkening 

eastern sky rather than the view from port side of the airship as told by Morrison and Nehlson. Given 

this information, it is generally thought that the blue color of the dim flicker might be SEF, thus 

supporting theory (a). 

 

Closet to the initial ignition of the fire was Helmsman H. Lau who was (stationed with three over 

crewmembers) at the auxiliary control room within in the lower tail fin. In his testimony to the board 

of inquiry, he states the first time he notices anything wrong is when he ‘hears a muffed detonation 

and looked up and saw from the starboard side down inside the gas cell a bright reflection on the 

front bulkhead of cell No. 4’. He goes on to stay: “The bright reflection in the cell was inside. I saw it 

through the cell. It was at first red and yellow and there was smoke in it. The cell did not burst on the 

lower side. The cell suddenly disappeared by the heat…. The fire proceeded further down and then it 

got air. The flame became very bright and the fire rose up to the side, more to the starboard side, as I 

remember seeing it, and I saw that with the flame aluminum parts and fabric parts were thrown up. In 

that same moment the forward cell and the back cell of cell 4 also caught fire [cell 3 and cell 5]. At 

that time parts of girders, molten aluminum and fabric parts started to tumble down from the top. The 

whole thing only lasted a fraction of a second. 
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Helmut Lau’s testimony (translated by Willy von Mesiter) uses the word ‘aluminum’, which is 

assumed a simple transcription mistake as in the US Navy the names are interchangeable [29]. Given 

this, the Hindenburg’s airframe would be expected to exhibit pronounced airframe deformation at 

approximately 471oC and produce molted duralumin (aluminum-copper alloy) 630oC [82]. 

 

 
 

Fig 6. Schematic of the Lakehurst airfield and the final flight of the Hindenburg. 

  

Arthur Cofod Jr (AC) took a series of black and white photographs of the Hindenburg from a location 

to the north of Hangar # 1. His most memorable photograph (Figure 7) shows the starboard and aft 

section of the Hindenburg 10s of seconds before crashing to the ground. With the back of the dark 

cloudy sky, the image photograph graphically details how the fire progresses forward with the keel 

just buckling aft of the rear two aero-engines, suggesting that the temperature generated by the fire is 

> 471oC. Some 250 m above the Hindenburg, the updraft from the fire forms as a pyrocumulus 

mushroom-shaped cloud: where the upper bright region is normally associated with condensation of 

water vapor and the lower dark region contains burning debris of the airship with the most heaviest 

parts falling back down under the force of gravity. The moving H2-air flame-front is said to create a 

mantle effect between the patches of un-burnt outer fabric [74, 75]. It is also clear that at this stage of 

the fire the lower tail fin with its auxiliary control room is horizontal and still intact. Presumable, it is 

this aspect of the fire that enables H. Lau, (along with three other crewmembers (H. Freund, R. 

Kollmer and R. Sautar)) to escape the inferno when the intact lower tail fin crashes to the ground. 

 

Alan Thomas writing in the Dirigible (2012) [26], advances the plausible theory of how the last of the 

three vented H2 lift-gas volumes may have be ignited. This theory may be dived into both what is 

known and speculation as to what may have happened. What is known is that, in the final minutes 

before mooring the maneuvering valves are operated to vent H2 gas to stabiles the airships neutral 

bouncy at the mooring-mast. In addition, with all of the Hindenburg aero-engines reversed the airship 

comes to a stop at the mooring-mast. At this point, the vent shaft theory may come into play that the 
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airship slows down and the aerodynamic extraction force at the top of the vent shaft is corresponding 

reduced. Thus, H2 gas slowly builds-up in the vertical vent shaft (Figure 2), with little of the H2-air 

mixture diluted in the airships slowing slipstream. With H2-air mixture, exiting the top of vent shaft 

becomes partially ionized by SEF. In addition, the ionized H2-air mixture flows-back down the vent 

shaft to combust the concentrated H2 gas. 

 

 
 

Fig 7. Hindenburg seconds before dropping to the Lakehurst airfield. The photo is downloaded from 

Wikimedia and attributed to Arthur Cofod Jr / Public domain [80]. 

 

 

8 Discussion 
Since the beginning of recorded history, St Elmo’s Fire (SEF) has been widely observed at the closing 

stages of thunderstorm activity: both at sea level and in mountain regions. The systematic study of 

these naturally occurring atmospheric weather disturbances has proved difficult due to verifiable 

eyewitness accounts and real-time high-voltage air breakdown measurements. However, at least five 

non-lethal airship-SEF encounters are known to have occurred in WW1, see table 1. The five H2 lift-

gas airships (5 dirigibles and one non-rigid) disasters presented here represent the most notable storm 

weather related airships disasters. In contrast to these 5 airships disasters the He-lift-gas USS Akron 

disaster and its sister ship USS Macon had similar tail fin structural and aero-engine design faults, 

both of which played a significant part in their encounter with violent storms systems. Lightning, SEF 

or another form of static discharge did not have a role in these two airship disasters. The boards of 

enquiries in to each disaster indicate a combination of Pilot error and structural failures where the 

primary contributing factors in the destruction of the two airships  

 

This review has looked at H2 lift-gas airship disasters where blue H2 gas is the main source of lift. In 

the first two discussed (LZ-40 and SL-9), all the crew of both the airship died, thus providing no 

firsthand evidence to the cause of either crash. However, Nordholz airfield ground crew did see the 

LZ-40 burst into flames as the airship prepared to land. The recovered barograph from the wreck 

indicted that the airship was a height of 2,400 feet and valving H2 lift-gas at the time of the disaster. 

As for the cause of SL-9 disaster, there can only be speculation. 
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This work has reviewed the anatomy of a H2 lift-gas airship fire along with cloud electrification as the 

ignition source using Peeks formula to describe the point of ignition. From the forgoing line of 

reasoning, it is hypothesized that a potential ignition source in weather related airship disasters, in 

part, might be due to cloud electrification and the production SEF. The mechanism of positive and 

negative corona discharge along the airship airspeed may also have a role in the production SEF. 

Notwithstanding this observation, SEF is most likely to be prevalent at high electrical stress points on 

the airship external surface coupled with automatic H2 blow off, or the manual operations of 

maneuvering valves to blow off H2 gas. Out of five H2 lift-gas airship disasters reviewed here, three 

airships (NS.11, Dixmude and the Hindenburg) are likely candidates as the means of the airship 

destruction. The scenario in which the disasters occurred is as follows. 

  

The NS.11 disaster was witnessed by many people and recorded in newspapers of the time where 

lighting strike was portrayed as the guilty party was even though a thunderstorm was not present at 

the time. Without clear evidence, the board of enquiry found that lightning was the most probable 

cause of the disaster thereby deflecting blame form unauthorized flight endurance attempts by the 

captain of the NS.11.  

 

As Dixmude turned home on its endurance flight from the Algerian oasis of Ain-Salah, there was no 

eyewitness of unfolding disaster. The disaster was pieced together in French national newspapers 

from radio massages and the discovery of the airship wreckage some four to six days after the event. 

One year later, a detailed forensic analysis of the Dixmude disaster (by Dr. Hugo Eckener) highlights 

the failings of the airship’s aero-engines and modification (strengthening) to the original L-72 

airframe as being a major contributing factors to the lost of the airship. 

 

In the case of the Hindenburg, Professor Heald’s family provided visual evidence of SEF flickering 

along the upper ridge close to the tail fin of the Hindenburg moments before the disaster. This 

however was not given at the board of inquiry. Although late, this new evidence gives weight to the 

first option (a), where atmospheric electric disturbances at the time of landing of the airship, a corona 

discharge, otherwise known as SEF or brush discharge was the ignition source of a H2-air gas mixture. 

In this case as manual maneuvering valves where operated to vent the H2 lift-gas as the airship 

approached the mooring mast. 

 

It may be concluded that the NS.11, Dixmude and the Hindenburg fell victim to the ‘first rough draft 

of history’ as portrayed in the newspapers where a lightning strike was stated to the likely guilty party. 

However, the Hindenburg disaster was the first airship disaster to be captured using real-time sound-

recordings, black-and-white movie-reels and photos. Herbert Morrison’s recorded radio broadcast of 

the Hindenburg disaster was the final death blow to Germanys dirigible travel, but in reality the Pan 

American Airways M-130 China Clipper scheduled flight across the Pacific on November 22, 1935, 

(some three months before the Hindenburg first took to the air) was the first blow. In Russia, the end 

of H2 lift-gas dirigible service did not end until the SSSR-V6 and SSSR-10 crashed in 1948 with a 

combined lost of twenty lives. Non-rigid airship service continued throughout the ‘Great Patriotic 

War’ and beyond as unpressurised H2 bulk transporters. The lost of the Patriot and Pobeda (Victory) 

in 1947 may be considered as the end of the H2 lift-gas airship golden age. 

 

Acknowledgement: The Authors declare that there is no conflict of interest regarding the publication 

of this paper. The Authors dedicate this work to all the people who perished in airship disasters. 
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Abstract 
Whether in the Hawaiian, Bluegrass, Rock’ n’ roll, film sound track or animated cartoon genre, the 

swoop (glissando) sound made on a slide-guitar is one the most instantly recognizable in western 

music. This paper reports on the complex acoustical and perceptual glissando of the opening few 

seconds of Warner Brothers ‘Looney Tunes’ ascending glissando, and its counterpart (descending 

glissando), both played on a ‘Dubro’ resophonic guitar. The aim is to analyze these guitar themes in 

an attempt to provide both a historical development, as well as a technical understanding of the 

generated sound. With the resophonic guitar tuned to open G (D-G-D-G-B-D), the radiated sounds, 

includes the guitarist gestures and the glissando sound of steel and glass bottleneck, Using the toolbox 

within Audacity software (time-domain, standard autocorrelation, spectrogram and noise reduction), 

the recorded tracks are transcribed for tempo, consonant, dissonant, string squeaks, and incoherent / 

coherent noise. This study also attempts to map the complex psychoacoustic tonal quality of a 

resophonic guitar, which has been demonstrated to impact emotionally on the listener. 

 

It is found that dynamic slide movement divides the string scale length into two coupled longitudinal 

vibrating segments, each producing a coherent continuous mirrored exponential varying pitch that 

extends to the guitar brilliance region (4.5 to 20 kHz). Incoherent or ‘hiss-like’ noise is found within 

the lower psychoacoustic warm region (0 to 0.5 kHz). This incoherent noise is linked to a slip-stick 

friction process between the slide and string. Slide material and slide direction varies the intensity of 

the noise that has a Voss-Clarke 1/f-like response with a Brownian ~ -7 dB/10 Hz roll-off. It is 

proposed that the guitarists fretting arm musculoskeletal system plays a role in the generation 

incoherent or hiss-like noise. 

 

Keywords: Dubro, resophonic guitar, bottleneck, glass, steel, glissando, incoherent noise 

 

 

1. Introduction 

Chordophones have an important cognitive and emotional role in the development of world music [1], 

and western music, where the guitar is the main instrument in this classification of stringed 

instruments. When playing a string instrument, the listener’s perceptual experience can invoke a 

strong psycho physiological response (chills and tears [2], change in heartbeat and respiration rate [3], 

pupil dilation response [4], and dance [5]. Over riding these emotions is whether the music is played 

in the major or minor cord: where a major cord instills joy and happiness, and calmness and sadness is 

found in minor cords [6]. The average tempo of a composition also influences the listener’s emotions. 

For example, an Allegro composition of 140 beat per minute (BPM) has been found to increase 

listener’s blood pressure and heart rate, whereas Andante of 80 - 82 BPM produces calmness [7]. For 

a human body mechanism to produce these responses, Voss and Clarke [8] proposed that the natural 

chemical oscillations within nerve membranes are a likely candidate. Arguably the resonant guitar (or, 

resophonic guitar [9, 10] played with a bottleneck slide provides one of the most distinctive glissando 

[11] sounds within the family of string instruments. For example, Freddie Travares’s crystal-clear 

attention grabbing opening 2 seconds for the Warner Brothers instrumental theme ‘Looney Tunes’ 

(based on the song Merry-go-round broke down) [12, 13]. Travares’s credited guitar work on Elvis 

Presley’s ‘Blue Hawaii’ [14] is another, if not well known, example of the guitar glissando. It is no 

surprise then that ‘Loony Tunes‘ is associated with comedy and happiness and ‘Blue Hawaii’ is 

associated with mellow emotions. Ry Cooders reworking of Blind Willies Johnson slide guitar chords 

in the film ‘Paris, Texas’, goes one further by introducing vibrato at the end of each fading cord to 
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evoke the feeling of doubt, sadness and yearning of the American dry desert landscape [15]. 

 

Beyond the resophonic guitar patents [9, 10], online commentary of partitioning the resophonic guitar 

psychoacoustic pitch / frequency bands [16], mechanical modal analysis of the resophonic guitar [17, 

18] and the development of virtual slide guitar software [19], detailed mapping of the resophonic 

guitar psychoacoustic space has not be documented as played by a guitarist. The aim of this work is to 

analysis the radiated sound of a ‘Dubro’ resophonic guitar with the guitarist playing the 

instantaneously recognizable opening seconds of the ascending glissando of the ‘Looney Tunes’ 

instrumental theme and its counterpart associated with the instrumental theme music to the film 

‘Paris, Texas’. The capture and analysis of these guitar themes and guitarist gestures maps the 

perceived sound by the musician and nonmusicians alike thus providing a greater insight to the 

resophonic guitar psychoacoustics space.  

 

This paper is organized as follows: Section 2 reviews the origins of the resophonic guitar and open G 

tuning. Section 3 provides the experimental. Section 4 describes Benchmarking of the guitar under 

steel- and glass-bottleneck at a fixed fret position when strumming a using a plastic plectrum [20]. 

The frequency range of the benchmark extends through three psychoacoustic regions: warm (0 to 2 

kHz), bright (2 to 4.5 kHz) and the lower brilliance region (4.5 to 8 kHz) [16]. Section 5 explores the 

ascending and descending glissando in these three psychoacoustic regions. In section 6 the extended 

brilliance range up to the human audible threshold limit (20 to 22 kHz) is examined for ascending and 

descending glissandos. In section 7, the background detailed in sections 4, 5 and 6, informs and 

identifies the incoherent noise produced by the guitarist gestures. Finally, section 8 provides a 

discussion on this work. 

 

 

2. Development of resophonic guitar 

 

2.1 Pythagoras string instrument theory 

The employment of music in the treatment of disease dates back to the earliest times including when 

David strummed his harp before Saul [21]. Later Pythagoras [ca, 570-495 BC] became interested in 

understanding the notes and scales used in Greek music for the healing of disease. In particular, the 

use of the stringed instrument, called the lyre. It is from this time the use of a mathematical approach 

to help achieve a greater understanding of western music became established. Pythagoras studies 

found that when two strings with the same length, tension, and thickness, sounded the same when they 

were plucked, or picked. This means they have a unison sound to the human ear (or consonant), when 

played together. He also found that if the strings have different lengths (keeping the tension and 

thickness the same); the strings have a different sound and generally sounds bad (or dissonant) when 

played together. He also noted that strings having different lengths produce sounds but were 

consonant rather than dissonant. Pythagoras called the relationship between two notes an interval. 

Since these discoveries, music containing consonant tones has treated disorders of the ear and 

epilepsy, sciatic gout and a range of mental disorders [21]. Today, when two strings of the same 

length are plucked, or picked we say they have the same pitch and, if one string is plucked, or, picked 

at exactly one-half of the length of the other string, the pitch is doubled and are consonant when 

played together. This interval is called an octave (harmonic). Furthermore, if one string has a length 

that is two-thirds the length of the other, the strings again sound consonant when played together and 

this interval is called a Perfect Fifth. Finally, if one string has a length that is three-quarters the length 

of the other, the strings again sound consonant, when played together and this interval is a Perfect 

forth. Hence, the length of the strings being a certain ratio defines interval. Musically speaking the 

intervals discussed have ratios of: unison (1:1), octave (2:1), a perfect fifth (3:2) and perfect forth 

(4:3) and so on. The frequency response of the human ear however can only spatially differentiate a 

limited number of tones within an octave, which are 12 half tones or semitones. 

 

2.2 Vincenzo Galilei’s fret fingerboard 

In the late Renaissance period, the composer, experimentalist, mathematician, and father to Galileo 

Galilei, Vincenzo Galilei [ca, 1520 -1591], developed Pythagoras linear ideas for string instrument to 

316

https://en.wikipedia.org/wiki/Renaissance
https://en.wikipedia.org/wiki/Galileo_Galilei
https://en.wikipedia.org/wiki/Galileo_Galilei


 

 

 

 

perhaps the first non-linear theory of stringed instruments. From his work we get the rule of eighteen 

i.e., the division of the active vibrational length of the string (string length (SL)) by 18, to obtain the 

first fret position (fret1) on the string fingerboard (equation 1) and dividing the remaining string length 

by 18 again to get the second fret, and so on. The distance from front of the nut at the headstock to the 

bridge is defined as SL. Today we use the more precise calculation of 17.817, although the rule of 

eighteen is still commonly used. This rule places the string octave at the twelfth fret’, thus providing 

an equal temperament between each fret. However, the exact overall length from nut to bridge varies 

slightly with each string, due to the different mass of each string. In this case, the bridge is orientated 

at an angle to make a slightly longer sounding length for the lower strings and a shorter one for the 

high strings, thereby, altering each string scale length minutely to improve intonation across all strings 

in relation to each other for more accurate tuning when playing up the neck. Equations 1 and 2 help to 

demonstrate this relationship [22].  

 

𝑓𝑟𝑒𝑡1 =
𝑆𝐿

17.817
 (1) 

 

Equation 2 computes the nth fret position from the front of nut at the headstock. 

 

𝑓𝑟𝑒𝑡𝑛 = 𝑆𝐿 − (
𝑆𝐿

(2𝑛/12)
) (2) 

 

The posture of the guitarist is in the seated position with the finger board held by the left hand at 

about 45 degrees to the horizontal. The area between the thumb Interphalangeal joint and the 

Metacarpophalangela joints of the left hand are warped around the neck two allow the bottleneck 

(placed on the ring finger) to act a mobile fret. In this position the left hand is moved up- and -down 

the fingerboard using the musculoskeletal arm system (with minimal wrist flexion). To produce the 

rich and complex Delta and bluegrass sound, the index, second and fourth finger do not mute 

(dampen) the strings. In addition, the guitarist uses a 0.5 mm thick plastic plectrum held in the right-

hand to down-stroke the cord string while the palm and lower fingers mute (dampen) the remaining 

strings. 

 

 
Fig 1 Fret distance from nut plotted on a log10-linear scale with the data points represented by open-

circles, fitted with a Microsoft Excel exponential trend-line. 
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Using equation 2, the fret-offset distance to the nut (fret = 0) can be plotted as log to the base 10 on 

the horizontal axis against the Fret number, as shown in Figure 1. This example is for a Dubro guitar 

that has a 19 fret fingerboard with a fixed SL value of 61.2 cm, see experimental section. The 

exponential trend-line fitted to the data points is associated with the fitting parameter. The trend-line 

deviation towards fret = 0 and fret = 19, indicates that equal temperament is not directly achieved. In 

practice however, equal temperament is achieved by altering the bridge orientation and string tension 

as mentioned above. 

 

Unlike non-fretted instruments (violin), the guitar fretted fingerboard allows people with limited 

musical knowledge to know when to stop at a given target pitch. This is because the additional tactile 

and visual cues add to the audible cues to provide an all round cognitive feedback system between the 

guitarist and the sound of the guitar strings when plucked or picked. 

 

2.3 Origins of the six-string acoustic guitar 

The six-string acoustic guitar as we know it today has its origins in post Braque Europe, in particular 

in Spain where Antonio de Torres Jurado [1817 to 1892] developed the classical hour glass look and 

the introduction of the evolutionary "fan" bracing pattern within the guitar’s body. Using a circular 

aperture (hole) in the top plate as the principle mode of acoustic amplification and sound projection 

(see Helmholtz equation 3) [23], his design improved the volume and tone of the guitar when using 

the rapidly accepted standard guitar tuning of (lowest pitch, thickest string) E-A-D-G-B- E (highest 

pitch, thinnest string). 

 

𝑓0 ≈
𝑣

2𝜋√
𝐴

𝑉𝑜𝐿𝑒𝑞
 (3) 

 

Where fo is the resonant frequency of aperture in the guitar top plat, v is the speed of sound (at 20oC, v 

 343 m.s-1), A is the area of the aperture, Vo is the volume of the guitar body and Leg is the equivalent 

length of the neck plus end correction. 

 

f-holes were originally developed for the violin in the Braque period and Antonio Stradivari [1644 to 

1737], is widely regarded as having produced the best design in sound projection and pleasing 

appearance. Later the physicist Félix Savart [1791 to 1841] brought this innovation to the guitar, 

thereby helping to separate the guitar from its classical roots and gain a new audience in the form of 

country and jazz. In 2015, a study of f-hole sound projection revealed that the axial-length of the f-

hole rather than its area that determines the acoustic power projection [23]. 

  

2.4 The steel-string acoustic guitar 

The first steel-strings for the banjo and guitar are generally considered to have been offered by 

Christian F Martin [1796- to 1867] in the mid 1920s, when Hawaiian music became popular in the 

USA. The union of the steel-strings with the guitar produced a brighter and louder sound that could 

complete with horns, pianos and drums at mid west American barn dances. Here it’s worth noting that 

a direct and contemporary comparison between the 5 steel-string banjo and the 6 steel-string guitar 

can be found in the 1972 film Deliverance [24]. The emerging expressive music (Cajon, country, Folk 

and Bluegrass music) also meant that standard guitar tuning had to change to an open G (lowest pitch, 

thickest string first) D-G-D-G-B-D (highest pitch, thinnest pitch last) to enable the G major chord (G-

B-D) to be strummed on all six strings without the use of the guitarists fret hand, or a capo. 

 

As open G tuning only requires the re-tensioning of only three strings, this new tuning style was 

readily adopted in bands with a wide spread of music genre. Open G tuning requires the sixth and five 

strings pitch to be lowered in to D2 and G2 respectively. The next three strings (4, 3, and 2) remain the 

same while the first string (1) with the highest pitch and thinnest string is lowered in pitch from E4 to 

D4. Table 1 tabulates this process, where the last row provides the comparative frequency 

compression (brightness) of open G tuning with respect to standard tuning. 

318



 

 

 

 

Table 1 Standard and open G tuning of a guitar with pitch values rounded to the nearest whole 

number. The shaded rows (string 4, 3, and 2) have no change of tuning. 

 Standard  Open G  

String SPN* Pitch (Hz) SPN* Pitch (Hz) 

6 E2 82 D2 73 

5 A2 110 G2 98 

4 D3 147 D3 147 

3 G3 196 G3 196 

2 B3 247 B3 247 

1 E4 330 D4 294 

Frequency range 

(center point) 

 248 

(128) 

 221 

(110.5) 

* Scientific pitch notation (based on 400 Hz), subscript denotes the octave in which the note is played. 

 

2.5 Lap-steel-guitar and Slide-guitar 

It is said ‘that in the 1890s, Joseph Kekuku [1873 to 1932], accidently strummed a Spanish guitar with 

a discarded bolt and from that day Kekuku become the inventor of the Hawaiian ‘lap-steel-guitar’. 

This guitar music requires the guitar to be played in a flat and horizontal position across the guitarist’s 

knee. Bolts, nails, back of a pocketknife and steel combs all give a pleasing descending- 

glissando sound that invokes a vision of Hawaiian palm beaches and rolling surf. Around the turn of 

the 19th century, the Steel guitar began to be held against the body as in the Spanish style with the 

guitarist using a metal, or glass cylindrical object worn on the fretting finger. These fretting 

techniques, known as ‘Slide-guitar’ in the Mississippi Delta: where in the Deep South, Blind Willie 

Johnson [25], Elmore James [26] and others developed and popularized Gospel Delta blues and 

Bluegrass. By the early 1920s, the term bottleneck came in use, due to a common idea that the 

remnants of broken glass bottles left over from bar room fights were picked-up and played on the 

guitar frets, and if not up to the task than another bottleneck could be picked-up from the floor and 

used. 

 

In practices, the bottleneck divides the guitar string into two coupled vibrating string-lengths, with the 

extreme ends of the two sting lengths fixed and the opposing ends coupled through the damping 

action point of the bottleneck. When it comes to the sound quality ‘slide-guitar’ guitarists consider 

that glass slides offer a smoother playing feel, and produces a warmer and thicker sound that 

emphasizes the low to mid overtones within the harmonic series compared to metal slides that give a 

longer sustain that is also brighter and harsher [16]. 

 

 

3. Experimental 

This study firstly investigates the sound generated by the Dubro DM-33 Hawaiian resonator guitar 

(figure 2a). The name ‘Dubro’ is a portmanteau of ‘Dopyera Brothers’ who invented this type of 

resonant guitar. The guitar has a chrome-plated brass metal body with sandblasted palm trees, two 

rolled f-holes (axial length 112 mm x15 mm at their widest point), and a 19-fret rosewood fingerboard 

with pearl dot inlays (figure 2a). The average scale length of the strings is 61.2 cm, and the string 

action is 3.5 mm, to minimize accidental fret notes. The Dubro is a relatively complex string 

instrument, compared to the classical acoustic guitar, where the primary mechanical sound 

amplification is produced by a 26.7 cm diameter outward facing resonator cone / diaphragm, at the 

top of which is attached a biscuit bridge (figure 2b and R. Dopyera US patterns [9, 10]). The purpose 

of the cone is twofold, 1), to project the string vibrational sound out and away from the guitar and 2), 

send part of the sound in to sound-well and out via body ports. The two main ports being rolled f-

holes that are set symmetrically set either side of the strings. Using this arrangement, the cone 

produces a harsh mid-high frequency range (1 kHz and above) while the f-holes project sound energy 

in the low to mid frequency range 70 to 150 Hz. The mechanical complexity of the Dubro does mean 

regular carful maintenance and regular tune-up is required. A range of short videos of resophonic 

guitar tuning can be found on YouTube, see for example [27, 28]. 
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3.1 Recording of the Dubro guitar 

For this study, the digital recordings of the acoustic resophonic guitar were made during a 

performance in Kastollos, Crete in August 2020. The guitar radiated sound is recorded using a Zoom 

H4n handy recorder (frequency response ~ 30 Hz to 22 kHz) positioned one meter in front of the 

guitar. The sound levels were set using an alto ZMX122FX mixer and the track recordings saved in 

waveform audio files on a SD card. The choice of a microphone rather than an electric pick-up is 

deliberate as this gives both acoustical and perceptual information of the guitar sound as played by the 

guitarist. 

 

 
 

Fig 2a-b  Photo of the Dubro DM-33 resonator guitar a). Cross-section of Dubro cone / resonator 

diaphragm based on R. Dopyera’s 1932 US patent b). 

 

The posture of the guitarist is in the seated position with the fingerboard held by the left hand at about 

45 degrees to the horizontal. The area between the thumb Interphalangeal joint and the 

Metacarpophalangela joints of the left hand are warped around the neck two allow the bottleneck 

(placed on the ring finger) to act a mobile as the left hand is moved up- and -down the fingerboard 

using the musculoskeletal arm system (with minimal wrist flexion). The bottleneck divides the strings 

into two vibrating portions that are designated as string bridge (Sb) and string nut (Sn) respectively. 

The guitarist may choose to mute (dampen) Sn to generate a crystal-clear tone as in the case of 

Freddie’s swoop in the opening seconds of ‘Looney Tunes’ (figure 3a) or un-mute (figure 3b) to 

provide a rich and complex sound that is character of Delta blues. Steel and glass bottleneck slides are 

used in the recordings. The steel has a length = 51 mm, inside diameter = 19 mm and outside diameter 

= 26.5 mm and glass has a length = 70 mm, inside diameter = 20 mm and outside diameter = 2.5 mm). 

In the following text the slides are designates as s-slide and g-slide. In addition, the guitarist uses a 0.5 

mm thick plastic plectrum held in the right-hand to down-stroke the cord string while the palm and 

lower fingers mute (dampen) the remaining strings 

320



 

 

 

 

 
 

Fig 3a-b  Cross-section schematic of  slide and fingers in the Sn muted position a). Cross-section 

schematic of slide and fingers in the Sn un-muted position b). 

 

Track transcription is performed within a Lenovo laptop running Microsoft Windows 10, therefore the 

xxx.wav files are fully combatable with Microsoft’s Resource Interchange File format (RIFF) 

specification. Audacity version 2.4.2 (a free, open-source, cross platform audio software) is used to 

transcribe the guitar sound recordings [29]. The software uses a sampling rate of 44100 Hz with a 

dynamic range of 32-bit float to provide a coupled time-domain and spectrogram (3-D plot of sound 

intensity (color) as a function of frequency and time) of the selected audio track recording. Frequency 

spectrum analyzer is also available. Table 2 provides the basic metadata for these displays. 

 

Generally, open-access spectrometer software is limited in its ability to provide real-time frequency 

analysis due to the latency within the software. The latency is because of the lack of processing power 

to handle the large amount of time-series data that is needed to be converted into the frequency-

domain using a Fast Fourier Transform (FFT) algorithm. To overcome this problem Audacity toolbox 

contains a set autocorrelation algorithms used to identify the SPN frequencies. This option measures 

how many times SPNs are repeated within the selected waveform record length. This is achieved by 

taking two copies of the waveform data set, and moving one waveform data set piecewise (n = 1) 

followed by multiplying the two waveform data sets together. The piecewise process is repeated, up to 

the selected size option. This mathematical noise reduction tool is one of many embedded delay time-

series analysis tools used in chaos theory to extract periodic signals (overtones, octave, and 

harmonics) out of incoherent noise [30]. 

 

Table 2 Audacity software project rate and display information. 

 Lower 

Frequency 

(Hz) 

Upper 

Frequency 

(kHz) 

Sampling rate 

(s.sec-1) 

Display video 

bandwidth 

(Hz) 

Screen shot 

Waveform N/A N/A 44100 

32-float 

N/A Yes 

Spectrum 

analyzer 

30 22 44100 

32-float 

N/A  

Spectrogram 

default 

maximum 

 

30 

30  

 

8 

22 

44100 

32-float 

50 Yes 

 

In the case of the spectrogram, a noise reduction algorithm (NRA) uses the FFT with a Hann window 

to sample the local neighborhood noise to obtain an incoherent noise profile. Subtracting the noise 

profile from the whole of spectrogram leaves the coherent acoustic signature of the resophonic guitar. 

Three operator parameters (amplitude, sensitivity, and frequency smoothing bands) settings determine 

the impact upon the guitars acoustic signature and the surrounding noise floor. The RNA is used here 

to estimate of the specific incoherent noise contribution for ascending and descending glissandos, 

rather than to clean-up the musical signature of the guitar. In mathematical terms this noise reduction 

technique is called spectral noise gating [31] and is used the compare the SPN and glissando modes of 
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the bottlenecks. Other pixel thresholding methods may be applied using different software platforms, 

such as LabVIEW [32]. 

 

 

4. Benchmarking  

Viewing the stereo sound tracks from the recordings, revealed that there was no different in X- and Y-

tracks presumably this because the closeness of the microphones to each other (0.01 m), with respect 

to the guitar position (1.5 m), even though microphones have an XY orientation. Given this, only the 

X-tracks are used. The purpose of the Benchmarking the plectrum down-stroke is to establish both the 

acoustic signature of the guitar and the guitarist’s gesture. Two Benchmarks are made, 1) strumming 

open G and 2) the first-string triad (strings: 3, 2, 1). The first-string triad is frequently used in the 

Rock ‘n’ roll genre [33] and therefore is included in this study. The knowledge gained from the 

Benchmarking informs the identification process of ascending and descending glissandos and 

incoherent noise.  

 

4.1 Open G tuning Benchmark 

To establish the plastic plectrum down-stroke Benchmark, the guitar is strummed, and recorded, for 

35 seconds. An initial analysis of the total waveform record-length yielded an average BMP of 144. A 

more detailed standard autocorrelation of a 2.2-seconds period encompassing both down and up cords 

yields the tones and overtones. To produce the greatest definition, the autocorrelation algorithm is set 

with a Hann window and sample size of 2048. 

 

Figure 4 provides the computation where the correlation delay time is on the horizontal axis and SPN 

level on the vertical axis. In this representation and figures 7 and 8, frequency decreases to the right, 

therefore the root tones are to the right and the higher overtones progress to the left. Note, the delay 

time 0.01 and 0.025 corresponds to the at-rest human heart beat range (60 to 100 BPM). Using this 

representation, the tones G1, B1, and overtones C2, D2 and G2 fall within the at-rest heat beat range, 

and the higher overtones (B2, and D3) are in the + 38 BPM elevated / stressed human heart beat range.   

 

 
Fig 4 Standard autocorrelation of the 2.2 second Benchmark. The root tones are to the left and the 

higher overtones to the rights. The human heart beat range is between G1 and D3. 
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4.2 First-string triad Benchmark 

The plastic plectrum down-stroke of the first-string triad (strings: 3, 2 and 1), with the bottleneck 

slides damping the fifth fret produces corresponding values of sb ~ 45cm and Sn ~ 15.3 cm, 

respectively. In this style of strumming, the second-string triad (strings: 6, 5 and 4) are damped by the 

guitarist palm. This procedure changes the open G cord by five semitones without changing the 

original open G tuning. 

 

Figure 5a-d shows two typical strumming cord acoustic waveforms (5a-b) and their associated default 

spectrogram (5c-d) for both s-slide and g-slide positioned on the fifth fret. In the case of the 

waveforms, there are two features of note. First is the truncation of the first and second envelopes by 

the third envelope that fades out to completion. Note also and that the s-slide fades by an additional 

0.5 seconds compared to the g-side. Second, for both s-slide and g-slide, a string speak caused by an 

involuntary guitarist gesture is present in the first envelope (plectrum annotation in figure 5a-b). Note 

also, string squeaks are not found in the second or third envelope. In addition, at the end of the 

completed cord, a 10 to 20 Hz non-complex resonance is present. Not shown in these figures, but 

shown in figure 6, are further examples of complex resonances that appear at the start of additional 

recorded cords. The resonances have similar timestamps to the guitarist applied bottleneck pressure-

on (p-on) and release (here called pull-off), thus bracketing the cord. 

 

 
Fig 5a-d Waveforms and spectrograms obtained from the first-string triad with bottleneck damping 

on the fifth fret: s-slide 4a-c, g-side 4b-d. 

 

The two default spectrograms in figure 5c-d provide a greater insight to the fifth fret bottleneck 

position. To aid the reader’s eye, the psychoacoustic terms: warm (0 to 2 kHz), bright (2 to 4.5 kHz) 

and brilliance (4.5 to 8k Hz, which extend to 22 kHz, see section 6) are located on the right-hand 
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frequency axis of the spectrograms. Within the two spectrograms there are five features of note, these 

are listed as follows: 

 

1. The bottleneck p-off points at the end of the cord are located at the lower-end of the warm 

region. 

 

2. An intermodulation of tones are observed in the psychoacoustic brilliance region that are caused 

by energy being transferred up- and down- in frequency range where addition and subtraction of 

consonant and dissonant tones result in fading in-and-out in the higher frequency range. Unlike 

electromagnetic signals, the origin of the acoustic energy (in this case the strings and body of the 

guitar) is directly altered by the vibration mode of the strings and body, and the medium that the 

sound is traveling through. Thus, each pitch has a non-zero bandwidth [34, 35] that periodically 

fads when subtraction occurs. 

 

3. A series short rising tones of approximately +0.5 kHz (blue arrow annotation) that have an initial 

timestamp corresponding the picking of the strings. A second set of descending glissandos of 

approximately - 2 kHz (red arrow annotation) are launched after the raised tones are also present. 

 

4. There is a marked difference in the s-slide and the g-slide sustain periods within the warm and 

bright regions. In the warm region, the s-slide produces a stronger spectral density compared to 

g-slide. However both slide produce similar short sustain periods. 

 

5. The string squeaks caused by an involuntary guitarist gesture appear mixed and muddled within 

the warm region.  

 

 
Fig 6 Typical bottleneck pressure-on and pull-off signatures. 

 

Figure 7 and 8 shows the standard autocorrelation (Hann window and 2084-sample size) of the 

waveform for the s-slide and g-slide damping the fifth fret. Note for clarity, the sound level of the 

second and third envelopes are offset by + 100, and + 200, respectively. For each envelope, the major 

overtones and the root along with prominent flat (dissonant) overtones are labeled. 

 

In figure 7 (s-slide), the first envelope overtones E3-4 and G3-2 and C3-2 are clearly defined, along with 

the flat (dissonant) F#4-5 and A#3. Note also G2 transposes up in pitch to A2 within the duration of the 

envelope period. In the second envelop the D4-2 and the B3-2 are present, in addition A#1 transposes up 

in pitch to the root B1, and D2 transposes up in pitch to E2 within the envelope period. The F#5 is also 
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present. In contrast, the third envelope contains the major overtones C4-2, E3, A2 and F2, with the flat 

(dissonant) tones less prominent. 

 

 
Fig 7 First-string triad (3, 2, and 1) with s-slide damping the fifth fret. 

 

Figure 8 reveals that the first envelope contains the overtones G5-2, E2-3, and the roots B1 and A1, along 

with the flat (dissonant) tones F#4 and G#2. In the second envelope, D4-2 and B3-1 are present along 

with G#5 and F#3, but at reduced amplitude compared to the s-slide. Again, in contrast, the first two 

envelopes, the envelope exhibit the major tones C4-2, E3, A2 and F2), with the flat (dissonant) tones 

less prominent. 

 

 
Fig 8 First-string triad (3, 2, and 1) with g-slide damping the fifth fret.  

-25

25

75

125

175

225

275

0 0.005 0.01 0.015 0.02

S
P

N
 (

a.
u
.)

Delay time (s)

C2

E2D2

C3
C4

D4

B1A#1

D3

E4

G2

1st

offset 0

2rd 

offset 100

C2

E3

E2
A2 G2

E3 F2A2

B2B3

3rd

offset 200

F#5

A#3G#3

G3 C3
F#4

F#5

-25

25

75

125

175

225

275

0 0.005 0.01 0.015 0.02

S
P

N
 (

a.
u
.)

Delay time (s)

3rd

offset 200

2nd

offset 100

1st

offset 0

E3D3C3 C2E2

G3

D2

G2F#4

D4 D3 G2

B1 G1

C4 C3
C2E3 A2

F2E2

G5

G#5

G#2
A1D2

D4

F#3
B2

325



 

 

 

 

5. Ascending and descending glissandos 

This section looks at the glissando sound production between the seventh and twelfth fret for open G 

tuning and different bottleneck material (steel and glass). Using equation 2, Sb therefore varies 

between approximately 30 and 40 cm, and Sn varies between approximately 20 and 30 cm. For ease of 

comparison, spectrograms of a first-string triad ascending glissando using the s-slide is presented 

followed by two pairs of comparative ‘Looney Tunes’ and it counterpart tracks. 

 

Figure 9a-b, depicts the default spectrograms for first-string-triad with steel and glass bottleneck for 

the descending glissando (twelfth to seventh fret). Annotated on the right-hand vertical axis is the 

warm, bright and brilliance regions and the horizontal dashed-lines (at 2 and 4.5 kHz) delineate the 

regions. Within these two spectrograms, three contrasting features are observed and are listed as: 

 

1. The root and overtones within the warm psychoacoustic region have differing sustain lengths, 

where the s-slide produce longer and stronger tones compared to the g-side. 

 

2. As the slides physically moves perpendicular across the strings (at rate of approximately 50 

mm.s-1) a mirrored bifurcation occurs where the glissandos have an exponential trajectory with a 

frequency shift of approximately 2.2 kHz with time. These mirrored glissandos extend through 

the bright region and fades into the brilliance region. 

 

3. There is a marked and contrasting noise floor between the two bottlenecks? In the case of the g-

slide, a greater incoherent (hiss-like [19]) noise is present at the lower end of the warm region (0 

to 0.5 kHz) as compared to the s-slide bottleneck. Section 6 further quantifies these noise 

features. 

 
Fig 9a-b First-string triad: s-slide descending glissando (twelfth to seventh fret) for s-slide 9a, and g-

slide 9b. 

 

Figure 10a-b depicts  the default spectrogram for the ‘Looney Tunes’ ascending glissando (seventh to 

twelfth fret, 10a) and its counterpart descending glissando (twelfth to the seventh fret, 10b). Both 

spectrograms are for s-slide. Again, the psychoacoustic regions are annotated on the right-hand 

vertical axis. The spectrograms reveal a number of contrasting features.  
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Fig 10a-b ‘Looney Tunes’s-slide ascending glissando (seventh to twelfth fret) 10a; and s-slide 

descending glissando (twelfth to seventh fret) 10b. 

 

1. The inclusion of the thicker strings (4, 5, and 6) generates a high-frequency content that ranges to 

the top of the bright psychoacoustic region. 

 

2. Now as the slides physically moves perpendicular across the strings at a rate of approximately 50 

mm.s-1 mirrored bifurcation of the glissando occurs. As in figure 9a-b, the frequency shift is 

some 2.2 kHz, however in this case the glissando extend through the bright and well in to the 

brilliance region. To separate apart these mirrored glissandos it is reasonable to assigned the 

string ascending glissando with increasing fret number, hence the mirrored glissando is assigned 

to the slip-stick friction process of the slide. 

 

3. The noise floor at the lower-end of the warm (0 to 0.5 kHz) region is raised with incoherent, or 

hiss-like, noise. For comparison, see figure 9a. 

 

Figure 11a-b provides the default spectrogram for the ‘Looney Tunes’ ascending glissando (seventh to 

twelfth fret, 10a), and its counterpart (twelfth to the seventh fret, 10b). Both spectrograms are for the 

g-slide. Again the right-hand vertical axis depicts the psychoacoustic regions. Main features of note 

are: 

 

1. As in figure 10a-b, mirrored bifurcation of the glissandos produce exponential trajectories as the 

slide moves perpendicularly across the strings at a rate of approximately 50 mm.s-1. 

 

2. Incoherent, or hiss-like, noise is prominent has marked increase in lower-end of the warm region 

(0 to 0.5 kHz) as compared to the s-slide (figure 10a-b). 

 

3. Taking figures 9a-b, 10a-b and 11a-b together, psychoacoustic feature of ascending and 

descending seventh to twelfth glissando may be summarized. Firstly, the sound of the first-string 

triad slide extends to the bright region, whereas the thicker strings extend the guitar response in 

to brilliance region. Secondly, pronounced mirrored glissandos are produced when all six strings 

are played with the slides. Third, incoherent, or hiss-like, noise in the lower-end of the warm 

region is produced by the g-slide first-string triad mode, and when all strings are played using 
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either the s-slide or g-slide. 

 

4. For a slide acoustic guitar, Pakarinen et al [19] has demonstrated that slide divides the damped 

string into two longitudinal excited string segments, where the main sound originates from the 

slide to bridge string segment (here labeled Sb) and second excitation originates from the slide to 

nut (here labeled Sn) segment. This excitation process appear to hold in the resophonic guitar, 

although a string portion from bridge to the tailpiece must vibrate due to the up-and-down motion 

of bridge, albeit a smaller bandwidth of Sb and Sn. Given this scenario, vibrational energy is 

continuously flowing between the string segments as slide moves across the string. Following 

this, it is reasonable to assign the origin of the mirrored exponentially varying pitch glissandos. 

Hence, an ascending glissando associated with increasing fret number (7-12) originates in Sb, 

whilst the mirrored descending glissando has it origin in Sn. 

 

Pakarinen et al [19] has also identified incoherent, or hiss-like, noise in the steel-string acoustic guitar 

and assigned this noise to contact points as the side moves across the string. When they synthesized 

this form of noise they used a noise pulse train thereby evoking an impact and friction modal, 

otherwise known as slip-stick friction between the surface of the string and slide / Bow [36]. The low-

frequency nature of the noise also suggests there is Voss-Clarke flicker noise (1/f noise) content [8]. 

Section 6 further explores this psychoacoustic noise for the resophonic guitar. 

 

 
Fig 11a-b ‘Looney Tunes’ g-slide ascending glissando (seventh to twelfth fret) 11a; and g-slide 

descending glissando (twelfth to seventh fret) 11b. 

 

  

6. Resophonic guitar upper psychoacoustic brilliance (0 to 22 kHz) region 

Given the lack of full range psychoacoustic data for the resophonic guitar, this section looks at the 

‘Dubro’ resophonic guitar’s radiated sound in the 0 to 22 kHz frequency range to understand the 

interaction and delineation of each psychoacoustic region. This is achieved by using the Audacity 

spectrogram with a selected full frequency range (22 kHz) for ‘Looney Tunes’ ascending s-slide (11a) 

and g-slide glissando (11b). 
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Fig 12a-b. Extended frequency range of ‘Looney Tunes’ g-slide ascending glissando (seventh to 

twelfth fret) 12a, and g-slide ascending glissando (twelfth to seventh fret) 12b. 

 

Figure 12a-b provides the comparison between the s-slide and g-slide ascending glissando. In the case 

of s-slide (12a), the ascending glissando overtones extend through the warm region with typical 

sustain periods of 3 seconds and to a lesser extent (0 to 2 seconds) in the bright region. Whereas the 

initial plastic plectrum attack overtones have sustain periods of typically 0.5 seconds throughout the 

4.5 to 22 kHz brilliance region. In addition there is some evidence of weak glissando overtones with 

typical sustain periods of 1 second. In comparison, the g-slide (12b) produces weaker sustain periods 

in all three psychoacoustic regions. The least marked being in the brilliance region where the initial 

plectrum attack overtones have sustain periods decaying from 1 seconds at 4.5 kHz to 0.25 second at 

22 kHz. Within the decay process, the ascending glissandos overtones also become less pronounced. 

 

 

7. Noise reduction 

Figure 9a-b has revealed, that for a first-string triad ascending glissando, the g-slide induces more 

incoherent (or hiss-like) noise at the lower-end of the warm region, when compared the s-slide. The 

aim of this section is therefore threefold: First to isolate and remove the incoherent noise to, or below, 

the noise floor of s-side glissando, thereby providing an estimate of the noise contribution. The second 

is to extend the noise reduction knowledge to the ‘Looney Tunes’ (figure 10a and 11a) and the 

counterpart descending glissandos (figures 10b and 11b). Third, identify and map the characteristic 

morphology of the noise [8]. 

 

7.1 First-string triad bottleneck noise reduction  

The first step in estimating the incoherent noise contribution is to identify and isolate the noise. This 

is performed by first defining the noise profile (np) within the spectrogram (13b). The selection 

criterion is based on that incoherent noise contains random pixel variables with a well-defined 

statistical characteristic as compared to the coherence pixel regions of glissando.  

 

The removal step uses three parameters to control the noise reduction process. These parameters are 

noise reduction level, sensitivity, and frequency-smoothing band. The noise reduction controls the 

volume reduction (in dB) applied to the noise. The sensitivity controls the amount the signal to be 

considered as noise (using a scale of 0 to 24). In addition, the frequency-smoothing band controls the 
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spread of the smoothing in neighboring bands, therefore altering the original sampling rate (using a 

scale of 0 to 12 and is set to zero so that direct comparison between the original and modified dataset 

is made). [N.B. Further details on how the three parameters are used, see Audacity software [29, 30, 

31]]. A series of iteration processes follows, where the noise reduction value and sensitively value is 

changed, with the aim of reducing the incoherent noise with minimal damage to the coherent 

glissando feature within the spectrogram. Figure 13a-d shows the overall process in spectrogram 

format where figure 13a is the first-string triad for the s-slide (taken from figure 9a). Figure 13b is the 

first-string triad for the g-slide along with the incoherent noise profile region selected. Figure 13c is 

the noise-reduced image using a noise reduction value of 12 dB and a sensitivity value of eight. A 

comparison of figure 13c with the s-slide (13a) reveals similar coherent features and the incoherent 

spectral densities for both slides is in the 0 to 0.4 kHz range. Thus the indicating the g-slide 

incoherent noise contribution is in the order of 12 dB. 

 

Figure 13d, depicts the removed residue noise spectrogram in the low-frequency region of the 

acoustic spectrogram. It is noted that the isolated noise inevitably captures part of the overtone 

structure, and therefore some of overtone in figure 13c is lost. The overall discrimination process may 

not be perfect, but it is more beneficial in this case when compared to a low-pass filter that would 

remove higher frequency noise in the bright and brilliance regions [29 - 32]. 

 

 
 

Fig 13a-d First-string triad ascending glissando spectrogram for s-slide 13a. First-string triad 

ascending glissando for g-slide 13b. The g-slide reduced noise profile after noise reduction (-12 dB) 

13c. The g-slide residue noise spectrogram 13d. 

 

7.2 Incoherent noise reduction 

To quantify the visible incoherent noise in the audio spectrogram figures 10a-b and 11a-b, the same 

attenuation process as in figures 13b-d is undertaken. To allow a direct comparison throughout, only 

the noise attenuation (dB) is altered, whist the sensitivity or frequency-smoothing band values are 

fixed at eight and zero, respectively. 

 

Table 3 depicts the required incoherent noise reduction values to achieve the desired noise floors for 

each spectrogram. The results support the general concept that a g-slide produces more (3 dB) 

incoherent, hiss-like, noise than an s-slide. In addition, a descending glissando (twelfth to seventh 
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fret) also produces more incoherent. This finding suggests that the guitarist gesture whether emotional 

or and musculoskeletal (movement of the upper extremity as the left moves away from the body when 

play a descending glissando) may also have a role in the production of slide noise. 

 

Table 3 Incoherent noise reduction algorithm variable parameter values. 

Spectrogram figure Noise reduction (dB) Sensitivity level Frequency-smoothing 

band 

10a      (s-slide: 7-12 fret) 9 8 0 

10b      (s-slide: 12-7 fret) 12 8 0 

11a    (g-slide 7-12 fret) 9 8 0 

11b    (g-slide:12-7 fret) 12 8 0 

 

7.3 Characteristic noise morphology 

Using the Audacity FFT algorithm, the five-residue noise datasets obtained in section 7.1 and 7.2 are 

analyzed for their spectral morphology (color). Figure 14 depicts the FFT results as log-log plot, 

where frequency (Hz) plotted on the horizontal-axis and the sound amplitude (dB) plotted on the 

vertical-axis. In this representation, all five datasets exhibit a 1/f -like response: e.g. -6 dB per 10 Hz 

in the 10 to 20 Hz frequency band and -7 dB per 10 Hz in the 30 to 150 Hz frequency band. Note the 

6 dB roll-off in 10 to 20 Hz band is most likely an artifact of the microphone cut-off frequency. In 

addition, the structures above 150 Hz are the captured coherent portions of the glissandos and are not 

considered further as they are not the primary interest here. 

 
Fig 14 Frequency spectra of all five residue datasets (see figure 13d and Table 3). 

 

Using the first-string triad (Fst, solid black line) as a comparative control, remaining four six-string 

triads are partitioned around the control. Where the descending glissando for both steel and glass 

produce the greatest residue noise and therefore are above the control. The opposing ascending 

glissandos produce the least noise and therefore are positioned below the control. The limited 

measurements present here appear to indicate that the direction of the slide movement along the 

fingerboard determines the relative residue noise level, also. One possible cause for this 

differentiation in the musculoskeletal locomotion force required to extend and retract the guitarist fret 

arm [37, 38], as similarly observed in violinist [39]. In the case of guitar descending glissando, the 

guitarist musculoskeletal systems extends the left arm, hand and hence bottleneck from the twelfth to 

seventh fret so altering the body’s center of gravity from the seated position (and vice-versa for the 

ascending glissando). These varying locomotion conditions are known to induce ulnar nerve 

entrapment, and therefore merit further investigation. 
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8. Discussion 

This paper has presented a study of the ‘Dubro’ resophonic guitar psychoacoustic response to a plastic 

plectrum applied in the down-stroke for ascending and descending glissando where both steel and 

glass slide are used. The ‘Dubro’ is chosen for its enhanced mechanical sound amplification as 

compared the classic acoustic and electrical guitar. The slide is placed on the ring finger on of the left 

hand  with the index, second and fourth finger not used to mute (dampen) the strings. This style of 

slide play provides the rich and complex guitar Delta bluegrass sound. The work has focused on a 

guitarist’s gesture (rather than a mechanical modal based method [17, 18]) to help provide the human 

psychoacoustic perception of the ‘Dubro’.  

 
The measured radiated sound recordings extend through the psychoacoustic warm (2 to 4.5 kHz), 

bright (4.5 to 8 kHz) and brilliance region up to a frequency of 22 kHz where the initial attack, rather 

than chord overtones are present. It is worth noting that online commentary declares that the 

resophonic guitar brilliance may extend to 20 kHz [16]. As the guitarist musculoskeletal system 

physically moves the slide perpendicular across the full six strings (at approximately 50 mm.s-1) 

between the seventh to twelfth fret, glissando overtones are generated that instantly undergo mirrored 

bifurcation forming two exponential trajectories: one decreasing in pitch and the other increasing in 

pitch. 

 

The glissando overtones extend throughout the bright psychoacoustic region and the lower brilliance 

region for both s-slide and g-slide. In the case of the s-slide, the overtones are weakly present in the 

mid brilliance region (8 to 15 kHz). The exponential trajectory of the glissandos as the slide traverses 

perpendicularly across the strings demonstrates Vincenzo Galilei’s non-linear theory of fretted string 

instruments (equation 1 and 2 and graph 1). 

 

Fading in the brilliance psychoacoustic region is also indentified, and is attributed to intermodulation 

(or, addition and subtraction) of overlaying consonant and dissonant tones. Due to the inner ear’s 

inability to separate high pitch overtones, a listener may perceive the fading process as roughness or 

timbre in the guitar overall sound. Incoherent, hiss-like, noise is identified and shown to be associated 

with the slip-stick friction processes between the moving slides and the vibrating strings, where the 

intensity of the noise is more pronounced on the thicker (wound) steel strings. The g-slides produce a 

higher intensity (some 3 dB) incoherent, hiss-like, noise than the s-slide. 

 

The direction of slide movement is observed to produce a variation in the amplitude of the incoherent, 

hiss-like, noise. Slide movements away from the gustiest body centre of gravity (associated with a 

descending glissando) produce an increase in noise amplitude. As musculoskeletal pain and stress in 

string instrument players is common [37- 39] the measured noise may be a significant finding. This 

aspect of the work requires further research both in guitarist gesture and in mechanical based modals. 

 

The time-domain and frequency-domain information presented here provides control-data (slide 

contact gestures) for improved slide-music and slide-noise synthesis within virtual slide guitar 

systems as reported by Pakarinen, Puputti and Välimäki 2008 [19]. In their work an Omni-directional 

contact-noise building block is used that did not differentiate the direction of slide movement. Our 

new work (this paper) indicates that a bidirectional contact-noise building block should be used to 

synthesize possible differences in musculoskeletal induce noise. 

 

To conclude this work, the opening seconds of the original Warner Brothers instrumental theme 

‘Looney Tunes’ as played by F. Travares is used as a control. In the original Travares recording, 

muting (damping) of the strings is performed to make the non-complex (crystal-clear) sound. Our 

findings reveal that the mirrored bifurcation is present when the strings are not muted. This finding 

supports the two vibrating string portion mechanism when the slide employ with muting and damping.  

 

 

Acknowledgements 
With grateful thanks to Carl Axon for playing the ‘Dubro’ resophonic guitar and Nick Dutton for 

332



 

 

 

 

recording the ‘Dubro’ sound. 
 

 

References 

1. C.L. Krumhansl. Music: a link between cognition and emotion. Current Directions of 

Psychological Science. 11(2), 45-50, (2002) 

2. K. Mori and M. Iwanaga. Two types of peak emotional response to music: the 

psychophysiological of chills and tears. Scientific Reports. 7, 460631, (2017) 

3. K. Wantanabe, Y. Ooishi and M. Kashino. Heart beat response induced by acoustic tempo and it 

interaction with basal heart rate. Scientific Reports. 7, 43856, (2017) 

4. R. Jagiello, U Pomper, M. Yoneya, S. Zhao and M. Chait. Rapid brain responses to familiar vs. 

unfamiliar music - an EEG and pupillometry study. Scientific Reports. 9, 15570, (2019) 

5. V.J. Law, M. Donegan and B. Creaven. Acoustic metrology: from atmospheric plasma to solo 

percussive irish dance. Chaotic Modeling and Simulation. 4, 663-670, (2012) 

6. P. Virtala and M Tervaniemi. Neurocognition of major-minor and consonance-dissonance. Music 

Perception. 34(4), 387-404, (2017) 

7. B. Bora, M. Krishna and K.D. Phukan. The effects of tempo of music on heart rate, blood 

pressure and respiratory rate- a study in gauhati medical college. Indian J Physiol Pharmacol. 

61(4), 445-448, (2017) 

8. R.E. Voss and J. Clark. 1/f noise in music and speech. Nature. 258(5533), 317-318, (1973) 

9. R. Dopyera. Stringed Musical Instrument. US Patent 1,872,633. (issued Aug 16, 1932) 

10. R. Dopyera. Stringed Musical Instrument. US Patent 3,931,753. (issued Jan13, 1976) 

11. J.L. Snyder. Evolution and notation of glissando in string music. Indiana Theory Review. 1(2), 

35-49, (1978) 

12. F. Travares. https://en.wikipedia.org/wiki/Freddie_Tavares and https://youtu.be/qv8WpfTCU9o 

13. Looney Tunes. https://www.youtube.com/watch?v=0jTHNBKjMBU 

14. E. Presley. Blue Hawaii. RCA Victor Records. (Recorded Mar 20-23, 1961 

15. Nebudkadnezar. Ry Cooder. Paris, Texas. 

https://www.youtube.com/watch?v=X6ymVaq3Fqk&list=PLOKMpbyL5AcsiMt6gDk_gY9Wv

mAnICS1S 

16. The acoustic guitar (2020). https://www.theacousticguitarist.com/best-acoustic-guitar-strings-for-

a-warm-sound/ 

17. M. Rau and J.M. Smith. Measurement and modeling of a resonator guitar. Proceedings of the 

ISMA 269-276 (2019) 

18. C.M. Lavallee. Spectral response of acoustic guitars. Thinking Matter Symposium, poster session 

10, (2020) https://digitalcommons.usm.maine.edu/thinking-matters-symposium/2020/poster-

sessions/10/ 

19. J. Pakarinen V. Puputti and V. Välimäki. Virtual slide guitar. Capture Music Journal. 32(3), 43-

54, (2008) 

20. S. Carral and M Paset. The influence of plectrum thickness on the radiated sound of a guitar. The 

Journal of the Acoustic Society of America. 123, 3380, (2008) 

21. E.A. Vescelius. Music and Health. Musical Quarterly. 4(3), 376-401, (1918) 

22. M. Atre and S. Apte. Mathematical analysis of acoustic guitar notes. International Journal of 

Signal Processing. 2, 21-2, (2017) 

23. H.T. Nia, A.D. Jain, Y. Liu, M. Alam, R. Barnas and N.C. Makris. The evolution of air 

resonance power efficiency in the violin and its ancestors. Proceedings of the Royal Society A: 

Mathematical, Physical and Engineering Sciences. 471, pp26, (2015) 

24. A. Smith. Dueling banjos. Deliverance. https://www.youtube.com/watch?v=pDlZLsJJkVA 

25. Blind Willie Johnson, You're gonna need somebody on your bond. Columbia Records, New 

Orleans, Louisiana. (Recorded Dec 11, 1929) 

26. Elmore James, Dust my broom. Trumpet Records (Recorded Aug 5, 1951). 

27. Rev. R. Jones. Blues guitar lesson-slide, resonator, and open tunings. 

https://www.youtube.com/watch?v=Af57gMSYoXE 

28. K.L. Burgus and B. Helferich. Blues harp & bottleneck guitar duet # 2 blind willie johnson. 

https://www.youtube.com/watch?v=IO8vytUTO1E 

333

https://en.wikipedia.org/wiki/Freddie_Tavares
https://youtu.be/qv8WpfTCU9o
https://www.youtube.com/watch?v=0jTHNBKjMBU
https://www.youtube.com/watch?v=X6ymVaq3Fqk&list=PLOKMpbyL5AcsiMt6gDk_gY9WvmAnICS1S
https://www.youtube.com/watch?v=X6ymVaq3Fqk&list=PLOKMpbyL5AcsiMt6gDk_gY9WvmAnICS1S
https://www.theacousticguitarist.com/best-acoustic-guitar-strings-for-a-warm-sound/
https://www.theacousticguitarist.com/best-acoustic-guitar-strings-for-a-warm-sound/
https://digitalcommons.usm.maine.edu/thinking-matters-symposium/2020/poster-sessions/10/
https://digitalcommons.usm.maine.edu/thinking-matters-symposium/2020/poster-sessions/10/
https://royalsocietypublishing.org/doi/full/10.1098/rspa.2014.0905
https://royalsocietypublishing.org/doi/full/10.1098/rspa.2014.0905
https://royalsocietypublishing.org/doi/full/10.1098/rspa.2014.0905
https://royalsocietypublishing.org/doi/full/10.1098/rspa.2014.0905
https://royalsocietypublishing.org/doi/full/10.1098/rspa.2014.0905
https://royalsocietypublishing.org/doi/full/10.1098/rspa.2014.0905
https://en.wikipedia.org/wiki/You%27re_Gonna_Need_Somebody_on_Your_Bond
https://www.youtube.com/watch?v=Af57gMSYoXE
https://www.youtube.com/watch?v=IO8vytUTO1E


 

 

 

 

29. Audacity software, version 2.4.2. https://www.audacityteam.org/ 

30. V.J. Law and D.P. Dowling. Embedded delay time-series analysis of atmospheric pressure 

plasma jet treatment of composite surfaces. CMSIM Journal. January issue, 85-95, (2016) 

31. C.E. Deforest. Noise-gating to clean astrophysical image data. The Astrophysical Journal. 

838(155), pp10, (2017) 

32. V.J. Law and D.P. Dowling. Steganalysis of a pulsed plasma jet ICCD camera image using 

LabVIEW. Mathematics and Computers in Sciences and Industry. 50, 15-20, (2015). ISBN: 978-

1-61804-327-6 

33. The Rolling Stones. I wanna be your man. Decca UK. (Recorded Oct 7, 1963) 

34. V.J. Law. Plasma harmonic and overtone coupling. Handbook of Applications of Chaos Theory 

Ed: C. H. Skiadas, and C Skiadas. chap 20, 405-421. (CRC Press, Taylor and Frances 2016) 

35. P. Virtala, M. Houtilainen and E. Eilia. Distortion and western music chord processing: an ERP 

study of musicians and nonmusicians. Music Perception. 35(3), 315-331, (2017) 

36. R.T. Schumacher, S. Garoff and J. Woodhouse. Probing the physics of slip-stick friction using a 

bowed string. The Journal of Adhesion, 81, 723-750, (2005) 

37. G. Genani, M.C. Dekker and J. Molenbroek. Design of an ergonomic electric guitar. Tijdschrift 

voor Ergonomie, 38(2), 43-49, (2013). 

38. S. Sd, T.Acar and V.K. Gannamaneni. Disability and severity of playing related soft tissue 

injuries among professional guitar players: a cross sectional survey. European Journal of 

Molecular and Clinical Medicine. 7(2), 4767-4771, (2020) 

39. H-S. Lee, H.Y. Park, J.O. Yoon, S. Kim, J.M. Chun, I.W. Aminata, W-J. Cho and I-H, Jean. 

Musicuians’ medicine: musculoskeletal problems in string players. Clinics in Orthopedic 

Surgery. 5(3), 155-160, (2013) 

334

https://www.audacityteam.org/
https://en.wikipedia.org/wiki/I_Wanna_Be_Your_Man


Isoscattering chains of graphs and networks

Micha l  Lawniczak,1 Adam Sawicki,2 Ma lgorzata Bia lous,1 and Leszek Sirko1

1Institute of Physics,

Polish Academy of Sciences,

Aleja Lotników 32/46,

02-668 Warsaw, Poland

2Center for Theoretical Physics,

Polish Academy of Sciences,

Aleja Lotników 32/46,

02-668 Warsaw, Poland

(Dated: July 15, 2021)

Abstract

In a recent paper by Micha l  Lawniczak, Adam Sawicki, Ma lgorzata Bia lous, and Leszek Sirko,

Scientific Reports 11, 1575 (2021) [1] the isoscattering chains of quantum graphs possessing n units

and 2n infinite external leads were identified and discussed. It was shown that their isoscattering

properties are preserved for n → ∞. The theoretical predictions were confirmed experimentally

using n = 2 units, four-leads microwave networks. Here we extend the experimental analysis

presented in Ref. [1] to higher frequency range ν = 0.01−2 GHz. The studied problem generalizes

a question of Mark Kac ”Can one hear the shape of a drum?”, originally addressing isospectral

dissipationless systems, to the case of infinite chains of open graphs and networks with dissipation.
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I. INTRODUCTION

The famous question of Marc Kac ”Can one hear the shape of a drum?” [2] was posed

to addresses the problem of isospectral drums having the same area and perimeter. From

the mathematical point of view the question is reduced to the uniqueness of spectra of the

Laplace operator on the planar domains with Dirichlet boundary conditions. The negative

answer to the above question was given by Gordon, Webb, and Wolpert [3, 4] who using

Sunada’s theorem [5] constructed different in shape pairs of isospectral dissipationless do-

mains in R2. These important theoretical findings were confirmed experimentally by Sridhar

and Kudrolli [6] and Dhar et al. [7] using specially designed pairs of isospectral microwave

cavities. The isospectral properties of neutrino billiards which are known to be isospectral

in the nonrelativistic limit have been recently investigated numerically in Ref. [8]. It was

shown that the isospectrality of the billiards was lost when changing from the nonrelativistic

to the relativistic case.

In the case of quantum graphs, i.e. the union of vertices connected by one-dimensional

bonds [9], the problem of isospectrality was analyzed by Gutkin and Smilansky [10]. They

proved that the spectrum uniquely identifies the graph if the lengths of its bonds are incom-

mensurable. However, in the case of commensurate lengths of bonds there do exist graphs

with different topological properties which are isospectral. A general method of construction

of isospectral dissipationless graphs was presented in Refs. [11, 12]. It uses representation

theory arguments and the transplantation technique which assigns to every eigenfunction of

the first graph an eigenfunction of the second one with the same eigenvalue.

In open physical systems, including quantum graphs with leads [13] and microwave net-

works, one deals with dissipation of energy due to, e.g., internal absorption and coupling

to the outside world. In such a case one can pose a more general question whether the

geometry of a graph can be determined in scattering experiments. Again the question was

answered in negative. Band, Sawicki and Smilansky [14, 15] analyzed finite isospectral

quantum graphs with attached two infinite leads and constructed pairs of graphs which are

called isoscattering. This theoretical finding was experimentally confirmed in the series of

papers [16–18] with two isoscattering microwave networks simulating a pair of isoscattering

quantum graphs with two external infinite leads. The experimental results were based on

characteristics of graphs such as the cumulative phase and the structures of resonances and
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poles of the determinant of the two-port scattering matrices.

In this article we discuss the chains of isoscattering open quantum graphs and microwave

networks that are constructed from n building blocks (units), each one possessing two ex-

ternal leads, where n changes from 1 to infinity. The theoretical predictions are confirmed

experimentally for n = 2, i.e., for four-leads microwave networks.

II. ISOSCATTERING GRAPHS

In Ref. [1] it was proved that the two chains of open graphs Γ1,2n and Γ2,2n given in

Fig. 1(a) and Fig. 1(b) are isoscattering. To do this the transplantation matrix T̂2n was

constructed that transforms a wave function Ψ̂1,2n with the frequency ν defined on Γ1,2n to

a wave function Φ̂2,2n with the same frequency ν defined on Γ2,2n


Φ2,1

...

Φ2,2n

 = T̂2n


Ψ1,1

...

Ψ1,2n

 . (1)

If we put

Φ2,2n = Ψ1,2n−1 + Ψ1,2n, Φ2,1 = Ψ1,1 − Ψ1,2, (2)

Φ2,k = Ψ1,k−1 − Ψ1,k+1, for k ∈ {2, . . . , 2n− 1}, (3)

then Φ̂2,2n satisfies the vertex conditions of Γ2,2n provided that Ψ̂1,2n does the same on Γ1,2n.

In such a case the transplantation matrix T̂2n is given by

T̂2n =



1 −1 0

1 0 −1 0

0 1 0 −1 0

0 1
. . . . . . . . .

. . . . . . . . . . . . . . .

0 1 0 −1 0

0 1 0 −1

0 1 1



. (4)
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The existence of transplantation warrants that the 2n× 2n scattering matrices Ŝ(I) and

Ŝ(II) of the open graphs Γ1,2n and Γ2,2n are conjugated through the matrix T̂2n,

Ŝ(I) = T̂−1
2n Ŝ(II)T̂2n. (5)

III. MICROWAVE NETWORKS

The simulation of quantum graphs by microwave networks is possible because of a direct

analogy between the telegraph equation describing a microwave network and the Schrödinger

equation of the corresponding quantum graph [19–21]. Microwave networks allow for the

simulation of quantum systems described by three ensembles in the random matrix theory

(RMT): the Gaussian orthogonal ensemble (GOE) [16, 19, 22–25] and the Gaussian sym-

plectic ensemble (GSE) [26] characterized by T -invariance as well as the Gaussian unitary

ensemble (GUE) [19–21, 27] without T -invariance. Microwave networks can be successfully

used to investigate properties of quantum graphs with complex topology and large absorp-

tion [20, 22, 24, 26, 28].

Microwave networks which are applied to simulate quantum graphs with preserved time

invariance symmetry consist of microwave vertices connected by edges - coaxial cables. Each

vertex i of a network is connected to the other vertices by vi edges, vi is called the valency

of the vertex i. The coaxial cables (SMA-RG402) used in the construction of microwave

networks consist of an inner conductor of radius r1 surrounded by a concentric conductor

of inner radius r2. The space between the conductors is filled with a material having the

dielectric constant ε = 2.06. The TE11 mode cut-off frequency for the SMA-RG402 coaxial

cable is νcut ≃ c
π(r1+r2)

√
ε
≃ 33 GHz [29], where c is the speed of light in the vacuum. Below

the onset of the TE11 mode inside a coaxial cable only the fundamental TEM mode can

propagate.

IV. EXPERIMENTAL SETUP

The isoscattering chains Γ1,4 and Γ2,4 obtained from the two elementary units shown in

Fig. 1(c) and Fig. 1(d) are shown in Fig. 2(a) and Fig. 2(b), respectively. In Fig. 2(c) we

present the isoscattering chain of microwave networks Γ2,4 used in the experiment.

4
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In the case of the discussed graphs we considered the two typical physical vertex boundary

conditions, the Neumann and Dirichlet ones. The Neumann boundary condition imposes the

continuity of waves propagating in edges meeting at the vertex vi and vanishing of the sum

of their derivatives calculated at vi. The Dirichlet boundary condition demands vanishing

of the waves at the vertex.

The chain Γ1,4 of the n = 2 graphs in Fig. 2(a) consists of V = 8 vertices connected by

B = 8 edges. The valency of the vertices 3 − 6 including leads is v = 4 while for the other

ones v = 1. The vertices with numbers 3 − 8 satisfy the Neumann boundary conditions,

while for the vertices 1 − 2 we have the Dirichlet ones. The second chain Γ2,4 in Fig. 2(b)

consists of V = 6 vertices connected by B = 7 edges. The vertices with the numbers 2 − 6

satisfy the Neumann boundary conditions while for the vertex 1, the Dirichlet condition is

imposed.

The edges of the chains of the microwave networks Γ1,4 and Γ2,4 have the following optical

lengths:

b/2 = 0.0537 ± 0.0005 m,

c/2 = 0.0508 ± 0.0005 m,

a = 0.1597 ± 0.0005 m,

b = 0.1074 ± 0.0005 m,

c = 0.1016 ± 0.0005 m,

2a = 0.3194 ± 0.0005 m.

In contrast to the systems investigated in Ref. [16] which consisted only L = 2 external

leads here we study more complex isoscattering microwave chains having L = 4 external

leads. Therefore, the chains of the networks Γ1,4 and Γ2,4 are described by L× L scattering

matrices Ŝ(I) and Ŝ(II), respectively. The relationship between both matrices is given by

Ŝ(I) = T̂−1
4 Ŝ(II)T̂4, (6)
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where 4 × 4 transplantation matrix T̂4 is defined by Eq. (4)

T̂4 =


1 −1 0 0

1 0 −1 0

0 1 0 −1

0 0 1 1

 . (7)

The matrix T̂4 does not depend on the frequency and the equation (6) is valid for all

values of ν.

One should point out here that the application of a standard measure of isoscattering

such as a phase of the scattering matrix determinant

Im
[
log

(
det

(
Ŝ(I)

))]
= Im

[
log

(
det

(
Ŝ(II)

))]
, (8)

is from the experimental point of view very inconvenient since for each 4 × 4 scattering

matrix Ŝ(I) or Ŝ(II) it requires measurements of 16 matrix elements.

Therefore, in Ref. [1] we introduced a new measure of isocattering which is the trace

of scattering matrices Ŝ(I) and Ŝ(II). Using the properties of the trace function from the

formula (5) one obtains

tr Ŝ(I) = tr Ŝ(II). (9)

Both functions tr Ŝ(I) and tr Ŝ(II) are complex and depend on microwave frequency ν.

The application of the trace function simplifies the experimental procedure because now the

measurement of only 4 diagonal elements of each scattering matrix in a function of frequency

ν is required.

The measurements of the diagonal elements of the scattering matrices Ŝ(I) and Ŝ(II) were

performed using the vector network analyzer (VNA) Agilent E8364B. The experimental

procedure is demonstrated in the case of the microwave chain Γ2,4 presented in Fig. 2(c).

To measure the diagonal elements S
(II)
33 and S

(II)
44 of the scattering matrix Ŝ(II) the flexible

50 Ohm test port cables HP 85133-60016 and HP 85133-60017 of the VNA were connected

to the vertices 4 and 5 of the microwave network shown in Fig. 2(c). To the vertices 3 and

2, 50 Ohm loads were attached as the realization of the two additional leads L∞
2 and L∞

1 .

The connection of the VNA to a microwave network (see Fig. 2c) is equivalent to attaching

of two infinite leads L∞
3 and L∞

4 to a quantum graph. The diagonal elements S
(II)
11 and S

(II)
22

6
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were measured similarly. In this case the VNA was connected to the vertices 2 and 3, while

to the vertices 4 and 5, 50 Ω loads were connected.

V. EXPERIMENTAL RESULTS

The measurements of the diagonal elements of the scattering matrices Ŝ(I) and Ŝ(II) were

performed in the frequency range ν = 0.01−2 GHz. In Fig. 3(a) we show that the amplitudes

of the trace function | tr Ŝ(I)| and | tr Ŝ(II)| of the scattering matrices Ŝ(I) and Ŝ(II) of the

networks Γ1,4 and Γ2,4, marked by red open circles and black full circles, respectively. They

are close to each other, proving that we are dealing with the isoscattering networks. For

the frequency range 0.01 − 1 GHz the agreement between the results obtained for both

networks is almost perfect. However, for the frequency range 1− 2 GHz small discrepancies

arise, caused by small differentiation of the vertex boundary conditions of the networks in

a function of frequency ν and by small differences in the cables’ lengths. The modulus of

the trace function of the scattering matrices can be alone treated as a proper measure of

the isocattering properties of the networks and graphs with dissipation. However, Eq. (9)

deals with the full trace function which is a complex number. Therefore, the isoscattering

properties of the networks should be also observed in the phases of the trace functions,

regardless of the absorption strength

Im
[
log

(
tr Ŝ(I)

)]
= Im

[
log

(
tr Ŝ(II)

)]
. (10)

In Fig. 3(b) we present the comparison of the phases Im
[
log

(
tr Ŝ(I)

)]
(red empty circles)

and Im
[
log

(
tr Ŝ(II)

)]
(black full circles) of the trace function of the scattering matrices Ŝ(I)

and Ŝ(II), respectively. The agreement between the results obtained for different networks

Γ1,4 and Γ2,4, especially in the frequency range 0.01 − 1 GHz, is very good, demonstrating

that we deal with the chains of the isocattering networks.

In summary, we demonstrated that there exist isoscattering chains of graphs possessing n

units and 2n infinite external leads. Their isoscattering properties are preserved for n → ∞.

The theoretical predictions were confirmed experimentally using n = 2 units, four-leads

microwave networks. In the analysis of the networks a new measure of isoscattering - the

trace function was successfully used.
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[18] M.  Lawniczak, A. Sawicki, S. Bauch, M. Kuś, and L. Sirko, Resonances and poles in isoscat-

tering microwave networks and graphs, Phys. Rev. E 89, 032911 (2014).
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FIG. 1: Schemes of the isoscattering chains of the Γ1,2n and Γ2,2n graphs. (a) The isoscattering

chain Γ1,2n with n− 1 loops, 2n leads, and V = 2n + 4 vertices. (b) The isoscattering chain Γ2,2n

with n loops, 2n leads, and V = 2n+ 2 vertices. The Neumann and Dirichlet boundary conditions

are marked by N and D capital letters. The restriction of the wave function Ψ̂1,2n to a segment k

of the chain Γ1,2n is denoted by Ψ1,k. The wave function Φ2,k restricted to a segment k of Γ2,2n

can be expressed by the components of the wave function Ψ̂1,2n using the formulas (2-3). (c-d)

The elementary units of the isoscattering chains Γ1,2n and Γ2,2n. The vertices of the internal units

possess the Neumann boundary conditions while the vertices of the last units of the chains from

the right hand side fulfil the Dirichlet boundary conditions.
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FIG. 2: The schemes of the isoscattering chains n = 2 graphs Γ1,4 and Γ2,4 with 4 leads. (a) The

isoscattering chain of graphs Γ1,4 with 4 leads L∞
1 , . . . , L∞

4 and V = 8 vertices. (b) The isoscattering

chain of graphs Γ2,4 with 4 leads L∞
1 , . . . , L∞

4 and V = 6 vertices. The Neumann and Dirichlet

boundary conditions are marked by N and D capital letters, respectively. (c) The experimental

realization of the chain of graphs Γ2,4. The microwave cables of the VNA are connected to the

vertices 5 and 4 in order to measure the diagonal elements S
(II)
44 and S

(II)
33 of the scattering matrix

Ŝ(II). The connection of the VNA to a microwave network is equivalent to attaching of two infinite

leads L∞
4 and L∞

3 to a quantum graph. To the vertices 3 and 2, 50 Ohm loads were attached as

the realization of the two additional leads L∞
2 and L∞

1 .
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FIG. 3: The amplitudes | tr Ŝ(I)| and | tr Ŝ(II)| (panel (a)) and the phases Im
[
log

(
tr Ŝ(I)

)]
and

Im
[
log

(
tr Ŝ(II)

)]
(panel (b)) of the trace function of the scattering matrices Ŝ(I) and Ŝ(II) obtained

for the isoscattering chains of microwave networks Γ1,4 with V = 8 vertices (red open circles) and

Γ2,4 with V = 6 vertices (black full circles), respectively.
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Abstract. I would like to consider the Universe according to the standard Big Bang
model, including various quantum models of its origin. In addition, using the theory
of nonlinear dynamics, deterministic chaos, fractals, and multifractals I have pro-
posed a new hypothesis, Ref. [12]. Namely, I have argued that a simple but possibly
nonlinear law is important for the creation of the Cosmos at the extremely small
Planck scale at which space and time originated. It is shown that by looking for or-
der and harmony in the complex real world these modern studies give new insight into
the most important philosophical issues beyond classical ontological principles, e.g.,
by providing a deeper understanding of the age-old philosophical dilemma (Leibniz,
1714): why does something exist instead of nothing? We also argue that this exciting
question is a philosophical basis of matters that influence the meaning of human life
in the vast Universe.
Keywords: Chaos, Cosmos, Universe, Creation.

Chaos is the score on which reality is written.

Henry Miller (1891–1980)

1 Introduction

In science the evolution the Universe is based on the Big Bang model, which
has now become a standard scenario. However, very little is known about the
early stages of this evolution, where we should rely on some models, because the
required quantum gravity theory is still missing. On the other hand, creation
of the Universe is usually an important issue of philosophy. Hence, one should
return to great philosophers starting from the Greeks asking the questions
about the origin of existence of the world [7], including

• Plato’s creation: a Demiurg transformed an initial chaotic stuff
into the ordered Cosmos.

14th CHAOS Conference Proceedings, 8 - 11 June 2021, Athens, Greece
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• Aristotle’s universe is eternal : the world always existed,
but needed the possibly atemporal Prime Mover or the First Cause.

In this paper, we would like to consider the origin of the Universe in view
of the modern science, including quantum models of creation, and the recent
theory of nonlinear dynamics, deterministic chaos, and fractals, see Ref. [12].
We hope that these modern studies give also new insight into the most im-
portant philosophical issues exceeding the classical ontological principles, e.g.,
providing a deeper understanding of the age-old philosophical question:

Why does something exist instead of nothing?

Gottfried Wilhelm von Leibniz (1646–1716)

2 The Universe in Modern Science

Here we discuss the Standard Model of the Evolution of the Universe based on
the Standard Model of Forces together with selected models of the creation of
the world based on quantum theory and modern mathematics [12, ch. 2].

A veritable revolution in understanding of the evolution of the Universe
was achieved only a century ago owing to the foundation of general relativity
by Albert Einstein in 1916. This theory is based on the principle of relativity
insisting that physical laws should be independent of the observer, even in the
case of a noninertial frame of references (i.e., moving with acceleration).

2.1 The Geometry of Spacetime

According to general relativity, gravitation is revealed by the curvature of lo-
cal spacetime, as schematically shown in Figure 1. Instead of the flat four-
dimensional Minkowski spacetime we should involve a non-Euclidean spacetime
with positive (elliptic type) or negative (hyperbolic) curvatures, respectively,
as formulated by Georg F. B. Riemann (1826–1866). Minkowski geometry (cor-
responding to four-dimensional Euclidean pseudo-space) is only a special case
of Riemannian geometry. General theory of relativity can well be applied even
in the case of strong gravitational fields. Therefore, one should conclude that
spacetime and matter cannot be independent. We may briefly state that mass
(energy) tells spacetime geometry about its curvature, but curved spacetime
tells the mass how to move.

2.2 Gravitational Waves

Since the formulation of the theory of general relativity, it was expected that
strong gravitational waves which are actually distortions of spacetime, can arise
during the merger of two massive black holes. Figure 2 shows computer simula-
tions of a possible generation mechanism of gravitational waves in the vicinity
of black holes. On the one-hundredth anniversary of this theory, we can now
confirm its important implications. In fact, the measurements of experimental
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Fig. 1. Gravitation and geometry.

Fig. 2. The generation of gravitational waves (LIGO).

signals by two independent detectors of the Laser Interferometer Gravitational-
Wave Observatory (LIGO) in Hanford and Livingston (separated by ∼3000 km)
are consistent with observations of a gravitational-wave strain, which is of the
order of the amplitude of a gravity wave, with a relative amplitude of ∼10−21)
[1]. For the first time this proves that the international experiment LIGO di-
rectly detected gravitational waves originating several billions years ago from
the merging of two black holes (of masses about 30 times larger than the mass of
the Sun) in the rotating binary system GW150914. Therefore, a large fraction
of energy (∼5%, corresponding to three solar masses) has been released in this
process in form of gravitational waves. In 2017 the Nobel Prize in Physics was
awarded to the American experimental and theoretical physicists Rainer Weiss,
Kip Thorne, and Barry Barish for their role in the detection of gravitational
waves.
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2.3 The Big Bang Model

Fig. 3. Schematic of the evolution of the Universe, credit: NASA / WMAP Science
Team.

According to the Big Bang model, the Universe expanded from an extremely
dense and hot state and continues to expand today. It is worth noting that
space itself is expanding, carrying galaxies with it. A representation of the Uni-
verse’s evolution is schematically shown in Figure 3, based on the best available
measurements of the Wilkinson Microwave Anisotropy Probe (WMAP) oper-
ating from 2001 to 2010. The far left depicts the earliest moment we can now
probe: size is depicted by the vertical extent of the grid in this graphic. The
original state of the Universe began around 13.8 billion years ago, when the Big
Bang occurred. This was possibly followed by ‘inflation’, producing a burst of
exponential growth in the size of the Universe. The first microsecond, consist-
ing of electroweak, quark, and hadron epochs, together with the lepton epoch
(until 3 minutes of its existence) was decisive for further evolution, leading to
the nucleosynthesis of helium from hydrogen. Only after 70 thousand years was
light separated from matter. The afterglow light seen by WMAP was emitted
about 400 thousand years after the beginning (when the electrons and nucleons
were combined into atoms, mainly hydrogen) and has traversed the Universe
largely unimpeded since then. The conditions of earlier times are imprinted on
this light; it also forms a backlight for later developments of the Universe. The
first stars appeared about 400 million years later.

Also the Planck mission launched in 2009 (deactivated in 2013) has become
the most important source of information about the early Universe by providing
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unique data at microwave and infra-red frequencies with high sensitivity and
small angular resolution. The Planck data suggest that the Dark Ages (before
the first star appeared) ended somewhat later, i.e, 550 million years after the
Big Bang. This mission has also provided a new catalog of more than 1500
clusters of galaxies observed in the Universe. More than 400 of these galaxy
clusters have large masses ranging between 100 to 1000 times that of our Milky
Way galaxy.

After the formation of galaxies, and finally, our solar system, about 4.5
billion years ago, for the next several billion years the expansion of the Universe
gradually slowed down as the matter in the Universe pulled on itself by gravity.
One can ask whether the present expansion will continue forever or if it might
eventually stop, thereby allowing a subsequent contraction. Even though we
cannot give a definitive answer to this question, recently it has appeared that
the expansion has begun to speed up again, as the repulsive effects of mysterious
dark energy have come to dominate the expansion of the Universe. The Planck
data also support the idea of dark energy acting against gravity. At present
this accounts for about 70% of the entire mass of the Universe, and it will
presumably increase in the future.

2.4 The Birth and Evolution of the Universe

Fig. 4. The Grand Unification Theory (GUT) for the Universe.

The role of the elementary interactions during the evolution1 is depicted
in Figure 4. One can see that the splitting of one force after the Big Bang

1 From http://web.williams.edu/Astronomy/Course-Pages/330/images/forces.jpg.
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into the four kinds of forces that we know today, after 1.38× 1010 years of the
evolution, happened in a very tiny fraction of the first second. Strong forces
should be limited only to the scales (nucleon size of ∼10−15 m) in the micro-
world, while general relativity models long-range gravitational interactions on
very large scales of up to the size (∼1027 m) of the observed Universe. It is
interesting that timescales are from 10−24 s in atomic nuclei to nearly 1018 s
of the experimentally confirmed age of the Universe. This means a range of
42 orders of magnitude is the same as for spacescales; the masses span the
range of about 83 orders of magnitude, between 10−30 kg for the electron mass
and about 1053 kg for the of mass of the whole world (∼1080 baryons, mainly
nucleons: protons and neutrons with mass of ∼10−27 kg); this range is roughly
twice as large as the time or space scale range.

Because the Universe has already expanded to that extremely huge size,
gravitational forces (basically about 40 orders of magnitude weaker than strong
nuclear forces) dominate the evolution of the Universe at present. However, at
early stages of its evolution both forces resulted from an unknown simple law
and could have been of a similar strength. The other long-range electromagnetic
interactions between charged particles have already been unified with the short-
range weak interactions responsible for the decay of nuclei (electroweak forces).
Of course, the Grand Unification Theory (GUT) in Figure 4 describing the
unknown primordial force responsible for the creation of the Universe at a
Planck scale of 10−43 s will facilitate a better understanding of the physical
processes at very early stages of the history of our world.

2.5 Quantum Models for the Creation of the Universe

Using the three available universal physical constants — namely the gravita-
tional constant G, the speed of light c, and the Planck constant h, we can
construct a quantity called a Planck length lP =

√
G}/c3, where } = h/(2π).

Another quantity lP/c is the respective Planck time scale, tP. Because we do
not have a quantum theory of gravitation quantum gravity a number of models
for the creation creation of the Universe with the following characteristics have
been proposed, including:

• The quantum model [2]
creation from ‘nothing’, ex nihilo

• Noncommutative geometry [4]
beginning is everywhere

• String theory, M-theory [30]
collision of branes

• Cyclic (ekpyrotic) model [26,27]
big bangs and crunches

• Eternal chaotic inflation [5]
bubble of universes

The concept of the quantum wave function of the primordial Universe was
put forward in Ref. [2]. This point of view was illustrated in a simple mini-
superspace model with an invariant scalar field as the only gravitational degree
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of freedom. The authors of this model focus on the ground state with minimum
excitation of an initial Universe on extremely small scales. Providing that
the time is changed to imaginary values it, spacetime with a four-dimensional
geometry becomes positive-defined. This allows us to obtain the path integral
of the respective Euclidean action. In this way, the authors obtained finite
nonzero probabilities of propagating from the ground (vacuum) state to the
spectrum of possible excited states.

It is worth noting that below the Planck threshold lP = 1.6 × 10−35 m
∼ 10−35 m and tP = 5.4×10−44 s∼ 10−43 s, in space and time, respectively, any
time could be formally eliminated in the quantum model. In this scenario the
Universe interpreted without any boundary conditions [2]. Moreover, because
one can obtain the excited state from the vacuum state, they argue for the
creation out of nothing, even ex nihilo. However, one should bear in mind that
a quantum vacuum state is not actually ‘nothingness’ — indeed it could be
interpreted as a ‘sea’ of various possibilities [3].

An alternative interesting solution for the origin of spacetime on extremely
small scales has been proposed in Ref. [4], where it was suggested that these
critical values would correspond to a phase transition from a smooth commu-
tative geometry to a rather singular noncommutative régime, with no space
points and no time instances. Hence, noncommutative algebra is the other
quantum gravity counterpart of the observable in the standard quantum the-
ory, which can help in the application of quantization methods to the origin
of the primordial Universe. Therefore, as one can paradoxically put it: the
beginning is everywhere.

Following the M theory [30], in the context of an initial universe resulting
from a collision of branes, Another interesting non-standard cosmological sce-
nario has been proposed in Ref. [26,27]. According to their proposed model,
the Universe undergoes a sequence of cosmic epochs each of which begins with
a created world with a standard big bang event, followed by a slowly accel-
erating expansion with radiation and matter domination periods, but ends by
contraction with a crunch. This model is called ekpyrotic, because in ancient
Greece’s Stoic philosophy ecpirosi means ‘escape from fire’. This endless cycle
of big bangs and crunches would avoid any particular singularity, but is able
to explain the approximate homogeneity of distribution of mass, instead of a
hypothetical inflation following the Planck epoch. It is worth noting that the
model produces the recently observed flatness of spacetime geometry, provid-
ing the energy needed to restore the Universe from the same vacuum state in
the next cycle. These authors also assure us that, owing to acceleration, this
continuously repeating cyclic solution is an attractor [27].

Taking the wave function of the Universe [2], it can be shown that the large
scale fluctuations of the quantum scalar field can generate an infinite process
of self-reproducing primordial mini-universes. Therefore, one can suggest an
eternally existing chaotic inflationary scenario, describing the Universe as a self-
generating fractal that springs up from the multiverse [5]. Because it seems
improbable that only one such Universe is chosen in reality by compactification
during the expansion, it is argued that there exists a bubble of all possible
universes that is always growing until a new universe is created by chaotic
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inflation in the bubble [5]. Therefore, there should exist an exponentially large
number of causally disconnected mini-universes corresponding to all possible
vacuum states followed by inflations. Admittedly, in the last two models time
is eternal, but it is difficult to verify these models according to the criterion of
falsifiability required for any scientific theory of Popper [24].

3 Nonlinear Dynamics and Fractals

In the second part of this paper we focus on nonlinear chaotic dynamics and
fractals in a search for implications of an unknown nonlinear law related to a
hidden order responsible for the creation of the Cosmos at the Planck epoch,
see [12, ch. 3].

3.1 Deterministic Chaos

CHAOS (χάoς) according to Ref. [29] is (see the excellent popular book by
Stewart [28]):

• non-periodic long-term behavior

• in a deterministic system

• that exhibits sensitivity to initial conditions.

More precisely, we say that a bounded solution x(t) of a given dynamical
system, ẋ = F(x), is sensitive to initial conditions if there is a finite fixed
distance d > 0 such that for any neighborhood ‖∆x(0)‖ < δ, where δ > 0, there
exists (at least some) other solutions x(t) + ∆x(t) for which for some time t ≥ 0
we have ‖∆x(t)‖ ≥ d. This means that there is a fixed distance d such that,
no matter how precisely one specifies an initial state, there exists a solution
of a dynamical system starting from a nearby state (at least one) that gets a
distance d away.

Given x(t) = {x1(t), . . . , xN (t)}, any positive finite value of Lyapunov ex-
ponents (or equivalently metric entropy)

λk = lim
t→∞

1

t
ln
∣∣∣∆xk(t)

∆xk(0)

∣∣∣, (1)

where k = 1, . . . N , implies chaos.

One example comes from the dynamics of irregular flow in viscous fluids,
which is still not sufficiently well understood. It appears that the behavior of
such systems can be rather complex: from equilibrium or regular (periodic)
motion, through intermittency (where irregular and regular motions are inter-
twined) to nonperiodic behavior. Two types of such nonperiodic flows are
possible, namely chaotic and hyperchaotic motions. As discovered by Lorenz
(1963) deterministic chaos exhibits sensitivity to initial conditions leading to
the unpredictability of the long-term behavior of the system (the ‘butterfly
effect’) [6].
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3.2 Hyperchaos

Hyperchaos is a more complex nonperiodic flow, which was discovered by Macek
and Strumik (2010) [15] in the generalized Lorenz system previously proposed
in Ref. [14]. Mathematical and physical aspects of this new low-dimensional
model of hydromagnetic convection together with the detailed derivation from
the basic partial differential equations, including the magnetic diffusion equa-
tions and naturally the anisotropic tension of the magnetic field lines, has been
addressed in detail in Ref. [11].

Within the theory of dynamical systems transitions from fixed points to
periodic or nonperiodic flows often occur in a given system through bifurca-
tions, intermittency, resulting in a turbulent irregular behavior of the nonlinear
system. In fact, we have identified type I and III intermittency [23] in the gen-
eralized Lorenz model of hydromagnetic convection, as also discussed in the
papers [14,15,10]. It would be interesting to look for the remaining basic type
II intermittency and the respective Hopf bifurcation in this model.

The following ordinary differential equations are obtained in the generalized
Lorenz system [14]:

Ẋ = −σX + σY − ω0W

Ẏ = −XZ + rX − Y
Ż = XY − bZ
Ẇ = ω0X − σmW.

 (2)

In this simplified system, X(t) denotes a time amplitude of the potential of
the velocity of a viscous horizontal fluid layer in the vertical gravitational field
heated from below, with the normalized (dimensionless) Rayleigh number r,
proportional to an initial temperature gradient δT0, which is a control parame-
ter of the system. Similarly, Y (t) and Z(t) correspond to the two lowest-order
amplitudes of the deviation from the linear temperature profile of the layer (of
height h) during the convection. The other parameter σ = ν/κ is the ratio
of the kinematic viscosity ν to thermal conductivity κ (the Prandtl number)
characterizing the fluid and b = 4/(1 + a2) is a geometric factor related to the
aspect ratio a of the convected cells.

Admittedly, Lorenz (1963) only took three of several coefficients appearing
in the lowest-order of the bispectral Fourier expansion, cf. [25]. In addition to
the standard Lorenz system [6], a new time dependent variable W in Equa-
tions (2) describes the profile of the magnetic field induced in the convected
magnetized fluid. We have also introduced the second control parameter pro-
portional to an initial horizontal magnetic field strength B0 applied to the sys-
tem, more precisely defined here as a basic dimensionless magnetic frequency
ω0 = υA0/υ0, which is the ratio of the Alfvén velocity υA0 = B0/(µ0ρ)1/2, with
a constant magnetic permeability µ0 and mass density ρ, to a characteristic
speed υ0 = 4πκ/(abh). Naturally, besides σ = ν/κ, the magnetized viscous
fluid is characterized by an analogue parameter σm = η/κ, defined as the ra-
tio of the magnetic resistivity η to the thermal conductivity κ (related to the
magnetic Prandtl number, Prm = σ/σm).

The results of the more recent paper illustrate how all these complex mo-
tions can be studied by analyzing this simple model [15, Fig. 1]. For example,
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Fig. 5. Color-coded dependence of the long-term asymptotic solutions of the gener-
alized Lorenz system on the control parameters ω0 and r parameters (for σm = 3).
Equilibria (fixed points) (with a negative largest Lyapunov exponent, λ1 < 0) are
shown in black, periodic solutions (λ1 = 0) – in violet/blue, and (nonperiodic) chaotic
solutions (λ1 > 0) – in a color, on the color bar scale, from violet to yellow. Fine
structures are shown in the inset, as taken from (Macek and Strumik, 2014).

for a chosen value of σm = 3 (other parameters have the same values as for the
classical Lorenz model, σ = 10, b = 8/3), Figure 5 plots the largest Lyapunov
exponent, calculated according to Equation (1), depending on the control pa-
rameters ω0 and r. Convergence of the asymptotic solutions of Equations (2)
to equilibria described by fixed points (λ1 < 0) is shown in black, to periodic
(limit cycles) solutions (λ1 = 0) – in violet/blue color (see the color bar for
λ1 = 0), to chaotic (nonperiodic) solutions (λ1 > 0) – in a color, consistently
with the color bar scale, from violet/blue to yellow. For the panel an enlarge-
ment of the region bounded by black lines is shown in the right-bottom part of
plots. Fine structures are shown in the inset. This proves that various kinds
of complex behavior are closely neighbored in the space of control parameters
ω0 and r.

Convection appears naturally in plasmas, where electrically charged parti-
cles interact with the magnetic field. Therefore, the obtained results could be
important for explaining dynamical processes in solar sunspots, planetary and
stellar fluid interiors, and possibly for plasmas in nuclear fusion devices. Gen-
erally speaking, nonlinear differential equations or iterated discrete maps are
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useful models of some phenomena appearing naturally in the contexts in bio-
logy (e.g., animal population), economics, including finance theory, e.g., [22],
and social sciences.

4 Fractals and Multifractals

Let us now move on to a basic concept of a fractal coined from the Latin
adjective fractus and the corresponding verb frangere, which means ‘to break
into irregular fragments’, see p. 4 of Ref. [20]; Mandelbrot (1982) always argued
that fractal geometry is important for understanding the structure of nature
describing, for example clouds, mountains, and coastlines, e.g. p. 1 of Ref. [20].
We can say that a fractal is a rough or fragmented geometrical object that can
be subdivided in parts, each of which is (at least approximately) a reduced-size
copy of the whole. Fractals are generally self-similar and independent of scale,
described by a fractal dimension.

Namely, fractal structure is obtained recursively using a simple rule. The
initial stages of the construction of two typical fractals in one-dimensional and
two-dimensional space are schematically illustrated in Figure 6 for a middle
Cantor (a) and a Koch triangle (b) sets, respectively, which are also discussed
in many textbooks, e.g. [29,21]. First, as proposed by the German mathe-
matician Georg Cantor in 1883, let us take a unit closed interval on a one-
dimensional line and remove its open middle third, but necessarily leaving the
endpoints behind. Second, we remove the open middle thirds of both closed
smaller intervals, and in each of the following k-th step this produces 2k closed
(more and more narrower) intervals of length (2/3)k, where k = 1, . . . , n. Now
imagine that the repetitions never end, one obtains the limiting set that con-
sists of the intersection of all such closed intervals. Provided that n→∞, the
resulting set has structure at arbitrarily small scales; the remaining elements
during the construction are separated by various gaps. Surprisingly enough,
two paradoxically opposite topological properties of the Cantor set (called also
a dust) can be reconciled: the set itself is totally disconnected (without any
closed intervals), but arbitrarily close to each elements one can always find
another neighboring element (there are no isolated points).

Further, it is worth noting that each element of this set is specified by its
location at successive steps, in the left (denoted by zero) or right (marked by
one) fragment. One now sees that elements of the Cantor set are equivalent
to various infinite sequences of zeros and ones, and can be put into one-to-one
correspondence with the elements of the entire initial interval (in binary repre-
sentation). Because common sense has some difficulty in comparing countable
with uncountable infinity, this is somewhat strange that the Cantor set is un-
countable, notwithstanding its total length equal to zero (the length of all the
removed parts is equal one). Mainly because of this paradox, such sets are
commonly called strange fractals, even though one can also construct fractals
with length or in general volume (strictly a Lebesgue measure) different than
zero. Similar fractal sets with zero Lebesgue measures constructed starting
from a triangle or a full square on a two-dimensional plane were proposed by
the Polish mathematician Wac law Sierpiński (1882–1969) in 1916.
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Fig. 6. Self-similar fractals of the Cantor (a) and Koch (b) sets.

Figure 6 (b) shows another interesting snowflake curve obtained on a plane
by adding onto sides of an initial equilateral triangle additional triangles that
are three times smaller, after removing as before open middle thirds of any
side. Blowing up this van Koch curve by a factor of three results in its length
four times as large, and hence the length of perimeter of the triadic Koch
island increases and becomes ultimately infinite, despite the fact that the area
of course remains finite. Surprisingly, the arc length between any two elements
of such a Koch set is also infinite. Therefore, because every element of this set
is located infinitely far from any other element, the length cannot be used to
identify the elements of such a strange fractal.
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Mandelbrot (1982) noted that a fractal (Hausdorff) dimension2 , which plays
a central roles in case of fractal sets, exceeds the topological dimension, DT [20].
Anyway, the concept of dimension should be modified as compared with a stan-
dard topological dimension useful in the Euclidean linear geometry. However,
a somewhat different definition of a fractal set is generally accepted. The ca-
pacity dimension DF, which takes into account how many elements (cubes) of
size l in phase space is needed to cover the set, is defined by

DF = lim
l→0

lnN(l)

ln 1/l
. (3)

This means that fractal dimension is calculated by taking the limit of the
quotient of the logarithm change in object size and the logarithm in scale as
the limiting scale approaches zero. For example, the fractal dimensions of the
Cantor and the Koch sets are DF = ln 2/ ln 3 ≈ 0.63 (this means DF > 0)
and DF = ln 4/ ln 3 ≈ 1.26 (> 1) i.e., greater than the respective topological
dimensions, DT = 0 and 1. As is known, the later non-integer dimension
describes sufficiently well the length of the rocky western coast of Great Britain
as a function of diminishing scale size; in reality the lowest scale is admittedly
limited.

4.1 Multifractal Models for Turbulence

A deviation from a strict self-similarity is also called intermittency, and
that is why a generalized two-scale weighted Cantor set has been applied for
modeling intermittent turbulence in fluids [8,9].

In fact, this complex process can be described by the generalized weighted
Cantor set, as illustrated in Figure 7 taken from Ref. [8]. In the first step of the
two-scale model construction, we have two eddies of sizes l1 and l2 satisfying
p1/l1 + p2/l2 = 1. Therefore, the initial energy flux ε0 is transferred to these
eddies with the different proportions: ε0p1/l1 and ε0p2/l2. In the next step the
kinetic or magnetic energy flux is divided between four eddies in the following
way: ε0(p1/l1)2, ε0p1p2/(l1 l2), ε0p2p1/(l2l1), and ε0(p2/l2)2. At nth step we
have N = 2n eddies and partition of energy ε can be described by the binomial
formula, e.g., [9]:

ε =

N∑
i=1

εi = ε0

n∑
k=0

(
n

k

)(
p1
l1

)(n−k)(
p2
l2

)k
. (4)

For any real number −∞ < q < +∞, one obtains the generalized dimen-
sion defined by Dq = τ(q)/(q − 1) by solving numerically the transcendental
equation, e.g., [21],

pq1

l
τ(q)
1

+
pq2

l
τ(q)
2

= 1, (5)

2 Strictly speaking, the Hausdorff dimension is more involved that a usual fractal
capacity dimension. The boxes needed to cover a set may vary in sizes and one needs
to take a supremum of the cover of the set.
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Fig. 7. The generalized two-scale weighted Cantor set model for turbulence.

which is only somewhat more general than the analytical solution. In parti-
cular, for the one-scale multifractal model with l1 = l2 = λ, we have Dq =
− ln(pq1 + pq2)/ lnλ, and a special case for λ = 1/2 is called P-model, as classi-
fied on the right side of Figure 7. We see that only for equal scales together
with equal weights (p1 = p2 = 1/2) there is no multifractality, and we have a
monofractal with a fractal dimension given by Equation (3).

5 Implications for Cosmology and the Creation of the
Universe

This method was extensively used in various situations in solar wind magne-
tized plasmas based on space missions penetrating various regions of the solar
system, see Refs [9,13,16,17]. In this way, based on a wealth of data acquired
from Helios in the inner heliosphere and especially from deep space Voyager 1
and 2 spacecraft in the outer heliosphere, we have shown that turbulence is in-
termittent in the entire heliospheric system, even at the heliospheric boundaries
[19]. However, it appears that the heliosphere is immersed in a relatively quiet
very local interstellar medium. Therefore, after crossing the heliopause (on 25
August 2012), which is the ultimate boundary separating the heliospheric and
interstellar plasmas, Voyager 1 only detected smoothly varying magnetic fields.
As expected this change in the behavior of plasma parameters (with a frozen-in
magnetic field) was confirmed by the crossing of the heliopause by Voyager 2
in 2018.

Moreover, based on scientific experience, I have argued that a simple but
possibly nonlinear law [7], within the theory of chaos and (multi-)fractals,
can describe a hidden order for the creation of the Cosmos, at the Planck
epoch, when space (at a scale of 10−35 m) and time (10−43 s) originated, see
Ref. [12, p. 3.4].
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6 Conclusions

To summarize, based on space, astrophysical, and even cosmological applica-
tions, one can say that

• Nonlinear systems exhibit complex phenomena, including bifurcation, in-
termittency, and chaos.

• Fractals can describe complex shapes in the real word.
• Strange chaotic attractors have fractal structure and are sensitive to initial

conditions.
• Within the complex dynamics of the fluctuating intermittent parameters

of turbulent media there is a detectable, hidden order described by a gen-
eralized Cantor set that exhibits a multifractal structure.
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Abstract. It is considered  a new bifurcation approach to the analysis of solutions of 

perturbed Hamiltonian and conservative systems, which implies the construction of an 

approximating extended two-parameter dissipative system whose stable solutions 

(attractors) are arbitrarily exact approximations to solutions of the original conservative  

system. It is shown on the basis of numerical experiments for several Hamiltonian and 

conservative systems such as conservative Croquette equation, Yang-Mills-Higgs  and 

Mathieu-Magnitskii Hamiltonian systems  that, in all these systems, transition to 

chaos takes place not through the destruction of two-dimensional tori of the unperturbed 

system in accordance with KAM (Kolmogorov-Arnold-Moser) theory, but, conversely, 

through the generation of complicated two-dimensional tori around cycles of the 

extended dissipative system and through an infinite cascades of bifurcations of the 

generation of new cycles and singular trajectories in accordance with the universal 

bifurcation FShM (Feigenbaum-Sharkovskii-Magnitskii) theory. 

Keywords: Hamiltonian and conservative systems, dynamical chaos,  FShM-theory.   

 

 

1  Introduction 
 

The divergence of the right-hand side of the conservative system of ordinary 

differential equations is equal to zero. Consequently, a conservative system of 

ordinary differential equations cannot have attractors, since it preserves volume 

while moving along its trajectories. Therefore, the study of dynamical chaos in 

conservative systems is a more difficult task compared to the analysis of chaotic 

dynamics in dissipative systems, the attractors of which can be described by the 

universal bifurcation  Feigenbaum-Sharkovsky-Magnitskii (FShM) theory 

(Magnitskii [2-4]). A special case of a conservative system is a Hamiltonian 

system with  n  degrees of freedom, that is 2n-dimensional autonomous system 

of ordinary differential equations  

��� =
��(��, … , �� , ��, … , ��)

���
, ��� = −

��(��, … , ��, ��, … , ��)
���

 , � = 1, … , �. 
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The function �(��, … , ��, �� , … , ��) is called the Hamiltonian of the system, the 

variables �� are called generalized coordinates, and the variables  ��  are called 

generalized momenta. The movement in such a system occurs along a 2n-1- 

dimensional energy surface, specified by condition �(��, … , �� , ��, … , ��) = �.  
� = const. Typical view of pictures arising in Poincare sections of the phase 

space of the Hamiltonian system for small and sufficiently large values of the 

parameter ε are shown in Fig. 1 taken from the author's work (Magnitskii [1]) 

describing the transition to chaos in the famous system of Henon-Heiles 

equations with two degrees of freedom and with the Hamiltonian 

�(�, �, �, �) =
(�� + �� + �� + ��)

2
+ ��� −

��

3
= �.         (1) 

 
Fig.1. Projections of Poincaré sections of the Henon-Heiles system at  � = 1/24  
(a) and � = 1/8 (b).  

At small values of the parameter ε, there is no chaos in the system, and the 

energy surface of the system is divided into regions filled with two-dimensional 

tori around two pairs of elliptic cycles of the system. The boundaries of the 

regions are separatrix surfaces (manifolds) passing through hyperbolic cycles. 

For sufficiently large values of the parameter ε, chaotic dynamics is observed in 

the system. In (Magnitskii [1-5]),  it was shown using numerous examples that 

the development of chaos in conservative and, in particular, Hamiltonian 

systems does not occur in accordance with the Kolmogorov-Arnold-Moser 

(KAM) theory as a result of the destruction of some mythical tori of an 

unperturbed system, but on the contrary, through  bifurcation cascades of birth 

of complex tori around cycles, the birth  bifurcations of which occur in extended 

dissipative systems in accordance with the FShM theory.  

For generally nonlinear conservative system of autonomous ordinary differential 

equations with a smooth right part 

 

 �� = "(�), � ∈  $� ,        %�& "(�) = 0,                                 (2) 
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which variables are connected by some equation  �(��, … ��) = �, an extended 

dissipative system is two-parametrical system of ordinary differential equations 

        

�� = ((�, �, )), � ∈  $� ,                                      (3) 

 

the only solutions of which are the solutions of system (2) with initial conditions 

�(��*, … ��*) = � at ) = 0. As the dissipation parameter ) tends to zero, the 

stability regions of stable cycles of the extended dissipative system (3) turn into 

tori of the conservative (Hamiltonian) system (2) around its elliptic cycles, into 

which stable cycles pass. The tori of a conservative (Hamiltonian) system touch 

through hyperbolic cycles, into which the saddle cycles of the extended 

dissipative system pass. Areas of stability of complex cycles, singular attractors 

and also heteroclinic separatrix manifolds of dissipative system generate chaotic 

solutions in conservative system. In this regard, it is clear that only a small 

number of cycles of the FShM cascade of an extended dissipative system with 

large stability regions can generate elliptic cycles and tori of a conservative 

system. In papers (Ryabkob [6], Dubrovskii [8]) the given approach has been 

applied and strictly proved by continuation along parameter of solutions from 

dissipative into conservative areas by means of the Magnitskii method of 

stabilization of unstable periodic orbits  at research bifurcations and chaos in the 

Duffing-Holmes equation 

 

                   
  
 
�+ + )�� − ,� + �� − � cos  (01) = 0 ̇ 

  

 and in the model of a space pendulum  

 

                             �+ + )�� + 2� + � sin(25�) = ℎ cos  (01). ̇            
 

Corresponding bifurcation diagrams in a plane (�, )) of existence of cycles of 

various periods down to a conservative case at ) = 0 are received. 

The aim of this work is the direct numerical detection of bifurcations of cycles 

from the FShM cascade, when increasing values of the parameter ε, in the 

conservative Crockett equation, in the Hamiltonian system of  Yang-Mills-

Higgs equations with two degrees of freedom and in Hamiltonian system of 

Mathieu-Magnitskii equations generated by the conservative generalized system 

of Mathieu equations. An additional difficulty in solving this problem is that, in 

contrast to dissipative systems, the initial conditions play an essential role in the 

numerical determination of the elliptic cycles of conservative systems. It is 

necessary to get into a small neighborhood of the cycle that lies inside the torus 

formed by the cycle, the turns of the narrow tubes of which can quite densely 

fill the phase space. 

 

2. Сonservative Croquette equation 

 

Let's consider as the first example the classical conservative Croquette equation 
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�+ + 7 sin � + 8 sin  (� − 01) = 0,                                      (4) 

 ̇ 

modeling a magnet rotary fluctuations in an external magnetic field in absence 

of friction. It is easy to see, that the equation (4) is equivalent to two-

dimensional conservative system with periodic coefficients (so called 

Hamiltonian system with one and a half degrees of freedom) and also to four-

dimensional conservative (not Hamiltonian) autonomous system of the 

equations 

                    

�� = �, �� = −(7 + �) sin � + � cos �,     �� = 0 �,     �� = −0 �            (5) 

 

with a condition  � = �� + �� = ��,   �* = �(0) = 0. Extended dissipative 

system for the system of (5)  will be 
    

�� = �, �� = −(7 + �) sin � + � cos � − ) �,     �� = 0 �,     �� = −0 �     (6) 
 

It is easy to check up numerically, that the two-parametrical system (6) with 

initial conditions �* = �(0) = 0,  �* = �(0) = �  has the subharmonic cascade 

of bifurcations at each value of parameter ε  and at reduction of values of 

parameter ). For some cycles of the cascade in a plane of parameters (�, )) it is 

possible to construct monotonously increasing bifurcation curve )(�) of births 

of the given cycle. Boundary values of such curves at  ) = 0 are bifurcation 

values of the subharmonic cascade of bifurcations in conservative Croquette 

system  (5)  for parameter 0>ε  (see Fig. 2 for some cycles of the cascade). 

 

Fig. 2. Projections on the plane (�, �) of the cycle (a) for � = 0.45,  its cycle of 

double period (b) for � = 0.48 and  its cycle of quadruple period (c) for 

� = 0.497 in conservative Croquette system (5)  for 7 = 0 = 1. 

 

3. Hamiltonian Yang-Mills-Higgs  system with two degrees of 

freedom.  
 

The analysis of the chaotic dynamics of classical nonabelian Yang-Mills gauge 

fields is considered to be very important from the viewpoint of the solution of 

the well-known confinement problem in quantum chromodynamics (QCD), 

which, in turn, plays a key role in the construction of the standard model of 
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elementary particle physics. In (Magnitskii [5]), it was considered the transition 

to chaos in the simplest case of a Hamiltonian system of homogeneous  Yang-

Mills-Higgs fields with two degrees of freedom, which is a system of Yang-

Mills equations taking into account the interaction of the gauge field with the 

so-called Higgs vacuum. The Hamiltonian of this interaction has the form 

  

�(�, �) =
�� � + �� �

2
+

����

2
+

= (�� + ��)
2

= �.         (7) 

The system of equations corresponding to the Hamiltonian (7) has the form 

 

�+ + �>= + �2? = 0,   �+ + �>= + �2? = 0,                     (8)  
 

passing into the classical system of the Yang-Mills equations at = = 0. It was 

shown in (Magnitskii [5]) that the structure of solutions of the Hamiltonian 

system (7) - (8) is completely determined by cascades of bifurcations of cycles 

of the extended dissipative system  

 

�� = @,   @� = −�>= + �2 ? − ) @,   �� = & + (� − �),    &� = −�(= + �2 ),    (9)  
 

as the dissipation parameter ) tends to zero. The stable cycles of the dissipative 

system generated as a result of cascades of bifurcations are transformed into 

elliptic cycles of the Hamiltonian system, and their stability regions - into tori 

around these elliptic cycles. The resulting tori of the Hamiltonian system touch 

along hyperbolic cycles, into which the corresponding unstable cycles of the 

dissipative system pass. Unstable cycles are born either together with stable 

cycles as a result of saddle-node bifurcations, or as a result of fork or period 

doubling bifurcations. In the vicinity of separatrix surfaces of hyperbolic cycles, 

new, more complex hyperbolic and elliptic cycles are formed in accordance 

with the nonlocal effect of multiplication of cycles and tori in conservative 

systems (see Magnitskii [1-3]). It is shown that it is the latter effect that plays a 

key role in the system of Yang-Mills-Higgs equations at the initial stage of the 

transition from regular to chaotic motion. However, let’s show now that in 

transition to chaos an important role is also played by subharmonic cascades of 

bifurcations in accordance with the Sharkovsky order, occurring in the extended 

dissipative system and partially preserved in the Hamiltonian system as the 

dissipation parameter tends to zero. 

For � = 1 the system (8) has four sets of periodic solutions to which there 

correspond four sets of basic cycles in phase space 

 

AB:  � ≡ 0,    �� 2 + = �2 = 2;        AF: � ≡ 0, �� 2  + = �2 = 2; 
  A±:  � = ±�, �� �  + =�� + �H/2 = 1.  

 

Fig. 3 shows the projections onto the plane (x, u) of sections by the plane y = 0 

of two-dimensional tori of the Hamiltonian system (8) around its four main 
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elliptic  cycles  AB, AF and A±. The cycle AF corresponds to the point (0, 0) in 

the projection, the cycle AB corresponds to the outer contour of the figure, and to 

the cycles A± there correspond two elliptic points lying on the u-axis, and each 

of the two points in the projection correspond to two intersection points of the 

plane y = 0 of two cycles A±. Hyperbolic cycles correspond in Fig. 3 to two 

points lying on the x-axis of intersection of the projections of the separatrix 

surfaces  along which different two-dimensional tori touch. Moreover, each of 

the two points in the projection corresponds to two intersection points of the 

plane y = 0 of two cycles. Note that the cycles A± which mainly determine the 

dynamics of system (8) exist and different from the cycles  AB, AF for any = > 0.  
 

 
 

Fig. 3. Projections on the plane (�, @) of Poincare sections by the plane y = 0 of 

two-dimensional tori of the Hamiltonian system (8) around its four main elliptic 

cycles for  = = 2 (a) , = = 1  (b) and for = = 0.55 (c).  

 

It can be seen from Fig. 3 that  for sufficiently large values of the parameter 

(γ=2) there is no chaos in the system (8), and its topology is completely 

determined by four main cycles and tori around these cycles.  For smaller 

values of the parameter  (γ=1), the topology of system (8) is determined by the 

main tori of the system around its four main elliptic cycles and by a set of tori 

around more complex elliptic cycles that were born in the dissipative system (9) 

initially stable as a result of the saddle-node bifurcations in the vicinity of 

hyperbolic cycles, when the values of the parameter μ tend to zero. As a result 

of computational errors, the movement of the trajectory along the surfaces of 

such complex multi-turn tori creates the illusion of chaotic movement, which is 

well observed in various Poincaré sections (Fig. 3b). The tangency of various 

turns of complex multi-turn tori occurs along hyperbolic cycles that are born in 

a dissipative system together with stable cycles as a result of saddle-node 

bifurcations. Since in the vicinities of hyperbolic cycles of the system there are 

located, intertwining and touching each other, various systems of multi-turn 

complex tori (internal with respect to the separatrix contour, external and 

mixed), the global stability of solutions of the system  (8) cannot be preserved. 
At the same time, the example of system (8) shows that hyperbolic and elliptic 

cycles of a Hamiltonian or conservative system can be the limiting case of stable 

and saddle cycles of an extended dissipative system which were born not only as 
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a result of saddle-node bifurcations, but also as a result of fork-type bifurcations 

and period-doubling bifurcations from the subharmonic cascade of Sharkovsky 

bifurcations. So, for  = = 0.594 in the dissipative extended system (9)  for 

 ) → 0, the stable cycle AF loses its stability as a result of a fork-type 

bifurcation, becoming a saddle one, and two stable cycles are born in its 

vicinity, passing into elliptic cycles of the Hamiltonian system (8) for ) = 0.  

The tori arising around these two elliptic cycles are tangent along the hyperbolic 

cycle  AF . The same thing happens with the AB  cycle. This is clearly seen in 

Fig. 3с  at  = = 0.55.  Period-doubling bifurcations of the cycles  A±  occur in 

the dissipative extended system (9) when  ) → 0  at  = ≈ 0.73. Two-

dimensional tori formed in the system (8) around period-doubling cycles that 

have become elliptic cycles are clearly visible along the diagonals in Fig. 3c for 

= = 0.55. The projections onto the plane  (�, @) of the cycle  AM of the 

Hamiltonian system (8) and cycles of its double and quadruple periods at  

= = 0.73 (a), = = 0.55 (b) and = = 0.534 (c) are shown in Fig. 4.  

 

 
 

Fig.4. Projections of cycles of Hamiltonian system (8) on a plane (�, @): an 

initial cycle +C  at  = = 0.73  (a), its cycle of double period at  = = 0.55 (b)  

and its cycle of quadruple period at  = = 0.534  (c). 

 

Further, the process continues with the birth of infinitely folded heteroclinic 

separatrix manifold, stretched  over separatrix  Feigenbaum tree, both in 

extended dissipative system (9), and in Hamiltonian system (8) close to it. 

Accordion of corresponding heteroclinic separatrix zigzag  fill the whole phase 

space of the system, however the limited accuracy of numerical methods does 

not allow to track this process up to the value  = = 0, corresponding to the  

system of the Yang-Mills  equations.  

 

3.  Hamiltonian system of Mathieu-Magnitskii equations.  
 

 

 

 

 

 

Consider the Hamiltonian system with two degrees of freedom 

�� = �, �� = −(, + �)� − ��, �� = �,      �� = −� −
��

2
            (10) 

System (10), obtained by adding the term  −��/2 to the last equation of a 

system equivalent to the generalized conservative Mathieu equation, was first 
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considered in (Magnitskii [1]) and called the Mathieu-Magnitskii system of 

equations in (Korolkova [7]). Hamiltonian of the system (10) has a kind 

 

�(�, �, �, �) =
(,�� + �� + �� + ��)

2
+

���

2
+

�H

4
= �. 

For � > 0  the solution of the system is the cycle � = � = 0,  given by the 

condition � = �� + �� = 2�. The system (10) linearized in the vicinity of the 

cycle � = � = 0 has the form of the classical Mathieu equation 

 

�+ + >, + √2� cos 1?� = 0.                                        (11) 

 

Analysis of cycle multiplicators using the Floquet theory applied to the system 

(11) makes it possible to obtain the stability conditions for cycle � = � = 0. 

The result is the presence of an infinite number of alternating regions of cycle  

hyperbolicity, numbered in Fig. 5. Outside the numbered areas, the cycle 

� = � = 0 is elliptical. The boundaries of the regions with odd numbers are the 

bifurcation lines of doubling period of the elliptic cycle. When crossing such a 

boundary, the cycle itself becomes hyperbolic, and an elliptic cycle of a doubled 

period is born in its vicinity. The boundaries of areas with even numbers are 

fork type bifurcation lines of the elliptic cycle. When crossing such a boundary, 

the cycle itself becomes hyperbolic, and in its vicinity two elliptic cycles A�  and 

A� of the same period are born. The region of hyperbolicity of the cycle 

� = � = 0  with a number n touches the axis , at a point , = (�/2)�. With 

large numbers n, the corresponding region approaches the axis , with a narrow 

tongue, the width of which sharply decreases with growth n. 

 

         
          Fig.5. Diagram of bifurcations of cycle � = � = 0  of system (10). 
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In (Magnitskii [1]) and (Korolkova [7]) it was analyzed further bifurcations of 

elliptic cycles A�  and A�   in region with number two  for the fixed parameter 

value , = 1  and when increasing  the parameter values �. For this research the 

extended dissipative three-parameter system can have the form 

 

�� = �, �� = −(, + �)� − �� − )�, �� = �,   

�� = −� −
��

2
+ >� − �(�, �, �, �)?�,                          (12) 

 

where dissipation parameter  )  tends to zero. The divergence of the right-hand 

side of system (12) on solutions of system (10) is equal to  – ) − �� and hence is 

negative for all  ) > 0.  
For small  � > 0, chaotic dynamics is absent in the Hamiltonian system (10), 

and the topology of the system is specified by basic tori of the system, which 

include tori around the basic cycle � = � = 0, pairs of tori around the originally 

stable basic cycles A�  and A�   (which are generated in the dissipative system 

(12) for ) > 0 and also generated in Hamiltonian system (10) when crossing the 

bifurcation line of region 2 in Figure 5), and the transition tori implementing the 

passage from tori around the basic cycle � = � = 0 of the system to pairs of tori 

around the basic cycles A�  and A�  (Fig. 6a  for � = 0.125 ).  

 
 

Fig. 6. Projections on the plane (�, �) of Poincare sections of two-dimensional 

tori of the Hamiltonian system (10) around its two main elliptic cycles by the 

plane � = 0 for  � = 0.125 (a) , � = 0.5  (b) and by the plane � = 0 for  

� = 0.5 (c).  

 

It is important to note that the tori existing in the Hamiltonian system (10) for 

any � > 0  have no relation to classical tori of the unperturbed system in KAM 

(Kolmogorov-Arnold-Mozer) theory for any value of the parameter ,, i.e., for 

any (rational or irrational) relation of frequencies of the unperturbed system. 

Moreover, in system (10), as in all other Hamiltonian and simply conservative 

systems, the tori of the unperturbed system are completely absent, which are 

considered in the KAM theory as Cartesian products of several (in this case, 

two) circles. Consequently, contrary to the assertions of KAM theory, the tori of 

the perturbed system (10) are not any of tori of the unperturbed system for any 
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� > 0, and the complication of the dynamics of the perturbed system (10), when  

values of the parameter � grow, is not a consequence of the destruction of any 

tori of the unperturbed system. Obviously, the notions of a perturbed and an 

unperturbed Hamiltonian systems with two or more degrees of freedom should 

be re-considered. 

For large values of the parameter �, the situation becomes much more 

complicated. Now the topology of system (10) is specified by basic tori of the 

system (these are tori around basic cycles of the system), transition tori, and 

families of tori around more complex originally stable cycles generated being in 

the dissipative system (12) in the vicinity of the separatrix surface of the 

hyperbolic cycle � = � = 0 as the parameter ) decays to zero. The chaotic 

dynamics is absent in the system for now, although the motion along the tori 

around complex cycles can readily be mistaken for a chaotic one  if, for 

example, it is observed in the Poincare section (Fig. 6 b,c for � = 0.5.). The 

pseudochaos appearing in a neighborhood of the cycle  � = � = 0 is not 

homoclinic chaos and is only a consequence of computational errors caused by 

the instability of the considered problem. The chaotic effect is induced by points 

lying in the Poincare section on surfaces of tori, which are interlaced and lie 

around different complex cycles formed in the dissipative system (12) for 

) > 0.  
For � = 1, the situation becomes even more complicated. Just as in the previous 

case, the topology of system (10) is characterized by tori around basic cycles of 

the system, by transition tori, and by families of tori around more complex 

originally stable cycles that are generated in the dissipative system (12) in the 

vicinity of the separatrix surface of the hyperbolic cycle � = � = 0 as the 

parameter ) decays to zero. (Fig. 7a,b).  

 
 

Fig. 7. Projections of Poincare sections of two-dimensional tori of the 

Hamiltonian system (10) around its elliptic cycles by the planes � = 0 and 

� = 0 for  � = 1 (a, b), and by the plane  � = 0  for  � = 4 (c).  

 

In addition, the phase space of system (10) contains an essential, at first glance, 

domain of chaotic motion. However, it is reasonable to assume that the chaos 

shown in Fig. 7a,b is pseudochaos, since it is not generated by cascades of 

bifurcations of stable cycles of a dissipative system but either is a result of 
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errors in the computation of the trajectory on surfaces of complex many-turn 

interlacing tori formed by stability domains of complex cycles or is induced by 

stability domains of complex cycles of the dissipative system (12) themselves, 

which do not become tori around these cycles for ) = 0. It was not possible to 

detect infinite cascades of bifurcations of the FShM theory in the dissipative 

system (12) as the dissipation parameter tends to zero. 

But such cascades of bifurcations were found at large values of the parameter � 

in the extended dissipative system (12) and then, as a consequence, in the 

original Hamiltonian system (10). In (Korolkova [7]) this method was used to 

find bifurcations of doubling periods of elliptic cycles A�  and A� of the 

Hamiltonian system (10), generated by the hyperbolic cycle � = � = 0, 

occurring at  � ≈ 1.25 . However, at values of the parameter � ≈ 1.47, there are 

reverse bifurcations of the degeneration of a cycles of a doubled periods into the 

cycles of period one. Let us show that in system (10)  there is a region of values 

of the parameter � in which bifurcations occur of the birth of not only cycles of 

period two, but also cycles of periods four and eight from the cascade of the 

Feigenbaum period-doubling bifurcations.  Figure 8 shows the projections onto 

the plane (�, �) of cycles of periods 1, 2 and 4 from the cascade of the 

Feigenbaum period-doubling bifurcations for Hamiltonian system (10) for 

 , = 1,  � = 3.21 (a),  � = 3.468 (b) and � = 3.666 (c). 

 
Fig. 8. Projections on the plane (�, �) of cycles of the Hamiltonian system (10) 

of period 1 for  � = 3.21 (a), its cycle of double period  for  � = 3.468 (b) and  

its cycle of quadruple period for  � = 3.666 (c).  

 

Thus, for  � = 4 , the case of which is shown in Fig. 7 c, the Hamiltonian system 

(10) necessarily has chaotic dynamics since when the parameter  ) is 

decreasing, then the cycles A�  and A� undergo a subharmonic and homoclinic 

cascades of bifurcations in full accordance with the FShM theory and generate 

infinitely many regular and singular attractors  in the closures of their separatrix 

surfaces. Then two strips (separatrix surfaces) of singular attractors merge, and 

for ) ≈ 0.208  two symmetric stable cycles are generated and undergo cascades 

of subharmonic bifurcations. All cycles of all cascades and singular attractors 

become unstable but do not vanish and become solutions of the Hamiltonian 

system for  ) = 0. For ) = 0.13, there appears a symmetric stable cycle 

generating two symmetric cycles  by a fork-type bifurcation for ) ≈ 0.05. These 
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cycles remain stable in system (12) for all smaller values of ) > 0  and generate 

tori of the Hamiltonian system (10) around them for ) = 0. These last tori are 

shown in Fig. 8c. 

Therefore, the topology of the Hamiltonian system (10) for � = 4 is determined 

by tori around basic cycles of the system, by tori around cycles that are 

generated stable and remain so in the dissipative system (12) for all values of 

the parameter  ) > 0, and by the domain of chaotic motion containing all cycles 

and nonperiodic originally stable trajectories that are generated in the dissipative 

system (12) for  ) > 0  and lose their stability as a result of some subharmonic 

or homoclinic cascade of bifurcations in accordance with the FShM theory. 

 

Conclusions 
 

Using the exampleы of a numerical analysis of the bifurcations of elliptic cycles 

of the nonlinear conservative Crockett equation, the Hamiltonian system of 

Yang-Mills-Higgs equations with two degrees of freedom, and the Hamiltonian 

system of Mathieu-Magnitskii equations, it is directly demonstrated that the 

transition to chaos in conservative and Hamiltonian systems occurs as a result of 

the creation of new complex of multiturn tori in the vicinity of hyperbolic 

cycles, as well as a result of cascades of bifurcations of elliptic cycles in 

accordance with the universal bifurcation scenario of  Feigenbaum-Sharkovsky-

Magnitskii, and not as a result of the destruction of some mythical tori of 

unperturbed systems in accordance with the Kolmogorov-Arnold-Moser theory, 

as is commonly believed in modern Hamiltonian mechanics.  
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Nonlinear Feedback Controller For Adaptive
Generalized Hybrid Projective Synchronization

Between Two Identical Chaotic Systems
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Abstract. Synchronization of chaotic systems is an important research problem in
chaos theory. In this research work, a novel generalised hybrid synchronization of
identical uncertain chaotic systems is investigated, where the master system is syn-
chronized by the sum of hybrid state variables for the slave system. According to
the Lyapunov stability theorem, a new adaptive nonlinear controller for the synchro-
nization is designed, and some parameter update laws for estimating the unknown
parameters of these systems are also gained. The synchronization between two iden-
tical Zeraoulia systems and two identical Vaidynathan systems are studied to show
the effectiveness of the proposed method.

Keywords: Adaptive Control, Chaotic systems, Hybrid Synchronization, Chaos.

1 introduction

Since the idea of synchronising chaotic systems was first introduced in 1990,
by pecora and caroll [1], chaos synchronisation has been widely explored in a
variety of fields including cryptography [2], neural network [3], ecological sys-
tems [4], secure communications [5,6] etc.
Various control schemes have been developed to investigate the synchronisation
problem such as OGY method [7], Nonlinear feedback control method[8], time-
delay feedback method [9], backstepping method [10], adaptive design method
[11], etc.
Up to now different type of synchronization have been pesented such as: com-
plete synchronization [12], anti-synchronization [13], phase synchronization
[14], projective synchronization [15,16], where the master system can synchro-
nize with the slave system by the scaling factor in the traditional projective
synchronization.
In generalized hybrid projective synchronization with uncertain parameters,
the master system is synchronized by the sum of hybrid state variables for the
slave system, in ref [17], a new scheme is designed for this type of synchroniza-
tion, and the advantage of this scheme is that the master and slave system are
not required to have the same number of uncertain parameters, which made
the research of great importance due to the possibility of applying it to most
types of dynamic systems.
In the same research [17], this scheme was applied to two different master
and slave systems, in this paper, the scheme is applied to achieve generalized
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hybrid projective synchronization when the master and slave systems are iden-
tical. The rest of the paper is organized as follows: In Section 2, we explain the
scheme that is used to achieve general hybrid projective synchronization. In
Section 3, the general hybrid projective synchronization between two identical
Zeraoulia systems and two identical Vaidynathan systems are studied with a
numerical simulation given to demonstrate the effectiveness of the proposed
scheme. The Section 4 concludes the paper.

2 The scheme of adaptive generalized hybrid projective
synchronization

In this section, we present the scheme designed in research [17] to achieve adap-
tive generalized hybrid projective synchronization of uncertain chaotic systems.

Consider the master and slave systems respectively:

.
x = f(x) + F (x)α (1)

.
y = g(y) +G(y)β + u (2)

Where f, g : Rn −→ Rn are two continuous vector functions, F : Rn −→
Rn×m , G : Rn −→ Rn×p are two continuous matrix functions, α =
(α1, α2, ..., αm)T ∈ Rm , β = (β1, β2, ..., βp)T ∈ Rp are the unknown con-
stants parameters vectors of the system. According to [17], the master and
slave systems can be written as:

.
xi = fi(x) +

m∑
j=1

Fijαj , 1 ≤ i ≤ n (3)

.
yi = gi(y) +

p∑
j=1

Gijβj + ui, 1 ≤ i ≤ n (4)

The error dynamics of adaptive generalized hybrid projective synchronization
can be described as:

ei = xi +

n∑
j=1, j 6=i

dijyj (5)

The scaling matrix D contains the scaling factors dij is given by:

D =



0 d12 · · · d1n−1 d1n
d21 0 d2n
...

. . .
...

dn−1
. . . dn−1n

dn1 dn2 · · · dnn−1 0

 (6)

Therefore, the goal of control is to design an appropriate controller u for
the slave system and the update laws for the parameter estimates to achieve
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the generalized hybrid projective synchronization.
According to [17], if |D| 6= 0 , we select the controller u in the following form:

u = D−1A (7)

ie

ui =

n∑
j=1

aijAj (8)

Where D−1 = (aij)1≤i≤n
1≤j≤n

is the invers of the matrix D,

and A = (A1, A2, ..., An)T is given as follows:

Ai = −fi(x)−
m∑
j=1

Fij(x)
∼
αj −

n∑
j=1, j 6=i

dij

[
(gj(y) +

p∑
k=1

Gjk(y)
∼
βk)

]
− ei (9)

And the update laws are given by:

.∼
αi =

n∑
j=1

Fji(x)ej + (αi −
∼
αi) (10)

.∼
βi =

n∑
j=1

 n∑
k=1, k 6=j

djkGki(y)

 ej + (βi −
∼
βi) (11)

3 Application of scheme for two identical chaotic
systems

In this section, the scheme described in the previous paragraph will be applied
to two examples to demonstrate the effectiveness of the method.

3.1 Synchronization between Two Identical Zeraoulia Chaotic
Systems

In this subsection, as the master system, we consider the Zeraoulia [18] chaotic
system 

.
x1 = α1(x2 − x1) + x2x3
.
x2 = α2x2 − x1x3
.
x3 = x1x2 − α3x3

(12)

The slave system is also taken as the Zeraoulia chaotic system with controllers
attached and given by 

.
y1 = β1(y2 − y1) + y2y3 + u1
.
y2 = β2y2 − y1y3 + u2
.
y3 = y1y2 − β3y3 + u3

(13)
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Where x1 , x2, x3 and y1 , y2, y3 are the states of the two systems and
α1, α2, α3 are unknown constant parameters of the the master system, β1, β2, β3
are unknown constant parameters of the the slave system, and u1, u2, u3 are
the controllers to be found

The Zeraoulia system depicts a strange chaotic attractor when the constant
parameter values are taken as

α1 = 36, α2 = 25, α3 = 3

Compare systems (12) and (13) with Eqs. (3) and (4) we know that

f1(x) = x2x3
f2(x) = −x1x3
f3(x) = x1x2

∣∣∣∣∣∣
F11(x) = x2 − x1
F21(x) = 0
F31(x) = 0

∣∣∣∣∣∣
F12(x) = 0
F22(x) = x2
F32(x) = 0

∣∣∣∣∣∣
F13(x) = 0
F23(x) = 0
F33(x) = −x3

g1(y) = y2y3
g2(y) = −y1y3
g3(y) = y1y2

∣∣∣∣∣∣
G11(y) = y2 − y1
G21(y) = 0
G31(y) = 0

∣∣∣∣∣∣
G12(y) = 0
G22(y) = y2
G32(y) = 0

∣∣∣∣∣∣
G13(y) = 0
G23(y) = 0
G33(y) = −y3

The hybrid synchronization error is defined by e1 = x1 + d12y2 + d13y3
e2 = x2 + d21y1 + d23y3
e3 = x3 + d31y1 + d32y2

where dij are the scaling constants.
From (12) and (13), the error dynamics can be obtained as follows


.
e1 = α1(x2 − x1) + x2x3 + d12(β2y2 − y1y3) + d13(y1y2 − β3y3) + d12u2 + d13u3
.
e2 = α2x2 − x1x3 + d21β1(y2 − y1) + y2y3 + d23(y1y2 − β3y3) + d21u1 + d23u3
.
e3 = x1x2 − α3x3 + d31β1(y2 − y1) + y2y3 + d32(β2y2 − y1y3) + d31u1 + d32u2

According to (9)
A1 = − ∼α1(x2 − x1)− d12(

∼
β2y2 − y1y3)− d13(y1y2 −

∼
β3y3)− e1

A2 = − ∼α2x2 + x1x3 − d21(
∼
β1(y2 − y1) + y2y3)− d23(y1y2 −

∼
β3y3)− e2

A3 = −x1x2 +
∼
α3x3 − d31(

∼
β1(y2 − y1) + y2y3)− d32(

∼
β2y2 − y1y3)− e3

Let the control law be as follows:
u1 = 1

|D| [(−d32d23)A1 + (d32d13)A2 + (d12d23)A3]

u2 = 1
|D| [(d31d23)A1 + (−d31d13)A2 + (d13d21)A3]

u3 = 1
|D| [(d21d32)A1 + (d12d31)A2 + (−d21d12)A3]

(14)

By (10) and (11) the update laws for unknown parameters are given as
following 

.∼
α1 = (x2 − x1)e1 + (α1 −

∼
α1)

.∼
α2 = x2e2 + (α2 −

∼
α2)

.∼
α3 = −x3e3 + (α3 −

∼
α3)

(15)
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and 
.∼
β1 = d21(y2 − y1)e2 + d31(y2 − y1)e3 + (β1 −

∼
β1)

.∼
β2 = d12y2e1 + d32y2e3 + (β2 −

∼
β2)

.∼
β3 = −d13y3e1 − d23y3e2 + (β3 −

∼
β3)

(16)

The identical Zeraoulia system (12) and (13) are asymptotically hybrid-
synchronized for all initial conditions with the adaptive controller u defined
by (14) and the update laws (15) and (16).

Numerical Results For numerical simulations, we take the parameters of the
Zeraoulia systems as in the chaotic case, i.e.

α1 = 36, α2 = 25, α3 = 3

The initial values of the master system (12) are taken as

x1(0) = 5, x2(0) = 8, x3(0) = 4

The initial values of the slave system (13) are taken as

y1(0) = 1, y2(0) = 7, y3(0) = 3

The initial values for the parameter estimates of the master system are
taken as

∼
α1(0) = 28,

∼
α2(0) = 12,

∼
α3(0) = 46

The initial values for the parameter estimates of the slave system are taken as

∼
β1(0) = 17,

∼
β2(0) = 10,

∼
β3(0) = 30

The errors have initial conditions

e1(0) = 1, e2(0) = 6, e3(0) = −8

we choose the scaling factors such that |D| 6= 0

d12 = 3, d13 = 2, d21 = −2.5, d23 = 3, d31 = −1.5, d32 = 1

The simulation results are shown in Figs. 1–3. Fig 1 and Fig 2 show that

the estimates
∼
α1,

∼
α2,

∼
α3 and

∼
β1,

∼
β2,

∼
β3 of the unknown parameters can

converge to α1 = 36, α2 = 25, α3 = 3 and β1 = 36, β2 = 25, β3 = 3 . Fig 3
shows synchronization errors between the slave system (13) and the master
system (12).
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Fig. 1. Estimated unknown parameters of the master Zeraoulia chaotic system
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Fig. 2. Estimated unknown parameters of the slave Zeraoulia chaotic system

3.2 Synchronization between Two Identical Vaidyanathan Chaotic
System

In this subsection, as the master system, we consider the Vaidyanathan [19]
chaotic system which is described by

.
x1 = α1(x2 − x1) + x2x3
.
x2 = α2x1 + α3x2 − x1x3
.
x3 = x21 − α4x3

(17)

The slave system is also taken as the Vaidyanathan chaotic system with
controllers attached and given by

.
y1 = β1(y2 − y1) + y2y3 + u1
.
y2 = β2y1 + β3y2 − y1y3 + u2
.
y3 = y21 − β4y3 + u3

(18)
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Fig. 3. Synchronization errors e1; e2; e3 between identical Zeraoulia systems (12) and
(13)

Where x1 , x2, x3 and y1 , y2, y3 are the states of the two systems and
α1, α2, α3, α4 are unknown constant parameters of the the master system,
β1, β2, β3, β4 are unknown constant parameters of the the slave system, and
u1, u2, u3 are the controllers to be found

The Vaidyanathan system depicts a strange chaotic attractor when the
constant parameter values are taken as

α1 = 25, α2 = 33, α3 = 11, α4 = 6

Compare systems (17) and (18) with Eqs. (3) and (4) we know that

f1(x) = x2x3
f2(x) = −x1x3
f3(x) = x21

∣∣∣∣∣∣
g1(y) = y2y3
g2(y) = −y1y3
g3(y) = y21

F11(x) = x2 − x1
F21(x) = 0
F31(x) = 0

∣∣∣∣∣∣
F12(x) = 0
F22(x) = x1
F32(x) = 0

∣∣∣∣∣∣
F13(x) = 0
F23(x) = x2
F33(x) = 0

∣∣∣∣∣∣
F14(x) = 0
F24(x) = 0
F34(x) = −x3

G11(y) = y2 − y1
G21(y) = 0
G31(y) = 0

∣∣∣∣∣∣
G12(y) = 0
G22(y) = y1
G32(y) = 0

∣∣∣∣∣∣
G13(x) = 0
G23(y) = y2
G33(y) = 0

∣∣∣∣∣∣
G14(x) = 0
G24(y) = 0
G34(y) = −y3

The hybrid synchronization error is defined by e1 = x1 + d12y2 + d13y3
e2 = x2 + d21y1 + d23y3
e3 = x3 + d31y1 + d32y2

where dij are the scaling constants.
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It is easy to see from (17) and (18) that the error dynamics can be obtained
as follows

.
e1 = α1(x2 − x1) + x2x3 + d12(β2y1 + β3y2 − y1y3 + u2) + d13(y21 − β4y3 + u3)
.
e2 = α2x1 + α3x2 − x1x3 + d21(β1(y2 − y1) + y2y3 + u1) + d23(y21 − β4y3 + u3)
.
e3 = x21 − α4x3 + d31(β1(y2 − y1) + y2y3 + u1) + d32(β2y1 + β3y2 − y1y3 + u2)

According to (6) let

|D| = d12d31d23 + d13d21d32

The invers of the matrix D is given by

D−1 =
1

|D|

−d32d23 d32d13 d12d23
d31d23 −d31d13 d13d21
d21d32 d12d31 −d21d12

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33


According to (9)
A1 = −(x2 − x1)

∼
α1 − x2x3 − d12(

∼
β2y1 +

∼
β3y2 − y1y3)− d13(y21 −

∼
β4y3)− e1

A2 = − ∼α2x1 −
∼
α3x2 + x1x3 − d21(

∼
β1(y2 − y1) + y2y3)− d23(y21 −

∼
β4y3)− e2

A3 = −x21 +
∼
α4x3 − d31(+

∼
β1(y2 − y1) + y2y3)− d32(

∼
β2y1 +

∼
β3y2 − y1y3)− e3

Let the control law be as follows:u1 = a11A1 + a12A2 + a13A3

u2 = a21A1 + a22A2 + a23A3

u3 = a31A1 + a32A2 + a33A3

ie 
u1 = 1

|D| [(−d32d23)A1 + (d32d13)A2 + (d12d23)A3]

u2 = 1
|D| [(d31d23)A1 + (−d31d13)A2 + (d13d21)A3]

u3 = 1
|D| [(d21d32)A1 + (d12d31)A2 + (−d21d12)A3]

(19)

By (10) and (11) the update laws for unknown parameters are given as
following 

.∼
α1 = F11(x)e1 + F21(x)e2 + F31(x)e3 + (α1 −

∼
α1)

.∼
α2 = F12(x)e1 + F22(x)e2 + F32(x)e3 + (α2 −

∼
α2)

.∼
α3 = F13(x)e1 + F23(x)e2 + F33(x)e3 + (α3 −

∼
α3)

.∼
α4 = F14(x)e1 + F24(x)e2 + F34(x)e3 + (α4 −

∼
α4)

ie 

.∼
α1 = (x2 − x1)e1 + (α1 −

∼
α1)

.∼
α2 = x1e2 + (α2 −

∼
α2)

.∼
α3 = x2e2 + (α3 −

∼
α3)

.∼
α4 = −x3e3 + (α4 −

∼
α4)

(20)
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and



.∼
β1 = (d12G21(y) + d13G31(y))e1 + (d21G11(y) + d23G31(y))e2

+(d31G11(y) + d32G21(y))e3 + (β1 −
∼
β1)

.∼
β2 = (d12G22(y) + d13G32(y))e1 + (d21G12(y) + d23G32(y))e2

+(d31G12(y) + d32G22(y))e3 + (β2 −
∼
β2)

.∼
β3 = (d12G23(y) + d13G33(y))e1 + (d21G13(y) + d23G33(y))e2

+(d31G13(y) + d32G23(y))e3 + (β3 −
∼
β3)

.∼
β4 = (d12G24(y) + d13G34(y))e1 + (d21G14(y) + d23G34(y))e2

+(d31G14(y) + d32G24(y))e3 + (β4 −
∼
β4)

ie 

.∼
β1 = d21(y2 − y1)e2 + d31(y2 − y1)e3 + (β1 −

∼
β1)

.∼
β2 = d12y1e1 + d32y1e3 + (β2 −

∼
β2)

.∼
β3 = d12y2e1 + d32y2e3 + (β3 −

∼
β3)

.∼
β4 = −d13y3e1 − d23y3e2 + (β4 −

∼
β4)

(21)

The identical Vaidynathan systems (17) and (18) are globally and asymptoti-
cally general hybrid projective synchronized for all initial conditions x(0), y(0)
in R3 with the novel adaptive controller u defined by (19), and the update laws
defined by (20) and (21).
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Fig. 4. Estimated unknown parameters of the master Vaidynathan chaotic system
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Fig. 5. Estimated unknown parameters of the slave Vaidynathan chaotic system
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Fig. 6. Synchronization errors e1; e2; e3 between identical Vaidynathan systems (17)
and (18)

Numerical Results For the numerical simulations, the fourth-order Runge-
Kutta method with time-step 0.001, is used to solve the Vaidynathan sys-
tems (17) and (18) with the adaptive controller u given by (19) and the update
laws (20) and (21). We take the parameters of the Vaidynathan systems as in
the chaotic case, i.e.

α1 = 25, α2 = 33, α3 = 11, α4 = 6

The initial values of the master system (17) are taken as

x1(0) = 5, x2(0) = 7, x3(0) = 1

The initial values of the slave system (18) are taken as

y1(0) = 1, y2(0) = 4, y3(0) = 2
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The initial values for the parameter estimates of the master system are
taken as

∼
α1(0) = 5,

∼
α2(0) = 10,

∼
α3(0) = 20,

∼
α4(0) = 30

The initial values for the parameter estimates of the slave system are taken
as ∼

β1(0) = 5,
∼
β2(0) = 10,

∼
β3(0) = 20,

∼
β4(0) = 30

The errors have initial conditions

e1(0) = 1, e2(0) = 2, e3(0) = 3

we choose the scaling factors such that |D| 6= 0

d12 = −3, d13 = 1, d21 = 1, d23 = −2, d31 = 4, d32 = −3

The simulation results are shown in Figs.4–6. Fig 4 and Fig 5 show that the

estimates
∼
α1,

∼
α2,

∼
α3,

∼
α4 and

∼
β1,

∼
β2,

∼
β3,

∼
β4 of the unknown parameters

can converge to α1 = 25, α2 = 33, α3 = 11, α4 = 6 and β1 = 25, β2 = 33,
β3 = 11, β4 = 6 respectively. Fig 6 shows synchronization errors between the
slave system (18) and the master system (17).

4 Conclusions

In this paper, a scheme for generalized hybrid projective synchronization be-
tween two identical chaotic systems is presented. This scheme has been suc-
cessfully applied between two identical Zeraoulia chaotic systems and two iden-
tical Vaidynathan chaotic systems. Based on Lyapnov stability theory and the
adaptive control theory, an adaptive nonlinear feedback control is designed.
The numerical simulation demonstrated the effectiveness of the control used in
this scheme.
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